THE EXACT CALCULATION OF QUADRUPOLE SOURCES FOR SOME INCOMPRESSIBLE FLOWS

KENNETH S. BRENTNER

MAY 1988
THE EXACT CALCULATION OF QUADRUPOLE SOURCES FOR SOME INCOMPRESSIBLE FLOWS

Kenneth S. Brentner

NASA Langley Research Center, Hampton Virginia

ABSTRACT

This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings (FW-H) equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems which the exact solution is known. The inviscid, incompressible, two-dimensional flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.

INTRODUCTION

The acoustic analogy of Lighthill [1] and in particular its application to sound generated by surfaces in arbitrary motion by Ffowcs Williams and Hawkings [2] has been an extremely useful tool in estimating the aerodynamic sound generated by propellers and rotors. Although the Ffowcs Williams-Hawkings (FW-H) equation is intended for the prediction of the acoustic field given the aerodynamic field around the body, i.e. the acoustic analogy, the equation is an exact rearrangement of the mass and momentum conservation equations and can be used to recover the aerodynamic field near the body which is generating the sound as well. This relatively new idea has been attempted by Farassat and Myers [3], Long [4], and others.

In general practice, only some abbreviated form of the FW-H equation is used. One approximation to the FW-H equation which has often been applied for both acoustic and aerodynamic work is one in which the quadrupole source term has been ignored. It has been argued that the quadrupole term may be neglected for certain conditions for which the turbulent flow region is small [5], however, probably the most fundamental reason it is left out is because it requires a detailed knowledge of the flow field around the body in advance. Without determining the entire flow field, and quite possibly the desired acoustic field, the quantities necessary to describe adequately the quadrupole source are unknown, although reasonable guesses can be made. None the less, difficulty in obtaining a source term is little justification for neglecting that term. Indeed Hanson and Fink [6] as well as Schmitz and Yu [7] have shown for high speed rotating blades that the quadrupole source is very important even though good results can be achieved in other operating ranges without the quadrupole.

In an effort to gain a new understanding about the quadrupole in both acoustic and aerodynamic applications, we have chosen some sample problems for which the flow field can be determined analytically using the two dimensional velocity potential. In the case of the circular cylinder, each of the source terms are calculated separately and compared with the exact potential solution. The forces on the cylinder due to pressure are compared as well. This problem helps to explain the results and difficulties of Brandão[8,9].

The circular cylinder solution suggests a new description of the quadrupole term which is useful in identifying the volume and surface terms immediately from the exact solution. This is applied
directly to find the relative source contributions for a Joukowski airfoil. Following this, the problem of a circular cylinder moving near a vortex filament is examined as well. Each of these cases illustrate the various roles of the volume source terms for incompressible flows. Another consideration of the role of quadrupole sources for exact compressible flow problems is given by Ffowcs Williams [10].

PROBLEMS WITH EXACT SOLUTIONS

The Circular Cylinder

One of the most well known exact potential flow solutions is that for a circular cylinder in an inviscid, incompressible flow. This is such an important flow because the solution can be extended to a variety of other problems using conformal mapping of the complex velocity potential. Similarly, if one can understand the components of the flow as given by the FW-H equation, there is hope that these results can be transformed to give some idea of the behavior of each source term for a Joukowski airfoil. Indeed this has essentially been done in this paper. Brandão [8,9] has also used the circular cylinder problem in his development of an aerodynamic theory based on the FW-H equation, so comparisons can be made with his results.

Velocity Potential Solution— The velocity potential for a circular cylinder of radius \(a \), in a frame of reference in which the cylinder is moving, is unsteady and known to be

\[
\phi(x,t) = -a^2 \frac{v(t)}{r} \cdot \hat{r} - \frac{K \theta}{2\pi}
\]

where \(r, \theta \) are the polar coordinates of \(x \), \(v(t) \) is the velocity of the cylinder center, \(K \) is the bound circulation on the cylinder and \(\hat{r} \) is a unit vector in the \(x \) direction. The perturbation pressure, given by the Bernoulli equation, is then written

\[
p' = p - p_\infty = -\frac{1}{2} \rho u^2 - \rho \frac{d\phi}{dt}
\]

where

\[
\begin{align*}
 u^2 &= |\nabla \phi|^2 = a^4 \frac{v^2}{r^4} + K a^2 \frac{v}{4\pi^2 r^2} + K^2 \\
 \frac{d\phi}{dt} &= -a^2 \{v^2_n - v^2_t\} + K \frac{v}{2\pi r} - \frac{a^2}{r} \frac{dv}{dt} \cdot \hat{r}
\end{align*}
\]

Here \(v_n = v \cdot \hat{n} \) and \(v_t = |v \times \hat{n}| \) where \(\hat{n} \) is an outward unit normal vector to the surface. Note that for the circular cylinder \(\hat{r} \) and \(\hat{n} \) are equivalent. The terms are written out so that they may be compared with the solution gained from the FW-H equation.

Acoustic Solution— The Ffowcs Williams–Hawkings equation may be written

\[
\nabla^2 \{p' H(f)\} = -\frac{\partial^2}{\partial x_i \partial x_j} (\rho u_i u_j H(f)) + \frac{\partial}{\partial x_i} \{p' n_j \delta(f)\} - \frac{\partial}{\partial t} \{\rho_0 v_n \delta(f)\}
\]

for an inviscid, incompressible flow and where the derivatives are assumed to be generalized, \(H(f) \) and \(\delta(f) \) are the the Heaviside and Dirac delta functions respectively, and the three source terms have come to be known as quadrupole source, loading source, and thickness source terms respectively. The function \(f = 0 \) is an equation which describes the body surface and shall be defined such that \(\nabla f = \hat{n} \), which is the outward unit normal vector.
Figure 1. The perturbation pressure for a flow around a circular cylinder, radius $a = 1.0$, with a velocity $v = 1.0$, and circulation $K = \pi$.

a) Exact potential solution for p'

b) Thickness contribution p_t'

c) Loading contribution p_l'

d) Quadrupole contribution p_q'
The solution can be obtained using the Green's function for the Laplace equation and since the exact solution for pressure and velocity are known and the geometry is simple, each Green's function integral can be calculated analytically. When this is done, the pressures obtained are written

\[p_t' = \frac{\rho}{2} \left(\frac{a^2}{r^2} (v_n^2 - v_l^2) + \frac{a^2}{r} \frac{dv}{dt} \cdot \hat{r} \right) \]

(6)

\[p_t' = \frac{\rho}{2} \left(\frac{a^2}{r^2} (v_n^2 - v_l^2) + \frac{a^2}{r} \frac{dv}{dt} \cdot \hat{r} - \frac{K v_t}{\pi r} \right) \]

(7)

and

\[p_q' = -\frac{\rho}{2} \left(\frac{a^4}{r^6} v^2 + \frac{K a^2}{\pi r^3} v_t + \frac{K^2}{4 \pi^2 r^2} \right) \]

(8)

Here the subscripts \(t, l, \) and \(q \) refer to the thickness, loading and quadrupole contributions, respectively. It is immediately clear when comparing equations (6-8) with the potential solution, equations (3,4), that the thickness and loading sources correspond exactly to \(-\rho \frac{d\phi}{dt}\) and the quadrupole contribution corresponds to \(-\frac{1}{2} \rho u^2\). This finding warrants further exploration to determine if this correspondence can be generalized.

Notice in equations (6-8) that the total far-field solution is given by the thickness and loading terms, however in the case with circulation, \(K \neq 0 \), the quadrupole contribution can be as important as the thickness term. The quadrupole serves to provide a near-field pressure adjustment to the thickness and loading pressures. Figure 1 shows the relative contributions of each of the source terms for a cylinder with circulation.

Forces on the Cylinder— The force on the cylinder can now be easily calculated by integrating the pressure over the cylinder surface. The force per unit length is then found to be

\[F = F_t + F_t + F_q \]

(9)

where

\[F_t = -\frac{1}{2} m \frac{dv}{dt} \]

(10)

\[F_l = -\frac{1}{2} m \frac{dv}{dt} + \frac{1}{2} \rho K (v \times \hat{k}) \]

(11)

\[F_q = \frac{1}{2} \rho K (v \times \hat{k}) \]

(12)

Here \(m = \rho \pi^2 a \) which is the virtual mass of the cylinder and \(\hat{k} = \hat{n} \times \hat{t} \). The force composed of \(F_t \) and the first term of \(F_l \) is due to and opposes the acceleration of the cylinder while the force composed of \(F_q \) and the second part of \(F_l \) is due to circulation. It is apparent that the force generated by acceleration of the cylinder is independent of the quadrupole, but one half of the force due to circulation is given by the quadrupole term. This implies that if the FW-H equation is to be used for aerodynamic calculations, the quadrupole may be important for steady lifting problems.

A New Quadrupole Description

Before a more definitive statement is made, let us first return to examine the way in which the quadrupole term was simply related to \(\frac{1}{2} \rho u^2 \). With no loss of generality the volume term in equation (5) can be rewritten

\[\frac{\partial^2}{\partial x_i \partial x_j} \{ \rho u_i u_j H(f) \} = \nabla^2 \left\{ \frac{1}{2} \rho u^2 H(f) \right\} + \rho \nabla \cdot \left\{ (\zeta \times \mathbf{u} + \mathbf{u} \nabla \cdot \mathbf{u}) H(f) \right\} \]

\[+ \rho \nabla \cdot \left\{ (\mathbf{u} \cdot \mathbf{u} \frac{1}{2} \mathbf{n}) \delta(f) \right\} \]

(13)
where \(\zeta = \nabla \times \mathbf{u} \), is the local vorticity of the fluid. The surface term arises from the generalized gradient of \(H(f) \), \(\mathbf{n} \delta(f) \). The second term on the right hand side is zero for an irrotational \((\nabla \times \mathbf{u} = 0)\), incompressible \((\nabla \cdot \mathbf{u} = 0)\) flow. This quadrupole expression explicitly separates the \(\frac{1}{2} \rho \mathbf{u}^2 \) part from the other parts. It is also useful to rewrite the thickness term

\[
\frac{\partial}{\partial t} \{ \rho \mathbf{v}_n \delta(f) \} = -\nabla \cdot \{ \rho \mathbf{v}_n \mathbf{v} \delta(f) \} + \rho \frac{d\mathbf{v}}{dt} \cdot \mathbf{n} \delta(f) \tag{14}
\]

which puts the steady part of the thickness term in a form similar to part of the surface term in equation (13). The FW-H equation may now be written

\[
\nabla^2 \{ p' H(f) \} = -\nabla^2 \{ \frac{1}{2} \rho \mathbf{u}^2 H(f) \} - \rho \nabla \cdot \{ (\zeta \times \mathbf{u}) H(f) \} - \nabla \cdot \{ \rho \mathbf{v}_n (\mathbf{u} - \mathbf{v}) \delta(f) \} \\
+ \nabla \cdot \{ (p' + \frac{1}{2} \rho \mathbf{u}^2) \mathbf{n} \delta(f) \} - \rho \frac{d\mathbf{v}}{dt} \cdot \mathbf{n} \delta(f) . \tag{15}
\]

This new equation is similar to Powell’s theory of vortex sound [11] where the quadrupole source region is identified with the vorticity of compact eddies in the flow. The second source term in equation (15) is restricted to the region in the flow where the vorticity is nonzero, while the third source term is written in terms of a vortex sheet of strength \(\mathbf{u}_t - \mathbf{v}_t \) over the surface, since \(\mathbf{u} - \mathbf{v} = (\mathbf{u}_t - \mathbf{v}_t) \mathbf{f} \) on the surface. Equation (15) suggests writing the FW-H equation in terms of the variable \(B = p' + \frac{1}{2} \rho \mathbf{u}^2 \) which is the \(\rho = \text{constant} \) form of the variable \(B \) Howe [12] used for his nonlinear analogy. This variable then eliminates the volume source terms if the flow is irrotational, which is not surprising since the Laplace equation can be solved uniquely from the boundary data. Now the contribution to \(p' \) from the volume source is \(-\frac{1}{2} \rho \mathbf{u}^2 \), exactly as in the case of the circular cylinder. In the following problems, it will be possible to calculate the exact potential solution and then directly identify the volume and surface contributions to the form of the FW-H equation given in equation (15).

Aerodynamic Implications— Actually the distinction between the quadrupole source of equation (5) and the volume source terms of equation (15) is an important one. If the variable \(B \) is used along with the three dimensional Green’s function for the Laplace equation in unbounded space, an integral representation of equation (15) can be written

\[
B - \frac{1}{4\pi} \int \frac{B \mathbf{n} \cdot \mathbf{r}}{r^2} dS = -\frac{1}{4\pi} \int \frac{\rho \mathbf{v}_n (\mathbf{u} - \mathbf{v}) \cdot \mathbf{r}}{r^2} dS - \frac{1}{4\pi} \int \frac{\rho \frac{d\mathbf{v}}{dt} \cdot \mathbf{n} \delta(f)}{r} dS . \tag{16}
\]

This is a singular Fredholm integral equation of the second kind for the unknown variable \(B \), for which the solution is desired. In [8], Brandão has derived a similar equation in which the quadrupole (of equation 5) and unsteady terms were neglected. In that case, \(B \) is replaced by \(p' \) and the \(\mathbf{u} \cdot \mathbf{r} \) term is dropped from the right hand side, whereas if the volume terms and unsteady term of equation (15) are neglected, the only change to equation (16) is that the variable \(B \) is reduced to \(p' \). Without the full right hand side of equation (16), Farassat and Myers [3] have shown that the angle of attack problem becomes an eigenvalue problem and cannot be solved, as [8] confirms through experience. This is true because the term \(\mathbf{u} - \mathbf{v} \) on the right hand side of equation (16) represents the the local vorticity on the surface due to the boundary layer and any bound circulation. If the \(\mathbf{u} \cdot \mathbf{r} \) term is neglected, then no mechanism is available to generate the lift.

Brandão [9] recognized that the induced velocity of the flow must be important for the lifting problem and used this as justification for interpreting the velocity in the thickness term differently. Brandão’s
new interpretation of the velocity is such that the $u - v$ term on the right hand side of equation (16) is replaced by $u - v - v_\text{n} \hat{n}$. If equation (16) had been used then the exact solution would be obtained but one must remember the variable B will differ from p' on the surface of the cylinder by a constant factor of $\frac{1}{2} \rho v^2$ for the case with no circulation, as determined from equation (3).

The Joukowski Airfoil

Now consider the case of a Joukowski airfoil in incompressible flow. The exact solution is readily obtained using the Joukowski transformation, $\zeta = z + 1/z$, to transform the complex velocity potential $w(z)$ for the circular cylinder. The perturbation pressure p' can be written

$$p' = -\frac{1}{2} \rho |dw| \zeta^2 + \rho \text{Re}(V \frac{dw}{d\zeta})$$

where the airfoil has a steady complex velocity $V = u(\cos \alpha + i \sin \alpha)$ and $dw/d\zeta$ is the conjugate of the complex fluid velocity. The value for $dw/d\zeta$ is most easily obtained by transforming the solution for the circular cylinder with a free stream moving past into the ζ plane and then subtracting the freestream velocity. This gives

$$\frac{dw}{d\zeta} = (\overline{V} - \frac{Va^2}{(z - z_o)} + \frac{iK}{2\pi(z - z_o)}) \frac{d\zeta}{dz} - \overline{V}$$

where \overline{V} is the conjugate of V and z_0 is the center of the circular cylinder. From the previous discussion, it is clear that the volume source contribution of equation (15) is $-\frac{1}{2} \rho u^2 = -\frac{1}{2} \rho |dw/d\zeta|^2$ while the surface source contribution is given by $-\rho \phi/dt = \rho \text{Re}(V dw/d\zeta)$. In Figure 2, the relative contribution of the volume and surface sources for a cambered airfoil at angle of attack are compared.

Figure 2. The perturbation pressure components for a flow ($v = 1.0$) about a Joukowski airfoil ($a = 1.13$, $z_o = -0.11 + 0.10i$) at $\alpha = 5\text{deg}$.

a) Surface source contribution to p'

b) Volume source contribution to p'
Clearly for the thin airfoil of figure 2, the volume source term is small except near the stagnation points. This observation is in fact the basis of thin airfoil theory for which \(p' \) is approximated as

\[
p' \approx -\rho \frac{d\phi}{dt} \tag{19}
\]

which is exactly the contribution from the surface source terms in equation (15). Therefore, neglecting the volume terms is justified by the same assumptions used in thin airfoil theory, and conversely, the volume source should not be neglected if the pressure field near a thick body is desired.

Circular Cylinder with a Vortex

As a final example, consider a circular cylinder moving past a vortex in the vicinity of the cylinder. In this case the complex velocity potential can be found using the Milne-Thomson circle theorem to be the sum of the velocity potential of the cylinder alone, a vortex of equal strength to the free vortex at the center of the cylinder and a vortex of equal strength and opposite sense at the image point \(z_2 = \frac{a^2}{\bar{z}_1} \), if \(z_1 \) is the complex coordinate for the position of the image vortex. The complex velocity potential for the problem is

\[
w(z) = \frac{-Va^2}{z} + \frac{i(K + \Gamma)\ln(z)}{2\pi} + \frac{i\Gamma\ln(z - z_1)}{2\pi} - \frac{i\Gamma\ln(z - z_2)}{2\pi} \tag{20}
\]

after dropping a constant. The pressure \(p' \) is then found to be

\[
p' = -\frac{1}{2}\rho |\frac{dw}{dz}|^2 - \rho \text{Re}(\frac{dw}{dt}) \tag{21}
\]

where

\[
\frac{dw}{dt} = V \left(-\frac{Va^2}{z^2} + \frac{i(K + \Gamma)}{2\pi z} \right) + \frac{i\Gamma}{2\pi} \left(-\frac{V_1}{z - z_1} + \frac{V_2}{z - z_2} \right) \tag{22}
\]

and \(V_1 \) and \(V_2 \) are the complex velocities of the free and image vortices.

This particular problem highlights a situation where the second volume term in equation (15) must not be neglected. Since the vorticity is concentrated at the point \(x_1 \), the vorticity vector \(\zeta \) can be written \(-K\delta(x - x_1)\hat{k}\) where \(K \) is the strength of the vortex and \(\hat{k} \) is the unit vector \(\hat{n} \times \hat{t} \). The pressure contribution due to the second term in equation (15) may then be written

\[
p'_v = \frac{1}{2\pi} \nabla \cdot \int_V \rho K \hat{k} \times u_\delta(y - x_1) \ln |x - y| dy = \frac{\rho K \hat{k} \cdot u_{x_1} \cdot (x - x_1)}{2\pi |x - x_1|^2}. \tag{23}
\]

If this result is rewritten in terms of complex variables it becomes

\[
p'_v = \rho \text{Re}\left\{ \frac{i\Gamma V_1}{2\pi(z - z_1)} \right\} \tag{24}
\]

which is recognized immediately in equation (22). The acoustic solution can be thought of as that for the circular cylinder alone, with circulation \((K + \Gamma)\), superimposed with the solutions for the free and image vortices. The surface source terms are changed from the cylinder alone solution by exactly by the image system of the free vortex. Powell [13] and Ffowcs Williams [14] have shown this is true for turbulent boundary layers on a plane boundary as well. One logical approximation to the volume source is to again neglect the \(\frac{1}{2}\rho u'^2 \) part of \(p' \) and only include the effects of the free and image vortices as given by equation (24). Figure 3 shows just this approximation compared to the full exact solution. This type of approximation is not obvious directly from equation (5).
CONCLUDING REMARKS

The aim of this paper has been to gain more understanding of the importance of the quadrupole source in the FW-H equation. Incompressible flow about both thick and thin bodies has been considered. The circular cylinder problem has shown that the thickness and loading contribution to is proportional to dd/dt when the potential ϕ is written in a frame of reference fixed to the undisturbed medium. The quadrupole contribution is just $-ipu^2$ in this frame. This result is true generally, for inviscid, incompressible flows, if the quadrupole is reorganized into the form of equation (13).

With the incompressible FW-H equation in the form of equation (15), the perturbation pressure solution, p', may be safely approximated by the surface source terms alone away from the body. Near the body and especially on the body surface, as is the case for aerodynamics, the surface sources alone in equation (15) are equivalent to thin airfoil theory. Thus the volume sources need to be included for aerodynamic calculations around thick bodies. It is important to distinguish between the neglecting the quadrupole term in equation (5) and the volume source terms in equation (15) since the vorticity needed for steady lift generation is found to be the difference between the two assumptions. This understanding of the FW-H equation as applied to incompressible aerodynamics is believed to be new.

It has also been seen in this paper, as Powell has shown previously, that the vorticity in the fluid can be considered the acoustic pressure generation mechanism. This view identifies the source regions as vortices, boundary layers, bound circulation, and wakes, which are tangible features in the flow. As in the case of the cylinder in the vicinity of a vortex, it should be possible to model regions of vorticity in the flow separately for acoustic calculations.
REFERENCES

This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs William-Hawkins (FW-H) equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, two-dimensional flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.