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ABSTRACT

We develop a consistent theory for dealing with transport

phenomena in stellar atmospheres starting with the kinetic

equations and introducing the three cases: LTE, partial LTE

(usually called non-LTE), and non-LTE (nonlocal distribution

functions). We present the consistent hydrodynamical eauations

for partial-LTE, define transport coefficients, and show a method

to calculate them. The method is based on the numerical solution

of kinetic equations considering Landau, Boltzmann, and Focker-

Planck collision terms. Finally we show a set of results for the

transport coefficients derived for a partially ionized hydrogen

gas with radiation, considering ionization and recombination as

well as elastic collisions. The results obtained imply major

changes in some types of theoretical model calculations and can

resolve some important current problems concerning energy and

mass balance in the solar atmosphere. We show that energy

balance in the lower solar transition region can be fully

explained by means of radiation losses and conductive flux.



I. INTRODUCTION

We do not need to document the enormous importance that

transport phenomena have in stellar atmospheres, as well as in

most areas of physics; we only mention here that thermal

conduction is the key to understanding the solar transition

region and that ambipolar diffusion can be very important for the

mass and energy transport perpendicular to the magnetic field.

By transport phenomena we mean the macroscopic transport

associated with matter, excluding radiation. Radiation processes

have been thoroughly treated since the beginning of astrophysical

research. See Athay (1972) and Mihalas (1978).

Standard transport theories have been developed in the

context of laboratory physics for cases where radiation is

negligible and LTE prevails (implying small gradients of physical

parameters as well as a small radiation flux). In that context,

the early work by Chapman, Enskog, and Brunet (hereafter CHEB),

as discussed by Chapman and Cowling (1936, hereafter CC), led to

a complete compilation of transport coefficients, definitions,

and calculation methods for non-ionized gases; the work by

Braginskii (1965) gives the results of applying CHEB methods to

highly ionized gases (plasmas) and some additional definitions of
i

frictional coefficients very usefull in laboratory experiments.

Hochestim (1967) has made more accurate derivations of transport

coefficients using that method.

The case of a partially ionized hydrogen gas has been

treated by Devoto (1966, 1968) based on CHEB methods, but these

results again refer to laboratory conditions (particularly high



pressure around 1 atm). Following the same formalism, Nowak and

Ulmschneider (1977) have calculated the thermal conductivities

for pressure values covering the range of interest in

astrophysics. These last three papers consider neither radiation

nor inelastic collisions.

We mention also the different approach followed by Spitzer

and Harm (1953) where not only the transport coefficients but

also the first order distribution function was numerically

calculated for a fully ionized gas without restriction to a

truncated polynomial expansion.

The results of Spitzer and Harm (hereafter SH) have been

used extensively in several fields of physics and also show the

limits of validity of the transport coefficients. The SH results

let to the analytical approach of Shvarts et al. (1981) for

calculating flux limit coefficients which have been Qualitatively

confirmed by experiments. An analytical approach applied by

Campbell (1984) also shows a detailed calculation of the first

order distribution function for very simplified cases.

Here, we stress that these approaches imply the direct

solution of a set of kinetic equations for a fully ionized gas,

which are expressed with Focker-Planck collision terms, instead

of the Boltzmann term as in the CHEB method.

An approach that fits the capabilities of modern

"supercomputers" has been suggested by Fontenla (1985) showing .

how one can define a set of transport coefficients and calculate

them by numerical methods for cases of astrophysical interest

where LTE cannot be assumed. This approach also deals with



partial-LTE (p-LTE) conditions and suggests a method for cases

where even p-LTE does not apply. A similar numerical method has

been used by Epperlein and Raines (1986) for a ful ly ionized gas

with a magnetic field, but again without considering radiation

and inelastic collisions. Another related paper by Luciani,

Mora, and Pellat (1985) assumes a simplified kinetic equation and

calculates an approach to the non-localized conductive flux that

arises when p-LTE starts to fail (this is done for a fully

ionized gas without inelastic collisions). Calculations of non-

local effects also have been carried out by Shoub (1983), and by

Owocki and Canfield (1986) for the solar transition region.

In the present paper we show a set of hydrodynamical

equations derived from the kinetic equations which applies to

stellar atmospheres without any apriori assumptions regarding the

distribution functions or the radiation field. Thus, for plane

parallel cases we show one can develop the kinetic equations (and

radiative transfer equations) in a formulation with symmetrical

and antisymmetrical parts, that characterizes 1) the LTE regime

as having the particle and photon distribution functions close to

Maxwell 's and Planck's formulae, 2) p-LTE when only the first

holds, and 3) non-LTE when neither applies. Then, we apply the

method by Fontenla (1985) to compute a consistent set of transfer

coefficients in the p-LTE, plane-parallel case, for a partially

ionized hydrogen gas with a radiation field.



II. THE HYDRODYNAMICAL EQUATIONS

These equations can be derived from the moments of the

kinetic equations considering only particles (i.e., excluding

radiation), and differs from some others which include radiation

in the moments of the kinetic equations (see for example

Anderson, 1976). The reason for the present formulation lies in

the fact that for most cases in stellar atmospheres the radiation

spectrum has to be solved in detail, and its agreement with

observations is the main goal.

Since the inelastic collision terms do not vanish when

taking the moments of the kinetic equations, one is left with the

moments of the Boltzmann collision term £ for the a particles
a

R = /£ dir ; £ = fm v£ dir ; e = fm -^ £ dir ,a ' *a a a J a sa a a ; a 2 sa a

where dir is the impulse phase-space volume element and m is the(x a

mass of particles of species a.

With those definitions, the statistical equilibrium

equations result in

an
-T-r5- + V.(n tf ) + v(n tf) = R ,31 a a a a

where n is the number density of a particles, ^ is the. a a

diffusion velocity, ft is the fluid velocity (mass center

velocity), and R is the net rate of creation of a particles pera
volume unit.



Since mass is conserved in collisions, the usual mass

conservation equation holds

= 0,

where p is the mass density.

Taking the first momemt of the kinetic equations we f ind

where

p , = i , pa = namo
a

and g is the acceleration experinced by an a particle due toa

external (or autoconsistent) fields. Then the definition of the

force $ per volume unit experienced by the whole gas of matter

and P, results the net gain of particle impulse per volume unit

due to the inelastic collisions. The last quantity equals the

net loss of photon impulse and can be expressed in terms of the

collisional term for radiation

£=-/(*! - e ) n du dv,
("• ' M M MV V

where c is the speed of light, K , I , and e have their usual

meaning of absorption coefficient, intensity and emissivity of

radiation at frequency v and with direction n, and du> is the

solid angle element.



The tensor TT contains the pressure p, the viscous

stress f (of null trace), and the terms due to diffusion

a a a
Q,

where

P = £ P r P = - 7 T r / m w w f d i ra a j a a <

and the definition w = v-(!3+$). In these equations one
(X

usually drops the last term because it is quadratic in V .
a

For stellar atmospheres , when the photon flight time over a

characteristic length is small, from the expression of the

kinetic equation for photons results

£= — v • / n n I do) dv.
f J \7

The kinetic energy equation for the matter gas is

V 2 3 V2
^ f .!-«• ^ ̂  _l_ rt r rt / , Q % 1 i

3t *• 2 a 2-' L 2 a 2 •*
a a

3 v 2
+ V • [Z ̂ a(-2" Pa

 + Pa ~2~)]
 + (wV) • 3 + 7»(Z ira

a o

+ V-q =Ep g- + e -a a aa

with e = £ e and 2j = z § and with 5 being the conductivea a a '
a a

energy flux for a particles given by



->• ->• wq = / w m —* f dira J a 2 a <

This defini t ion of conductive f lux agrees with the one from

CC since it does not contain the thermal energy f lux due to

d i f f u s i o n

V

aa
( P + P -->2 ra Ka 2

or Z $ Ty p up to first order in V .o 2 a a

The term 0 • P is frequently dropped for non-relativistic

cases. Again, the condition for energy balance in collisions

gives

Z (ea + RaV =

a

with E being the internal energy per a particle,
a

There results then

3n
= - Z E I-—2- + V-(n tf ) + v(n 3)] + f U I - e ) da dvctL3t oa o J vv va

By using the previous equations one can easily transform the

thermal energy equation into the entalpy equation.
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III. THE CALCULATION OF TRANSPORT COEFFICIENTS

Here we give an overview of the method used for the

calculation of transport coefficients and omit the detailed

expressions for many of the symbols used, giving only their

definitions.

The basic procedure is the expansion of the kinetic

equations for the distribution function fA of each kind of

particle (A means a given species with given impulse coordinates)

into two equations, one on the symmetrical fA
s and the other on

the an ti symmetrical fA
a part, with respect to the direction of

the physical parameter gradient.

We then write the resultant set of equations in numerical

form by assuming a discrete partition in velocity and angle and

replace the derivative operators by finite difference expressions

and integral operators by sums with appropriate weight factors.

The resultant set of algebraic equations can be solved by the

multidimensional Newton-Raphson technigue, which is equivalent

(Fontenla 1985) to the CHEB perturbation scheme for expressing

the distribution function.

With the z axis parallel to the physical parameter (pfprT/etc.)

gradient and assuming that fA does not depend on x or y (plane

parallel geometry) , we can write the kinetic equations

3fA 1 3fA • • 3fA (I-,,2) 3fA
•** HIT* c^ J1T+ <*A + XA> fA + <* A+ • A >

( » a r + I B Ti^ =

772dp

(1)
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with B = v/c, where v is the velocity and p the cosine of the

angle e between the impulse and the z axis.

Since in the present formulation we assume all variables are

only functions of one spatial coordinate, the only consistent

magnetic field would be a homogeneous one with the only

nonvanishing component along that coordinate. In such a case,

for the low field values (i.e., when the Larmour radius is much

larger than the particle free path), the field has no influence

on the transport coefficients and was excluded by averaging the

kinetic equations over angle <J>. The coefficients TU and XA

are integral functions of the distribution functions of the other

kinds of particles and account for the Boltzmann source term and

sink coefficient, respectively. *. corresponds to the external

(or auto-consistent) force field along the z axis and can be

written as

'»*2
•A ' -̂ T- E* +mftc c

with g being the gravitational acceleration, E* the electric

field (divided by e) along the z axis, e the proton electric

charge, c the speed of light, ZA the electric charge (divided by

e), and mA the mass of kind A particles.

The remaining coefficients in equation (1) are related to

the Landau or Focker-Planck collision terms in the kinetic

equations (Balescu 1975)
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2 2 3Gii 3fB
XA = Z / mAC Tp Tp —A B,i,j A 3PAi 3PBj

(2a)

fB

and expressions for a. are deduced from the definition of the
A

operator

2 2 2
2 2 3 fA 3 fA 3 f A

DAfA = .*. *13 »A
 C 3PA-3PIT - «A63 —I

 + °Auy ~2

32fA 3fA 3fA
+ °ABU TiHT + °AB I"" + °Ay TiT ' ( 2 b )

P
where

*ij = I $ Gij fBd i rB'

is the component of the A particle impulse, and dirB is the

space-phase volume element of kind B particles. The customary

defini t ion of G.. is

G. . =

with 6?Ai being the components of the A particle impulse change

due to collision with a B particle, VAB the relative velocity,

and da the differential cross section.

We shall not give all the details here, but mention only

that the photon scattering (Thompson and Rayleigh) and the

elastic collision terms for a heavy species A produced by a much

lighter species B are also likely to be treated as Focker-Planck
i i

terms giving additional contributions to XR' *a and °A* This i
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the case for the effect on atoms due to collisions with

electrons, a situation very difficult to treat using Boltzmann

collision terms requiring an extremely fine partition.

Equation (1), with definitions (2), can be expanded in its

swmmetrical and antisymmetrical components resulting in an

operator formulae

Oafa + Osfs = n
S + Dafa + Dsfs

and (3)

Osfa + Oafs = n
a + Dsfa + Dafsf

where the operators 0 are defined by

O'..,,|i+ .Ax'*) «•

(4)

2
s . ' s . , . a . ' a w 3 , (1-y ) 3

+ + * +*

Expressions (1) - (4) are also valid for photons
• i

provided x -.' *n' anc"' an are nuH* Equation (3) for the
tr cr P

radiation field is equivalent to the usual Feautrier equations

(Mihalas 1978).

Equation (3) can be rewritten numerically by chosing a

partition in z, t, v, and y space, replacing the integrals by

sums and derivatives by finite difference quotients. The set of
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numerical equations can be solved by applying standard

techniques.

Equation (3) covers also stationary or quasi-stationary

cases in which the time derivative in (4) can be neqlected and

the resulting set of equations can be solved by the Newton-

Raphson iteration scheme.

In the case of p-LTE radiation, departure from the Planck

function (i.e., the equilibrium distribution function) is not

negligible, and the particle populations depart from the

Boltzmann relation, but the distribution function of particles is

close to that of Maxwell's. In this case the convergence of CHEB

iteration scheme rules the convergence of the Newton-Raphson

method for solving equation (3) for particles, with the radiation

distribution function given by the radiative transfer

equations.

We want to stress that the p-LTE procedure described below

cannot be applied when the particle distribution function departs

notably from Maxwellian at some relevant velocities.

When the p-LTE assumption is appropriate, one develops

equation (3) up to first order in the distribution functions,

resulting in a set of linear equations in ff, ff with independent
•\ C* -i a

terms By-rrr Xi? an<^ n_, where F is the zero order distribution «o Z f M?

funct ion (Maxwell ' s funct ion) of physical parameters (particle

density n , temperature T, f luid velocity U, and external force

potential ( * z ) ) , and Xp an<3 ^p are tne Boltzmann terms due to

interaction with photons.
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•J

Thus, up to first order, f, is a linear function of physical

parameter gradients,the external force * and the antisymmetrical

part of the radiation intensity (I a) , hereafter called

thermodynamic forces .

From the previous hydrodynamical equations and radiative

transfer and statistical equilibrium equations, one obtains a

complete set of equations for solving the full problem. The

moment cut-off procedure is acomplished by the expansion

conditions chosen for the distribution function. In these

equations one can express the macroscopic fluxes as some

transport coefficients multiplied by the thermodynamic forces.

For this p-LTE approach the coefficients have to include

fluxes induced by radiation, and the usual transport coefficients

depend on the angle-averaged radiation field intensity (mean

intensity). In the case where LTE holds, radiation can also be

expanded up to first order and a reduced set of transport

coefficients can be defined.

One important detail not usually considered (see Mihalas

1984, p. 421) is that if consistency is required, one has to

consider, for the absorption and emission coefficients, the

values corrected to first order (i.e., accounting for fa). In

this case this results in

3f a , 3f sv + ^ v s _ a fa_ s f s
32 c 3t v v v xv v

(5)

3f s , 3f av + ± v _ a_ a f s _ s f a
y 3 z c 3t ^ v xv v ~ x v v



16

v being the frequency and f the distribution function for

photons, i.e.,

c2!
f = *.
v 2hv3

One can then define the optical depth as

v

and the symmetrical and antisymmetrical source functions

., s s , a a
«. J TI e ou •* *1 e

cs f 2hv ^ v _ v . c
a - r.?hv_ \ v _ v

v ~ ̂  2~J ~s s ' Sv " I 2~J "s ~ ~i~ '
C Y K C Y K

AV V V V

as well as the ratio

a a
x Ka _ *v _ v

rv ~ ~i s"'

where Sa and ra become proportional to the thermodynamic forces

We then find the following set of eauations

3la , 3IS_ v 1 v _ Ts cs a Tau — s — ~ — z~ — TTT I ~ S + r I3r s 3t v v v v
X c*

and ( 6 )

I3 - Sa + ra Is.
XAv
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It should be noted that under certain circumstances, terms

added to the usual equations can be comparable to say Ia.

One can easily see that the present method can be extended

to cases where a non-thermal component of some species is present

by treating that component in a similar way as is done for

radiation. The only condition required is that its scale of

variation must be large compared to the mean-free-path of the

bulk of "thermal" particles.

Other effects which may be considered by this method are

collective effects such as plasma turbulence. By defining

plasmons, solitons, etc., one can set up expressions analogous to

kinetic equations and the corresponding interaction terms.

One special point concerning the method we use is the

numerical expression adopted for derivatives of ff with respect

to v and y and the considerations which have to be applied to the

corresponding limit conditions as well as the integration weight

to be used.

For the ff derivatives with respect to y at intermediate

points, we have used the standard finite difference expressions,

but for the limit points in our grid, we have assumed

f?(p) = ru + sy(l-y
2)

where r and s were obtained from one limit point to the next.

Regarding the derivatives with respect to v, we have assumed

fj(v) = g(v) F(v)
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where F(v) is Maxwell's function and g(v) is a slowly varying

function of v, whose derivatives are calculated at intermediate

points by the standard finite difference quotients and at the

limit points by assuming

g = r vn + s vn+ra,

We have taken n = 1 for the first point and n = 3 for the

last; m was set equal to 2 for both limits (other values also

have been tried with no significant changes noted). The integral

weight factors were taken using the same expansion of f?.

The last approach for derivatives and integrals follows from

the CHEB method and was also applied by SH. This method allows

the use of a coarse partition in v space but it affects the

result due to the fact that the adopted form implies certain

boundary conditions on the function ff, both at zero and at the

high velocity cutoff.

It is beyond the scope of the present paper to discuss the

generality of the solutions obtained. We mention only that, as

CC stated, accurate results are obtained in the case where the

bulk of low-velocity particles are very close to having a

Maxwellian distribution, and only the very high energy particles

can depart from that distribution.

We have tested the method thoroughly by making detailed

comparisons with the f,/F for a fully ionized plasma from our

method and the SH results, and for the rigid-sphere gas with the
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transport coefficients given by CC. We find remarkable agreement

between our computed values and those from SH for low velocities,

and we find a substantially lower value for velocities greater

than, for instance, twice the thermal velocity. These

differences are understandable because SH used a constant Coulomb

logarithm and a different cutoff, which does not have any

influence on the resulting transport coefficients. The

comparison with the rigid-sphere gas gives agreement to within a

few tens of percent in the thermal conductivity, which is quite

good for our purpose. A comparison also has been made with SH

values for the case of a Lorentz gas where there is excellent

agreement up to velocities of three or more times the thermal

velocity.

IV. THE CALCOLATIONS

One of the major goals of the present study is the

consideration of both collision terms, the Boltzmann and Focker-

Planck collision terms (the latter in the special form due to

Landau, 1936, for charged particles) for neutral particles,

charged particles, and photons, considering both elastic and

inelastic collisions. This leads us to consider a set of

integrodifferential equations for the ensemble of electrons,

protons, hydrogen atoms, and photons. In the present approach,

we do not account for excited levels of hydrogen atom or other

species, and we considered photoionization and radiative

recombination as the only inelastic processes (reactive processes
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since they change species). At higher temperatures

Bremsstrahlung has to be considered, and at high densities

collisional ionization and dielectronic recombination must be

taken into account.

The effect of Thompson and Rayleigh scattering is small for

the range of pressure values considered, and we treat only a two-

interval partition in the photon spectrum for low frequencies.

However, we have chosen a finely divided partition of freauencies

in the range between the head of the Lyman continuum and

approximately 285 A (a frequency 3.2 times that at the head of

the Lyman continuum).

In this paper, we have adopted a grid of 20 points in v-

space ranging from 0.227 to 5 times the thermal velocity of the

species; we have also made calculations changing these values and

did not find important differences. Furthermore, the plots shown

in Figure 8 demonstrate that the derivatives and integrals of the

functions f? vary smoothly between the grid points.

For the angle 8 we have considered only three values

covering the range from 0° to 90°, and for the <t> angle we have

taken eight values covering the range from 0° to 360°. The steps

of the angular partitions are not small, but were taken in order
•

to obtain reasonable computing time and still represent the

angular dependence of the first order distribution functions.

From the results obtained one sees that the functions f? are

nearly linear with p. This property can be used in further work

to simplify the calculations.
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In order to get a reasonable set of transport coefficients

we have chosen for the medium intensity the formula

.s _ 2hv3 W _ _ W_ _ 4. t _ ,

with h and k being the Planck and Boltzmann constants,

respectively, and W and T^ the two free parameters for specifying

the intensity and its frequency dependence (see Fontenla and

Rovira 1985).

The solution of the transport equations gives

31s
I* .-„ _JL- + S

a - ra Is (7)
V 3T V V V

which may be used to relate the values of Ia to the adopted

thermodynamic forces Z^ and Z^, given by

dln(W) . 7
 dln(Vzw • -ar- and ZR = —a^— •

In the following we will use (W , T^) and (Ẑ j, Zĵ ) to

describe the symmetrical and antisymmetrical parts of the

radiation intensity (Is and Ia respectively).

For the Boltzmann terms we have considered the collision

between a pair of incident particles, named A and B, resulting in

a pair of emergent paricles, named C and D. The resulting

expressions are

VAB



22

(8)

VAB ffdwcd*cfcfDdirB

where ( a d y d<f> ) is the different ial cross section transformed toc c

the fluid rest frame.

The cross section for electron-atom elastic collisions were

taken from the computations of Temkin and Lakin (1961), since

later publications are in good agreement with these earlier

values (Bates 1962; Khan et al. 1982) and show that the errors

are small when considering few partial waves.

The atom-atom collisions are far more complicated and

calculations have to take into account more than 30 partial

waves. However, we are not interested in the fine details of

differential cross section which arise from the dif ferent wave

resonances, but only in the general dependence of cross section

with angle and energy. We have used the results of Massey (1971)

for the combined cross section

da = T dag + 7 dau

where da and da correspond to the "gerade" and "ungerade"

interaction potentials. We notice that the total cross section

is almost constant with respect to V._, except for the sharp
AD

resonance at very small velocities. We used a formula giving

Massey's value for the total cross section, and the shape

of a ( u ) was assumed to be the one corresponding to V^g = 0.6 km

s~* (E = 0.004 eV). The shape of a at higher velocities may be
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quite different from the one given by our approach, but there

exists no detailed publication in the range of interest. At any

rate, since the total cross section is accurate, we do not expect

that a change in that shape will produce major errors in our

calculations.

In the case of the proton-atom collisions, there is also

another physical process, the charge transfer or capture, which

is analogous to elastic collision, but seems to be the more

important than elastic collision in actual cases (i.e., for small

velocities with respect to orbital electron velocity). Again, we

have used a formula which gives the total cross section as a

function of VAB fitting accurately the experimental data by Fite

et al. (1960, 1962) and having reasonable behavior at the low

velocity limit according to the theoretical work by Smith

(1967). Since we do not have details on the differential cross

sections we have assumed that the shape of a(u) is given by

Opradolce's (1984) expression for the He^-H charge-exchange

collisions.

The cross sections for collisions with photons are taken

from Allen (1962) for Thompson and Rayleigh scattering, and for

ionization and recombination, assuming dipolar angular
t

properties.

In equation (8) we use for fc and fp the velocities vc and

VD and the angles 6 and 6D which are given by the energy and

impulse conservation equations. The values of these functions do

not correspond to the center of an interval, and for this reason

we have scaled those values by assuming f= g F as before. This
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procedure minimizes the error, but does not elliminate it. In

fact, when considering the Doppler displacement for atom-photon

collisions, errors can be important for high velocity atoms.

V. DEFINITION OF TRANSPORT COEFFICIENTS

From our calculations we obtain the coefficients for the .

functions f?(v,y) with respect to gradients in density of all

particles (electrons ne, protons nD, and atoms na), mean particle

velocity U (fluid velocity), temperature (T), and radiation

parameters (W, TR), as well as the electric field E*. (We did

not calculate variations with respect to gravity g since they are

usually negligible in stellar atmospheres.)

By using these values of f? one can calculate the flux of

physical quantities such as electric charge (current J), kinetic

energy (i.e., thermal flux qT); one then gets a complete set of

transport coefficients. However, the particle densities are not

independent. In the first place, charge neutrality (ne = np)

holds in the cases of interest; otherwise enormous currents

arise. Moreover we can assume vn = vn since the difference
e p

would produce strong electric fields which would have an effect

2'larger than the straight gradient difference by a factor (L/1D)̂

(where L is the characteristic length associated with density

gradients and 1D is the Debye length); thus, the electric field

completely masks the other force.

A set of macroscopic parameters can be chosen such as i, p,

U, T, W, TR, E*, where i = ne/na is the ionization ratio and p is
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the gas pressure. In this case it is customary to define the

ambipolar diffusion velocity VA as the mean velocity of atoms

with respect to the center of gravity of protons and electrons.

Since we assume ionization is related to the other

macroscopic parameters through statistical eauilibrium, the

degree of ionization is not an independent variable, and

Zi ° 2(n + n )l?ZT ' ZP + ZWe a

where

„ _ dln(i). _ dln(T). _ dln(P)
i dz ' T dz ' p dz

, _ d ln(W). _ _ d l n ( TR ) . 7 _ 1 dU
ZW dl ' ZR dl ' ZU ~ c dZ

and where n = (n,. + n_ + n _ ) , XD = hv /kTD/ v^ is the freguency
V p d iv O K O

at the head of the Lyman continuum.

This results in a smaller set of independent transport

coefficients that relate the fluxes (and, of course, the

corrections in the radiative transfer eguations, r a and Sa) to

the thermodynamical forces Z , Zy, ZT, Zw, ZR, E*.

We called these independent transport coefficients

n*p' n*u' n*T' n*W' etc*' where the asterisk has to be replaced

by the symbol corresponding to the flux (i.e., A, J, and T for

the ambipolar velocity, electric current, and thermal flux,

respectively).
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It is customary to define the electric conductivity

as a = ~8JE a°d to define the coefficients ra = - flja/njE' to

give the ratio of the electric field EQ* which will result in the

zero electric current produced by the force Za . According to .

this definit ion, E * is the value of the electric field which is
Cl

naturally achieved when the Za force is applied and after the

electric charge has been redistributed to some equilibrium state,

and r_ = E */Z_.
ct ct d

Customary definitions regarding ambipolar diffusion are

confusing and do not apply here because they refer to non

reacting species or to cases where the reaction velocity is very

small, which is not valid for hydrogen in stellar atmospheres.

We introduce ambipolar diffusion coefficients Da , which are

of importance in astrophysics, by imposing only the condition of

null electric current. Then

Da '

The other transport coefficients of great importance in

astrophysics are those related to the thermal conductive flux q,

which are customarily defined by subtracting the entalpy flux

from the kinetic energy flux qT. In this case, conditions
•

regarding the anullation of ambipolar velocity are not

applicable, and the only consistent restriction is the one

regarding electrical equilibrium.

The definition of the thermal conductivity A leads to the

expression
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AT - (!kT "nT - nTT}

where a are the coefficients corresponding to the particlena

flux.

If more species are to be considered, one can define their

diffusion velocity with respect to the center of mass, as

mentioned above, and all the other coefficient definitions will

not be altered since the times involved in reaching the zero

diffusion concentration equilibrium are extremely large compared

to the characteristic times for other physical processes to occur

in stellar atmospheres.

Note that the ambipolar diffusion velocity is not one of the

species-diffusion velocities defined previously but forms, with

the electric current, a complete and independent set from which

the species-diffusion velocities can be derived

v ..
e (2 + Y) «n(l + y)

V = - A

p (2 +

V = Va A

where
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When replacing the above formulae in the hydrodynamical

equations, the usual Joule heating term appears, as well as the

internal energy transport due to ambipolar d i f fus ion .

VI. RESULTS

Using the above definitions, we have calculated the

transport coefficients for a grid of physical conditions

characterized by the values of p, T, W and TR (and assuming U =

0). In addition we have also calculated the coefficients for Zy

but since they are of litle interest in most cases, we do not

show the results here.

Since all the combinations of values for the physical

parameters lead to a large number of possibilities, we have

chosen only three sets of values for W and TR. The first set

corresponds to optically thin matter (in the Lyman continuum)

lying over the solar chromosphere, such as in solar prominences

(W = 0.0022, TR = 8000 K); the second set accounts for the

enhanced radiation field above solar active regions (W = 0.022,

TR = 8000 K); the third set applies to the case of LTE (W = 1, TR

= T).

Table 1 illustrates the grid of values for p and T used in

our calculations. In all cases we obtained the ionization from

the statistical equilibrium equation neglecting collisional

ionization and recombination. We did not include stimulated

emission, which is negligible in the cases considered here, since

T « 157,600 K.
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Neglecting three-body collisions in ionization and

recombination is a good aproximation in the present cases (with

low pressure values); we have checked the corresponding rates and

they are negligible for p < 1000 dyne cm .

The b^ value was obtained form the expression

E, (X) - WE. (X + Xp)
b, = ~-± ,—± 2_
1 W E1(XR)

with X = hvQ/kT, which for T and TR «157,600 K can be

approximated by neglecting stimulated emission and by replacing

Ejfx) by x'1 e~x.. Then

XR
K - T ebl X *

WTRe
X

In the following, values of transport coefficients will be

expressed in cgs (ESU) units. We have also defined some standard

transport coefficients as reference values. For the electrical

conductivity we have chosen Braginskii's (1965) expression for a

fully ionized plasma, with InA = 10,

ac = 1.4 x 10
7 T3/2,s

For the thermal conductivity we have chosen the SH value

given by Allen (1962) (based on InA =10),

= 10-6 T
5/2s
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In the case of the thermoelectric coefficient rT, we have

used the dependence on temperature given by SH,

rT = 103 T .
s

The standard coefficients given above are provided by a

well-established theory for fully ionized hydrogen plasmas.

However, the remaining coefficients do not have such standard

reference values, so we have chosen these coefficients in order

to obtain a smooth variation at the high ionization limit. For

the thermo-ambipolar coefficient DT, we estimate the asymptotic

behavior as

DT = 30 T2.
S

It is difficult to summarize all the results so we only show

the data we believe to be of major importance in stellar

atmospheric modeling.

The ratio of the electrical conductivity to its standard value

(a/a ) is shown in Figures la,b. Note that in Figures la and Ib
S •

(solar-type and enhanced solar-type radiation fields), the ratio

is between 0.4 and 0.8, but in the LTE case shown in Figure Ic,

it decreases sharply for T < 6000 K (one must remember that for

normal astrophysical abundances, because of the contributions of

the other elements, the ratio ne/n never drops below 0.0001 which
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is the smallest in our calculations). At moderate to high

ionization the variation of the ratio with temperature and

pressure is due to the variation of the Coulomb logarithm

(In A). From these results one can estimate the electric

conductivity which has to be used when dealing with MHD theory

for photospheric or subphotospheric layers of cold stars where

magnetic diffusion and Joule heating can be severely

underestimated when using Spitzer or Braginskii values.

The thermoelectric coefficient rT relative to its standard

value is plotted in Figures 2. For medium to high ionization,the

ratio is almost constant between 0.5 and 0.6. For cases of very

small ionization in the LTE case the ratio also goes down very

steeply, appearing to have a sharp minimum which is more

pronounced for low pressure reaching negative values at some very

low ionization, as shown in Figure 2c.

The thermal conductivity (X) is shown in Figure 3. Note in

Fig. 3a that (even at medium ionization) the thermal conductivity

can rise to around 40 times the Spitzer value for T = 5000 Kf but

that it is only slightly higher than the usual value for

T = 50,000 K.

Figure 3c shows the asymptotic behavior at low ionization •

(corresponding to the atom heat flux) and the typical behavior of

the fully ionized plasma at the higher ionization. (Again the

dependence with temperature and pressure is due to the variation

of the Coulomb logarithm.)

Figure 4 shows the shape of the quotient (DT/DT ). Parts a

and b show that the quotient is almost constant and inversely



32

proportional to the pressure, except for the case with higher

pressure and lower radiation field. However, Fig. 4c shows

almost constant values at high ionization that are nearly

inversely proportional to pressure, but at low ionization and low

pressure, the coefficient reduces and and even changes sign.

Radiation-related coefficients, in turn, are much harder to

describe and are not defined by previous theory. Because of the

different usage when applying the two types of radiation fields,

we have plotted the coefficients regarding the Zw force for parts

a and b and those regarding the ZR force for parts c of Figures

5, 6, and 7. The standard values were taken as

rw = -105 T1/2; rR = T3;
s s

Dw = 20 T2 ; DR = T3;

1 = T • 1 = TXw I , AR - T .
S S

From our calculations some numerical noise arises in case of

low pressure and high radiation field. This noise can be traced

to the fluctuations in the lower density species functions f?(v)

and results from the limited numerical guadrature used in the •

calculations, especially for the photon spectrum and angular

variables; usually the fluctuation increases with velocity. One

source of this "noise," the Doppler effect on the inelastic

collision terms, poses a difficult problem. Here, we simply do

not consider the radiative coefficients above the limit where

fluctuating values start.
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Figure 5a and 5b show the shape of (rw/rw ), and Figure 5c

shows (r^/rp ). The former exhibits an almost constant value for
5

the higher pressure and lower radiation field and a behavior that

resembles the Qj. curves. Note, however, that the higher pressure

and lower radiation intensity is the only case where the rw

coefficient is positive, being lower than zero in the others.

Figure 5c shows, however, that for high ionization the ratio is

small and inversely proportional to pressure/ but is negative and

increasing in absolute value as ionization decreases.

Figure 6a and 6b show the values of log (°w/Dwŝ ' an(^ F^9*

6c shows the value of (D /D ). Again, Figure 6a and 6b show an

almost constant value inversely proportional to the pressure,

except for the case of higher pressure and smaller radiation

intensity. Figure 6c displays a nearly zero value when

temperature increases (in this case it implies both ionization

and radiation intensity increases), and negative values nearly

inversely proportional to the pressure values when temperature

decreases in the grid.

Figure 7a and 7b exhibit the quotient (XWAW )» and Figure
s

7c shows the ratio (X^/X^ ). Note that this coefficient displays
R Rs

higher sensitivity to the inelastic collisions since it gives
•

greater weight to high velocity atoms. It is expected to be the

one that reflects the most "noise" in the calculations of the

antisymmetrical parts of the atom distribution function.

Figure 7a and 7b show a decreasing ratio with temperature

and a slope which increases with decreasing pressure. Figure 7c

shows a negative value at low ionization nearly inversely
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proportional to pressure, a maximum value,and slowly decreasing

values at higher temperatures.

The first-order corrections to the radiative transfer

equations can be expressed in terms of the functions f?, since

schematically

fs

and

fs = s r f- _ i + fL ^ <•electrons <• s-* pro tons J *

In these formulas, first-order corrections apply for small

values of the thermodynamic forces. In the case of high

radiation flux (for instance, in the winds of hot stars), the

corrections can rise to zero order, giving very asymmetrical line

profiles even in the fluid frame.

Of course, when velocity reaches certain limits depending on

thermodynamic force values, the method described gives values

of f, which cannot be considered small first-order Quantities.

At higher velocities and for some angles, our method can give the
•

unphysical result ff > F. In such cases, some cutoff procedures

are available (Shvarts et al. 1981), which can be introduced in

our method. However, if calculations are needed for the

realistic distribution function at high velocities, more

iterations must be performed on the Newton-Raphson technique, and

thus the linear relation between the fluxes and the
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thermodynamical forces would not apply. This procedure also

fails when locally defined coefficients do not apply, reflecting

the departure from p-LTE.

VII. CONC LOS IONS

For the charged particle collision terms, we used only the

Landau term in most calculations, but in some of the later

computations the Boltzmann term was introduced to account for

collisions between charged particles that result in large angles

of deflection. From our results, including the Boltzmann term

leads to negligible corrections in the principal range of

particle velocities.

One limitation of the computational procedure used here is

that relativistic corrections were not accounted for in our

treatment of particle-photon elastic collisions. Such

corrections can affect extreme cases.

From our results, we conclude that it is a fairly good

approximation to assume ff(u) proportional to p. However, a

polynomial expansion of f-,(v) is quite impractical, and we obtain

much better numerical behavior by using a finite partition in v-
i

space.

We also conclude that some of the usual theoretical models

and the interpretations of observations have to be revised since

they have underestimated or neglected important transport

phenomena. One of these is the radiation-induced flow in some

stellar atmospheres where this flow can play an important role in
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the energy balance. Another such case is the solar upper

chromosphere and lower transition region where the appropriate

values of thermal conductivity can solve some important existing

puzzles. For example, we show in Figure 9 the temperature

structure of the region according to model C of Vernazza, Avrettf

and Loeser (1981). In the region where the steep temperature

rise starts, we have plotted the conductive flux corresponding to

our (p = 0.1 dyne cm"2, W = 0.0022 ,TR = 8000 K) calculated

conductivity and the one according to Spitzer's (1962)

coefficient. In Fig. 9c we have plotted the conductive flux

divergence corresponding to both fluxes. It is striking when

comparing this figure with Figure 49 from Vernazza, Avrett, and

Loeser that we get flux divergence in this region of the order of

the radiative loses, but when using Spitzer's formula, the flux

divergence is around an order of magnitude smaller. We believe

that proper consideration of transport phenomena can probably

explain guite simply the energy balance in this region where all

sophisticated energy dissipation explanations have failed (the

same can also be true for prominence energy balance; see Fontenla

and Rovira 1985).

Another example of the importance of adequate theory for
•

transport phenomena is the energy, impulse, and matter transport

across the magnetic fields through atoms (involving ambipolar

diffusion), but a consistent theory for this is beyond our paper

and would require the consideration of the dependence of the

function f^ on the angle <J> (i.e., on the full three dimensions of

impulse phase-space).
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FIGURE CAPTIONS

FIG. la. - Log (a/a ) for solar-type radiation field (W=0.0022 ,s

TR=8000 K) for log p = Of -l,-2.

FIG. Ib. - Log (a/o ) for enhanced solar-type radiation field

( W = 0 . 0 2 2 , TR=8000 K) and log p = 0, -1, -2. The

curve labeled s corresponds to W=0.1, TR=8000 Kr and

log p = 1.

FIG. Ic. - Log (cr/c s) for LTE-type radiation field (W=l, TR=T)

and log p = 0, 1, 2, 3.

FIG. 2. - Same as Fig. 1 except for the ratio (rT/rT ).
s

FIG. 3. - Same as Fig. 1 except for the ratio (X/X_).
S

FIG. 4. - Same as Fig. 1 except for the ratio (DT/DT ).
s

FIG. 5. - Ratio (r /r ) for solar-type radiation fieldw wg

(W=0.0022, TR=8000 K) (part a), for enhanced solar

type radiation field (W=0.022 , TR=8000 K) (part
_o

b). Labeled s curve corresponds to p=10 dyne cm

W=0.1,TR=8000 K. Ratio (rR/rR ) for LTE-type
s

radiation field (W=l, TR=T) (part c). Curve label

identifying the logarithm of pressure.

FIG. 6. - Same as Fig. 5 except for the ratios (D /D ) and

(DR/DR ).
S



FIG. 7. - Same as Fig. 5 except for the ratios (Xw/*w )
s

( X R / X R ) .

FIG. 8. - Quotient (f?/pFZ ), for electrons for cases with p=10
J. O

dyne cm"2 and T=5000 K, W=l, TR=T ( a ) ; T=l0,000 K f

W=l, TR=T ( b ) ; T=50,000 K, W=l, TR=T ( c ) ; and

T=50,000, W=0.1, TR=8000 K ( d ) .

FIG. 9. - Conductive heat flux in Vernazza, Avrett, and Loeser,

Model C. Part a shows, for a part of that model, the

temperature T (in K) as a function of the logarithm
*\

of mass column (in g cm ). Part b shows the run of

the logarithm of the heat flux (in erg cm"2 s"*) for

the usual SH formula and from the actual calculations

(with solar-type radiation field and pressure p=0.1
2

dyne cm ). In part c the logarithm of the flux

divergence is plotted from the shown conductive

fluxes.
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TABLE 1
Parameters Used In Calculations

I
I
I
I
I
I

I
I
I
I
I

I

Case

ISC

2SC

3SC

1SE

2SE

3SE

4FM

3ET

4ET

SET

6ET

I

I

I

I

I

I

I

I

I

I

I

I

P

1E-2

1E-1

1E0

1E-2

1E-1

1EO

1E1

1EO

1E1

1E2

1E3

I

I

I

I

I

I

I

I

I

I

I

I

2

2

2

2

2

2

1

1

1

1

1

W

.2E-3

.2E-3

.2E-3

.2E-2

.2E-2

.2E-2

.OE-1

.0E+0

.OE+0

.OE+0

.OE+8

I

I

I

I

I

I

I

I

I

I

I

I

t

8E3

8E3

8E3

8E3

8E3

8E3

8E3

T

T

T

T

I

I

I

I

I

I

I

I

I

I

I

I



APPENDIX
TABLES OF COEFFICIENTS

TABLE 2
Electrical Conductivity

T
5.08E+63
6.60E+03
8.e0E+03
1.00E+04
1.50E+04
2.00E+04
2.50E+04
3.00E+04
4.00E+04
5.00E+04

ISC
3.33E+12
4.24E+12
6.24E+12
8.42E+12
1.46E+13
2.15E-H3
2.91E-H3
3.73E+13
5.53E+13
7.52E+13

2SC
3.56E+12
4.54E+12
6.67E+12
9.01E+12
1.56E+13
2.30E+13
3.12E+13
4.00E+13
5.92E+13
8.04E+13

3SC
3.71E+12
4.72E+12
6.90E-H2
9.28E+12
1.60E+13
2.36E+13
3.19E+13
4.10E+13
6.10E+13
8.32E+13

1SE
3.37E+12
4.29E+12
6.29E+12
8.47E+12
1.46E+13
2.16E+13
2.92E+13
3.74E+13
5.54E+13
7.52E+13

2SE
3.71E+12
4.72E+12
6.90E+12
9.28E+12
1.59E-H3
2.35E+13
3.17E+13
4.05E+13
5.99E-H3
8.11E-H3

3SE
4.00E+12
5.09E+12
7.43E+12
9.99E+12
1.72E+13
2.52E+13
3.41E+13
4.36E+13
6.45E+13
8.73E+13

4FM
4.45E+12
5.63E+12
8.19E+12
1.10E+13
1.87E-H3
2.75E+13
3.70E+13
4.73E+13
6.98E+13
9.45E+13

3ET
1.96E+12
4.51E+12
7.77E+12
1.04E-H3
1.77E+13
2.59E+13
3.48E+13
4.44E-H3
6.53E-H3
8.83E+13

4ET
1.10E+12
4.26E+12
8.66E+12
1.17E+13
1.98E+13
2.88E-H3
3.85E+13
4.90E-H3
7.18E+13
9.66E+13

SET
4.71E+11
3.29E+12
9.36E-H2
1.34E+13
2.24E-H3
3.24E+13
4.32E-H3
5.47E+13
7.96E+13
1.07E-H4

6ET
1.75E+11
1.87E+12
9.41E-H2
1.53E+13
2.59E+13
3.70E-H3
4.90E+13
6.18E+13
8.93E+13
1.19E+14

TABLE 3
Thermoelectric Coefficient

T
5.00E+03
6.00E+03
8.00E+03
1.00E+04
I.SeE+04
2.00E+04
2.50E+C4
3.00E+04
4.00E+04
5.00E+04

ISC
3.11E+06
3.64E+06
4.70E+06
5.75E+06
8.39E+06
1.10E+07
1.37E+C7
1.64E+07
2.17E+07
2.7eE+07

2SC
4.39E-f06
4.99E+06
6.18E4«6
7.34E+06
1.01E+07
1.28E-M7
1.55E+07
1.82E+07
2.34E-W7
2.87E+07

3SC
1.97E+«7
1.72E-KI7
1.61E+07
1.63E+07
1.85E+07
2.12E+07
2.41E+07
2.69E+07
3.26E-f07
3.82E+07

1SE
2.76E+06
3.29E+06
4.36E+06
5.43E-f06
8.11E+06
1.08E+07
1.35E+07
1.61E+07
2.15E+07
2.68E+07

2SE
3.12E+06
3.65E+06
4.71E+66
5.77E+06
8.41E+06
1.11E+07
1.37E-f07
1.64E+07
2.17E+87
2.71E-W7

3SE
4.40E+06
5.00E+06
6.19E+06
7.35E+06
1.01E+07
1.29E+07
1.55E+07
1.82E+C7
2.35E+07
2.87E+07

4FM
5.53E4«6
6.13E-fe6
7.36E+06
8.57E+06
1.15E+07
1.44E-M7
1.71E+07
1.99E+07
2.53E-W7
3.06E-M7

3ET
6.67E-fe5
-4.52E+C7
4.44E+06
5.42E+06
8.11E+06
1.08E+07
1.35E+07
1.62E+07
2.15E+07
2.69E+07

4ET
4.81E-W5
-5.74E+fl5
5.05E+06
5.46E+06
8.14E+06
1.08E+07
1.35E+07
1.62E+07
2.16E+07
2.70E+07

SET
-5.83E+04
1.06E-W6
7.37E+86
5.60E-f06
8.17E+06
1.09E+07
1.36E-M7
1.63E+e7
2.17E-W7
2.70E+07

6ET
-4.32E-W5
8.79E+05
3.25E+06
6.44E+06
8.22E+06
1.09E+07
1.36E+07
1.63E407
2.17E-W7
2.71E+07



TABLE 4
Thermal Conductivity

T
5.00E+03
6.00E+03
8.00E+03
1.00E+04
1.50E+04
2.00E+04
2.50E+04
3.00E+04
4.00E+04
5.00E+04

ISC
3.30E+04
3.46E+04
3.86E+04
4.38E+04
6.46E+04
9.84E+04
1.47E+05
2.11E+05
3.93E+05
6.50E+65

2SC
6.18E+04
6.72E+04
7.80E+04
8.95E+04
1.24E+05
1.69E+05
2.29E+05
3.04E+05
5.06E+05
7.87E+05

3SC
1.14E+05
1.13E+05
1.21E+05
1.34E+05
1.76E+05
2.31E+05
3.02E+05
3.89E+05
6.20E+05
9.34E+05

1SE
9.59E4«3
1.05E+04
1.38E+«4
1.90E+04
4.05E-h04
7.55E-W4
1.25E+05
1.91E+85
3.74E+65
6.32E+05

2SE
3.33E+44
3.51E+«4
3.94E+04
4.52E+04
6.80E+e4
1.05E+05
1.57E+C5
2.27E+65
4.23E+C5
6.99E+05

3SE
6.22E+04
6.77E+04
7.90E+e4
9.12E+04
1.28E+05
1.77E+05
2.41E-W5
3.22E+«5
5.41E+05
8.44E+05

4FM
7.19E4«4
7.84E-f04
9.19E+04
1.06E+05
1.50E-W5
2.07E-f05
2.81E-W5
3.73E-W5
6.18E+05
9.53E+05

3ET
7.39E+04
6.84E+04
2.10E+04
1.74E+84
4.41E+04
8.61Ef04
1.45E+05
2.22E+05
4.36E+05
7.37E+C5

4ET
7.31E-f04
B.14E+04
5.54E+04
2.12E+04
4.92E+04
9.55E+04
1.60E+05
2.44E+05
4.78E+05
8.05E+05

8ET
7.24E+04
8.28E+04
9.35E+04
3.62E+04
5.56E+04
1.07E+05
1.79E405
2.72E+05
5.28E+05
8.87E+05

6ET
7.21E+«4
8.12E+04
8.72E+04
7.94E+04
6.43E+04
1.22E+05
2.02E+05
3.06E+05
5.91E+05
9.87E+05

TABLE 5
Thermoamblpolar Coefficient

T
5.00E-W3
6.00E+03
8.00E+03
1.00E+04
1 .50E+04
2.00E+04
2.50E+04
3.00E+04
4.00E+04
5.00E+04

ISC
9.44E+10
1 . 28E+1 1
2.10E-H1
3.13E+11
6.62E+11
1.14E+12
1.76E+12
2.51E+12
4.43E+12
6.89E+12

2SC
1.46E-H0
1.84E+10
2.72E+10
3.77E+10
7.11E-H0
1.15E+11
1.71E+11
2.39E+11
4.11E+11
6.34E+11

3SC
9.55E4«9
9.20E-W9
9.94E+09
1.13E+10
1.59E+10
2.14E+10
2.76E+10
3.47E-HO
5.09E-H0
7.01E+10

1SE
8.93E-H0
1.24E+11
2.09E-H1
3.15E+11
6.74E+11
1.17E+12
1.80E+12
2.56E-H2
4.51E+12
7.00E+12

2SE
9.44E+69
1.28E-H0
2.10E+10
3.13E+10
6.62E-H0
1.14E+11
1.76E+11
2.51E+11
4.43E+11
6.89E+11

3SE
1.46E+09
1.84E-f«9
2.73E+09
3.77E+09
7.11E+09
1.15E+10
1.71E+10
2.39E+10
4.11E+10
6.34E+10

4FM
2.04E+08
2.48E+08
3.47E+08
4.60E+08
8.09E+08
1.25E+09
1.79E-f09
2.44E+09
4.05E+09
6.11E-«9

3ET
-8.75E+«8
4.52E4«8
2.08E+09
3.17E409
7.02E+09
1.20E+10
1.25E+10
6.24E+10
5.94E+10
8.49E+10

4ET
-2.83E-W7
-1.86E+08
2.18E+08
3.16E+08
6.89E+08
1.21E+09
1.83E+09
2.44E+09
8.68E+09
8.88E+09

5ET
-1.34E+06
-7.76E+06
3.48E+«7
3.13E+07
6.79E-W7
1.20E+08
1.85E+08
2.61E+e8
4.21E+08
4.05E+08

6ET
-1.04E+«5
-3.64E-W5
5.08E+05
3.29E+06
6.77E+06
1.18E+07
1.83E+07
2.62E+07
4.52E+C7
6.78E+07



TABLE 6
Photoelectric Coefficient

T
s.eeE+63
6.e0E+«3
8.C0E+C3
1.00E+04
1.50E+64
2.00E+04
2.50E+04
3.00E+04
4.00E+04
5.00E+04

-4.
-5.
-6.
-7.
-1.
-1.
-1.
-2.
-2.
-2.

ISC
41E+67
05E+07
33E+B7
62E+07
09E+08
42E-W8
76E+08
09E+08
76E+08
93E+08

-6
-7
-8
-9
-1
-1
-1
-2
-2
-3

2SC
.79E+06
.30E+06
.34E+06
.41E+06
.22E+07
.52E+«7
.84E+C7
.15E+07
.80E+07
.48E-W7

2
2
3
3
4
5
6
7
8
9

3SC
.61E+06
.63E+06
.04E+06
.58E+06
.87E+06
.96E-W6
.85E+e6
.54E+06
.52E+06
.03E+06

-3
-4
-5
-6
-1
-1

1SE
.54E+08
.21E+08
.55E+08
.90E+08
.03E+09
.37E+09

2SE
-4.41E+07
-3.e5E+«7
-6.33E+«7
-7.62E+«7
-1.09E-h08
-1.42E-f08
-1.76E-f88
-2.09E+08
-2.77E+68

3SE
-6.79E4«6
-7.3eE+«6
-8.34E+06
-9.41E+06
-1.22E+07
-1.52E+«7
-1.84E+«7
-2.16E+«7
-2.81E+C7
-3.47E+07

4FM
-2.93E+06
-3.01E-W6
-3.17E+C6
-3.37E+«8
-4.08E+06
-5.02E+06
-6.13E+06
-7.38E+«8
-1.01E-rt7
-1.38E+07

TABLE 7
Photoambipolar Coefficient

T
5.00E+03
6.00E+03
8.00E+03
1.00E-W4
1.50E+«4
2.00E-f04
2.50E+04
3.00E-rt4
4.00E+04
5.00E+04

ISC
5.93E+10
8.29E+10
1.41E+11
2.14E+11
4.60E+11
7.96E+11
1.22E+12
1.73E+12
3.01E+12

2SC
5.48E+49
7.49E+09
1.24E+10
1.85E-H0
3.92E-H0
6.77E+10
1.04E+11
1.49E-H1
2.62E+11
4.09E+11

1
1
2
2
4
7
1
1
2
3

3SC
.54E+49
. 65E+09
. 12E+09
.75E+09
.78E+09
.41E-W9
.06E+10
.44E-H0
.35E+10
.50E-H0

6.
9.
1.
2.
4.
7.

1SE
53E+10
02E-H0
51E+11
24E-H 1
62E+1 1
78E+1 1

5.
8.
1.
2.
4.
7.
1.
1.
3.

2SE
93E469
29E+69
41E+10
14E-H0
60E+10
96E+10
22E+1 1
73E+1 1
02E+1 1

5.
7.
1.
1.
3.
6.
1.
1.
2.
4.

3SE
49E408
50E+08
24E+09
85E+09
92E+09
77E+09
04E+10
49E+10
62E+10
09E+10

4FM
5.92E+07
7.90E+07
1.27E-f08
1.85E+08
3.80E+08
6.43E-M8
9.77E+08
1.38E+09
2.42E+09
3.75E+69



TABLE 8
Photothermol Coefficient

T
5.00E+03
6.00E+03
8.00E+03
1.00E-W4
1.50E+04
2.80E+C4
2.50E+04
3.00E+04
4.00E+04
5.00E+04

1.
1.
1.
1.
2.

-1.
-7.
-3.
-1.

ISC
16E+«7
44E+07
51E+07
98E+07
51E+06
22E+08
05E+07
09E+08
72E+09

2SC
2.26E+07
3.13E+07
5.30E+07
7.74E-W7
1.57E+08
2.63E+08
3.73E+08
4.01E+08
2.73E-f08
1.19E+09

4.
4.
6.
9.
1.
2.
4.
5.
8.
1.

3SC
16E+07
73E-W7
58E+07
eSE+07
73E+08
84E-f08
12E+68
86E-f08
98E+08
29E+09

-1
-2
-4
-1
-7
-1

1SE
.26E+67
.44E+07
.62E+67
.43E408
.80E+08
.97E+09

1
1
1
1
3

-4
-1
-5
-4

2SE
.16E+«7
.35E+07
.90E+07
.62E+07
.54E+07
.01E+07
.05E+08
.80E+08
.56E+08

3SE
2.24E-W7
3.12E+07
5.19E+07
7.75E-W7
1.64E+e8
2.55E+08
3.87E+08
4.91E-W8
5.80E+08
1.09E+09

4FM
2.32E+07
3.24E+07
5.46E+07
8.14E+07
1.67E+08
2.89E+08
4.19E4«8
6.05E+08
8.73E+08
1.67E409
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