NASA Contractor Report 178410

NASHOR 178 4.0

NASA-CR-178410
19880015235

USER'S GUIDE TO THE FAULT INFERRING NONLINEAR
DETECTION SYSTEM (FINDS) COMPUTER PROGRAM

A K. Caglayan, P.M. Godiwala, and H.S. Satz

CHARLES RIVER ANALYTICS INC.

Cambridge, MA

Contract NAS1-17719

June 1988

NASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

LT

Dl arihag Eif h
bopho J40an NI
.xr:i\.‘gu‘i:"\lﬂg wils o

JUL 11 1958

LANGLEY RESEARCH CENTER
Tb] Ab e Pe™
HANPTON VIRGINA

USER'S GUIDE TO THE FAULT INFERRING NONLINEAR DETECTION (FINDS)

COMPUTER PROGRAM

TABLE OF CONTENTS

INTRODUCTION .+ tevevnneceenoneansacesennsasasassnnnnsnsnsasans
FINDS ALGORITHM OVERVIEW .. oeeeeeeeonnoasoacnnnnncsnsacsanacns
FINDS ALGORITHM IMPLEMENTATION ..e..eeveevscccnnsoconnnneaeans
SUBPROGRAM PLOW CHARTS v v euenceonesceconnncoonsaccsananaoes
INPUT AND OUTPUT FILES +uvueeuvevonceeennsnansscasancncanannnne
PROGRAM VARIABLE INDEXING TABLES «u.vevevenncccncocceacannnnns
SUBPROGRAM DESCRIPTION AND TABLES «.0vveeeeneseernnacanennnnes
COMMON BLOCK DESCRIPTION AND TABLESveeveeeecennncecnonnns

REFERENCEScicetteactencscccocsntscncscacessscaorscssscscscsnns

- i -

Page
1l

3

7
22
32
35
43
64

84

#
NES-246/7

Title
Figure 2.1 :
Figure 2.2 :

Figure 3.1

Fiqure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5:
Fiqure 4.5a:
Figure 4.5b:
Figure 4.5c:
Figure 4.5d:
Figure 4.6 :
Figure 4.7 :
Figure 4.7a:
Figure 4.7b:
Fiqure 4.7c:

Figure 4.7d:

LIST OF FIGURES

FINDS Program Overview

Runway Coordinate System and MLS Geometry
FINDS Main Program Execution Flow
Flow Chart for Subprogram NAV
Flow Chart for Subprogram EKFN1
Flow Chart for Subprogram BLEND
Flow Chart for Subprogram ISOLAT
Flow Chart for Subprogram RECONF
Partition A of Subprogram RECONF
Partition B of Subprogram RECONF
Partition C of Subprogram RECONF
Partition D of Subprogram RECONF
Hierarchical FDI Test

Isolation Logic

BMA/IAS Failure Isolation

MLS/IAS Failure Isolation

RG Failure Isolation

IMU Failure Isolation

- iii -

23

24

25

25

26

26

27

27

28

28

29

29

30

30

31

Title
Table

Table

Table
Table
Table
Table
Table
Table
Table
Table

Table

5.1:

5.2:

6.1:

6.2:

6.3:

6.5:

6.6:

6.7:

7.1:

8.1:

LIST OF TABLES

Design Values for No-Fail Filter Noise Parameters

Detector Design Values for Measurement Sensor Noise
Parameters

NFF Absolute State Indexing Convention.

NFF Absolute Measurement Indexing Convention
NFF Absolute Input Indexing Convention

NFF Process Noise Indexing Convention
Absolute Sensor Indexing Convention
Replicated Sensor Indexing Convention
Replicated Measurement Indexing Convention
Subprograms

Common Blocks

36

317

38

39

40

41

42

43

64

1. INTRODUCTION

This report describes the operation and internal structure of the
computer program FINDS (Fault Inferring Nonlinear Detection System) developed
by Charles River Analytics Inc. for the NASA Langley Research Center. FINDS
has been developed to provide detection, isolation, and compensation for
hardware failures in the flight control sensors and ground-based navigation
aids [1-4].

The FINDS algorithm is designed to provide reliable estimates for
aircraft position, velocity, attitude, and horizontal winds to be used for
guidance and control laws in the presence of possible failures in the avionics
sensors. The FINDS algorithm exploits analytic redundancy between similar as
well as dissimilar sensors; it can isolate a failure in a duplicate sensor
configuration and detect a failure even if there is only one sensor of a given
type in the configuration. FINDS can also detect simultaneous failures in
navigation aid sensors, arising for instance from ground antenna malfunctionis.
Hence, FINDS can be used to increase the reliability of a sensor configuration
with a given redundancy. For example, the fail-operational/fail-safe
capability of a triply redundant voting system can be improved to at least a
fail-op/fail-op/fail~safe capability. Conversely, FINDS can be employed to
reduce the hardware redundancy requirements for a given reliability figure.
As an example, FINDS can be used to replace a triply redundant voting system
with dual redundancy while maintaining the overall reliability of the system.

The FINDS algorithm consists of 1) a no-fail filter (NFF\)‘,thich is aﬁ
extended Kalman filter (EKF) based on the assumption of no sensor failures and
which provides estimates for aircraft states, horizontal winds, and normal
operating sensor biases; 2) a set of test-of-mean detection tests implemented
over moving windows of the NFF residuals; 3) a bank of first order filters

activated upon failure detection to estimate failure levels in individual

sensors; and 4) a decision function which isolates the failed sensor by
selecting the most likely failure mode depending on the likelihood ratios.
When a sensor failure is detected and isolated, the algorithm is restructured
to eliminate the failed sensor from further processing and to remove the
accumulated effects of the sensor failure on the NFF. Failure ident:ification
decisions are monitored with the use of a healer algorithm; sensors falsely
identified as failed or sensors recovered from failures are restored to the
system.

The FINDS algorithm was developed _with the use of a digital simulation of
a coﬁmercial transport aircraft (B-737) [1-4]. Flight recorded data for this
aircraft were used to address the issues of sensor modelirig inaccuracies, such
as time-varying sensor bias and time correlated noise [5-6]. The FINDS
~algorithm was then modified to ".f‘it" the size constraints of a flight computer
and to meet real-time execution reqﬁirements without compromising sensor
failure detection and isolation (FDI) and state estimation performance [7-10].

To meet the real-time execution requirements, the FINDS algorithm has
been partitioned to execute on a dual parallel processor configuration: one
based on the translational dynamics and the other on the rotational
kinematics. 1In addition, a new hierarchical failure isolai:ion strategy has
been developed, replacing the multiple hypothesis test in the earlier
versions. Finally, a multi-rate implementation of the FINDS algorithm has
been implemented to further increase execution speed.

The outline of the report is as follows. An overview of the FINDS
algorithm is given in the next section. The implemented equations are given
in detail in Section 3. Seqtion 4 contains the flow charts for the key
subprograms. The input and output files are discussed in Section 5. Program
variable indexing convention is presented as tables in Section 6. Subprogram
descriptions are presented in Section 7. Finally, Section 8 contains the

common block descriptions used in the program.

-2 -

2. FINDS ALGORITHM OVERVIEW

Given a configuration of avionics sensors on an aircraft, the FINDS
algorithm generates fault tolerant estimates for the vehicle states as
required by the flight control, guidance, and navigation systems in the
presence of possible sensor failures. The desired qualities of FINDS are 1)
use of analytical redundancy concepts to minimize hardware replication
requirements; 2) timely detection of sensor failures; 3) ability to detect all
types of sensor failures; 4) acceptable false alarm/detection probability
perforﬁance; 5) ability to recover from false alarms; and 6) minimal
computational complexity to permit real time operation on flight qualified
computers. |

The FINDS algorithm baseline structure is shown in Figure 2.1. The
replicated sensor measurements are separated according to their function in
the no-fail filter, That is, accelerometer and gyro measurements are used as
input sensors to integrate the vehicle point mass equations of motion, and the
remaining sensors (MLS, IAS, and IMU) are used as measurement sensors. The
input sensors are processed in selection logic, and similar measurement
sensors are averaged to reduce the overall complexity of the computations
without a loss of generality.

The NFF shown in Fiqure 2.1 is an EKF which is implemented on the
assumption of no sensor failures. The EKF development is based on discrete
time difference equations for the vehicle equations of motion. The NFF
provides estimates for the aircraft position, velocity, attitude, and
horizontal winds, and estimates for the normal operating biases associated

with a specified subset of the input and measurement sensors.

Replicatea aircraft sensor measurements
Accel, & gyro

MLS, IAS, IMU,

measurements measurements
[Setect] [Average]
 eTeTTFITror e state |
Expanded 0-1a er
meGSlilaem?nt 1 estlmates Control
residuals [Moving window detectors |
Averaged measurement residuals
o0 [1] o0 . -
{ Expanded ! residuals { !]
LKF LKF LKF - LKF . LKF
long, accel, roll rate gyro MLS range IAS IMU roll
Replication 1 Replication 1 Replication])y | {Replication’1 Replication 1
Replication? [Replication 2| |Replication 2
Fallure compensated | reslduals j |
Likelihood Likelihood 1 Likelihood .~ Likelihood [| Likelinooa
ratlio rotio 1 ratio . oratio - ratio ||
Long, accel. 1| [Roll-rote gyro 1] |MLS range 1 ~IAS 1 IMU roll 1
e [Renlication 2| Replication {Replication 2]
- LLReps 1 & 2 .
{] J [X} o0
Muitiple Isolation
nypggggsls decision
Reconflguration/
Healing
Figure 2.1:

FINDS Algorithm Baseline Structure

The formulation yields a computationally efficient EKF implementation in
which the input sensors are integrated into the NFF without closed loop
filtering. Only one set of input sensors and the average of the measurement
sensors are used. The remaining replicated sensors are held in standby and
inserted as failures are detected and isolated. A decomposition procedure
based on the separated EKF algorithm provides the EKF filter gains [11]-[12].

The NFF also generates a residual sequence for the averaged measurements,
as seen in Figure 2.1, and a detection test is performed on these residuals
over a moving window. The length of the moving window is different for input
sensors and measurement sensors. A test of mean is compared to a
predetermined threshold to determine a sensor failure. If a sensor failure is
detected, the bank of detectors is run using the saved residuals in the
corresponding moving window memory. The failure levels are estimated and the
failure is isolated depending on the computed likelihood ratios.

When a failure is isolated, a reconfiguration algorithm is used to
restructure the FINDS algorithm [13]. When a gyro or accelerometer (input
sensor) fails, the faulty sensor is replaced. If there are no more valid
sensors of that type, the NFF is restructured, provided it is able to function
with the remaining set of sensors. When a measurement sensor fails, the
isolated sensor is flagged to be inactive, and appropriate changes are made in
the NFPF noise statistics; also, the NFF is collapsed to accommodate the loss
of all the sensors of a given type. The reconfiguration block also functions
to reinitialize the NFF, detectors, and likelihood ratios following
idehtification of a failure.

To recover from false alarms, each failed sensor is given a healing test.
Input sensors are tested by comparison with sensors of the same type used by

the NFF. A failed measurement sensor is tested with the NFF estimate of that

sensor. These are binary hypothesis tests conditioned on the decisibn ruie
that the sensor currently in use is healthy.

The NFF state estimates are initialized using the first iteration of the
flight data,'which ingeludes MLS azimuth, elevation, and range, IAS, and IMU
pitch, roll, and yaw measurements, to compute the aircraft position, velocity,
attitude, and horizontal winds in the runway frame, shown in Fiqure 2.2 as

required by the NFF.

Elevation
antenna

Range and
Azimuth antenna

Figure 2.2: Runway Coordinate System and MLS Geometry

3. FINDS ALGORITHM IMPLEMENTATION

The interactive version of FINDS suitable for operation in a simulation
environment was developed on a DEC VAX 11/780 using FORTRAN 77 under the VMS
operating system. The flight data driven version of FINDS suitable for
operation using either flight recorded or simulation generated sensor data was
developed on Charles River Data Systems Universe 68/35 using FORTRAN 77 under
the UNOS operating system, and SUN 3/160 using FORTRAN 77 under SunoOS
operating system. Several modifications have been made to the interactive
version of FINDS to reduce the size and increase the speed of the algorithm,
and to improve state estimation and sensor FDI performance. The composite
version, FINDSCMP, of FINDS incorporates these changes, in particular, the
hierarchical isolation strategy and multi-rate implementation. In addition,
the FINDS algorithm has been partitioned into two parts for a parallel
processing architecture: FINDS1 processing the sensors related to rotational
kinematics and FINDS2 processing the sensors related to the translational
dynamics. The partitioned version of FINDS has been ported onto a dual-
processor configured ROLM 1666 flight computer using ROLM FORTRAN 66 compiler
under the ROLM Real Time Operating System. A DMA local data communication
link has been used for communication among the processors. In this section,
the implemented equations for FINDSCMP, FINDSl, and FINDS2 are described. The

execution flow of the main program is illustrated in Figure 3.1.

read input
parameters for
- flight data and
detection

'

compute runway parameters
and MLS antenna position

l

initialize filter
and detectors

{

read flight data:
call nav
sensor processing
write output files

yes continue

quloop

100-88

Figure 3.1: FINDS Main Program Execution Flow

FINDSCMP (Composite Version)

Number of states, NX = 11

a ~ ~ A A A A ~

T
$.:0,¥,w .wy]

State vector, x = [,T B ,
x' Tyt Tzrtyr y z

Number of biases, NB = 6
Bias vector, b = [bax’bay'baz'bp'bq br]

Number of measurement types, NY = 7

Measurement vector, y = [HLSaz,MLS MLSrn,IAS,IMU ,IMUG,IMU¢]

el']

Number of input types, NUl = 6

Input vector, u = [ax,ay,az,p,q,r]T
--- New Time Iteration Start: time 'k~ --—-

READFL : read the NFF input sensors u?(k) , and the NFF measurement Ssensors

y?(k) ; i=1,6 ; 3Jj=1,7 ; n=1,2 (dual replication)

INITXF: Compute the NFF initial state estimates using the first iteration of

flight data. Denoting the aircraft position in the MLS frame by rxm'

r , r_:
ym zm
" _ 2
Bon(k) =VE+ (£ -1
rym(ko) = -yrn(ko)~[sin(yaz(k°))]
. K) = “/z K RE] K .2 K
rmﬁo)— ym(o)-rmﬁo)—rwﬁo)
where
2
f = [sxn(yel(ko)]

2 2 2 2 a
h=(x + YOe).[SLn(yel(ko))] * Yy rn(ko) [COS(y (ko))]

2 2) 2
- Z.YM.YOG.[Sln(Yel(ko))] - (z, - 2-zM~zoe)-[cos(yel(ko)]

where (xoe' Yoe! zoe) represent the coodinates of the elevation antenna in the

MLS frame.
rx(ko) - xM._ Exm(ko)
Ey(ko) = vyt fym(ko)
Ez(ko) =%y T fzm(ko)
where (xM, yM, zM) are the azimuth/range antenna coordinates in the runway
frame.
éx(ko) = YSp(ko)'°°S(Yo(ko))'°°5(yw(ko)) + v'lx(ko)
éy(ko) = ysp(ko)'C°S(Y9(ko))'51n(yw(ko)) + ﬁy(ko) |
Ez(ko) = -ysp(ko)-sin(yo(ko))
ﬁx(ko) =0
wy(ko) =0

The initial estimates for the aircraft attitude are obtained by averaging

the replicated IMU measurements:

. by 2

¢(ko) = (Y¢(ko) + Y¢(ko))/2

° ‘ 1 2

o(ko) = (Yo(ko) + Yg(ko))/z

. 1 2

W(ko) = (Yw(ko) + Yw(ko))/Z - ¢R

where wR is the tunway yaw, fixed for the given runway configuration.

SUMIN ¢ (i) compensate rate-gyros for earth's rotation effects
(ii) average inputs and compensate for biases:

C o4
ui(k) + ui(k-l) _g (k1)
.2 i

ui(k) =

where c denotes the current active replication

EKFN1(2): (i) UPDB --+ update input transition matrix B(x(k-1))

- 10 -

- 2 " -
A%/2 T (k(k-1)) 0
A Top(R(k-1)) 0
B(k(k-1))= |0 A To(k(k-1))
0 U

where the transformation from the body axes into the ground frame is computed

according to:

clcy s¢sfcy—-ceosy coslcyt+sesy

TGB(ﬁ(k—l)) = c;s; s;s;s;+c;c; c;s;s;-s;c;
56 sgco coch
where ;(k—l), ;(k—l), ;(k—l) are the NFF estimates for the Euler angles and
c,s, and t are abbreviations for the cosine, sine and tangent functions,
respectively. The matrix TER relating the body rates to the Euler angles is
computed according to:

1 t(8(k))s(¢(k)) t(8(k))c(é(k))

TER(ﬁ(k))= 0 c(¢(k)) -s(¢(k))
0 s(¢(k))sc(6(k)) c(¢(k))sc(8(k))
where sc is the abbreviation for the secant function.

(ii) upDQ --+ update process noise covariance Q(x(k-1))

w

2

- A T A T
3 TGBvaTGB 2 TGBVaTGB 0 0]
2
T T
Q(x(k))=| 2 Tea¥aTon 4 Tep¥aTGe 0 0
0 0 AT V. TV 0
ER'rg ER
A T
0 0 0] eAwSQ"eAwsds J

- (o]

where Va is the covariance for the accelerometer sensor noises given by

- 11 -

o 0
ax
- 2
Va = 0 oay 0
0 0 02
az

where o__ , 0., o are the accelerometer sensor noise standard deviations.

ax' “ay’ “az
Vrg is the covariance for.the rate gyro sensor noises given by:
rg(1) 0 0
rg - 0 rg(z)_ 0
0 0 rg(3)
with
V(L) = o[?; v s+ (a0 + aR%) + s * AP
V g(2) = of + SPM * (aP” + AR®) + sCF * AQ® ‘
vrg(3) = ai + SPM * (AP2 + AQZ) + SCF * AR2

where ap, oq' o, are the rate gyro measurement noise standard deviations; AP,
AQ, AR are the averaged p, 4, r measurements passed through symmetric limiters

with thresholds 4 deg/s, l_deg/set, and 2.5 deg/sec:

1 T2
Ap = B0 (k) + pm (k)‘

. AQl=’gml(k)[+'gm2(k). . AR = rml(k) + rmz(k)
2 I -

2 ! - 2
where SCF in the rate gyro scale factor error variance, and SPM is the sum of ‘

SCF and rate gyro misalignment error variances.

The wind model system matrix Aw is given by

2

T
w

Aw=

where Ty is the time constant associated with the wind model.

—1.2_.—

(iii) Compute prediction error covariance via:
P,(k/k-1) = A * P,(k-1/k-1) * AT + Q(x(k-1))

where A is constant state transition matrix given by

1 A1 0 0]

0 I 0 0
A = 0 0 I 0

0 0 0 eAwA_

BLEND(2): (i) Compute single stage prediction:
x(k/k-1) = A * x(k-1) + B(x(k-1)) * u(k)
(ii) Update single stage prediction for measurements UPDH ~--

h(x(k/k-1))

- = O -1y = L reinLtre-s - 5 _
h, (k(k/k-1)) = yéz(k/k 1) = o [sin ~[(ry(k/k 1) +YM)/raz(k/k 1)]
- = 3 1y = L rein ¢z _ ~ _
hz(x(k/k—l)) = yei(k/k 1) = onr [sin “[(rz(k/k 1) +ZE)/rel(k/k 1)]
5 = -1y = L rz _
h3(x(k/k—l)) = an(k/k 1) = orn[raz(k/k 1)]

where (xM, Yy zM) and (xE, Ypo zE) are the azimuth and elevation antenna

positions in the runway frame, 02" %y’ and o are the averaged MLS sensor

rn

noise standard deviations, and £__,f

az'Tes are single stage predictions for the

aircraft range from the azimuth and elevation antennas given by:

“ _ - ve 12, vy Y2, 2 1y 2
raz(k/k-l) = V/(rx(k/k L)-xy) +(ry(k/k -y +(rz(k/k 1)-zy)

~ - ~ - - 2 A - - 2 A - - 2
rel(k/k—l) = //(rx(k/k 1) xE) +(ry(k/k 1) yE) +(rz(k/k 1) zE)

3 s I A . L 2.cs - o 12,. 2
h, (R(k/k-1)) = §_ (k/k-1) = /1rx(k/k)=, (k/k-1)] %+ [2 -6 (k/k-1)1%+2,

sp
where oSp is the averaged IAS sensor noise standard deviation.
n_(k(k/k-1)) = §.(k/k-1) = —— g(k/k-1)
5 ¢ 0¢

...13_

hﬁ(ﬁ(k/k—l)) Yo(k/k—l) 0(k/k-1)

Q
o |~

h7(ﬁ(k/k-1)) v(k/k-1)

yw(k/k-l) p

v

vwhere o, are the averaged IMU sensor noise standard deviations.

¢ %' %

1 2
yj(k) + yj(k)
2

SUMOUT : §j(k) =

EKFN1(l): (i) UPDPH --» update the partials of the measurements
The nonzero elements of the measurement partial H(x(k/k-1)) are computed

according to:
) rx(k/k—l)-xM
1,1 raz(k/k—l)waz

_ ry(k/k—l)-yh
1,2 F_ (k/k-1)o_,

) rz(k/k-l)-zM
1,3 taz(k/k-l).?az

(fx(k/k—l)-xu) (ry(k/k-l)-yM)

H = n
2,1 .2 e N
B, (k/k-1)-F (k/k-1) -0,

where £ _ (k/k-1) = V/(fx(k/k—l) -xM)z + (F (R/k-1)-z))°
-E_(k/k-1)

H =
2,2 .2 1.
raz(k/k 1) Oy

(E (k/k-1)-y) (E, (k/k-1)-z,)

2,3 .2 1y .n 1y,
B 6/ k-1) - (k/k-1)-0_,

- 14 -

) (rx(k/k—l)—yE) (rz(k/k—l)-zE)
3,1

H
2 "
rel(k/k_l)'rxy(k/k—l).orn

where fxy(k/k-l) = //(fx(k/k-l) -xB)2 + (i‘y(k/k—l)—yE)2

_ (ry(k/k_l)_yE) (rz(k/k-l)-zg)

H =
3272 .
rel(k/k 1) rxy(k/k 1) arn
. _ -rxy(k/k-l)
3,37 32 N
re((k/k 1) %n
.) fx(k/k-l)-wx(k/k-l)
4,4 s(k/k-l)-aSp

where §(k/k-1) = JIfo(k/k-l) -ﬁx)z + (i'y(k/k—l)--ﬁy)2 + fz(k/k-l)

{y(k/k—l)-wy(k/k-l)

H =

4,5 s(k/k—l)-aSp
E_(k/k-1)
H, = —2=
4,6 s(k/k—l)-asp
Hy 10 = ~H(4,0)
Hy, 11 = ~H(4,5)

(ii) Compute the bias-free NFF gain:

K (k) = B, (k/k-1) * [H * B (k/k-1) * H® + R(k)]™

...15_.

(iii) Compute the bias-free NFF single stage prediction error

covariance:
T
P (k/k) = [T - K * H] * P (k/k-1) * [T - K * H]™ +
T
* *
Kx R(k) Kx

where R(k) = diag {l/ci}

BIASF(1): (i) Update bias observation matrix:

Cb(k) =H* [A*V (k-1l) + B]J+ D

b
(ii) update bias propagation matrix:
v (k) = (1 - K, * y] *A *vvb(k—l) + [-B + K, * (H*B- D)]
(iii) Compute the NFF bias gain:
- - T x , - x T -1
K (k) = P (k-1) * C (k) + [C (k) * P (k-1) * C (k) + R (k)]
where R, (k) = [H * P, (k/k-1) * H' + R(k)] £rom EKFN1(1) '

(iv) Compute the NFF bias estimation error covariance:

pb(k) = [1 - Kb(k) * cb(k)] * pb(k-l)

BLEND(1): (i) Compute averaged measurement residuals:
rk) = 00 - hGRAD)
(ii) Update state estimate:
x(k) = x(k/k-1) + [Kx(k) + Vb(k)'* Kb(k)] * r(k)
(iii) Update bias estimates:
b(k) = b(k-1) + K (k) * r(k)
DESCMP: Evaluate expanded measurement residual and store in moving window
yi}ai - h, (k(k/k-1))

r(k) = v2/o, - h (k(k/k-1))

DETOl: (i) Compensate measurement residual covariance inverse RTINV using

sensor noise parameters for window Ol

_16-

(ii) Compute the likelihood ratio for moving window 01

LRTOL(K) = r (k) * RTINV.. * r(K)

01

If LRTO1l < threshold then no measurement sensor failure

o1’
else ISOLATE (01)

DETO05: (i) Compensate RTINV for moving window 05

(ii) Compute measurement residual average for moving window 05:

Log(k) = —— }

j=k-4

(iii) Compute likelihood ratio LRTO0S5 for under 05

_zT * I
LRTO5(k) = ros(k) RTINVOS ros(k)

If LTROS < thresholdos, then no sensor failures

else ISOLATE (05)

DET10: (1) Compensate RTINV for window 10

(ii) Compute measurement residual average for moving window 10

- 1 ’)‘:
r (k) = —— r(J)
10 10 .k,

(iii) Compute likelihood ratio LRT10 for moving window 10
=T * -~
LRT10(k) = r) (k) * RTINV, rlo(k)

If LTR10 < thresholdlo, then no sensor failures

else ISOLATE (10)

ISOLAT (w): (i) Form prediction error covariance for composite state:

Px(k) be(k)

PXF(k) =

P . (k) : Pb(k)

T
xb

1'7

where

Px(k) = Po(k/k) + [A * vB(k) + B(x(k-1)] * Pb(k/k) * [A * VB(k) + B(x(k-1)]T

(k)

be [A * VB(k) + B(x(k-1)] Pb(k/k)

Pb(k)

pb(k/k)

(ii) Compute inverse of innovation covariance

x
-~
>
~
it

0 R

R = diag [(ad"/ai)**2]

(iii) Compute failure observation matrix:

I

. {{A D) * pxr(k) * [A DIT + [R o]}‘1

ciq;.i(k>)= [# D) [:’ -‘B(fx(k-l’))] - [Vix(k-l)] +

{# D] * [-B'i(fc(k-l))] +D,(1/a,)
0

(iv) Compute failure propagation matrix

v.)] [f1 o] [k.(x)] '[ﬁ.))
ix _ {0 ‘
[vib(k)]"l[o 1] [xb(k)] l

(k-1)]

e

K (k) 0

Vib(k-l)

-B(i(k—l))] [Vix(k-l) o [BiGa-10]
: I vib

0

Ik (k)]l[n D] [fai(i(k-l))T + pi(l(qi)l

(v) Compute failure level estimates i, (k) = i, (k-1) + G, (k) * RES(k)

‘where .
| RES (k) = [rge) =€ () * iy (k-1)]
o T - "_1
,Gi(k) .= [Ci‘(k) ' R (k)]/Pi(k/k)-

-) . —-. _ . - -*wf . ;1_* :
RO = 7 koLl ¢ €T00 RGO €00

- 18 -

(vi) Compute likelihood ratios

a, (k) = REST(k) * R Y(k) * RES(k) + a; (k-1)

NOTE: Steps (iii) --> (vi) are performed in loop 'w number of times
depending on which window has detected failure.

Ci(O) = Vi(O) = Pi(O/O) =0 ' ai(O) = ~12 * 1n (Priorii)

DECIDE: Find the minimum a and check failure level constraint ﬁi > l.ai

==> jsolate failed sensor

RECONF (-1): Reconfigure system for any new failed sensor

Check if system can operate with remaining set --> else ABORT
GTOI : i) compute a/c latitude & longitude
(ii) compute rate-gyro compensation terms.
(iii) compute gravity vector

---End of Time 'k ----

FINDS1 (Rotational Kinematics)

Number of states, NX = 3

~ ~

State vector, x = [¢, 6, w]T

Number of biases, NB = 3

a

, P
Bias vector, b = [bp' bq, br]

Number of measurement types, NY = 3

T
[mu¢, MU, IMUw]

Measurement vector, y

3

Number of inputs, NUl

19

Input vector, u = [p, q,)’

---New Time Iteration Start: time "k ---

READFL: Read the NFF input sensors u?(k), and the NFF measurement sensors,

n . .
y;0 . i7L,2,3,5 = L,2,3i n = 1,2

EKFN1(2): UPDG --+ Update input transition matrix B(x(k-1):
The differences from FINDSCOMP:
B(x(k-1)) = A - Tpp(X(k-1))
and the only other difference from FINDSCMP:

A=1

EKFN1(1):

The differences from FINDSCMP are the following measurement partials:

1

/o¢ 0 0

H(x(k-1) = |0 1/00 0
0 0 1/0¢

FINDS2: (Translational Dynamics)

Number of states, NX = 8

. - - - . . . N ~ 1T
State vector, x = [;x, ry, S ry, 2! wx(wy]
Number of biases, NB = 3
Bias vector, b=[b_, b_, b]T
ax' “ay’' Taz’ .

Number of measurement types, NY = 4

_ AT
Measurement vector, y = [MLSazf MLsel' MLSrn' 1AS]

- 20 - l

Number of inputs, NUl = 3
Input vector, u = [ax, ay, az]T

---Start of New Time Tick: (time 'k’)---

READFL: Read the NFF input sensors u?(k), and the NFF measurement sensors,
yg(k) ; i=1,3 ; j=1-4 ; n=1-2
EKFN1(2): UPDB --» Update input transition matrix B(x(k-1)):

The differences from FINDSCMP:

2 2
A - A

2 TGB(x(k—l)) 2 I

B(x(k-1) = |A TGB(x(k—l) AI
0 0

where ¢(k-1), 6(k-1) and y(k-1) in the evaluation of TGB(ﬁ(k—l)) are supplied

by FINDS1.
I A1l 0

A= |0 I 0

0 0 A

w

EKFN1(l): The difference from FINDSCMP: The rows corresponding to IMU

measurements are deleted.

- 21 -

4. SUBPROGRAM FLOW CHARTS

This section of the User's Guide contains signal flow and processing
diagrams of the key subprograms of FINDS. The figures have been arranged in a
nested sequence of increasing level of detail. Wherever possible, a figure is

supported by those next in sequence.

- €2 -

tI°y aInbty

AYN ueipoadqns 103 jaeyd MOT4

l

r:—rgogrslga‘tlonul(glsNDSrEgvl ty

m rea
vector from FINDS}

roto'tlc::ml(F INDSTY
algorithm reads

estimates from FIN

pasition and veloc!t

¥s2

h 4

parameters

compute jump

calls

healr
reconf(l)

reconf (-

1D

-

<

yes

N
2

TXC T
35

cgonmuncon
<o
H3 5 H3
30 Q_:J y
l—‘c /_\D—‘
S 3o
v/ S

o 1))
Qb

m P
N\
—
N/

update healer

window

P

fdi\Y€sS
on”?

A

— gtoi

(exﬁ)

88-002

- vz -

t2'y aanbra

© TNy weiboadqns 103 3IeYD MOT4

p—————— —————

R=di ag(l/IREPLF(.)}
.t
RBFO= [HP1¥PF1xHP1+ R]

GAINK= PFDH%H*RBFO

-1

PFl (I- GAINVBKHPDBKPFDK(I GAINK%HPI)

+GAINK>KR>KGAINK

r
! translatlcnal(FNDSE)

! algorithm reads. IMU

l attitude from FINDS!

updq

updb

_t
PF1=AF 1¥PF1%AF 1

+EFIxQF 1xEF1
|

88-003

¢Iup=1,n°

h

SO — -.,_!___._..
[xF1= 9F1%XF1+BE¢§UF£_W

GAINKX=GAINK+VBOXGAINBO |

RESBO =YF1-HXKP1 |
NF1 =XF1+GAINKX¥RESBO o
| XBFO =XBF0+GAINBO*¥RESBO L_H?dh
__XBFO i B |
L - T T ’l 89-004

'

Flow Chart for Subprogram BLEND

[{F

Lonpute PXF1
i Forn composite HP1 (CUM)
DETINV= [CDME!P)\FIKCUMZ + RFIDY
HPAF = HP]KAFI

, HPBF = HPll
: BF lu- GAINKX!HBPD
Ido LDDP LIFLWIN

yes

{ AUGM= D -GAINBOXHBPD
>—~—~———~-m—1

Figure 4.3:

loop-l
\,/

L

null XBFL VBL C
PBFI=PBFIC

7

CBFl= HBPDKVBI

]

(Fun INDEX for afl sensors

]

VIMP1=HPAF xVBICINDEX)

| CBFICINDEX)=CBF IC(INDEX)-VTMP1

; compute blender galn VBICINDEX)
VTMP1()=CBF IKINOYPICINORYP()),INDEX), 1= lNYF
. II=INORYPCndex y)

l VTMPICUNDEX>=V TMPICINDEX)*YSCALECID

| calt LKF

call LRT

check INDEX and LDOOP

call DECIDE

88-196

.
exit

Figure 4.4: Flow Chart for Subprogram ISOLAT

- 25 -

-
: v
‘par-tition A}
L. .

Figure 4.5:

!,.__A -
i

v

[inoutfachD,

REPLOEST] |

enter)
no .-~ L
: --<mm%L=-_1_ P
[partition B

N -
o TEMDINUL />._Y~ S

[do_i=1,NHEAL]
L no s e
< JEMDINUL—

~~"

- ~

.~ blas ™~ yes
—-<estimate e

T , Mreset bias |
; ' |__estimator

pas

- ‘-\’!/’

Figure 4.5a: Partition A of Subprogram RECONF

..26_

reset healer window
. reset | LR
. Ireplf qCMD)=ir eF‘;[J_lF(ICMD) 1

o)
llnoutFGC D,IRE

. bias - es
- es‘tlngm‘ceob—y ST

$9-007

Figure 4.5b: Partition B of RECONF

e ~

- standby~_" .. _
< ___,\sensorj?.//>_ —l

B l : ¢ aborf‘\
rr‘ao'utmc ’DISNsS‘ﬂ ~———.
L l!?(MD3=1
ca

[

Figure 4.5c: Partition C of RECONF

- 27 -

/l\»-~ ~-—<|PeplF(ICMD)>

[Nart-tloneor]

NO -t T
— imu
=i

~ .

\\/

A

I

TV
' noisr
iupdote NYF“

| INDRYP

J

88-009
Figure 4.5d: Partition D of RECONF
input . . output
sensors : sensors .
select average
replication of sum
no fail navlgu’tlc?
Filter | _ .. ___aquidance &
control

ol orit
dugta .______l

98-110

Figure 4.6:

I

residuals

computation |

28

reconfig—j—
uration

P
othesis
y%est

Hierarchical FDI Test

ﬂ’l B U%J

R v
FI—MU ‘FO.I[U!"G RG Fallure MLS/IAS failure BMA/IAS failure
detection deﬁpcﬂggﬂ_ detection detection

FINDS1 (rotational) @ FINDS2 <translational)

8 8 %

!

IMU fallure| [BMRG fallure MLS/1AS folture| |BMAZIAS Ffailure
detection detection detection detection
T 88-198
> p—
@ composite FINDS
Figure 4.7: Isolation Logic
LKF LKF LKF ' LKF
x accel y accel z accet IAS
repl 1 repl 1 repl 1 rept 1
I { repl 2
LR | LR LR LR
rept 1 repl 1 repl 1 repl 1
L ’ [rept 2
88-199

]

Figure 4.7a: BMA/IAS Failure Isolation

29

LKF NIEG LKF LKF
azimuth elevatio range I1AS -l
repl 1 repl 1 repl 1 repl 1 ;

l . l repl_E_J
T T LR R
repl 1 repl 1 repl 1 repl 1

88-200

o

Figure 4.7b: MLS/IAS Failure Isolation

\

o

LKE LKF - [kF

roll gyro .| pitch gyro yaw gyro
repl 1 repl 1 rept 1
TR] LR _ LR
roll gyro pitch gyro yow gyro
repl 1 repl 1 repl 1

l-__.__._—..,[.. ——— e s
: o 88-201 "

Figure 4.7c: RG Failure Isolation

'
4

-30 -

[LKF LKF | I
IMU roll IMUpitch IMU yaw
repl l repl 1 repl 1
[rept [repte [rept @
LR LR LR -
IMU roll IMUpitch IMU yow
repl 1 repl 1 repl 1

repl 2 [repl 2 [repl 2
88-202

Figure 4.7d:

2]

31

IMU Failure Isolation

5. INPUT AND OUTPUT FILES

This section contains the descriptions of the input files required by and

the output files generated by the FINDS program. In addition, the typical

input design parameters are given in tables.

FINDS reads in the following files:

ALGIN.DAT
o0 detector thresholds 01, 05, 10 windows
O process noise SD
0 measurement noise SD 01, 05, 10 windows
o wind model time contants

RUNWAY .DAT .
o 1initial aircraft latitude, longitude position
0 runway orientation relative to north
o elevation and azimuth/range MLS locations
0 MLS and VOR antenna height above sea level

FLDAT.NOF

flight data time history of the NFF input (rate gyro, accelerometer) and
measurement (MLS, IAS, IMU) sensors, two replications each for a total of

26 channels of data per record

Tables 5.1 and 5.2 depict typical values used as design parameters.

Table 5.1: Design Values for No-Fail Filter Noise Parameters

Variable Noise S.D. Replications Units
Per Repl Used
Process Noises
Acc. Long. 0.05 1 m/s/s
Acc. Lat. 0.05 1 m/s/s
Acc. Vert. 0.05 1 m/s/s
Gyro Roll 0.05 1 deg/s
Gyro Pitch 0.05 1 deg/s
Gyro Yaw 0.05 1 deg/s
x-Wind-rw 0.10 N/A m/s
y-Wind-rw 6.10 N/A m/s
Measurement Noises
MLS Azim. 0.06 1 deg
MLS Elev. 0.06 1 deg
MLS Range 6.00 1 m
IAS 3.00 2 m/s
INS Roll 0.25 2 deg
INS Pitch 0.50 2 deg
INS Yaw 0.30 2 deg

32

Table 5.2 Detector Design Values for Measurement Sensor Noise

Parameters
Variable Noise S.D. Replications Units
per Repl. Used

MLS Azim 3.00E-02 1 deg
Elev 3.50E-02 1 deg
Range 5.50E-00 1 m

IAS 2.00E-00 2 m/s
INS-Rol1l 1.30E-01 2 deg
Pitch 1.50E-01 2 deg

Yaw 5.00E-01 2 deg

The following files are written by the program during execution:.

CHNGREP.DAT
sensor failure data (index, replication, time) for post processing

RUNNEW.PLT
time history of NFF states: position, velocity, attitude, and horizontal
steady winds

RUNNEW.TLN
summary of events during the course of execution

LRTO1.PLT, LRT05.PLT, LRT10.PLT
time history of likelihood ratio and measurement sensor residuals for
detection windows 1, 5, and 10, respectively

EXPRES .PLT
expanded residual time history for those sensors with replications (IAS,
IMU)

GTOI.XF1l
time history of position and velocity states

SUMIN.UF1l
time history of gravity vector

IMU.XF1 '
time history of attitude states

Note:
a) The partitioned algorithms FINDSLl and FINDS2 will read the same input

as described above for FINDSCMP. In addition, GTOI.XFl is input for
FINDS]1 and IMU.XF1 and SUMIN.UF1l are both input for FINDS2

- 33 -

b) Both FINDSL and FINDS2 write a subset of the output shown above for
FINDSCMP according to the table shown:

Algorithm ' étates) - Residuals

FINDSCMP “ position, velocity, attitude, ' MLS, IAS, IMU
wind, accelerometer bias, gyro bias

FINDS1 attitude, gyro bias IMU

FINDS2 position, velocity, wind, - MLS, IAS

accelerometer bias

34

6. PROGRAM VARIABLE INDEXING TABLES
This section describes the array indexing convention used in the FINDS
software. These tables include the following array variables: NFF state and

measurement vectors, process noise input vector, and the measurement vector.

35.

Table 6.1: NFF Absolute State Indexing Convention

Program Arrays: XFl

Array Index State Variable- Program Units
FINDSCMP
1 X m
rw
2 yrw m
3 zZ m
rw :
4 X . n/s
5 Yru m/s
6 zl._w m/s
7 3 radians
8 0 radians
9 v radians
10 . 'I xw - ‘ m/s
11 oY, .m/s
FINDS1 ‘ 4 R
1 o N 2 o .1,.' 4'radians.
.2 : , 9 radians
3 : v radians
FINDS2
1l m
‘TW
2 er. m
3 Z. m
rw v
4 L ‘m/s
3 Yry m/s
6 ,zrw m/s
7 | X, m/s
8 . Yy ' m/s

- 36 -.

Program Arrays:

Table 6.2:

NFF Absolute Measurement Indexing Convention

RESBO, RF1DO1,
(latter part),
(latter), HXKP1

RF1D05, RF1D1l0, YFl, YSCALE, INOYP,
SIGDO1l (latter),

INOYPI, SIG

SIGD05 (latter), SIGD1O

Array Index Measurement Name Program Units

FINDSCMP

1 MLS Azimuth radians

2 MLS Elevation radians

3 MLS Range m

4 IAS m/s

5 IMU Roll radians

6 IMU Pitch radians

7 IMU Yaw radians
FINDS1

1 IMU Roll radians

2 IMU Pitch radians

3 IMU Yaw radians
FINDS2

1 MLS Azimuth radians

2 MLS Elevation radians

3 MLS Range m

4 IAS m/s

- 37 -

Table 6.3: NFF Absolute Input Indexing Convention

Program Arrays: UFl, INDUP, XBFO

Array Index Input Name Program Units
FINDSCMP .
1 a m/s
2
2 a n/s
b4
2
3 a, m/s
4 p ' radians/s
5 q | ' radians/s
6 r radians/s
FINDS1
1 , P . ‘ radians/s
2 q ‘ S radians/s
3 - S - . radians/s
FINDS2 , X
1 a, m/s
2
2 a m/s
Y
3
3 : a, m/s

_38..

Table 6.4: NFF Process Noise Indexing Convention

Program Arrays: QFl, SIG (former part), SIGDOl (former), SIGDO5, (former),
SFGD10 (former)

Array Index Name Program Units
FINDSCMP)
1 a, m/s
2 /s
a m/s
Y
2
3 a, m/s
4 P radians/s
5 q radians/s
6 r radians/s
7 X, m/s
8 Y, m/s
FINDS1
1 p radians/s
2 q radians/s
3 r radians/s
FINDS2 2
1 a, m/s
2 /s
a m/s
Y
2
3 a, m/s
4 X m/s
5 yw m/s

..39..

Program Arrays: INOBP,

INOBPS, IYNAME, IYUNIT, CNVRF, PBFOI,

BTHRSH, FTHRSH, DTMRSH, INDUTF, IREPLF

PBFIC,

IFAILT,

Array Index Sensor Type Program Units
FINDSCMP .
1 a, m/s
2 /s
a m/s
Y
2
3 a, m/s
4 p radians/s
5 q radians/s
6 r radians/s
7 MLS Azimuth radians
8 MLS Elevation radians
9 MLS Range m
10 IAS m/s’
11 IMU ¢ radians
12 IMU 6 radians
13 IMU ¢ radians
FINDS1
1 P radians/s
2 q radians/s
3 r radians/s
4 IMU ¢ radians
5 IMU 6 radians
6 IMU ¢ radians
FINDS2 , R
1 a m/s
2 /s
a m/s
Y
2
-3 a, m/s
4 "MLS Azimuth radians
S . MLS Elevation radians
6 'MLS Range radians
1 IAS m/s

-40-

Table 6.6: Replicated Sensor Indexing Convention

Program Arrays: XBFI, PBFI, RESBI, CBFI, ICNTSN, PRIORI, ALAMDA

Array Index Sensor Type/Repl. Program Units
FINDSCMP .)
1 a, n, m/s,
2 a_-n, n/s,
3 ay—n* m/s
4 pz—n* radians/s
5 q -n, radians/s
6 r-n radians/s
7 MLS Azim-n, radians
8 MLS Elev-p radians
9 MLS Rng-n m
10 IAS-1 m/s
11 IMU ¢-1 radians
12 IMU 6-1 radians
13 IMU y-1 radians
14 IAS-2 m/s
15 IMU ¢-2 radians
16 IMU 6-2 radians
17 IMU y-2 radians
FINDS1 N
1 p-n, radians/s
2 g-n, radians/s
3 r-n radians
4 IMU ¢-1 radians
5 IMU 6-1 radians
6 IMU ¢y-1 radians
7 IMU ¢-2 radians
8 IMU 6-2 radians
9 IMU ¢-2 radians
FINDS2 2
1 a n m/s,
2 a_ -n m/s,
3 a¥-n n/s
a MLS AZim-n radians
5 MLS Elev-n radians
6 MLS Rng-n m
7 IAS-1 m/s
8 IAS-2 m/s

x.

‘'n refers to the replication currently in use by the NFF (i.e., 1 or 2)

41

Table 6.7: Replicated Measurement Indexing Convention

Program Arrays: INORYP

Meas. Sensor

Array Index Type/Repl. Program Units
FINDSCMP N
1 MLS Azim-n, radians
2 MLS Elev-p radians
3 MLS Rng-n m
4 IAS-1 m/s
5 IMU ¢~-1 radians
6 IMU 6-1 radians
7 IMU y-1 radians
8 IAS-2 m/s
9 IMU ¢-2 radians
10 IMU 6-2 radians
11 IMU y-2 radians
FINDS1 .
1 IMU ¢-1 radians
2 IMU 6-1 radians
-3 IMU ¢y-1 . radians
4 IMU ¢-2 radians
) IMU 6-2 radians
6 - IMU- -2 radians
FINDS?2 ‘ T :
1 MLS ‘Azim~-n, radians
2 MLS Elev-Q radians
3 MLS Rng-n m
4 © IAS-1 m/s
5 IAS-2 m/s

x

- 42 -

‘n refers to the replication currently in use by the NFF (i.e., 1 or

2)

7. SUBPROGRAM DESCRIPTION AND TABLES

This section contains a description of all subprograms in FINDS. Table
7.1 is a "quick” reference list of each subprogram and its associated "calls
to” and "called by" programs. Subsequent paragraphs explain the specific

function of each subprogram and list its associated common blocks.

TABLE 7.1

SUBPROGRAMS

Called by: Name Calls to:

Main program (FINDS/FINDS1/FINDS2) READFL

Main program NAV HEALR, RECONF, SUMIN, EKFNI,
BLEND, SUMOUT, BIASF, RESCMP,
DETO01, DETO5, DET10, GTOI

Main program INITG BUBBL2, INITXF, UPDB, VEQUAL,
GTOI

INITG INITXF

NAV SUMIN

NAV SUMOUT

NAV, INITG : GTOI

NAV EKFN1 UPDPH, PDMINV, MATIA, MAT3

VSCALE, MATS, MADD, UPDB, UPDQ,
PD3NV1, PMAXB, PMABAT, PMABT2,
PMAPB, PD4NV1,

NAV BIASF VSUB, MEQUAL, MAT1A, MATVAC,
VSCALE, MSUB, MATXYT, MADD,
PDMINV, PMBEA, PMAXB, PMAXV,
YSCALE, PMAMB, PMABT, PMAPB,
PD3NV1, PD4NV1

NAV BLEND MAT1A, MADD, MATVC2, UPDH,
PMAXB, PMAPB, PMAXV2
NAV DETOL MEQUAL, MAT3B, ISOLAT, PMBEA,
PMVTAV
DETO5 MEQUAL, MAT3B, ISOLAT, PMBEA,
PMVTAV
DET10 MEQUAL, MAT3B, ISOLAT, PMBEA,
PMVTAV
RECONF SETISN
INITG, EKFNI UPDB
EKFNI UPDQ
BLEND UPDH
CLIPSIO, EKFNI UPDPH
NAV RESCMP
DETO1, DET05, DETLO ISOLAT MAT1A, PDMINV, VEQUAL, VSUB,

VADD, LKF, DECIDE, MEQUAL,
TRANS2, MATXYT, MADD, MADZ,
MSUB, MATLN2, MATVEC, LRT

43

Called by: Name ' : Calls to:

ISOLAT LKF

ISOLAT LRT MAT3B

ISOLAT DECIDE VEQUAL, TLOUT, VMPRT, VMPRT2,
MINIM2, MINIM3

NAV RECONF PNTINV, RCOV, SET1SN, CLPS10,

: _ TLOUT, IMEG2, NOISR, MATLN2,

RECONF CLPSIO RCOV, PMTINV, IMTCG2, CLPSBE,
NOISR, UPDPH

RECONF, CLPSIO NOISR

CLPSIO CLPSBE ADJTPB, MATCG2, PNTINV, 1MTCG2,
MATCG3

CLPSBE : ADJTBP PNTINV, IMTCG2

CLPSIO, RECONF RCOV VMPRT, MATLN2, VMPRT2, MATLN3

NAV HEALR BUBBL2, TLOUT, LRTHLR

HEALR LRTHLR

Main Program, DECIDE, RECONF, HEALR

44

cl

Includes files "FINDSCMP.FOR' , 'FINDS1.FOR' , 'FINDS2.FOR'.

NOTE:

name:
func:

refs:
comm :

name:
func:

call:
args:
refs:
refby
comm:

name:
func:

call:
args:

(a) The exact-dimensioned versions of FINDS1 & FINDS2 are summarized

here. The documentation for the 'NDIM' dimensioned versions is
along the same lines as for FINDSCMP.

(b) Everything is common to all 3 files except where specified by file-

name.

(c) Notation in this document is as follows:

func --+ function (of routine)

refs --* refers (other routines it refers to)

refby —--+ referred by (other routines it gets called by)
comm --+ common blocks (used in the routine)

args -—- variables in the argument 1list

DESCRIPTION OF SUBROUTINES

FINDS/FINDS1/FINDS - (Main Program)

Coordinates the run-time operation of the FINDS algorithm. FINDS1 is
the rotational kinematics portion and FINDS2 is the translational
dynamics portion of the composite algorithm. Initializes program
variables, reads-in first iteration of flight data and initializes
the filter. The basic run-time loop consists of reading in one
iteration of flight data (READFL) and passing control to NAV which
coordinates the FTN/FDI algorithm.

INITG, READFL, TLOUT, NAV

FINDSCMP --- EARTH, MCONCO, SYNC, IMLS, MLSALL, PSIR, CNTROL, ABRTCM
FINDS1 ---+ EARTH, MCONCO, SYNC, IMLS, PSIR, CNTROL, ABRTCM

FINDS2 —-+ SYNC, MLSALL, CNTROL, ABRTCM

READFL

Flight data interface routine -- reads in the flight data from binary

data file, assigns data to the various sensor variables ang converts

data to program working units (i.e, radians, m, m/s, m/s). Also

checks for data dropouts and "fixes" them by substituting data from

previous iteration.

Call READFL

None

None

FPINDS/FINDS1/FINDS2

FINDSCMP --+ SYNC, MCONCO, RGOUT, LAOUT, AGOUT, ASOUT, MLOUT, NAMES,
RDLOCL

FINDS1 --- SYNC, MCONCO, RGOUT, AGOUT, NAMES, RDLOCL

FINDS2--+ SYNC, MCONCO, LAOUT, ASOUT, MLOUT, FLTIN, NAMES, RDLOCL

NAV

Executive program which coordinates the no-fail filter (NFF) (or
fault tolerant navigator FIN) and failure detection (isolation (FDI)
modules, (see attached flow chart)

Call NAV

None

45

refs:

refby:
comm:

name:
func:

call:
args:
refs:

refby:
comm:

name:
func:

call:
args:
refs:
refby:
comm:

name:
func:

HEALR, RECONF, SUMIN, EKFNl1l, BLEND, SUMOUT, BIASF, RESCMP, DETO1,
DET10, DET05, GTOI (note: FINDS2 does not contain routine GTOI)
FINDS/FINDSI/FINDSZ

SYNC, CNTROL, ABRTCM, EKF1, HEALCM, SYSXBO, JUMPCM, DTSYNC, HFCOM

INITG

Sets program flags and initializes parameters used in the NFF, FDI
and reconfiguration modules. The initialization process is in two
passes; the first pass configures the system dimensions based on
sensor replications used and also sets the healer parameters. The
second pass sets the initial conditions for the NFF states and
initializes the NFF measurement and covariances.

Call INITG

None

FINDSCMP --- BUBBL2, VEQUAL, INITXF UPDB, GTOI

FINDS1 --+ BUBBL2, INITXF, UPDB, GTOI

FINDS2 -—- BUBBL2, INITXF, UPDB

FINDS/FINDS1/FINDS2

SYSX1l, SYSYWl, SYSUl, EKFl, EKBFO, SYSXBO, CMPSTF, DETXBI, SYNC,
MCONCO, FILTRT, INITVL, DETINF, CNTROL, FILTIC, YOBSRV, MAIN1l, HEALCM
In addition, FINDSCMP/FINDS2 contain blocks SIGTAU, ASOUT and FINDS1
contains block SIG)

INITXF
Uses the first xteratlon of the flight data to compute the NFF state
initial conditions. A/C position is calculated using a

reconstruction algorithm from the MLS emasurements. Velocity is

estimated by resolving the averaged IAS measurement in the
appropriate axis. A/C attitude initial estimates are obtained by
averaging the replicated IMU measurements. Initial horizontal winds
are estimated to be zero. ' :

Call INITXF

" None

None
INITG
FINDSCMP --» FILTRT, MCONCO, EKFl, ASOUT, MLSALL, AGOUT, MLOUT, PSIR
FINDS1 ---+ FILTRT, AGOUT PSIR, EKFl
FINDS2 --- FLTIN, MLOUT, ASOUT, MLSALL, MCONCO, FILTRT, EKF1
I 4

SUMIN

Provides a proper set of inputs to the NFF. The input vector is

formed as follows:

1) Only on replication of all lnput sensors is in active mode; the
second replication is kept either in standby or in failed status.

2) the input vector, UFl, is formed such that trapezoidal
integration is performed, i.e., U(k) = 0.5 * {u(k) + u(k-1)]

3) current estimates of input sensor biases (XBFO0) are subtracted

from UFl.
4) FINDSCMP, FINDS1 --+ rate gyro measurements are compensated for
* earth and platform rates
5) FINDSCMP, FINDS2 --+ the gravity vector (Gx, Gy, Gz) expressed in
the G-frame is added to the endTof UF1.
6) FINDSCMP --+ UFl = [Ax, Ay, Az, P, Q, R, Gx, Gy, Gz]

- 46 -~

call:
args:
refs:
refby:
comm:

name:
func:

call:
args:
refs:
refby:
comm:

name:
func:

call:
args:
refs:
refby:
comm:

name:
func:

call:

FINDS1 --- UF1l = [P, OQ, R]T -
FINDS2 --+ UFl = [Ax, Ay, Az, Gx, Gy, Gz]
7) In the split versions, FINDS1 generates the gravity vector in
GTOI which is then transferred over to FINDS2 and used there.
Call SUMIN
None
None
NAV
FINDSCMP --+ MAIN1, RGOUT, LAOUT, EKBFO, SYSUl, SYSXBO, FILTRT, SYNC,
EARTH, PSIR, TRBER, LATLON, SUMLOC

o

SuMoUT

Forms a set of measurements (YFl) to be used by the NFF

1) each sensor replication has an active or failed or standby
status, and the number of available active replicated
measurements are averaged

2) each measurement is normalized by the expected variance of that
signal (scale factor is set in INITG)

3) psi measurements are compensated for runway yaw in FINDSCMP and
FINDS1 T

4) FINDSCMP —-+ YF1l = [Azim, Elev, Rng, IAS, Phi, Theta, Psi]
FINDS1 --- YFl = [Phi, Theta, Psi

FINDS2 —--+ YF2 = [Azim, Elev, Rng, IAs]T
Call SUMOUT
None
None
NAV
FINDSCMP ——+ PSIR, ASOUT, AGOUT, MLOUT, SYSYWl, FILTRT, YOBSRV,

DETXBI
FINDS1 --» PSIR, AGOUT, SYSYWl, FILTRT, YOBSRV, DETXBI
FINDS2 --- ASOUT, MLOUT, SYSYW1l, FILTRT, YOBSRV, DETXBI

GTOI (not in FINDS2)

Forms estimates for inertial position, velocity and acceleration, and
runway acceleration. Also computes the a/c's current longitude and
latitude along with their rates of change. In addition, coriolis and
centripetal correction terms for compensating the platform gravity
force are also computed. [NOTE: in PINDSl, this routine needs the
a/c position and velocity estimates generated by FINDS2]

Call GTOI

None

None

NAV, INITG

MAIN1, FILTRT, RGOUT, SYSUl, EKFl, TRBER, MCONCO, EARTH, IMLS, PSIR,
LATLON, PQRDEG, GRVYTC, GTOILC

EKFN1

Represents the bias-free filter portion of the NFF and is implemented
as an extended Kalman filter (EKF). Covariance propagation of the
stabilized normal equations is performed. The state estimates, XFl,
are not computed in this routine. (see attached flow chart)

Call EKFN1 (Iup)

- 47 -

args:

refs:

refby
conmm:

name:
func:

call:
args:
refs:

refby
comm

name:
func:

call:
args:
refs:

refby
comm:

Iup -- integer in ; update/propagate flag (1 ==> update, 2 ==>
propagate)
FINDSCMP --+ UPDPH, PDMINV, MAT1A, MAT3, VSCALE, MAT2, MADD, UPDB,
UPDQ
FINDS1 --+ PD3NV1, PMAXB, PMABAT, VSCALE, PMABT2, PMAPB, UPDB, UPDQ
FINDS2 ---+ UPDPH, PD4NV1, PMAXB, PMABAT, VSCALE, PMABT2, PMAPB, UPDB,
UPDQ
NAV , .
FINDSCMP --+ MAIN2, SYSX1l, SYSYWl, SYSUl, EKFl, SYSXBO, SYSYBO,
FILTRT, TSTORE, CNTROL, EKFBIA, JUMPCM
FINDS1 —--» MAIN2, SYSX1l, SYSYWl, SYSUl, EKFl, SYSXBO, SYSYBO, FILTRT,
CNTROL, EKFBIA, JUMPCM
FINDS2 ---+ SYSX1, SYSYl, SYSUl, EKF1l, SYSXBO, FILTRT, CNTROL, EKFBIA,
JUMPCM, EKFBLN, EKFWRK

BIASF

Implements the bias filter portion of the NFF. There are no bias
filter dynamics; hence no propagation step is required and this
routine is called only during the update mode of the NFF.

Call BIASF

None
FINDSCMP ---+ VSUB, MEQUAL, MAT1A, MATVEC, VSCALE, MSUB, MATXYT, MADD,
PDMINV

FINDS1 ---+ VSUB, PMBER, PMAXB, PMAXV, YSCALE, PMAMB, PMABT, PMAPB,
PD3NV1 _

FINDS2 --» VSUB, PMBEA, PMAXB, PMAXV, VSCALE, PMAMB, PMABT, PMAPB,
PD4NV1 .

NAV

MAIN1l, SYSX1l, SYSYW1l, SYSUl, EKBFO, SYSXBO, GBLEND, YOBSRV, FILTRT,
EKF1l, EKFBIA, LRTINV, DETCOV, JUMPCM, CNTROL

In addition to the above,

FINDSCMP —---+ MAIN2, SYSYBO, TSTORE

PINDS1 --- MAIN2, SYSYBO, BSFWRK

FINDS2 --- BSFWRK

BLEND

Computes the bias and bias-free state estimates and "blends" them
together to form the total state and bias estimates. Also forms the
Kalman gain matrix. (see flow chart)

Call BLEND (Iup)

Iup -- integer in ; update/progagate flag (1 ==> update, 2 ==>
. propagate)

FINDSCMP ---» MAT1A, MADD, MATVC2, UPDH
FINDS1, FINDS2 --+ PMAXB, PMAPB, PMAXV2, UPDH

NAV

SYSX1l, SYSYW1l, SYSUl, EKFl, EKBFO, SYSXBO, GBLEND, CMPSTF, DETINF,
FILTRT, JUMPCM

In addition to the above,

FINDSCMP --+ MAIN2, TSTORE

FINDS1 --- MAIN2 -

FINDS2 --- EKFBLN, BLNDWK

..48_

name:
func:

call:
args:
refs:

refby

comm: .

name:
func:

call:
args:
refs:

refby
comm:

name:
func:

call:
args:
refs:

refby
comm:

name:
func:

call:
args:
refs:
refby:
comm:

DETO1

Implements the failure detector of moving residual window 1 sample,
i.e., the current filter residual. Peforms a Chi-square test on the
NFF averaged measurement residual RESBO and checks against set
thresholds to detect failures. Calls isolation routine ISOLAT if
failure is detected.

Call DETO1

None

FINDSCMP ---+ MEQUAL, MAT3B, ISOLAT

FINDS1, FINDS2 --+ PMBEA, PMVTAV, ISOLAT

NAV

SYNC, SYSYW1l, SYSUl, FILTRT, ‘'EKBFO, LRTINV, JUMPCM, LRTMAX, DTCTOl,
CNTROL, DETPRI

DETO0S :

Implements the failure detector of moving residual window length 5
samples. Performs a Chi-square test on the moving average of RESBO
over the last 5 samples (incl. current residual).

Call DETO5

None

FINDSCMP --- MEQUAL, MAT3B, ISOLAT

FINDS1, FINDS2 ---+ PMBEA, PMVTAV, ISOLAT

NAV

SYNC, SYSYW1l, SYSUl, FILTRT, EKBFO, LRTINV, JUMPCM, LRTMAX, DTCTOS5,
CNTROL, DETPRI

DET10

Implements the failure detection of moving residual window length 10
samples. Performs a Chi-square test on the moving average of RESBO
over the last 10 samples (incl. current residual).

Call DET10

None

FINDSCMP --- MEQUAL, MAT3B, ISOLAT

FINDS1, FINDS2 --- PMBEA, PMVTAV, ISOLAT

NAV

SYNC, SYSYW1l, SYSUl, FILTRT, EKBF0O, LRTINV, JUMPCM, LRTMAX, DTCT10,
CNTROL, DETPRI

SETISN

Maintains the value of vector ICNTSN in which the ordering of
elements corresponds to the absolute replicated sensor ordering
(Table 6.6). The value of each element is the location in UF1l for
the input elements (six for FINDSCMP, 3 for FINDS1/FINDS2), and the
location in the expanded innovations for the rest of ICNTSN. ICNTSN
provides a mapping between an absolute indexing scheme and a
collapsed indexing scheme in the event of failures.

Call SETISN

None

None

RECONF

DETINF, FILTRT, SYSUl, DETXBI

_49...

name:
func:

call:
args:
refs:

refby:

comm:

name:
func:

call:
args:
refs:
refby
comm:

name:
func:
call:
args:
refs:
refby
comm:

name:
func:

call:
args:
refs:
refby
comm ¢

name:
func:

UPDB

Updates the discrete input weighting matrix BFl and also evaluates

and saves:

1) sines and cosines of the estimated Euler angles (in FINDS2, these
are the estimates transferred over from FINDS1 at each
iteration).

2) the transformation from the B to the R frame

3) the transformation from the R to the E frame (not in FINDS2),

Call UPDB

None

None

INITG, EKFN1l

MAINl, TRBER, EULER, SYNC, SYSUl, EKFl, SYSX1l

UPDQ

Updates the discrete process noise covariance matrix EFl. Assumes
that UPDB has been called before this routine, hence transformation
matrices Trb and Ter are current. 1In addition, for FINDSCMP and
FINDS1, terms to represent the rate gyro errors due to scale factor
and misalignment are added to the measurement noise variance.

Call UPDQ

None

None

EKFN1

MAIN1l, TRBER, SYNC, MCONCO, SYSX1l, SYSYWl1l, UPDQLC

In addition to the above,

FINDSCMP ---+ SIGTAU, PQRDEG

FINDS1 ---+ SIG, PQRDEG

FINDS2 --+ SIGTAU

UPDH

Updates the nonlinear observations function H, called HXKPl
Call UPDH

None

None

BLEND

YOBSRV, SYSX1, SYSYWl, EKFl, SYSUl, EKBFO, SYSXBO

In addition,

FINDSCMP, FINDS2 ---+ MLSALL

UPDPH (not in FINDS1)

Updates the partial of H (i.e., HXKPl) w.r.t. XF1l, called HP1l. Not
used in FINDS1 as HPl is an identity matrix in that algorithm.

Call UPDPH

None

None

EKFN1l, CLPSIO

MAIN1, MLSALL, YOBSRV, SYSXBO, SYSUl, SYSYWl, CMPSTF, SYSX1l, EKF1

RESCMP :
Computes the expanded residuals sequence (RESBOC) from the residual
sequence (RESBO) generated by the NFF. This sequence is the same as

50

call:
args:
refs:
refby:
comm :

name:

func:

call:
args:

refs:

refby:
comm:

the one which would have been generated had the filter been driven by
all replications of the measurement sensors rather than their average
value. This expanded residuals sequence is used in the failure
isolation strategy.

Call RESCMP

None

None

NAV

EKF1, YOBSRV, SYSYWl, DETINF, FILTRT, SYSUl, DTSYNC

In addition,

FINDSCMP --- ASOUT, AGOUT, MLOUT, PSIR

FINDS1 --- AGOUT, PSIR

FINDS2 ---+ ASOUT, MLOUT

ISOLAT

Implements a bank of first order filters and likelihood ratio
computers in the isolation strategy. Each filter hypothesizes the
occurrence of a failure at the beginning of the residual window
(based on the length of the detector sequence which flagged the
failure), and estimates the level of a bias jump failure by observing
the expanded (and saved) residuals sequence over that window. The
hypothesized failure is assumed to affect the NFF input measurements
or output measurements only. Thus, a single failure cannot directly
enter into BOTH an input and an ouput measurment.

A select subset of all first order filters is activated depending on
which detector caught the failure. If the detector of window length
1 sample (DETOl) signals the failure, then only the output sensor
filters are activated. Similarly, if DET10 flags the failure, then
only the input sensors (and the IAS sensor in the case of
FINDSCMP/FINDS2) filters are activated. For DET05, no such
assumptions are made and all of the sensors are equally "suspect."

The first order filters generate a sequence of failure compensated
residuals which are used by the bank of likelihood ratio computers to
compute the log likelihocd of a singleton sensor failure (or a dual
simultaneous failure in MLS sensors).

Subroutine ISOLAT functions as an executive of this bank of filter/LR

computers. In the current version of FINDSCMP/FINDS2, only one

replication of the MLS sensors is kept active and the other is in

standby status (like the input sensors); hence, dual simultaneous MLS

sensor failures are not considered in this routine or in DECIDE.

(see attached flowchart)

Call ISOLAT (Iflwin)

Iflwin -—- integer in ; 1length of detector window which flagged the

failure (has value of either 1 or 5 or 10)

MAT1A, PDMINV, VEQUAL, VSUB, VADD, LKF, DECIDE

In addition,

FINDSCMP ---» MEQUAL, TRANS2, MATXYT, MADD, MATZ, MSUB, MATNL2Z2,
MATVEC, LRT

DETOl1, DETO5, DET10

MAIN1, SYSX1l, SYSYW1l, SYSUl, SYSXBO, YOBSRV, EKFl, EDBF0Q, CMPSTF,

DETXBI, DETINF, DCIDEI, DETYBI, INITVL, FILTRT, DTSYNC, DETCOV,

DETLC3

51

name:
func:

call:
args:

refs:
refby
comm:

name:
func:

args:

refs:
refby
comm:

name:
func:

call:
args:

refs:

In addition,

FINDSCMP --- MAIN2, TSTORE, MULTDT, DETLC2
FINDS1 --+ MAIN2, DETWRK

FINDS2 —---+ MULTDT, DETWRK, DETLC2

LKF

Provides the failure estimator structure in the isolation strategy.
Implements a linear Kalman filter using the information form, and
assumes a scalar state equation. The plant, measurements and filter
equations are commented in the actual code in each algorithm.
Generates a set of failure compensated residuals and also a "best"
estimate of failure level for each suspect sensor.

Call LKF (Index, Ci, Istart) :

Index -- Integer in ; points to particular sensor in question (has

value based on Table 6.6 indexing)
Ci -- real in ; effective observations matrix (computed in ISOLAT)
Istart -- integer ; 1location in saved, expanded residual sequence

RESBOC (has value between 1 and 10 depending on
current location and Iflwin)

None

ISOLAT

MAIN1, DETINF, DETXBI, DETYBI, DETLC3

LRT (only in FINDSCMP)

Computes the log likelihood ratios 1n the isolation strategy. The

computations are as follows:

1) if loop =1, A = -PHj. This initializes the log likelihood ratio
A to —ln(PHJ) at the start of the detection/decision residual
window. T

2) SUMI = RES * RTinv * RES

3) A=0.,5"*SUMI + A)

Loop -- integer in ; detection/decision window step (has values

from 1 to Iflwin)

PHj --—* real in ; 1log of a-priori probability that the j'th sensor

will fail -
RES -- real in ; failure corrected innovations sequence from the
j'th LKF
A -- real in out ; computed value of log likelihood ratio for] 'th
failure hypothesis.
MAT3B
ISOLAT

MAIN1l, DETINF, DETLC3

DECIDE

Chooses the most likely failure hypothesis by finding the smallest

log likelihood ratio of those computed 1n LRT. For a chosen

hypothesis, it checks for a minimum accepTable 6.6ailure level, else

chooses the next likely hypothesis. Also, prints out various user

messages.

Call DECIDE (Iflwin)

Iflwin -- integer in ; 1length of detector window which flagged the
failure (either 1 or 5 or 10)

FINDSCMP --+ VEQUAL, MINIM2, TLOUT, VMPRT

..52...

refhbhy:
comm:

name:
func:

call:
args:

refs:

refby:
comm:

name:
func:

call:

' args:

refs:

refby:
comm

FINDS1 --» VEQUAL, MINIM3, TLOUT, VMPRT2

FINDS2 ---+ VEQUAL, MINIM2, TLOUT, VMPRT2

ISOLAT

DETINF, FILTRT, SYSUl, DETXBI, DCIDEI, SYNC, HFCOM, MCONCO, JUMPCM,
NAMES.

(In addition, FINDSCMP/FINDS2 ---+ MULTDT, SIGTAU & FINDS1 —--—» SIG)

RECONF

Reconfiqgures the FTS for proper operation (if possible) after

failures have been detected and isolated, and after sensors heal.

Call RECONF (Ihfail)

Ihfail -- integer in ; Heal/fail reconfiguration flag where Ihfail
= 1 for failures and -1 for healings

PNTINV, RCOV, SETISN, CLPSIO, TLOUT, IMTCG2

In addition, '

FINDSCMP ---+ NOISR, MATNL2

FINDS1/FINDS2 --+ MATNL3

NAV :

DETINF, FILTRT, SYSUl, DETXBI, DCIDEI, SYNC, SYSXBO, INITVL, EKBFO,

HEALCM, HFCOM, SYSX1, GBLEND, EKF1l, ABRTCM.

In addition,

FINDSCMP --- MULTDT

FINDS1 —--+ SYSYW1l, SIG

FINDS2 --» MULTDT, SYSYWl, SIGTAU

CLPSIO

Used to collapse (or expand) the NFF and its associated data
structures due to a single failure (or healing) of a measurement
sensor. This routine is not called when an input sensor is involved.
1) 1If Iclps <0 (i.e., collapse NFF)

set RF1 (icmd) = 0

reset PFl and PBFO by calling subroutine RCOV

decrement NY, NYF

update INOYP, INORYP, INOYPI

if meas. sensor bias is estimated, collapse bias portion of
filter by calling subroutine CLPSBE

2) If Iclps >0 (i.e., expand NFF)

call NOISR to set RF1l

increment NY, NYF

update INDYP, INORYP, INOYPI

correct partial derivative of h w.r.t. XF1, i.e., HPl by
calling UPDPH

Call CLPSIO (Iclps, Isns, Ireplc)

* * % % »

* * % %

Iclps -- integer in ; flag used to control collapse/expansion of
‘ NFF where Iclps = 1 ==> collapse & Iclps = 1
==> expand
Isns -~ integer in ; absolute index of sensor (from Table 6.5)
Ireplc -- integer in ; replication of the sensor (1 or 2)

RCOV, PNTINV, IMTCG2, CLPSBE

In addition, FINDSCMP -—+ NOISR, UPDPH & FINDS 2 --- UPDPH
RECONF

SYSXB0O, SYSUl, SYSYW1l, DETXBI, DETINF, INITVL, SYSX1

In addition, FINDS1 --+ FILTRT, SIG & FINDS2 --+ FILTRT, SIGTAU

.53

name:
func:

call:

args:

refs:
refby:
comm

name:
func:

call:
args:
refs:

refby:
comm :

name:
func:

call:
args:

NOISR (only in FINDSCMP)

Resets the measurement noise covariance terms in the NFF for a given
sensor type and replication

Call NOISR (Isns, Ireplc, Imul)

Isns —- integer in ; absolute index of sensor (from Table 6.5)
Ireplc -- integer in ; not used
Imul -- integer in ; flag to use higher noise covariance when

collapsing the IMU portion of filter. (default
value = 1, value = 2 when IMU is involved)
None
RECONF, CLPSIO
FILTRT, SYSYW1l, SIGTAU, SYSUl

CLPSBE
Responsible for resetting the bias estimator portion of the NFF such
that a single bias can be added or deleted
1) calls ADJTBP to determine IBkey and IYkey and to adjust the bias
pointer vector INOBP, as well as NXB, NUB, NYB, NUB1, and NB
2) if kflag = -1 (i.e., collapse the bias estimator)
(a) the IBkey row and column of the bias filter error covariance
PBF0O, is deleted.
(b) the IBkey column of the bias filter blender gain, VBO is
deleted
(c) the IBkey row of the bias estimation vector, XBFO, is
deleted
3) 1if kflag # -1 (i.e., expand the bias estimation)
(a) PBFO is expanded about the IBkey row and column, and they
are zeroed out
(b) the initial bias filter error covariance is loaded into the
appropriate diagonal element s.t. PBF0O (IBkey) = PBFOI
(Ibias) **2 ,
(c) VBO is expanded about the IBkey column, and it is zeroed
out.
(d) XBFO is expanded about the IBkey column, and zeroed out.
Call CLPSBE (kflag, Ibias)
kflag -~ integer in ; £flag to collapse/expand the bias filter
Ibias -- integer in ; absolute index of bias type to be added or
deleted. (from Table 6.5)
FINDSCMP --- ADJTBP, MATCG2
FINDS1/FINDS2 ---+ PNTINV, IMICG2, MATCG3
CLPSIO
SYSXBO, EKBFO, INITVL, GBLEND
In addition, FINDS1/FINDS2 --- SYSX1, DETXBI, CMPSTF, SYSUl, SYSYWl

ADJTBP (only in FINDSCMP) ,

Increments or decrements various vectors/scalars used by CLPSBE and

the bias filter, when adding or deleting biases in the estimator

Call ADJTBP (Iflag, Index, Irkey, Iykey)

Iflag -- integer in ; flag indicating addition/deletion of bias (1
==> add, -1 ==> delete)

Index -- integer in ; absolute index to sensor type of bias to be
: added or deleted (from Table 6.5)
Irkey -~ integer out ; pointer to index in reduced bias set

_54-.

refs:
refby:
comm

name:
func:

call:

args:

6.6)

6.5)
refs:

refby:
comm:

name:
func:

call:
args:
refs:

refby:
comm:

Iykey -- integer out ; pointer to output type which corresponds to
bias referred to by index. (If bias is an
input bias, iykey = 0) Table 6.2

PNTINV, IMTCG2

CLPSBE

SYSX1, DETXBI, CMPSTF, SYSXBO, SYSUl, SYSYWl

RCOV
Resets the NFF estimation error covariances once a failure has been
detected and isolated. }n particular, it sets,
PF1 = PFl1 + VBI * VBI™ + (XMI * XMI + 1.0/PMI)
if PBFO > PBFOI --- PBFO = PBFOI, XBFO = 0
Call RCOV (Vi, Xmi, Pmi, Icmd))
Vi -- real in ; blender gain for i'th detector (i = Table 6.6)

Xmi -- real in ; estimate of i'th failure level (i = Table 6.6)
Pmi ~- real in ; information matrix for i'th failure (i = Table
Icmd -- integer in ; absdlute sensor type of failed sensor (Table

FINDSCMP -—--+ VMPRT, MTNL2

FINDS1/FINDS2 --+ VMPRT2, MATNL3

CLPSIO, RECONF

SYSXBO, EKBFO, EKFl, CMPSTF, SYSX1, INITVL
In addition, FINDSCMP --+ MAINL

HEALR

Manages the operation of the healer logic. Primary function is to
maintain all sensor failed by the FDI logic and determine if they
have healed or recovered. Healer decisions are made ONLY at the end
of a healer decision window (which in our algorithms is set to be 3
seconds). In FINDSCMP/FINDS1, special logic is employed in order to
force the IMU's to heal in a coordinated fashion.

HEALR is operated by computing the running sum, Xsum, of (Xwork-
Xfail) over the healer window of length Kmxhlr (3 seconds). The
value of the sum is reset to zero at the start of a new healer
window; a new healer window is started whenever a new sensor is
failed by the FDI logic. Xwork and Xfail are defined as follows:
* for input sensors:
Xwork = measurement from a currently active replicated sensor of
the same type as the failed one
Xfail = measurement from the failed sensor
* for output sensors:

Xwork = estimate of the observation obtained from the NFF

Xfail = measurement from the failed sensor.
Call HEALR
None
BUBBL2, TLOUT
In addition, FINDSCMP -— LRTHLR
NAV
SYNC, SYSUl, HEALCM, HFCOM, EKF1, YOBSRV, JUMPCM, NAMES, LOCHEA
In addition, L
FINDSCMP ---+ AGOUT, SOUT, MLOUT, RGOUT, LAOUT, PSIR
FINDS1 --+ AGOUT, RGOUT, PSIR
FINDS2 ---+ ASOUT, MLOUT, LAOUT

55

name:

func:

call:
args:

refs:
refby
comm:

name:
func:

call:
args:

refs:
refby
comm:

name:
func:
call:

args:

LRTHLR (only in FINDSCMP ; this routine is integrated into HEALR in
FINDS1/FINDS2)

Performs a likelihood ratio test to determine if a sensor has healed

at the end of a healer window. The test is performed as follows:

1) a maximum likelihood estimate of the normal operational bias is
computed as, Best = Xsum/Length, where Xsum is the running sum
from HEALR and Length is the number of samples in the window.
The estimate is limited by:

if Best > Bthrsh , Best Bthrsh
if Best < -Bthrsh , Best Bthrsh :

where Bthrsh is the largest expected bias level for this sensor type

(set in INITG)

2) a maximum likelihood estimate for a failure level is computed as,

Fest = Xsum/Length, which is then limited by:
if Pest > 0 & Fest < Fthrsh , Fest = Fthrsh
if Fest < 0 & Fest > -Fthrsh , Fest = -Fthrsh

where Fthrsh is the smallest expected failure level for this sensor

type (set in INITG).

3) a decision function is evaluated as,

Xtmp = 2.0 * (Fest -Best) * Xsum + Length * (Best **2 + Fest **2)

4) the value of the decision function is compared to a decision
threshold, Dthrsh, (set in INITG), and if Xtmp < Dthrsh the
sensor is declared "healed."

Call LRTHLR (Xsum, J)

Xsum -— real in ; sum of (Xwork -Xfail) over healer window

J —- integer in ; absolute index of failed sensor (refer Table 6.5)

None

HEALR

HEALCM

TLOUT

Prints a coded message corresponding to an event and the status of
the NFF estimates in the time-line file.

Call TLOUT (Msg, Imsgl, Imsg2)

Msg -- integer in ; message number corresponding to specific
events.

Imsgl, Imsg2 —— integers in ; message qualifiers

None

FINDS/FINDS1/FINDS2, DECIDE, RECONF, HEALR
MCONCO, SYNC, EKF1l, EKBFO

DESCRIPTION OF LIBRARY (MATRIX/VECTOR) ROUTINES

VMPRT/VMPRT2

Prints out vectors or diagonals of matrices

Call VMPRT (X, Nr, Nc, Name) ¢-- FINDSCMP

Call VMPRT2 (X, Nr, Nc, Name, Ndiml) ¢-- FINDS1/FINDS2

X -- real in ; vector or matrix to be printed

Nr -- integer in ; row size of vector/matrix

Nc -- integer in ; column

Name -- character in ; character label to be printed

Ndiml -- integer in ; only in exact dimensioned FINDS1 & FINDS2 --
max. row dimension of X in calling routine

-56_

refs:
refby
comm:

name:
func:

call:
args:

refs:

refby
comm ¢

name:

" func:

call:
args:

refs:
refby
comm:

name:
func:

call:
args:

refs:
refby
comm:

name:
func:

call:

None
DECIDE, RCOV
None

BUBBL2

Performs a bubble sort on an array of integers where the final
ordering is smallest to largest, i.e., increasing in value

Call BUBBL2 (Na, n)

Na -- integer in out ; array of integers to be sorted
n -- integer in ; length of array Na

None

INITG, HEALR

None

MAT1A/PMAXB

am e mmmnacm e o e .

Forms the matrix bfdduct Z = XY. No sparseness tests are performed
and Z, Y can start at same core locations. PMAXB assumes that X, Y,
Z are exact-dimensioned in the calling routine while MAT1A assumes a
general 'NDIM row dimension for all matrices.

Call MAT1A/PMAXB (nl, n2, n3, X, ¥, 2)

nl -- integer in ; row dimension of X, 2

n2 —— integer in ; col. length of X, row length of Y
n3 -- integer in ; col. length of ¥, Z

X —- real 1n ; input matrix (nl, N2)

Y -——- real 1n ; input matrix (n2, n3)

Z -- real out ; output matrix (nl, n3)

None

EKFN1, BIASF, BLEND, ISOLAT, MAT3/PMABAT
MAT1A ~--+ MAIN1
PMAXB --- None

MATZ2/PMABT2 T

Forms the matrix product Z = XY~ where Z is symmetric. No sparseness
tests are done and Z, Y can start at same core locations. PMABT2
assumes that X, Y, Z are exact-dimensioned in the calling routine
while MAT2 assumes an NDIM row dimension for all matrices.

Call MAT2/PMABT2 (nl, n2, X, Y, Z)

nl —— integer in ; row dimension of X, Y and col. length of Z
n2 —— integer in ; row dimension of X, Y

X -- real in ; input matrix (nl, n2)

Y —- real in ; input matrix (nl, n2)

Z -- real out ; output matrix (nl, n2)

None

EKFN1, ISOLAT
MAT2 --- MAIN1
PMABT2 —---+ None

MAT3/PMABAT T

Forms the symmetric matrix product Z = X Y X where Y is symmetric,
and no sparseness tests are done. PMABAT assumes that X, Y, Z are
exact-dimensioned in the calling routine while MAT3 assumes an NDIM'
row dimension for all matrices.

Call MAT3 (nl, n2, X, Y, 2) +-- FINDSCMP

_57..

args:

refs:

refby:

coimm :

name:
func:

call:
args:

refs:
refby
comm ¢

name:
func:

call:
args:

refs:
refby
comm

name:
func:

call:
args:

refs:

Call PMABAT (nl, X, Y, 2) ¢-- FINDS1/FINDS2 (assumes nl = n2)
nl ---+ integer in ; row length of X, Z and col. length of 2
n2 —-2 integer in ; row length of Y and col. length of X, Y
X --+ real in ; input matrix (nl, n2)

Y -—* real in ; input (symmetric) matrix (n2, n2)

Z --+ real out ; output (symmetric) matrix (nl, nl)
MAT1A/PMAXB

EKFN1

MAT3 —--- MAIN1

PMABAT ---* None

MAT3B/PMVTAV

FormsTa scalar output from the symmetric vector product

Z =V YV, where Y is symmetric and no sparseness tests are done.
PMVTAV assumes that Y is exact-dimensioned in the calling routine
while MAT3B assumes an NDIM row dimension for Y.

Call MAT3B/PMTAV (nl, V, Y, SOUT)

nl -- integer in ; dimension of vector V and row/col. length of
matrix y

V -- real in ; input vector (nl, 1)

Y —- real in ; input (symmetric) matrix (nl, nl)

SOUT —- real out ; scalar output

None

DETO1, DETO05, DET10, ISOLAT, LRT
MAT3B --+ MAIN1
PMVTAV ——- None

MATXYT/PMABT T

Forms the matrix product Z = X Y, no sparseness test on Y PMABT
assumes that X, Y, Z are exact-dimensioned in the calling routine
while MATXYT assumes an NDIM' row dimension on all matrices.

Call MATXYT/PMABT (nl, n2, n3, X, Y, 2)

nl -- integer in ; row dimension of X, Z

n2 -- integer in ; col. length of X, Y

n3 -- integer in ; row length of Y, col. length of 2
X -- real in ; input matrix (nl, n2)

Y -- real in ; input matrix (n3, n2)

Z -- real out ; output matrix (nl, n3)

None

BIASF, ISOLAT
MATXYT --+ MAINL
PMABT -—-+ None

MEQUAL/PMBEA

Sets a matrix Y equal to a matrix X, Y = X

PMBEA assumes that X, Y are exact-dimensioned in the calling routine
while MEQUAL assumes an NDIM row dimension for X, Y.

Call MEQUAL/PMBEA (nl, n2, X, Y)

nl —— integer in ; row length of X, Y
n2 -- integer in ; col. length of X, Y
X -- real in ; input matrix (nl, n2)

Y -- real out ; output in (nl, n2)
None

_58..

refby:
comm:

name:
func:

call:
args:

refs:
refby
comm:

PR P W R

name:
func:

call:

args:

refs:
refby:
comm:

name:
func:

call:

args:

refs:
refby:
comm

BIASF, DET0l1, DET05, DET10, ISOLAT
MEQUAL ~--- MAIN1
PMBEA --- None

TRANS2 (only in FINDSCMP)

Transpose a matrix, XPOSE = X . Assumes NDIM row dimension for all
matrices.

Call TRANS2 (nl, n2, X, XPOSE)

nl -- integer in ; row length of X, col. length of XPOSE

n2 -- integer in ; col. length of X, row length of XPOSE

X -- real in ; input matrix (nl, n2)
XPOSE -- real in ; output matrix (n2, nl)
None

ISOLAT

MAIN1

PDMINV/PD3NV1/PD4NV1

Special matrix inverse routine for positive, symmetric, semi-definite
matrices; uses Cholesky L-u decomposition as an intermediate step.
PD3NV1 is the special form of PDMINV for 3rd order matrices, used in
FINDS1 and PD4NV1 inverts 4th order matrices in FINDS2.

Call PDMINV (n, A, Ainv)

Call PD3NV1/PD4NV1 (A, Ainv)

n -- integer in ; order of matrix to be inverted
A --real in ; input matrix (n, n)
Aimv -- real out ; output matrix (n, n)

NOTE: PD3NV1 & PD4NV1 assume n = 3 & n = 4, respectively.
None

EKFN1, BIASF, ISOLAT

None

MINIM2/MINIM3

Searches a vector and determines the minimum value and its
corresponding location. Only those elements of the vector are
checked which have a corresponding non-zero element in the other
input vector.

Call MINIM2 (Imactv, V, Npts, vmin, Nmin)

Call MINIM3 (Imactv, V, Npts. Nmin)

Imactv -- integer in ; input vector (Npts, 1) with 0 or 1 entries
corresponding to which entries in V to be
checked.

V -- real in ; input vector (Npts, 1) to be searched

Npts -- integer in ; 1length of V (i.e., # of elements to be

searched)

Vmin -- real out ; value of minimum element in V (not in MINIM3

which outputs only the location)

Nmin -- integer out; location of the minimum element in V

None

DECIDE

None

59

name:
func:

call:
args:

refs:
refby
comm :

name:
func:

args:

refs:
refby
comm:

name:
func:

call:

args:

PNTINV

Searches a pointer vector for particular entry. The pointer vector
is an integer array with monotonically increasing elements. It will
show how a collapsed vector's elements relate to a standard vector,
i.e., given the absolute index, this routine reruns the active index
in the reduced vector.

Call PNTINV (isns, Ipoint, n, index)

isns -- integer in ; value searched for in Ipoint (usually in
absolute index)

Tpoint -- integer in ; pointer vector to be searched

n - integer in ; length of Ipoint

index -- integer out ; 1index in Ipoint where isns was found. If

isns was not found, index < 0

None

RECONF, CLPSIO, ADJTBP

None

IMTCG2

To add or delete a row in an integer matrix or vector, or to add or
delete a column in a matrix. I a row or column is added, its
elements are set to zero.
jflag -- integer in ; operation flag where:
1 -- add row, 2 ——» add column
-1 ——2 delete row, -2 --2 delete column
index -- integer in ; pointer to row/column to be added or deleted
1Y -- integer in out ; matrix whose ‘index' row/column is to be
added or deleted

nr -- integer in out ; # of rows of Y (incremented or decremented)
nc —— integer inout ; # of columns of Y (incremented or

decremented) (not used in FINDS1/FINDS2)
None

RECONF, CLPSIO, ADJTBP, (CLPSBE)
FINDSCMP --- MAIN1
FINDS1/FINDS2 --+ None (as no column operations are performed)

MATCG2/MATCG3
To add or delete a row/column in a ‘real’ matrix or vector. If a row
or column is added, its elements are set to zero. MATCG3 assumes
that the matrix is exact-dimensioned in the calling routine while
MATCG2 assumes an NDIM row dimension for the matrix.
Call MATCG2 (jflag, index, Y, nr, nc)
Call MATCG3 (jflag, index, Y, nr, nc, ndiml)
jflag -- integer in ; operation flag where:

1l --+ add row, 2 --2 add column

-1 --+ delete row, -2 —-+ delete column
index -- integer in’' ; pointer to row/column to be added or deleted

Y -- real in out ; matrix whose ‘index row/column is to be added or
deleted
nr -- integer in out ; # of rows of Y (incremented or decremented)
nc —— integer inout ; # of columns of Y (incremented or
decremented)
ndiml -- integer in ; maximum row dimension of Y in calling routine

(used only in FINDS1/FINDS2 for exact-
dimensioned matrices)

_60...

PIOR

refs:
refby:
comm $

name:
func:

call:

args:

L AR i TN TR T e

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comn

name:
func:

call:
args:
refs:
refby:
comm:

None

CLPSBE :
MATCG2 --- MAINl
MATCG3 --- None

MATNL2/MATNL3

Initializes columns nl through n2 of a matrix to zero. In addition,
if a flag is set, rows nl through n2 can be nulled out, as well.
MATNL3 assumes that the matrix is exact-dimensioned in the calling
routine while MATNL2 assumes an NDIM row dimension for all
matrices.

Call MATNL2 (X, nl, n2, ktrig, n3)

Call MATNL3 (X, nl, n2, ktrig, n3, ndiml)

X -- real in out ; matrix whose rows/columns have to be nulled

nl -- integer in ; first column/row to be nulled

n2 -- integer in ; 1last column/row to be nulled

ktrig -- integer in ; operation flag: 0 --» only columns

e #0 --+ rows & columns
n3 -- integer in ; # of elements in any row to be nulled (used
because all column dimensions are exact).

ndiml -- integer in ; maximum row dimension of X in calling
routine. (only in exact-dimensioned
FINDS1/FINDS2)

None

ISOLAT, RECONF, RCOV
MATNL2 --- MAIN1
MATNL3 --- None

MADD/PMAPB }

Adds two matrices as 2 = X + Y. PMAPB (used in FINDS1/FINDS2 assumes
that all matrices are exact-dimensioned in the calling routine while
MADD (used in FINDSCOMP) assumes an NDIM row dimension for all
matrices.

Call MADD/PMAPB (nl, n2, X, Y, 2)

nl -- integer in ; row length of X, Y, 2

n2 -- integer in ; column length of X, Y, 2
X -~ real in ; input matrix (nl, n2)

Y -- real in ; input matrix (nl, n2)

Z -~ real out ; output matrix (nl, n2)

None

EKFN1, BIASF, BLEND, ISOLAT
MADD --- MAIN1
PMAPB —--—2

MSUB/PMAMB

Matrix subtraction as Z = X - Y. PMAMB (used in FINDS1/FINDS2)
assumes that all matrices are exact-dimensioned in the calling
routirie while MSUB (used in FINDSCMP) assumes an NDIM row dimension
for all matrices.

Call MSUB/PMAMB (nl, n2, X, Y, Z)

refer args. for MADD/PMAPB

None

BIASF, ISOLAT

MSUB ---» MAIN1

PMAMB -~

61

name: MATVEC/PMAXV

func: Performs matrix vector multiplication as V2 = X*Vl1l. PMAXV (used in
FINDS1/FINDS2) assumes that the matrix X is exact-dimensioned in the
calling routine while MATVEC (used in FINDSCMP) assumes an NDIM row
dimension for all matrices.

call: Call MATVEC/PMAXV (nl, n2, X, V1, V2)

args: nl -- integer in ; row length of ‘X, length of V2
n2 -- integer in ; column length of X, length of V1

X -- real in ; input matrix (nl, n2)

V1l -- real in ; input vector (n2)

V2 -- real out ; output vector (nl)
refs: None

refby BIASF, ISOLAT
comm: MATVEC --- MAIN1
PMAXV --— None

name : MATVC2/PMAXV2
func: Computes matrix-vector-product-sum as V3 = X*Vl1l + V2 (an extension of
MATVEC/PMAXV)

call: Call MATVC2/PMAXV2 (nl, n2, X, V1, V2, V3)
args: same as MATVEC/PMAXV with exception of

V2 —- real in ; input vector (nl)
V3 —- real out ; output vector (nl)
refs: None

refby: BLEND
comm: MATVC2 ---+ MAIN1
PMAXV2 --- None

name: VSCALE

func: Performs vector scaling as V2 = s*V1

call: Call VSCALE (nl, stmp, V1, V2)

args: nl -- integer in ; length of vectors V1, V2
stmp -- real in ; scale factor
V1l -- real in ; input vector to be scaled
V2 -- real out ; output vector

refs: None

refby: EKFN1, BIASF

comm: None

name: VEQUAL

func: Equates vectors as, V2 = V1
call: Call VEQUAL (nl, V1, V2)
args: nl -- integer in ; 1length of V1, V2

V1l -- real in ; input vector
V2 -- real out ; output vector
refs: None
refby: INITG, ISOLAT, DECIDE
conmm: None
name: VADD
func: Performs vector addition as V3 = V1 + V2

call: Call vapp (nl, V1, V2, V3)

_62...

args:

refs:
refby:
comm :

name:
func:
call:
args:
refs:
refby:
comm:

nl —— integer in ; length of V1, V2, V3

V1l —- real in ; input vector

V2 -- real in ; input vector

V3 -- in out ; output vector (result of addition)
None

ISOLAT

None

VSUB

Performs vector subtraction as, V3 = V1 - V2
Call VSUB (nl, V1, V2, V3)

same as VADD

None

BIASF, ISOLAT

None

. - 63 -

8. COMMON BLOCK DESCRIPTION AND TABLES

This section contains a list of FINDS program variables as partitioned by

various common blocks. Table 8.1 is a "short form" list of each common block

in FINDS and the various subprograms which refer to it. Supporting Table 8.1

is a detailed description of the variables contained in each block.

Common Block

TABLE 8.1

COMMON BLOCKS

Referenced by Subprogram(s)

ABRTCM
AGOUT

ASOUT

BIASF

BLNDWK
BNSRT1
BNSRT2
BNSRT2
BSFWFK
CMPSTF
CNTROL
DCIDEI
DETCOV
DETINF

DETLC2
DETLC3
DETPRI
DETWRK
DETXBI
DETYBI
DTCTO1
DTCTO05
DTCT10
DTSYNC
EARTH

EKBFO

EKFI

EKFBIA
EKFBLN
EKFWRK
EULER

FILTIC

FINDS (main), NAV, RECONF
READFL, INITXF, SUMOUT, RESCMP, HEALR
READFL, INITG, INITXF, SUMOUT, RESCMP, HEALR

BNSAV1, BNSAV2, SORTER
BNSAV2, BNSAV2, SORTER
SORTER

INITG, BLEND, UPDPH, ISOLAT, RCOV

FINDS (main), NAV, INITG, EKFNI, BIASF, DFTOl, DFT05, DETLO0
ISOLAT, DECIDE, RECONF .

BIASF, ISOLAT

INITG, BLEND, SFTISN, RESCMP, ISOLAT, BNSAV2, LKF, LRT, DECIDE,
RECONF, CLPSIO

ISOLAT

ISOLAT, LKF, LRT

DETO1, DETO0S, DET10

INITG, SUMOUT, SETISN, ISOLAT, LKF, DECIDE, RECONF, CLPSIO
ISOLAT, LKF, LRT

DETO1, BNSAVI

DETO05, BNSAVI

DET10, BNSAVI

NAV, RESCMP, ISOLAT, BNSAV2

FINDS (main), SUMIN, GTOI

INITG, SUMIN, BIASF, BLEND, DETOl, DET05, DET10, UPDH, ISOLAT,
RECONF, ILOUT, CLPSBE, RCOV, BNSAV1, BNSAV2

NAV, INITG, INITXF, GTO8, EKFNI, BIASF, BLEND, UPDB, UPDH,
RESCMP, TLOUT, BNSAV2, ISOLAT, RECONF, RCOV, HEALR

EKFNI, BIASF o o

UPDB
INITG

64

Common Block

Referenced by Subprogram(s)

FILTRT

FLTIN
GBLEND
GRVYTC
GTOILC
HEALCM
HFCOM
IMLS
INITVL
JUMPCM
LAOUT
LATLON
LCOM21
LOCHEA

“LRTINV

LRTMAX
MAIN1

MAIN2
MCONCO

MLOUT
MSALL
MULTDT
NAMES
PSIR
PQRDEG
RDLOCL
RGOUT
SIGTAU
SUMLOC
SYNC

SYSUI

SYSXI
SYSXBO

SYSYBO
SYSYWI

TRBER

TSTORE
UPDQLC
YOBSRV

INITG, INITXF, SUMIN, SUMOUT, GTOI, EKFNI, BIAS, BLEND, DETO1,
DET0S,. DET10, NOISR, RECONF, DECIDE, SETISN, RESCMP, ISOLAT

BIASF, BLEND, RECONF, CLPSBE

GTOI

GTOI

NAV, INITG, RECONF, HEALR, LRTHLR

NAV, DECIDE, RECONF, HEALR

FINDS (main), GTOI

INITG, ISOLAT, RECONF, CLPSIO, CLPSBE, RCOV

NAV, EKFNI, BIASF, BLEND, DETO1l, DET10, DECIDE, HEALR
READFL, SUMIN, HEALR

SUMIN, GTOI, BNSAV2

BNSAV1, BNSAV2,

HEALR ‘

BIASF, DETQl, DETO5, DETI10

FINDS (main), DETO1, DET05, DET10

INITG, SUMIN, GTOI, BIASF, UPDB, UPDPH, ISOLAT, LKF, LRT, RCOV,
BNSAV2

EKFNI, BIASF, BLEND, ISOLAT, BNSAV2

FINDS (main), READFL, INITG, INITXF, GTOI, DECIDE, BNSAV1,
BNSAV2, TLOUT

READFL, INITXF, SUMOUT, RESCMP, HEALR

FINDS (main), INITXF, UPDH, UPDPH,

. ISOLAT, DECIDE, RECONF

READFL, DECIDE, HEALR

FINDS (main), INITXF, SUMIN, SUMOUT, GTOI, RESCMP, HEALR, BNSAV2
GTOI

READFL

READFL, SUMIN, GTOI, HEALR

FINDS (main), INITG, DECIDE, NOISR

SUMIN

FINDS (main), READFL, NAV, INITG, SUMIN, DETOl, DETOS, DET10,
UPDB, DECIDE, RECONF, HEALR, BNSAVI, TLOUT

INITG, SUMIN, GTOI, EKFNI, BIASF, BLEND, DETOl, DETOS5, DET10,
SETISN, UPDB, UPDH, BNSAV2, HEALR, ADJTBP, NOISR, CLPSIO,
RECONF, DECIDE, UPDPH, RESCMP, ISOLAT

INITG, EKFNI, BIASF, BLEND, UPDB, UPDH, UPDPH, ISOLAT, RECONF,
CLPSIO, ADJTBP, RCOV

NAV, INITG, EKFNI, BIASF, BLEND, UPDB, UPDH, UPDPH, ISOLAT,
RECONF, CLPSIO, CLPSBE, ADJTBP, RCOV, BNSAV2

EKFNI, BIASF, RECONF, '

INITG, SUMOUT, EKFNI, BIASF, BLEND, DETOl, DETO5, DET10, UPDH,
UPDPH, ISOLAT, CLPSIO, NOISR, ADJTBP, BNSAV2

SUMIN, GTOI, UPDB,

EKFNI, BIASF, BLEND, ISOLAT

INITG, SUMOUT, BIASF, UPDH, UPDPH, RESCMP, ISOLAT, HEALR, BNSAVI

II.

NOTE:

name:
cont :
vars:

refby:

name:
cont:
vars:

refby:

name:
cont:
vars:

refby:
name:
cont:
vars:
refby:
name :

cont:
vars:

(L)

(2)

DESCRIPTION OF COMMON BLOCKS

All vector/matrix dimensions are specified here in three separate
parentheses corresponding to their use in FINDSCMP, FINDS1l and
FINDS2, respectively. A single parentheses implies that all three
versions use the same dimensions.
Notation used is as follows: cont ==> contains (i.e., brief
description of common block)
vars ==> variables contained in
common block

ABRTCM

System status flag

iabort -- integer, unitless ; program abort flag which is
activated (i.e., set from 0 to 1) when too many sensors are
failed by the FDI logic and filter cannot operate with the
remaining sensor complement.

FINDS/FINDS1/FINDS2, RECONF

AGOUT (not in FINDS2)

IMU sensor measurements from flight data in program units

Phim -- real, radians, (2) (2) (-) ; dual replicated IMU roll
measurements

Them -- real, radians, (2) (2) (=) ; dual replicated IMU pitch

measurements

dual replicated IMU yaw

measurements (w.r.t. North)

Psim -- real, radians, (2) (2) (-)

READFL, INITXF, SUMOUT, RESCMP, HEALR

ASOUT (not in FINDS1)

IAS measurements from flight data in program units.

Airsm -- real, m/s, (2) (=) (2) ; dual replicated airspeed
measurements

READFL, INITXF, SUMOUT, RESCMP, HEALR

BLNDWK (only in FINDS2)

Temporary working variable(s) in subroutine BLEND

Vtmpl -- real, mixed units, (=) (-) (8) ; temp. vector used in
propagation

BLEND

BSFWRK (not in FINDSCMP)

Local working variables/arrays in subroutine BIASF

Cbf0 -- real, mixed units, (-) (3,3) (4,3) ; bias filter
. observation matrix

Com2 -- real, mixed units, (-) (-) (8,8) ; temporary local matrix
Tmpl -- real, mixed units, (-) (-) (8,3) ; temporary local matrix
Tmp2 -- real, mixed units, (-) (-) (8,3) ; temporary local matrix
Tmp3 -- real, mixed units, (-) (=) (3,4) ; temporary local matrix
Tmp4 -- real, mixed units, (-) (-) (4,4) ; temporary local matrix
Tmp5 -- real, mixed units, (-) (-) (3,3) ; temporary local matrix

B T s o T = T RSPV

refby: BIASF

name: CMPSTF
cont: Quantities associated with composite NFF (bias free + bias)
vars: nxb -- integer, unitless ; total states + bias states in NFF

value = (17) (6) (11)

Pxfl -- real, mixed, (17,17) (6,6) (11,11) ; combined NFF
estimation error
covariance

refby: INITG, BLEND, UPDPH, ISOLAT, CLPSBE/ADJTBP, RCOV

name: CNTROL
cont: Option flag to activate/deactivate FDI logic
vars: icntrl -- boolean, unitless ; false ==> run NFF only

true ==> run FDI portion of
_ o algorithm also
refby: FINDS1/FINDS1/FINDS2, NAV, INITG, EKFN1l, BIASF, DETOl, DET05, DET10

name: DCIDEI
cont: Quantities relevant to the LR computations and the decision logic
vars: Priori -- real, unitless, (20) (9) (11) ; vector of log of prior

probabilities of failure
—- one for each sensor,
ordered by replicated
sensor index of Table
6.6 but assumes dual MLS
replication.
Alamda -- real, unitless, (20) (9) (11) ; vector of log -
‘ likelihood of sensor
failing -- one for each
sensor, ordered by
replicated sensor index
of Table 6.6 but assumes
dual MLS replication.
refby: ISOLAT, DECIDE, RECONF

name: DETCOV
cont : Quantity needed in isolation routine to form total covariance
vars: Afvb -- real, unitless, (17,6) (3,3) (8,3) ; intermediate storage

matrix which saves
the computation
AF1*VB0 + BF1l

refby: BIASF, ISOLAT

name: DETINF

cont : Information pertinent to the bank of first order filters in ISOLAT

vars: nft -- integer, unitless ; total # of replicated sensors
(considered for FDI) value = (17) (9)
(8)

nyf —- integer, unitless ; current # of replicated measurement

sensors value = (11) (6) (5) from Table
6.7

67

refby:

name:
cont:
vars:

refby

name:
cont:
vars:

refby:
name:
cont:

vars:

refby:

Inoryp -- integer, unitless, (17) (6) (11) pointer vector to
measurement sensor
type
determines if a
particular sensor
type/replication is
being used and which
element of the
input/meas. vector
it corresponds to.
Null entry implies
an inactive sensor.
(Table 6.6)
Resboc -- real, mixed, (14,10) (6,10) (8,10) ; expanded residual
' vector fram the NFF
saved over the last
10 iterations
INITG, BLEND, SETISN, RESCMP, ISOLAT, LKF, LRT, DECIDE, RECONF,
CLPSIO

Icntsn -- integer, unitless, (20) (9) (1l)

e

DETLC2 (not in FINDS1)

vVariables relevant to multiple MLS sensor failures

Dobs - real, mixed, (17,6) (-) (5,6) ; observation matrix to
generate dual failure
conditioned residuals

Best -- real, mixed, (6) ; estimated magnitude of multiple

replicated MLS failure
ISOLAT

DETLC3

Quantities local to the isolation logic which are temporarily stored

Detinv -- real, mixed, (17,14) (6,6) (11,5) ; inverse of expanded
innovations
covariance

Hpaf -- real, mixed, (17,11) (-) (4,8) ; computed HP1*AF1l

Hpbf -- real, mixed, (17,6) (6,3) (11,3) ; computed HP1*BF1l

Augm -- real, mixed, (17,6) (6,3) (11,3) ; intermediate augmented

matrix

Hbpd ~- real, mixed, (17,6) (6,3) 11,3) ; computed HP1*BFl + D

Bmghb -- real, mixed, (17,6) (6,3) (11 3) : BFl - GAINKX*HP1*BF1l

ISOLAT, LKF, LRT

DETPRI
Flag to check if a failure has already been detected in current
iteration ; hierarchy of detectors is DETOl, DET10, DETOS

idfail -- integer, unitless ; set to 1 by any detector which flags
a sensor failure -- remaining
detectors will be deactivated during
current iteration (default value =
, 0)

DET0l, DET05, DET10

68

name:
cont:
vars:

matrix

refby:

name:

cont:

vars:

refby:
name:
cont:

vars:

refby:

DETWRK (not in FINDSCMP)

Local working arrays in subroutine ISOLAT

Vtmpl -- real, mixed, (-) (6) (11) ; temporary working vector
Vtmp2 -- real, mixed, (-) (6) (11) ; temporary working vector

Tmpl -- real, mixed, (-) (3,3) (8,8) ; temporary working matrix
Tmp2 -- real, mixed, (-) (6,6) (5,11) ; temporary working matrix
Tmp3 -- real, mixed, (-) (6,6) (5,5) ; temporary working matrix
Tmp4 -- real, mixed (-) (-) (5,5) ; temporary working matrix

Com2 -- real, mixed, (-) (-) (8,3) ; temporary working matrix
Hpic -- real, mixed, (-) (6,6) (5,11) ; composite observation

Gnkxd -~ real, mixed, (-) (6,3) (11,4) ; augmented NFF gain matrix
[GAINKX/GAINBO]
ISOLAT

DETXBI
Quantities associated with the sensor failure isolation & estimation
logic

nfmax -- integer, unitless ; maximum possible # of sensor types to
be considered (has value = 13, 6, 7)
nymax -- integer, unitless ; maximum possible # of measurement

sensor types to be considered (has
value = 7, 3, 4)
xbfi ~-- real, mixed, (20) (9) (11) ; wvector of current failure
level estimates -- one for
each type & replication using
absolute indexing (Table 6.6)
Pbfi -- real, mixed, (20) (9) (l1) ; vector of estimation
information for each
estimated failure (ordered as
per Table 6.6)
Vbi -- real, mixed, (17,13) (6,6) (11,7) ; matrix of blender gain
vectors
INITG, SUMOUT, SETISN, ISOLAT, LKF, DECIDE, RECONF, CLPSIO, ADJTBP

DETYBI
Observation matrices and compensated residual vectors for the bank
of filters in the isolation logic
Resbi -- real, mixed, (17,20) (6,9) (11,11) ; matrix of failure
compensated
residuals vectors -
cols. are ordered by
replicated sensor
index (Table 6.6)
Cbfi -- real, mixed, (17,13) (6,6) (11,7) ; observation matrix
where each col. is an
observations vector
for a filter. Cols.
are ordered by
replicated sensor
index (Table 6.6)
ISOLAT, LKF

69.

name:
cont:
vars:

refby

name:
cont
vars:
ratio

refby

name:
cont:
vars:
ratio

refby:

name:
cont:
vars:

refby:

DTCTOL1
Quantities associated with the detector of window length 1 sample

vlrt0l -- real, unitless ; Chi-square test failure likelihood
ratio
RtiOl1 -- real, mixed, (17,7) (3,3) (4,4) ; NFF innovations inverse

matrix compensated for
residual window length

of 1 sample
DETO1
DTCTO05
Quantities associated with the detector of window length 5 samples
vlrt05 -- real, unitless ; Chi-square test failure likelihood
Ravg05 -- real, mixed, (7) (3) (4) ; five sample moving window
average of NFF residuals
RESBO

Rsav05 -- real, mixed, (7,5) (3,5) (4,5) ; saved RESBO over last
five iterations (moving
window)

Rti05 -- real, mixed, (17,7) (3,3) (4,4) ; NFF innovations
inverse matrix
compensated for
residual window
length of S5 samples

DETOS

DTCT10)

Quantit;es associated with the detector of window length 10 samples
vlrtl0 -- real, unitless ; Chi-square test failure likelihood

Ravgl0) -- real, mixed, (7) (3) (4) ; ten sample moving window
average of NFF residuals
RESBO

Rsavl0 -- real, mixed, (7,10) (3,10) (4,10) ; saved RESBO over
last ten iterations

(moving window)
Rtil0 -- real, mixed, (17,7) (3,3) (4,4) ; NFF innovations inverse
matrix compensated for
residual window length

of 5 samples
DET10
DTSYNC
Pointer to current location in saved array of NFF expanded residuals
icurnt -- integer, unitless ; [1,10]} location in saved RESBOC --

used in ISOLAT to go back either 5 or
10 iterations and run isolation logic
NAV, RESCMP, ISOLAT

70

name::
cont:

vars:

refby

name:
cont:
vars:

refby

name:
cont:
vars:

refby

name:
cont:
vars:

refby:

name:
cont:

EARTH (not in FINDS2)

Quantities associated with earth's rotation -- used in GTOI to

compute a/c latitude, longitude and rate gyro compensation terms

omegt -- real, radians ; computed WE * TIME to give angular change
‘ between I-frame and E-frame

sinet -~ real, unitless ; sine of omegt

comet -- real, unitless ; cosine of omegt

re -- real, meters ; radius of earth

we -- real, rad/s ; earth rotation rate

FINDS/FINDS1, SUMIN, GTOI

EKBF0

Arrays used in the bias filter portion of the NFF

Xbf0 -- real, mixed, (17) (3) (3) ; vector of current normal
operating bias estimates
(Table 6.3)

Resb0 -- real, mixed, (7) (3) (4) ; vector of NFF residuals (Table
6.2)

Gainb0 -- real, mixed, (17,7) (3,3) (3,4) ; Kalman gain for bias

filter

Pbf0 -- real, mixed, (17,6) (3,3) (3,3) ; bias filter estimation
error covariance

INITG, SUMIN, BIASF, BLEND, DETOl, DETO0S5, DET10, UPDH, ISOLAT,

RECONF, CLPSBE, RCOV, TLOUT

EKF1l
Arrays used in the bias free portion of the NFF
Xfl -- real, mixed, (11) (3) (8) ; vector of current NFF state
estimates (Table 6.1)
Hxkpl -- real, mixed, (7) (3) (4) ; vector of NFF observations
(Table 6.2)
Gainkx -- real, mixed, (17,7) (3,3) (8,4) ; Kalman gain for EKF
(bias and bias-free)
Pfl -- real, mixed, (17,11) (3,3) (8,8) ; bias free filter
estimation error
covariance
NAV, INITG, INITXF, GTOI, EKFNl1l, BIASF, BLEND, UPDB, UPDH, UPDPH,
RESCMP, ISOLAT, RECONF, RCOV, HEALR, TLOUT

EKFBIA

arrays common to the bias and bias-free filters

Ximgh -- real, mixed, (17,11) (3,3) (8,8) ; saved computed I-GAIN
*HP1

temporary working matrix

temporary working matrii

saved HP1 * PF2 * HP1 + R

computed in EKFNl and used

also in BIASF

Tmpl -- real, mixed, (-) (3,3) (-)
Tmp2 -- real, mixed, (-) (3,3) (-)
Rbf0 -- real, mixed, (-) (-) (4,4)

e wme wme

EKFN1, BIASF

EKFBLN (only in FINDS2)
Working arrays common to subroutines EKFN1l & BLEND

- 71 -~

vars:
refby:

name:
cont:
Vars:

refby:

name:
cont:
vars:

refby:

name:
cont:
vars:

refby:

name:
cont:
vars:

Tmp3 -- real, mixed (-) (-) (8,4) ; temporary working matrix
EKFN1l, BLEND

EKFWRK (only in FINDS2)

Working arrays local to subroutine EKFN1

Tmpl -- real, mixed, (-) (-) (8,8) ; temporary working matrix
Tmp2 -- real, mixed, (-) (-) (8,8) ; temporary working matrix

Gktmp -- real, mixed, (-) (-) (4,4) ; intermediate gain matrix
' calculation

EKFN1 :

EULER

Sine/cosine values of a/c Euler angles

sl -- real, unitless ; sine of roll attitutde

cl -- real, unitless ; cosine of roll attitude

s2 —- real, unitless ; sine of pitch attitude

c2 -- real, unitless ; cosine in pitch attitude

t2 -- real, unitless ; tangent of pitch attitude

s3 -- real, unitless ; sine of yaw attitude

c3 -- real, unitless ; cosine of yaw attitude

UPDB

FILTIC

Variables associated with NFF initial conditions

Sdpic -- real, mixed, (11) (3) (8) ; vector of s.d. of the
diagonal elements of the NFF
state initial estimation
error covariance.

INITG

FILTRT

Pointing vectors used by NFF

mxrplf -- integer, unitless ; max. # sensor replications used in
the NFF & FDI logic -- currently
limited to 2.

Ireplf -- integer, unitless, (13) (6) (7) ; vector of sensor

replications used by
the NFF (absolute
sensor indexing)
. ' (Table 6.5)
Inoutf -- integer, unitless, (17,2) (6,2) (7,2) ; m a t r i x
' indicating
status of all
sensors in the
NFF. Row index
corresponds to
absolute sensor
type and col.
index=x is
replication of

sensor. 1 ==
active, -1 ==>
standby, 0 ==>
failed

- 72 -

refby:

name:
cont:
vars:

refby:

hame:?:

‘cont :

vars:
refby:

name:
cont:

vars:

refby:

name:
cont :
vars:

refby:

name:
cont:
vars:

INITG, SUMIN, SUMOUT, GTOI, EKFNL, BIASF, BLEND, DETOl, DETOS5,
DET10, SETISN, ISOLAT, DECIDE, RECONF

FLTIN (only in FINDS2)

Vector array of sensor flight data

Readin ~- real, mixed, (-) (-) (26) ; dual replicated sensor
flight data.

READFL, INITXF

GBLEND

NFF blender gain matrix

Vb0 ~-- real, mixed, (17,6) (3,3) (8,3) ; NFF blender gain
BIASF, BLEND

GRVYTC (not in FINDS2)

Arrays needed to compute gravity vector which is appended to the

input vector UFl

GRavlc -- real, m/s , (3) (3) (-) ; skew symmetric compensation
terms for runway frame w.r.t.
inertial frame

Tlcprt -- real, unitless, (3) (3) (-) ;

GTOI

GTOILC (not in FINS2)
Saved local variables in subroutine GTOI

aloni -- real, radians ; constant longitude offset

alati -- real, radians ; constant latitude offset

ticpl -- real, unitless ; constant term in transformation matrix
Tic

ticp2 -- real, unitless ; constant term in transformation matrix
Tic

ticp3 -- real, unitless ; constant term in transformation matrix
Tic

ticpd4 -- real, unitless ; constant term in transformation matrix
Tic

ticp5 -- real, unitless ; constant term in transformation matrix
Tic.

ticp6 -- real, unitless ; constant term in transformation matrix
Tic

GTO1

HEALCM

Quantities used by the healer logic

kcthlr -- integer, unitless ; running count of elapsed samples

since start of current healer
: window; value = [1, 60]
kmxhlr -- integer, unitless ; total # of samples in (i.e., length
of) healer window; value = 60
confbd -- real, unitless ; 1log of initial confidence bound (1/19)
for the healer test

..73..

refby:

name:
cont:
vars:

refby:

bthrsh -- real, mixed, (13) (6) (7) vector of largest expected
normal operating biases for
each sensor type —- absolute
sensor index, Table 6.5
Fthrsh -- real, mixed, (13) (6) (7) ; wvector of smallest expected
failure levels for each
sensor type (Table 6.5)
Dthrsh -- real, mixed, (13) (6) (7) ; vector of decision
thresholds to be applied to
each healer process. Dthrsh
(i) = 2*Confbd*Phealt (i)**2
where Phealt contains s.d.
of expected noise to be used
only by healers (Table 6.5)

INITG, NAV, RECONF, HEALR, LRTHLR

HFCOM

Quantities common to the healing/failure reconfiguration logic.

nfail -- integer, unitless ; total # of sensors determined to be
‘failed’

nnfail -- integer, unitless ; # of new failures, i.e., incremental
of sensors just detected as failed
in current iteration

nhealm -- integer, unitless ; max. # of sensors which can heal in
one instant (i.e., dimension of
Thealp)

nheal -- integer, unitless ; total # of sensors which the healer

logic has declared healthy at the end
of a healer window

Ifailt -- integer, unitless, (13) (6) (7) ; vector containing
' absolute sensor type
for each failed
sensor. (Table
6.5)Whenever a sensor
fails, its absolute
sensor type is added
to Ifailt -- hence,
this vector is ordered
by relative time of
occurrence of failure.
Ifailr -- integer, unitless, (13) (6) (7) ; vector containing
replication # for each
failed sensor --
ordered same as Ifailt
vector containing list
of failed sensors
which have healed.
The value of an
element is the index
in Ifailt/Ifailr of

the healed sensor.

Ihealp -- integer, unitless, (10) (6) (7)

-e

NAV, RECONF, HEALR

- 74 -

Ly L

name:
cont:

vars:

refby:

name:
cont:
vars:

refby:

name:
cont:
vars:

refby:

IMLS (not in FINDS2)

Quantities associated with earth rotation & thus on MLS frame
rotation.

rmagor -- real, m ; radius of earth added to mean sea level
altitude of MLS frame origin

slat -- real, radians ; 1latitude of MLS frame origin

slon -- real, radians ; longitude of MLS frame origin

sinlac -- real, unitless ; sine of slat

coslac -- real, unitless ; cosine of slat

Wrws -- real, unitless, (9) (9) (-) ; skew symmetric form of

angular vel. of runway
w.r.t. inertial frame.
FINDS/FINDS1, GTOI

INITVL
Initial values for the NFF
Inobps -- integer, unitless, (13) (6) (7) ; INOBPS=INOBP at start
of run (showing which
sensor biases are to
be estimated) Table
6.5
Pbf0i ~-- real, mixed, (13) (6) (7) ; initial s.d. of bias
estimation error (user units)
Table 6.5
Pbfic -- real, mixed, (13) (6) (7) ; 4initial s.d. of isolator
filters error information.
(user units) (absolute sensor
index) Table 6.5

INITG, RECONF, CLPSIO, CLPSBE, RCOV

JUMPCM

Variables for multi-frequency implementation of NFF,

jmpcvx -- integer, unitless ; # of iterations after which bias
free covariance has to be computed

jmpcvb -- integer, unitless ; # of iterations after which bias
covariance has to be computed

jmpgnx -— integer, unitless ; # of iterations after which bias

free gain has to be computed
of iterations after which bias
gain has to be computed

jmpgnb -- integer, unitless

-e

jiter -- integer, unitless ; running counter of iterations or
elapsed time ticks

jmdcx -- integer, unitless ; mod (jiter, jmpcvx) = 0 ==> perform
computations

jmdcb -- integer, unitless ; mod (jiter, jmpcvb) = ==> perform
computations

jmdgx -- integer, unitless ; mod (jiter, jmpgnx) = 0 ==> perform
computations

jmdgb -- integer, unitless ; mod (jiter, jmpgnb) = 0 ==> perform
computations

NAV, EKFN1, BIASF, BLEND, DETOl, DET05, DET10, DECIDE, HEALR

75.

name:
cont:
vars:

refby

oo

name:
cont:
vars:

refby

name:
cont:
vars:

refby:
name:
cont:
vars:
refby:
name:

cont:
vars:

refby:

LAQUT (not in FINDS1)
Replicated accelerometer sensor measurements from flight data

Axm —— real, m/s , (2) (-) (2) ; dual longitudinal accelerometer
2 meas.

Aym -- real, m/s,, (2) (-) (2) ; dual lateral accelerometer meas.

Azm -- real, m/s , (2) (-) (2) ; dual vertical accelerometer meas.

READFL, SUMIN, HEALR

LATLON (not in FINDS2)
Information regarding a/c latitude and longitude

alat -- real, radians ; current estimate of a/c latitude

alon -- real, radians ; current estimate of a/c longitude

alatd -- real, rad/s ; current estimat of rate of latitude change

alond -- real, rad/s ; current estimat of rate of longitude change

csalat -- real, unitless ; cosine of alat

snalat -- real, unitless ; sine of alat

GTOI, SUMIN

LOCHEA

Quantities local to subroutine HEALR

nfaill -- integer, unitless ; local snapshot of ‘nfail’

Ifailp -- integer, unitless, (20) (9) (11) ; 1local snapshot of
‘Ifailt’

Xsum -- real, mixed, (20) (9) (11) ; running sum over healing

window length of difference
between failed sensor and
"working" sensor.
Itest -- integer, unitless, (3) (3) (-) ; Local pointer vector for
IMU healing logic
Itestp -- integer, unitless, (3,3) (3,3) (-) ; Local pointer to
: store which parts
of the IMU have

healed
Itest2 -- integer, unitless, (9) (9) (-) ; pointer vector to check
that entire IMU heals
as a unit
HEALR
LRTINV

Saved part of Kalman gain calculations from bias filter to be used

by the detectors in the Chi-square test.

Rtinv -- real, mixed, (17,7) (3,3) (4,4) ; saved [CBFO*PBFO*CBFO +
RBFQ] ** -1

BIASF, DETOl1l, DETO05, DET10

LRTMAX

Maximum Chi-square test thresholds to trip detectors
vmax0l -- real, unitless ; max. threshold to trip DETO01
vmax05 -- real, unitless ; max. threshold to trip DETO05
vmnax1l0 -- real, unitless ; max. threshold to trip DET10
DETO1, DETO0S5, DET10

name:
cont:

vars:

refby:

" name:
cont:
vars:

refby:

nhame:
cont:
vars:

refby:

name:
cont:
vars:

refby:

name:
cont:
vars:

refby:

MAIN1
Provides common dimensioning information for all 2-dimensional
arrays and a scratch array for temporary use by all routines.

ndim -- integer, unitless ; common row dimension for all arrays,
value = (17) (6) (11)
ndiml -- integer, unitless ; ndim +1

Dmfx -- real, temporary, (17,17) (6,6) (11,11) ; scratch area
dimensioned ‘ndim
x ndim’

INITG, SUMIN, GTOI1, BIASF, UPDB, UPDQ, UPDPM, ISOLAT, RCOV, VMPRT,

MAT1A, MAT2, MAT3, MAT3B, MATXYT, MEQUAL, TRANS2, IMTCG2, MATCG2,

MAINL2, MADD, MSUB, MATVEC, MATVC2

MAIN2

Provides a temporary scratch area for use by all routines

Com2 -- real, temporary, (17,17) (6,6) (11,11) ; scratch array
o dimensioned ‘ndim

x ndim’
EKFN1, BIASF, BLEND, ISOLAT
MCONCO
Conversion factors from user units to program units & vice versa
Radian -- real, unitless ; conversion factor from degrees to
radians
Cnvrf -- real, unitless, (13) (-) (7) ; conversion factors from’

program units to user
units for sensor signals -
- absolute sensor index.
Table 6.5 (not used in
FINDS]1 because all
conversions are radians to
degrees)
FINDS/FINDS1/FINDS2, READFL, INITG, INITXF, GTOI, UPDQ, DECIDE,
TLOUT

MLOUT (not in FIND21)

Replicated MLS sensor measurements from flight data

Azim -- real, radians, (2) (-) (2) ; dual azimuth measurements
Elem -- real, radians, (2) (-) (2) ; dual elevation measurements
Rngm ~-- real, radians, (2) (-) (2) ; dual range measurements
READFL, INITXF, SUMOUT, RESCMP, HEALR

MLSALL (not in FINDSl)
Information regarding MLS antenna locations.

Xaz -- real, m, (3) (=) (3) ; location of azimuth/DME antenna in
the runway frame
Xel -- real, m, (3) (=) (3) ; location of elevation/DME antenna in

the runway frame

X0 —— real, m ; x-location of elev. antenna in MLS frame
X0 -- real, m ; y-location of elev. antenna in MLS frame
z0 -- real, m ; altitude offset between azimuth & elev. antennae

FINDS/FINDS2, UPDH, UPDPH

- 77 -

name:
cont:
vars:

refby

name:
cont:
vars:

refby

name:
cont:
vars:

refby

name:

cont:

vars:

refby

name:
cont:

vars:

MULTDT (not in FINDS1)

Quantities used in detecting multiple simultaneous failures.

Priorj —-- real, mixed, (3) (-) (3)

Alamdj -- real, mixed, (3) (-) (3)

vector of log. of the prior
probability of more than one
MLS sensor of the same type
to fail in the same instant
(common mode failure).
(ordered MLS azimuth,
elevation, range)

vector of log-likelihood of a
multiple MLS sensor failure.
(ordered same as Priorj)

Resbj -- real, mixed, (17,3) (-) (11,3) ; matrix of multiple MLS

ISOLAT, DECIDE

NAMES

failure compensated
residuals vectors.
Cols. are ordered as
azim., elev., rng.

Character variables which are vectors of sensor names & units
Iyname -~ character *9, (13) (6) (7)

Iyunit -- character *5, (13) (6) (7)

READFL, DECIDE, HEALR

PSIR (not in FINDS2)

Quantities associated with runway yaw

; vector of sensor types,
Table 6.5

; vector of sensor types,

Table 6.5

psiru -- real, radians ; runway yaw w.r.t North
simpsr -- real, unitless ; sine of psiru
cospsr —- real, unitless ; cosine of psiru

FINDS/FINDS1, INITXF, SUMIN, SUMOUT, GTOI, RESCMP, HEALR

PORDEG (not in FINDS2)

Computed "best” estimate of P, Q, R (in degrees) as average of all
available rate sensors, including standby equipment

apdeg -- real, degrees ; roll rate estimate [(repl + repZ)/2]
agdeg —— real, degrees ; pitch rate estimate

ardeg -- real, degrees ; yaw rate estimate

GTOI, UPDQ

RDLOCL

Saved local variables in subroutine READFL. In particular, the
saved variables are current sensor measurements to be used at the
next iteration and the maximum sensor differences for the data drop-

out tests. - 2
Axmold -- real, m/s , (2) (=) (2)

Aymold -- real, m/s , (2) (=) (2)

78

longitudinal accel. previous
measurements

.lateral accel.. previous

measurements

2
Azmold -- real, m/s , (2) (-) (2) vertical accel. previous

measurements

Pmold -- real, rad/s, (2) (2) (-) ; roll rate gyro previous
measurements

Qmold -- real, rad/s, (2) (2) (-) ; pitch rate gyro previous
measurements

Rmold -- real, rad/s, (2) (2) (-) ; yaw rate gyro previous
measurements

Aziold -- real, rad, (2) (-) (2) ; MLS azimuth previous
measurements

Eleold -- real, rad, (2) (-) (2) ; MLS elevation previous
measurements

Rngold -- real, m, (2) (-) (2) ; MLS range previous measurments

Airold -- real, m/s, (2) (=) (2)
Phiold -- real, rad, (2) (2) (-)
Theold -- real, rad, (2) (2) (=)
Psiold -- real, rag, (2) (2) (=)

IAS previous measurements

IMU roll previous measurements
IMU pitch previous measurements
IMU yaw previous measurements

* me wme we

Axmax -- real, m/s2 ; longitudinal accel. dropout threshold
Aymax -- real, m/sz ; lateral accel. dropout threshold
Azmax -- real, m/s ; vertical accel. dropout threshold
Pmax -- real, rad/s ; roll rate gyro dropout threshold

Qmax -- real, rad/s ; pitch rate gyro dropout threshold
Rmax -- real, rad/s ; yaw rate gyro dropout threshold
Azimax -- real, rad ; MLS azimuth dropout threshold

Elemax -~ real, rad ; MLS elevation dropout threshold

Rngmax -- real, m ; MLS range dropout threshold

Airmax -- real, m/s ; IAS dropout threshold
Phimax -- real, rad ; IMU roll dropout threshold
Themax -- real, rad ; IMU pitch dropout threshold
Psimax -- real, rad ; IMU yaw dropout threshold

refby: READFL

name: RGOUT (not in FINDS2)
cont: Replicated rate gyro measurements from flight data
vars: Pm -- real, rad/s (2) (2) (-) ; dual roll rate gyro measurements

Om -- real, rad/s (2) (2) (-)
Rm -- real, rad/s (2) (2) (-)
refby: READFL, SUMIN, GTOI, HEALR

dual pitch rate gyro measurements
dual yaw rate gyro measurements

name: SIGTAU (SIG in FINDS1)
cont: Design values for noise parameters used by NFF and detectors
vars: Sig -- real, mixed, (15) (6) (9) s.d. of sensor noise used by NFF
(ordered as input sensors, winds,
output sensors). Tables D, B
Tau -- real, seconds, (2) (-) (2) ; time constant for horizontal
winds in wind model used by
NFF

Sigd0l -- real, mixed, (15) (6) (9) s.d. of sensor noise for
DETO0l, ordered same as SIG
S§igd05 -- real, mixed, (15) (6) (9) ; s.d. of sensor noise for
DET05, ordered same as SIG
Sigdl0 -- real, mixed, (15) (6) (9) ; s.d. of sensor noise for

DET10, ordered same as SIG

refby: INITG, UPDQ, DECIDE, NOISR

il

..79_

name:
cont:

vars:

refby

hame:
cont:
vars:

refby:

name:
cont:
vars:

SUMLOC

Saved local variables in subroutine SUMIN. In particular, the input
sensor measurements from the current iteration are saved to perform
trapezoidal integration at the next iteration.

Axmo -- real, m/s , (2) (-) (2) ; saved longitudinal accel.
2 " measurements
Aymo -- real, m/s , (2) (-) (2) ; saved lateral accel.
2 measurements

Azmo -- real, m/s , (2) (-) (2) ; saved vertical accel.
measurements

Pmo —— real, rad/s, (2) (2) (-) ; saved roll rate gyro
measurements

Qgnmo -- real, rad/s, (2) (2) (-) ; saved pitch rate gyro
measurements

Rmo -- real, rad/s, (2) (2) (-) ; saved yaw rate gyro measurements

SUMIN '

SYNC

Quantities associated with the program timing and synchronization.

dtime -- real, s ; program integration step size (1/20)

idtime -- integer, unitless ; counter incremented at each

iteration to compute "time’

time -- real, s ; elapsed time from start of program

tstart -- real, s ; program starting time (default = 0)

tstop -- real, § ; program final time (estimated)

dt22 -- real, s ; saved dtime*dtime/2 :

idst05 ~- real, unitless ; counter to stop/start DETO0S5 after
system reconfiguration following

failure/healing.

idstl0 -- real, unitless ; counter to stop/start DET10 after
system reconfiguration following
failure/healing.

FINDS/FINDS1/FINDS2, READFL, NAV, INITG, SUMIN, DETOl, DET05, DET1O0,
UPDB, UPDQ, DECIDE, HEALR, TLOUT

SYSUl

Quantities associated with the inputs to the NFF

nu -- integer, unitless ; total # of inputs to NFF including
gravity inputs (default value = 9,3,6)

nul -- integer, unitless ; total # of inputs to NFF associated
with an input sensor (i.e, nu -ng),
value = 6, 3, 3

nulpl -- integer, unitless ; nul +1 ; =7, 4, ¢

nulc -- integer, unitless ; (nul) - (# of inputs not currently

‘ active).
Inoup -- integer, unitless (17) (6) (11) ; pointer vector to
absolute input
measurements used by

NFF (Table 6.3). The’

array index corresponds
to the location in uFl
and the value is the
abs. input meas. type
index.

80

CegmTYe e

Ufl -- real, mixed, (9) (6) (6) ; vector of compensated inputs
used by NFF (computed in SUMIN)
refby: INITG, SUMIN, GTOI, EKFN1l, BIASF, BLEND, DETO0l, DETO05, DET10,
SETISN, UPDB, UPDH, UPDPH, RESCMP, ISOLAT, DECIDE, RECONF, CLPSIO,
NOISR, ADJTBP, HEALR

hame: SYSX1
cont: Bias free filter state dimensions and system matrices
vars: nx -- integer, unitless ; total # of states in bias free portion
of NFF, value = 11, 3, 8
nxl - integer, unitless ; nx + 1, value = 12, 4, 9

Afl -- real, mixed, (11,11) (-) (8,8) ; constant state transition
' matrix. (Not defined in
FINDS1 as it is an
identity matrix there).
Bfl -- real, mixed, (17,9) (3,3) (8,6) ; nonlinear input
' T e transition matrix
(function of states).
Efl -- real, mixed, (17,11) (3,3) (8,8) ; discrete process noise
covariance matrix.
refby: INITG, EKFN1l, BIASF, BLEND, UPDB, UPDQ, UPDH, UPDPH, ISOLAT, RECONF,
CLPSIO, ADJTBP, RCOV

name: SYSXBO
cont: Quantities associated with the bias filter portion of the NFF.
vars: nb -- integer, unitless ; current # of biases estimated by NFF (nb
= nub + nyb), value 6, 3, 3
nub ~-- integer, unitless ; current # of input sensor biases
estimated by NFF, value = 6, 3, 3
nyb -- integer, unitless ; current # of measurement biases
estimated by NFF, value = 0, 0, O
nubl -- integer, unitless ; nub + 1, value = 7, 4, 4

Inobp -- integer, unitless, (13) (6) (7) ; pointer vector to
sensor type of each
bias estimated.
(absolute sensor index)
(from Table 6.5)

refby: NAV, INITG, SUMIN, EKFN1, BIASF, BLEND, UPDH, UPDPH, ISOLAT, RECONF,
CLPSIO, CLPSBE, ADJTBP

name: SYSYBO (not in FINDS2)
cont: Variables common to subroutines EKFN1l and BIASF T
vars: RbfO - real, mixed, (17),12) (3,3) (-) ; saved HP1*PF1*HP1l™ + R
from EKFN1
Cbf0 -- real, mixed, (17,6) (-) (=) ; bias filter observation
matrix.
refby: EKFN1, BIASF
name: SYSW1
cont: Quantities associated with the NFF observation and process noises.

81

vars:

refby:

name:
cont:
vars:

ny -- integer, unitless ; total # of averaged (or collapsed)

measurements presented to the NFF, value
7, 3, 4

nymxi -- integer, uni;less ; 1lnitial max. # of avgd. meas. to NFF,

value = 7, 3, 4

Inoyp —— integer, unitless, (17) (6) (11) ; pointer vector to

Inoypi

Yfl —
Qfl1 —-
Hpl --
Rf1d01

Rf1d05

RE£1d10

INITG,
UPDPH,

TRBER

active avgd. outputs
used by NFF. (array
index corresponds to
the elements of the
measurement array &
value of each element
corresponds to
absolute meas. index.)
Table 6.2
-- integer, unitless, (17) (6) (11) ; inverse mapping of
Inoyp, i.e., array
index is abs. meas.
index and value is
the corresponding
index in current
meas. vector to NFF.
If a particular meas.
type is not used, its
value entry will be
zero.
real, mixed, (7) (3) (4) ; vector of avgd. meas. used by
NFF (abs. meas. sensor indexing)
Table 6.2
real, mixed, (8) (3) (5) ; vector of process noise
covariances organized by
absolute input index, Table 6.4
real, mixed, (17,17) (3,3) (4,8) ; effective observation
matrix for NFF (partial
of h w.r.t. x)
--real, mixed, (7) (3) (4) ; vector of meas. noise
covariances used by DETO1l
(abs. meas. index). Table 6.2
-- real, mixed, (7) (3) (4) ; vector of meas. noise
covariances used by DETO0S
(abs. meas. index). Table
6.2
-- real, mixed, (7) (3) (4) ; vector of meas. noise
covariances used by DETI10
(abs. meas. index).
SUMOUT, EFKNl, BIASF, BLEND, DETO1l, DETO05, DET10, UPDQ, UPDH,
ISOLAT, CLPSIO, NOISR, ADJTBP

Transformation matrices for various reference frames

Trb --

real, unitless, (3,3) (3,3) (3,3) ; transformation matrix
from body axes into the
G-frame (for accel.
inputs).

- 82 -

refby:

name:
cont:
vars:

refby:

name:
cont:
vars:

refby:

name:
cont:

vars:

refby:

Ter -- real, unitless, (3,3) (3,3) (-) matrix relating the body
rates to the Euler angles
(for gyro inputs).

transformation matrix
from runway frame to

inertial frame.

~e

Tic -- real, unitless, (3,3) (3,3) (-)

~e

SUMIN, GTOI, UPDB, UPDQ

TSTORE (only in FINDSCMP)

Temporary scratch areas (matrices) in EKFN1 and BIASF

Tmpl -- real, mixed, (17,17) (-) (-) ; 1local working array
Tmp2 -- real, mixed, (17,17) (-) (-) ; local working array
EKFN1, BIASF

UPDQLC

Saved local variables in subroutine UPDQ

scalef -- real, unitless ; s.d. of scale factor for rate gyro
compensation

spm -- real, unitless ; average error variance for rate gyro

' compensation (includes scale factor and

) misalignment errors)

dt3 -- real, s ; saved dtime 3/3

UPDQ

YOBSRV

Scaling array for the filter observations

Yscale -- real, mixed, (7) (3) (4) ; vector of scale factors used

to scale each avgd. meas.
into the NFF. Scaling is
performed to ensure that the
meas. noise variance is unity
for each sensor. (indexed as
per Table 6.2)

INITG, SUMOUT, UPDH, UPDPH, RESCMP, ISOLAT, HEALR

83

[1]

[2]

(3]

(4]

(5]

(6]

[7]

(8]

[9]

(10]

(11]

[12]

[13]

REFERENCES

Caglayan, A.K. and Lancraft, R.E., "Fault Tolerant Navigation in a
Microwave Landing System Environment," Proc. of the 1982 Position
Location and Navigation Symposium, Atlantic City, NJ, December 1982.

Caglayan, A.K., and Lancraft, R.E., "An Aircraft Sensor Fault Tolerant
System,"” NASA CR-165876, April 1982,

Caglayan, A.K., and Lancraft, R.E., "A Fault Tolerant System for an
Integrated Avionics Sensor Configuration,” NASA CR-3834, September 1984.

Lancraft, R.E. and Caglayan, A.K., "FINDS: A Fault Inferring Nonlinear
Detection System, Volume 1: User's Guide," NASA CR-172199, September
1984. ,

Caglayan, A.K., and Godiwala, P.M., "Evaluation of a Fault Tolerant
System for an Integrated Avionics Configuration with TSRV Flight Data,"”
NASA CR-172589, June 1985.

Caglayan, A.K., Godiwala, P.M., and Morrell, F.R., "Performance Analysis
of a Fault Inferring Nonlinear Detection System (FINDS) with Integrated
Avionics Flight bata," Proceedings of AIARA Computers in Aerospace V
Conference, Long Beach, CA., October 1985, AIAA 85-6022.

Caglayan, A.K., and Godiwala, P.M., "A Preliminary Design for Flight
Testing the FINDS Algorithm,"” NASA CR-178043, March 1986.

Caglayan, A.K., Godiwala, P.M., and Morrell, F.R., "Design Considerations
for Flight Test of a Fault Inferring Nonlinear Detection System Algorithm
for Avionics Sensors," NASA TM-88998, August, 1986

Godiwala, P.M. and Caglayan, A.K., "A Dual-Processor Multi-Frequency
Implementation of the FINDS Algorithm,” NASA CR-178252, April 1987.

Godiwala, P.M., Caglayan, A.K. and Morrell, F.R., "Evaluation of a Dual
Processor Implementation for a Fault Inferring Nonlinear Detection
System,"” AIAA Computers in Aerospace VI Conference, Wakefield, MA,
October 1987.

Caglayan, A.K., and Lancraft, R.E., "A Bias Identification and State
Estimation Methodology for Nonlinear Systems,” Proceedings of the 6th
IFAC Symposium on Identification and System Parameter Estimation,
Washington D.C., June 1982,

Caglayan, A.K., and Lancraft, R.E., "A Separated Bias Identification and
Estimation Algorithm for Nonlinear Systems," Automatica, Vol. 19, No. 5,
pp. 561-570, September,1983.

Caglayan, A.K. and Lancraft, R.E., "Reinitialization Issues in Fault
Tolerant Systems,” Proceedings of the 1983 American Control Conference,
San Fransisco, CA, June 1983.

84

Report Documentation Page

Nalnw vl rewoevuate Gonad
T ITAT

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-178410
" 4. Title and Subtite - 5. Report Date
User's Guide to the Fault Inferring Nonlinear June 1988

Detection System (FINDS) Computer Program

6. Performing Qrganization Code

7 Authorls) T 8. Performing Organization Report No.

A.K. Caglayan, P.M. Godiwala, and H.S. Satz R8801

10. Work Unit No.

9. Parforming Organization Name and Address | 505-66-41-04
Charles River Analytics Inc. 11. Contract or Grant No.
55 Wheeler Street NAS1-17719

Cambridge, MA 02138

13. Type of Report and Period Covered

12. S;o—nsb;irﬂug‘ Ai;e;l?y Name and Address

National Aeronautics and Space Administration

Contractor Report

Langley Research Center 14. Sponsoring Agency Code
Hampton, VA 23665-5225

6. Supplementary Nates

lLangley Technical Monitor: Frederick R. Morrell

16. Abstract

This report describes the operation and internal structure of the computer
program FINDS (Fault Inferring Nonlinear Detection System). The FINDS algorithm is
designed to provide reliable estimates for aircraft position, velocity, attitude,
and horizontal winds to be used for guidance and control laws in the presence of
possible failures in the avionics sensors.

The FINDS algorithm was developed with the use of a digital simulation of a
commercial transport aircraft and tested with flight recorded data. The algorithm
was then modified to meet the size constraints and real-time execution requirements
on a flight computer. For the real-time operation, a multi-rate implementation of
the FINDS algorithm has been partitioned to execute on a dual parallel processor
configuration: one based on the translational dynamics and the other on the
rotational kinematics. The report presents an overview of the FINDS algorithm, the
implemented equations, the flow charts for the key subprograms, the input and output
files, program variable indexing convention, subprogram descriptions, and the common
block descriptions used in the program.

'17."!(0‘y" Words (S{:g'gu;_téa’bm\ﬂ\ﬁﬁ&r.is)) ' 18. Distribution Statement

sensor failure detection, fault tolerant
systems, reliable estimation Unclassified - Unlimited

Subject Category 04

19. Se'édiify Clusdvil.“(-d’f_ih}is‘;df)b}t—)- “T20. Security Classif. (of this page) 21. No. of pages 22. Price
Unclassified Unclassified 90 A0S

NASA FORM 1626 0C1 86

End of Document

