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ABSTRACT

Electrophoretic mobilities were measured for calcium oxalate

monohydrate (COM) in solutions containing macromolecules. Two

mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two

proteins (positively charged lysozyme and negatively charged bovine serum

albumin) were studied as adsorbates. The effects of pH, calcium oxalate

surface charge (varied by calcium or oxalate ion activity), and citrate

concentration were investigated.

All four macromolecules showed evidence for chemical adsorption. The

macromolecule concentrations needed for reversing the surface charge

indicated that the mucopopolysacchrides have greater affinity for the COM

surface than the proteins. The amount of proteins that can chemically

adsorb appears to be limited to approximately one monomolecular layer.

When the surface charge is high, an insufficient number of proteins can

chemically adsorb to neutralize or reverse the surface charge. The

remaining surface charge is balanced by proteins held near the surface by

longer range electrostatic forces only. Citrate ions at high

concentrations appear to compete effectively with the negative protein for

surface sites but show no evidence for competing with the positively

charged protein.



I. INTRODUCTION

The majority of renal stones are predominantly calcium oxalate

monohydrate and dihydrate, with the former being the most common form

present. Interdispersed throughout a stone between the crystallizing

phases is a macromolecular substance is typically around 2.5% (Boyce,

1968). It is not known whether the matrix substances play an active or

passive role in the formation of urinary stones. However, it is known

that several soluble polymeric species and natural macroraolecules have a

pronounced effect on the kinetics of growth of calcium oxalate crystals

(Dent and Sutor, 1971; Nakagawa, Kaiser, and Coe, 1978). Such molecules

can also affect the manner in which crystalline particles in suspension

interact with each other. Adsorbed molecules can help prevent the

coagulation (aggregation) of particles in suspension by providing an

electrical barrier or steric hindrance (Vincent, 1974). Other molecules .

can function as flocculating agents, causing particles to be bridged

together to form large floes. Coagulation and flocculation phenomena

provide one possible mechanism for creating larger units of matter from

finely divided crystals.

The electrical charge residing on the surfaces of calcium oxalate

crystals exposed to aqueous solutions should be strongly modified by the

adsorption of charged ionic macromolecules. This effect has been reported

for other solid surfaces such as silica (Dixon, La Her, Casslon,

Messinger, 1967), silver iodide (Vincent, Bijsterbosch, and Lyklema, 1971;

Fleer, Koopal, and Lyklema, 1972), latexes (Norde and Lyklema, 1978),

calcium phosphate (Healy and La Her, 1964), etc. That certain
\

macromolecules adsorb on calcium oxalate has been demonstrated (Leal and



Finlayson, 1977), but the effect on surface charge has not been examined

in detail.

In a previous paper (Curreri, Onoda, and Finlayson, 1979), we

described the effects of small ionic species on the surface charge of

calcium oxalate monohydrate (COM). The effects were detected by measuring

the electrophoretic mobility of the particles in the aqueous phase. The

influences of activity of calcium and oxalate ions, monovalent

electrolytes, sulfate, phosphate, pyrophosphate, and citrate ions on the

electrophoretic mobility were studied. It was found that the results could

be accounted for by certain established theories for the electrical double

layer, which is also useful for analyzing the results of the present work.

In this investigation, we have used bovine serun albumin, lysozyme,

sodium heparin, and chondroitin sulfate as adsorbates. Beside being of

practical interest (Boyce and Swanson, 1955; Maxwell, 1963; Kentel and

King, 1964), these macromolecules represent negatively charged proteins,

positively charged proteins, and two distinct types of

mucopolysaccharides.

II. METHODS

Commercially available* bovine serun albumin (2X crystallized),

lysozyme (muramidase), sodium heparin, and chondroitin sulfate were used.

The serum albumin and lysozyme are globular proteins with isoelectic

points at pH 4.9 and 11, respectively. The sodium heparin and chondroitin

sulfate are negatively charged mucopolysaccharides with random coil

structures in solution. Other chemicals were of reagent grade. The water

was deionized and then distilled in a borosilicate glass still. The



specific conductivity of the water was less than 1.5 X 10 (ohm cm) .

All stock solutions were passed through a 0.22 ym filter to remove any

undissolved impurities. .

The calcium oxalate monohydrate (COM) crystals were precipitated by

the method described in a previous paper .(Curreri et al., 1979). Working

suspensions were prepared by adding macromolecule solutions of varying

concentration to suspensions of COM that had been equilibrated at least 12

hours after the desired addition of other simple electrolytes were made.

The solids content of the suspensions was 0.315 g/1 in all cases. The
2

crystals had a nominal surface, area of 3 m /g as measured by gas

adsorption.

Before making electrophoresis measurements, all suspensions after

final compositional adjustments were allowed to equilibrate for at least

two hours at 37 °C. Electrophoresis was carried out using a commercial

t o
instrument in a constant temperature chamber at 37 C.l/The pH was

measured with glass electrodes. For some of the suspensions, the protein

concentrations remaining in solution were determined by eliminating the

solids by filtration through a- 0.22 ym filter and analyzing the filtrant

for proteins using solution transmission spectroscopy at 280 nm

wavelength.

* Nutritional Biochemicals Inc. Cleveland, Ohio,

t Zeta Meter, Inc., New York, N.Y.



III. RESULTS

The changes in the electrophoretic mobility of COM when increasing

concentration of the four macromolecules are present are shown in Fig. 1.

In the previous study it was shown that the charge on calcium oxalate in

its own natural saturated solution is positive and constant throughout a
f

broad pH range (pH 4-10). In Fig. 1 it is seen that the two

mucopolysaccharides cause a reversal in charge at relatively low solution

concentrations. The serum albumin reverses the charge only at higher

concentrations. The lysozyme appeared to have no tendency for change

reversal.

Because of the low solid content of the suspensions, there was not

enough surface area present to expect detectable solution depletion as a

result of adsorption. This was confirmed in the case of the proteins by

measuring their concentrations in solution before and after exposure to

the solid. Also there was no evidence of any precipitation reactions

involving the macromolecules.

The effect of pH on the electrophoretic mobility of COM in systems

containing fixed amounts of the four raacromolecules is shown in Fig. 2.

Higher pH values in general led to more negative values of the

electrophoretic mobility. The most marked effect was with serum albumin,

where a reversal of charge occurred near pH 5.5.

The activity of calcium and oxalate ions in solution has been shown

to strongly affect the electrophoretic mobility of COM (Curreri et al.,

1979). A surface isoelectric point was found at a pCa of 5.2

(corresponding to a pCjO, of 3.45). It follows that for calcium ion

activities above that of the isoelectric point, the surface charge of COM



is positive, and for oxalate activities above that for the isoelectric

point, the surface is negatively charged. The data in Fig. 1 were obtained

under conditions where the surface of COM is normally positively charged.

The absence of any noticeable effect of lysozyme on surface charge might

be attributable to the fact that the charge 'on the lysozyme has the same

sign as the surface. For the above reasons, we were interested as to

whether the lysozyme would adsorb to the COM .surface if the surface had

been negatively charged to begin with. In our previous work, we showed

that a negative surface charge is brought about by increasing the oxalate

activity in solution. Thus, to accomplish this, different strengths of

lysozyme were added to COM suspensions that were equilibrated with sodium

oxalate. In Fig. 3 it is seen that increasing concentrations of lysozyme

reduces the negative mobility of the originally negative surfaces. The

negative mobility is reduced to near zero at high lysozyme concentrations.

For the adsorption of the two proteins, the role of surface charge

due to variations in the concentrations of the potential determining ions

(calcium and oxalate ions) was investigated further. In Fig. A, the

mobility of COM suspensions containing either of the two proteins is given

as a function of the calcium and oxalate concentrations. These

concentrations were varied by additions of calcium chloride or sodium

oxalate. The change in mobility for COM suspensions without macromolecules

present is shown with the solid data points.

In the previous paper, it was shown that citrate ions adsorb strongly

onto COM. It was of interest to determine how this relatively simple

species would perturb the electrokinetic response of suspensions

containing the two proteins. The mobility for suspensions containing fixed

concentrations of the two proteins as a function of the concentration of



added sodium citrate is given in Fig. 5. These are compared with the

results found in suspensions containing no proteins. In all three cases,

it was found that increasing concentration of sodium citrate resulted in

increasing negative mobility. "

IV. DISCUSSION

The development of increasingly negative mobilities of COM with three

of the added macromolecules, Fig. 1, can result from one of two

mechanisms. One is the adsorption of the negatively-charged

macromolecules..The second possibility is that the macroraolecules bind

calcium in solution and cause the increase on oxalate activity, which in

turn would cause the mobility to become more negative. This second

mechanism does not seem plausible, however, because of the increase in the

oxalate activity that would be required to account for the observed

changes in mobility. Based on the previous work, it would require more

than 0.01 molar oxalate ions in solution to bring about a COM mobility

reversal from +1.7 to -1.7 mobility units. The amount of solids in the

suspension is not sufficient, even if all were to dissolve, to produce

0.002 molar oxalate. In addition, the magnitude of calcium binding by

proteins indicated by values given in the literature (Munday and Mahy,

1964; Blatt and Robinson, 1968) would also not be enough of a depletion of

calcium activity to appreciably affect the COM nobility. Thus, it appears

that the adsorption mechanism is the more likely of the two alternatives.

We see in Fig. 1 that the two mucopolysaccharides adsorb strongly

onto the positively charged solid. The less negatively charged serum

albumin adsorbs weakly, whereas the positively charged protein (lysozyme)

shows no effect. On an originally negative surface, as produced by oxalate



addition, the lysozyme has a small effect on making the surface more

positive with increasing concentrations (Fig.. 3). Some specific adsorption

tendency is suggested by the small charge reversal that takes place for

the intermediate sodium oxalate concentration.

it (̂ It was shown (Curreri et al., 1979) that the mobility of COM remained

unaffected over a pH range of 4 to 10J However, changes in pH are known to

alter the net charge on the macromolecules. If surface coverage is

relatively high, changes in the charge of adsorbed polymer molecules due

to pH variations should be reflected in the electrophoretic mobility. In

fact, this assumption is often made in the study of charges on

macromolecules adsorbed on glass capillaries (Shaw, 1979). The variations

in mobility exhibited in Fig. 2 qualitatively follow what is expected for

the changes in the charge of the macromolecules. The isolectric points

based on mobility can be estimated by extrapolation or interpolation of

the curves. These values agree closely with the known isoelectric points

of the macromolecules (Cohn, Hudges, and Weare, 1947; Anderson and

Alberty, 1948).

The nature of the adsorption process at high solution concentration

of proteins appears to ̂ be particularly interesting. From Fig. 4, it can be

inferred that, when the surface originally has a high charge (positive or

negative), the adsorption of relatively high concentrations of a protein

having an opposite charge from the surface occurs in a manner that reduces

the mobility to zero. When the activity of calcium ions is high (giving a

high positive charge to COM), the negatively charge protein adsorbs to an

extent that reduces the mobility to zero. Similarly, at high oxalate

activity (a negative surface charge), adsorption of positively charged

protein reduces the COM mobility to zero. In simple double layer theory,
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it is not expected that chemical adsorption of ions of opposite charge to

the surface would produce zero mobility (Overbeek, 1952). The nobility

should change continuously and at some point specific adsorption should

cause a reversal in charge.

A possible explanation for the apparent anomaly is that the surface

is being saturated by the adsorbing proteins.. The charge on the surface is

too high to be completely balanced by a complete monomolecular layer

of proteins. The remaining charge excess must be balanced by proteins that

are further out from the first monomolecular layer. These molecules are

simply attracted by the long-range electric field due to the remaining

surface charge (e.g., as counter ions). The counter ions, because of their

lack of chemical affinity, cannot contribute to a reversal of charge, but

can only help reduce the charge to zero.

To test the above hypothesis, direct measurements of bovine serum

adsorption by COM reported by Leal and Finlayson were analyzed. They

presented adsorption isotherms at several calcium ion activities. It was

found that individual isotherms fit the general form of the Langrauir

isotherm. However, the calculated maximum adsorption density (saturation)

was found to vary proportionally with the log of the activity of calcium

ions in solution. This dependence, which the Langmuir model does not

consider, requires a more advanced adsorption isotherm to explain.

However, since for any particular calcium concentration the Langmuir model

apparently describes the empirical results, we used Langmuir adsorption

parameters implied by Leal and Finlayson's work to calculate the

adsorption densities for our experimental conditions.

The total projected area of protein adsorbed at each calcium

concentration can be estimated and compared to the total surface area
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available for adsorption. If we assume that an adsorbed serum, albumin

molecule can be approximated by a sphere with molecular weight 69,000 and

density 1.37 gra/ral, then the projected area per molecule adsorbed is

2
calculated to be around 23 r)m . The adsorption density begins to approach

—3 -that of closed packed spheres at 10 mol/1 calcium concentration and
-3

exceeds the total available calcium oxalate surface area at between 10
_2

and 10 mol/1 calcium concentration. This corresponds with the calcium

•Jion concentration in Fig.̂ /5 above which the mobility is fixed at zero. It

suggests, therefore, that at higher calcium ion concentrations the

adsorption density would exceed one monolayer, thus supporting the

multilayer hypothesis.

The studies with citrate provide some information on competition

between a stongly adsorbing small molecule and a macromolecule. It might

be expected that if molecules compete for sites on the surface, the

addition of higher concentrations of citrate should lead to a reduction in

£/
the amount of protein adsorbed. We find in Fig.yo that at low citrate

concentrations the presence of the negatively charged protein causes the

mobility to be much more negative than if only the citrate were present.

However, when the citrate concentration is large, the presence of the

_2
protein has no effect. At 10 mol/1 citrate, the ratio of citrate to

protein molecules in solution is around one thousand, whereas the same

-4ratio at 10 mol/1 citrate is only ten. It appears that the presence of

high concentrations of citrate prevent appreciable adsorption of the

negatively charged protein. In contrast, the positively charge protein

always has the effect of providing a more positive surface, irrespective

of the amount of citrate in the system. Citrate apparently does not

interfere with the adsorption of the lysozyme, suggesting that they are
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not competing for the same surface sites.

V. CONCLUSIONS

Two mucopolysaccharides (sodium heparan and chondroitin sulfate)

adsorb strongly onto calcium oxalate. A negatively charged protein, bovine

serum albumin, adsorbs weakly onto positively charged calcium oxalate

surfaces. A positively charged protein, lysozyme, adsorbs weakly on

negatively charged calcium oxalate, as produced by adjustment in the

oxalate activity.

The adsorption mechanism of proteins appears to depend on the

magnitude of the surface charge. With low surface charge, the charge can

be balanced by proteins adsorbing within the first monomolecular layer.

However, if the surface is highly charged, the charge cannot be balanced

by a complete monolayer of proteins. After a monolayer is formed, other

molecules are still electrostatically attracted into a seond layer by the

remaining unsatisfied surface charge. With this crowding effect, the

proteins cannot reverse the charge on calcium oxalate because the specific

adsorption sites on the crystal surface are no longer available to the

proteins beyond a monolayer.

Citrate ions at high concentrations appear to effectively compete

with the negative protein for surface sites. They show no evidence for

competing with the positively charged protein.
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FIGURE CAPTIONS

Fig. 1. Electrophoretic mobility of calcium oxalate monohydrate versus
macromolecule concentration. The numbers near the data points
are the corresponding solution pH values.

Fig. 2. Electrophoretic mobility of calcium oxalate monohydrate with
0.1 g/1 of macromolecule as a function of solution pH. The
dashed curve without data points' represents the mobility
versus pH without macromolecules present.

Fig. 3. Electrophoretic mobility of calcium oxalate monohydrate versus
lysozyme concentration for different sodium oxalate
concentrations. The numbers near the data points are solution pH.
The left most data points are mobilities without lysozyme.

Fig. 4. Electrophoretic mobility of calcium oxalate with 0.1 g/1
nacromolecule for various calcium chloride or sodium oxalate
additions. The numbers near the data points are solution pH.

Fig. 5. Electrophoretic mobility of calcium oxalate monohydrate with
0.1 g/1 proteins versus citrate concentration. The numbers near
the data points are solution pH. The left most data points are
for zero citrate concentrations.
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