NASA Contractor Report 181671
ICASE REPORT NO. 88-33

ICASE

SPATIAL STABILITY OF A COMPRESSIBLE MIXING LAYER

{FASA-CEK-181071) SPATIAL STAEILI1I1Y QOF A N88~-24916
CCHMPEESSIELE PIXIMGC LAYER Finel kepcrt
{pP2SA) S5 CcS¢l 20D

Unclas

3,3 0148117

T. L. .Jackson
C. E. Grosch

Contract No. NASI-18107
June 1988

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665



SPATIAL STABILITY OF A COMPRESSIBLE MIXING LAYER

T. L. Jackson

Deparument of Mathematical Sciences
Old Dominion University
Norfolk, Virginia 23529

C. E. Grosch

Department of Oceanography and
Department of Computer Science
O!ld Dominion University
Norfolk, Virginia 23529

Abstract. We present the results of a study of the inviscid spatial stability of a parallel
compressible mixing layer. The parameters of this study are the Mach number of the moving
stream, the ratio of the temperature of the stationary stream to that of the moving stream, the fre-
quency and the direction of propagation of the disturbance wave. Stability characteristics of the
flow as a function of these parameters are given. It is shown that if the Mach number exceeds a
critical value there are always two groups of unstable waves. One of these groups is fast with phase
speeds greater than 1/2, and the other is slow with phase specds less than 1/2. Phase speeds for the
neutral and unstable modes are given, as well as growth rates for the unstable modes. It is shown
that three dimensional modes have the same general behavior as the two dimensional modes but
with higher growth rates over some range of propagation direction. Finally, we have found for
sufficiently large Mach numbers a group of very low frequency unstable modes. These modes have
very low phase speeds but large growth rates.
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1. Introduction. An understanding of the stability characteristics of compressible mixing
layers is of fundamental interest and is also extremely important in view of the projected use of the
scramjet engine for the propulsion of hypersonic aircraft. Knowledge of these characteristics may
allow one, in principle, to control the downstream evolution of such flows. This is particularly
important because of the observed increase in the flow stability at high Mach numbers (Papamos-
chou and Roshko, 1986). Because of the gain in stability, natural transition may occur at down-
stream distances which are larger than practical combustor lengths. A number of techniques to
enhance mixing are discussed by Kumar, Bushnell, and Hussaini (1987). A detailed understanding
of the linear stability characteristics of compressible mixing layers will be of aid in mixing enhance-
ment.

In this paper we will examine the inviscid stability of a compressible mixing layer, the interfa-
cial region between a moving gas at +e and a stationary gas at —eo. The stability of the mixing
layer in a compressible fluid has not been studied as extensively as the same flow in an incompres-
sible fluid. The basic formulation of the theory for the stability of compressible shear flows, both
free and wall bounded, is due to Lees and Lin (1946), and Dunn and Lin (1955) first showed the
importance of three dimensional disturbances for the stability of these flows.
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disturbances (1966). Lessen et al. assumed that the flow was iso-energetic and, as a consequence,
the temperature in the stationary gas was always greater than that of the moving gas. In fact,
because the ratio of the temperatures at * o varies as the square of the Mach number, the station-
ary gas is much hotter than the moving gas at even moderatly supersonic speeds.

Gropengiesser (1969) reexamined this problem, but without using the iso-energetic assump-
tion. Consequentally, he was able to treat the ratio of the temperatures of the stationary and mov-
ing gas as a parameter. He carried out inviscid spatial stability calculations for the compressible
mixing layer for a temperature ratio of 0.6, 1.0 and 2.0 and for Mach numbers between 0 and 3.
We will discuss Gropengiesser’s results in comparison with ours in a later section.

The results reported here were obtained as the first part of a study of the stability of compres-
sible mixing layers in which a diffusion flame is embedded (Jackson and Hussaini, 1988). We are
primarily interested in solving the stability problem in the high Mach number regime. As will be
seen below, it appears necessary to only consider the range 0 £ M < 10 in order to be able to
deduce the asymptotic (M — o) structure of the solutions. In order to understand the effect of
the heat release on the stability of this flow, one must first understand the stability characteristics of
a nonreacting flow. It is well known (see Mack (1984) for example) that the inviscid theory is a
reliable guide for understanding the stability of compressible shear flows at moderate and large Rey-
nolds numbers. Thus we consider only the inviscid spatial stability problem.

We began this study by taking the mean velocity profile in the mixing layer to be that of the
Lock profile (Lock, 1951). In the course of carrying out the stability calculations for this profile
with different scts of values of the basic parameters, we noted some quite interesting features of
the solutions, particularly at higher Mach numbers. In order to examine these features in more
detail, we replaced the Lock profile with a hyperbolic tangent profile. This is a reasonable



approximation to the Lock profile and has been used by many investigators in studying the stability
of incompressible mixing layers, see Michalke (1972), Monkewitz and Huerre (1982), and Ho and
Huerre (1984) and references contained therein. More importantly from our point of view, we can
obtain certain results analytically if we use the hyperbolic tanget profile to approximate the velocity
distribution in the mixing layer. Results for the Lock profile will be presented at a later date.

In section 2 we give the basic equations governing the mean flow and the small amplitude dis-
turbance equations. The boundary condition and the numerical method are also discussed in this
section. Section 3 contains a presentation of our results and conclusions are given in section 4.

2. Formulation of the Problem. We consider the stability of a compressible mixing layer, with
zero pressure gradient, which separates two streams of different speeds and temperatures. We
assume that the mean flow is governed by the compressible boundary layer equations (Stewartson,
1964). The x-axis is taken along the direction of the flow, the y-axis normal to the flow, and the
z-axis in the cross-stream direction. We let (U,V,0) be the velocity and T the temperature of this
mean flow. All of the variables are nondimensionalized using the freestream values at y = +oo. In
what follows we assume that the Prandtl number is unity.

The mean flow equations are first transformed into the incompressible form by means of the
Howarth-Dorodnitzyn transformation

Yy Yy
Y = pdy, V=pV+Ul p,dy, (2.1)
0 0

where p is the density and, because the pressure gradient is zero,

pT = 1. (2.2)

Next we transform to the similarity variable

(2.3)

where C is the constant in Chapman’s (1950) linear viscosity law

p=CT. (2.4)

These equations have as a solution the similarity solution given by Lock (1951). However, as
discussed in the introduction, we assume here that

U= = (1+ tanh(n)), (2.5)

(YA

which approximates the Lock profile and can be handled analytically. This profile also satisfies the
boundary conditions

U->1 as y > +oo, U-—->0 as y > —oo. (2.6)




As is well known, the temperature distribution can be expressed in terms of the velocity field. The
temperature boundary conditions are

T -1 as y - +oo, T »5Br as y o —oo, 2.7
This yields
T =1- (1-B7) (1-U) + l;—l-MZU(l-U), (2.8)

where v is the ratio of specific heats and M is the Mach number at +o. If By is less than one, the
stationary gas is relatively cold compared to the moving stream, and if By is greater than one it is
relatively hot,

The flow field is perturbed by introducing wave disturbances in the velocity, pressure, tem-
perature and density with amplitudes which are functions of 1. For example, the pressure perturba-
tion is

p=TM) expli (ox + Bz — wr)], (2.9)

with IT the amplitude, o and $ the wavenumbers in the downstream (x) and cross-stream (z) direc-
tions, respectively, and o the frequency which is taken to be real. As mentioned in the introduc-
tion, we are only treating the spatial stability problem. Substituting the expression (2.9) for the
pressure perturbation and similar expressions for the other flow quantities into the inviscid
compressible equations yields the ordinary differential equations for the perturbation amplitudes
(Lees and Lin, 1946; Dunn and Lin, 1955). It is straightforward to derive a single equation
governing I, given by
2U’

n - —U—_—?n’— To*+PHT -~ *?M*(U-c))II= 0. (2.10)

Here, c is the complex phase speed

(0]
= =, 2.11
c= (2.11)

and primes indicate differentiation with respect to the similarity variable . In (2.11), o is complex.
The real part of a is the wave number in the x direction, while the imaginary part of a indicates
whether the disturbance is amplified, neutral, or damped depending on whether o; is negative,
Zero, or positive.

It is convenient to transform equation (2.10) to a form analogous to that for two dimensional
disturbances. To this end let (Squire, 1933)

&%= o?+ B2 (2.12)

Thus,
o= Gcos(9), B = Gsin(0), (2.13)



with 0 the angle of propogation of the disturbance wave with respect to the flow direction. Further,
define M and I1 by

aM = aM, 6fl= oIl (2.14)

Applying this transformation to equation (2.10) yields

i - %ﬁ'— 62T [T - M2(U-c)ATi= 0. (2.15)

From the transformation we have

M = M cos(8), (2.16)
c=2L_._© (2.17)
o & cos(0)

Note that T is only a function of M and U, and does not change with the angle of propagation.

The boundary conditions for I1 are obtained by considering the limiting form of equation
(2.15) as — % oo, The solutions to (2.15) are of the form

I - exp(x Q4 M), (2.18)

where

Q2 = &2[1 - M2(1-¢)7, Q2 = &?Br [Br - M2c2. (2.19)

Let us define ¢4 to be the values of the phase speed for which Q2. vanishes. Thus,

co=1- i e = ‘113 . (2.20)

Note that ¢, is the phase speed of a sonic disturbance in the moving stream and c_ is the phase
speed of a sonic disturbance in the stationary strcam. At

1+ +Br

M =M. = cos(6)

(2.21)

¢y are equal.

The nature of the disturbances and the appropriate boundary conditions can now be illustrated
by reference to Figure 1, where we plot c¢; versus M . In what follows we assume that &2, > a%;.
These curves divide the ¢, — M plane into four regions. If a disturbance exists with a M and ¢, in
region 1, then Q2, and Q2 arc both positive, and the disturbance is subsonic at both boundaries.
In region 3, both Q2, and Q2_ are negative and hence the disturbance is supersonic at both boun-
daries. In region 2, Q2, is positive and Q2_ is negative, and the disturbance is subsonic at +o and
supersonic at —co. Finally, in region 4, Q2, is negative and Q2 is positive so the disturbance is
supersonic at +eo and subsonic at —oco,




If the disturbance wave is subsonic at both + -« (region 1), one can choose the appropiate
sign for Q. and have decaying solutions. We therefore have an eigenvalue problem. If the distur-
bance is supersonic at either, or both, boundaries then the asymptotic solutions are purely oscilla-
tory. These solutions are of two types. It is clear that the oscillatory solutions are either incoming
or outgoing waves. If one assumes that only outgoing waves are permitted, the problem of finding
solutions in regions 2, 3, or 4 is again an cigenvalue problem wherein one chooses, as boundary
condition, the solutions to (2.15) which yields outgoing waves in the far field.

However if one permits both incoming and outgoing waves in the far field it is obvious that
there are always solutions for any ¢ in regions 2, 3, and 4. For a given ®, one can always find a
continuum of o such that there is a solution to (2.15) with constant amplitude oscillations at either
or both boundaries. It is not clear what the physical significance of these solutions is. They appear
to be analogous for the infinite domain to the neutral acoustic modes of a waveguide. It might be
advantageous to study the dynamics of a wave packet composed of these modes rather than an indi-
vidual mode. In any event, we will ignore these continuum modes in the remainder of this paper.

One can now see that the appropiate boundary condition for either damped or outgoing waves
in the moving and stationary streams are, respectively,

A - - -iny ~-n? .
flose™ @ dfes e, foe ™V oo, (2.222)
o . —i -Q? .
IT —)en‘n, if ¢ < c_, IIoe - -, if ¢> c_. (2.22b)

To solve the disturbance equation (2.15), we first transform it to a Riccati equation by setting

ﬁl
G = . 2.23
&T o (2:23)
Thus, (2.15) becomes
G'+ &T G2 - [-l%i_’-c-- TT]G= &[T — M2(U-c)2]. (2.24)

The boundary conditions can be found from (2.22) and (2.23).

The stability problem is thus to solve equation (2.24) for a given real frequency w, Mach
number M, and angle of propagation 8, with U and T defined by (2.5) and (2.8). The eigenvalue is
the wavenumber o. Because this equation has a singularity at U = ¢, we shall integrate it along the
complex contour (-6,-1) to (6,-1). We iterate on o until the boundary conditions are satisfied.

3. Results. In all of our calculations we have taken y =14, By =1/2,1,2, and
0< M < 10.

For a given rcal o the wavenumber, o, must be real for a neutral mode. If a = 0, we require
that I1 — constant at both boundaries. It can be shown that the corresponding phase speed is c; ,
defined by (2.20), and that there arc cigensolutions to (2.24) with this boundary condition.



Lees and Lin (1946) have proven that if a neutral mode is to exist in region 1, the phase
speed will be given by ¢y = U(n,), where 7, is found from the regularity condition

24U

dT]) = 0. 3.n

S = (1

The corresponding neutral wave number, oy, must be determined numerically. The eigenfunction
is called a regular neutral mode. This result was obtained for the compressible boundary layer but
it is easy to extend it to a mixing layer. This criterion has been used by Lessen, et al (1965) and
Gropengiesser (1969) to find the phase speed of the regular neutral modes. Note that (3.1) differs
from that given by Lees and Lin, Lessen, et al, and Gropengiesser by a factor of T~! because they
wrote (3.1) in terms of y and we have chosen to write it in terms of 7.

The function §(n) is a cubic when U and T are given by (2.5) and (2.8). Explicitely, one
finds

Z3-aZ + b =0, (3.2)
with
o 4(1+BT)2, b= 4(1—[51)2’ (3.3)
(yv-O)M y-OM
where
Z = tanh(m). (34)

Thus, if Z is a root of (3.2), the phase speed of a possible regular neutral mode is

(1+Z). (3.9)

6=~
)

Equation (3.2) has either one or three real roots with at least two of the three real roots equal
if the discriminant is zero. If we define M, by

M,=2(-1""2 {1+ By + —;—(1—51)“[(“ BHH¥? + (1-BFH )2, (3.6)

then there is one real root for M < M, and three real roots for M 2 M,. In particular, as
M — 0, only one real root exists and is given by

Br-1)
Z = —— 3.7
Br+ D G
with corresponding phase speed
6= —PT__ (3.8)

(1+ Br)’




Also, as M — oo, there are now three roots Z = ~1, 0, 1, giving ¢, = 0, 1/2, 1, respectively.

Recall that the phase speed of a possible neutral mode is given by (3.5) for each real root.
The theorem of Lees and Lin ensures that this is in fact a regular neutral mode if the wave speed
of the mode lies in region 1. If a root of (3.2) yields a phase speed which lies in regions 2, 3, or 4,
it may, or may not, be a true regular neutral mode propagating away from the mixing layer. One
must determine whether or not, for this phase speed, there is an outgoing solution of (2.24) which
satisfies the appropiate boundary conditions.

We, of course, solve for the roots of equation (3.2) directly but insight can be gained by plot-
ting S (M) over a range of values of N for various values of M and fixed Br. Figure 2 is a plot of
S(m) versus m for By = 0.5and M = 0, 2, 4, 5.5, 8, 10. One sees that, for M < M, = 5.715, the
single real root of (3.2) gives a ¢, < 1/2; that is the "critical point" is at some 1 < 0. However, if
M > M,, there are three real roots with one at | < 0 and the other two atn > 0.

Gropengiesser, using the Lock profile, stated that if By < 0.6 and M > 3, S(n) had three
zeros. On closer examination, the results shown in his Figure 7 suggests that there will always be
three zeros for high enough Mach numbers. He was able to find a neutral solution which satisfied
the boundary conditions for only one of these three values and hence ignored the other two zeros
of S. It must be noted that Gropengiesser only considered two dimensional disturbances in reach-
ing this conclusion.

Figures 3, 4, and 5 are plots of the wave speed ¢, from (3.5), as a function of the Mach
number and for B = 1/2, 1, 2, respectively. These figures show that the real zeros of S yield a
monotonic curve and a "bubble”. It is easy to show that this surface has a saddle point at By = 1
and M = V8/(y—1). The sonic curves c; are also plotted for three dimensional waves with propa-
gation angles of 0%, 45°, 60°, 75°.

We have carried out numerical calculations in order to determine whether or not the zeros of
S always yield the phase speed of a neutral mode. We find, in agreement with Gropengiesser,
Lessen, et al, and Lees and Lin, that such is the case only if the solution is subsonic at both boun-
daries, i.e., it lies in region 1. Gropengiesser concluded that only one of the zeros of S gave the
phase speed of a true neutral mode. This is true only if the mode is two-dimensional. One can see
from Figures 3-5 that, for any By, if the mode is two dimensional (6 = 0°) there is only one zero
of S in region 1. We find that there is a neutral mode corresponding to this value of ¢,.. For the
other zeros of S, we find that there are no solutions which yield damped or outgoing waves if
0= 0°. However, the sonic speeds ¢y are functions of the angle of propagation. As 0 increases
the sonic curves shift towards higher Mach number. Thus for any value of B, there will always be
some angle of propagation for which all three zeros of S lie in region 1. For example, in Figure 4,
if 6 > 63.44°, all three zeros of S correspond to modes which are subsonic at both boundaries.
Hence, by the theorem of Lees and Lin, there are now three neutral modes with phase speeds
equal to the value of U at the corresponding values of n,. Thus, the significance of the three real
zeros of S only becomes apparent at very large angles of propagation.

There can also be singular neutral modes; those which do not satisfy (3.1) but are solutions of
(2.24) with only outgoing or damped waves at * o. It is obvious that these are singular



eigenfunctions. The singularity will be removed by the action of non-zero viscosity. Hence we can
regard these singular modes as the limit of some viscous, spatial stability modes as the Reynolds
number approaches infinity.

One can find these modes by obtaining numerical solutions of (2.24) which are either decay-
ing (if the disturbance is subsonic) or outwardly propagating (if the disturbance is supersonic) at
+ oo, without requiring that (3.1) be satisfied. We have carried out such calculations and found
that, for any value of Br, there is always one singular neutral mode in region 2 of the ¢, — M plane
and another singular neutral mode in region 4.

Results for the two dimensional neutral modes are shown in Figures 6, 7, and 8. Figures 6a,
7a, and 8a are plots of the phase speed as a function of the Mach number and for By = 1/2, 1, 2,
respectively. The dashed curves are the neutral sonic modes with phase speeds c. and a = 0. For
each value of By there is a single neutral wave in region 1. As M is increased, this mode crosses
over the sonic curve into either region 2 or 4 and is transformed into a singular neutral mode. If
By > 1, this mode becomes a fast mode whose phase speed approaches one as M goes to infinity.
If Br < 1, the mode becomes a slow mode whose phase speed approaches zero as the Mach
number increases. In each case, there is also another singular neutral mode, fast if By < 1 and
slow if By > 1. These appear at Mach numbers slighly smaller than M.. If By = 1, the subsonic
mode splits symmetrically into a fast and a slow mode. Note that for a small range of M around M.
there can be more than three ditferent neutral modes in addition to the two sonic modes.

The corresponding wave numbers, displayed in Figures 6b-8b, decrease as the Mach number
increases from 0 to M.. The mode with the larger wave number is always the regular mode and its
singular continuation at higher Mach numbers. The other mode always has a smaller wave number
and hence a longer wave length. The discontinuity in the slope of the wave number curves is due
to the transformation from a regular to a singular mode when crossing a sonic curve. For By = 1,
both modes have the same value of the wave number at any M > M.. For all B;, the wave
numbers increase slightly with Mach number.

Finally, the corresponding frequencies, displayed in Figures 6¢-8c, decrease as the Mach
number increases from 0 to M.. For M > M., the frequency of one of the singular modes
increases and that of the other decreases. This, combined with the relatively constant values of the
wave numbers, leads to the appearence of fast and slow modes. If B; < 1, the curves of wy for the
singular modes must cross at some M > M.. Thus, one will have two different neutral modes at
the same frequency and Mach number but with different wave numbers. If 7 > 1 the neutral
modes have quite different frequencies.

Based on our numerical results, we find that for M = 0,

Br 1+ B

BTN SR Loos(e), oy =<0, 3.9

2B+ 2

consistent with (3.8) and Figures 6-8.

Figures 9 thru 13 are plots of selected neutral eigenfunctions for By = 1. These plots show
the variation of IT with 1, on the contour m; = —1. All of these have been normalized so that the




maximum of the absolute value of IT is unity. The eigenfunction shown in Figure 9 is a regular
neutral mode at M = 1. The wave is subsonic at both boundaries, so IT decays exponentially away
from the mixing layer. Note the rapid variation of the phase near n, = 0. Figures 10 and 11 are
plots of the two singular neutral modes of T at M = 2.5. The eigenvalue for the eigenfunction in
Figure 10 lies in region 2 so the mode is subsonic at +e and supersonic at —oo. The eigenvalue
for the mode shown in Figure 11 lies in region 4 and has just the opposite behavior. Both modes
show exponential decay in the subsonic region and oscillations with constant amplitude and phase in
the supersonic region. Both show a rapid phase shift near the center of the mixing layer. Finally,
Fiqures 12 and 13 are plots of the singular neutral eigenfunctions at M = 5. As before, the eigen-
value of Figure 12 lies in region 2 and that of Figure 13 in region 4. The behavior of these eigen-
functions is quite similar to that of the modes at M = 2.5, but note that the wave length of the
oscillation decreases as the Mach number increases.

As was stated above all three real roots of S can be the phase speeds of regular neutral modes
if the disturbance wave is three dimensional. As an example, we show in Figure 14 results for the
neutral modes at By = 1 and 6= 75°. From M = 0 up to M, = 4.472 there is a single regular
neutral mode with ¢y = 0.5 and both oy and wy monotonically decreasing. For M = M,, S has
al rcots and these are the phase speeds of three regular neutral modes for

.15. One of these modes has ¢y = 0.5, another has an increasing cy and the other a
decreasing cy. From 14b and 14c¢ one can sece that o and wy for the mode ¢y = 0.5 decrease
monotocially until they vanish at M« = 7.727. The wave numbers of the other two neutral waves
increase with M beyond M,. The curves of oy for these modes show a discontinuity in slope at
M = 5.15 as they intersect the sonic curves and are transformed into singular neutral modes. The
phase speeds of these singular modes are only slightly different from, and appear to be asymptotic
to, the values obtained from the zeros of S. Finally, the curves of wy split at M, with that of the
fast mode increasing and that of the slow mode decreasing. These curves also show discontinuities
in slope at M = 5.15.

As would be expected there exists a band of unstable waves adjacent to the neutral modes. In
particular, for Mach numbers greater than M. the bands of unstable modes lies between the singu-
lar neutral curve and the sonic curve (sce Figures 6a-8a). We have carried out calculations to deter-
mine the growth rates of these unstable modes. Some of these results are shown in Figures 15, 16,
and 17 where we have plotted the maximum growth rate (— a,-m) for two dimensional modes as a

function of Mach number and for By = 1/2, 1, 2, respectively. Each of these figures shows two
curves. The curve giving the larger values of the growth rate is that of the first group of unstable
waves; that group which exists for M < M.. The second curve gives the maximum growth rate
for the group of unstable waves which appears at Mach numbers slightly below M..

We find, in agreement with Gropengiesser, that the flow becomes less unstable as the station-
ary gas becomes hotter. Gropengiesser also stated that the growth rates decrease with increasing
Mach number over the range of Mach numbers which he studied. This is certainly true for
M < M., where one can see there is a very rapid decrease in the maximum growth rate with
increase in Mach number. For Mach numbers greater than M., the rate of decrease is much
smaller and eventually, at some moderate value of M, the growth rate begins to increase. Note that
at higher Mach number the growth rate increases with a decrease of Br. Gropengiesser did not see
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this because he only carried out calculations up to M = 3.

Gropengiesser said that he found a second unstable mode for two dimensional waves in a nar-
row range of Mach numbers, 1.54 < M < 1.73. He also stated that this second mode had a growth
rate comparable to the first when 8 = 30° and By = 0.6. Finally, he indicated that the growth rate
of the second mode decreased sharply as By was increased. It is clear from the results presented in
Figures 6, 7, 8, and 14 that there will always be two groups of unstable modes if M > M.. Of
course these groups may have different ranges of frequencies and will have quite different phase
speeds. The varation of the maximum growth rate of the second group of unstable two dimen-
sional waves is given by the second curves in Figures 15, 16, and 17. For all values of By the
growth rate for the second group increases over a small range of M, and than decreases. At a
moderate value of M the growth rate begins to increase slowly with M. This is more readily
apparent for By = 2 than for the other values. The maximum growth rates for the second group
are generally rather small, but are comparable to those of the first group for larger values of Br.

In order to display the characteristics of both of these unstable waves in more detail we con-
sider a single case, that of B = 2. The phase speed, wave numbers, and frequencies are shown in
Figure 8 and the maximum growth rates in Figurc 17. The second group of unstable waves only
exist for M > M. = 2.414. From Figure 8 one can see that the first group is the fast waves and
the second group the slow waves. Figure 18 is a plot of the growth rate, —a;, of the unstable two
dimensional waves at M = 2.5. This value of M was chosen so as to be slightly above M.. The
upper curve is that of the first group, the fast modes. There are two neutral frequencies, oy = 0
corresponding to the sonic mode ¢, and the other, wy = 0.24 corresponds to that of the fast singu-
lar neutral mode. From Figure 8 one can see that the phase speeds of these modes lie in the range
0.58 to 0.73, suggesting that the wave packets of these modes would have relatively little disper-
sion. The upper curve has two maxima, one at @ = 0.025 and the other at @ = 0.09. These are
nearly the same size, but that of the larger value of ® is much broader.

The growth rates for the second group of waves are shown by the lower curve in Figure 18.
These are the slow modes, see Figure 8, with phase speeds between 0.5 and 0.58. It is clear that at
this Mach number the phase speed of the fast and slow modes are not much different, but the
slowest of the first group is faster than the fastest of the sccond group. The second group of
unstable modes has a maximum growth rate of about two-thirds of that of the first group. How-
cver, the band of unstable frequencies is much narrower for the second group than for the first.
The zero of the growth rate at wy = 0 corresponds to the sonic curve c_ and the other zero to the
slow singular neutral mode.

The results shown in Figure 19 are similar to that of Figure 18 but for M = 5. The max-
imum growth rates of both groups of waves at M = 5 are only about one-fifth of those of M =
2.5, but the relative sizes of each group are about the same. The fast modes exist over a frequency
range about the same as at M = 2.5, but the phase speeds all lie in the range of 0.8 to 0.87. The
frequency band of the slow modes is much less at M = 5 than at 2.5. The phase speeds of the
waves in the second group are much different from those in the fast group at this Mach number,
ranging from 0.25 to 0.28. Thus, at high Mach numbers the amount of dispersion is reduced.
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The results of Figure 18 and 19 are for two dimensional waves. The same general behavior is
also characteristic of three dimensional modes. Figure 20a shows the growth rate of the fast modes
and 20b the growth rates of the slow modes as a function of frequency for different angles of propa-
gation at By =2 and M = 2.5. The maximum growth rate of the fast modes increases as 6
increases up to about 60° and then decreases for larger angles of propagation. The range of
unstable frequencies decreases as 0 increases. The results given in 20b show that the slow mode
has a different behavior. The maximum growth rate occurs for two dimensional waves and
decreases as the angle increases and essentially disappears for 6 > 20°, because then the mode
becomes subsonic.,

Figure 21 shows the variation of the growth rate with frequency for both fast and slow modes
for various angles of propagation at By = 2 and M = 5. The results are similar to those of Figure
20. As the angle of propagation increases the fast modes experience a decrease in the range of
unstable frequencies and an increase in the growth rate; the maximum occurs at about 6 = 75°.
The slow modes do not show much of an increase in maximum growth rate with angle of propaga-
tion.

In addition to the two groups of unstable waves discussed above, we have found another
group of two and three dimensional unstable waves which have very large growth rates and very
small phase speeds. These modes were found for Br = 1/2, 1,2 at M = 5. We will present results
here only for Br = 1. Figure 22 shows the variation of the growth rate of these modes with fre-
quency for a number of propagation angles from 0° to 75°. The growth rates are very large, about
1.8 for 6 = 0° at w = 0. The growth rates decrease slowly with increasing 0 and ® but are still quite
large at 6 = 75° and o = 0.024. The phase speeds of these modes are shown in Figures 23a and
23b for a number of propagation angles. The results given in these figures show that the phase
speeds of these modes is always less than 0.01. As 0 is decreased from 75° to 0°, the range of per-
missible frequencies decreases until, at 6 = 0°, we only have a two dimensional standing wave.

Figures 24 are plots of the eigenfunction for these very slow modes as a function of 7, along
the contour m; = —1 for 8 = 60°. The frequency, wave number, and phase speed of these modes
are given in the captions of Figure 24. The cigenfunction shown in 24a is that at the maximum
phase speed and the others, 24b and 24c, correspond to the standing waves (¢, = 0) at @ = 0 and
0.021226. Apart from the very large growth rates of these modes, the only unusual feature appears
to be the double phase shift near m, = 0. Similarly, very slow and very unstable modes have also
been found for the other values of Br. We will present a detailed study of these modes at a later
date.

4. Summary and Conclusions. In this work we have considered the spatial stability problem
for the compressible mixing layer with the mean velocity profile approximated by the hyperbolic
tangent. We have found that there is only a single regular neutral mode for two dimensional
waves, but that there can be three for three dimensional waves. . The regular neutral disturbances
are always subsonic at the boundarics. These modes cease to exist at the Mach number at which
their phase speed equals that of a sonic wave. Beyond the sonic curves the modes are transformed
into singular neutral modes which are subsonic at one boundary and supersonic at the other. We
have not found any singular neutral waves which are supersonic at both boundaries.
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There are always at least two bands of unstable frequencies for Mach numbers greater than
M.. One of these bands is a group of fast and the other a group of slow unstable waves. These
groups of unstable waves lie in the frequency bands between zero, corresponding to the sonic
modes, and the frequency of the singular neutral modes. Because these frequency bands always
overlap for some range of frequencies, there exist two unstable modes at a fixed M and By for
every frequency in this range. The phase speeds of both the fast and slow modes have a small
range about the average, so that little dispersion of wave packets is expected, with a reduction in
the dispersion as the Mach number is increased.

Three dimensional disturbances show the same general characteristics as two dimensional dis-
turbances. There is always a range of propagation angles for which both the fast and slow unstable
modes exists. We also find, in agreement with previous studies, that the maximum growth rate for
any By and M occurs for three dimensional modes.

A decrease in By results in an increase in the growth rate of the unstable modes at any Mach
number. An increase in the Mach number at a fixed By results in a decrease in the growth rate up
to a Mach number of three or four. For higher Mach numbers, the growth rate increases slowly.
Even at Mach 10, the growth rates are small compared to those of low subsonic speeds. This, com-
bined with the fact that the unstable modes have little dispersion, is the possible mechanism
responsible for the observed increase in the flow stability.

We have found a group of very slowly propagating, highly unstable modes at M = 5. These
modes are both two and three dimensional and all have large growth rates, of O(1), with the max-
imum growth rate ocurring for the two dimensional wave at w = 0. All of these waves have phase
speeds which are less than 0.01 and hence are nearly standing waves. We will present a detailed
study of these modes at a later date.

If these modes could be excited in a mixing layer, we believe that they would lead to a rapid
transition to turbulence because of their large growth rates. Transition would then yield enhanced
mixing between the two streams.
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FIGURE CAPTIONS
Figure 1. Plots of the sonic speeds ¢4 versus Mach number.
Figure 2. Plotof S(n) for By = 0.5and for M = 0, 2, 4, 5.5, 8, 10.

Figure 3. Plot of the real roots of S versus Mach number for B+ = 0.5. Sonic curves are also
shown for propagation angles 0°, 45, 60°, 75°.

Figure 4. Plot of the real roots of S versus Mach number for By = 1. Sonic curves are also
shown for propagation angles 0°, 45°, 60°, 75°.

Figure 5. Plot of the real roots of S versus Mach number for By = 2. Sonic curves are also
shown for propagation angles 0°, 45°, 60°, 75°,

Figure 6. Plots of two dimensional ncutral curves for By = 0.5 versus Mach number: 6a
phase and sonic speeds; 6b wave number; 6¢ frequency.

Figure 7. Plots of two dimensional neutral curves for By = 1 versus Mach number: 7a phase
and sonic speeds; 7b wave number; 7¢ frequency.

Figure 8. Plots of two dimensional neutral curves for By = 2 versus Mach number: 8a phase
and sonic specds; 8b wave number; 8c frequency.

Figure 9. Plot of the two dimensional regular neutral eigenfunction II(n). The solid curve
corresponds to the real part and the dashed curve to the imaginary part. M = 1, By = 1,
oy = 0.390495, ay = 0.780991, ¢y = 0.5.

Figure 10. Plot of the two dimensional singular neutral eigenfunction II(n). The solid curve
corresponds to the real part and the dashed curve to the imaginary part. M = 2.5, By = 1,
wy = 0.173064, ay = 0.252214, ¢y = 0.68618.

Figure 11. Plot of the two dimensional singular neutral eigenfunction IT(n). The solid curve
corresponds to the real part and the dashed curve to the imaginary part. M = 2.5, Br =1,
oy = 0.079151, ay = 0.252214, ¢y = 0.31382.

Figure 12. Plot of the two dimensional singular neutral eigenfunction II(m). The solid curve
corresponds to the real part and the dashed curve to the imaginary part. M = 5, By = 1,
wy = 0.184813, ay = 0.215661, cy = 0.85696.

Figure 13. Plot of the two dimensional singular neutral eigenfunction II(m). The solid curve
corresponds to the real part and the dashed curve to the imaginary part. M = 5, By = 1,
wy = 0.030847, ay = 0.215661, cy = 0.14303.

Figure 14. Plots of three dimensional (0 = 75°) neutral curves for By = 1 versus Mach
number: 14a phase and sonic speeds; 14b wave number; 14c frequency.

Figure 15. Plot of maximum growth rate for two dimensional waves versus Mach number for
BT = 0.5.




Figure 16.

Br= 1.

Figure 17.

BT=2.

Figure 18.

M= 25.

Figure 19.

M= 5.

Figure 20.

M =25
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Plot of maximum growth rate for two dimensional waves versus Mach number for

Plot of maximum growth rate for two dimensional waves versus Mach number for

Plot of growth rates for two dimensional waves versus frequency for By = 2 and

Plot of growth rates for two dimensional waves versus frequency for By

2 and

Plot of growth rates for three dimensional waves versus frequency for By = 2,
20a first modes, 0= 0°,20°, 307, 45°, 60°, 75°; 20b second modes,

6= 0°, 10°%, 15°, 20°.

Figure 21.

M=25:

Plot of growth rates for three dimensional waves versus frequency for By = 2,

21a first modes, 0= 0°, 30°, 45°, 60°, 75°; 21b second modes,

6= 0°, 30°%, 45°, 60°.

Figure 22. Plot of growth rates for two and three dimensional waves versus frequency for
Br=1,M= 5, and 6= 0°, 30°, 45°, 60°, 75°.

Figure 23.

Plot of phase speeds for two and three dimensional waves versus frequency for

Br=1, M= 5:23a6=60°, 65°, 70°, 75°; 23b 6 = 0°, 30°, 45°.

Figure 24.

Plot of the three dimensional (6 = 60°) singular eigenfunctions I1(n). The solid

curve corresponds to the real part and the dashed curve to the imaginary part at M = 5 and
Br = 1: 24a o= 0.015, o, = 0.03864, o; = —0.48525, ¢, = 0.00245; 24b ©= 0.021226,
a, = 0.0, a; = -0.41899, ¢, = 0.0; 24c 0w = 0.0, o, = 0.0, a; = —0.66974, ¢, = 0.0.
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Figure 3.
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