
. ^ „ '(

FINAL REPORT
Algorithms and Software for Solving

Finite Element Equations
on Serial and Parallel Architectures

Grant NAG-803
NASA Langley Research Center

Hampton VA 23665

Eleanor Chu*
Department of Computer Science

University of Tennessee
Knoxville, TN 37996-1301

Alan George*
Departments of Computer Science and Mathematics

University of Tennessee
Knoxville, TN 37996-1301

June 22, 1988

"After July 1, 1988: Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1.

'After July 1, 1988: Office of the Provost, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Telephone: (519) 885-1211 x2809

K A S f i - C B - l T l - G C E I T E K S 'l«: SOFT! JEE N88-25191
" lf ElEBIM K U H T I O K S OK

Eeport Tenaes£ D n a v .) 1--F ^^-

FINAL REPORT
Algorithms and Software for Solving

Finite Element Equations
on Serial and Parallel Architectures

Grant NAG-803
NASA Langley Research Center

Hampton VA 23665

Eleanor Chu*
Department of Computer Science

University of Tennessee
Knoxville, TN 37996-1301

Alan George*
Departments of Computer Science and Mathematics

University of Tennessee
Knoxville, TN 37996-1301

June 22, 1988

'After July 1, 1988: Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1.

'After July 1, 1988: Office of the Provost, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Telephone: (519) 885-1211 x2809

Contents

1 Introduction 3

2 The GSM Testbed Software System and Its Usage 4

3 The CSM Testbed Matrix Processors 11
3.1 The Basic Algorithms 11
3.2 The IHV Implementation 13
3.3 The SSOL Implementation 23
3.4 Other Relevant SPAR Processors 24

X

4 Developing New Matrix Factorization Processors 26
4.1 General Considerations 26
4.2 The Design of an Interface 27

4.2.1 SPARSPAK-A: Waterloo sparse linear equations package 27
4.2.2 The Design of the Processor SPK 31
4.2.3 Implementation Issues . 35
4.2.4 Interfacing with the Global Database 38
4.2.5 Interfacing with SPARSPAK-A 42

4.3 The Usage of the Interface 51
4.3.1 The Execution Path 51
4.3.2 User Input to the Processor SPK 52
4.3.3 Output from the Processor SPK 54
4.3.4 An Example - Solving the Testbed problem demol 56

5 Numerical Experiments 59
5.1 The Specifications of the Test Problems 59
5.2 The Numerical Properties of the Test Problems 61

5.2.1 The Conditioning of the System Stiffness Matrix 61
5.2.2 The Accuracy of the Computed Solutions 61

5.3 The Experimental Factorization Processors 65
5.4 Numerical Results 65

A Installing the Processor SPK 72

B Installation-dependent Subroutines 76

C Listing of Programs 83
i

References 133

1 Introduction

This report describes our research on sparse matrix techniques for the Computational Struc-
tural Mechanics (CSM) Testbed [2] conducted for NASA grant NAG-1-803. Before provid-
ing a synopsis of the report, we give a brief overview of the work that has been completed
during the 10-month tenure of the grant.

A primary objective was to compare the performance of state-of-the-art techniques for
solving sparse systems with those that are currently available in the CSM testbed. Thus,
one of the first tasks was to become familiar with the structure of the testbed, and to install
some or all of the SPARSPAK package [7,20,21] in the testbed.

We began by installing the CSM testbed on our SUN workstations. We were the first
site to do this, and it was necessary to collaborate closely with the CSM group at Langley
in order to resolve some minor problems with the installation procedure.

A suite of subroutines to extract from the database the relevant structural and numerical
information about the matrix equations has been written. A driver program (processor) that
employs these routines along with the SPARSPAK library has been written, and we have
successfully solved all the demonstration problems distributed with the testbed. These codes
have been documented, and performance studies comparing the SPARSPAK technology to
the methods currently in the testbed have been completed. In addition, some preliminary
studies have been done comparing some recently developed out-of-core techniques with the
performance of the testbed processor INV.

An outline of the report is as follows. Section 2 contains a brief overview of the CSM
Testbed software and its usage. This is essentially background material for the uninitiated,
and can be ignored by those with experience in the usage of the testbed.

Since the ultimate goal of sparse matrix research for the Testbed is to enhance the
performance and capabilities of the Testbed, some knowledge of the methods currently
employed is essential in the development of better techniques for the Testbed. Section 3
gives an overview of the sparse matrix techniques currently employed in the CSM Testbed.
Our presentation is focused on the internal working of the SPAR matrix processors [5].

Section 4 describes an interface which we have designed and implemented as a research
tool for installing and appraising new matrix processors in the CSM Testbed, along with a
description of a new processor SPK which consists of a subset of SPARSPAK-A [7] and a set
of subroutines which provide an interface between SPARSPAK-A and the global database
of the CSM testbed. A guide for installing the processor SPK in the testbed is provided
in Appendix A of this report. The installation dependent modules of this processor are
listed in Appendix B with comments indicating the changes to be done at a different site.
A listing of all interface subroutines is provided in Appendix C.

Finally, §5 contains results of numerical experiments we performed in solving a set of
testbed demonstration problems using the processor SPK and other experimental processors.
These results are compared with the performance of the SPAR matrix processors on the

same set of test problems.

2 The CSM Testbed Software System and Its Usage

To facilitate our discussion throughout this report, we shall first briefly introduce the con-
cepts and terminology employed in the Testbed. Since our discussion is conducted primarily
for the readers who have not used the Testbed before, the readers who are familiar with its
usage can skip this section.

The CSM Testbed is a structural analysis system evolving from integrating the SPAR
finite element code [5] and the NICE data management and command processing utilities
[9,10,15]. The FORTRAN programs for SPAR (Structural Performance Analysis and Re-
design) were developed in the 1970's by Lockheed Missiles and Space Company and by
Engineering Information Systems, Incorporated. The SPAR system uses the finite element
approach to perform stress, buckling, vibration, and thermal analysis on linear structural
systems. The NICE (Network of Interactive Computational Elements) system was originally
developed at Lockheed Palo Alto Research Laboratories to support engineering analyses.
The major components of the NICE system include a data manager, a command language
and a command interpreter. Continued effort has been made by the CSM development
team at NASA Langley and at the Lockheed Palo Alto Research Laboratory to extend
the analysis capability of the Testbed since the implementation of its initial version (called
NICE/SPAR). ^

The user interface for the Testbed is described in detail in the CSM Testbed User's Guide
[1]. The language, directives, interface, global-database manager and input-output manager
of the CSM Testbed architecture are each documented in references [11,12,13,30,14]. For
our purpose we shall simply walk through an example to quickly familiarize the readers
with the general usage of the Testbed. The example we use is a Testbed demonstration
problem presented in [4]. We shall refer to this example as problem "demol" throughout
this report.

The operating environment Our discussion throughout this report refers to the version
of the Testbed currently operational on a SUN 3/50 workstation running the UNIX1

operating system at the University of Tennessee, Knoxville.

The problem to be solved: The tubular beam shown in Figure 1 is cantilevered at joint
1 and statically loaded at joint 5. The static solution for a transverse shear load of
1000.0 and for an axial load of 10000.0 is required.

'UNIX is a trademark of AT&T Bell Laboratories.

1 2 3 4 5

-i L -

L=40

Tube, inner radius = 2.00, outer radius = 2.25

E = 10. x 106

v = 0.3

p = 0.101

a = 0.1 x 10~4 •

Figure 1: CSM Testbed Demonstration Problem - Tubular beam.

User input Edit a file to contain the script in Figure 2. The command stream demon-
strates how to solve the tubular beam problem in Figure 1 using the NICE command
language and the SPAR computational modules.

Comments The problem-oriented Testbed command language is called CLAMP -
an acronym for Command Language for Applied Mechanics Processors. The
commands with its leading keyword prefixed by an asterisk are called CLAMP
directives. They are special commands used to
- directly access a global database,
- define command procedures,
- implement branching and cycling for nonsequential command processing,
- process macrosymbols in an advanced language construct,
- request other available services.

For example, the directive

*open 1 demol.101 /new

contained in our script file will create a new library file with the library identifi-
cation number (LDI) equal to "1" and file name of "demol.101".
The SPAR processors are each implemented as a subroutine callable by the
Testbed executive module. The macroprocessor command to start the execu-
tion of a processor is [XQT. Therefore, during the execution of the Testbed, the
command to run the SPAR processor named TAB is

[XQT TAB

The input (user commands and/or data) to a processor are entered after the [XQT
command according to the requirements of the individual processor. The SPAR
input syntax and processor requirements are described in detail in [1]. Since the
CLAMP directives may be intermixed with the processor commands in the script
file, it is worth noting that once the execution of a processor is initiated by [XQT,
it will begin and continue accepting input until either another [XQT, a STOP or
a *STOP is encountered. If a STOP occurs, execution will proceed to completion
of the processor's assigned task after which the next command, which can be
either a CLAMP directive or a macroprocessor command, begins execution. A
*STOP terminates execution immediately. Therefore, the user command STOP in
the sequence

[XQT SSOL
STOP

*TOC 1

is necessary to ensure that processor SSOL runs to completion before the directive
*TOC is processed.
The modular structure of the Testbed implies that multiple processors are typi-
cally executed to perform an analysis. These processors communicate through a
common database consisting of global-access data libraries (GAL) which are op-
erated on by the NICE data manager GAL-DBM [3]. Each GAL data library may
contain multiple nominal datasets. Each dataset is made up of named records.
The GAL-Processor interface facilities allow the Testbed processors to generate,
store, locate, and access all of the needed information in the global database to
perform a required analysis. The table of contents of an active data library may
be displayed during execution of the Testbed via the CLAMP directive *TOC.
In Figure 3, we display the table of contents for the data library "demol.101"
(LDI=1) created by executing the script in Figure 2.

To execute the analysis: Note that on Unix systems the execution of the Testbed is
initiated by the first command "time nicespar « \eof in the script file, where
"nicespar" is the name of the executable file and we assume that the name of the
directory where "nicespar" resides has been inserted in the user's PATH environment
variable. Note also that "\eofis the last entry of the script. Assuming that the name
of the file containing the script is "demol.com" and that it has been made executable
with the "chmod" 'command, the script may be run by typing

demol.com

To print the solutions on an ordinary text file: The default output file for the Testbed
is the standard output on Unix systems. The command

demol.com > & demol.log ft

thus redirects the output to the log file. The desired static solutions are produced by
processor SSOL and the actual data are contained in the dataset named STAT. DISP. 1.1.
To print the static solutions on the log file, the SPAR utility processor VPTR may be
executed after [XQT SSOL. The command to be inserted into the script is

[XQT VPRT
TRPINT STAT DISP 1 1

The output corresponding to this command is displayed in Figure 4. Note that each
constrained component is flagged with an asterisk by the processor VPRT.

More details: We shall come back to this example from time to time to provide the details
which are not needed until our discussion at a later point.

time nicespar « \eof
•open 1 demol.101 /new
*set echo=off
[zqt TAB

START 5
JOIHT LOCATIQIS
1 0 0 0 .
2 0 0 10.
300 20 .
4 0 0 30.
5 0 0 40.
MATERIAL COISTAITS
1 10.E+6 .3 .101 .1E-4
BEAM ORIEITATIOIS
11111.
E21 SECTIOI PROPERTIES
TUBE 1 2. 2.25
COISTRAIIT DEFIIITIOI 1
ZERO 1 2 3 4 5 6
1

[zqt ELD
E21
1 2
2 3
3 4
4 5

[xqt E
[xqt EKS

[zqt RSEQ
reset METHOD"! LJSPRT"! LADPRT=1

[zqt TOPO
reset PRTKMAP'l PRTAHAP=1

Czqt K
reset spdp=2

[zqt IIV
reset spdp=2

[zqt AUS
ALPHA
CASE TITLES
1'TRAHSVERSE LOAD
2'AXIAL LOAD
SYSVEC
APPLIED FORCES
CASE 1: 1=2: J=S: 1000.
CASE 2: 1=3: J»5: 10000.

[xqt SSOL
[zqt GSF
[xqt PSF

stop
*TOC 1
\eof

Start and tin* Testbed execution
Open data library
Do not echo input
Hacroprocessor command to execute TAB
5 nodes points in beam
Direct TAB input

Constrain 6 components of joint 1
to be zero

Define elements

Define element connectivity

Create element datasets
Calculate element intrinsic
stiffness matrices
Resequence nodes

Form maps BHleh guide the assembly
and factorization of system matrices
Assemble system stiffness matrix
Output dataset in double precision
Factor system stiffness matrix
in double precision

Direct AUS input
Define load titles for 2 cases

Dir-2 load on joint 5 of 1000.
Dir-3 load on joint 5 of 10000.
Solve for static displacements
Compute stresses
Print stresses

Print Table of contents of library 1

Figure 2: A runstream for solving problem demol.

* Library 1
+ Form: OAL82

Seq*
1
2
3*
4
S
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

1 1 1 1 1

1 1 1 1 1 i • • • i
Date

OS
OS
OS
05
05
OS
OS
05
05
OS
OS
OS
05
05
OS
OS
OS
OS
05
OS
OS
OS
05
05
05
05
05
05
05
OS
05
OS

-.14:88
: 14:88
: 14:88
-.14:88
:14:88
: 14:88
:14:88
:14:88
:14:88
:14:88
: 14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
:14:88
: 14:88
:14:88
: 14:88
:14:88
4.4 1 1 1 1

File
File

: demol
size:

Time
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:

1 1 H

54:
54:
54:
55:
55:
55:
55:
SS:
55:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:
56:

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
1 1 1 i

Lk
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.101
22062

Records
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
1
1
1
1
1
5
2
2
2
2
4
4

1 1 1 i»>i i

oords
+

lo. of Dataaets: 32 +

Processor Dataaet name
TAB
TAB
TAB
TAB
TAB
TAB
TAB
TAB
TAB
TAB
TAB
ELD
ELD
ELD
ELD
ELD
ELD
ELD
ELD
E
E
asEQ
TOPO
TOPO
K
IIV
AUS
AUS
SSOL
SSQL
OSF
OSF

i 1 1 1 1 1 1 1 1

JDF1.BTAB.
JREF.BTAB.
ALTR.BTAB.
GHTR.BTAB.
ALTR.BTAB.
JLOC.BTAB.
HATC.BTAB.
HREF.BTAB.
BA.BTAB.2.
COI..1
QJJT.BTAB.
DEF.E21.1.

1
2
2
6
2
2
2
2
9

2
2

.8 '

.6

.4

.6

.4

.5

.2

.7

.19

GD.E21.1.2
GTIT.E21.1.
DIR.E21.1.
ELTS.IAME
ELTS.IHOD
ELTS.ISCT
•S
E21.EFIL.1
DEH.DIAQ
JSEQ.BTAB.
KHAP..9.3
AMP.. 9. 3
K. SPAR. 36
IIV. K.I
CASE.TITL.
APPL.FORC.
STAT.DISP.
STAT.REAC.
STRS.E21.1
STRS.E21.1

1 1 1 1 1 1 1 1 1 1 1 1

2

2

1
1
1
1
.

^

2

2

.17

.1

.1

.1

.1
1
2
i i i i i i i i i i i i i i i i i i i i

Figure 3: Table of Contents of Library 1.

** BEGII VPRT *» DATA SPACE* 600000 HOBOS
1STATIC DISPLACEMENTS.
TRANSVERSE LOAD
OJOIHT

1
2
3
4
S

1
O.OOOe+00*
O.OOOe+00
O.OOOe+00
O.OOOe+00
O.OOOe+CO

0
0
0
0
0

2
.OOOe+00*
.2500-01
.897e-01
.181e+00
.2858+00

0
0
0
0
0

3
.000o+00«
.OOOo+OO
.OOOo+OO
.OOOe+00
.OOOe+00

4
0
-0
-0
-0
-0

.OOOo+OO*

.4630-02

.7930-02

.9920-02

.1060-01

5
0
0
0
0
0

1 STATIC DISPLACEMENTS.

AXIAL
OJOIJTT

1
2
3
4
5

LOAD
1

O.OOOe+OO*
O.OOOe+00
O.OOOe+00
O.OOOe+OO
O.OOOe+00

0
0
0
0
0

EXIT VPRT CPDTIHE-

2
.OOOo+OO*
.OOOo+OO
.OOOo+OO
.OOOo+OO
.OOOe+00

0
0
0
0
0

3
.OOOe+00*
.300e-02
.5990-02
.8990-02
.1200-01

4
0
0
0
0
0

0.5 I/0(DIR,BUF)»

.OOOe+00*

.OOOo+OO

.OOOe+00

.OOOo+OO

.OOOe+00
0 0

5
0
0
0
0
0

ID- I/

.OOOe+00*

.0000+00

.OOOo+OO

.OOOe+00

.OOOe+00
ID» I/

.OOOe+00*

.OOOe+00

.OOOe+00

.OOOe+00

.OOOe+00

I/

6
0
0
0
0
0
I/

6
0
0
0
0
0

1

.OOOe+00*

.OOOe+00

.OOOe+00

.OOOe+00

.OOOe+00
2

.OOOe+00*

.OOOe+00

.OOOe+00

.OOOe+00

.OOOe+00

Figure 4: The contents of dataset STAT.DISP.1.1.

10

3 The CSM Testbed Matrix Processors

Reference [29] contains a set of logic flowcharts developed for the key subroutines of each
of the SPAR matrix processors TOPO, K, INV, SSOL and AUS. These charts together with
the commented FORTRAN source code are very helpful in our understanding of the sparse
matrix techniques currently employed in the Testbed. In this section, we shall attempt to
describe the algorithms and data structures which are implemented by the processors INV
and SSOL.

3.1 The Basic Algorithms

The factorization algorithm: Processor INV applies a specialized Gaussian elimination
scheme to factor a sparse symmetric matrix K into LDLT, where L is a unit lower
triangular matrix and D is a diagonal matrix. This algorithm is numerically stable if
the matrix K is also positive definite, which is the case when K is the system stiffness
matrix. The basic algorithm can be easily described for a dense symmetric matrix A
as follows. We assume that A is of dimension n x n. Let us denote the elements of A
and M = LT as a,-j and m,-j, where 1 < i < n and i < j < n, and D = {di,dz,..., dn}.
Note that each off-diagonal a,-j is overwritten by m,-j and that each a,-,- is overwritten
by rfr1 if the algorithm presented in Figure 5 is successfully executed. Algorithm I
assumes that the a,-j elements are stored row by row.

Algorithm I The basic LDLT factorization scheme

for i «- 1,2,...,n do
if a,-,- = 0 then

quit
else

a,,- <- I/a,-,-
for fc <— » + 1,... ,n do

m <- a,-fc * a,-,-
for j <— fc,..., n do

a*j <- a-kj -m* o,-j
for k <— i + 1,..., n do

aifc <— a,-fc * Ojti

Figure 5: Computing D'1 and M = LT factors of A.

11

The following features of the algorithm above will be exploited in its sparse imple-
mentation.

1. To compute D~l and the off-diagonal elements of M = LT, the elements stored
and accessed are those on the diagonal and in the upper triangular part of A. For
example, when n — 5, the algorithm performs the transformation in Figure 6.

01,1 01,2 01,3 ai,4 01,5

O2,2 03,3 02,4 02,5

03,3 03,4 03,5

04,4 04)5

05,5

fr1 7712,3 77^2,4

d*1 "^3,4

Figure 6: Overwriting A by D~l and M = LT.

2. The a,-j's which have been overwritten by the elements of D~l and M = LT will
not be needed in the remaining elimination stages. In particular, during the ith

elimination stage, the elements accessed and modified are confined to row i to
row n as shown in Figure 7 for i = 3 and n = 5, where <g) represents elements
which are not accessed.

03,3 03,4 03,5

04,4 04,s

05,5

04,4 04,5

05,5

Figure 7: LDLT factorization of A - the third stage.

12

Solving the triangular systems: Since Algorithm I stores the factors D l and M = LT,
we shall describe the solution scheme in terms of these two factors. Both of the forward
and backward substitution schemes presented below access the elements of the factor
M row by row.

Step 1. Forward substitution scheme (Solve MTy = b).

for i <— 1,... ,n do
yi <- bi
for k-= i + l,...,n do

Step 2. Backward substitution scheme (Solve MX = D~ly).

for p <— 1,.. .,n do
i «— 7i — p+ 1
5 ^ 0

for j — i + 1, . . . n do
3 «— S + Wit j * xj

H *- d,"1 * yi - s

3.2 The INV Implementation

In this section we shall discuss in various degrees of details the following aspects of the
sparse factorization scheme implemented by the processor INV.

1. The algorithm - a block LDLT factorization scheme.

2. Memory requirement.

3. Data structures.

4. The handling of zero constraints.

5. The handling of nonzero constraints.

6. Data archived to the global database.

A block LDLT factorization scheme: The processor INV has tailored Algorithm I to
perform an out-of-core block LDLT factorization of large sparse matrices arising in
the finite element analysis of structural mechanics problems. Before we describe the
INV implementation of this scheme, let us first explain the block LDLT algorithm

13

by applying it to a dense symmetric matrix A in block form. To be specific, let us
consider the

A-} 9 = I OL •"•1,1 l"jkj .

'•(

2x2 block matrix in Figure

t with a(t) - a(t) a(tv) - /jMf, wnn ak- - a,jk, akj — a-k ,

^ **) -

/ \0
^1 1

4?,
"s'.l

4!?
I .JS

"^

42
42
4!?
45
4?3

8, where AM = {ag>, ^1,2 = {4?)'

and 1 < k,j < 3.

"ft

42

4^
4!?

»3?3

1 al" al',Z al',3 ^

1 «<") n(i0 «<"')1 °2,1 a2,2 °2,3

1 «("> a^") a<">1 a3,l a3,2- °3,3

I (iv) (i«) (i«)
a^ . a^ o a^ t1,1 1,2 1 ,d

, (tv) (i«) (to)
1 a2,l a2,2 a2,3

1 °3'l °3',2 a3f,3 /

Figure 8: Partitioning symmetric >4 into four 3x3 blocks.

The block LDLT scheme works in the following manner.

Step 1. Apply Algorithm I to matrix AI,I to perform the following transformation.

/ a(i)
ai,l

\

•a
4°,

aw \

4
41, —

^ 1/dl^ mi'l ml'l \/ i i,^ 1,0

1/dn JTlo J,
' ^ ^,J

I 1/4° >

In other words, at the end of step 1, we have in fact zeroed out the nonzeros
in the lower triangular part of Aiti and stored the multipliers Ifj — m^ in the
upper triangular part of AI,I.

14

Step 2. Apply the multiplers m$ to the A\$ block as if LU (U = DLT) decompo-
sition were applied to reduce (A^i, AI^) to an upper trapezoidal matrix. That
is, the Ai,2 block is overwritten by the resulting {«£" } of the following transfor-
mation.

/ 1 \
0 1

\ 0 -m<;> 1)

n F7 ,_. J. 4.1__. t_

/ 1 \

-mi'] 1

\ -m$ 0 1 >

1,1 1 |2 1)3

(») (to (ii)
°2,1 °2,2 "2,3

L («) a(«) fl(«)
\ a3,l °3,2 °3,3 /

=

1,1 1,2 1,3

"21,? " '̂.̂ 4!3

\ U3,l U3,2 U3,3 /

Step 3. Zero out the block A^2 implicitly by applying the multipliers directory to
block A2.2- The multipliers can be computed on the fly from

13,1 \ / «?? til*? til'? \

m ,2 ™g
(it) (tt) (it)
l,2. «2,2 4,2

(0 \

ml,3 m2,3 TO3,3

•"•• / " ^

The A2.2 block is then updated to be A2,2 = {o Ĵ }
following computation.

i§ obtained by the

/ 1 \

0 1

0 0 1

-mg? -«4? -"4? 1

— "*1 2 — "*2 2 — "*3 2 ^ ^-

0*) V**) 1**} A A 1
L ^flli o —THo q — TTlo o U U 1 j
\ AI*' *)" 0,0 /

/ „(«) „(»•«•) ..(«•«•) \
Hi 1 1*1 1 U1 Q '1,1 1,2 1,3

U2*l U<^2 U2,3

(ii) (ii) (ii)
U3,l U3,2 U3,3

al'l al',2 al*3

(iv) (iv) (iv)
a2,l °2,2 a2,3

(io) (to) (to)
V "3,1 "3,2 4,3 /

1] 1 1|2 1 ,3

«iS 43 43
U3,l U3,2 U3,3

-(to) -(iw) -(io)
al,l al,2 al,3

a2*l 52',2 52',3

i *('") «('") n^\ a3,l a3,2 a3,3

Since the Aj,2 diagonal block is symmetric, only the upper triangular part
A2,2 is updated in the actual computation.

Step 4. u «- itij/40. for Vfc 'J-

of

15

Note that the transformations accomplished by the above four steps can be expressed
with respect to the block upper triangular part of the given matrix as follows.

f Ol,l 01,2 Ol,3
a2,l a2,2 ^2,3
a3,l ^3,2 °3,3

\

<*i,4 <*i,5 01,6 ^
"2,4 a2,5 <J2,6
a3,4 a3,5 03,6

04,4 a4,5 14,6

05,4 05,5 05,6

O6,4 a6,5 16,6 /

' cfj 9711,2 TOI^
a2,l <^2° rrl2,3

03,1 03,2 ^3

\

™*1,4 "»1,5 >™i,6 ^
m2,4 ^2,5 77*2,6
m3,4 m3,5 ^3, 6

^4,4 04,5 04,6

05,4 05,5 5s, 6
06,4 06,5 56,6 /

The final step: For this particular example, the factorization is completed after
transforming

04,4 04,5 04,6
05,5 05,6

06,6

m5)6

by Algorithm I.

The output matrix: The coefficient matrices of the resulting triangular systems,
namely MTy = b and MX = D~ly, are available from the output matrix given

' by

"^2,3 1^2,4 m2,5

"He

The following observations may be made on the block LDLT factorization scheme
described above.

1. The elements in the lower triangular part of the diagonal A,-,,- blocks are not
accessed during the process of computing the D~l and LT = M factors.

2. The block of rows which have been updated to contain the dj^'s and mjt/s of
the factors are no longer needed in the future stages of elimination.

3. Observe that the updating of ^2,2 block in Step 3 can be reformulated as follows.

*1,1 *1,3 *1,3

(iv) (i v) (tv)
S*\ I S*) n Oo o

^i-L *)* ^i*'

\ S3,l S3,2 S3,3

2,l 3,l

—m. —mi\ n ~""*2 2 ^~"*3 2

\ -ml*3 ~m2"3 -m3',3 /

43 x

"2,1 "2,2 "2,3

V "3,1 U3,2 "3,3 /

16

and

/ =(«•") a(«) =(«•») \
°1,1 °1,2 al,3

2,2 a2,3

-
,3 /

.
l,2 al,3

-
2,2 2,3

3,3 /

,
l,2

,S2,2

,
l,3

,52,3

4,3 /

Therefore, if the elements of Aj,2 are not available in core at the time the first
block row (^1,1,^.1,2) is being processed, the modifications can be accumulated
in the {•Sj.j }'s which are later added to the respective elements of AI$, when
they are read into memory.

Although it appears straightforward to generalize the block LDLT scheme to a sym-
metric sparse block matrix such as the example given in Figure 9, where each Kij is
a dense square matrix of some uniform dimension, an efficient implementation of the
sparse block LDLT scheme requires sophisticated data structures.

^3,3

#4,4

#2,5

#3,5

#5,5

#2,6

#3,6

#4,6

#5,6

#6,6

Figure 9: Upper triangular block structure of a symmetric sparse matrix 1C.

Memory requirement: Suppose that the matrix AC in Figure 9 is stored out-of-core and
the rows of 1C are to be read into memory one block row (i.e., JDF rows if JDF is

17

the dimension of each submatrix) at a time. In order to factor the first block row
(.Ki,i,.Ki,j,.Ki,5) and store the modifications to be applied to the blocks ^"2,2, Ki,5
and KSJ later, we need memory space to store the blocks in Figure 10 as well as
the indexing overhead incurred by the data structures employed. In order to proceed

Si,*

SS,5

Figure 10: The storage needed for processing (K\t\,•K'l^j-K'i.s)

with the factorization of the second block row (Ki,2, ̂ 2,3^2,5,/G.e), there must
be enough working space to accommodate the blocks in Figure 11. To minimize the
memory requirement, processor INV actually re-uses the space occupied by blocks K\ti,
KI^ and K\$ to accommodate the blocks needed for the current elimination stage,
assuming that the factors of (Kit\,K\faK\t$) have been archived to the database.
The block submatrices needed to remain in-core for each of the next four stages are

Ky,i Kj,3

S3,3

Ai,

$3,5

Ss,5

#J,6

S3 ,6

55>5

$,,6

Figure 11: The storage needed for processing (^2,2,-^2,3»-^2,55-^2,6)

depicted in Figure 12. Observe that although K4is block is null in /C, it is to be
filled in the third elimination stage. Therefore, the space to accommodate 5*4,5 block
must be allocated. Fortunately, the fill-in locations can be determined prior to the
numerical factorization phase. With the fill-in information available, the maximum

18

#3,3 #3,4

^4,4

#3,5

X
S5,5

#3,«

54,6

55,6

56.6

#4,4 X
55.5

•#4,6

5S,6

Se,e

#5,5

Figure 12: The storage needed to process #3,,, #4,,, Kst» and K*,*.

number of submatrices ever needed to be in-core can also be determined. As far as the
indexing overhead is concerned, a simple and effective strategy is to store one pointer
for each submatrix assuming that the elements within each submatrix are stored in
consecutive locations. Using this indexing strategy, the number of pointers required to
be in-core for each particular elimination stage is equal to the number of submatrices
to be present.

Data structures: The data structures employed by the Testbed matrix processors can
again be more easily explained using our block 2x2 example given in Figure 8.

Data structure of the input coefficient matrix: Processor INV assumes that the
block upper triangular part of the coefficient matrix

V A™)
is stored out-of-core in a block-row-oriented manner. That is, the data of the
blocks are stored in a one dimensional array following the block sequence as
depicted in Figure 13.

Figure 13: The block sequence of input matrix.

Within each Aij block, the elements are stored column by column. For example,
the elements of the A\,\ block are stored following the sequence in Figure 14.

19

E3 "3.1 01,2 I 02,2 03,2 01,3 I 02,3 I 03,3

Figure 14: The element sequence of block AI,I .

Data structure of the working array 5: Except for the first block row of the in-
put matrix, the data retrieved from the buffer for each block row are necessarily
updated by adding the modifications {s,-,j} accumulated in a working array S.
Therefore, it is not surprising that the elements within each JDFxJDF (JDF= 3
in our example) 5,-,j block are stored in the same manner as the input Aij block.
For our example, the diagonal block ^2,2 must be updated by 52,2 before it can
be factored. Suppose that the respective addresses of these two blocks in the
buffer and working array are given by the pointers KMAP(IX) and AMAP(JX)
as depicted in Figure 15.

U, 05,4 06,4 I 04,5 as,J 00,5 04,6 05,6 I 06,6

KMAP(IX)

I "4,4 I *i,< «6,4 35,6

AMAP(JX)

Figure 15: Indexing the buffer and working arrays.

20

The integration of A^ into the working array is accomplished by the following
segment of FORTRAN statements.

C GET POINTER TO THE BUFFER
/* KM_V«I>«»««~«~W~—«««_

LKSUB = KMAP(IX)

GET POINTER TO WORKSPACE STORAGE FROM AMAP
««___« K««~~«>V»B«««~«««B__WH«««~~~'K»K

K - AMAP(JX)
DO 100 J - 1, JDF

DO 200 I - 1, JDF
S(I,J,K) - S(I,J,K) + A(LKSUB)
LKSUB =• LKSUB + 1

200 CONTINUE
100 CONTINUE

For a general sparse matrix, because the data stored in the working array 5 is
dynamically changed by accommodating new data in the space occupied by data
which have been written out to the database, the Stj blocks corresponding to the
consecutive A\tj blocks in the buffer array may not be neighbors in the working
storage. To integrate NSUBS (NSUBS > 1) Aij's into 5, the starting address
of each 5,-,j must be computed from AMAP each time, resulting in the revised
code segment.

C i ~ ———————————
C GET POINTER TO THE BUFFER

LKSUB = KMAP(IX)
DO 300 ISUB = 1, NSUBS

/* -»»»«•—_«•••.••_»<_•__«....____«.._••___««

C GET POINTER TO WORKSPACE STORAGE FROM AMAP
C JGAP IS KNOWN FROM THE DATA FORMAT OF AMAP

JX - JX + JGAP
K » AMAP(JX)
DO 100 J - 1, JDF

DO 200 I = 1, JDF
S(I,J,K) - S(I.J,K) + A(LKSUB)
LKSUB " LKSUB + 1

200 CONTINUE
100 CONTINUE
300 CONTINUE

21

Conversion of the input data structure: Note that the data structure described
above for the input buffer and working array is in fact the output format of
the processor which assembles the system stiffness matrix from the finite ele-
ment model. Since the block LDLT factorization scheme and the following for-
ward/backward substitution algorithms are row-oriented, the properly updated
JDFxJDF submatrices of the current block row are copied from 5" into another
one-dimensional array B, where the data are stored row by row with respect to
the global matrix. For example, assuming that the dimensions of 5 and B are
declared as S(JDF,JDF,*) and B(JDF,CONRNG,*), the following FORTRAN
statements retrieve the first row of (A\,\,A\ ti), i.e. {01,1,01,3, • • • ,01,5}, from S
and store them in the consecutive locations in B.

C K INDEXES THE CURRENT ROW IN B

K = 1
ft •••—••»»•—•...••• — — .•»•—» ——..••»

C M INDEXES THE CURRENT ROW IN S
C —•—««.—•«.•»——».».»———

M = 1
ft • •.»••••••»«•••— — ••• « ••_ _— w» ••_—«•«*•»««_ _ <•• v

C OBTAIN THE NUMBER OF BLOCKS IN CURRENT ROW
ft «™...»—»••••«•»•••«••—»••»•..»—••«•»«• «._..« —

CONRNG - 2
DO 100 J- 1, CONRNG

C ™™~ «••— W« •>« — _«« B «« «»•«<___ _» «_•• __«. « _ •• _ _•-

C ASSUME THAT THE LOCATION OF THE CURRENT
C BLOCK IN S CAN BE OBTAINED FROM SUBMAF(J)

LKSUB = SUBMAP(J)
DO 200 I = 1. JDF

B(I,J,K) = S(M,I,LKSUB)
200 CONTINUE
100 CONTINUE

Since the modifications computed from B are to be accumulated into S for up-
dating the input matrix in the future stages of the elimination process, the di-
mensioning of B as B(JDF,CONRNG,*) in parallel with the dimensioning of
S is desirable. The conversion of index from 5 to J3, or vice versa, for each
element can thus be easily expressed in FORTRAN as demonstrated in the
above code segment. However, there are other times the code would be much
cleaner by viewing B as a two dimensional array declared as B(JDFCON, *),
where JDFCON=JDFxCON. The technique which the processor INV uses to

22

index the same array in either way is to declare two formal parameters, namely
B(JDF,CONRNG, *) and BBfJDFCON, *) in the subroutine which does the fac-
torization, whereas the actual parameters corresponding to B and BB in the
calling sequence are identical. With this trick, B and BB in the subroutine refer
to the same actual parameter and the programmer can work with either B or
BB according to his need to access the data in a particular pattern.

Handling zero constraints: Processor INV handles zero constraints by ignoring the cor-
responding rows in the process of transferring data from 5 to B. That is, if the
unknown z,- = 0, then row i will not be copied to B. For example, if it is known that
x2 = 0, then only row 1 and row 3 in (A\^A\^) would be copied to array B. The
actual transformation of (^1,1,̂ 1,3) is carried out in B as shown below.

(<*i,i ai,2 fli.s <*i,4 a1)5 "1,6 \ _ ^ / dj"1

13,1 03,2 "3,3 ^3,4 <>3,5 "3,6 / \ 03,1
mi,2 mi_3 0*1,4 n»i,5 mi,e
03,3 dj1 013,4 m3)5

Consequently, row 3 in 5 becomes row 2 in B, i.e. it is possible that K<M in our
sample code segment.

Handling nonzero constraints: Processor INV handles nonzero constraints by ignoring
the corresponding rows in the factorization process. For example, if it is known that
x3 = ^ ^ 0 in addition to x<i = 0, the transformation of (Ai t\,Ai$) by processor INV
will'not affect row 3, i.e.

("1,1 "1,2 "1,3 "1,4 "1,5 "1,6 A I d^ 011,2 'T*l,3 f 1,4 f*l,5 ml,6 \

"3,1 "3,2 "3,3 "3,4 "3,5 "3,6 / \ "3,1 "3,2 "3,3 "3,4 "3,5 "3,6 /

Elements archived: Write out to database those elements of BB which are needed for
the subsequent use by processor SSOL in effecting the forward/backward substitution
process. For example, assuming x^ = 0, and £3 = MS ^ 0, the output elements
resulting from factoring the (Aiti, ̂ 1,2) block are given by

(.-i „ m ^
"l ***1,2 •'•1 3 Oil 4 "*1 5

"3,3 "3,4 "3,5

3.3 The SSOL Implementation

Input Data: Processor SSOL retrieves from the database the factors archived by processor
INV. For our example of the block 2x2 matrix, assuming that the constraints are
x2 = 0 and 13 = 1*3 ^ 0, the data given below are stored in a row-oriented manner in
the database.

"3,3 "3,4 "3,5 "3,6
1—1

^5 1*5,6

(fc 1D /

23

In addition to the factors, the right-hand-side vector / and the nonzero-constraint
vector u are also available in the database.

Handling constraints: In essence, processor SSOL simply adapts the forward/backward
substitution schemes we presented for Algorithm I to solve the following triangular
systems, which are to be implicitly formed from the data retrieved.

v, \
\

03,4
03,5
03,6

1
"»4,5

™»4,6

1
2/4

and

/ 1 mi,3
">4,6

/ Zl \

0

«3
*< rfT1

\ X6 /

In particular, the SSOL implementation takes advantage of the following observations.

1. The equations corresponding to zero constraints can be ignored in the forward
substitution phases.

2. The coefficients of the equations corresponding to nonzero constraints are needed
to adjust the right-hand-side vector in the forward substitution phase.

3. If the solution vectors contain the constraints, the equations corresponding to
constraints (either zero or nonzero) can be skipped in the backward substitution
phase.

Output Solutions: The computed z,-,j's are written out to the global database.
j

3.4 Other Relevant SPAR Processors

In order to briefly introduce the functions of other relevant SPAR processors, and give the
readers some idea how they may be used to perform an analysis, we found that the following
information available in The CSM Testbed User's Manual [1] useful. Given below is a list of
processors together with comments on their individual functions. In addition, the ordering
of the processors in the list serves as a template for performing the linear static analysis,
which is one of the simplest types of analysis which can be performed with the Testbed.

1. Processor TAB. Define joint locations, constraints, reference frames, and possibly ma-
terial and section properties. Material and section properties may be denned using
either processor TAB or processors AUS and LAU (Steps 2 and 3).

24

2. Processor AUS. Build tables of material and section properties if the facilities in pro-
cessor TAB were not used.

3. Processor LAU. Form constitutive matrix if material and section properties were not
input in processor TAB.

4. Processor ELD. Define elements. Element definitions include element connectivity,
element material reference frame number, element material and section type numbers.

5. Processor E. Initialize element datasets; create the dataset which will contain all im-
portant element information (e.g., intrinsic coordinates, element-to-global transfor-
mations, intrinsic stiffness matrices).

6. Processor EKS. Calculate element intrinsic stiffness matrices.

7. Processor RSEQ. Resequence nodes for minimum total execution time.

8. Processor TOPO. Form maps which guide the assembly and factorization of system
matrices.

9. Processor K. Assemble global (system) stiffness matrix.

10. Processor INV. Factor system stiffness matrix.

11. Processor AUS and EQNF. Create applied nodal loading. If element loading is applied,
Processor EQNF must be executed to calculate equivalent nodal loading.

12. Processor SSOL. Solve for static displacements.

13. Processor GSF. Calculate element stress resultants.

14. Post-process using any of the following processors: VPRT, PSF, PLTA, PLTB, PLOT,
CONT, T2PT.

25

4 Developing New Matrix Factorization Processors

4.1 General Considerations

We have described in detail in §3 the internal working of processors INV and SSOL. The
former performs the out-of-core LDLT factorization of a sparse matrix in block form, and
the latter solves the resulting triangular systems by forward and backward substitution
schemes. The following considerations have prompted us to investigate alternative sparse
factorization schemes.

1. The techniques employed by INV are particularly tailored to the large sparse linear
systems arising in the structural models. The models considered are composed of
finite elements connected at specified joints. Each joint can have three translational
and three rotational components of deflection, totaling a maximum of six degrees of
freedom per joint. The system stiffness matrix is stored and operated on as an array
of JDFxJDF submatrices, where 3 <JDF< 6 is the maximum number of degrees of
freedom per joint in the model of a particular problem. However, in general the joints
need not have the same number of degrees of freedom. This storage scheme thus
necessitates storing dummy data - an identically zero row for each missing degree
of freedom at each joint. Although the factorization scheme only operates on the
non-null submatrices and some operations on the dummy rows are skipped by the
processor INV, it does not fully exploit the sparsity within each submatrix. While
this strategy is understandably very efficient if uniform degrees of freedom per joint
prevail, it may not best suit the models with drastically varied degrees of freedom,
which is not uncommon in finite element modeling applied to disciplines other than
mechanical structural analysis.

2. As described in §3, the data structures employed incur the index overhead of one
pointer per submatrix for all submatrices occurring in each elimination stages. There-
fore, the index overhead is proportional to the number of submatrices instead of the
size of them. Consequently, while the primary storage for the system stiffness matrix
and the factors is reduced for models with fewer degrees of freedom, the secondary
storage for their indices may remain the same and could become a significant part of
the total storage. Furthermore, unlike the working storage which is determined by
the maximum number of submatrices which ever occur during the entire factorization
process, the addresses of the submatrices are repeatedly stored for each elimination
stage.

3. The system stiffness matrix, the factors and their respective indexing information
are each stored in separate data sets in the global database. The data sets are read
into core or written out to the database one record at a time. The choice of record
length determines the number of disk read/write operations and the required b'uffer

26

space. While the maximum record length of a data set is restricted by the available
buffers, the minimum record length must be long enough to contain all of the items
which are needed to completely process one entire row of submatrices. Therefore,
the processor INV can perform in-core factorization if each record of each data set
contains all information needed to complete the entire factorization process. In that
case, the in-core storage is required to accommodate at least one copy of the system
stiffness matrix, one copy of the factors along with the indexing information needed
for all elimination stages, and a working array of the same size as needed in the
out-of-core case. Since some other out-of-core sparse factorization schemes currently
available perform in-place factorization and are readily adapted to performing in-core
factorization, it appears worthwhile to compare their performance in both in-core and
out-of-core cases.

4. When applying the out-of-core block LDLT scheme as implemented by the processor
INV to a dense matrix, its advantage of reducing memory requirement disappears
because the working array for the first elimination stage must contain the entire upper
triangular part of the stiffness system matrix.

5. The possible ill-conditioning of the system stiffness matrix is not detected by the
current Testbed software.

4.2 The Design of an Interface

It is apparent from our earlier discussions that the format of the data sets is directly
connected to the factorization scheme currently employed in the Testbed. It is thus likely
that the particular arrangement of data items in the data sets may not be compatible with
the data-accessing pattern of the other factorization algorithms to be considered. In order to
evaluate the performance of alternative sparse factorization schemes in the Testbed without
redesigning the database at a time when the scheme of choice is not certain yet, we have
devised a set of subroutines which serve as an interface between the global database of the
Testbed and SPARSPAK-A [7]. Although some components of the interface are specific for
SPARSPAK-A, we hope that its overall design and the availability of some utility modules
will prove to be useful in adapting the interface to work with other sparse matrix solvers.
A few words about the capabilities of SPARSPAK-A are in order.

4.2.1 SPARSPAK-A: Waterloo sparse linear equations package

In this section we briefly review the important features of SPARSPAK-A, which is a package
of Fortran programs designed to efficiently solve large sparse systems of linear equations by
direct methods. The structure and use of the package are described in the SPARSPAK-A
User's Guide [7]. The collection of algorithms implemented by SPARSPAK-A and their

27

storage schemes are discussed in reference [19]. Although we shall consider only symmetric
positive definite problems here, the actual package handles both symmetric and unsymmet-
ric problems subject to the condition that the matrix structure is symmetric and that row
and/or column interchanges are not required to maintain numerical stability. To solve a
sparse symmetric positive definite linear system

Ax = b,

the user and SPARSPAK-A interact through the following steps:

Step 1. The user supplies the nonzero structure of A to the package using a set of subrou-
tines described in Section 2.2 of reference [7].

Step 2. The package finds a "good" ordering (permutation P) for A, and allocates stor-
age for the triangular factorization of PAPT = LLT, as described in Section 2.3 of
reference [7].

Step 3. The user supplies the numerical values for the matrix A to the package, as described
in Section 2.4 of reference [7].

Step 4. The package factors PAPT into LLT, as described in Section 2.5 of reference [7].

Step 5. The user supplies numerical values for 6, as described in Section 2.4 of reference [7].
(This step may come before Step 4, and may be intermixed with Step 3.)

Step 6. The package computes the solution by solving Ly = Pb and LTz = y, and then
setting x = PTz, as described in Section 2.5 of reference [7].

Step 7. The user may call a subroutine to obtain an estimate of the relative error in x
as well as the inverse of the condition number of A if so desired. The subroutine is
described in Section 2.6 of reference [7].

The names of the subroutines available for reordering a symmetric matrix in Step 2,
together with the algorithms they implemented, are listed in Table 1. Corresponding to
each ordering choice in Step 2, a different set of subroutines are provided for Steps 3, 4, 6
and 7. The subroutines used in Steps 1 and 5 are, however, independent of the ordering
methods.

In the context of comparing the performance of the SPARSPAK-A factorization algo-
rithm with that of the Testbed processor INV, we should note the following. Firstly, the
coefficient matrix A will have been ordered differently because the ordering algorithm in
the Testbed is applied to the joints in the finite element model before the system stiffness
matrix is assembled, whereas SPARSPAK-A reorders the coefficient matrix itself. Since
associated with each joint in the finite element model is a dense JDFxJDF submatrix,

28

SPARSPAK-A
Subroutine
ORDRA1
ORDRA3
ORDRB3
ORDRA5
ORDRB5

Ordering algorithm |]
Reverse Cuthill-McKee ordering [28]
One-way Dissection ordering [16]
Refined quotient tree ordering [17]
Nested Dissection ordering [18]
Minimum Degree ordering [24]

Table 1: SPARSPAK-A ordering choices.

the resequencing of the joints relocates the submatrices (as a whole) in the system stiffness
matrix. On the other hand, since the ordering algorithms in SPARSPAK-A are applied to
the structure of the assembled system stiifhess matrix, the zeros within each submatrices
(due to constrained variables or dummy rows) may be exploited and the resulting matrix
may not be in block form.

Secondly, the Cholesky factorization scheme and the upper/lower triangular system
solvers implemented by SPARSPAK-A do not handle constraints or dummy rows (rows of
zeros). It is therefore necessary to adjust both the system stiffness matrix and the right hand
side before the nonzero structure and the numerical values are input to SPARSPAK-A. In
the current version of Testbed, while the constraint information is available in a designated
data set, the dummy rows can be detected only by reading the assembled system stiffness
matrix. The implication is that the system stiffness matrix has to be examined twice -
once for determining its "adjusted" nonzero structure (needed in Step 1), and once for
retrieving its numerical coefficients (needed in Step 3). We consider the way we handle
the dummy rows as an interim measure until the dataset format of the generalized element
processor is available. It is expected that the generalized element processor will neither
assume uniform degrees of freedom nor store dummy data. Complete details on adjusting
the nonzero structure and the numerical values for input to SPARSPAK-A are given later
in this section.

Thirdly, SPARSPAK-A employs a particular version of the Cholesky factorization algo-
rithm. Since this version of the algorithm computes the Cholesky factor one column at a
time and the part of the matrix remaining to be factored is not accessed during the scheme,
it is commonly referred to as the "Column-Cholesky" algorithm. Depending on how the
modifications to each designated column axe accumulated, the Column-Cholesky algorithm
can be described in two different forms. Given in Figure 16 is the commonly known scalar-
product form. These formulae can be derived directly by equating the elements of A to the
corresponding elements of the product LLT.

29

for j «— 1,2,...,n do

**
for *

Figure 16: The scalar-product Column- Cholesky Factorization Algorithm.

The vector-sum Column- Cholesky algorithm described in Figure 17 is an alternative
formulation which avoids explicitly forming the individual inner products.

for j = 1,2, . .. ,n do
for k = 1,2,. ..,j — 1 do

lnk

for k = j + 1, j + 2, . . . , n do

Figure 17: The vector-sum Column- Cholesky Factorization Algorithm.

SPARSPAK-A applies the vector-sum Column- Cholesky algorithm to factor a general
sparse matrix. The readers are referred to [19] for a comprehensive description of various
storage schemes which result in efficient implementations of the algorithm.

For n = 5 and j = 3, the in-place Column- Cholesky factorization scheme thus transforms
a,-,3 to £j,3 for 3 < i < 5 as depicted in Figure 18. Note that the elements actually involved
in computing the third column of i, denoted as £.3, in the above example are shown in
Figure 19. They are the coefficients of the third column of A and those of the computed L
with their row indices greater than or equal to 3. Liu [22] makes the observation that if A is
read into memory one column at a time and each column of L is written out to the auxiliary
storage as soon as it is computed, the in-core working space can be economized by keeping
only those Aj's which are needed for the current stage of elimination. Suppose the computed
^,-j's are saved in a linear array sequentially, we use the above example to demonstrate the
necessary data reorganization when the size of this working array is LNZSZE= 9. As
shown in Figure 20, the ^,-j elements are relocated (by overwriting elements which are not

30

4,1 4,2
4,i 4,2
4,i 4,2
4,i 4,2

"3,3

"5,4 05,5 /

*£
4i
4,i

\ 4,i

4,2

4,2

42

4J2

4,3

4,3

4,3

84,4
15,4 05,5

Figure 18: Computing the third column of the Cholesky factor L.

4,1 4,2 <*3,3

4,i 4,2 04,3
4,1 4,2

4,1 4,2 4,3
4,i 4,2 4,3
4,1 4,2 4,3

Figure 19: The £,-j's accessed and the a,-j's modified in computing £,3

accessed any more) to make room for the newly computed A'j's. For this example, data
reorganization is necessary only before computing the third column and the fourth column
of L. Clearly, the larger the size of the working array the fewer number of times the data
reorganization needs to be done.

In [22], Liu applies the idea above to large sparse matrices in his development of an
adaptive general sparse out-of-core Cholesky factorization scheme. One of the advantages
the algorithm features is that the frequency of data structure reorganization is adaptive to
the available working space. Liu's implementation of the out-of-core Cholesky scheme is
compatible with SPARSPAK-A and is intended to be used in Step 3. We have incorporated
this set of subroutines into an experimental processor in the Testbed and we shall report
its performance on a set of CSM Testbed demonstration problems in §5.

4.2.2 The Design of the Processor SPK

Currently the entire interface together with the driver and a subset of SPARSPAK-A mod-
ules are installed as a single processor SPK which can be invoked by the macroprocessor
command [XQT SPK during the execution of the Testbed. The choice provided by this par-
ticular subset of SPARSPAK-A modules is the "Minimum Degree ordering [24]". Following
the guideline contained in §6.2.1 of reference [2] for coding new processors, the main pro-
gram of the processor SPK is implemented as a subroutine (named "SPK") called by the
Testbed executive module "NICESPAR". Referring to the control diagram given in Fig-
ure 21, observe that the subroutine SPK calls another module "SPKA" which serves as

31

j 4.2 <4,4

Figure 20: The organization of lij's in the working array.

the driver of SPARSPAK-A modules. In short, the subroutine SPKA allocates memory,
sets up the problem by calling CSM-Interface modules, and solves the problem by calling
SPARSPAK-A computational modules. The role the CSM-interface modules play is to re-
trieve the assembled linear system to be solved from the global database and input the
problem in an appropriate form to SPARSPAK-A. The design of the processor at this level
is thus generic and may be used with other sparse matrix packages.

The CSM-interface consists of twenty-two modules. For easy reference, we list the
subroutine or function name of each module and its formal parameters (if there is any) in
Table 2 together with those of the two driver subroutines SPK and SPKA. All of these
modules are written in the FORTRAN 77 language and a complete listing of programs is
provided in Appendix C of this report. We shall discuss some implementation issues in
section §4.2.3 and describe how these modules interface with the Testbed global database
and SPARSPAK-A in §4.2.4 and §4.2.5. The usage of the interface is described in section
§4.3.

32

I 1
NICESPAR

SPK

SPKA

CSM-interface
modules

1 SPRSPAK-A"!
I modules i

'~SPARSPAK-A~~'
• entry points i i modules i

Global
database

Figure 21: The control diagram of the new processor SPK.

33

DRIVERS

SUBROUTINE SPK
SUBROUTINE SPKA (A, MXSTOR)
DOUBLE PRECISION A(l)
INTEGER MXSTOR

CSM-INTERFACE INITIALIZATION MODULES

SUBROUTINE SPKCSM
REAL FUNCTION CTIME (IDUMMY)
INTEGER IDUMMY

CSM-INTERPACE PROBLEM INPUT MODULES

SUBROUTINE GETJDF (IBUF)
INTEGER*4 IBPF(l)
SUBROUTINE GETDOF (DOF, IBUF)
INTEGER** DOF(l), IBUF(1)
SUBROUTINE GTZERO(DOF, FBUF, MASK)
DOUBLE PRECISION FBUF(l)
INTEGER'4 MASK(l). DOF(l)
SUBROUTINE GTCOND (DOF, IBUF, KC, MASK, CSIZE)
INTEGER*4 DOF(l), IBUF(l), KC(1), MASK(l), CSIZE
SUBROUTINE GTMOTI (FBUF, MASK, FCON, CSIZE)
INTEGER"4 MASK(l), CSIZE
DOUBLE PRECISION FBUF(l), FCON(l)
SUBROUTINE GETIJ (DOF, IBUF, ICLQ, MASK, S)
INTEGER*4 DOFd), IBUF(l). ICLQ(l), MASK(l), S(l)
SUBROUTINE GTFORC (FBUF, MASK, S)
INTEGER*4 MASK(l)
DOUBLE PRECISION FBX)F(l), 3(1)
SUBROUTINE GTNUMS (DOF, FBUF, MASK, FCON, S)
INTEGER"4 DOF(l), MASK(l)
DOUBLE PRECISION FBUF(l), FCON(l), S(l)

CSM-INTERFACE UTILITY MODULES

INTEGER FUNCTION SPACE (IDUMMY)
INTEGER*4 IDUMMY
SUBROUTINE LIBOPN
SUBROUTINE QKINFO (DSNAME)
CHARACTER'Sl DSNAME
SUBROUTINE GTRECI (RECNUM, IBUF, LBN)
INTEGER'4 RECNUM, IBUF(l), LEN
SUBROUTINE GTRECF (RECNUM, FBUF, L E N)
INTEGER*4 RECNUM, LEN
DOUBLE PRECISION FBUF(l)

CSM-INTERFACE ERROR HANDLING MODULES

SUBROUTINE EMSG
SUBROUTINE BMSGO
SUBROUTINE EMSG1
SUBROUTINE EMSG2
SUBROUTINE DEMSGO

CSM-INTERFACE STATISTICS MODULES

SUBROUTINE GETSOL(FBUF, SOL, RATIO)
DOUBLE PRECISION FBUF(1). SOIXD. RATIO
SUBROUTINE STATCS

Table 2: The SPK driver and interface modules.

34

4.2.3 Implementation Issues

The two implementation issues we shall discuss in this section are "memory allocation" and
"module/module communication".

Memory allocation Firstly, we note that the maximum working array storage available to
the processor SPK is determined by the blank common dimension identically declared
in the Testbed executive NICESPAR and the subroutine SPK, namely

COMMON A (KSZZZ)

Consequently, if the number of words provided by the blank common is insufficient
for the processor SPK to solve a particular problem in-core, the dimension of the blank
common must be increased, and the testbed and the subroutine SPK must both be
recompiled.
We supply blank common of dimension KSZZZ (words) to the subroutine SPKA
as a floating-point array of dimension MXSTOR. To accomplish this, we have the
subroutine SPK execute the following statement:

CALL SPKA (A, MXSTOR)

where the value of MXSTOR is either KSZZZ or KSZZZ/2 depending on whether A
is declared as a single-precision or double-precision array in the subroutine SPKA.
All integer and floating-point arrays required by the CSM-Interface modules and
SPARSPAK-A are then allocated by the subroutine SPKA from the one dimensional
floating-point array A(MXSTOR). Note that in order to interact with SPARSPAK-
A, the user is required to pass a working array 5 to the package and the location
of S is the only parameter appearing in all of the SPARSPAK-A interface modules.
In our case, the array 5 must be allocated from the working array A(MXSTOR).
We have thus divided A(MXSTOR) into two segments. The top segment accom-
modates arrays to be passed to the CSM-interface modules and the entire bottom
segment is passed to SPARSPAK-A. If we let the variable MXUSED denote the size
of the top segment, the parameter to be passed to SPARSPAK-A is A(SPK), where
SPK = MXUSED+1.

A labelled common block CSMMAP is designated to keep the locations (origins in
A) of the various arrays. The variables in COMMON /CSMMAP/ and the relative
locations they represent are depicted in Figure 22. The type and size of the working
arrays are tabulated in Table 3. Note that the buffer space for reading integer and
floating-point records has been overlapped.

35

Type

1NTEGER*4

DOUBLE PRECISION

Formal
parameter
DOF
MASK
KC
ICLQ
1BUF
FBUF
FCON
SPK

Actual
parameter
A (DOF)
A(MASK)
A(KC)
A(ICLQ)
A(BUF)
A(BUF)
A(FCON)
A (SPK)

Size

NUMJNT+l
NEQNS
MAXDOF+l
MAXDOF
BUFMAX
BUFMAX
CSIZE
MAXSTOR-SPK+1

Comments

NUMJNT= total # of joints
NEQNS = total # of equations
MAXDOF = 6

maximum buffer length
maximum buffer ImKth
total # of nonzero constraints
the bottom segment of A

Table 3: The type and size of the SPK working arrays.

Module/module communication The following labelled common blocks have been used
to organize the communication between the SPK modules and the CSM Testbed mod-
ules, between the SPK modules and the SPARSPAK-A modules, and among the mod-
ules within the interface.

1. COMMON /IANDO/ UN, IOUTX. The two integer variables contain user input
and output unit numbers assigned by the Testbed subroutine INTRO when the
new processor begins execution.
The /IANDO/ common appears in the SPK initialization subroutine SPKCSM

• and the SPARSPAK-A initialization subroutine SPRSPK.
2. COMMON/SPAUSR/ MSGLVA, IERRA, MAXSA, NVARS. The /SPAUSR/

common allows user and/or processor SPK to communicate with SPARSPAK-A
or vice versa. The meaning of the four integer variables are explained in §4.3.2
and §4.3.3.
The /SPA USR/ common appears in the SPK subroutine SPKA which serves as
the driver of SPARSPAK-A.

3. The following common blocks are for communication among the SPK modules.
COMMON /CSMSYS/ (6 variables)
COMMON /CSMSPK/ (6 variables)
COMMON /CSMUSR/ (11 variables)
COMMON/CSMMAP/ (7 variables)
COMMON /CSMCON/ (4 variables)
COMMON /CSMDTA/ (8 variables)
COMMON /PRBLEM/ (3 variables)

The collection of related variables into a labelled common block avoids passing
long parameter lists in the use of the subroutines and yet makes the coupling
between modules easy to identify. Comments on the variables contained in these
labelled commons are made at appropriate places throughout sections §4.2.4,
§4.2.5 and §4.3.

36

DOF

BUF

MASK

KC
ICLQ
FCON

SPK

Figure 22: Storage allocation of the SPK working arrays.

37

4.2.4 Interfacing witH the Global Database

There axe eight modules in the interface which retrieve data from the global database and
process them. The names of these subroutines are "GETJDF", "GETIJ", "GTZERO",
"GTCOND", "GTFORC", "GTMOTP, "GTNUM5" and "GETSOir.We shall use "Gxxxxx"
to represent an arbitrary one of them. All of these modules retrieve data sets from the
Testbed via two utility modules which are either "QKINFO and GTRECI" (for retrieving
integer records) or "QKINFO and GTRECF" (for retrieving records containing floating-
point numbers). Figure 23 depicts the coupling of the interface modules with the GAL-
processors. The readers are referred to [3] for a complete description of the calling sequence
and the operation of each GAL-processor employed.

I 1 I 1 I 1 I 1 I 1 I 1
LMFIND GMGEKA GMGECY GMCORN GMGETN LMERCD

— ^» —J L __» _• _J L__ «_ — —I L» — —^ —* ^—• .^— i M —*

Dataset name

__i i__

Global
database

Figure 23: The coupling of CSM-interface modules and GAL-processors.

For each designated data set, the labelled common /CSMSPK/ is used to

1. provide the input arguments LDI and TRACE to the GAL-processors. (The meaning
of LDI and TRACE is given in'Table 4.)

38

2. store the dataset attributes the interface module QKINFO acquires from the GAL-
processors LMFIND, GMEGKA and GMGECY.

3. communicate the dataset attributes to the interface modules Gxxxx, and the GAL-
processors GMCORN and GMGETN via the interface module GTRECI or GTRECF.

The /CSMSPK/ common thus appears in QKINFO, GTRECI, GTRECI and each Gxxxx
module. The variables contained in /CSMSPK/ and their meaning are given in Table 4.

variable
IDSN
LDI
NLEN
NREC
RTYPE
TRACE

COMMON /CSMSPK/
meaning
Dataset sequence number.
Logical Device Index of library device.
The record length.
The number of records in the data set.
The data type.
A positive integer used as identifying label
in error traceback prints.

Table 4: The variables in COMMON /CSMSPK/.

Since the actual data contained in each data set is unique, each subroutine Gxxxxx
must be specifically coded to interpret the data retrieved. The data sets to be accessed by
the eight interface modules are listed in Table 5. For each data set, given in Table 5 are
also the name of its source processor and the name of the dedicated interface module. The
last column of Table 5 indicates the appropriate utility module which should be called to
retrieve the type of data provided by the specified data set.

Source Processor
TAB

K
TAB

TOPO
AUS
AUS

K
SSOL

Dataset

JDF1.BTAB.1.8
K.SPAR.jdf2.0
CON.O.ncon.O
KM A P. 0. nsubs. ksize
APPL.FORC.iset.l
APPL.MOTI.iset.1
K.SPAR.jdf2.0
STA T. DISP. iset. neon

Gxxxxx.

GETJDF
GTZERO
GTCOND
GETIJ
GTFORC
GTMOTI
GTNUM5
GETSOL

GTRECx
GTRECI
GTRECF
GTRECF
GTRECI
GTRECF
GTRECF
GTRECF
GTRECF

Table 5: Datasets accessed by Gxxxxx and GTRECx.

The data retrieved from each data set and how they are handled by the interface routines
are described below. The readers are referred to reference [2] for a description of the format

39

of each data set.

JDF1.BTAB.1.8 provides the total number of joints and the maximum number of active
(unconstrained) degrees of freedom a joint may have in the model.
The subroutine GETJDF retrieves the data and stores them in the variables NUMJNT
and MAXDOF in the labelled common

/PRBLEM/ MAXDOF, NEQNS, NUMJNT

In an attempt to be flexible in handling the more general case in the future, the
subroutine GETDOF stores the active degrees of freedom for each individual joint
in an accumulated form in an integer array DOF so that the number of degrees for
joint #/ can be computed from DOF(I+1)-DOF(I), where DOF(1)=1, and that
DOF(NUMJNT+1)-DOF(1) gives the total number of equations of the assembled
system. The latter value is also stored in the variable NEQNS in the /PRBLEM/ com-
mon. Since the current version of the CSM Testbed assumes uniform degrees of free-
dom per joint in storing the system stiffness matrix, DOF(I+1)—DOF(I)=MAXDOF
for 1 < / <NUMJNT.

K.SPAR.jdf2.0 provides the assembled global stiffness matrix stored as an array of JDFxJDF
submatrices, where JDF is the maximum degrees of freedom in the model and its value
is available from the the variable MAXDOF in the /PRBLEM/ common block. Note
that the integer jdfl in the name of this data set is the square of the value of JDF.
The subroutine GTZERO retrieves the system stiffness matrix and detects dummy
rows by examining its diagonal elements. For each zero diagonal coefficient detected,
a zero is entered into the integer array MASK at the location MASK(I), where /
is the equation number of the dummy row. The convention we have adopted is
that MASK(J)= —1 if the Jth equation is neither constrained nor a dummy row,
MASK(J)= 0 if it corresponds to a dummy row or a zero constraint, MASK(J)= 1 if
it corresponds to a nonzero constraint.

CON.O.ncon.O provides constraint information for each joint degree of freedom. The infor-
mation available indicates for each joint which component is free, which component is
constrained to be zero and which component has a non-zero constraint. Such informa-
tion is encoded so that one integer is stored for each joint in the model. The current
encoding mechanism assumes that the maximum number of degrees of freedom a joint
may have is "six". The constraints corresponding to the six degrees of freedom are
encoded into the right most six bits of a seven-bit integer. The subroutine DECODE
accepts an integer as input and returns the status of each of the MAXDOF degrees
of freedom in the leading MAXDOF locations of a working array of length seven.

40

The subroutine GTCOND retrieves the encoded data from CON.O.ncon.O, calls DE-
CODE to obtain the constraint status for each joint in the model, and sets the cor-
responding entries in the integer array MASK to be "0" or "1" as explained above.
An integer output parameter CSIZE records the total number of nonzero constraints
whose numerical values are expected to be available in the data set APPL.MOTI.iset.l.
Therefore, after both subroutines GTZERO and GTCOND are executed, all con-
straint information is available for other SPK modules in the integer array MASK.
Note that we have treated the dummy rows as if they correspond to zero constraints.

KMAP.O.nsubs.ksize provides the block nonzero structure of the system stiffness matrix.
Note that the value of nsubs in the name of the data set represents the total number
of submatrices in the system stiffness matrix for the model, and that the integer ksize
is the maximum number of joints active at any time during the assembly of the system
matrix.
The subroutine GETIJ accesses KMAP.O.nsubs.ksize and the integer array MASK
to obtain the matrix structure for input to SPARSPAK-A. We explain how the con-
straints are handled in section §4.2.5.

APPL.FORC.iset.l provides applied forces and moments on each joint in each active direc-
tion. The integer iset in the dataset name identifies a unique load case.
The subroutine GTFORC retrieves the data but inputs a retrieved numerical value
as a component of the right hand side vector to SPARSPAK-A only if it does not
correspond to a variable constrained to be zero (i.e., MASK(I)^ 0 if / is the equation
number).
Since the right hand side is initialized to be identically zero in SPARSPAK-A, and the
modifications to the right hand side caused by nonzero constraints are to be "added"
to the appropriate components by subroutine GTNUM5, the input of right hand side
to SPARSPAK-A is not completed before the subroutine GTNUM5 is executed.

APPL.MOTI.iset.l provides applied motions on each joint in each active direction. As
mentioned earlier, the integer neon in the name of this data set identifies a particular
constraint case, and numerical values for the nonzero constraints detected by the
subroutine GTCOND are expected from this data set.
The subroutine GTMOTI retrieves the available applied motions and stores them
in a floating-point array FCON(I), where 1 < / < CSIZE, and CSIZE is the total
number of nonzero constraints determined in the subroutine GTCOND. Therefore,
when CSIZE = 0, the subroutine GTMOTI will return without attempting to access
the data set. However, when CSIZE> 0, it is a fatal error if the data set is missing
or less than CSIZE values are available.

The data set K.SPAR.jdf2.0 can now be accessed the second time by a different subroutine
GTNUM5 for the input of numerical values to SPARSPAK-A. The two arrays MASK

41

and FCON are passed to the subroutine GTNUM5 so that it can appropriately handle
the constraints as explained in section §4.2.5.

STAT.DISP.iset.ncon provides the computed static displacements for each joint in each
active direction. Unique solution is obtained by specifying the load set and constraint
case in the name of the data set.
The subroutine GETSOL retrieves the Testbed solution from this data set and verifies
the correctness of the SPARSPAK-A solution by computing its relative error with
respect to the Testbed solution. More details in this aspect are provided in section §5
on numerical experiments.

4.2.5 Interfacing with SPARSPAK-A

The processor SPK may interact with SPARSPAK-A via the interface modules given in
Table 6, which correspond to our choice of the minimum degree ordering (subroutine OR-
DRB5) for the new processor.

Initialization of SPARSPAK-A
Structure input

Ordering
Matrix input

Right hand side input

Factorization and/or Solution
j[Relative error estimation

Print statistics
Save and Restart the computation

SPRSPK
IJBEGIN
INIJ (I, J, S)
INROW (I, NIR, IR, S)
INIJIJ (NIJ, II, JJ, S)
INCLQ (NCLQ, CLQ, S)
IJEND(S)
ORDRB5 (S)
INAIJ5 (I, J, VALUE, S)
INROW5 (I, NIR, IR, VALUES,
INMAT5 (NIJ, II, JJ, VALUES,

S)
S)

INBI(I, VALUE, S)
INBIBI (NI, II, VALUES, S)
INRHS (RHS, S)
SOLVES (S)
EREST5 (RELERR, S)
STATSA
SAVEA (K, S)
RSTRTA (K, S)

Table 6: SPARSPAK-A interface modules - a subset.

42

The coupling of the SPK modules and SPARSPAK-A is depicted in Figure 24. The mod-
ules which interact with SPARSPAK-A are "SPKA", "GETIJ", "GTFORC" and "GT-
NUM5n. The module SPKA serves as the driver program of SPARSPAK-A. The module
GETIJ inputs the nonzero structure of the system stiffness matrix to SPARSPAK-A. The
modules GTFORC and GTNUM5 are involved in inputting nonzero coefficients and the
right hand side to SPARSPAK-A. The particular SPARSPAK-A subroutines to be called
by each of these interface modules are explicitly given inside the dotted boxes.

43

i - ~i i 1 i 1 i— i r 1
SPRSPK ORDRB5 SOLVES EREST5 STATSA

L«_ _• __ ^J I— ^^ ^^ ^—J L™, ^^ ĵ — ^_J L«_ v^_ «_ .̂ J L«_ «^ «^ ^J

I E 1| ' 1| N 1| ' 1
IJBEGN INCLQ INIJ IJEND

GTFORC GTNUM5

INBI INAIJ5

Figure 24: The coupling of the processor SPK and SPARSPAK-A.

44

Since SPARSPAK-A modules do not handle constraints, the retrieved system stiffness
matrix and the right hand side must be adjusted before they can be input to SPARSPAK-A.
The necessary modifications to the structure and the numerical values are detailed below.

Input the structure of the system stiffness matrix to SPARSPAK-A - In this sec-
tion we describe how the subroutine GETIJ inputs the the structure of the system
stiffness matrix to SPARSPAK-A. The data set KMAP..nsubs.ksize contains the sys-
tem topology map. From this map we can retrieve the following information for each
joint.

JNT - The number of the current joint.
CONRNG - The number of submatrices including the diagonal in the upper triangle

for the current joint.
CONECT(CONRNG-l) - A list of joints connected to the current joint.

Let us consider the following finite-element model which is given as an example in
[29].

Figure 25: A model.

Element
type
1 BEAM
2
3
4
5
6 PLATE
7
8

Connected
Nodes
1,2
2,3
3,4
2,5
3,6
1,2,5
2,3,6,5
3,4,6

Table 7: A model.

For this model, the information expected to be available in KMAP..nsubs.ksize is
listed in Table 8.

45

JNT | CONRNG | CONECT(CONRNG-l)
1
2
3
4
5
6

3
4
4
2
2
1

2,5
3,5 ,6
4 ,5 ,6

6
6

Table 8: From data set KMAP..nsubs.ksize.

Given in Figure 26 is the upper triangular block structure of the system matrix (in-
/ eluding the diagonal blocks) described by Table 8.

(1,1) (1,2)

(2,2) (2,3)

(3,3) (3,4)

(4,4)

(1,5)

(2,5)

(3,5)

(5,5)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

Figure 26: Upper triangular block structure of the system matrix for the model problem.

46

If each joint has three degrees of freedom in the model, each block is a 3 X 3 submatrix
and the system stiffness matrix 1C has the nonzero entries as given in Figure 27.

Figure 27: Nonzero entries in the upper triangle of K, (including diagonal submatrices.)

If every degree of freedom is active (unconstrained) on each joint, then the structure
input to SPARSPAK-A is as specified in Figure 27. It should be pointed out that
because SPARSPAK-A anticipates only "symmetric" nonzero structure, the struc-
ture input routine always records a logical nonzero in both (i,j) and (j,f) positions
regardless of which index pair being actually entered. Furthermore, the package auto-
matically removes duplications so that it does not matter if both (i, j) and (jti) pairs
are entered.

In order to demonstrate how we handle the constrained degrees of freedom, let us
assume that the second degree of freedom on joint #5 is constrained. In this case, the
corresponding columns and rows of data in 1C except for the diagonal elements will be
treated as zero entries. The nonzero positions SPARSPAK-A is informed of consist
of the remaining nonzeros as given in Figure 28.

47

Figure 28: Remaining nonzero entries in the upper triangle of 1C.

As seen from Figure 28, the equations corresponding to the constrained degree of freedom
is the fourteenth equation. We have thus ignored the nonzero entries in locations (i, 14)
and (14, i) for all i's except for the diagonal entries. Accordingly, the numerical coefficients
corresponding to these ignored locations must not be input to SPARSPAK-A and the right
hand side must be appropriately adjusted to reflect the change of the system matrix. We
next explain the internal working of our numerical input module.

Input the numerical values to SPARSPAK-A - The subroutine which inputs the nu-
merical values to SPARSPAK-A and modifies the right hand side according to each
constrained degree of freedom is GTNUMi, where t = 1,3, and 5 distinguishes the
SPARSPAK input modules INAIJi called for each ordering.

To see how the right hand side should be modified, we refer to Figure 29 for the same
example, where we label each ignored coefficient a,-tj explicitly, and indicate that the
coefficient for the diagonal entry 014,14 is set to 1.

Let the nonzero constraint corresponding to the second degree of freedom on joint
#5 be ci4. Our change to the system matrix and right hand side should reflect the
following.

1. The fourteenth equation is replaced by

48

<s
"2,14

"3,14

04,14

05,14

06,14

07,14

08,14

09,14

013,14 ® ® ® ®

1 014,15 Hit,16 014,17 014,18

Figure 29: Nonzero entries in the upper triangle of 1C.

2. Modify the right hand side to be

62
63
&4
65
be
67

blO

bu
6l2

"1 1

63

64
65
67
&8

fa
&n

6l2

£!
&15

&16

6l 7

\ ^18 /

—

"•1,14 '

03,14

04,14

05,14

06,14

07,14

08,14
09,14

0

0

0

Ol3,14
0

014,15

014,16

014,17
V 014,18 /

Thus, the right hand side elements 6,-,» = 1,2,3,4,5,6,7,8,9,13 are modified to

49

be
bi *- bf - 0,-,14 X Cl4

and the right hand side element bj, j = 15, 16, 17, 18 must be modified to be

bj <— bj - ai4,j x c14 .

To summarize, for each a,-,,- coefficient retrieved from the data set K.SPAR..*, sub-
routine GTNUMi checks whether the corresponding degree of freedom is constrained.
If that is the case, the value of 1.0 will be input to SPARSPAK-A as a,-)t- and the
constraint value is input to SPARSPAK-A as 6,-.

For each off-diagonal element ot-j, GTNUMi checks the following four possible cases.

1. If both x; and Xj are constrained, no action needs to be taken.

2. If Xi is active and Xj is constrained to be Cj then

bi «— bi — a,-j x Cj .

3. If Xj is constrained to be Cj and Xj is active then modify

bj «- bj - aij x Ci .

4. If neither a;,- nor Xj is constrained, input the retrieved a,-j value to SPARSPAK-A
and specify the location to be (j, i). (SPARSPAK-A requires the numerical value
to be input for the lower triangular part only.)

50

4.3 The Usage of the Interface

4.3.1 The Execution Path

The usage of the interface in solving a testbed problem is reflected by the execution path of
the subroutine SPKA as sketched in Table 9. The execution sequence is enforced by checking
and updating the value of the variable STAGE in the common block /CSMCON/'. The
values of STAGE for the successful completion of each corresponding step are listed in the
last column of Table 9.

1 Execution path

Step 1.1
1.2
1.3

Step 2.1
2.2
2.3
2.4
2.5

Step 3

Step 4

Step 5

Step 6

Step 7

Step 9
(optional)
Step 10
(optional)
Step 11
(optional)

Start

Problem input

Structure input

Order and
allocate storage
Input numerical
values for 6
Input numerical
values for A and 6
Factor A and solve
for solution x
Relative error estimation

Compare z with
CSM Testbed solution
Collect statistics

SPARSPAK-A
subroutine
SPRSPK

IJBEGIN
INCLQ
INIJ
1JEND
ORDRB5

INBI

IN A US
INBI
SOLVES

E RESTS

STATS A

Interface
subroutine
SPKCSM
LIBOPN
CTIME
GETJDF
GETDOF
GTZERO
GTCOND
GTMOTI
GETIJ

GTFORC

GTNUM5

GETSOL

STATCS

Oataset
dependency

JDFl.BTAB.l.S

K.SPAR.jdf2.0
CON.O.neon.O
APPL.MOTI.itet.1
KMAP.O.mubf-ksizc

APPL.FORC.i»tt.l

K.SPAR.jdfS.0

STAT.DISP.iaet.ncon

/CSMCON/
STAGE

0
10

20
30
40
50
60
70

80

90

Table 9: The execution path of the subroutine SPKA

51

4.3.2 User Input to the Processor SPK

In our current implementation of the processor SPK, the user-processor communication is
accomplished via an external text file. The input requirement and format are reflected by
the following code segment of the subroutine SPKA

c
SUBROUTIIE SPU (i, MZSTOR)

c

HDAOA » 41
C • ••••• • • ••••••••••• «••

C SET HSGLVL AS DESIRED

READ (IIDATA, 12) MSGLVt

C SET MSGLVA AS DESIRED

(* — .».••—••••• • • — •.• — •• — •* —

READ (IIDATA, 12) HSGLVA

C SET HAZIHUH BUFFER LEHGTH
ft _ _ — ••»» — — •»••_• __»•««__»

READ (IIDATA, 12) BUFMAX
12 FORMAT (14)

C IIPUT IAHE OF LIBRARY AID DATASETS FOR GIVEI PROBLEM

READ (IIDATA, 22) LIBIAM
22 FORMAT (A40)

READ (IIDATA, 32) JDFSET
READ (IIDATA, 32) KNAP
READ (IIDATA, 32) KSPAR
READ (IIDATA, 32) CO!
READ (IIDATA, 32 } APPLF
READ (IIDATA, 32) APPLN
READ (IIDATA, 32) STATD

32 FORMAT (AS1)

RETURI

BID

The following comments are in order.

1. As shown in the above code segment, we have designated the logical unit number
41 to be used for the input data file. This choice is made under the restriction that
logical unit numbers 1 through 40 should not be used for files other than libraries to
avoid possible conflicts with CLIP and GAL [2].

52

2. The variable MSGLVA stands for "message level of SPARSPAK-A". The user may
govern, the amount of output from SPARSPAK-A by setting MSGLVA to the values
Table 10.

MSGLVA
0
1
2
3
4

amount of output
no information is provided,
only warnings and errors are printed,
warnings, errors and summary are printed,
warnings, errors, summary and some statistics are printed.
detailed information for debugging purposes.

Table 10: The valid input values of MSGLVA.

3. The variable MSGLVL allows user to control the amount of output from the interface
modules. Given in Table 11 are the input values acceptable for MSGLVL.

MSGLVL
0,1
2
3

amount of output
no information is provided,
warnings, errors and summary are printed.
detailed information for debugging purposes.

Table 11: The valid input values of MSGLVL.

4. The value of BUFMAX should be set to the maximum record length of any data set
the processor SPK ever needs to retrieve.

5. The variables initialized by user input are collected into the two labelled common
/SPAUSR/ and /CSMUSR/.

6. An example - To solve the linear system of the test problem demol using SPARSPAK-
A, edit a file named "fort.41" to contain the following data:

2
2
2240
/usr.MC68020/nlal/echu/ns/DENO/demol.l01
JDF1.BTAB.1.8
KMAP..9.3
K.SPAR.36
CON..1
APPL.FORC.1.1
APPL.MQTI.1.1
STAT.DISP.1.1

53

Note that the path name of the library file "demol.101" is installation dependent. The data
set names listed above can be identified from the table of contents of the library demol .101
given in Figure 3. Note that the data sets APPL.FORC.iset.l and APPL.MOTI.iset.l may
not both exist, and it is indeed the case for the problem demol - one cannot find the name
APPL.MOTL1.1 listed in the table of contents of its data library. However, as noted above,
we have required the user to input both names in order to maintain a uniform format for
user input. In this case, the variable APPLM is simply a dummy variable, because the
subroutine GTMOTI will not attempt to access this data set as explained in §4.2.4.

4.3.3 Output from the Processor SPK

1. Output from SPARSPAK-A: The readers are referred to section §7 of the SPARSPAK-
A User's Guide [7] for a complete description of the statistics and error messages
output.

2. Output from the interface modules:

(a) Statistics gathering (STATCS) - The information contained in Table 12 may be
printed by the following statement.

CALL STATCS

MSGLVL Information [Variable | Common block |
0,1,2,3

2,3
2,3

3

Toted CSM-time required
Maximum CSM-storage required
Size of storage array
Number of joints
Max degree of freedom per joint
Number of equations
Addresses of arrays

CSMTIM
CSMSTR
MAXCSM
NUMJNT
MAXDOF
NEQNS
DOF
BUF
MASK
KC
ICLQ
FCON
SPK

/CSMDTA/

/CSMUSR/
/PRBLEM/

/CSMMAP/

Table 12: Information printed by the subroutine STATCS.

(b) Error messages (IERR) - When fatal error is detected, so that the computation
cannot proceed, a positive code is assigned to the variable IERR in the common
block /CSMUSR/. The names of the modules in which the error occurs, the

54

numerical error codes, and the corresponding error messages as given in Table 13
may be printed by setting the variable MSGLVL to be "2" or a higher number.

MODULE IERR Error message

SPACE

LIBOPN

GETJDF

GETDOF
GTZERO
GTCOND
GETIJ
GTFORC
GTMOTI

GTNUM5
QKINFO

GTRECI

GTRECF

1001

1011
1012

1013
1014
1019
1021
1022
1023
1024
1025
1026
1027
1028
2001
2002
2003
2004
2009

2005
2006
2007
2008

Insufficient storage. The last stage completed
and the required storage are printed
Cannot open dataset library
The maximum logical device index = 30. The LDI
returned exceeds this value.
Incorrect execution sequence.
Dataset does not have all expected items.
Incorrect execution sequence.
Incorrect execution sequence.
Incorrect execution sequence.
Incorrect execution sequence.
Incorrect execution sequence.
Incorrect execution sequence.
Unexpected nonzero constraint value.
Zero entry for a nonzero constraint occurs.
Incorrect execution sequence.
LMFIND: cannot find dataset.
GMGEKA: record does not exist.
GMGECY: record group key undefined.
GMGECY: segmented record group noted.
Insufficient buffer space. The required value
for the input variable BUFMAX is printed
record type mismatch • • •
GMGETN: error detected by LMERCD •••
record type mismatch • • •
GMGETN: error detected by LMERCD • • •

Table 13: Error messages of the processor SPK
*

55

4.3.4 An Example - Solving the Testbed problem demol

Input data:

2
2
2240
/rax .HC68020/nlal/echn/ns/DEHO/demol. 101
JDFl.BTiB.1.8
KIUP..9.3
K.SPAR.36
COI..1
iPPL.FORC.1.1
APPL.MOTI.1.1
STAT.DISP.1.1

The following output is produced by the macroprocessor command [xqt SPK:

** BEGII SPK ** DATA SPACE" 600000 WORDS
1

********** UIIVEBSITY OF WATEHLOO
********** SPARSE MATRIX PACKAGE
********** (S P A R S P A K)
********** RELEASE 3
********** (c) JAHUARY 1984
********** ASSI FORTRAI
********** DOUBLE PRECISIOI
********** LAST UPDATE JAIUARY 1984

OUTPUT UIIT FOR ERROR MESSAGES 6
OUTPUT UIIT FOR STATISTICS 6

LIBOPI- OPEI /nar.MC68020/nlal/ec]ui/na/DEKO/<laool.l01
<DM> OPEI, Ldi: 2, File: /U8r.MC68020/nlal/echu/ns/DENO/<iemol.l01 ,

Attr: rold, Block I/O

DATASETS TO BE ACCESSED:

JDF1.BTAB.1.8
KHAP..9.3
K.SPAR.36
COI..1
APPL.FORC.1.1
APPL.KOTI.1.1
STAT.DISP.1.1

GETJDF - GET IUMBER OF JOIITS AID ...

GETDOF - GET DEGREES OF FREEDOM ...

GTZEEO - DETECT DUHHY ROWS ...

GTCOBD - GET COISTRAIITED VARIABLES...

GTMOTI - GET BOHZERO COBSTRAIBTS...

56

QETIJ - IIPOT IOIZERO STBOCTUBES...

IJBEOI - BEOCT STRUCTURE HPUT ...

IIIJ - IHPUT OF ADJACEHCY PAIRS ...

IJEID - EID OF STEUCTUHE IIPUT ...

ORDRBS - MHIHUK DEGREE ORDERIIG ...

OTFORC - IIPUT RIGHT HAID SIDE...

IIBI - IIPUT OF RIGHT HAID SIDE ...

OTIUM5 - GET IOIZERO IUMERIC...

IIAIJ5 - IIPUT OF MATRIX COMPOIEIT3 ...

SOLVES - GENERAL SPARSE SOLVE ...

EREST5 - ERROR ESTIMATOR ...

GKTSOL - COMPARE WITH TESTBED SOLI ...

MAX. REL ERR COMPARED TO STAT.DISP.l.1

IS 0.4824782a-07 II COMPOIEIT 26
CSM SOL = 0.28S20867228508e+00 HE HAVE 0.28S208686O4578a+OO

STATCS - SYSTEM-CSH STATISTICS ...

SIZE OF STORAGE ARRAY (MAXCSH) 30000O

•UMBER OF JOIITS 5
MAX DEGREE OF FREEDOME PER JOIIT 6
•UMBER OF EQUATIONS 30
TOTAL CSM-TIKE REQUIRED 3.740
MAXIMUM CSM-STORAGE REQUIRED 2271.

STATSA - SYSTEM-A STATISTICS ...

SIZE OF STORAGE ARRAY (HAXSA) 297729
•UMBER OF EQUATIOBS 30
•UMBER OF OFF-DIAGOIAL IOIZEROS 336
TIME FOR ORDERIIG 0.020
STORAGE FOR ORDERIIG 442.
TIME FOR ALLOCATIOI 0.000
STORAGE FOR ALLOCATIOI 308.
STORAGE FOR SOLUTIOI 367.
TIME FOR FACTORIZATIOI 0.040
TIME FOR SOLUTIOI 0.020
OPERATIONS II FACTORIZATIOI 956.
OPERATIOHS II SOLUTIOI 396.
TIME FOR ESTIMATING RELATIVE ERROR 0.040
OPERATIOIS II ESTIMATIIG REL ERROR 1330.
STORAGE FOR ESTIMATIIG REL ERROR 397.
ESTIMATE OF RELATIVE ERROR 2.088a-08

57

TOTAL TIME REQUIRED 0.120
KAXIHUH STORAGE REQUIRED 442.

EXIT SPK CPUTIHE- 4.2 I/0(DIR,BUF)" 0 0

58

5 Numerical Experiments

In this section we report experimental results of several matrix factorization processors we
have installed in the CSM Testbed.

5.1 The Specifications of the Test Problems

For all processors the tests are performed on the NICE/SPAR demonstration problems
listed in Table 14. The finite element model of CSM focus problem 1 has been refined to
generate larger problems focusl, focus2, focusS and focus4. The five different meshes we
have used are given in Table 15.

NICE/SPAR demonstration problems

p648

focusl
focus2
focusS
focus4
demol
demo2
demo3
demo4
demo6
demo?
demoQ
demolO
demo 12
demolS

CSM focus problem 1 — Buckling of a blade- stiffened
panel with a discontinuous stiffener
p648 .with finer mesh I
p648 with finer mesh II
p648 with finer mesh III
p648 with finer mesh IV
Beam problem
Vibration of a circular membrane
Circular plate problems
Rectangular plate problems
Cylindrical shell problems
Budding of a cylindrical shell due to torsional loading
Beam problems
Saturn 5 Launcher Umbilical Tower (LUT)
Hyperbolic paraboloid static solution
Composite toroidal shell

Table 14: NICE/SPAR demonstration problems.

Each problem is completely specified by the data sets in Table 16 except that the load
set APPL.FORC.iset.l and the applied displacement dataset APPL.MOTI.iset.l may not
both exist. For example, there is no applied force vector for the panel focus problem and
there is no applied displacements for the static analysis of the mast problem. The value of
neon selects one of possibly more than one constraint cases and the value of iset specifies a
particular load case of applied force and moments, which is also the load case of the applied
motions if there exist nonzero constraints. Corresponding to each pair of (neon, iset) there
is a unique solution which may be retrieved from the data set STAT.DISP.iset.neon to

59

User-specified meshes for CSM focus problem 1

p648
mesh I
mesh II
mesh III
mesh IV

NRINGS
2
4
2
2
4

NSPOKES
8
16
8
8
16

NELX
3
3
6
12
6

NELE
1
1
2
2
2

NELBS
1
1
2
2
2

NELS
1
1
2
2
2

Table 15: User-specified meshes for CSM focus problem 1.

verify the correctness of an experimental processor. The full names of the data sets can
be found in the table of contents of the data library which can be looked up during or
after the execution of a particular analysis in the Test bed. As shown in the example given
in Table 16, a "0" component in the dataset name can be represented by a null entry. A
sample content list of the data library demo 1.101 was given in §2 of this report, which
was produced by the CLAMP directive *TOC during the execution of problem demol. For
each test problem, the path name of its data library and the names of the data sets in
Table 16 consist of the user input to an experimental processor. Note that the use of * as
a component of the dataset name implies a generic wild-card match, hence it should not
be used unless the data set with its name matching the remaining components is unique in
the data library.

The accessed CSM testbed data sets ||
Name

JDF1.BTAB.1.8
KMAP. 0. nsubs.ksize
K.SPAR.jdf2.0
CON.O.ncon.O
APPL.FORC.iset.l
APPL.MOTI.iset.1
STAT.DISP.iset.ncon

An example
(ncon,iset) = (3,6)
JDF1.BTAB.*
KMAP..*
K.SPAR.*
CON..3
APPL.FORC.6.1
APPL.MOT1.6.1
STAT.DISP.6.3

Table 16: Data sets accessed by CSM-SPARSPAK interface modules.

The system Ax — b presented to each experimental processor is the upper triangular
part of the system stiffness matrix retrieved from the data set K.SPAR.jdf2.0 subject to
the changes necessitated by the way we handle constraints and dummy rows. The modified
system has the following characteristics.

60

1. The coefficient matrix and the right hand side are modified so that each equation
corresponding to a constrained variable z,- can be replaced by

where c,- > 0 is the specified constraint.

2. The identically zero rows are detected before problem input and the corresponding
variables are treated as being constrained to zero.

3. The dimension of the modified coefficient matrix is equal to the product of the number
of joints and the degree of freedom per joint in the model. The number of equations of
each demonstration problem is given in Table 17 under the column heading "neqns".

In Table 17 we summarize the characteristics of the linear systems retrieved for each
demonstration problem. The entries in the column labeled "# nonzeros in K.SPAR" are
computed from nsubs X jd/2, where we recall that nsubs is the total number of submatrices
in the block upper triangular part (including the diagonal blocks) of the system stiffness
matrix and that jd/2 = JDFx JDF represents the number of elements in each submatrix.
Therefore, the nonzero count here includes the coefficients in the lower triangular part of the
diagonal blocks and the coefficients in the dummy rows as well as the rows corresponding
to the constrained variables. The actual off-diagonal nonzero elements input to an exper-
imental processor are listed in the last column under the heading of "# off-diag nonz in
A".

5.2 The Numerical Properties of the Test Problems

5.2.1 The Conditioning of the System Stiffness Matrix

In Table 18 we list the estimated condition number of the system stiffness matrix for each
test problem. The condition numbers are provided by SPARSPAK-A and their computation
is described in reference [6]. The order of magnitude of the condition numbers indicates
that the single-precision solution of these problems my not have significant digits in some
components. By comparing the single-precision static displacement solutions obtained from
the Testbed processors INV and SSOL for the same problem using different joint orderings,
our numerical experiments confirm that the loss of all significant digits can indeed occur in
small components of the solution.

5.2.2 The Accuracy of the Computed Solutions

The condition number estimates we presented in Table 18 indicate that in order to have sig-
nificant digits in all components of the solution to be stored in the data set STAT.DISP.iset.ncon,

61

Characteristics of the linear systems Ax = b

problem
p648
focusl
focus2
focus3
focus4
demol
demo2
demo3
demo4
demo6
demo7
demo9
demolO
demol 2
demolS

joints
108
192
276
480
388
5

101
101
54
121
132
11

372
36
337

d.o.f
6
6
6
6
6
6
3
5
5
6
6
6
6
6
6

neqns
648

1152
1656
2880
2328

30
303
505
270
726
792

66
2232
216

2022

dummy
rows
78
154
228
396
332

0
101
0
0
0
0
0
0
0
0

#zero
constraints

98
116
167
167
185
6

203
80
55
97
36
6
24
18
96

nonzero
constraints

10
12
17
17
19
0
0
0
0
0
0
0
0
0
0

nonzeros
in K.SPAR

17064
31320
45792
81216
65088
324

4077
11325
5675
19476
22464
756

47376
5256
59364

off-diag
nonz in A

9706
18458
26824
50560
38656

168
342
7830
3546

14151
18576
474

39072
3978

49743

Table 17: Characteristics of NICE/SPAR demonstration systems.

Condition number of
the system stiffness matrix

problem
p648
focusl
focus2
focusS
fo'cus4
demol
demo2
demoS
demo4
demo6
demo?
demoQ
demolO
demol 2
demolS

SPARSPAK-A estimate of
condition number

2.2 x
3.7 x
2.2 x
2.0 x
2.6 x
5.8 x
2.2 x
1.7 x
1.8 x
2.0 X
3.2 x
4.8 x
5.0 x
5.6 x
1.4 X

107

107

107

107

107

107

107

107

107

107

107

106

1010

109

107

Table 18: Numerical properties of NICE/SPAR demonstration problems.

62

the system stiffness matrix should be stored in double-precision and processors IHV and SSOL
should perform the numerical computation in double-precision. The following information
from [1] tells us how to ensure that the computations by each processor are performed with
the desired precision.

1. Processor K stores the system stiffness matrix in double precision if the user input
parameter SPDP is reset to 2 as shown in a sample script given later in this paragraph.

2. Processor INV calculates the triangular matrix using double precision if the input
system stiffness matrix dataset is stored in double precision. However, the factors
output by processor INV will be stored in the precision determined by resetting the
user-controlled argument SPDP: 1 (default) = single precision, 2 = double precision.

3. Processor SSOL computes the displacement solution vector in double-precision if the
factored matrix is stored in double-precision.

Therefore, each reset SPDP in the following script excerpt ensures that the output data set
is in double precision, which in turn ensures that the computation by the next processor is
performed in double precision.

[xqt K
reset SPDP=2

[xqt INV
reset §PDP=2

[xqt SSOL

For each demonstration problem, the solution provided by an experimental processor is
not expected to be identical to the Testbed solutions due to potentially different amounts
of round-off error caused by the following factors.

1. The coefficient matrix of the linear system to be solved by an experimental processor
is ordered differently. That is, processors INV and SSOL solve (in double precision)

Px = Pf ,

whereas our experimental processor solves (in double precision)

Px = Pf .

Since the permutation matrix P is induced by resequencing the joints in the model,
it is not the same as the permutation matrix P chosen by SPARSPAK-A for the
coefficient matrix in general.

63

2. Even for the same ordering of A, the factorization algorithms implemented by different
processors employ different computation sequence.

3. The system stiffness matrix is ill-conditioned.

However, with the condition number estimates available for each system stiffness matrix,
we can estimate the relative error in our solution x by the algorithm described in [6] and
implemented in SPARSPAK-A. On the other hand, by assuming that the Testbed solution
x is the correct solution we can compute the relative error in x by

max-1—rn— •
V. \Xi\

We can now verify the correctness of our experimental processors if the relative error com-
puted above is very close to the relative error estimated by SPARSPAK-A with respect to
the true (but unknown) solution. We have listed these two quantities in Table 19 for all test
problems and we see that they are essentially of the same magnitude or sufficiently close
for all problems.

problem

p648
focus 1
focus2
focusS
focus4
demol
demo2
demo3
demo4
demo6
demo?
demo9
demo 10
demo!2
demolS

maxl*.r*il
lxi \

5.9 X 10~8

6.4 x 10~8

5.9 x 10-8

5.8 x 10-8

7.3 x 10~8

4.8 x 10~8

5.0 x 10~8

4.7 x 10~7

5.0 x 10~8

1.6 x 10~6

6.2 x 10~8

2.7 x 10~8

5.6 x 10~6

5.7 x 10~8

5.8 x 10~7

SPARSPAK-A estimate of
the relative error in x

6.9 x 10-a

2.7 x 10-8

4.6 x ID"8

4.9 X 10-8

3.8 x 10-8

1.4 x 10-8

5.4 X 10~9

2.9 X 1Q-8

6.4 x 10-9

1.2 x 10-8

1.9 x 1Q-8

1.7 x 10-9

1.6 x 10~5

4.4 X ID"6

6.9 X 10~8

Table 19: Comparing NICE/SPAR solutions x with SPARSPAK-A solutions x.

64

5.3 The Experimental Factorization Processors

In this section we briefly describe the three sparse matrix factorization processors we have
installed in the CSM Testbed. The three processors employ different methods in solving a
sparse symmetric positive definite system

Ax = b.

1. Processor SPK: The method employed by the processor SPK is the direct solver provided
by SPARSPAK-A corresponding to the minimum degree ordering algorithm in [26].

2. Processor EXP1: The factorization method employed by the experimental processor
EXP1 is the multifrontal method implemented by Liu as described in [23].

3. Processor EXP2: The factorization method employed by the experimental processor
EXP2 is the adaptive sparse out-of-core Cholesky scheme recently developed by Liu
[22].

Since the factorization methods employed by the processors EXP1 and EXP2 use the same
storage scheme as that used by the minimum degree ordering in SPARSPAK-A and they
•were intended to be used in conjunction with SPARSPAK-A [22,23], the same interface
modules for inputing the problem to SPARSPAK-A can be used.

5.4 Numerical Results

We first compare the factorization time of the three experimental processors with that of
the processor INV. Since the joint ordering can affect the execution time of processor INV
significantly, we have attempted to report the timing results for all available joint elimination
sequences. The ordering algorithms currently available in the CSM Testbed are listed in
Table 20.

acronym

ND
MDG
RCM
GPS
SEQ

ordering algorithm

Nested dissection (fill minimizer) [19]
Minimum degree (fill minimizer) [19,24]
Reverse Cuthill-Mckee (profile minimizer) [19]
Gibbs-Poole-Stockmeyer (bandwidth minimizer) [8]
Sequential joint elimination sequence (i.e., no reordering of joints)

Table 20: The joint ordering methods employed in the CSM Testbed.

Since the ordering algorithms used by processors EXP1 and EXP2 are the topological
orderings of the elimination tree induced by the minimum degree ordering [22,25], we have
thus used "MDG*" to represent any one of them. One consequence of the choice of ordering
algorithms by the experimental processors is that the amount of fill-in in the Cholesky factor

65

is the same for the three of them. From the factorization times reported in Table 21 we
see that the in-core factorization time of processors SPK and EXP1 are significantly smaller
than the INV times in most cases as one would expect in view of the I/O conducted by
the latter. Except for problem demo?, the saving in execution time ranges from 30% to
58% compared to the fastest INV time. As we have pointed out earlier, the reordering of

Factorization times (in seconds)

problem
focus 1
focus2
focusS
focus
demo6
demo?
demolO
demolS

NICE/SPAR (INV)
SEQ
466

61
96
60

406

ND
151
236
770
482

53
124
304

MDG
106
145
441
288
53

101
62

ROM
196
445

940
82

113
203

GPS
239

82
112
166

SPK
MDG*

44
76

313
148
33
93
41

283

EXP1
MDG*

43
76

146
32
92
40

EXP2
MDG*

61
102
378
188
45

113
72

337

Table 21: NICE/SPAR (INV) and SPARSPAK-A factorization times.
C

the joint sequence in the model produces a different permutation matrix from that induced
by applying the same ordering algorithm to the coefficient matrix itself. In Table 22 we
compare the quality of the minimum degree algorithm when applying to each case, where
we give the nonzero counts in the system stiffness matrix A and the computed factors. Due
to the different storage schemes employed by the processor INV and SPARSPAK-A, the
fill-in is not measured in exactly the same manner as Table 22 indicates.

problem
focusl
focus2
focusS
focus4
demo?
demo 10

Processor INV

ordering
MDG
MDG
MDG
MDG
MDG
MDG

nonzeros
in K.SPAR

31320
45792
81216
65088
22464
47376

nonzeros
in INV.K

71040
99324

221526
165480
62172
79992

SPK, EXP1, EXP2

ordering
MDG*
MDG*
MDG*
MDG*
MDG*
MDG*

off-diag
nonz in A

18458
26824
50560
38656
18576
39072

off-diag
nonz in L

47487
72519
184042
120682
62829
71076

Table 22: Comparing the fill-in of different processors.

The performance of processors SPK and EXP1 are essentially the same in terms of ex-
ecution time. In terms of storage, the in-core multifrontal Cholesky factorization scheme
of processor EXP1 requires additional working storage compared with the in-place Cholesky

66

method provided by processor SPK. However, it should be pointed out that the multifrontal
method lends itself readily to out-of-core implementation [27], in which case the amount
of in-core storage required to perform the entire factorization turns out to be precisely the
same as the required working storage for the in-core version. The readers are referred to
[27] for various strategies in minimizing the working storage. In [25] the behaviour of the
multifrontal method in a paging environment is studied.

In order to compare the out-of-core performance of processor EXP2 with that of processor
INV, we should note the following.

1. The number of in-core data reorganizations of the adaptive sparse out-of-core Cholesky
scheme [22] is dynamically adjusted to the available memory. In particular, if the de-
clared working space is sufficiently large for the given problem, the entire factorization
process will be carried out in-core without reorganizing the data structures. In order
to provide a meaningful comparison of the performance of processor EXP2 in execu-
tion time as well as storage requirement with that of processor INV, we have run the
processor EXP2 with the minimum amount of in-core storage that will allow EXP2 to
execute. This number can be determined in advance of the actual numerical factor-
ization.

2. The processor EXP2 does I/O using ordinary text files. In particular, the sparse
coefficient matrix is saved in a text file and read into memory one column at a time,
and the computed Cholesky factor is written to a text file one column at a time. In the
current implementation, auxiliary storage is not used to reduce the in-core overhead
storage, although it is possible to do so as suggested in [22].

3. We have explained in detail how the processor INV carries out the out-of-core block
LDLT factorization process in § 3.2 of this report. The I/O traffic involved amounts
to retrieving the system stiffness matrix from the data set K.SPAR.* as well as the
indexing information from the data set AMAP..ic2.isize, and outputting the computed
factors to the data set INV.K.ncon.O. Because the data are read from or written to
the database one record at a time, the number of disk I/O is determined by the record
length of each data set. The default record length of these three data sets are listed
below in Table 23.

Database interface of processor INV
Source processor

K
TOPO
INV

Reset argument
LREC

LRAMAP
LRA

Dataset name
K.SPAR.*
AMAP..ic2.isize
INV.K.ncon.O

Default record length
2240 words
1792 words
3584 words

Table 23: Database interface of processor INV.

Recall that one record has to accommodate at least the amount of data needed to pro-

67

cess one block row of the coefficient matrix. Hence the default record length may not
be big enough for larger or denser problems and they can again be changed by resetting
the designated argument when executing the source processor of each respective data
set. In particular, if necessary, processor TOPO will automatically increase the AMAP
record length twice up to a maximum size of 2.25xLRAMAP words. The number of
records contained in each data set are given under the column heading "Records" in
the table of contents of the data library created for each particular analysis.
In summary, the volume of I/O involving each individual data set is roughly the
product of the number of records and the record length (strictly speaking, the last
record may contain fewer items than being permitted by the specified record length),
whereas the number of disk read/write operations is determined by the number of
records.

4. The in-core storage required by the processor INV must accommodate one record of
each data set in Table 23 in addition to accommodating the maximum number of
submatrices involved during the factorization process. Therefore, as suggested in [1],
the memory requirement for processor INV may be estimated by the following formula.

number of words = J + £3 + m (LI + L^ + n2I3J ,

where

J = the number of joints in the structure.

LI = record length of input dataset K.SPAR.jdf2.

LI = record length of INV.K.ncon dataset.

£3 = record length of AMAP..ic2.isize dataset.

m = 1 for single precision; 2 for double precision.

n = maximum number of degrees of freedom per joint (default 3, 4, 5, or 6).

Ia = the maximum number of submatrices in use during any one stage of the fac-
torization process. Its value can be obtained from the processor TOPO output
parameter SIZE INDEX or from the value of isize from AMAP..ic2.isize.

It was suggested in [1] that this formula may be used to estimate the amount of space
in blank common required by processor INV. If the number of words required is larger
than the dimension of blank common, the blank common dimension must be increased
and the testbed must be recompiled.

In Table 24, we compare the factorization time and the memory requirement of processor
INV with that of the experimental processor EXP2. For each problem, we give the number
of nonzero elements in the Cholesky factor computed by SPARSPAK-A (recall that the
amount of fill-in is the same for all three experimental processors) under the column heading

68

"NOFNZ". The ratio of core requirement to the size of the computed Cholesky factor is
computed for each problem and displayed for both processors. Note that the quantity of

4 we use in measuring the memory requirement of processor INV is an underestimate as
explained above. We use "LNZSZE" to indicate the maximum number of nonzeros which
have to be present in-core for the adaptive sparse Cholesky factorization process to be
successfully executed. The results in Table 24 indicate that the processor EXP2 can be quite
competitive in both time and space.

problem

focus 1
focus2
focusS
focus4

, demo6
demo?
demolO
demo 13

NOFNZ

47487
72519

184042
120682
28302
62829
71076

180315

INV

NOFNZ

61%
47%
36%
46%
62%
46%
39%
6%

Time (sec)

107
147
449
288
53
108
62
406

EXP2

LNZSZE
NOFNZ

35%
31%
32%
31%
44%
45%
5%
25%

Time (sec)

61
102
378
188
45
113
72
337

Table 24: Comparing two out-of-core factorization processors.

Comparing the factorization algorithm of processor EXP2 (adaptive out-of-core Cholesky)
with that of processor SPK, we see that the difference in their execution time can be ac-
counted for in the following three aspects.

1. The time spent in data structure reorganization.

2. The time for reading in the coefficient matrix A column by column.

3. The time for writing out the computed Cholesky factor L column by column.

The timing results reported in Table 24 are those with the minimum amount of mem-
ory and maximum number of data structure reorganizations. Since the frequency of data
structure reorganizations can be reduced by providing more memory, there is a potential
tradeoff between time and space. However, the timing results in Table 25 indicate that the
time spent in this regard is too small to justify the more significant increase in storage. We
can thus conclude that the I/O time can be considered to be the sole factor in determining
the speed of processor EXP2.

Since the multifrontal Cholesky method is also a good candidate for out-of-core imple-
mentation, and we pointed out earlier that the "working storage" required in its in-core
version is precisely what is needed to be in-core in its out-of-core version, it makes sense to

69

problem
focusl
focus2
demo6
demolO

NOFNZ
47487
72519
28302
71076

EXP2
LNZSZE

28872
34020
17676
27900

REORGZ
2
3
3
2

Time
59 sec
99 sec
44 sec
69 sec

EXP2
LNZSZE

16823
22647
12394
3330

[# REORGZ
29
31
34
169

Time
61 sec

102 sec
45 sec
72 sec

Table 25: Data structure reorganization and factorization time.

evaluate its out-of-core potential by comparing its minimum working storage requirement
with the memory requirement of processor EXP2. The results we present in Table 26 indicate
that the two are quite comparable as far as the test problems are concerned.

problem
focusl
focus2
focusS
focus4
demo6
demo7
demolO
demolS

NOFNZ
47487
72519

184042
120682
28302
62829
71076

180315

Multifrontal (EXP1)
LNZSZE/NOFNZ

34%
31%
36%
28%
44%
56%
6%

21%

Column- Cholesky (EXP2)
LNZSZE/NOFNZ

35%
31%
32%
31%
44%
45%
5%

25%

Table 26: Comparing processor EXP1 with EXP2

For completeness, we provide in Table 27 the timing results of three other processors
which are also essential in solving the linear system arising from a testbed problem, namely
TOPO, K and SSOL.

Finally, we provide in Table 28 the total time in executing the processor SPK in the
Testbed and indicate separately the time attributed to the numerical factorization phase
and the triangular solution phase. The SPK time thus includes the time for retrieving data
from the global database and setting up the problem for SPARSPAK-A solver.

In summary, our preliminary findings indicate that there are alternative sparse matrix
techniques which are suitable for more general applications and appear to be also competi-
tive in execution time and storage usage compared to the techniques currently employed in
the CSM Testbed.

70

problem
focus 1
focus2
focusS
focus4
demo6
demo7
demolO
demolS

TOPO
5
6

16
10
3
4
5

11

K
23
34
61
49
11
13
18
47

INV
107
147
449
288
53

108
62

406

SSOL
13
17
33
24

9
12
16
48

Total
148 sec
204 sec
559 sec
371 sec

76 sec
137 sec
101 sec
512 sec

Table 27: Timing results of TOPO, K, INV, SSOL.

problem
focus 1
focus2
focusS
focus4
demo6
demo7
demolO
demolS

fact
44 sec
76 sec

313 sec
148 sec
33 sec
93 sec
41 sec

283 sec

soln
2 sec
4 sec
9 sec
6 sec
2 sec
3 sec
4 sec
9 sec

SPK
65 sec

107 sec
376 sec
194 sec
48 sec

113 sec
73 sec

331 sec

Table 28: Execution time of the processor SPK.

71

A Installing the Processor SPK

The processor SPK consists of a subset of SPARSPAK-A [7] modules and a set of subroutines
which provide an interface between SPARSPAK-A and the global database of the CSM
testbed. All of the subroutines are provided as a single directory SPARSE on a UNIX tar
tape. The Fortran source for the package is distributed among a number of subdirectories.
There are "make" files provided, so that the person installing the package needs only to
execute a few commands to compile the package and create the run-time library.

It is advisable to read "§4 Developing New Matrix Factorization Processors" of this
report before beginning installation of the package. Since the SPARSE package is used in
conjunction with the CSM testbed, we assume in the sequel that the NICE/SPAR processors
have been properly installed in the directory /usr/ns/nice and /usr/ns/spar, and that
the SPARSE package is to be installed in the directory /usr/ns/sparse. The hierarchy
of the directory /usr/ns and the files relevant to the installation and use of the SPARSE
package are depicted in Figure 30.

The steps to install the SPARSE package are as follows.

1. Create a directory for SPARSE:

cd /usr/ns
mkdir sparse
cd sparse

.2. Copy the files from tape to disk: Put the tape in the tape drive and tar the files to
the new disk directory:

tar xvf /(lev/device

where device should be the appropriate name of the tape drive on your machine. Do
an "Is" to make sure that three directories (install, csm-intrf ace and spk-subset)
have been copied from the tape.

3. Edit the installation-dependent subroutines: The package has installation-dependent
subroutines SPK, CTIME, SPKCSM, DTIME and SPRSPK which provide timing
information to the package and set some installation-dependent parameters. In ap-
pendix §B, we provide a set of examples for these subroutines. The sample programs
are written for a SUN/3 workstation running the UNIX operating system at the Uni-
versity of Tennessee Knoxville. Comments in these listings indicate changes which may
be necessary. The subroutine SPK is contained in the directory csm-intrf ace/driver,
the subroutines CTIME and SPKCSM are contained in the directory csm-intrf ace/system,
and DTIME and SPRSPK are contained in the directory spk-subset/system. Sam-
ples of subroutines required by CTIME, DTIME and SPRSPK can be found in the
directory spk-subset/local; these subroutines are appropriate for machines running
Berkeley 4.2 or 4.3 UNDC and their derivatives such as SUN 05.

72

/usr/ns

nice

install sparselib.a spk-subset csm-intrface

Makefile nicespar.ams makcfile.na.spar driver

spk.f spka.f spkobjs.a

Figure 30: The file system of the directory /usr/ns.

73

4. Edit the make file /usr/ns/sparse/install/Hakef ile: Compilation of the package
is performed using a collection of UNIX make files. The most important make file is
called Makefile found in the directory install; it will invoke the other make files.
The distributed make files assume that the package is running on a SUN workstation.
There are comments in Makefile to help you make the appropriate changes to it
for your installation. There is no need to change the make files in any other sparse
directories.

5. Create and install the compiled library: After making the required changes to Makefile,
you are ready to create and install the compiled library. Execute the following com-
mands.

cd /usr/ns/sparse/install
make install

A compiled library sparselib. a will be created in the directory sparse.

6. Install a new processor in the testbed: Since the SPARSE package is installed as
a processor SPK in the testbed and a CSM processor is a subroutine called by the
NICE/SPAR main program, it is necessary to compile the SPK driver routines in the
directory /usr/ns/sparse/csm-intrface/driver and edit the main program master
file nicespar.ams in the directory /usr/ns/spar. The object code of the SPK driver
routines spk.f and spka.f is contained in a separate library called spkobjs.a in
the driver directory so that it may be updated independent of sparselib.a. In
addition, the makefile in the directory /usr/ns/spar must be edited so that the two
libraries can be linked to the executable when it is created. A copy of the properly
edited nicespar. ams and a copy of the edited makefile can be found in the directory
install. The former has the file name nicespar. ams and the latter has the file name
makefile.ns.spar. With these two files available, the following commands may be
executed to install the new processor SPK in the testbed. Note that you must have
write permission in the directory spar to do this.

cd /usr/ns/sparse/install
make spk
cd ../../spar
mv makefile makefile.old
mv nicespar.ams nicespar.ams.old
cp ../sparse/install/makefile.ns.spar makefile
cp ../sparse/install/nicespar.ams nicespar.ams
make

7. When the file korcoma.inc 15 changed: Since the include file korcoma.inc in the

74

directory spar declares the size of the in-core storage available for every SPAR pro-
cessor, the driver source code spk. f of processor SPK must contain the line

include '/usr/ns/spar/korcoma.inc'

and it must be recompiled each time the declared size is changed. Since the depen-
dence of spk. o on korcoma. inc is specified in the appropriate make file, the following
commands will not only detect whether the declaration file korcoma.inc has been
modified since spk.o was last created but also recompile spk.f and update the li-
brary spkob j s. a if that is the case. Finally the executable in the directory spar is
recreated to link to the modified spkobjs.a after the "make" command in the last
line is executed.

cd /usr/ns/sparse/install
make spk
cd ../../spar
make

8. Recover space used by intermediate files: If the system on which you are running
is short of disk space, a substantial amount of space used during the installation of
SPARSE can be recovered by deleting the tt.o" files and other intermediate files gen-
erated during the creation of the library. To do this, execute the following commands.

cd /usr/ns/sparse/install
make clean

If for some reason you must later re-create some or all of the library sparselib.a,
these intermediate files will have to be regenerated, at considerable cost in computer
time. Thus, it is advisable to execute "make clean" only if you really need the space.

75

B Installation-dependent Subroutines

C SPK A NEW CSM PROCESSOR
c«.,«««.«».««««««»«»««««.»»«»»««««»»««»»»»«««««»»«»«»«»«««»»**«««««*«««»*«»»««*
C******** ** * * **
C
C PURPOSE - THIS IS THE DRIVER FOR INSTALLING INTO NICE/SPAR
C OUR INTERFACE MODULES AS A SINGLE PROCESSOR WHICH
C SOLVES CSM TESTBED PROBLEMS USING SPARSPAK-A MODULES.
C
C THE NEW PROCESSOR IS CODED AND INSTALLED INTO NICE/SPAR DIRECTLY
C FOLLOWING THE GUIDELINES GIVEN IN NASA TECHNICAL MEMORANDOM
C 89098, NAMELY
C
C (a) THE NAME OF THE PROCESSOR SHOULD BE NO LONGER THAN FOUR
C CHARACTERS.
C (b) THE PROCESSOR SHOULD BE WRITTEN AS A FORTRAN 77 SUBROUTINE
C WHOSE NAME IS THE PROCESSOR NAME.
C (e) THE SUBROUTINE SHOULD HAVE NO ARGUMENTS.
C (d) THE PROCESSOR SHOULD BEGIN EXECUTION WITH A CALL TO THE
C LIBRARY SUBROUTINE "INTRO" WITH THE PROCESSOR NAME
C AS THE ONLY ARGUMENT. THE GIVEN NAME IS USED BY THE
C "GAL" DATA MANAGER AS THE CREATING PROCESSOR FOR
C NEW DATASETS INSERTED IN "GAL" LIBRARIES; IT ALSO
C APPEARS IN THE INTERACTIVE PROMPT STRING IF THE
C "SPAR READER" ROUTINE IS USED FOR INPUT COMMAND
C PROCESSING.
C (e) THE LABELED COMMON BLOCK /IANDO/ WITH 2 INTEGER VARIABLES
C CONTAINING USER INPUT AND OUTPUT UNIT NUMBERS SHOULD BE
C INCLUDED IN APPROPRIATE MODULES. THE UNIT NUMBERS ARE
C ASSIGNED IN THE SUBROUTINE "INTRO".
C (f) CALL LIBRARY SUBROUTINE "FIN" TO CLOSE "GAL" LIBRARIES.
C
C ***»****»**»*»»**m***»a>*********M****»*****»»**«*»«**«w«******
C W A R N I N G

C THE PATH NAME OF THE INCLUDE FILE "korcoma.inc"
C IS INSTALLATION DEPENDENT.
C
C
C
C

SUBROUTINE SPK

C INCLUDE DECLARATION CONTAINING BLANK COMMON VARIABLES AND
C DIMENSIONS:
C PARAMETER (KSZZZ= 200000)
C COMMON KORE, KEVEN, KORT, A(KSZZZ)

include '/uar.MC68020/nlal/echu/ns/flpar/korcoma.inc'
C

INTEGER MXSTORE
C
C
C IDENTIFY PROCESSOR TO CSM ARCHITECTURE

CALL INTRO ('SPK1)
C "
C WORKING STORAGE A IS DECLARED .AS KSZZZ WORDS WHICH IS
C EQUIVALENT TO HALF THAT MANY DOUBLE-PRECISION FLOATING
C POINT NUMBERS.

MXSTOR a KSZZZ/2
CALL SPKA (A, MXSTOR)
CALL FIN (0, 0)
CALL EXIT
END

76

c-
c«
C CTIMB ELAPSED PROCESSOR TIME
C
C*****"*"*f ********""**•*************""** •*•*•*•"••••»••"••••»»•••••«
c
C PURPOSE - CTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE
C IT WAS LAST CALLED. IT USES THE COMMON VARIABLE TIME
C TO REMEMBER THE TIME WHEN CTIME WAS LAST CALLED.
C
C «***»«*•***»»•»»*»»»*»**»**»•*»***••«*«*•»»»*«*»*»***•»»*•****»••*••••!

C W A R N I N G

C THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT
C SHOULD BE SET UP BY THE INSTALLER OF THE PACKAGE.
C IN THIS EXAMPLE, ROUTINE GT1MEB. IS THE TIMER ROUTINE
C THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN/3
C WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE
C UNIVERSITY OP TENNESSEE KNOXVILLE.

C
C INPUT PARAMETER -
C IDUMMY • A DUMMY INTEGER VARIABLE.
C
C PROGRAM SUBROUTINE -
C GTIMER.
C

C
REAL FUNCTION CTIME (IDUMMY)

C
C
C

INTEGER IDUMMY, IPRNTE, IPRNTS, MAXINT
REAL RATIOL, RATIOS, TIME , X

C
C * •*»»***»»»**«««»*»»*»»»«»»**•* » mmmmmmmmmm*m*mm***»

c
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 TIME
C

C
CALL GTIMER (X)
CTIME = X - TIME
TIME = X
RETURN

C
END

77

£**** ***** ***** **************************** ******************************** ****
£«*** »OB*C a************* ******************************** ***ow****a ********* *n**

C SPKCSM INITIALIZE PARAMETERS
Q***n*«*** ***************** ********

C
C PURPOSE - TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT
C VALUES TO SOME USER PARAMETERS. IT IS A MACHINE
C DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED
C BEFORE ANY OTHER PACKAGE MODULE.
C
C PARAMETERS INITIALIZED -
C IPRNTE - THE OUTPUT UNIT NUMBER FOR ERROR MESSAGES.
C IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS.
C RATIOL - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
C POINT VARIABLE TO THAT IN A LONG INTEGER
C VARIABLE. FOR EXAMPLE, IF FLOATING POINT
C . NUMBERS OCCUPY TWICE AS MANY BITS AS LONG
C INTEGERS, RATIOL SHOULD BE SET TO 2.
C RATIOS - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
C POINT VARIABLE TO THAT IN A SHORT INTEGER
C VARIABLE.
C MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE
C STORED IN A SHORT INTEGER VARIABLE.
C TIME - VARIABLE USED BY THE TIMER ROUTINE CTIME.
C SEE REMARK
C STAGE - STARTING STAGE OF SYSTEM-CSM.
C
C REMARK - THIS INTERFACE PACKAGE ASSUMES THE EXISTENCE OF
C A REAL TIME FUNCTION CTIME WHICH RETURNS THE ELAPSED
C PROCESSOR TIME SINCE IT WAS LAST CALLED. WITH THE
C COMMON VARIABLE TIME, THE INSTALLER OF THE PACKAGE
C SHOULD BE ABLE TO WRITE SUCH A FUNCTION, USING THE
C INSTALLATION TIMER.
C
C

C
SUBROUTINE SPKCSM

C
£**** ***

C
CHARACTER*40 LIBNAM
CHARACTER-SI CDUMMY(7)
INTEGER*4 UN, IOUTX
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGERS BUFMAX, MXUSED, MXREQD, STAGE
INTEGER'4 MSGLVL, IERR , MAXCSM
INTEGER*4 UN, IOUTX
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)
COMMON /IANDO/ UN, IOUTX

C
C ...
C W A R N I N G

C
C THE FOLLOWING 4 LINES OF CODE ARE INSTALLATION
C DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE
C PERSON INSTALLING THIS PACKAGE.
C
C OUR CURRENT ENVIRONMENT -
C - RATIOL AND RATIOS ARE BOTH 2.
C - MAXINT = 2**IS - 1 = 32767
C
C
C INSTALLATION DEPENDENT PARAMETERS
C

TIME = 0.0
C

RATIOL = 2.0
RATIOS = 2.0

C
MAXINT = 32787

78

c
c
C tPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT
C NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR
C IS IDENTIFIED TO THE CSM-ARCHITECTURE.
C

IPRNTE = IOUTX
IPRNTS = IOUTX

C
C
C INITIALIZING THE EXECUTION STAGE FOR THE INTERFACE .
C

STAGE =0
C

RETURN
C

END

79

C— SPARSPAK-A (ANSI FORTRAN) RELEASE III — NAME = DTIME
C (C) UNIVERSITY OP WATERLOO JANUARY 1984
c...«....«..».»» ..».....»*».......»».»««....»..»..........,,..««.*..»»«««»*•

C DTIME DELTA TIME
Cmmm**mmmmmmmmmmmmmmmmmm**mmmmmmm*mmm*mmmmmmmmmmmmmmmmmm*mmf*mmmm*mmmmmmm
Qmmmmmmmmmmmmmmmmmmmmmmmm mmmmm mm m mmmmmmmmmm mmmmmm

C
C PURPOSE - DTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE
C IT WAS LAST CALLED. IT USES THE COMMON VARIABLE TIME
C TO REMEMBER THE TIME WHEN DTIME WAS LAST CALLED.
C

C W A R N I N G

C THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT
C SHOULD BE SET UP BY THE INSTALLER OP THE PACKAGE.
C IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE
C THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN/3
C WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE
C UNIVERSITY OF TENNESSEE KNOXV1LLE.
C mmmmmmmmmmmmmmmmmmmmmmmmmmmmfm*mmmmmmmmmmmmmmmmmm*»»mmmmm»*mmmmmmmmmmi

C
C INPUT PARAMETER -
C IDUMMY • A DUMMY INTEGER VARIABLE.
C
C PROGRAM SUBROUTINE -
C GTIMER.
C
C **** »»»* * mmmmmm mmmm m mmmmmmmmmmmmmmmmmmmmmm mmmmmm

c
REAL FUNCTION DTIME (IDUMMY)

C

C
INTEGER IDUMMY, IPRNTB, IPRNTS, MAXINT
REAL MCHEPS, RATIOL, RATIOS, TIME , X

C
C******* mmmmmmmm mmmmmmmmmmmmmmmmm mmmmmm*mmmmmmmmmmmmmm*mmmmm»»mmmmmmm»

C
COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 MCHEPS, TIME
C

C
CALL G T I M E R (X)
DTIME = X - TIME
TIME = X
RETURN

C
END

80

C— SPARSPAK-A (ANSI FORTRAN) RELEASE III — NAME = SPRSPK
C (C) UNIVERSITY OP WATERLOO JANUARY 1984

C ****•*****"*•" ****"***"**** **••»•»*»»»*»»»***»»»»****»*»*»*••***»•*
C SPRSPK START SPARSPAK-A

C
C PURPOSE - TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT
C VALUES TO SOME USER PARAMETERS. IT IS A MACHINE
C DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED
C BEFORE ANY OTHER PACKAGE MODULE.
C
C PARAMETERS INITIALIZED -
C IPRNTE - THE OUTPUT UNIT NUMBER FOR ERROR MESSAGES.
C IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS.
C RATIOL - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
C POINT VARIABLE TO THAT IN A LONG INTEGER
C VARIABLE. FOR EXAMPLE, IF FLOATING POINT
C NUMBERS OCCUPY TWICE AS MANY BITS AS LONG
C INTEGERS, RATIOL SHOULD BE SET TO 2.
C RATIOS - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
C POINT VARIABLE TO THAT IN A SHORT INTEGER
C VARIABLE.
C MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE
C STORED IN A SHORT INTEGER VARIABLE.
C MCHEPS - THE MACHINE EPSILON (UNIT ROUNDOFF ERROR).
C TIME - VARIABLE USED BY THE TIMER ROUTINE DTIME.
C SEE REMARK.
C STAGEA - STAGE VARIABLE FOR SYSTEM-A.
C
C REMARK - THIS PACKAGE ASSUMES THE EXISTENCE OF A REAL TIME
C FUNCTION DTIME WHICH RETURNS THE ELAPSED PROCESSOR TIME
C SINCE IT WAS LAST CALLED. WITH THE COMMON VARIABLE
C TIME, THE INSTALLER OF THE PACKAGE SHOULD BE ABLE TO
C - WRITE SUCH A FUNCTION, USING THE INSTALLATION TIMER.
C
C PROGRAM SUBROUTINES -
C ALLOW , STIMER.
C
C ***** * **»»»*»***»»*»***«**»*» ****** ••••**«»«*****«au
c

SUBROUTINE SPRSPK
C
C*********1*****'* ***» *»»•«•••**•*««••***«••* «*«»••«•«•««»••***«•«««
c

INTEGER ICPADA, ICPADB, IERRA , IERRB , IPRNTE,
1 IPRNTS, MAXINT, MAXSA , MAXSB , MCOLS ,
1 MDCONS, MDEQNS, MSCONS, MSEQNS, MSGLVA,
1 MSGLVB, NVARS , STAGEA, STAGES

INTEGER UN, IOUTX
REAL MCHEPS, RATIOL, RATIOS, TIME
DOUBLE PRECISION EPS , EPS1

COMMON /SPKSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
MCHEPS, TIME

COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS
COMMON /SPACON/ STAGEA, ICPADA(49)
COMMON /SPBUSR/ MSGLVB, IERRB , MAXSB , MCOLS , MSEQNS,

MDEQNS, MSCONS, MDCONS
COMMON /SPBCON/ STAGES, ICPADB(49)

COMMON /IANDO/ UN, IOUTX

81

C"
c
C W A R N I N G
c »,«,»»««».«..«»».,.„,««.«.....,«»»»»»«»»«.««».».»«««««.««»•»«»»««..»»
C THE FOLLOWING 6 LINES OF CODE ARE INSTALLATION
C DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE
C PERSON INSTALLING THIS PACKAGE.
C
C ON A SUN/3 WORKSTATION AT THE UNIVERSITY OF TENNESEE KNOXVILLE:
C - STIMER IS THE ROUTINE TO START THE TIMER,
C - ALLOW IS THE ROUTINE TO ALLOW FOR A NUMBER OF
C ARITHMETIC UNDERFLOWS BEFORE SYSTEM ABORTS.
C - RATIOL AND RATIOS ARE 2 AND 4 RESPECTIVELY.
C - MAXINT = 2**15 - 1 = 32767
C

TIME = 0.0
CALL STIMER
CALL ALLOW (1234S67)

C
RATIOL = 2.0
RATIOS = 2.0

C
MAXINT = 32767

C

C IPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT
C NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR
C IS IDENTIFIED TO THE CSM-ARCHITECTURE.
C

IPRNTE = IOUTX
IPRNTS = IOUTX

C COMPUTE THE MACHINE EPSILON.
C

EPS f l.ODO
100 CONTINUE

EPS = EPS/2.0DO
EFS1 = l.ODO + EPS
IF (EPS1 .GT. l.ODO) GO TO 100

MCHEPS = EPS*2.0DO

WRITE (IPRNTS.ll)
11 FORMAT (1H1

1 /SX, 40H"""***«*
1 /SX, 40H*****'
1 /5X, 40H***»«"
1 /SX, 40H"*"*«
1 /SX, 40H********

1 UNIVERSITY OF WATERLOO
SPARSE MATRIX PACKAGE
(S P A R S P A K)

RELEASE 3
(C) JANUARY 1984)

WRITE (IPRNTS.22)
22 FORMAT (SX, 40H***«*'**«* ANSI FORTRAN)

C
WRITE (IPRNTS.33)

33 FORMAT (5X, 4,oH""«*****"* DOUBLE PRECISION)
C

WRITE (IPRNTS,44)
44 • FORMAT (SX, 40H********** LAST UPDATE JANUARY 1984)

C
WRITE (IPRNTS.SS) IPRNTE, IPRNTS

55 FORMAT (//10X, 3SHOUTPUT UNIT FOR ERROR MESSAGES , 17
1 /10X, 35HOUTPUT UNIT FOR STATISTICS , 17)

C
c

C INITIALIZING USER VARIABLES FOR SYSTEM-A ...
c .—_

STAGEA = 0
C

RETURN
C

END

82

C Listing of Programs
c*********************************** »* * •

C SPK A NEW CSM PROCESSOR

C
C PURPOSE - THIS IS THE DRIVER FOR INSTALLING INTO NICE/SPAR
C OUR INTERFACE MODULES AS A SINGLE PROCESSOR WHICH
C SOLVES CSM TESTBED PROBLEMS USING SPARSFAK-A MODULES.
C
C THE NEW PROCESSOR IS CODED AND INSTALLED INTO NICE/SPAR DIRECTLY
C FOLLOWING THE GUIDELINES GIVEN IN NASA TECHNICAL MEMORANDOM
C 89096, NAMELY
C
C (») THE NAME OF THE PROCESSOR SHOULD BE NO LONGER THAN FOUR
C CHARACTERS.
C (b) THE PROCESSOR SHOULD BE WRITTEN AS A FORTRAN 77 SUBROUTINE
C WHOSE NAME IS THE PROCESSOR NAME.
C (c) THE SUBROUTINE SHOULD HAVE NO ARGUMENTS.
C (d) THE PROCESSOR SHOULD BEGIN EXECUTION WITH A CALL TO THE
C LIBRARY SUBROUTINE "INTRO" WITH THE PROCESSOR NAME
C AS THE ONLY ARGUMENT. THE GIVEN NAME IS USED BY THE
C "GAL" DATA MANAGER AS THE CREATING PROCESSOR FOR
C NEW DATASETS INSERTED IN "GAL" LIBRARIES; IT ALSO
C APPEARS IN THE INTERACTIVE PROMPT STRING IF THE
C "SPAR READER" ROUTINE IS USED FOR INPUT COMMAND
C PROCESSING.
C (e) THE LABELED COMMON BLOCK /IANDO/ WITH 2 INTEGER VARIABLES
C CONTAINING USER INPUT AND OUTPUT UNIT NUMBERS SHOULD BE
C INCLUDED IN APPROPRIATE MODULES. THE UNIT NUMBERS ARE
C ASSIGNED IN THE SUBROUTINE "INTRO".
C (f) CALL LIBRARY SUBROUTINE "FIN" TO CLOSE "GAL" LIBRARIES.
C

C W A R N I N G
c,...»..,.......«...«.,.......»»..,„.«»«..«««.»..,.....

C THE PATH NAME OF THE INCLUDE FILE "korcoma.inc"
C IS INSTALLATION DEPENDENT.
C
C
C****"***************************** »»»»* *••••«• * mmmmmm **»
C

SUBROUTINE SPK
C
c
C INCLUDE DECLARATION CONTAINING BLANK COMMON VARIABLES AND
C DIMENSIONS:
C PARAMETER (KSZZZ= 200000)
C COMMON KORE, KEVEN, KORT, A(KSZZZ)
C ---------
C

include '/uir.MC68020/nl*l/echu/n6/ipar/korcoma.inc'
C

INTEGER MXSTORE
C
C ---------
C IDENTIFY PROCESSOR TO CSM ARCHITECTURE
C ------ .

CALL INTRO ('SPK')
C
C WORKING STORAGE A IS DECLARED AS KSZZZ WORDS WHICH IS
C EQUIVALENT TO HALF THAT MANY DOUBLE-PRECISION FLOATING
C POINT NUMBERS.
C

MXSTOR = KSZZZ/2
CALL SPKA(A, MXSTOR)
CALL FIN (0, 0)
CALL EXIT
END

83

C SPKA A DRIVER FOR INTERFACE MODULES AND SPARSPAK-A

C
C PURPOSE - THIS IS THE DRIVER CALLING INTERFACE MODULES TO
C SOLVE CSM TESTBED PROBLEMS USING SPARSPAK-A MODULES.
C
C INPUT PARAMETERS -
C A - AN ARRAY OF MXSTOR DOUBLE-PRECISION FLOATING POINT
C NUMBERS.
C MXSTOR- SIZE OF ARRAY A IN DOUBLE-PRECISION FLOATING-POINT
C NUMBERS.
C
C USER INPUT -
C MSGLVL - MESSAGE LEVEL FOR INTERFACE MODULES.
C MSGLVA - MESSAGE LEVEL FOR SPARSPAK-A MODULES.
C BUFMAX - MAXIMUM BUFFER LENGTH ANTICIPATED.
C LIBNAM - NAME OF THE DATA LIBRARY.
C JDFSET - NAME OF DATASET JDFJ.BTAB.1.8
C KMAP - NAME OF DATASET KMAP.O.niutx.kuze
C KSPAR - NAME OF DATASET K.SPAR.jdfS.O
C CON - NAME OF DATASET CON.O.neon.O
C APPLF - NAME OF DATASET APPL.FORC.i.et.1
C APPLM - NAME OF DATASET APPL.MOTI.i.et.l .
C STATD - NAME OF DATASET STAT.DISP.i»et.ncon
C
C INTERFACE MODULES -
C SPKCSM, LIBOPN, CTIME, SPACE , GETJDF, GETDOF, GTZERO, GTCOND,
C GTMOTI, GETIJ , GTFORC, GTNUM5, STATCS, GETSOL.
C
C SPARSPAK-A INTERFACE MODULES -
C SPRSPK, ORDRB5, SOLVES, ERESTS, STATSA.
C
C LOGICAL READER UNIT NUMBER FOR USER INPUT - 41
C
C***1*****1******1*******1*****
C

SUBROUTINE SPKA (A, MXSTOR)
C

DOUBLE PRECISION A(l)
INTEGER MXSTOR

C
C
C

CHARACTER-40 LIBNAM
CHARACTER'Sl JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL , IERR , MAXCSM
INTEGER"4 DOF, BUF, MASK, KG, ICLQ, FCON, SPK
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MAXDOF, NEQNS, NUMJNT
INTEGER*4 MSGLVA, IERRA , MAXSA , NVARS
REAL GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME.GNTIME,

1 CSMTIM, CSMSTR
REAL RATIOS, RATIOL, TIME

C
INTEGER«4 SPACE
REAL CTIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /CSMMAP/ DOF, BUF, MASK, KC, ICLQ, FCON, SPK
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMDTA/ GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME.GNTIME,

1 CSMTIM, CSMSTR
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT

C
COMMON /SPAUSR/ MSGLVA, IERRA , MAXSA , NVARS

C

C
INTEGER*4 JLONG, NLONG, CSIZE
INTEGER** IDUMMY, INDATA
REAL RN, RNJNT, ROFFS, ROFFL, DUMMY

84

DOUBLE PRECISION RELERR, RELRES
C
C
C INITIALIZE SPARSPAK-A AND SYSTEM TIMER
C

CALL SPRSPK
C
C INITIALIZE THE CSM-SPARSPAK INTERFACE PACKAGE
C

CALL SPKCSM
C
C SET MSGLVL AS DESIRED
C

INDATA = 41
READ (INDATA, 12) MSGLVL

12 FORMAT (14)
C
C SET MSGLVA AS DESIRED
C

READ (INDATA, 12) MSGLVA
C
C SET MAXIMUM BUFFER LENGTH
C

READ (INDATA, 12) BUFMAX
C
C INPUT NAME OF LIBRARY AND DATASETS FOR GIVEN PROBLEM
C

READ (INDATA, 22) LIBNAM
22 FORMAT(A 40)

READ (INDATA, 32) JDFSET
READ (INDATA, 32) KMAP
READ (INDATA, 32) KSPAR
READ (INDATA, 32) CON
READ (INDATA, 32) APPLF
READ (INDATA, 32) APPLM
READ (INDATA, 32) STATD

32 FORMAT(Ail)
C
C OPEN THE LIBRARY
C

CALL LIBOPN
C
C INITIALIZE THE TIMER
C

DUMMY = CTIME(O)
MXREQD = BUFMAX

C
C SIZE OF STORAGE ARRAY
C

MAXCSM = MXSTOR
C
C CHECK MAXCSM AGAINST MXREQD
C

IF (SPACE (IDUMMY) .NE. 0) GO TO 9999
C
C RETRIEVE TOTAL NUMBER OF JOINTS AND STORE IN NJMJNT
C

CALL GETJDF (A)
C
C COMPUTE FURTHER STORAGE REQUIREMENT
C

ROFFS o RATIOS - 0.01
ROFFL = RATIOL • 0.01
RNJNT = NUMJNT + 1
JLONG a IFIX((RNJNT+ROFFL)/RATIOL)
MXREQD = JLONG + BUFMAX
IF (SPACE (IDUMMY) .NE. 0) GO TO 9999

C
C COMPUTE ADDRESSES
C

DOF = 1
BUF = DOF + JLONG

C
C RETRIEVE DEGREES OF FREEDOM PER JOINT,
C AND INITIALIZE MAXDOF AND NEQNS
C

CALL GETDOF (A(DOF), A(BUF))

85

c -
C ADJUST BUFFER SPACE
C -

MXREQD = MXREQD . BUFMAX
BUFMAX = MAXO (BUFMAX, NEQNS)
MXREQD = MXREQD 4- BUFMAX
IF (SPACE (IDUMMY) .NE. 0) GO TO 9999
MXUSED = MXREQD

C -
C COMPUTE FURTHER STORAGE REQUIREMENT
C -

RN = NEQNS
NLONG o IFIX ((RN+ROFFL)/RAT10L)
MXREQD = MXUSED + NLONG
IF (SPACE (IDUMMY) .NE. 0) GO TO 9999

C -
C COMPUTE ADDRESSES
C -

MASK = BUF + BUFMAX
C -
C DETECT DUMMY ROWS
C --

CALL GTZERO (A(DOF), A(BUF), A(MASK))
MXUSED = MXREQD

C -
C COMPUTE FURTHER STORAGE REQUIREMENT
C -

MXREQD = MXUSED + T
IF (SPACE (IDUMMY) .NE. 0) GO TO 9999

C ---
C COMPUTE ADDRESSES
C ---

KC = MASK + NLONG
C ---
C DETECT CONSTRAINED VARIABLES
C ---

CALL GTCOND (A(DOF), A(BUF), A(KC), A(MASK), CSIZE)
MXUSED = MXREQD

C --
C COMPUTE FURTHER STORAGE REQUIREMENT
C ----

MXREQD = MXUSED + MAXDOF + CSIZE
IF (SPACE (IDUMMY) .NE. 0) GO TO 9999

C --
C TOTAL STORAGE TO BE USED
C -

MXUSED = MXREQD
C --
C COMPUTE ADDRESSES
C ---

ICLQ = KC + 7
FCON = ICLQ + MAXDOF

C ---
C GATHER NONZERO CONSTRAINTS
C ---

CALL GTMOTI (A(BUF), A(MASK), A(FCON), CSIZE)
C --
C INTERFACE WITH SPARSPAK-A
C ----

SPK = MXUSED + 1
MAXSA = MAXCSM - MXUSED

C --
C INPUT NONZERO STRUCTURE TO SPARSPAK-A
C --

CALL GETIJ(A(DOF), A(BUF), A(ICLQ), A(MASK), A(SPK))
C -
C DETERMINE SYMMETRIC ORDERING
G -

CALL ORDRB5 (A(SPK))
C -
C INPUT RIGHT HAND SIDE
C --

CALL GTFORC(A(BUF),A(MASK), A(SPK))
C -
C INPUT MATRIX COEFFICIENTS AND RIGHT HAND SIDE MODIFICATIONS

CALL GTNUMS(A(DOF), A(BUF), A(MASK), A(FCON), A(SPK))

86

c
C PERFORM NUMERICAL FACTORIZATION AND SOLUTION
C

CALL SOLVES (A(SPK))
CSMTIM = CTIME(O)
CALL ERESTS (RELERR, A(SPK))

C
C COMPARE WITH KNOWN NICESPAR SOLUTION
C

CALL GETSOL (A(BUF), A(SPK), RELRES)
CALL STATCS
CALL STATSA

C
9999 CONTINUE

RETURN
C

END

87

•••*•* ••**••**«*»••••••**••••**« »»*»***•»*»***»» ••«•••*•« **••«**•**•*»•*•]

»»*•«»*»**»»**»*» »»»*«***»*»»»»*»»*»»***0»»*»*»««*»*«* **•«•*•••••*»***

C SPKCSM INITIALIZE PARAMETERS
c,.,,..,.«.,,...... .,.....,.,.........««»«»«..««.«...«.«««..«««..,«.«...«..«»

C
C PURPOSE - TO SET SYSTEM PARAMETERS AND ASSIGN DEFAULT
C VALUES TO SOME USER PARAMETERS. IT IS A MACHINE
C DEPENDENT ROUTINE. THIS ROUTINE HAS TO BE CALLED
C BEFORE ANY OTHER PACKAGE MODULE.
C
C PARAMETERS INITIALIZED -
C IPRNTE - THE OUTPUT UNIT NUMBER FOR ERROR MESSAGES.
C IPRNTS - THE OUTPUT UNIT NUMBER FOR STATISTICS.
C RATIOL - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
C POINT VARIABLE TO THAT IN A LONG INTEGER
C VARIABLE. FOR EXAMPLE, IF FLOATING POINT
C NUMBERS OCCUPY TWICE AS MANY BITS AS LONG
C INTEGERS, RATIOL SHOULD BE SET TO 2.
C RATIOS - THE RATIO OF THE NUMBER OF BITS IN A FLOATING
C POINT VARIABLE TO THAT IN A SHORT INTEGER
C VARIABLE.
C MAXINT - THE LARGEST POSITIVE INTEGER THAT CAN BE
C STORED IN A SHORT INTEGER VARIABLE.
C TIME - VARIABLE USED BY THE TIMER ROUTINE CTIME.
C SEE REMARK
C STAGE - STARTING STAGE OF SYSTEM-CSM.
C
C REMARK - THIS INTERFACE PACKAGE ASSUMES THE EXISTENCE OF-
C A REAL TIME FUNCTION CTIME WHICH RETURNS THE ELAPSED
C PROCESSOR TIME SINCE IT WAS LAST CALLED. WITH THE
C COMMON VARIABLE TIME, THE INSTALLER OF THE PACKAGE
C SHOULD BE ABLE TO WRITE SUCH A FUNCTION, USING THE
C INSTALLATION TIMER.

C

C
SUBROUTINE SPKCSM

C

C
CHARACTER*40 LIBNAM
CHARACTER'S! CDUMMY(T)
INTEGER*4 UN, IOUTX
INTEGER'4 IPRNTE, IPRNTS, MAXINT
INTEGER'4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER'* MSGLVL, IERR , MAXCSM
INTEGER'4 UN, IOUTX
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)
COMMON /IANDO/ UN, IOUTX

C

C W A R N I N G

C
C THE FOLLOWING 4 LINES OF CODE ARE INSTALLATION
C DEPENDENT. THEY MAY HAVE TO BE MODIFIED BY THE
C PERSON INSTALLING THIS PACKAGE.
C
C OUR CURRENT ENVIRONMENT -
C - RATIOL AND RATIOS ARE BOTH 2.
C - MAXINT = 2"1S - 1 = 32767
C
C -
C INSTALLATION DEPENDENT PARAMETERS
C --

TIME = 0.0
C

RATIOL = 2.0
RATIOS = 2.0

C
MAXINT = 32787

88

c
c
C IPRNTE AND IPRNTS ARE BOTH SET TO THE WRITER UNIT
C NUMBER ASSIGNED TO IOUTX WHEN THE NEW PROCESSOR
C IS IDENTIFIED TO THE CSM-ARCHITECTURE.
C

IPRNTE = IOUTX
IPRNTS = IOUTX

C
C
C INITIALIZING THE EXECUTION STAGE FOR THE INTERFACE ...
C

STAGE =0
C

RETURN
C

END

89

C CTIMB ELAPSED PROCESSOR TIME

c....„........».....»..»....»»..»..»«.»»»»...»»».............»»

C
C PURPOSE - CTIME RETURNS THE ELAPSED PROCESSOR TIME SINCE
C IT WAS LAST CALLED. IT USES THE COMMON VARIABLE TIME
C TO REMEMBER THE TIME WHEN CTIME WAS LAST CALLED.
C

C W A R N I N G

C THIS IS AN INSTALLATION DEPENDENT ROUTINE. IT
C SHOULD BE SET UP BY THE INSTALLER OF THE PACKAGE.
C IN THIS EXAMPLE, ROUTINE GTIMER IS THE TIMER ROUTINE
C THAT RETURNS THE CURRENT PROCESSOR TIME ON A SUN/3
C WORKSTATION RUNNING THE UNIX OPERATING SYSTEM AT THE
C UNIVERSITY OP TENNESSEE KNOXVILLE.

C
C INPUT PARAMETER -
C IDUMMY - A DUMMY INTEGER VARIABLE.
C
C PROGRAM SUBROUTINE -
C GTIMER.
C

REAL FUNCTION CTIME (IDUMMY)
C
C**"* «»«»»»•*»»««»*»»"»*«**«**«••»»•«•*»»»«**«»»«*»•»•*«*••«»»«»«»*«»»»

C
INTEGER IDUMMY, IPRNTE, IPRNTS, MAXINT
REAL RATIOL, RATIOS, TIME , X

C

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 TIME
C

C
CALL GTIMER (X)
CTIME = X - TIME
TIME = X
RETURN

END

90

c*
c*
C GETJDF GET NUMBER OF JOINTS ...

C
C PURPOSE - THIS ROUTINE RETRIEVES THE TOTAL NUMBER OF JOINTS
C FOR THE PROBLEM TO BE SOLVED.
C
C PARAMETERS INITIALIZED -
C NUMJNT - THE TOTAL NUMBER OF JOINTS.
C
C ERROR CODES -
C 0 • ERROR CODES
C 1013 - INCORRECT EXECUTION SEQUENCE
C 1014 • THE NUMBER OF ITEMS AVAILABLE FROM THE RETRIEVED
C DATASET IS LESS THAN TWO. SEE REMARK.
C
C
C REMARK -
C THE CURRENT VERSION OF TESTBED DATABASE ASSUMES THAT
C ALL JOINTS HAVE THE MAXIMUM DEGREES OF FREEDOM, THE
C NUMBER OF JOINTS A.ND THE MAXIMUM DEGREES PER JOINT IS
C FROM THE FIRST TWO ITEMS RETRIEVED. IN CASE OF
C VARIABLE DEGREES OF FREEDOM PER JOINT, DUMMY DATA IS
C STORED.
C
C
C PROGRAM SUBROUTINES -
C QKINFO, GETRECI, EMSG
C
C CSM TESTBED DATASETS ACCESSED -
C JDF1.BTAB.*
C

C
SUBROUTINE GETJDF (IBUF)

C
INTEGER*4 IBUF(1)

C

C
CHARACTER*40 LIBNAM
CHARACTER'Sl JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL, IERR, MAXCSM
INTEGERS BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MAXDOF, NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT

C

C
INTEGER*4 LEN

C
IF (MSGLVL -GE. 2) WRITE (IPRNTS, 11)

11 FORMAT (/SX, 'GETJDF - GET NUMBER OF JOINTS AND ... ')
C

IF ((STAGE .LT. 10) .OR. (IERR .NE. 0)) GO TO 100
C
C
C EACH DATASET IS IDENTIFIED BY A STRING OF
C •MAINKEY.EXTENSION.CYCLE1.CYCLE2.CYCLE3'
C MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51
C

CALL QKINFO (JDFSET)
IF (IERR .NE. 0) RETURN

C
STAGE = IS

C
C GET THE FIRST TWO ITEMS OF THE FIRST RECORD

91

LEN a a
CALL GTRECI (1, IBUF, LEN)
IF (IERR .NE. 0) RETURN
IF (LEN XT. 2) GO TO 200

C
NUMJNT = IBUF(l)

C
C READ IN MAX UNCONSTRAINED DEGREES OF FREEDOM OF THE MODEL
C

MAXDOF = IBUF(2)
STAGE = 20
RETURN

C
C —«^^_^—•_
C ERROR HANDLING

C —^———100 CONTINUE
IERR = 1013
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
200 IERR = 1014

IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

92

c««
C"-
c
C"1

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.*«••»»•»«••*»»»«»»•»»«»•*•*«»*»«*•»*•«.»••«»••»•••«•»»»»«»«•»««•••

GETDOF GET DEGREES OF FREEDOM

PURPOSE - THIS ROUTINE RETRIEVES THE DEGREE OF FREEDOM
FOR EACH INDIVIDUAL JOINT FROM THE DATABASE.

PARAMETERS INITIALIZED -
IDOP - IDOF(K) STORES THE STARTING EQUATION NUMBER FOR

JOINT K. THE DEGREES OP FREEDOM FOR JOINT K IS
GIVEN BY IDOF(K+1) - IDOF(K). THE TOTAL NUMBER
OF EQUATIONS IS EQUAL TO IDOF(NUMJNT+1) - 1.

MAXDOF - THE MAXIMUM DEGREE OF FREEDOM RETRIEVED FOR
INDIVIDUAL JOINT.

NEQNS • THE NUMBER OF EQUATIONS EQUALS THE TOTAL DEGRI
OF FREEDOM.

CSM TESTBED DATASET ACCESSED -
CURRENTLY NONE.

W A R N I N G

THIS SUBROUTINE MUST BE MODIFIED FOR PROBLEMS WITI
VARIABLE DEGREES OF FREEDOM PER NODE

!*•***

!•«»*•

AN

5ES

I

C
SUBROUTINE GETDOF (IDOF, IBUF)

C
INTEGERS IDOF(l), IBUF(l)

C

CHARACTER*40 LIB NAM
CHARACTER'S! JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL, IERR, MAXCSM
INTEGERS BUFMAX, MXUSED, MXREQD, STAGE
INTEGER** MAXDOF, NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT

INTEGER'4 DEGREE, I
C

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
11 FORMAT(/SX, 'GETDOF - GET DEGREES OF FREEDOM ... ')

IF ((STAGE .LT. 20) .OR. (IERR .NE. 0)) GO TO SOO
C
C .
C THE FOLLOWING LINES OF CODE IS TEMPORARY
C FOR THE-FIXED DEGREE PROBLEMS
C

DEGREE = MAXDOF
IDOF(l) = 1
DO 100 I = 2, NUMJNT+1

IDOF(I) = IDOF(I-1)+DEGREE
IF (MAXDOF .LT. DEGREE) MAXDOF = DEGREE

100 CONTINUE
NEQNS = IDOF(NUMJNT+1) - 1
STAGE = 30
RETURN

C
SOO CONTINUE

IERR = 1019
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

93

END

94

£•**••**«•mmmmm«*«*»*»*»***»*»«**»******»*»•»«*»«**»»»**»»»*»••*»***«*«*•*•**•**

C GTZERO DETECT DUMMY ROWS
C * " * * * * * * * * * * * * * *

c
C PURPOSE - THIS ROUTINE IDENTIFIES DUMMY ROWS (ALL ZEROS) IN
C THE DATA MATRIX.
C
C INPUT PARAMETERS -
C DOF - AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF
C JOINTS PLUS ONE.
C IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
C JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
C GIVEN BY IDOF(K-t-l) - IDOF(K). THE TOTAL NUMBER
C OF EQUATIONS IS EQUAL TO IDOF(NUMJNT+1) - 1.
C
C OUTPUT PARAMETERS -
C MASK - THE LINEAR ARRAY MASK STORES A 0 FOR EACH
C ZERO DIAGONAL ELEMENT ENCOUNTERED AND A -1
C FOR EACH NONZERO DIAGONAL ELEMENT.
C
C WORKING PARAMETERS -
C FBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR RETRIEVING
C REAL OR DOUBLE PRECISION DATA FORM THE TBSTBED.
C
C ERROR CODES -
C 1021 - INCORRECT EXECUTION SEQUENCE.
C
C SUBPROGRAM MODULES -
C QKINFO, GTRECF, EMSG
C
C CSM TESTBED DATASETS ACCESSED -
C K.SPAR.*
C
C
C REMARK - THIS ROUTINE IS NEEDED FOR THE CURRENT RELEASE OF
C TESTBED DATABASE BECAUSE THE CONSTRAINT DATASET DOES NOT
C INCLUDE ZERO ROWS. IN ADDITION, NOTE THAT CURRENTLY
C THE TESTBED STORES MAXDOF EQUATIONS PER JOINT. THEREFORE,
C DUMMY ROWS MUST BE INSERTED FOR THE JOINTS WITH DEGREES
C LESS THAN MAXDOF.
C
C

C
SUBROUTINE GTZERO (DOF, FBUF, MASK).

C
DOUBLE PRECISION FBUF(l)
INTEGER** MASK(l), DOF(l)

C

C
CHARACTER**0 LIBNAM
CHARACTER'51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER"* RTYPE
INTEGER"* IPRNTE, IPRNTS, MAXINT
INTEGER"* IDSN , LDI , NLEN , NREC , TRACE
INTEGER** BUFMAX, MXUSED, MXREQD, STAGE
INTEGER"* MSGLVL, IERR, MAXCSM
INTEGER** MAXDOF , NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

C
INTEGER** CONRNG, I, II, IROW, IS, ITEMS, JGRPS. JOINT, LEN
INTEGER"* CJNT, NROWS, NCOLS, ISIZE, KOUNT, OVERHD, NZEROS
DOUBLE PRECISION COEF

95

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
11 FORMAT(/5X, 'GTZERO - DETECT DUMMY ROWS ... ')

C
IF ((STAGE .LT. 30) .OR. (IERR .NE. 0)) GO TO 500

C
C
C INITIALIZE MASK TO BE -1
C

DO 100 I = 1, NEQNS
MASK(I) = -1

100 CONTINUE
C
C EACH DATASET IS IDENTIFIED BY A STRING OF
C 'MAINKEY.EXTENSION.CYCLE1.CYCLE2.CYCLE3'
C MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51
C

CALL QKINFO (KSPAR)
IF (IERR .NE. 0) RETURN

C
OVERHD=0
KOUNT = 0
NZEROS = 0
TRACE = TRACE + 10
DO 200 1=1, NREC

LEN = NLEN
CALL GTRECF (I, FBUF, LEN)
IF (IERR .NE. 0) RETURN

C
C DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD
C

JGRPS = FBUF(l)
ITEMS = 1
OVERHD = OVERHD +1
DO 300 II = 1, JGRPS

CONRNG = FBUF(ITEMS+1)
JOINT = FBUF(ITEMS+Z)
NROWS = DOF(JOINT-H) - DOF(JOINT)

C
C COMPUTE THE SIZE OF DATA ITEMS. IN TOTAL
C CONRNG SUBMATRICES INCLUDING DIAGONAL SUBMATICES
C

ISIZE = 0
DO 350 IS = 1, CONRNG

CJNT = FBUF(ITEMS-fl-HS)
NCOLS = DOF(CJNT+1) - DOF(CJNT)
ISIZE = ISIZE 4 NROWS"NCOLS

350 CONTINUE
ITEMS = ITEMS + 1 + CONRNG
OVERHD = OVERHD + 1 + CONRNG

C
C . ACCESS THE DIAGONAL ELEMENTS ON THE DIAGONAL MATRIX
C

IROW = DOF(JOINT) - 1
NCOLS = NROWS
DO 400 IS = 1, NCOLS

COEF = FBUF(ITEMS+(IS-1)*NROWS+IS)
C
C A DUMMY ROW IS DETECTED
C

IF (COEF .EQ. O.ODO) THEN .
MASK (IROW + IS) = 0
KOUNT = KOUNT + 1

ENDIF
400 CONTINUE

ITEMS = ITEMS + ISIZE
NZEROS = NZEROS + ISIZE

300 CONTINUE
200 CONTINUE

STAGE = 40
C
C PRINT DEBUGGIN DATA ...
C

IF (MSGLVL .GE. 3) WRITE (IPRNTS, 22) KOUNT,
1 OVERHD, NZEROS

22 FORMAT (1SX, 'NUMBER OF DUMMY ROWS: ' , 18
1 /1SX, 'K.SPAR." INDEX OVERHEAD:', 18
1 /15X, 'K.SPAR.' NONZEROS : ', 18)

96

C-2.

RETURN

SCO CONTINUE
C
C ERROR HANDLING ...
C

IERR = 1021
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

97

c*
c°
C QTCOND RETRIEVE CONSTRAINT INFO
C**** *»**»*»»»*»•«*»»*»»»***«••*

c
C PURPOSE - THIS ROUTINE RETRIEVES THE CONSTRAINED COMPONENTS
C OF EACH JOINT AND TREATS THE DUMMY ROWS AS CONSTRAINED
C TO BE ZERO.
C
C INPUT PARAMETERS -
C DOF - AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF
C JOINTS PLUS ONE.
C IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
C JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
C GIVEN BY IDOF(K+1) - IDOF(K). THE TOTAL NUMBER
C OF EQUATIONS IS EQUAL TO IDOF(NUMJNT-H) - 1.
C MASK - RECORD OF DUMMY ROWS.
C
C OUTPUT PARAMETERS -
C MASK - RECORD OF CONSTRAINED VARIABLES IN ADDITION TO
C DUMMY ONES.
C CSIZE - TOTAL NUMBER OF NONZERO CONSTRAINTS.
C
C WORKING PARAMETERS -
C IBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR RETRIEVING
C INTEGER DATA FORM THE TESTBED.
C KG - AN TEMPORARY INTEGER ARRAY OF SIZE (MAXDOF+1)
C NEEDED IN DECODING THE CONSTRAINT DATA.
C
C ERROR CODES -
C 1022 - INCORRECT EXECUTION SEQUENCE.
C
C SUBPROGRAM MODULES -
C QKINFO, GTRECI, DECODE, EMSG
C
C GSM TESTBED DATASETS ACCESSED -
C CON..* OR CON.-i (IF MULTIPLES EXISTS IN DATA LIBRARY)
C
C
C REMARKS -
C IT IS ASSUMED THAT THE CONSTRAINED DATA IS STORED
C IN THE DATASET IN THE ORDER OF JOINT NUMBERS.
C
C

C
C

SUBROUTINE GTCOND (DOF, IBUF, KG, MASK, CSIZE)
C

INTEGER*4 DOF(l), IBUF(l), KC(1), MASK(l), CSIZE
C

C
CHARACTER*40 LIBNAM
CHARACTER'51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER*4 RTYPE
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER*4 IDSN , LDI , NLEN , NREC , TRACE
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL, IERR, MAXCSM
INTEGER*4 MAXDOF , NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

INTEGER*4 I, II, IROW, JOINT, K, LEN, DEGREE, ZKOUNT.FKOUNT,
ZDUMMY

98

IP (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
11 FORMAT(/SX, 'GTCOND - GET CONSTRAINTED VARIABLES... ')

C
IP ((STAGE .LT. 40) .OR. (IERR .NE. 0)) GO TO 500

C
C
C EACH DATASET IS IDENTIFIED BY A STRING OF
C 'MAINKEY.EXTENSION.CYCLE1.CYCLE2.CYCLE3'
C MAXIMUM NUMBER OF CHARACTERS CONTAINED IS 51
C

CALL QKINFO (CON)
IF (IERR .NE. 0) RETURN
TRACE = TRACE + 10

C
C KOUNTING NONZERO CONSTRAINTS
C

CSIZE = 0
C
C KOUNTINO ZERO CONSTRAINTS
C

ZKOUNT = 0
JOINT = 1
DO 100 1 = 1, NREC

LEN = NLEN
CALL GTRECI (I, IBUP, LEN)
IP (IERR .NE. 0) RETURN
DO 200 II = 1, LEN

IP (JOINT .GT. NUMJNT) GO TO 200
C
C CONSTRAINTS ARE ENCODED INTO 7 BITS
C WHICH ARE DECODED INTO AN INTEGER
C ARRAY KG OF SIZE 7 !
C

CALL DECODE (IBUP(II), KC)
DEGREE = DOF(JOINT+1) - DOF(JOINT)
IROW = DOF(JOINT) - 1
DO 300 K = 1, DEGREE

IP (KC(K) .EQ. 1) THEN
C
C ZERO CONSTRAINTS
C

MASK(IROW+K) = 0
ZKOUNT = ZKOUNT + 1

ELSE IF (KC(K) .EQ. 2) THEN
C
C NONZERO CONSTRAINTS
C

MASK(IROW+K) = 1
CSIZE = CSIZE 4 1

' ENDIF
300 CONTINUE

JOINT = JOINT + 1
200 CONTINUE
100 CONTINUE

C
C KOUNTING UNCONSTRAINED DEGREES OF FREEDOM AND
C THE NET ZERO CONSTRAINTS INCLUDING DUMMY ROWS
C

FKOUNT = 0
ZDUMMY = 0
DO 400 I = 1, NEQNS

IP (MASK(I) .EQ. -1) PKOUNT = FKOUNT + 1
IF (MASK(I) .EQ. 0) ZDUMMY = ZDUMMY + 1

400 CONTINUE
STAGE = 50

C
C PRINT DEBUGGING DATA ...
C

IF (MSGLVL .GE. 3) WRITE (IPRNTS, 22) ZKOUNT, CSIZE,
1 FKOUNT, ZDUMMY

22 FORMAT(15X, 26H ZERO CONSTRAINTS ARE , 18
1 /1SX, 26HNONZERO CONSTRAINTS ARE , 18
1 /15X, 26HFREE VARIABLES ARE , 18
1 /15X, 26HDUMMY ROWS + 0 CONSTRAINTS, 18)

RETURN
C
500 CONTINUE

99

C ERROR HANDLING
£ - - -. n I,

IERR = 1032
IF (MSGI.VL ,QE, 2) CALL EMSG
RETURN

C
END

100

c*
c-
C GTMOTIGET NONZERO CONSTRAINTS
C***

c
C PURPOSE - TO RETRIEVE NUMERIC FOR NONZERO CONSTRAINTS.
C
C INPUT PARAMETERS
C MASK . CONSTRAINT INFORMATION FOR EACH VARIABLE.
C
C OUTPUT PARAMETERS
C MASK - THE LOCATIONS CORRESPONDING TO NONZEROR CONSTRAINTS
C CONTAIN A POINTER TO THE NUMERIC VALUE IN FCON.
C FCON - AN ARRAY OF CSIZE FLOATING-POINT CONSTRAINTS.
C
C
C WORKING PARAMETERS
C FBUF . A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.
C THE ACTUAL TYPE IS AS DECLARED.
C
C ERROR CODES -
C 102S - INCORRECT EXECUTION SEQUENCE.
C 1026 - UNEXPECTED NONZERO CONSTRAINT VALUE.
C 1027 - ZERO ENTRY FOR A NONZERO CONSTRAINT OCCURS.
C
C SUBROUTINE PROGRAMS -
C QKINFO, GTRECF, EMSG.
C
C CSM TESTBED DATASETS ACCESSES -
C APPL.MOTI.i.j.
C
C
C REMARKS -
C IT IS ASSUMED THAT THE CONSTRAINT VALUES ARE STORED
C IN SEQUENCE FROM 1 TO NEQNS.
C
C

c
SUBROUTINE GTMOTI (FBUF, MASK, FCON, CSIZE)

C
INTEGER-4 MASK(l), CSIZE
DOUBLE PRECISION FBUF(l), FCON(l)

C

C
CHARACTER-40 LIBNAM
CHARACTER-51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER*4 RTYPE
INTEGERS IPRNTE, IPRNTS, MAXINT
INTEGER*4 IDSN ,LDI , N L E N , NREC , TRACE
INTEGER-4 BUPMAX, MXUSED, MXREQD, STAGE
INTEGER*4 MSGLVL, IERR, MAXCSM
INTEGER"4 MAXDOF , NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

C

C
INTEGER*4 CSIZE, NITEMS, KPTR, LEN, I, J

C *
IF (MSGLVL .GE. 1) WRITE (IPRNTS, 11)

11 FORMAT(/5X, 'GTMOTI - GET NONZERO CONSTRAINTS... ')
C

IF ((STAGE .LT. 50) .OR. (IERR .NE. 0)) GO TO 1000
C

IF (CSIZE .EQ. 0) THEN
C
C NONZERO CONSTRAINTS ARE NOT EXPECTED

101

IF (MSGLVL .GE. 3) WRITE (IPRNTS, 21)
21 FORMAT(/10X, -APPLIED DISPLACEMENTS ARE NOT EXPECTED.')

STAGE = 60
RETURN

ENDIF
C
C ---
C RETRIEVE NEQNS ITEMS FORM 'APPL.MOTI-* '
C -

CALL QKINFO (APFLM)
IF (IERR .NE. 0) RETURN
TRACE a TRACE + 10
NITEMS = 0
KPTR a 0
DO 100 1=1, NREC

LEN = MINO (NEQNS - NITEMS, NLEN)
IF (LEN .GT. 0) THEN

CALL GTRECF (I, FBUF, LEN)
IF (IERR .NE. 0) RETURN
DO 200 3 = 1, LEN

NITEMS = NITEMS + 1
C -----
C CHECK ERROR DUE TO INCONSISTENT CONSTRAINT VALUES
C -----

IF ((MASK(NITEMS) .NE. 1) .AND.
1 (FBUF(J) .NE. O.ODO)) GO TO 1100

IF ((MASK(NITEMS) .EQ. 1) .AND.
1 (FBUF(J) .EQ. O.ODO)) GO TO 1200

IF (MASK(NITEMS) .EQ. 1) THEN
C ------
C ENTER NUMERIC FOR NONZERO CONSTRAINT
C- -----

KPTR = KPTR + 1
FCON(KPTR) = FBUF(J)

C --
C STORE THE ADDRESS POINTER IN MASK
C -----

MASK(NITEMS) a KPTR
ENDIF

200 CONTINUE
ENDIF

100 CONTINUE
STAGE = 60
RETURN

C
C --
C ERROR HANDLING

1000 CONTINUE
IERR = 1025
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
1100 CONTINUE

IERR = 1026
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
1200 CONTINUE

IERR = 1027
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

102

C"«
c*****
C GETIJ INPUT NONZERO STRUCTURES
C***

C
C PURPOSE - TO RETRIEVE NONZERO STRUCTURES FROM DATASET KMAP..*
C AND INPUT THE SAME TO SPARSPAK-A.
C
C INPUT PARAMETERS
C DOF • AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF
C JOINTS PLUS ONE.
C IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
C JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
C GIVEN BY IDOF(K+1) - IDOF(K). THE TOTAL NUMBER
C OF EQUATIONS IS EQUAL TO IDOF(NUMJNT-H) - 1.
C MASK • CONSTRAINT INFORMATION FOR EACH VARIABLE.
C
C OUTPUT PARAMETERS
C S - NONZERO STRUCTURES SET UP BY SPARSPAK-A.
C
C WORKING PARAMETERS
C IBUF - AN INTEGER BUFFER. OF SI2.E BUFMAX.
C ICLQ - A TEMPORARY ARRAY OF SIZE MAXDOF.
C
C ERROR CODES -
C 1023 - INCORRECT EXECUTION SEQUENCE.
C
C SUBROUTINE PROGRAMS -
C QKINFO, GTRECI, EMSG
C
C SPRSPAK-A SUBROUTINES -
C IJBEGN, INCLQ, INIJ, IJEND.
C
C CSM TESTBED DATASETS ACCESSES -
C KMAP..*
C
C**
C

SUBROUTINE GETIJ (DOF, IBUF, ICLQ, MASK, S)
C

INTEGER** DOF(l), IBUF(l), ICLQ(l), MASK(l), S(l)
C

C
CHARACTER-ID LIBNAM
CHARACTER'Sl JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER** RTYPE
INTEGER"
INTEGER-
INTEGER'
INTEGER-
INTEGER'

IPRNTE, IPRNTS, MAXINT
IDSN , LDI , NLEN , NREC , TRACE
BUFMAX, MXUSED, MXREQD, STAGE
MSGLVL, IERR, MAXCSM
M A X D O F , N E Q N S , N U M J N T

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

INTEGER** CONRNG, I, II, ICOL, IROW, ITEMS, J, JGRPS, JOINT,
1 K, NCLQ, LBN, IX, JX, LRNG, NODES, JJ, NROWS,
1 NCOLS

C
IF (MSGLVL .GE. J) WRITE (IPRNTS, 11)

11 FORMAT(/5X, 'GET1J - INPUT NONZERO STRUCTURES... ')
C

IF ((STAGE .LT. 60) .OR. (IERR .NE. 0)) GO TO 1000
C

CALL IJBEGN
C
C INIJ INSURES NONZERO FOR ALL DIAGONAL ELEMENTS

103

C IF POSITION (NEQNS, NEQNS) IS ENTERED
C

CALL INIJ (NEQNS, NEQNS , S)
C
C ACCESS EACH RECORD IN DATA SET 'KMAP..« •
C

CALL QKINFO (KMAP)
IF (IERR .NE. 0) RETURN
TRACE = TRACE + 10
DO 100 1=1, NREC

LEN = NLEN
CALL QTRECI (I, IBUF, LEN)
IF (IERR .NE. 0) RETURN

C
C DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD
C

JGRPS = IBUF(l)
ITEMS = 1
DO 200 II = 1, JGRPS

C
C GET THE CURRENT JOINT AND COMPUTE THE ROW NUMBER
C

JOINT = IBUF(ITEMS-fl)
C
C NUMBER OF DEGREES FOR CURRENT JOINT
C

NROWS = DOF(JOINT-H) - DOF(JOINT)
C
C COMPUTE THE THE ROW NUMBER BY IROW + K,
C WHERE IROW IS GREATER THAN OR EQUAL TO 0
C

IROW = DOF(JOINT) - 1
NCLQ = 0
DO 300 K = 1, NROWS

IF (MASK (IROW + K) .EQ. -1) THEN
C
C THIS ROW IS NOT CONSTRAINED
C

NCLQ = NCLQ + 1
ICLQ(NCLQ) = IROW + K

ENDIF
300 CONTINUE

C
C INPUT DIAGONAL BLOCK TO SPARSPAK
C

IF (NCLQ .GT. 0) CALL INCLQ(NCLQ, ICLQ, S)
C .
C SKIP UNRELATED ITEMS IN CURRENT JOINT GROUP
C .

LRNG = IBUF(ITEMS+2)
ITEMS - ITEMS 4 2
DO 220 JJ = 1, LRNG

NODES = IBUF(ITEMS + 1)
ITEMS = ITEMS + 6 + (NODES-(NODES+l))/2

220 CONTINUE
C
C NUMBER OF SUBMATRICES FOR THE CURRENT JOINT
C

CONRNG = IBUF(ITEMS+1)
ITEMS = ITEMS + 1

C
C ENTER NONZERO IN THE CONNECTED SUBMATRIX
C TO ADDITION TO THE DIAGONAL SUBMATRIX
C

DO 400 J = 1, CONRNG-1
JOINT = IBUF(ITEMS + J)

C
C DEGREE OF FREEDOM OF THE CONNECTED JOINT
C

NCOLS = DOF(JOINT+1)- DOF(JOINT)
C
C COMPUTE STARTING COLUMN NUMBER
C

ICOL = DOF(JOINT) - 1
C
C COMPUTE NONZERO POSITION COLUMN BY COLUMN
C

104

DO 500 JX = 1, NCOLS
DO 550 DC = 1, NROWS

IF ((MASK(ICOL-MX) .EQ. -1) .AND.
1 (MASK(IROW+IX) .EQ. -1)) THEN

C
C THE CORRESPONDING VARIABLES
C ARE NOT CONSTRAINED
C

CALL INIJ (IROW+IX, ICOL+JX, S)
EN DIP

SSO CONTINUE
SOO CONTINUE
400 CONTINUE

ITEMS = ITEMS + 2*CONRNG - 1
C
C END OF CURRENT JOINT GROUP
C
200 CONTINUE

C
C END OF CURRENT RECORD
C
100 CONTINUE

C
CALL IJEND (S)
STAGE = 70
RETURN

C
1000 CONTINUE
C
C ERROR HANDLING
C

IERR = 1023
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

105

c
c
C GTFORC INPUT RIGHT HAND SIDE
c ***
c
c
C PURPOSE - TO RETIEVE RIGHT HAND SIDE FROM DATASET APPL.FORC.i.j
C AND INPUT THOSE COMPONENTS CORRESPONDING TO UNCONSTRAINED
C VARIABLES TO SPARSPAK-A.
C
C INPUT PARAMETERS
C MASK - CONSTRAINT INFORMATION FOR EACH VARIABLE.
C S - INPUT TO SPARSPAK-A ROUTINES.
C
C OUTPUT PARAMETER
C S - SPARSPAK-A OUPUT.
C
C WORKING PARAMETERS
C FBUF - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.
C THE ACTUAL TYPE IS AS DECLARED.
C
C ERROR CODES -
C 1024 . INCORRECT EXECUTION SEQUENCE.
C
C SUBROUTINE PROGRAMS -
C QKINFO, GTRECF, EMSG.
C
C SPRSPAK-A SUBROUTINES -
C INBI.
C
C CSM TESTBED DATASETS ACCESSES -
C APPL.FORC.i.j.
C
C
C REMARKS -
C IT IS ASSUMED THAT THE ROWS CORRESPONDING TO DUMMY AND
C CONSTRAINED VARAIBLES ARE INCLUDED IN THE DATA MATRIX.
C
C
C**** ************* ***********'*************
c

SUBROUTINE GTFORC (FBUF, MASK, S)
C

INTEGER** MASK(l)
DOUBLE PRECISION FBUF(l), S(l)

C

C
CHARACTER-40 LIBNAM
CHARACTER'S! JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER"* RTYPE
INTEGER*
INTEGER*
INTEGER1

INTEGER"
INTEGER'

IPRNTE, IPRNTS, MAXINT
IDSN , LDI , N L E N , NREC ,TRACE
BUFMAX, MXUSED, MXREQD, STAGE
MSGLVL, IERR, MAXCSM
M A X D O F , N E Q N S , N U M J N T

REAL RATIOS, RATIOL, TIME
C

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

C
c***
c

INTEGER** I, 1, IROWS, LEN
C

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11)
11 FORMAT(/iX, 'GTFORC - INPUT RIGHT HAND SIDE... ')

IF ((STAGE .LT. 70) .OR. (IERR .NE. 0)) GO TO 1000
C
C
C RETRIEVE RIGHT HAND SIDE FORM 'APPL.FORC.* '

106

CALL QKINFO(APPLP)
C
C NOTE APPLY.FORC.. DOES NOT NECESSARILY EXIST
C

IF (IERR .NE. 0) GO TO 900
TRACE = TRACE + 10
IROWS = 0
DO 100 I = 1, NREC

LEN = MINO (NEQNS - IROWS, NLEN)
IF (LEN .OT. 0) THEN

C READ NEXT RECORD '
C

CALL GTRECF (I, FBUF, LEN)
IF (IERR .NE. 0) RETURN

C
C RETRIEVE EACH ITEM IN CURRENT RECORD
C

DO 200 J a 1, LEN
IROWS = IROWS + 1
IF (MASK (IROWS) .EC). -1) THEN

C
C THE VARIABLE IS NOT CONSTRAINED
C

CALL INBI (IROWS, FBUF(J), S)
ENDIF

200 CONTINUE
ENDIF

100 CONTINUE
STAGE = 80
RETURN

C
900 CONTINUE

C
C RIGHTHAND SIDE DOES NOT EXIST
C

IF (MSGLVL .GE. 3) WRITE (IPRNTS, 21)
21 FORMAT(/10X, 'THERE IS NO APPLIED FORCE VECTOR')

1EB.R = O
STAGE = 80
RETURN

C
1000 CONTINUE
C •*

C ERROR HANDLING
C

IERR = 1024
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

107

C GTNUM5 ... INPUT NONZERO NUMERICS
£•*•****•••••••*•**»*•«•*«•••«*•••«••**«•**•»«•••*•*«**

C
C PURPOSE - TO RETRIEVE AND INPUT NUMERICAL NONZEROS OF THE
C SYSTEM MATRIX. IN ADDITION, RIGHT HAND SIDE IS APPROP-
C RIATELY ADJUSTED USING CONSTRAINTS AVAILABLE.
C
C INPUT PARAMETERS
C DOF - AN INTEGER ARRAY OF SIZE EQUAL TO THE TOTAL NUMBER OF
C JOINTS PLUS ONE.
C IDOF(K) STORES THE STARTING EQUATION NUMBER FOR
C JOINT K. THE DEGREES OF FREEDOM FOR JOINT K IS
C GIVEN BY IDOF(K+1) - IDOF(K). THE TOTAL NUMBER
C OF EQUATIONS IS EQUAL TO IDOF(NUMJNT-H) - 1.
C MASK - THE LOCATIONS CORRESPONDING TO NONZEROR CONSTRAINTS
C CONTAIN A POINTER TO THE NUMERIC VALUE IN FCON.
C THE OTHER LOCATIONS INDICATE FREE OR CONSTRAINED
C TO ZERO VARIABLES.
C FCON - AN ARRAY OF CSIZE FLOATING-POINT CONSTRAINTS.
C S - STORAGE ARRAY FOR SPARSPAK-A.
C
C WORKING PARAMETERS
C FBUF - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.
C THE ACTUAL TYPE IS AS DECLARED.
C
C ERROR CODES -
C 1028 - INCORRECT EXECUTION SEQUENCE.
C
C SUBROUTINE PROGRAMS -
C QKINFO, GTRECF, EMSG.
C
C SPARSPAK-A ROUTINES -
C INAIJ5, INBI.
C
C CSM TESTBED DATASETS ACCESSES -
C K.SPAR.*.
C
C -------
C REMARKS -
C IT IS ASSUMED THAT THE VARIABLES ARE ORDERED IN THE
C GIVEN ORDER OF THE JOINTS AND DEGREES.
C ---
C

C
SUBROUTINE GTNUM5 (DOF, FBUF, MASK, FCON, S)

C
INTEGER*4 DOF(1), MASK(l)
DOUBLE PRECISION FBUF(I), FCON(l), S(l)

C

C
CHARACTER'40 LIBNAM
CHARACTER*51 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER*4 RTYPE
INTEGER** IPRNTE, IPRNTS, MAXINT
INTEGER** IDSN , LDI , NLEN , NREC , TRACE
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
INTEGER-4 MSGLVL, IERR, MAXCSM
INTEGER*4 MAXDOF , NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

C
C************ •*** «**»*»»*»»»»»*»»**«»» ***••••**••«••*•**••««*«•••••#*«••*
C

INTEGER*4 CONRNG, I, II, ICOL, IROW, ISTRT, ITEMS,
1 JGRPS, JOINT, M, MTXKNT, MYI, MYJ, NCOL,

108

1 NROW, LBN , NCOLS, NROWS
DOUBLE PRECISION COEP, BIX, BJX

C
IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11)

11 FORMAT(/SX, 'GTNUMS - GET NONZERO NUMERIC... ')
C

IF ((STAGE XT. 80) .OR. (IERR .NE. 0)) GO TO 1000
C
C
C ACCESS EACH RECORD IN DATA SET 'K.SPAR.- •
C

CALL QKINFO (KSPAR)
IF (IERR .NE. 0) RETURN
TRACE o TRACE + 10
DO 100 1=1, NREC

LEN = NLEN
CALL GTRECF (I, FBUF, LEN)
IF (IERR .NE. 0) RETURN

C
C DETERMINE NUMBER OF JOINT GROUPS IN CURRENT RECORD
C

JGRPS = FBUF(1)
ITEMS = 1
DO 200 II = 1, JGRPS

C
C GET NUMBER OF SUBMATRICES
C

CONRNG = FBUF(ITEMS+1)
C
C GET THE CURRENT JOINT
C

JOINT = FBUF(ITEMS+2)
IROW = DOF(JOINT) - 1
NROWS = DOF(JOINT+1) . DOF(JOINT)
ISTRT = ITEMS + 1 + CONRNG

C
C RETRIEVE UPPER TRIANGULAR PART OF DIAGONAL SUBMATRIX
C

NCOLS = NROWS
DO 400 NCOL = 1, NCOLS

MYJ = IROW + NCOL
DO 400 NROW = 1, NROWS

ISTRT = ISTRT -f 1
IF (NROW .GT. NCOL) GO TO 500
COEF = FBUF(ISTRT)
MYI = IROW + NROW

C
C RETRIEVE THE NONZERO CONSTRAINTS
C

IF (MASK(MYI) .GT. 0) BIX = FCON(MASK(MYI))
IF (MASK(MYJ) .GT. 0) BJX = FCON(MASK(MYJ))
IF (MYI .EQ. MYJ) THEN

IF (MASK(MYI) .NE. -1) THEN
C
C CHANGE DIAGONAL ELEMENT TO BE l.ODO
C FOR CONSTRAINED ROW
C

COEF = l.ODO
C
C ENTER NONZERO CONSTRAINT VALUE AS RHS
C

IF (MASK(MYI) .GT. 0)
1 CALL INBI (MYI, BIX, S)

ENDIF
C
C INPUT DIAGONAL ELEMENT COBF
C

CALL INAIJ5 (MYI, MYI, COEF, S)
ELSE IF ((MASK(MYJ) .GT. 0) .AND.

1 (MASK(MYI) .EQ. -1)) THEN
CALL INBI (MYI, .COEF-BJX, S)

ELSE IF ((MASK(MYI) .GT. 0) .AND.
1 (MASK(MYJ) .EQ. -1)) THEN

CALL INBI (MYJ, -COEF'BIX, S)
ELSE IF ((MASK(MYI) .EQ. -1) .AND.

1 (MASK(MYJ) .EQ.-1)) THEN
C

109

C INPUT COBF IN LOWER TRIANGULAR MATRIX
C

CALL INAIJ5 (MYJ, MYI, COEF, S)
ENDIF

500 CONTINUE
C
C NEXT COLUMN IN DIAGONAL SUBMATRIX
C
400 CONTINUE

C
C RETRIEVE OFF-DIAGONAL SUBMATRICES IN THE UPPER
C TRIANGULAR PART OF THE SYSTEM STIFFNESS MATRIX
C

MTXKNT = CONRNG- 1
IF (MTXKNT .EQ. 0) GO TO 199
ITEMS = ITEMS + 2
DO 600 M s 1, MTXKNT

JOINT = FBUF(ITEMS + M)
ICOL = DOF(JOINT) - 1
NCOLS = DOF(JOINT-H) - DOF(JOINT)
DO 800 NCOL a 1, NCOLS

MYJ = ICOL + NCOL
DO 900 NROW = 1, NROWS

ISTRT = ISTRT + 1
COEF = FBUF(ISTRT)
MYI = IROW + NROW

C
C RETRIEVE NONZERO CONSTRAINTS
C

„ IF (MASK(MYI) .GT. 0) BIX = FCON(MASK(MYI))
IF (MASK(MYJ) .GT. 0) BJX = FCON(MASK(MYJ))

C INPUT COEF OR MODIFY RIGHT HAND SIDE
C

IF ((MASK(MYI) .EQ. -1) .AND.
1 (MASK(MYJ) .EQ. -1)) THEN

C
C ENTER COEF WITH SYMMETRIC POSITION
C IN LOWER TRIANGULAR TO SPARSPAK-A
C

IF (MYI .LT. MYJ)
1 CALL INAIJ5 (MYJ, MYI, COEF, S)

IF (MYI .GT. MYJ)
1 CALL INAIJ5 (MYI, MYJ, COEF, S)

ELSE IF ((MASK(MYI) .GT. 0) .AND.
1 (MASK(MYJ) .EQ. -1)) THEN

CALL INBI (MYJ, -COEF*BIX, S)
ELSE IF ((MASK(MYJ) .GT. 0) .AND.

1 (MASK(MYI) .EQ. -1)) THEN
CALL INBI (MYI, -COEF'BJX, S)

ENDIF
900 CONTINUE

C
C NEXT COLUMN
C
800 CONTINUE

C NEXT SUBMATRIX

SOO CONTINUE
C
C PROCESS THE NEXT JOINT GROUP IN THE CURRENT RECORD
C ---
199 ITEMS = ISTRT
200 CONTINUE

C NEXT RECORD
C _
100 CONTINUE

STAGE = 90
RETURN

C
1000 CONTINUE

C ERROR HANDLING
C -

IERR = 1028

110

IF (MSGLVL .GE. 2) CALL EMSG
RETURN

END

111

C"
o *a«*«tta*«**8*****s«**a* *»»»***«*•**** ««u«*a***a aaae«*i»**ea**tt*«*«**«***«*** *****

C SPACE CHECK AVAILABLE STORAGE

C********* *"*** »«»*»» *mm •••«••«*»• «•**«* **•*••» *

C
C PURPOSE - CHECK STORAGE REQUIRED AGAINST STORAGE AVAILABLE.
C
C SUBROUTINE PROGRAMS -
C EMSG.
C
C"
C

INTEGER FUNCTION SPACE (IDUMMY)
C

INTEGER"4 IDUMMY
C

CHARACTER*40 LIB NAM
CHARACTER'S! CDUMMY(T)

- INTEGER-4 MSGLVL , IERR , MAXCSM
INTEGER-4 BUFMAX, MXUSED, MXREQD, STAGE

C
COMMON /CSMUSR/ LIBNAM, MSOLVL, IERR , MAXCSM, CDUMMY(T)
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE

C
£** »*»* **mmmmm*mmmmmmm*mmmmmm+* mmmmmmmmmmm* • *«B«W««WW*««»WK*»W«««W««*«

c
IF (MXREQD .LE. MAXCSM) THEN

SPACE = 0
RETURN

ELSE
SPACE = 1
GO TO 100

ENDIF

C ERROR HANDLING
C ^ — —
100 CONTINUE

IERR a 1001
IF (MSGLVL .GE. 2) CALL EMSG
RETURN

C
END

112

C LIBOPN OPEN DATA LIBRARY ...
C

C
C PURPOSE - THIS ROUTINE OPENS AN EXISTING LIBRARY RESIDENT
C ON A DISKFILE OR MAIN STORAGE, AND CONNECTS IT TO A
C LOGICAL DEVICE INDEX (LDI). THE NAME OF THE LIBRARY
C IS SPECIFIED BY PARAMETER LIBNAM.
C
C PARAMETERS INITIALIZED -
C LDI. LOGICAL DEVICE INDEX ASSIGNED TO THE EXTERNAL
C DEVICE SPECIFIED BY LIBNAM.
C
C ERROR CODES -
C 0 - NO ERROR.
C 1011 - UNSUCCESSFUL OPEN.
C 1012 . THE LOGICAL DEVICE NUMBER EXCEEDS THE MAXIMUM VALUE
C OF 30.
C
C GAL-PROCESSOR ENTRY POINTS -
C LMOPEN, EMSG.
C
C
C

SUBROUTINE LIBOPN
C

C
CHARACTER*40 LIBNAM
CHARACTER*!! JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER*4 RTYPE
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER'4 MSGLVL, IERR , MAXCSM
INTEGER"4 IDSN , LDI , NLEN , NREC , TRACE
INTEGER*4 ICPAD , STAGE
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

1 TRACE
COMMON /CSMCON/ ICPAD(3), STAGE

C
INTEGER*4 LMOPEN

C
C ***** »»*»» * ••*•• •«*«••«**••*«*» * •**• mmmmm *

C
CHARACTER'10 LIBKEY
INTEGER*4 LIMIT

C
IF (MSGLVL .GE. 2) WRITE (IPRNTS, 11) LIBNAM

11 FORMAT (/SX, 'LIBOPN- OPEN ', A40)
C

IERR = 0
C
C LIBKEY IS A STRING OF FORM 'MAINKEY/QUALIFIER'
C MAXIMUM NUMBER OF CHARACTERS IS 10
C .

LIBKEY = 'ROLD '
LIMIT = 0
TRACE = 1000
LDI = LMOPEN (LIBKEY, 0, LIBNAM, LIMIT, TRACE)

C
C LDI RANGES FROM 1 THROUGH 30 FOR SUCCESSUL OPEN
C

IF ((LDI .LT. 1) .OR. (LDI .GT. 30)) GO TO 100
STAGE = 10
IF (MSGLVL .GE. 2) WRITE (IPRNTS, 21) JDFSET, KMAP,

1 KSPAR, CON, APPLF, APPLM, STATD
21 FORMAT(/5X, 3SHDATASETS TO BE ACCESSED:

1 /SX, 35H
1 /10X, A51,
1 /10X, A51,
1 /10X, A51,

113

1
1
1
1

C
100

C
c
r?

/10X, AS1,
/10X, A51,
/10X, A51,
/10X, A51)

RETURN

CONTINUE

ERROR HANDLING

IF (LDI .LE. 0) IERR = 1011
IF (LDI .GT. 30) IERR = 1012
IF (MSQLVL .GE. 2) CALL EMSG
RETURN

END

114

c
c
C QKINFO ... ANQUIRE DATASET ATTRIBUTES
C ***** * ** * * mmmmmmmmm mmmmmmmmmmm* mm*

c..
c
C PURPOSE - ACQUIRE THE ATTRIBUTES OF A NAMED DATA SET.
C
C INPUT PARAMETER -
C DSNAME - NAME OP TEE DATASET.
C
C PARAMETERS UPDATED -
C IDNS - UNIQUE SEQUENCE NUMBER OF NAMED DATASET.
C NLEN - LOGICAL LENGTH (ITEMS) OF A RECORD.
C RTYPE - RECORD TYPE.
C NREC - TOTAL NUMBER OF RECORDS IN THE DATASET.
C
C ERROR CODES -
C 0 - NO ERROR.
C 2001 - DATASET DOES NOT EXIST.
C 2003 - NO RECORD EXISTS IN DATASET.
C 2003 - RECORD GROUP KEY IS UNDEFINED.
C 2004 - SEGMENTED RECORD GROUP NOTED.
C 2009 - RECORD LENGTH GREATER THAN BUFFER LENGTH
C
C GAL-PROCESSOR ENTRY POINTS -
C LMF1ND, GMGEKA, GMGECY, EMSG.
C
£••*•"•»***»*••••*»**•»»*»•••***»«**••••«*••••*•••••*••••••**•••*«*•*••«*••*
C

SUBROUTINE QKINFO (DSNAME)
C

CHARACTER'51 DSNAME
C
£...«.....«..........»»..».»»...»»«...».....«................»..«..»»....*.

C
CHARACTER'40 LIBNAM
CHARACTER'S! CDUMMY(T)
CHARACTER"* RTYPE
INTEGER** MSGLVL, IERR, MAXCSM
INTEGER"* IDSN , LDI , NLEN , NREC , TRACE
INTEGER"* BUFMAX, MXUSED, MXREQD, STAGE

C
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR, MAXCSM, CDUMMY(T)
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

1 TRACE
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE

C
INTEGER"* LMFIND

C

C
CHARACTER"! OP
CHARACTER"12 RKEY

C
INTEGER-* IHI , ILO , MDIM

C
C
C OBTAIN THE SEQUENCE NUMBER OF DATASET DSNAME
C MAXIMUM LENGTH OF DSNAME IS 51 CHARACTERS
C

TRACE = TRACE + 10
IDSN = LMFIND (LDI, DSNAME, TRACE)
IF (IDSN .ECJ. 0) GO TO 100

C .
C OP IS PRESENTLY A DUMMY ARGUMENT FOR BOTH
C GMGEKA AND GMGECY.
C

OP = ' •
C
C RKEY CONTAINS THE RECORD KEY LIFTJUSTIFIED.
C MAXIMUM LENGTH IS 12 CHARACTERS.
C

RKEY = 'DATA •
TRACE = TRACE + 10

115

C RETRIEVE ATTRIBUTES RTYPE AND NLEN FOR RECORDS OF GIVEN KEY
C

CALL GMGEKA (OP, LDI, IDSN, RKEY, RTYPE, NLEN, MDIM, TRACE)
IF (NLEN .EQ. 0) GO TO 200
IF (NLEN .GT. BUFMAX) GO TO 500

C
C :
C NUMBER OF RECORDS FOUND WITH GIVEN KEY
C

TRACE s TRACE + 10
CALL GMGECY (OP, LDI, IDSN, RKEY, NREC, ILO, IHI, TRACE)
IF (NREC .EQ. 0) GO TO 300

C
C
C NREC a IHMLO+1 FOR AN UNSEGMENTED RECORD GROUP
C

IF (NREC .NE. (IHMLO+1)) GO TO 400
RETURN

C

C ERROR HANDLING

100 CONTINUE
IERR = 2001
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

C
200 CONTINUE

IERR = 2002
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

C
300 CONTINUE

IERR 3 2003
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

C
400 CONTINUE

IERR 3 2004
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

C
500 CONTINUE

IERR 3 2009
BUFMAX = NLEN
IF (MSGLVL .GE. 3) CALL EMSG
RETURN i

C
END

116

c
c
C OTRECI ... READ A RECORD FROM A DATASET
C

C
C PURPOSE - THIS ROUTINE READS A RECORD FROM A NAMED DATASET.
C THE DATASET MUST BE OF TYPE INTEGER.
C
C INPUT PARAMETERS -
C RECNUM . RECORD CYCLE OF AN INDIVIDUAL RECORD.
C
C OUTPUT PARAMETERS.
C LEN • THE NUMBER OF ITEMS CONTAINED IN THE RECORD.
C
C WORKING PARAMETERS -
C IBUF • A BUFFER OF MAXIMUM RECORD SIZE FOR READIN DATASETS
C OF TYPE INTEGER.
C
C ERROR CODES -
C 0 • NO ERROR.
C 2005 - RECORD TYPE IN THE DATASET IS NOT INTEGER.
C 2006 - ERROR IN GMGETN DETECTED BY LMERCD.
C
C GAL-PROCESSOR ENTRY POINTS -
C GMCORN, GMGETN, LMERCD, EMSG.
C
£•**•••**•*«••»*««•»****••*•**•••««•«••«•«•••«*•***••****•»*••••••••••••••••••

C
SUBROUTINE GTRECI (RECNUM, IBUF, LEN)

C
INTEGER** RECNUM, IBUF(1), LEN

C

C
CHARACTER"40 DUMMY1
CHARACTER'51 CDUMMY(T)
CHARACTER*4 RTYPE
INTEGER"* IDSN , LDI , NLEN , NREC , TRACE
INTEGER"* MSGLVL, IERR, DUMMY2

C
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

1 TRACE
COMMON /CSMUSR/ DUMMY1, MSGLVL, IERR, DUMMYS, CDUMMY(7)

C
INTEGER** LMERCD

C
C** **** * **" *«*»» »»mmm *«••***«*«•* «•««** *mmmm***m**m**»mmm

C
CHARACTER** BUFTYP
CHARACTER*12 OP, RKEY
CHARACTER*2* RNAME
INTEGER** IERROR, IGAP , IHI , ILO , IOFF , MDIM

C
C
C DETECT TYPE MISMATCH
C

IF (RTYPE .NE. 'I ') GO TO 500
C :—
C CONSTRUCT NAME 'RKEY.RECNUM-.RECNUM1 FOR AN INDIVIDUAL RECORD
C MAXIMUM LENGTH IS 2* CHARACTERS: 12 FOR RKEY, 5 FOR EACH
C RECNUM REPRESENTING HIGH AND LOW CYCLES.
C

RKEY = 'DATA '
ILO = RECNUM
IHI = RECNUM
CALL GMCORN (RNAME, RKEY, ILO, IHI)

C
C
C OP ARGUMENT FOR GMGETx: 'MAINKEY/QUALIFIER'
C MAXIMUM LENGTH IS 11: 4 FOR KEY AND 8 FOR QUALIFIER
C

OP = 'READ/LENGTH '
BUFTYP = 'I '
IGAP = 0
IOFF = 0
CALL GMGETN (OP, LDI, IDSN, RNAME, BUFTYP, IBUF, LEN, MDIM,

117

1 IGAP, IOPF, TRACE)
C
C TEST ERROR CONDITION AFTER AN ERROR-SENSITIVE REFERENCE
C TO THE I/O MANAGER
C .

IERROR = LMERCD (IERROR)
IF (IERROR .NE. 0) GO TO 600
RETURN

C
500 CONTINUE

IERR = 2005
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

C
600 CONTINUE

IERR = 2006
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

C
END

118

QTRECP ... READ A RECORD OF TYPE REAL ...

C
C PURPOSE - THIS ROUTINE READS A RECORD FROM A NAMED DATASET.
C THE DATASET MUST BE OF TYPE REAL OR DOUBLE PRECISION.
C
C INPUT PARAMETERS -
C RECNUM - RECORD CYCLE OF AN INDIVIDUAL RECORD.
C
C OUTPUT PARAMETERS.
C LBN - THE NUMBER OF ITEMS CONTAINED IN THE RECORD.
C
C WORKING PARAMETERS -
C FBUF - A BUFFER OF MAXIMUM RECORD SIZE FOR READIN DATASETS
C OF TYPE REAL OR DOUBLE PRECISION. THE ACTUAL TYPE
C IS AS DECLARED.
C
C ERROR CODES -
C 0 - NO ERROR.
C 200T - RECORD TYPE IN THE DATASET IS NOT REAL.
C 2008 - ERROR IN GMQETN DETECTED BY LMERCD.
C
C GAL-PROCESSOR ENTRY POINTS -
C GMCORN, GMGETN, LMERCD, EMSG.
C
c.... ...

C
SUBROUTINE GTRECF (RECNUM, FBUF, LEN)

C
INTEGER*4 RECNUM, LEN
DOUBLE PRECISION FBUF(l)

C

C
CHARACTER*40 DUMMY1
CHARACTER'S! CDUMMY(7)
CHARACTER*4 RTYPE
INTEGER** IDSN , LDI , NLEN , NREC , TRACE
INTEGER"! MSGLVL, IERR, DUMMY2

C
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE,

1 TRACE
COMMON /CSMUSR/ DUMMY1 , MSGLVL, IERR, DUMMY2 , CDUMMY(7)

C
INTEGERS LMERCD

C

C
CHARACTERS BUFTYP
CHARACTER'12 OP, RKEY
CHARACTER'24 RNAME
INTEGER*4 1ERROR, IGAP , 1H1 , ILO , IOFF , MDIM

C
C -
C DETECT TYPE MISMATCH
C --

IF ((RTYPE .NE. 'D ') .AND. (RTYPE .NE. 'S ')) GO TO SOO
C ----
C CONSTRUCT NAME 'RKEY.RECNUMiRECNUM1 FOR AN INDIVIDUAL RECORD
C MAXIMUM LENGTH IS 24 CHARACTERS: 12 FOR RKEY, S FOR EACH
C RECNUM REPRESENTING HIGH AND LOW CYCLES.
C ---

RKEY = 'DATA '
ILO = RECNUM
IHI = RECNUM
CALL GMCORN (RNAME, RKEY, ILO, IHI)

C
C -
C OP ARGUMENT FOR GMGETx: 'MAINKEY/P.UALIFIER'
C MAXIMUM LENGTH IS 11: 4 FOR KEY AND 6 FOR QUALIFIER
C ---

OP = 'READ/LENGTH '
BUFTYP = 'D '
IGAP = 0

119

IOFF = 0
CALL OMGETN (OP, LDI, IDSN, RNAME, BUPTYP, FBUF, LEN, MDIM,

1 IQAP, IOFF, TRACE)
C
C TEST ERROR CONDITION AFTER AN ERROR-SENSITIVE REFERENCE
C TO THE I/O MANAGER
C

IERROR = LMERCD (IERROR)
IF (IERROR .NE. 0) GO TO 600
RETURN

C
500 CONTINUE

IERR = 3007
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

C
600 CONTINUE

IERR = 2008
IF (MSGLVL .GE. 3) CALL EMSG
RETURN

C
END

120

c«*«
c«*«
C EMSQ ... ERROR MESSAGE HANDLINE ROUTINE
G
£»••••«*••••••**•••••*•*•**•*»»••*»»*»»«•«•»»•mm»*»*mmm»*»**m*mm»**m*mmm»»**»i

C
C PURPOSE - THIS ROUTINE IS USED TO HANDLE ERROR MESSAGES IN
C SYSTEM-CSM WHICH INTERFACES SPARSPAK-A WITH CSM TESTBED
C DATABASE.
C
C PROGRAM SUBROUTINES -
C EMSGO, EMSG1, DEMSGO
C
£••«**»«*»*«««•*»*•**«**««******»******»*«*********«***«****»mmm*m**mm*9*mm*#m

c
SUBROUTINE EMSG

C
Qm»m*mm»*+*mmmm**m*•«*»»««««+***m**»*mmm+m#mmmmm** »**«****«*«•*****«******«*«

c
CHARACTER'40 LIBNAM
CHARACTER'S! CDUMMY(7)
INTEGER** IPRNTE, IPRNTS, MAXINT
INTEGER*4 MSGLVL, IERR , MAXCSM
REAL RATIOS, RATIOL, TIME

C

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(T)

C
INTEGER'4 LEVEL

C
WRITE (IPRNTE, 11)

11 FORMAT (/&X, 'EMSG - SYSTEM-CSM ERROR ... ')
C
C
C DETERMINE THE TYPE OF MODULE THAT CALLED EMSG,
C AND CALL THE APPROPRIATE ERROR ROUTINE TO PRINT
C THE ERROR MESSAGE
C
C

IF (IERR .GT. 2000) GO TO 1000
C

LEVEL = (IERR - 1000J/10 + 1
GO TO (100, 200, 300) , LEVEL

C
100 CONTINUE

C
C IERR RANGES FROM 1001 TO 1009
C

CALL EMSGO
RETURN

C
200 CONTINUE

C
C IERR RANGES FROM 1011 TO 1019
C

CALL EMSG1
RETURN

C
300 CONTINUE

C
C IERR RANGES FROM 1021 TO 1029
C

CALL EMSG2
RETURN

C
1000 CONTINUE

LEVEL = (IERR • 2000J/10 + 1
GO TO (1100, 1200) , LEVEL

C
1100 CONTINUE
C
C IERR RANGES FROM 2001 TO 2009
C

CALL DEMSGO
RETURN

121

c
1300 CONTINUE

RETURN
C

END

122

£»**•***»*»»*»»•**»******«**
c.«......««..n.«.......

C EMSGO ERROR MESSAGES FOR ...

C***'*""***********"*"** »•••••••••*••••••••*••»*••••••»»••••"»»•
C
C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING
C ROUTINE FOR THE MODULE SPACE.
C
C***********'*****"******************"*** *******"********"•******
C

SUBROUTINE EMSGO
C

CHARACTER.-40 LIBNAM
CHARACTER'Sl CDUMMY(7)
INTEGER"4 IPRNTE, IPRNTS, MAXINT
INTEGER"* MSGLVL , IERR , MAXCSM
INTEGER"* BUFMAX, MXUSED, MXREQD, STAGE
REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,
TIME

COMMON /CSMUSRf LIBNAM, MSGLVL, IERR ,MAXCSM,CDUMMY(7)
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE

INTEGER** IERROR
C

IERROR = IERR - 1000
GO TO (100, 200) , IERROR

100 CONTINUE
WRITE (IPRNTE, 11) IERR, STAGE, MXREQD

11 FORMAT (/10X, 35HSPACE - ERROR NUMBER , IT
I /10X, 3SHINSUFFICIENT STORAGE .
1 /10X, 3SHTHE LAST STAGE COMPLETED IS ,17
1 /10X, 3SHTO CONTINUE MAXCSM IS AT LEAST , 17)

RETURN
C
200 CONTINUE

RETURN
C

END

123

c*
c-
C EMS01 ERROR MESSAGES FOR ...

c.....„.»..»»..«.»...»..»..«.»».»..»».«......»....«»..........«»..........a.,
c
C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING
C ROUTINE FOR MODULES: LIBOPN, GETJDF, GETDOF
C

C
SUBROUTINE EMSG1

C

C
CHARACTER*40 LIBNAM
CHARACTER'Sl CDUMMY(7)
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGER-* MSGLVL , IERR , MAXCSM
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)

C
C *»** * mmmw* ««««*«*«**«»«*w****«ss*tt****«««*****««**

c
INTEGER-4 IERROR

C
IF (IERR .GT. 1012) GO TO 250

C
C
C ERROR FOR SUBROUTINE LIBOPN
C

IERROR = IERR - 1010
GO TO (100, 200) , IERROR

C
100 CONTINUE

C _-
C IERR = 1011
C _—_«^—

WRITE (IPRNTE, 11) IERR
11 FORMAT (/10X, 35HLIBOPN - ERROR NUMBER , 17

1 /10X, 35HCANNOT OPEN DATASET LIBRARY.)
RETURN

C
200 CONTINUE
c
C IERR = 1012
c

WRITE (IPRNTE, 22) IERR
22 FORMAT (/10X, 35HLIBOPN • ERROR NUMBER , 17

1 /10X, 35HMAX LOGICAL DEVICE INDEX = 30
1 /10X, 35HLDI RETURNED EXCEEDS THIS VALUE.)

RETURN
C
250 CONTINUE

IF (IERR .GT. 1014) GO TO 450
C
C
C ERROR FOR SUBROUTINE GETJDF
C

IERROR = IERR - 1012
GO TO (300, 400) , IERROR

C
300 CONTINUE

C —•—••—^—

C IERR = 1013
C

WRITE (IPRNTE, 33) IERR
33 FORMAT (/10X, 35HGETJDF - ERROR NUMBER , 17

1 /10X, 3SHINCORRECT EXECUTION SEQUENCE.)
RETURN

C
400 CONTINUE

C IERR = 1014
C ——~^—

124

WRITE (IPRNTB, 44) IBRR
44 FORMAT (/10X, 36HOETJDF - ERROR NUMBER , 17

1 /10X, 3SHDATASET DOES NOT BAVE ALL DATA.)
RETURN

C
4SO CONTINUE

IF (IERR .EQ. 1019) GO TO 900
RETURN

C
900 CONTINUE

C
C IERR = 1019
C

WRITE (IPRNTE, 99) IERR
99 FORMAT (/10X, 3SHGETDOF - ERROR NUMBER , 17

1 /10X, 34HINCORRECT EXECUTION SEQUENCE.)
RETURN

C
END

125

C EMSG2 ERROR MESSAGES FOR ...
C*"******** mmmmmmmm mm mm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmm
g m m m m m m m m m m m m m m m m m m w m *

C
C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING
C ROUTINE FOR MODULES: GTZERO, GTCOND, GETIJ, FTFORC,
C GTMOTI, GTNUM5.
C
Q*mmmmmmmm*mm»

C
SUBROUTINE EMSG2

C
Cmmmmmmmmm»mmmmmmmmmmm*mmmmmfmmm*mmmmmmmmmmmmmmmmmmm*mmm*mmmmmm*mmmm*mmmm*m*

C
CHARACTER*40 LIBNAM
CHARACTER'51 CDUMMY(7)
INTBGER«4 IPRNTE, IPRNTS, MAXINT
INTEGER"! MSGLVL , IERR , MAXCSM
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL,

1 TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR .MAXCSM, CDUMMY(7)

C

C
INTEGER** IERROR

C
IERROR = IERR - 1020
GO TO (100, 200, 300, 400, 500, 600, 700, 800), IERROR

C
100 CONTINUE

C
C IERR = 1021
C

WRITE (IPRNTE, 11) IERR
11 FORMAT (/10X, 35HGTZERO - ERROR NUMBER , 17

1 /10X, 'INCORRECT EXECUTION SEQUENCE ')
RETURN

C
200 CONTINUE

C IERR = 1022
C _

WRITE (IPRNTE, 22) IERR
22 FORMAT (/10X, 35HGTCOND - ERROR NUMBER , 17

1 /10X, 'INCORRECT EXECUTION SEQUENCE ')
RETURN

C
300 CONTINUE

C
C IERR = 1023

WRITE (IPRNTE, 33) IERR
33 FORMAT (/10X, 35HGETIJ - ERROR NUMBER , 17

1 /10X, 'INCORRECT EXECUTION SEQUENCE ')
RETURN

C
400 CONTINUE

C IERR => 1024

WRITE (IPRNTE, 44) IERR
44 FORMAT (/10X, 35HGTFORC - ERROR NUMBER , 17

1 /10X, 'INCORRECT EXECUTION SEQUENCE ')
RETURN

C
500 CONTINUE

C IERR = 1025

WRITE (IPRNTE, 55) IERR
SS FORMAT (/10X, 35HGTMOTI - ERROR NUMBER , 17

1 /10X, 'INCORRECT EXECUTION SEQUENCE ')
RETURN

126

c
600 CONTINUE

C IERR = 1026

WRITE (IPRNTE, 66) IERR
66 FORMAT (/10X, 35HGTMOTI • ERROR NUMBER , 17

1 /10X, 'UNEXPECTED NONZERO CONSTRAINT VALUE')
RETURN

C
TOO CONTINUE
c
C IERR = 1027 '
C

WRITE (IPRNTE, 77) IERR
77 FORMAT (/10X, 35HGTMOTI - ERROR NUMBER , 17

1 /10X, 'ZERO ENTRY FOR A NONZERO CONSTRAINT OCCURS')
RETURN

C
800 CONTINUE

C IERR = 1028
C

WRITE (IPRNTE, 88) IERR
88 FORMAT (/10X, 3SHGTNUM1 - ERROR NUMBER , 17

1 /10X, 'INCORRECT EXECUTION SEQUENCE ')
RETURN

C
END

127

c*
c*
C DEMSGO ERROR MESSAGES FOR DATASET ACCESSES

£«•«• *•••»*•«••! •••••«•*«*«•* •««***»«»«w«»»«I***»* w*«*•*••«•«•*•**«•***•*•*•«W4

c
C PURPOSE - THIS ROUTINE IS AN ERROR MESSAGE PRINTING
C FOR MODULES ACCESSING DATASETS.
C

C
SUBROUTINE DEMSGO

C

C
CHARACTER-40 LIBNAM
CHARACTER'51 CDUMMY(7)
INTEGER*4 IPRNTE, IPRNTS, MAXINT
INTEGERS MSGLVL , IERR , MAXCSM
INTEGER*4 BUFMAX, MXUSED, MXREQD, STAGE
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM, CDUMMY(7)
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE

C

C
INTEGER*4 IERROR

C
IF (IERR .GT. 2004) GO TO 450

C
C
C ERROR FROM SUBROUTINE QKINFO
C

IERROR = IERR - 2000
GO TO (100, 200, 300, 400) , IERROR

C
100 CONTINUE

C
C IERR = 2001

WRITE (IPRNTE, 11) IERR
11 FORMAT (/10X, 3SHQKINFO . ERROR NUMBER , 17

1 /10X, 35HLMFIND: CANNOT FIND DATASET.)
RETURN

C
200 CONTINUE

C IERR = 2002
C '

WRITE (IPRNTE, 22) IERR
22 FORMAT (/10X, 3SHQKINFO - ERROR NUMBER , IT

1 /10X, 35HGMGEKA: RECORD DOES NOT EXIST.)
RETURN

C
300 CONTINUE

C IERR = 2003
C -

WRITE (IPRNTE, 33)
33 FORMAT (/10X, 35HQKINFO - ERROR NUMBER ,17

1 /10X, 35HGMGECY: RECORD GROUP KEY UNDEFINED. }
RETURN

C
400 CONTINUE

C -
C IERR = 2004
C - .

WRITE (IPRNTE, 44) IERR
44 FORMAT(/10X, 3SHQKINFO - ERROR NUMBER ,17

1 /10X, 35HGMGECY: SEGMENTED RECORD GROUP NOTED.
RETURN

C
450 CONTINUE
C ------
C ERROR FROM SUBROUTINE GETRECI OR GTRECF

128

IERH.OR o IERR - 2004
GO TO (400, 800, TOO, 800, 900) IERROR

C
500 CONTINUE

C IERR = 2005

WRITE (IPRNTE, 55) IERR
SS FORMAT(/10X, 35HOETRECI - ERROR NUMBER ,17

1 /10X, 35HRECORD TYPE MISMATCH ...)
RETURN

C
600 CONTINUE

C IERR = 2006

WRITE (IPRNTE, 66) IERR
66 PORMAT(/10X, 3SHGETRECI - ERROR NUMBER ,17

1 /10X, 3SHGMGETN: ERROR DETECTED BY LMERCD...
RETURN

C
700 CONTINUE

C IERR = S007

WRITE (IPRNTE, 77) IERR
77 FORMAT(/10X, 35HGETRECF - ERROR NUMBER ,17

1 /10X, 3SHRECORD TYPE MISMATCH ...)
RETURN

C
800 CONTINUE

C IERR = 2008
C

WRITE (IPRNTE, 88) IERR
88 FORMAT(/10X, 35HGETRECF - ERROR NUMBER ,17

1 /10X, 35HGMGETN: ERROR DETECTED BY LMERCD...
RETURN

C
900 CONTINUE

C IERR = 2009

WRITE (IPRNTE, 99) IERR, BUFMAX
99 FORMAT(/10X, 35HQKINFO - ERROR NUMBER ,17

1 /10X, 35HBUFMAX MUST BE AT LEAST ,17)
RETURN

C
END

129

*j **»«*«**»« «••**«***• «**
C GBTSOL RETRIEVE TESTBED SOLUTION ...

C
c
C PURPOSE - RETRIEVE THE TESTBED SOLUTION. ASSUMING THAT THE TESTBED
C SOLUTION IS CORRECT, THE MAXIMUM RELATIVE ERROR IS THEN COMPUTED
C FOR EACH COMPOMENT IN THE SOLUTION VECTOR RETURNED BY SPARSPAK-A
C SOLVER "SOLVES".
C
C INPUT PARAMETERS -
C SOL - THE LEADING NEQNS LOCATIONS OF THIS VECTOR CONTAIN
C THE SOLUTION RETURNED BY SPARSPAK-A LINEAR SYSTEM
C SOLVER.
C
C WORKING PARAMETER -
C FBUF - A REAL OR DOUBLE PRECISION BUFFER OF SIZE BUFMAX.
C THE ACTUAL TYPE IS AS DECLARED.
C
C OUTPUT PARAMETERS -
C RATIO - THE MAXIMUM RELATIVE ERROR ENCOUNTERED.
C
£**««*%Mtt»«*««tt***tttt**«««**« ««****«**««********««****«** *»««**»»***«***««*****«*

C
SUBROUTINE GETSOL (FBUF, SOL, RATIO)

C
DOUBLE PRECISION FBUF(1), SOL(l), RATIO

C
£«»»*•«.»»»»»»•».»»»»»»»«»»*••*•».*»».».»•«»»»•».»•»«».»*«»»«»»»«»*.»««»«»*«».

C
CHARACTER**0 LIBNAM
CHARACTER'S! JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
CHARACTER** RTYPE
INTEGER** IPRNTE, IPRNTS, MAXINT
INTEGER** IDSN , LDI , NLEN , NREC , TRACE
INTEGER** MSGLVL, IERR , MAXCSM
INTEGER** MAXDOF , NEQNS , NUMJNT
REAL RATIOS, RATIOL, TIME

C
COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMSPK/ IDSN , LDI , NLEN , NREC , RTYPE ,

1 TRACE
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM,

1 JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /PRBLEM/ MAXDOF , NEQNS , NUMJNT

INTEGER** I, II, LEN, NITEMS, INDEX, MAXIND
DOUBLE PRECISION DELTAX, CSM, WEHAVE, CSMMAX

C
WRITE (IPRNTS, 11)

11 FORMAT (/SX, 40HGETSOL - COMPARE WITH TESTBED SOLN ...)

IF (IERR .NE. 0) GO TO 300
C
C -----
C ACCESS RECORDS IN DATA SET 'STAT.DISP.* '
C TO RETRIEVE NEQNS SOLUTIONS
C --

CALL QKINFO (STATD)
IF (IERR .NE. 0) GO TO 999 x

TRACE = TRACE 4 10
RATIO = O.ODO
NITEMS = O
CSMMAX = O.ODO
DO 100 1=1, NREC

LEN = MINO (NEQNS - NITEMS, NLEN)
IF (LEN .GT. 0) THEN

C -
C READ NEXT RECORD
C -

CALL GTRECF (I, FBUF, LEN)
IF (IERR .NE. 0) RETURN

C ----
C COMPUTE THE MAXIMUM RELATIVE ERROR

130

C FBUP CONTAINS THE DATABASE SOLUTION
C

DO 200 II = 1, LEN
NITEMS = NITEMS + 1

C
C GET THE COMPONENT WITH MAXIMUM MAGNITUDE
C

IF (DABS (FBUF(II)) .GT. CSMMAX) THEN
CSMMAX = DABS (FBUF(II))
MAXIND = NITEMS

ENDIF
DELTAX = DABS (FBUF(II) - SOL(NITEMS))
IF (FBUF(II) .NE. O.ODO)

1 DELTAX = DELTAX/DABS(FBUF(II))
IF (DELTAX .GT. RATIO) THEN

RATIO = DELTAX
INDEX = NITEMS

C
C SAVE THE PAIR WHICH CAUSES MAX REL ERR
C

CSM o FBUF(II)
WEHAVE = SOL(INDEX) .

ENDIF
200 CONTINUE

ENDIF
100 CONTINUE

C
C SUMMARY
C

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 21) STATD, RATIO,
1 INDEX, CSM, WEHAVE

21 FORMAT(/10X, 'MAX. REL ERR COMPARED TO ', Ail,
1 /10X, 'IS ', E14.7, ' IN COMPONENT', IS,
1 /10X, 'CSM SOL = ', E21.14, ' WE HAVE ', E21.14)

RETURN
C
300 CONTINUE

C ERROR HANDLING (NOT INCLUDED IN EMSG)
C

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 31)
31 FORMAT (/10X, 35HGETSOL-INCORRECT EXECUTION SEQUENCE)

RETURN
C
999 CONTINUE

C
C ERROR HANDLING (NOT INCLUDED IN EMSG)
C

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 91) STATD
91 FORMAT(/10X, 'CANNOT FIND ', Ail)

RETURN
C

END

131

STATCS PRINT STATISTICS

C
C PURPOSE - THIS ROUTINE PRINTS TIME AND STORAGE REQUIREMENTS OF
C THE CURRENT RUN.
C
£».»»«.,»»*>.»•.><><>••»»«. •»«»*•»•*»»•»«••*»*»••*•••»»•»•»*•••*••••»«•*• »>».»»»«

C
SUBROUTINE STATCS

C
CHARACTER-40 LIBNAM
CHARACTER'S! JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
INTEGER'
INTEGER*
INTEGER-
INTEGER'
INTEGER*

IPRNTE, IPRNTS, MAXINT
MSGLVL , IERR , MAXCSM
DOF, BUF, MASK, KG, ICLQ, FCON, SPK
BUFMAX, MXUSED, MXREQD, STAGE
MAXDOF, NEQNS , NUMJNT

REAL GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME.GNTIME,
CSMTIM, CSMSTR

REAL RATIOS, RATIOL, TIME

COMMON /CSMSYS/ IPRNTE, IPRNTS, MAXINT, RATIOS, RATIOL, TIME
COMMON /CSMUSR/ LIBNAM, MSGLVL, IERR , MAXCSM,

JDFSET, KMAP, KSPAR, CON, APPLF, APPLM, STATD
COMMON /CSMMAP/ DOF, BUF, MASK, KG, ICLQ, FCON, SPK
COMMON /CSMCON/ BUFMAX, MXUSED, MXREQD, STAGE
COMMON /CSMDTA/ GZTIME, GCTIME, GIJTIM, GFTIME, GMTIME.GNTIME,

CSMTIM, CSMSTR
COMMON /PRBLEM/ MAXDOF, NEQNS , NUMJNT

WRITE (IPRNTS, 11)
11 FORMAT (/5X, 40HSTATCS- SYSTEM-CSM STATISTICS ...)

C
IF (STAGE .GE. 20) GO TO 100

WRITE (IPRNTS.22)
22 FORMAT (/10X, 35HNO STATISTICS AVAILABLE.)

RETURN
C
100 CONTINUE

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 33) MAXCSM
33 FORMAT (/10X, 3SHSIZE OF STORAGE ARRAY (MAXCSM) , 110)

IF (MSGLVL .GE. 2) WRITE (IPRNTS, 44) NUMJNT.MAXDOF.NEQNS
44 FORMAT (/10X, 35HNUMBER OF JOINTS , 110

1 /10X, 35HMAX DEGREE OF FREEDOME PER JOINT , 110
1 /10X, 35HNUMBER OF EQUATIONS , 110)

IF (MSGLVL .GE. 3) THEN
WRITE (IPRNTS, 4S)
WRITE (IPRNTS, 46) DOP,BUF,MASK,KC,ICLQ,FCON,SPK

45 FORMAT (/10X, 3SHADDRESSES OF ARRARYS)
46 FORMAT (/10X, 10HDOF , 110

1 /10X, 10HBUF , 110
1 /10X, 10HMASK , 110
1 /10X, 10HKC , 110
1 /10X, 10HICLQ , 110
1 /10X, 10HFCON , 110
1 /10X, 10HSPK , 110)

ENDIF

CSMSTR = MXREQD
WRITE (IPRNTS, 133) CSMTIM, CSMSTR

133 FORMAT (10X, 35HTOTAL GSM-TIME REQUIRED , F13.3
1 /IOX, 35HMAXIMUM CSM-STORAGE REQUIRED , F10.0)

RETURN
C

END

132

References

[1] The Computational Structural Mechanics Testbed User's Manual. January 1988.

[2] Introduction to the Computational Structural Mechanics Testbed. NASA Langley Re-
search Center, September 1987. NASA TM 89096.

[3] The Nominal-Record Global-Database Manager GAL-DBM. Lockheed Palo Alto Re-
search Laboratory, September 1986. LMSC-D766995.

[4] SPAR Structural Analysis System Reference Manual Vol 3 - Demonstration Problems.
Engineering Information Systems. Inc., December 1978. NASA CR 158970-3.

[5] SPAR Structural Analysis System Reference Manual (vols. 1 - 4)- Engineering Infor-
mation Systems. Inc., December 1978. NASA CR 158970-1.

[6] E. C. H. Chu and J. A. George. A note on estimating the error in Gaussian elimination
without pivoting. ACM SIGNUM Newsletter, 20:2-7, 1985.

[7] E. C. H. Chu, J. A. George, J. W-H. Liu, and E. G-Y. Ng. User's guide for SPARSPAK-
A: Waterloo sparse linear equations package. Technical Report CS-84-36, University
of Waterloo, Waterloo, Ontario, 1984.

[8] G. C. Everstine. The Bandit computer program for the reduction of matrix bandwidth
for NASTRAN. Technical Report 3872, NSRDC, March 1972.

[9] C. A. Felippa. Architecture of a distributed analysis network for computational me-
chanics. Computers and Structures, 13:405-413, 1981.

[10] C. A. Felippa. A Command Language for Applied Mechanics Processors, vols. 1-3.
November 1983. LMSC-D 78511.

[11] C. A. Felippa. The Computational Structural Mechanics Testbed Architecture: Volume
1 - The Language. October 1987. NASA CR-XXXX.

[12] C. A. Felippa. The Computational Structural Mechanics Testbed Architecture: Volume
2 - Directives. October 1987. NASA CR-XXXX.

[13] C. A. Felippa. The Computational Structural Mechanics Testbed Architecture: Volume
3 - The Interface. October 1987. NASA CR-XXXX.

[14] C. A. Felippa. The Computational Structural Mechanics Testbed Architecture: Volume
5 - The Input-Output Manager DMGASP. October 1987. NASA CR-XXXX.

[15] C. A. Felippa. The Global Database Manager EZ-GAL. November 1982. LMSC-D
766995.

[16] J. A. George. An automatic one-way dissection algorithm for irregular finite element
problems. SIAM J. Numer. Anal., 17:740-751, 1980.

[17] J. A. George and J. W-H. Liu. Algorithms for matrix partitioning and the numerical
solution of finite element systems. SIAM J. Numer. Anal., 15:297-327, 1978.

133

[18] J. A. George and J. W-H. Liu. An automatic nested dissection algorithm for irregular
finite element problems. SIAM J. Numer. Anal., 15:1053-1069, 1978.

[19] J. A. George and J. W-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[20] J. A. George and J. W-H. Liu. The design of a user interface for a sparse matrix
package. ACM Trans, on Math. Software, 5:134-162, 1979.

[21] J. A. George and E. G-Y. Ng. User's guide for SPARSPAK-B: Waterloo sparse con-
strained linear least squares package. Department of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1, 1984.

[22] J. W-H. Liu. An adaptive general sparse out-of-core Cholesky factorization scheme.
SIAM J. Sci. Stat. Comput., 8:585-599, 1987.

[23] J. W-H. Liu. A Collection of Routines for an Implementation of the Multifrontal
Method. Technical Report CS-87-10, Dept of Computer Science, York University, 1986.

[24] J. W-H. Liu. Modification of the minimum degree algorithm by multiple elimination.
ACM Trans, on Math. Software, 11:141-153, 1985.

[25] J. W-H. Liu. The Multifrontal Method and Paging in Sparse Cholesky Factorization.
Technical Report CS-87-09, Dept of Computer Science, York University, 1987.

[26] J. W-H. Liu. Modification of the minimum degree algorithm by multiple elimination.
ACM Trans, on Math. Software, 11:141-153, 1985.

[27] J. W-H. Liu. On the storage requirement in the out-of-core multi-frontal method for
sparse factorization. ACM Trans, on Math. Software, 12, 1986.

[28] J. W-H. Liu and A. H. Sherman. Comparative analysis of the Cuthill-McKee and
reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numer. Anal.,
13:198-213, 1976.

[29] M. E. Regelbrugge and M. A. Wright. The CSM Testbed Matrix Processors - Internal
Logic and Dataflow Descriptions. Lockheed Palo Alto Research Laboratories, January
1988. Preliminary Draft.

[30] M. A. Wright, M. E. Regelbrugge, and C. A. Felippa. The Computational Structural
Mechanics Testbed Architecture: Volume 4 - The Global-Database Manager GAL-DBM.
October 1987. NASA CR-XXXX.

134

