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Summary

This paper presents a globally convergent adaptive regulator
for minimum or nonminimum phase systems subject to bounded
disturbances and unmodeled dynamics. The control strategy is
designed for a particular input-output representation obtained
from the state space representation of the system. The leading
coefficient of the new representation is the product of the
observability and controllability matrices of the system. The
controller scheme uses a Least Squares identification algorithm
with a dead zone. The dead zone is chosen to obtain convergence
properties on the estimates and on the 'covarlance matrix' as
well. This allows the definition of modified estimates which

secure well-conditloned matrices in the adaptive control law.
Explicit bounds on the plant output are given.

Introduction

Adaptive control techniques have been extensively studied for.
over a decade. The development of the theory has led to a better
understanding and improvement of the performance of adaptive
algorithms. Nevertheless, owing to the difficulties encountered
when dealing with nonminlmum phase systems, most of the treatment
is confined to minimum phase systems.

Discrete time minimum phase systems have the appealing
property that boundedness of the output implies boundedness of the
input. This property has been thoroughly exploited in the
convergence analysis of adaptive schemes in which attention may be
exclusively focused to obtain bounds on the plant output. A
fortunate coincidence is that prediction error identification
methods llke Least Squares and projection algorithms are also
focused on the plant output in the sense that they provide plant
model estimates that adequately predict the plant output. These
two facts allow one to compute a control sequence that produces an
arbitrary desired output regardless of the controllability of the
plant model estimate (refs. 1 through 10).

Discrete time systems having nonminimum phase characteristics
may appear in many different ways. For instance, all continuous
systems having a relative degree greater than two give rise to
nonminimum phase models when sampled at a fast rate with zero
order hold input (ref. 11). In that paper it was also found that
the pulse transfer function corresponding to l/s" has zeros on or
outside the unit circle for nm2. This indicates the restricted
scope of application of those control laws for discrete time
systems which involve cancellation of discrete zeros. It also

• underlines the importance of the study of adaptive control for
nonminimum phase plants.



Parameter estimation methods llke Least Squares and
projection algorithms are derived from an optlmlzatlon problem
formulationconsideringbasicallythe output prediction error. It
is not surprisingthat the plant model estimate obtained in such a
way may not retain some importantcharacteristicsof the process
like controllability, stability, delay, etc. .. Lack of
controllabilityhas been a stumblingblock for the developmentof
adaptive control of nonmlnlmum phase systems. Unlike the minimum
phase case, adaptive control for nonmlnlmum phase plants require
controllabilityof the plant estimate in order to assure that both
plant output and input remain bounded.

This problem has been addressed from two different
perspectives:one relying on persistent excitation ( P.E. ) and
the other not requiring P.E.. In the former an external signal
having a minimumamplitudeand a minimum number of spectral lines
is introducedin the control loop. Such a signal will assure that
a certain P.E. condition on the plant input and output will be
satisfied. In the deterministiccase, i.e. when there is no noise
in the plant, P.E. on the plant signals will in turn assure
convergence of the estimates to the true parameter values which
will guaranteeboundednessof all the signals in the control loop
(refs. 12 through IS). This approach not only secures boundedness
of all the signalsbut also exponentialstability.

However, in the presenceof boundeddisturbancesor unmodeled
dynamics the amplitude and frequency richness of the external
signal should be large enough to secure P.E. of the plant input
and output and preventthe noise in the closed loop from
counteractingthe external signal effect. Introducingan external
signal of such a size into the plant may conflict with the control
objective of having a small output tracking error. On the other
hand, from the practicalpoint of view, it is not always feasible
or desirable to introduceextra noise into the system. For these
reasons adaptive control not relying on persistencyof excitation
is an important alternative approach. Furthermore, adaptive
stabilizationwlthout resorting to any P.E. condition will pave
the way to a better understanding of the use of P.E. in the
control loop. Indeed, if desired, a probing signal with a
tolerable amount of P.E. could be introduced in the system to
improvea given performanceindex, but not to guaranteestability.

In the design of adaptive controllers whose stability does
not rely on P.E. one is readily confronted with the problem of
obtaining a controllableplant estimate. As pointed out above,
minimizationof performanceindiceson the output predictionerror
may not suit our control objectives.However, Least Squares type
identification algorithms offer some freedom to modify the
parameter estimates. As is well known, the " covariance matrix "
acts as a memory and can be used to measure the parameter
estimation error. It can also be used to define a modified



parameter estimate that will essentially preserve the convergence
properties of the original parameter estimate. Such a modified
estimate is obtained by adding any linear combination of columns
of the " covariance matrix " to the current estimate. The weights
on the linear combination are arbitrary and can be chosen to our
advantage. This technique was used in the design of adaptive
control schemes in the deterministic case in references 18 and 17

wherein different modifications were proposed to the standard
Least Squares identification algorithm. These modifications secure
a nonsingular Sylvester resultant matrix obtained using the
modified parameter estimates. The Sylvester resultant matrix
appears in pole placement techniques and is nonsingular if and
only if the associated system is controllable (ref. 18). Other
modifications have been studied in reference 19 but the proposed
algorithms are less explicit than those in references 16 and 17.
Another interesting approach is presented in reference 19 where
the problem is solved for the class of plants whose parameters
belong to a convex region in the parameter space where the plant
is pointwise stabilizable. Further studies are required to
completely assess and characterize the plants belonging to that
class.

The modifications proposed to date in the literature have not
been proved to secure a uniform, strictly positive lower bound for
the singular values of the Sylvester matrix obtained using the
modified estimates. Since the control input depends on the inverse
of the Sylvester matrix, the size of that lower bound plays an
important role in the assessment of the robustness capabilities of
the adaptive control scheme. Clearly this problem is shared by any
control law making use of the certainty equivalence principle.

This paper presents a robust adaptive regulator for discrete
time systems in the presence of bounded disturbances and unmodeled
dynamics. The system is not restricted to be minimum phase and the
class of unmodeled dynamics considered is the same as in
reference 8 .The control objective is to achieve plant output
regulation.

The control strategy has been devised for a particular
input-output representation of the system. This representation is
obtained from the state space representation of the plant and has
the key feature that the matrix coefficient multiplying the
sequence of inputs is the product of the system observability and
controllability matrices. That product shall be refered to in the
paper, as the leading coefficient. Therefore the leading

. coefficient can be directly identified and thus, the effect of any
modification of the estimates on the controllability of the plant
model estimate will appear more clearly A Least Squares

. identification algorithm with a particular dead zone is used. The
width of the dead zone is such that convergence properties can be
deduced,not only on the output prediction error but on the "
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covariance matrix " as well. This leads to an explicit definition
of a modified parameter estimate for which the singular values of
the leading coefficient have a uniform, strictly positive lower
bound. Explicit bounds for the plant output in the limit are also
presented.

The material that follows presents a discussion of a

particular input-output representation of the system and a simple
output feedback control law that achieves state regulation around
the origin; the proposed control scheme and its obtained
convergence properties.

Symbols

E prediction error vector

F covarlance matrix

L a matrix such that F = LLT

n order of the plant

u(t) plant input

x(t) state vector

y(t) plant output

wk augmented error

6k normalized disturbance bound
controllability matrix

0 observabillty matrix

8 parametersvector

8 modified parameters estimate

parametric distance

80 initial parameters estimate

€ measurementvector

Ak forgetting factor

State Regulation via Output Feedback

Consider the following state space representation of a
single-input single-output discrete-time system o
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x(t+l) = Ax(t) + bu(t) + b'v'(t) (l.a)

y(t) = cTx(t) + v"(t) (l.b)

where x is the (nxl) state vector, u and y are the plant input and
output, A, b, b' and c are matrices and vectors of appropiate
dimensions, and, v' and v" are disturbances.

The control strategy proposed in this paper is based on the
input-output representation presented in the following Lemma.

LemmaI- The plantoutputand inputin equation(I) satisfythe
followinginput-outputrepresentation

Y(t+2n)= GU(t+n)+ BU(t)+ DY(t)+ B'U(t-n)+ N(t+2n) (2)

where

uT(t) = [ u(t) .... u(t+n-l)] (3.a)

yT(t+n)= [ y(t)..... y(t+n-l)] (3.b)

B = 0 _ (3.c)

with

T
C

0 cTA= ; _ = [ An-lb, ....Ab,b ] (3.d)

cTAn-1

D = 0 A2n 0 -1 (3.e)

B' = 0 An W - 0 A2n O-1G (3.f)

. o
T

c b .
G = (3.g)

T n-2 T
, cA b ..cb 0
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N(t+2n)= O_'V'(t)+ G'V'(t+n)+ V"(t+n)-

- OA2nO-1[G'V'(t-n)+ V"(t-n)]+ OAn_'V'(t-n) (3.h)

g' and G' are obtained by replacing b by b' in the expressions for

and G respectively. V' and V" are defined the same way as U in

equation (3.a).

The proof is given in Appendix A.

The input-output relationship in equation 2 is an alternative

representation of the system (eqn. I) that has some particular
characteristics. If the system in equation I is reachable and

observable then B in equation 3.c is nonsingular. On the other

hand G in equation 3. g is always singular and for this reason we

reserved the name leading coefficient for B and not for G. It can

aiso be noted that Y(t+n) does not appear in equation 2 and this

wiII allow definition of a very simple control law.

Let Uk denote U at time t = 2kn, k= 0, I,2 ...... Assume

U(t-n) = 0 for t = 2kn (4)

Note that U(t+n) is also equal to zero for t = 2kn because
U(2kn+n)= U(2(k+l)n-n).Then equation2 can be writtenas

Yk+l = DYk + BUk + Nk+l (S)

Consider the control strategy defined by equation 4 and the
following

Uk = - B-IDYk (6)

Note that Yk depends on output measurements up to time t = 2kn-I

as can be seen from equation 3.b. Then the control input in
equations 4 and 6 leads to

6



Yk+l = Nk+l (7)
Q

Since Y(t+2n)= N(t+2n) and U(t+n) = 0 for t = 2kn, x(t+n) is
exclusively bounded by the disturbances N(t+2n), V'(t+n) and
V"(t+n) fop time t = 2kn (eqn. A.3). Since U(t+n) = O, x(t+2n)
will be boundedby x(t+n) and V'(t+n)for t = 2kn ( eqn. A.2).

The proposed control strategy can also be interpretedas an
alternated use of an n-step dead bert observer and an n-step dead
beat controller.It is prefered not to increasethe complexity of
the control scheme at this stage to simplify the convergence
analysis of the correspondingadaptive scheme which follows.

Adaptive regulation

We will assume that equation 4 holds so that the system is
represented by equation 5 which can also be rewritten as

Yk+l = 8 Ck + Nk+l (8)

where

8 = [ B : D ] (8.a)
T T T

Ck = [ U_ : Y_ ] (8.b)

Consider the class of disturbances satisfying

max , N(2kn+T) IIs n + _ ilCk H (9)
n_T_2n

The following a-priori knowledge on the plant is required

Assumption 1 n and the upper bounds _ and p in equation 9 are known

' Assumption 2 A lower bound b0 is known such that

7



b 0 I "_ BTB

Assumption 3 Matrices F0 > 0 and H0 > 0 defining an ellipsoid in
the parameter space are known such that

(8- 80 )FOI ( 8- 80 )T < HO

where e0 is any initial parameter estimate. The quantities b0 and

H0 above are not actually required in the computation of the
control law but the stability and the performance of the algorithm
will depend on them.

The proposed adaptive scheme is now presented. The equations

are given in the order they appear in the computation of the

control input.

Description of the adaptive control al_Qrithm

Normalized variables

Xk_1 = €k_1/ (1+]I€k_1,) (lOa)

Yk = Yk / (l+"¢k-Ill) (lOb)

Prediction error

Ek = Yk - 8k_iXk_1 (11)

LeastSquareswithdeadzone

8.



2 T Twk = Ek F.k + Xk_I _iXk_l (12)

6k = /_ + _ / ( 1+11¢k-1II} (13)

2 (l+oOn

0 if g -< _k

kk = _ [lWk[ - 3kCCl+_)n)1/2]
otherwise

(l+X _lFk_iXk_l)lwkl
(14)

_>0

T

hkFk-lXk-iXk-iFk-1
Fk = Fk_1 - (15)

T
1 + AkXk_lFk_iXk_1

8k = 8k_1 + AkEkXk_lFk (16)

8k = [ Bk(nxn), Dk(nxn)] (17)

Factors of Fk and Bk

Fk = Lk g z 0 (18)

T

Bk = Qk Sk ; Qk Qk = I and S k- 0 (19)

Modified parameter estimate

9



(nx2n)]
..... (2O) __

Lk = _' (nx2n)J

_k = qk_ (21)

ek= ek+ _k (22)

ek = [ BkCnxn), Dk(nxn)] (23)

Control input

Uk =-B-klDk Yk (24)

The Cholesky factorization in equation 18 and the polar

decompositionin equation 18 can be carried out for any Fk_O and

any Bk respectively.The reader is refered to Appendix B for a
brief explanationon equation 18 and to References 2S, 30 and 31
for a more detail presentation.In fact the parameter estimate

modificationin equation 22 is only required when Bk in equation
17 is ill-conditionned,but for sake of simplicityof notation and
since the modificationwill ultimatelybe requiredfor convergence
analysis, it is decided to leave it on all the time.

Convergence Analysis

The convergence analysis of the adaptive control scheme
previously discussed is now presented. The main convergence
properties of the control scheme are given in the following
theorem.

I0



Theorem 1. Consider the system equation 2 whose disturbances

belong to the class equation 9. Then subject to assumptions 1-3,

the control law in equations 4 and 10 through 24 has the following

I0 properties.

I) The plant parameter vector 8 lies inside an ellipsoid centered

at the parameter estimate as follows

8k Fk I ~Tek -< Hk (2S)

where 8 is the parametricdistance

ek = e - ek (26)

and Hk is given by the following expression (ref 32)

T
I + AkXk_IFk_IXk_1

2) The forgetting factor Ak in equation 14 satisfies the following

inequalities

0 s Ak s _ , AkX__lFk_lXk_1 s _ (28)

3) There exists a positive definite function Vk satisfying

Vk _ Vk_1 (29)

that is related to the size of the ellipsoid in equation 25 as
follows

Vk = tr ( Fk + Hk ) (30)

11



4) The augmented error wk in equation 12 is bounded by 6k in

equation13 as follows

2 2 (l+_)n) _ 0 (31)
llm sup ( wk - _k
k_m

5) The covariance matrix Fk in equation 15 converges.

6) kk in equation14 is such that

Ak__ is bounded (32)
k=l

7) The parameter estimate vector ek converges and is bounded by

T < V2I (33)
ek ek - o

where V is given in equation 30 for k=O. The matrices involved ino

the control law equation 24 satisfy

b2 I

8) B_kB_kz o (34)
4 V2

o

A 16V4 I

9) ( B__*D_k )T( B_IDk ) s ml = o (34a)
b2
0

10) If _ in equation 9 is small enough that 3 c>O such that

1 - c

= > 0 (35)

[2nC1+_)C1+m)]I/2

12



with _ and m as in equations 14 and 34a respectively,then all the
variables remain bounded and the plant output is bounded as
follows

llm sup { IIYk 11- [2n(1+_)]I/2 ( n + _ )/e } -_0

(36)

Each of the I0 properties previously describedwill now be proved

Proof :

I) From equation8 it is seen that

Yk = 8 Xk_1 + _k (37)

where Yk and Xk_1 are given in equations lOa and lOb and

_k = Nk/(l+llCk-lll) (38)

In view of equations9 and 13, _k satisfies

2
_k - 3k (39)

From equations 16 and 26 it follows

=  k-I-  × -irk (40)

From equation 16 and the matrix inversionLemma (ref. 18)

• Fk* = Fkll + TAkXk_iXk_I (41)

T
, Combiningequations40 and 41 and noting that Fk= Fk z 0

13



-1 T _T _ T

= 8k_iCFk_l+AkXk_iXk_l)Sk_l-AkSk_iXk_iF_+
e

T _T 2 T T

- kEkxk_i%_i+ kEk k_i kxk_iS

= gk_iFk[18__l+ AkCSk_iXk_l-Ekl(Sk_iXk_l-Ek)T+

T ) C42)

From equationsII, 28 and 37 it follows

_k_iXk_l- Ek = (e-ek_l)Xk_l-([k-ek_iXk_I)= -_k (43)

T

The quadraticterm Xk_iFkXk_I can be obtained from equation 15 as
follows

T Ak(X_-IFk-lXk-I)2
T = Xk-Xk-IFkXk-1 IFk-lXk-I- T

I + AkXk_iFk_iXk_1

T
Xk-IFkXk-I

T
I + AkXk_iFkXk_l

or

T - I = -I (44)
AkXk_iFk_IXk-I

T
1 + AkXk_lFk_iXk_I

Introducingequations43 and 44 into equation 42 and noting that
(see eqn. 39)

Nkg < gN_kI < 3kl

14



gives

T
1 + AkXk_lFk_lXk_l

-_kkBkI -
T

I + kkXk_iFk_iXk_1

= Hk - Hk_ 1 (using eqn. 27) (45)

In order to prove equation 25 by induction, assume that

Hk ek_iFk _ 0 (46)-I- -i -

Equation45 can also be writtenas

_k-"k-_-_k_k%.~ -' ~_ _-o (47)ek-iFk-lek-I

Adding equations 46 and 47 results in 25. Since by Assumption 3
equation 48 is true for k=l, the proof is complete.

2) The two expressions in equation 28 can be readily obtained
from equation 14.

3) Introducing equations 15 and 27 into equation 30 and using

equation 12 gives

Vk - Vk-1 : Ak _kn - Wk (48)
T

I + AkXk_iFk_IXk_I

In viewof the way the dead zone (eqn.14) was defined,Vk = Vk_i

15



2 (l+a)n.From equationfor Wk-<_k(1+_)n Study the case Wk> 6k
48 and using equation28

Vk-Vk_ 1 -<Ak{ _kn - w_/Cl+_) }

Ak 2 }-___ { _k(l+=)n- wk
(1+_)

_[IWkl-_k((1+oOn) Ix2] 1/2 ,

< {C_kCCl+oOn)I/2-IWkI)¢_k((l+o_)n) +lWkl)}

(I+_)(l+Xk_iFk_lXk_l)lWkl

[IWkl - 6kCCl+_)n)I/2]2 (49)

T )
(I+_) ( I + Xk_iFk_lXk_l

4) Equation49 holdsfor w_ > _(l+_)n, otherwise Vk= Vk_I.

Then Vk is a positive nonincreasing sequence and therefore it

converges. Equation 31 follows from equation 48.

5) From equation 15 it is noted that Fk s Fk_1 Then zTFk z,

where z is any constant vector, is a positive nonincreasing
function and thus converges. To complete the proof it is shown

that any element of Fk can be expressed as a combination of

terms of the form zTFk z . Define vi as the vector ofquadratic

appropiate dimension whose elements are all zero except for the
i-th elementwhich is equal to I . Then

T

Fk(i,j) = ViFkVj = [(vi+vj)TFk(Vi+Vj)_ViFkVi_T V_FkVj]/2 '

16



6) Define w as those time instants k at which w_ > 3_(1+_)n.

From equation 14

T

xi_iFi_ixi_ 1T

klXl_iFl_iXl_ 1
T

1 + Xt_lFl_lXt_ 1

<

1+ T -i
(xI_IFI_IXI_1)

trF
0

= C5o)

1 + (trF)-i 1 + tr F
o 0

where the fact that FI_1 s F° (eqn. 15) and xi_I s 1 (eqn. lOa)
was used. Introducing equation 50 into equation 48

O0

Vk-Vk_ 1 = V - V_o 0
k=l

2

_ ki( _in - wi }
i_'r atrF

o
1 +

1 +trF
o

l+trF mtrF

(1+_) l+trF
l+trFo o

l+trF mtrF

_< 0 _" kl { 81n[1+ 0 ]_ 31(1+_)n }

l+trFo(I+_) I_T l+trF 0

t7



l+trF

o _ ki3_n_ ( -1 )
ig_

l+trF (1+_) l+trF =
o 0

Since ki = 0 for i_T and _k is bounded, it finally follows

Z AkSk = _,Ak_k -< VoCl+trFoCl+°_))/n_
k=l i E'r

7) Combining equations 40 and 41 produces

€ - 1

1

= ek_IFkll - AkN_kXk_I (using eqn.43)

k
-1 T

= eoF° - _.XN x1--I1-1
I=I

or equivalently using equation 26

k
= F-1_ xTek e .- [ eo o _,Ai_iNi-1 ] Fk

i=1

From equation 32, _ ki3_ is a bounded, nonincreasing positive

sequence and thus, it converges (ref. 28). Since 8 m _ > 0 (eqn. 13),

ki is also bounded and thus converges too. Since the elements of

T T

NiXi_l are all bounded then _ kiNixi_iconverges. Therefore from

the expressions above and since Fk converges, it is concluded that

8k converges.

18



From equation26
J

ek = 8 + ( -ek)

Then using equation B.I in Appendix B

From equatLon 25 and some propertLes of posLtLve defLnLte matrices
( see Appendix B ).

CtrHk)I z Hk

8k [ I kmlnFk I ] 8_

z 8k8_ ( trFk )-I (52)

On the other hand

CtrFk)(trHk) _ ([trFk+trHk]/2)2

V_/4 ( using eqn.30)

V2/4 (uslngeqn. 29) C53)o

Substitutingequation53 intoequation52 Elves

8ke_-_ I V_/4 _ I V2/40 C54)

In order to obtain a bound on 8eT we recall that asssumptlon 3
holds for any initial parameter estimate. Therefore equation 54
should also hold fop a 0 initial estimate and thus

eeT _ I V2 /4 C55)o

19



Equation 33 follows after introducing equations S4 and SS into
equation 51.

8) From equations 33 and 17

IT]T [ Bk : D k] Bkek 8k = T
Dk

= BkBk + DkDk -_ V2oI (aS)

Define

O

_k = 8k ( g )-1 (57)

Notethatfrom equations18,2S, 29, 30 and the above

m •T

-_ I Vk -- I V° (58)

Note also that Sk in equation 57 is such that

8 =Ok+ _lLk (S9)

The expression above can be partitioned by using equations 8a, 17
and 20 to obtain

B = Bk + _:(L_)T (60)

Using equation B.I

:20



.1 _roT_ _. 1 T

BTB-<2[ k+ ]
" . l_°T_ e. 1T

2[ SkS k + Lk_ k _kUk ] (using eqn 19)

T

- V " 1L1
2[ SkS k + oLk 1 ] (using eqn. $8) (61)

.T . m mT

In the lastequationthefact that_k _k and _k_khave the same
nonzero elgenvalues was also used (see Appendix B ). Assume that

Sk = Sk S__ then

sk sk s_k(

__ [ AmaxSk] Sk s [ AmaxSkSk ]1/2Sk

-_ [ AmaxBkBk]I/_sk (using eqn. 19)

V° Sk (usingeqn.S6) (62)

Introducing equation 62 into equation 61 and in view of Assumption
2

T

L_ 1 ] (63)b° I _ BTB _ 2V° [ Sk + Lk

From equations 17, 20, 22 and 23

T
1

B_k = Bk + _kLk

Introducing equations 19 and 21 into the above

-2i



T
I

B-k- Qk [ Sk + Lk L_ ]

Thus

T T

m I b2 / 4V2 (using eqn. 63) (64)o o

9)

C
B-kD-k) _ _

__ D_kD_kAmax( B_kB_k)-I

< DkDk [AminB-kB-_]-z

-_D_ Dk 4V: / bz (using eqn. 64)o

(6S)

From equations17,20, 22 and 23

T

Then

T
2 T 2

D_kD_k_ 2 [ DkDk + L_[3k[3kL_ ] Cusingeqn. B.I)

T T

-_ 2 [ V2Io + LkLk L_L_ ] (usingeqns.21 and 56)

+ ){A 2.2z< 2 [ V2 (_ma.,xLl_T0 _ maxL_Lk ) ] I

T .2TL_-
2 [ V2+0 (AmaxLk_ + AmaxLk k )2/4 ] I

2 [ V2o + (2 AmaxL_Lk)2/4] I (seebelow)

22 _



4 V2 I (using eqns. 18, 29 and 30) (66)• 0

where the fact that ( see eqn. 20)

T T

was used. The result follows from equations 65 and 66

10) Define the modified prediction error

-Ek = Yk - 8k_lXk_1 (68)

T
= Ek - _k_iLk_iXk_l(usingeqns.11 and 22) (89)

Therefore, using equation B.I

But fromequations19 and 21

T

_T _ T =

T T

Lk_l__lLk_lnk_1 (usingeqn. 67)

2 (usingeqn. 18) (71)Fk_1

Introducingequation71 intoequation70 and takingintoaccount
equation12 we get

Using equation 8b, I0 and 23, equation 68 can also be rewritten
as

3"



-Ek = 1 fYk - [B-k-l'Dk-1][ Uk-1 ] }(73)Yk-1 -"
1 + I1€k_111

Usingthe contPollaw in equation24, equation73 reducesto

Yk
_Ek= (74}

1 + II_k_lU

Comblnlngequatlons72 and 74

2 [ Wk - _kC1+_z)n] _ _EkE_k- 2 _k(l+o_)n

>- - 2_k(l+_)n (75)

( 1+11#k_lll ) :_

From equations 8b and 24 it follows

IICkll2 = IIYkll 2 + IIUkll2

-_,,yk,,2 + Yk(B_klD_k)T B_kID_kYk

-< (l+m)IIYkll2 (seeeqn. 34a) (76)

On the other hand, using equations8 and 9 it is seen that

IIYkll -< (llell + /_ ) I1€k_111 +_ (77)

Assume that llYkllgrows unbounded. Deflne a subsequence tn along

which IIYt II-_m and
n

24



lIYtII-> max llYlll (78)
n _<t

, 11

• Then using equation 76 and the above gives

lIYt II
n -> IIYt _111 / [1 + (m+l)l/211Yt _111 ]

n n

1+11€t _111
n

-> 1 / [ (m+l)l/2+llY t 1111-1 ] (79)
n

Introducing equations 79 and 13 into equation 75

2[wt - _t(l+_)n] _>[(m+l)I/2+llYt _111-I]-2 _
n n n

- 2(1+_)n [ # + _/(1+11€t _111) ]2 (80)
n

IIYt IlCm implies II @t -111_m and IIYt _lll-m as can be seen from
n n n

equations 76 and 77. Therefore the RHS of equation 80 converges to
(see also eqn. 35)

(l+m)-I- 2(l+_)n 2 1 - (l-c)2= >0
m+l

Since this limit is strictly positive it contradicts the fact that

, the LHS of equation 80 satisfies equation 31. Therefore IIYkll

should remain bounded and so should II@kll and IIUkll (see eqn. 76).

• In order to obtain an explicit bound for IIYkU consider equation 75
again to obtain

25.':



2[w_-_(l+_)n] z zk [ -(2n(l+_))I/z_k +llYkll/(l+llCk_lll)] (81)

where

= i/z_ IIYkll/{ 1+11Ck_lll) ] (82)z k [ {2n(1+_)) _k +

Introducing equation 13 into equation 81 gives

z (l+(z)n ]
2 [ Wk-(_ k

[ llYkll- (2n(I+00)I/2{ _ + p.(l+ll¢k_lll)} ] zk / (1+II€k_iii)

z [llYkll - (2n(1+_))1/2{ _ + _ + _(l+m)l/ellYk_lll } ] Zk/(l+llCk_lll)
(using eqn. 76)

z[lIYkll-(1-r)llYk_lll-(2n(l+m))i/z( _ + _ ) ] Zk/(l+llCk_lll)

(using eqn. 35)

From equations 13, 82 and the boundedness of I1€k_111 it is clear

that Zk/{l+ll¢k_lll) ls strtctly positive. Therefore, from equation
31 and the above we conclude that

llm sup [llYkll - (1-_)llYk_lll - (2n(l+_))l/z(n+_) ] _ 0
k_

The resultfollows. •

Concluding Remarks

This report presented an adaptive scheme that achieves
regulation without resorting to any persistent excitation
condition. The proposed algorithm can be used to control minimum
phase or nonminimum phase plants subject to bounded disturbances
and unmodeled dynamics.

An explicit modification for the parameter estimates was ?

presented that avoids having any lll-conditlonned matrix In the
control law, This allowed the giving of explicit bounds for the
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plantoutput.

• The proposed techniquecan also be used in adaptive control
of multivariable systems whenever the estimate of a matrix

coefficient is required to be non-singular.

Appendix A

Proof of Lemma 1

Iteratingequationla

x(t+i) = Aix(t) + Ai-lbu(t) +..... + bu(t+i-l) +

+ Ai-lb'v'(t)+.... + b'v'(t+i-l) (A.I)

for i=n

x(t+n) = Anx(t) + %_U(t)+ _'V'(t) (A.2)

with g, _', U(t) and V'(t) as defined in Lemma I. Premultiplying
T

equation A. 1 by c and using equation lb gives

Y(t+n)= 0x(t)+GU(t)+G'V'(t)+V"(t)
or

x(t) = O-I[Y(t+n)-GU(t)-G'V'(t)-V"(t)] (A.3)

with G,G', Y and V" as defined in Lemma 1. Iterating equation
A.2 produces

x(t+n) = A2nx(t-n)+AnCU(t-n)+AnC'V'(t-n)+CU(t)+C'V'(t) (A.4)
J

Substitution of equation A.4 in equation A.3 finally leads to
, equation 2 with ail the variables as defined in Lemma 1
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Appendix B

This Appendix is intended to recall some results from matrix
theory that are used in the report. Refer to References 29, 30 and
31 for a more detailed analysis.

1.- For any matrices A and B it follows that

( A + B )( A + B )T S (A+B)(A+B)T + (A_B)(A_B)T

2 ( AAT + BBT ) (B.I)

2.- For any positive semi-definite matrix F m 0 it is noted that

i) (AminF) I -_ F-_ (XmaxF) I -_ (trF) I

i l) 3 L such that F = LLT

F-t= [ ]-_iii) Rmax RminF

3.- For any matrix A, ATA and AAT have no negative eigenvalues
and have the same nonzero eigenvalues.(ref. 30 page 182)

Sketch of the proof

Let Al and v i be the eigenvalue and corresponding eigenvector

of AAT , then

AAT Vi = Rivi (B.2)

premultiplying by AT

ATA (ATvi) = Ri( ATvi )

Premultiplying equation B.2 by v_ results in ]IATviHm = kil[viH2.

Then ATvi _ 0 for k i _ 0 and therefore ATvi is the eigenvector

corresponding to the eigenvalue A i of ATA. •
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J

4.- Any matrixA can be expressedas A = Q S where QTQ = I and
S z 0 (ref. 29 p286 )

Sketch of the proof

Let vi and Ai such that

ATAvI: I v{vj: CB.3
T

Then 3 zi , zizj = _ij such that

Avi = lizi (B.4)

Define

Q = _ zjv_ _ Qvi = zi (B.S)

S = _ Ajvjv_ _ Svi = Aivi (B.8)

Then from equations B.4 through B.6

Av i = AiQv i = QSv i _ A = QS

Furthermore, from equation B.6) S z 0 and from equation B.5

T

QTQ = . vizT zj J i i I
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