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SUMMARY

This report presents the research results from the research grant
entitled: "Active Control of Robot Manipulators", sponsored by the Goddard
Space Flight Center (NASA), under Grant Number NAG-780, obtained between
January 1, 1988 and June 30, 1988.

In this report, we concern with a class of robot manipulators built based
on the closed-kinematic chain mechanism (CKC/D. This type of robot
manipulators mainly consists of two platforms, one is stationary and the other
moving, which are coupled together through a number of in-parallel actuators.
Using spatial geometry and homogeneous transformation, we derive a closed-form
solution for the inverse kinematic problem of a six-degree-of-freedom
manipulator, built to study robotic assembly in space. Iterative Newton
Raphson method is employed to solve the forward kinematic problem. Finally
the equations of motion of the above manipulator are obtained by employing the
Lagrangian Method. Study of the manipulator dynamics is performed using
computer simulation whose results show that the robot actuating forces are
strongly dependent on the mass and centra id locations of the robot links.



1 INTRODUCTION

The In-parallel actuated manipulator whose design is based on the concept

of closed-fcinematic chain mechanism (CKCM) has recently attracted considerable

research interest [3]-[11]. Because of its closed mechanism, this group of

manipulators has several advantages over the conventional open-chain type.

Manipulators with CKCM have smaller positioning errors due to the

non-cant 1 lever 1 ike configuration and consequently have greater positioning

ability, as compared to those with the open-chain type. Furthermore, they

provide higher force/torque and greater payload handling capability for the

same number of actuators. CKCM concept has been widely applied to design

several industrial robots [10]-[11].

Implementation of the CKCM concept was first appeared in the design of

the Stewart mechanism [1] consisting of two platforms driven by in-parallel

actuators. After its introduction, the Stewart platform has been proposed in

numerous robotic applications [2]-[4]. Yang and Lee [5] investigated the

inverse kinematic and workspace problems of the Stewart platform. Unlike the

case of the open-chain type, manipulators with in-parallel actuators possess

closed-form solutions to its inverse kinematic problem as learned by many

investigators. However, in most cases the forward kinematic problem must be

solved iteratively using numerical methods. A general closed-form solution for

this problem is not known at this time. Besides the forward kinematic

problem, the dynamics of CKCM manipulators has also been an active research

area. Due to its highly complicated mechanism, the dynamics of CKCM

manipulators was not investigated as extensively as that of the open-chain

type. Newton-Euler approach was employed by Do and Yang [6] to study the

inverse dynamics of CKCM manipulators. Sugimoto [7] combined the

Newton-Euler approach and the so-called "Motor Algebra" to analyze the

kinematic and dynamical problems • of manipulators driven by in-parallel



actuators. Applying the Lagrangian approach, the dynamics of a

two-degree-of-freedom and a three-degree-of-freedom CKCM manipulators was

derived by Nguyen and Pooran [8] and by Lee and Shah [9], respectively. For

control purposes, the Lagrange-Euler approach is more attractive than the

Newton-Euler approach because it provides closed-form dynamical equations in

any selected coordinate system.

In this report, we concern with a closed-kinematic chain mechanism that

was applied to build a six-degree-of-freedom robot at the Goddard Space Flight

Center (NASA) to study potential robotic applications in the space station

[10]. In order to obtain an effective control scheme for this robot, the

dynamics and kinematics analysis of CKCM robot manipulators should be

performed. This report is structured as follows: First, we present a

closed-form solution to the forward kinematic problem of the above type of

CKCM manipulators by applying spatial geometry and the concept of homogeneous

transformations. Then using Newton-Raphson Method, an Iterative solution is

obtained for the forward kinematic problem. After that, the manipulator

dynamics is derived by employing the Lagrangian approach. Finally, we present

results of the computer simulation, performed to study the manipulator

dynamics.

2. KINEMATIC ANALYSIS

Figure 1 presents the structure of a six-degree-of-freedom CKCM

manipulator driven by 6 in-parallel actuators. The manipulator mainly

consists of a stationary base platform and a moving platform coupled together

through the actuators. Two coordinate systems are defined, the fixed

Cartesian coordinate system {XYZ} whose origin is at Point B, centre Id of the

base platform, and the moving coordinate system {xyz} whose origin Is at Point

C, centroid of the moving platform. The assignment of the above coordinate



systems compiles with the right hand rules. A. and B are the attachment

points of the 1th actuator to the base and moving platforms, respectively. In

this mechanism, there Is a symmetric distribution of each pair of ball joints

on the base and moving platform with respect to the three radii located at 120

degrees apart from each other on the platforms. The coordinates of the

attachment points B. with respect to {XYZ) and A. with respect to {xyz> are

given by

B.= t R cos(A.) R sin(A ) 0 ]T (1)
-i i i

and a.= [ r cos(A ) r sin(A ) 0 ]T (2)-i i i

where R and r are the radii of the fixed and movable platforms, respectively

and a. Is the position vector of the ball joints at A. with respect to {xyz}.

A. and A. are computed by

A.= 60 (1-1) deg; A.= 60 (1-1) deg, for 1= odd; (3a)

A.= A. + 8 deg; A.= A. +8 deg, for 1= even, (3b)

for 1=1,2 6.

In (3a) and (3b), 8 and 8 are the angles between two consecutive ball
A B

joints at A. and B., respectively.

2.1 Inverse Kinematics

The inverse kinematic problem Is formulated as to determine the required

manipulator link lengths corresponding to a desired configuration (desired

position and orientation) of the moving platform expressed In {XYZ}. The

kinematic equations can be derived by considering the vector diagram for the

1th actuator, illustrated in Fig. 2. All vectors are expressed with respect

to {XYZ}. Vector I = [I t t ] can be expressed by
-I ix iy 12

i.-e,- §, «>
However

= *+ d. (5)



Substituting (5) into (4) yields

l.= A.- B.+ d (6)
-i -i -i

In Eq. (6), vector A. represents the coordinates of the attachment points A.

with respect to {XYZ}, while In Eq.(2) its coordinates Is given by vector a.

with respect to {xyz}. If the orientation of Frame {xyz} with respect to

Frame {XYZ} Is specified by ZYX Euler angles (a 0 y), meaning that the

orientation of Frame {xyz} is Identical to that of a frame resulted after

first rotating about the Z-axIs an angle a, then about the Y-ax1s an angle £,

and finally about the X-axis an angle 7, then the corresponding rotation

matrix is given by

T =

C C_ C S0S - S C C S_C + S S
a/3 a. & 7 a y a 0 r a

(7)

where for compactness we have defined S = sin(a) and C = cos(a). Now since. a a

A. =Ta , we obtain from (6)

I = Ta + d - B (8)
-i -i - -i ;

In Equation (8), vectors a. and B. are known fixed vectors, the desired

orientation and desired post ion (the position of the origin) of the moving

platform with respect to {XYZ} are contained in the rotation matrix T and

the vector d, respectively where

d = [xc yc zc]
T. (9)

Therefore, using (8) Vector 1. can be solved for a desired configuration of

the moving platform. After solving for ti, the required corresponding lenght

of the 1th actuator can be computed by

I = «, 2 + t.2 + t 2)1/2 (10)
1 i x i y i z

Defining vector * = [ * * # # * * ] = [ x y z a 3 y ] containing the
~ 1 2 3 4 5 6

moving platform Cartesian configuration and vector t = [€ I t t t t ]
~ 1 2 3 4 5 6



containing the six actuator lenghts as Joint variables, the Jacobtan matrix J

of the manipulator which comprises the partial derivative of *. with respect

to the joint displacements I. is defined as

J= [8* ./dl.].
i i

(11)

As we w i l l see in the next section, there exist no closed form expressions of

* in terms of I because the forward kinematic problem must be solved

HeratIvely. Therefore, the computation of the manipulator Jacobian matrix can

be done by first using the Inverse kinematic equation given by (10) to compute

the inverse Jacobian as

J-1 = (12)

and then inverting the result obtained in (12).

In order to prepare the dynamical analysis, we proceed to compute the

angular velocity vector o defined by

u = [u o o ]T. (13)

where u. denotes the angular velocity of the moving platform around the 1-axis

of Frame {XYZ>, for 1 = X, Y, Z. Using the Euler Angles relationship and

the rotation matrix in (7), it is simple to find the following:

u =
' V *

V
(14)

Differentiating u, the angular acceleration is obtained by

r-y -
u = -S-S 00 + C.C <xj + C.S a - S |3y + C J3

0 V P ? |3 % y ?

-S-C a/3 - CgS ay + C C a - C 0y - S J3

f15)



2.2 Forward Kinematics

The forward kinematic problem Is formulated as to find the actual

position and orientation of the moving platform when a set of actuator lengths

I , I , .... I as joint variables are given. This situation occurs in the
1 2 6

case of position feedback in which the length information provided by six

joint position sensors is to be converted into the actual configuration of the

moving platform. With the information available, we are faced with a problem

of solving six simultaneous nonlinear equations for six unknowns, namely x, y,

z, a ,0 ,y . At the present time, no symbolic solution for this problem

exists. Therefore, a natural way is to seek an iterative approach to solve the

above problem. Among currently available numerical methods, Newton-Raphson

algorithm is recommended to treat the above problem, as proposed in [11].

This method consists of first defining a function of the unknowns, f(*) such

that

f(«) = 0 (16)

where * = [ x y z a ^ y ] (17)

and f(») = [f€(») .......... f,(*)]
T (18)

"™ i ~ 6 ""

and Iteratlvely applying the formula

where %'J , the Jacob Ian matrix of f is given by

Jf = Of {(*)/a*.] (20)

until certain accuracy Is met.

To utilize the available Information on the actuator lenght I., provided

from the Joint position sensors, we define the function f.(*) as

f.(«) = t]l. - Kl2 (21)
i - -1-1 i a

where K I is the actual lenght of the 1th actuator provided from the Joint
1 A

position sensor mounted on the 1th Joint. Obviously we can see that (21)



satisfies (16). Substituting (8) Into (21) yields

f (*)=(Ta + d-B )T (Ta +d-B ) - It I2 (22)
i- -i - -1 -i - -i ' i ' a

For a given set of Initial conditions of *, first we compute (22) and then

(19) using (20). Equation (19) is repeated until some predetermined

convergence criterion (desired accuracy) is met.

Two drawbacks of the Newton-Raphson method are discussed now. First, 1t

requires a significant amount of computational time. Second, the evaluation

of the Inverse Jacoblan at each iteration may create the singularity problem.

One solution to the first problem is to select an appropriate Initial estimate

based on a design model estimated at the desired moving platform configuration

[12]. This w i l l reduce the number of Iterations and also save some

computation time for convergence. The singularity problem can be avoided by

modifying the robot trajectory planner.

3. DYNAMICAL ANALYSIS

The Lagrangian formulation describes the behavior of a dynamic system in

terms of work and energy stored in the system rather than of forces and

moments of the Individual members Involved [13]. Using this approach, the

closed-form dynamical equations can be derived systematically in any selected

coordinate system. The general form of Lagrangian equations of motion for an N

degree-of-freedom manipulator is

T. = d/dt(3L/8q.) - 9L/3q. (23)

where L = K-P ' (24)

q 1s the generalized coordinates, and T. Is the generalized force or torque.

K denotes the kinetic energy and P the potential energy . The total kinetic

energy of the manipulator consists of the kinetic energy of the moving

platform (trans1 ational and rotational motion with respect to the base

coordinate system {XYZ}) and the kinetic energy of the links due to the



rotational motion of the link about the ball joints and the trans 1 ational

motion of the prismatic joints. Thus

2 3 6 . 2 . 2
K = lMV +-£ I o + i Z (ml B + m I ) (25)

2 C 2 j=1 J J 2 i=1 C1 '

where M is the mass of the moving platform, m the total mass of Link i, and m.

the mass of the moving parts of Link 1. The angular velocity and the moment

of inertia of the moving platform about the J axis are denoted by o. and I . ,

respectively, for J=x,y, and z. In (25) I . is the distance between the center

of each link and the ball joint at B.. The velocity vector of Point C is given

by

V = (* . Yr, ir) (26)
C C C C

Similarly, the total potential energy of the manipulator consisting of the

potential energy of the moving platform and the links is given by
6

P = Mgzp+ mg £ t s1n(8 ) (27)

where the angle formed between Link 1 and the base platform surface is

represented by 9. whose sine function is

sin(9 ) = I /I . (28)
i i z i

Substituting (25) and (27) into (24) and applying (23), we obtain after some

mathematical manipulations the following equations of motion for the CKCM

robot manipulator:

396
T .=

J 1.1

d il- 1 U 1 . -I . 1

9 -T- + — f — : — ]8 U 2m8 f — : — "U I .
C'L «' a* dt L =>* J 'J 'L a* J ci C1L a* 9* J 3*,j J j

2



dl dt 30. <,
i c i is1nv

•Mk=ii

~[Mxi

k r k d 30

MX +• I u . + .. I
k a* "L k a* dt L 3*

j j j

_!ii + i „ !JL_]J * Mg î
c 3* k k 3* J 3*

j i J J

j—1,2,... .,6

(29)

where 1t is noted that (29) Is derived for the generalized coordinates *..

In (29) for compactness, the notation k is used to indicate Cartesian

coordinates such that x , x and x stand for x, y, and z, respectively, and

x , x , and x stand for x,y, and z, respectively, etc. Similar notation is

used for J = 1,2,...6 to Indicate the Cartesian configuration x,y,z,a,/3,y such

that for example, T and T stand for T and T , respectively. It is also
1 6 x Q

noted that Equation (29) represents the relationship between the generalized

force/torqe T. applied to the manipulator and the corresponding generalized

coordinates *..
j

In order to determine the actuating forces F. along the links, the

virtual work concept is used [13] where the relationship between the joint

force F. and the generalized force T. is found as

F = JTT (30)

where J is the JacobIan matrix of the manipulator whose inverse 1s given In

(12). Eqn. (30) represents the actuating forces in the links of a

s1x-degree-of-freedom manipulator having j actuators. In the above

development, the Joint friction is assumed to be negligible.

The above generalized equations were used to derive equations for

kinematics and dynamics of a 2-degree-of-freedom CKCM robot manipulator.

10



Results showed that the derived equations for this special case are Identical

to those derived by applying the Lagranglan approach to the robot [14]. This

fact verifies the correctness of the generalized equations.

4. SIMULATION STUDY

In order to gain some Insight of the manipulator behavior, the kinematics

and dynamics developed In previous sections are now studied using computer

simulation. The software packages System Simulation Language (SYSL) developed

by E Consulting and Mat lab developed by MatWorks, Inc were employed to

simulate the robot motion and compute the required actuating forces. Using the

inverse kinematics, we first computed the time history of the actuator lengths

to track a semi-circle on the x-y plane of the base coordinate system,

described by x+y=(0.20) (see Fig. 3). The time history of the actuator

lenghts were then applied to the dynamical equations to compute the required

actuating forces. Study of the influence of the total mass and centreids of

the links was performed and presented below where the system parameters used

in this study were m=0.450 kg, m =.060 kg, M=4.500 kg, r=0.18 m, R=0.45 m,

9a=10 and 6^=110 degrees.

Case 1: The moss of the links changed from .450 to 0 kg.

The study results are recorded in Figure 4 where the solid line

represents the profile of the actuating forces In Links 1 to 6 for m=0.450 kg

and the dotted line for m = 0 kg. As the figure shows, link mass increase

results In force increase which is expected in a dynamical system.

Case 2: The link centroids described by lci=a+bli, where a represents the

system parameter and b was changed from 3cm to Ocm.

The study results for Links 1 to 6 are showed In Figure 5 where the solid

11



line represents the case when b=3cm (original position) and the dotted line

for b=0cm. The results shows that moving the link centrolds closer to the

base frame reduces the required actuating forces.

Case 3: The mass of the platform changed from 4.5 kg to 8 kg.

The results are shown In Figure 6 where the solid line represents the

profile of the actuating forces In Links 1 to 6 for M = 4.5 kg and the dotted

line for M = 8 kg. It Is seen that Increasing the mass of the platform w i l l

Increase the actuating forces.

5. CONCLUSIONS

In this report, the analysis of kinematics and dynamics of a

slx-degree-of-freedom In-parallel actuated manipulator was presented. This

type of manipulator 1s built based on the CKCM that consists mainly of two

platforms coupled via a number of in-parallel actuators. A closed-form

solution was obtained for the Inverse kinematic problem. Newton-Raphson

iterative method, was proposed to solve the forward kinematic problem. Using

the Lagrangian approach, we derived a set of generalized dynamical equations

that can be employed to derive equations of motion for CKCM manipulators

having" up to six degrees of freedom. Computer simulation was performed to

study the effect of variation In link mass and link centroids. Simulation

results showed that reduction 1n actuating forces can be achieved If the link

mass 1s reduced and/or the centreId is moved closer to the base frame. Future

research is directed to studying effective control schemes such as adaptive or

learning for the trajectory and/or force control of the above CKCM robot

manipulator.

12
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Fig. 1 : The Six-degree-of-freedom
i n - p a r a l l e l actuated m a n i p u l a t o r
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