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1 Introduction

The physical optics (PO) approximation is commonly used to determine
the electromagnetic scattering from large structures. The PO technique
is relatively well understood and is generally easy to implement. Unfor-
tunately, the PO approximation assumes incorrect surface currents near
edges and incident shadow boundaries. These incorrect currents lead to
erroneous contributions such as the shadow boundary term associated with
a curved surface [1]. This contribution is referred to as the endpoint contri-
bution and the process of subtracting the eudpoint contribution from the
PO field in order to obtain a better approximation of the true scattered
field is called the endpoint correction. Gupta and Burnside [1] have shown
that in the specular region of a smooth conducting body the erroneous con-
tribution has the form of an infinite series. In high frequency situations,
the series can be approximated by the first two terms. In this report, the
first and second terms are referred to as the first-order and second-order
endpoint contributions, respectively. Gupta et. al. [2] have found an effi-
cient numerical technique for evaluating these terms for arbitrarily shaped
structures.

The second-order endpoint contribution requires the knowledge of the
radius of curvature of the surface at the shadow boundary in a plane per-
pendicular to the shadow boundary contour. In this report, a numerical
technique for finding this radius of curvature for compact range main re-
flectors is presented. This technique is applicable to reflectors which are
designed according to the technique discussed by Pistorius [3]. Such re-
flectors have parabolic regions which have convex, rectangular, or concave
rim-shapes. These reflectors have rolled edge terminations which may be
elliptic or blended, and are radially attached. The reflectors may be center-
or offset-fed. Using this technique, the radius of curvature is calculated
along the shadow boundaries of various reflector systems. Examples of re-
flectors having circular, square, and concave rim-shapes are analyzed for
both center- and offset-fed configurations. It is shown that, in general,
the radius of curvature varies along the shadow boundary contour. The
variation for offset-fed systems is greater than that for center-fed systems.
Furthermore, the magnitude of the radius of curvature generally increases
with increasing height and offset.



In order to better understand the significance of the second-order end-
point contributions, the scattered fields of a representative compact range
reflector system are computed. The system has an offset-fed main reflector
with a concave rim-shape and blended rolled edges. It is fed by a Gregorian
subreflector feed system. In the analysis, the PO fields are calculated at
various locations in the target zone. The effects of first- and second-order
endpoint correction are then demonstrated. It is shown that the PO fields
after first- and second-order correction are much closer to the expected
scattered fields..

The remainder of this report is organized as follows. In Section 2, the
technique used to specify rolled-edge surfaces [3] is outlined. In Section 3,
the technique for finding the radius of curvature needed for second-order
endpoint correction is presented. In Section 4, this technique is demon-
strated for a variety of reflector systems. In Section 5, the scattered fields
of an offset-fed reflector system are computed. The total calculated PO
field as well as the fields after first- and second-order endpoint correction
are compared. It is shown that the PO field after first- & second-order
endpoint correction is a better approximation of the true scattered field.
Section 6 contains conclusions.

2 Main Reflector Geometry

Rolled edges are added to the parabolic reflecting surface of compact range
main reflectors in order to reduce rim diffraction into the target zone. A
rolled edge works by reducing the physical discontinuity at the edges and
by redirecting "stray" energy out of the target zone, as shown in Fig. 1.

Rolled edges can be generated by attaching a section of an ellipse to
each point on the rim of the parabolic surface. Since this section need not
iiessessarily be a regular ellipse, it is referred to as the rolled edge contour
in this report. The alignment of the rolled edge contour is such that the
combined surfaces are continuous at the junction (see Fig. 2). A variety
of techniques exist for adding the elliptic sections (see Fig. 3). The "in-
tuitive" approach is shown in Fig. 3a. One adds the elliptic sections in
the plane perpendicular to the tangent to the rim of the parabolic sur-
face (perpendicular attachment). This technique has several shortcomings,



however. First, it is not obvious how one should add the rolled edge at
corners of the parabolic surface. Simply "pivoting" the rolled edge around
the corner leads to field caustics which may limit the usable target zone.
Another disadvantage of this technique is limited flexibility in the choice of
the rim-shape. Using perpendicular attachment for reflectors with concave
rim-shapes, for example, may lead to multiple definitions of the rolled edge
surface, as shown in Fig. 4. An alternate technique for adding the rolled
edge, radial attachment, is illustrated in Fig. 3b. This method involves at-
taching the rolled, edge contours in planes extending radially outward from
the center of the reflector. Specifically, the rolled edge contour is added
in the plane coincident with n, where h is the surface unit normal to the
parabolic region at the junction point, as shown in Fig. 2. Reflectors hav-
ing rim-shapes which can be expressed as a single-valued radial function are
easily dealt with using this technique, concave rims included. The caustic
problem mentioned above is avoided using this technique. The drawback
of radial attachment is simply that rolled edges are not attached in the
optimum (i.e. perpendicular) direction. All reflectors considered in this
report have radially-attached rolled edges.

In general, rolled edges may be elliptic or blended. Blended rolled edges
result from a blending between an extension of the parabolic surface and
a simple ellipse. The goal of blending is to make the junction as smooth
as possible. This involves eliminating the discontinuity in the radius of
curvature and its first few derivatives at the junction. A blending function
which makes the first n — 1 derivatives of the radius of curvature continuous
is called an nth-order blending function.

In this report it is assumed that the same rolled edge contour is used at
every junction point; however, it is a simple matter to extend the techniques
discussed below to cover situations where the rolled edge contour is variable
with respect to the junction point. The technique used at Ohio. State to
define and generate rolled edge surfaces is outlined below:

1. A cartesian coordinate system is established. This establishes main
or global coordinates.

2. The parabolic region of the main reflector is generated (see Fig. 5).
First, a defining paraboloid is established having the following equa-



tion:

* = ^
where fc is the focal length of the main reflector. Then the junc-
tion contour is established to be the desired outline of the parabolic
surface of the main reflector. The junction contour may be circu-
lar, rectangular, or convex. The focus of the system is established at

'(sc,'y, 2) = (0,0j/c). The focus may be either a feed location (focus-
fed systems) or a caustic (e.g. systems using Gregorian subreflector
feed systems). Rays reflected from the parabolic region travel in the

direction.

3. At each point along the junction contour, a local 2-dimensional carte-
sian coordinate system is defined. Its axes, xe and ye, are determined
as follows:

• First n, the surface unit normal to the parabolic surface at the
junction contour, is found. Of the two possibilities, n is selected
to be the normal which is most nearly pointing towards the focus.
Then ye is defined by

Ye = -n

• Next, a vector p is found as follows (see Fig. 6). Given the
junction point J and the center of the reflector, 0, one finds the
projections «/' and O' of J and O in the xy plane. Then, one
finds the radial line R which connects J' and O'. p is defined
to be perpendicular to R and also in the xy plane. Of the two
possibilities, p is chosen such that ye x p is directed away from
parabolic region. It can be shown that

p = pix +

where

Pi =



Finally, xe is defined by

|ye x p|
4. A rolled edge contour is determined at each point along the junction

contour. The contour has the form of an analytic function, r(7), in
main coordinates. 7 is the angle parameter shown in Fig. 2. In
general, r(7) has the form:

where r(7), re/i,p«(7), and rpara()0/a(7) are all expressed in main coor-
dinates (see Fig. 7). teinpse(j) *s the parametric equation for an ellipse
in main coordinates. In local (xeye) coordinates, this is expressed as:

r'jjj (7) = xeaestn7 + ye&e(l ~ cosj)

The general transformation from local to main coordinates is given
by:

/
y(7) P2 yp,

yp3 V ye(7)

where (xj,yj,Zj) are the coordinates of the junction point (main co-
ordinates). The direction cosines are given by

Xj

-2/cyP3 =



where

The parametric equation of an extention of a parabolic surface con-
tour from the junction point is defined by rpara|M)/a(7). In main coor-
dinates:

= 7( —
7m

= 7(—
7m

_ *parabo/a ' y parabola
~ : T7

*/c

where xm is a blending parameter which controls the length of the
extension of the parabolic contour from the junction point to be used
in blending. The maximum extent of the rolled edge is specified by
7m, as shown in Fig. 7.

Finally, 6(7) is a blending function. As discussed above, a variety
of functions are possible, but they all must have the property 0 <
^(7) < 1 on the interval 0 < 7 < 7m. In the special case of elliptic
rolled edges, b(j) = 1 ; i.e., the rolled edge contour is a pure ellipse.

All of the rolled edge contours taken together define the rolled edge
surface.

Having defined the geometry of the rolled edges, we now face the prob-
lem of determining how these surfaces affect endpoint contributions. Gupta
and Burnside have shown ([1],[2]) that the curvature in the surface of a per-
fectly conducting body at the shadow boundary contour must be known in
order to determine the second- and higher-order endpoint contributions.
Specifically, one must know the radius of curvature at the endpoint in the
plane perpendicular to the shadow boundary contour. This radius of cur-
vature is designated "a" in this report. For all but very simple compact
range configurations (e.g. center-fed circular main reflectors), finding "a"
exactly is a difficult task. The reason is that the rolled edge surfaces con-
sidered here generally cannot be expressed as a single analytic equation. A
numerical technique for calculating "a" for reflectors with radially-attached
rolled edges is presented below.



3 Computing the Shadow Boundary Radius
of Curvature

As shown in Fig. 8, "a" is the radius of curvature of the rolled edge surface
at the shadow boundary in the plane perpendicular to the shadow boundary
contour. In Fig. 8, P is the endpoint of interest, C is the shadow boundary
contour, e is the unit tangent to C at P, and S is the plane perpendicular
to e at P. Given C and P, the idea is to find two points P\ and P^ close
to P which are simultaneously on the rolled edge surface and in the plane
5. Since any three points define a circle, three points very close together
on a surface define a circle whose radius is approximately equal to the local
radius of curvature in the plane defined by the points. In light of this, the
problem is now to find suitable points P\ and P^. For some cases this is
quite difficult: the reason is that r(7) may not lie in S (see Fig. 9). Thus,
PI and P2 may lie on radial contours other than rp(7). Since the procedure
for finding each of these points is the same, the outline below only discusses
how to find PI.

1. Determine e. Note e is approximately the difference between the
coordinates of P and those of a nearby point, on the shadow boundary.
For this technique, the direction of e is unimportant.

2. Identify S. Note that the locus of points in 5 is given by

e • (r5 - P) = 0

where P is the location of P in global coordinates, and r$ is any
point in 5.

3. Find rp(*fc + A7). Here •jc is given by

rp(7c) = P

and A7 is approximately the difference angle from P to PI.

4. Determine if fp(j) lies entirely in 5. Since rp(7) lies in the plane
defined by xe and ye, rp(7) and 5 are coincident if both xe and ye

are perpendicular to e; i.e. if

xe • e = ye • e = 0



If rp(7) lies in 5", then PI is simply rp(^c + A7). Otherwise, rp(-jc +
A7) will serve as an initial estimate of a good value for Pj.

5. Determine the distance between rp(fc + A7) and 5. This distance
is given by

6. Determine a nearby rolled edge contour by locating a new junction
contour point some small distance A/ from the current junction point
along the junction contour. Let this new rolled edge contour be r2(7).

7. Let r2(7c + A7) be the new candidate for Pt.

8. Recalculate the distance D between PI and 5.

9. If \D\ is within a predetermined error tolerance, then let r2(7c .+ A7)
be the final location of P\. Otherwise, select yet another junction
contour point by comparing the current and previous values of D,
determining a new A/, and then repeating steps 6-9 until \D\ falls
within the specified tolerance.

Selecting TP(IC — A7) instead of Tp(-yc + A7) in step 3 is the only
change that is required in order to use this algorithm to find P2. Once P,
PI, and P2 are all known they can be used to define a circle whose radius
is approximately equal to the required radius of curvature, "a".

The parameter A7, which is proportional to the spacing between P,
PI, and P2, must be chosen carefully in order to obtain accurate results.
Clearly one should choose A7 as small as possible, thus letting the points
be quite close together and improving the accuracy of the approximation.
If A7 is too small however, the spacing between points will be so slight that
even very small errors in coordinate values will lead to significant error in
the calculated radius. For systems such as those discussed in this report,
A7 = 1° always seems to work well.



4 Shadow Boundary Radius of Curvature for
Various Compact Range Reflectors

To demonstrate the technique presented above, "a" is calculated for six
different reflector systems. The first system is a center-fed circular main
reflector with a focal length fc — 8.0ft (see Fig. 10). The junction contour
has a diameter of 10.0/<. The reflector has elliptic rolled edge terminations
with ae = 2.298ft and be — 0.597ft. This system is circularly symmetrical;
thus, the plane S is always coincident with the rolled edge countour r(7),
and "a" has the same value at each point on the shadow boundary. This
is seen in Fig. 11, in which "a" is calculated using the technique presented
in Section 3. An additional test is available for deciding the validity of the
results obtained: "a" can be determined exactly in the principal (yz) plane
[3] and is found to be 0.224 ft, which agrees with the results of Fig. 11.
In fact, the values found for "a" in the principal plane of all the systems
examined here are in close agreement with the exact values.

Next a center-fed square reflector system (Fig. 12) is examined. This
system is identical to the previous system, except that the reflector now has
a square junction contour. The length of the sides of the junction contour
for this reflector is equal to the diameter of the junction contour of the
previous reflector. In this case, "a" is as shown in Fig. 13. As one might
expect, "a" is symmetric about x = 0 and y = 0, and "a" in the principal
plane is the same as that for system 1. The square reflector, however, has
"a" increasing with \x\ along the horizontal sides and increasing with \y\
on the vertical sides. The maximum values of "a" occur at the corners.

A center-fed reflector with a concave junction contour (Fig. 14) is con-
sidered next. In this case, the junction contour is concave and symmetric
about both x and y. The junction contours of all of the concave reflec-
tors considered in this study were defined using the method discussed by
Pistorius [3]. The minimum dimension of the junction contour is equal to
the length of the sides of the junction contour in the previous case. Fig.
15 shows "a" along the shadow boundary of this reflector. Note that the
variation in "a" is the same as that of the square reflector, except the mag-
nitude of the variation is slightly greater. This is to be expected since the
corners protrude further from the center than in the square-contour case.



Offset-fed reflectors are considered next. The system shown in Fig.
16 is an offset-fed reflector with a circular junction contour. Note that it
is an offset-fed version of the circular reflector previously examined. The
center of the reflector has been shifted from y — 0 to y — 9.0ft. The "a"-
variation is shown in Fig. 17. In this case "a" is smoothly varying along
the shadow boundary and "a" has a maximum at the shadow boundary
point corresponding to the top of the reflector, and a minimum at the
bottom. Note that "a" at the top of the reflector is greater than the
principal plane'value in the center fed-case (a = 0.224/<), while "a" at
the bottom is less than this value. Thus, for an offset-fed circular reflector
system, the variation in "a" is greater than that for the corresponding
center-fed system.

The system shown in Fig. 18 is an offset-fed version of the center-fed
square reflector considered above. The offset is once again 9.0/< in the
+y-directioii. The radius of curvature for this reflector is shown in Fig. 19.
Note that the variation in "a" is again quite large. As in the case of the
offset-fed circular reflector, The principal plane values differ from those of
the center-fed case. Finally, note that the "a"-variation now has a jump
discontinuity at the corners. This discontinuity is due to a corresponding
discontinuity in the shadow boundary contour. This discontinuity appears
when a corner of the reflector is above some minimum height. The extent
of the discontinuity increases with increasing height.

The last system considered is shown in Fig. 20. It is an offset-fed version
of the center-fed concave reflector of Fig. 14. Again, the offset is 9.0 ft in
the +y-direction. Fig. 21 shows "a" along the shadow boundary of this
reflector. Note that the variation in "a" is similar to that for the analogous
square reflector case. Once again, the protruding corners of the concave
shape lead to a larger variation in "a ".

From the above examples it is clear that the radius of curvature "a"
for main reflectors with rolled edge terminations in general is not constant.
The amount of variation in "a" is greater for offset-fed main reflectors. Fur-
thermore, "a" tends to increase with increasing displacement between the
endpoint and the z-axis. Thus, the assumption that "a" is constant along
the shadow boundary contour will usually lead to incorrect second-order
endpoint contributions. This conclusion will be reinforced by the results of
Section 5, where the scattered fields in the target zone of a representative
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compact range will be calculated. This compact range has an offset-fed
main reflector (Fig. 22) with a focal length fc = 5.544ft. It has a con-
cave junction contour with minimum dimensions of 6.0ft x 4.588/< and
is offset 6.5ft in the -f-y-direction; thus, it is smaller and has less offset
than the previous concave reflector (Fig. 20). The rolled edge terminations
have the same dimensions, ae = 2.298ft and be = 0.597/tf; however in this
case, the rolled edges will be blended. Cosine-squared blending is used
with xm = 6.765feet. Cosine-squared blending ensures that the surface,
as well as the first three derivatives of the radius of curvature, will all be
continuous at the junction point.

Fig. 23 shows "a" along the shadow boundary contour of this reflector.
Note that the variation is quite small relative to the variation seen in Fig.
21. This is due to the smaller size and offset of this reflector.

The scattered fields in the target zone of this system are computed next.

5 PO Endpoint Correction

In this section, the scattered fields in the target zone of the compact range
system shown in Fig. 22 are computed. Field patterns are calculated along
four different cuts in the target zone. These cuts are illustrated in Fig. 24.
All of the cuts lie entirely in the plane z = 15.0ft, which is approximately
13.1/i from the center of the main reflector. For this study, a Gregorian
subreflector feed system, as discussed in [3], is used. A schematic of the
system is shown in Fig. 25. The specifications of the subreflector feed are
a,r = 5.25feet, btr = 4.3Q8feet, /3sr - 5.5°, and a = 20.0°. The subreflector
is fed by vertically-polarized Huygens source operating at 2.0 GHz.

• Principal Plane Cut

The first cut considered is in the principal ( yz ) plane. Fig. 26a
shows the calculated total PO field along the cut, as well as the geo-
metrical optics (GO) field. Note that the PO field is offset from the
GO field and has strong, rapid oscillations. The difference between
the PO and GO fields is due to the erroneous endpoint contributions
plus legitimate higher-order scattered fields. The dominant contribu-
tion to the higher-order scattering is the diffraction from the surface

11



discontinuity between the parabolic region of the reflector and the
rolled edge. This discontinuity is quite subtle in that cosine-squared
blending ensures that the radius of curvature, as well as its first three
derivatives, are all continuous at the junction point. Therefore the
diffraction clue to the junction is quite small, and the endpoint contri-
butions must be primarily responsible for the offset and oscillations
seen in the total PO field.

Fig. 26b shows the total PO field after the first-order endpoint con-
tribution is removed. Note that the amplitude of the oscillations is
greatly diminished. The results of first-order correction followed by
second-order correction is shown in Fig. 26c. The second-order cor-
rection was done using "a" as obtained by the technique of Section 3.
Here the oscillations have diminished in both strength and number,
and no offset can be observed. Thus, the significant endpoint contri-
butions have now been removed, and the fields remaining are a close
approximation to the legitimate higher-order scattered fields.

Also shown in Fig. 26c is the result when first- and second-order
endpoint correction is done, but "a" is assumed to be constant. Here,
"a" was chosen to be equal to the actual value in the principal plane
on the top side of the reflector. In this case the approximation is
quite good. This is to be expected since the variation in "a" along
the shadow boundary contour of the main reflector is small.

Fig. 26d shows the higher-order scattered fields in the principal plane,
as well as the GO field. This pattern was obtained by subtracting the
GO field from the total PO field after first- and second-order endpoint
correction. Well into the target zone, these fields are approximately
40 dB below the magnitude of the GO field. Thus, this compact
range would be suitable for determining the radar cross section of low-
observables. This determination would be hard to make if accurate
endpoint correction were not available.

Also shown in Fig. 26d are the higher-order scattered fields calcu-
lated using the constant-"a" approximation discussed above. Note
that the fields determined this way are underestimated near the top,
where the approximation is nearly exact. Conversely, the fields are
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overestimated near the bottom, where the approximation is less ap-
propriate. It is unwise to draw any conclusions based on the patterns
near the center of the cut, since the magnitude of the fields in this
region are of the order of the numerical error generated in the calcu-
lation.

• Vertical Cut at x = -2.5ft

The fields obtained in this case are shown in figures 27a through 27d.
In this cut, the same observations are made as in the previous case.
An interesting difference exists between this cut and the principal
plane cut, however. Note in Fig. 27c that, the higher-order scattering
is slightly stronger in this cut. This is due to the proximity of this
cut to the junction contour.

In this cut, the "constant-a" approximation causes the higher-order
scattering to be overestimated over much of the cut.

• Horizontal Cut at y = 6.5ft

This cut is at the center height of the main reflector. The fields
obtained are shown in figures 28a through 28d. Since this system
is symmetric about the principal plane, field patterns for horizontal
cuts are symmetric about x — 0.

In this cut, the constant-a approximation causes the higher-order
scattering to be over-estimated.

• Horizontal Cut at y = 8.294ft

Finally, consider a horizontal cut near the top edge of the target zone.
The fields in this cut are shown in figures 29a through 29d. In this
case, the first- and second-order endpoint correction have the same
effects as for the previous horizontal cut. Also note that this cut,
like the vertical cut at x = —2.5ft, is relatively close to a junction
contour, yielding slightly stronger higher-order scattering.

Since the approximated value of "a" is close to the exact values of
"a" for endpoints near this cut, the results using the approximation
are quite good.
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Above it was shown that the results obtained using endpoint correction
with continuously-varying radius of curvature are quite reasonable. In the
case of this compact range system, it was noted that the scattered fields
obtained using a constant radius of curvature approximation were quite
close to the true scattered fields. This is due to the small variation in "a"
along the shadow boundary of the main reflector of this system. It was
shown in Section 4, however, that the variation in "a" is often relatively
large. Thus, only proper continuously-varying determination of "a" will
consistantly yield the closest approximation to the true scattered fields.

6 Conclusions

In this report a technique has been described by which the radius of curva-
ture "a" can be found for compact range reflectors with radially-attached
rolled edges. This technique allows "a" to be found for all points on the
shadow boundary contour. In Section 4 this technique was applied to a
variety of basic reflector systems. All of these systems were vertically sym-
metric. In general, it was shown that "a" increases with distance from the
main axis (i.e. the z-axis). Applying the technique to an offset-fed reflector
with a circular junction contour, it was found that "a" is smoothly-varying
with extrema occurring in the principal plane. Offset-fed reflectors with
square and concave junction contours have "<z"-variations which are sim-
ilar to each other, and different from circular case. For these reflectors,
the variation in "a" on the horizontal sides is greater than the variation
on the vertical sides. Also, "a" can be discontinuous at corners, with the
discontinuity becoming more serious with increasing offset. Finally, one
may conclude that for offset-fed systems in general, "a" varies about the
principal plane values from the center-fed case, and typically increases with
increasing offset.

Having "a" available for the entire shadow boundary contour makes
it possible to accurately calculate second-order endpoint contributions. In
Section 5, the effects of these contributions on the total PO field in the
target zone of a vertically-symmetric offset-fed compact range were seen.
Four cuts with different locations and orientations were considered. In
each case, it was found that first- and second-order endpoint correction
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using the technique presented here for finding "a" leads to cancellation of
the significant endpoint effects and therefore gives a better approximation
to the true scattered fields. Furthermore, finding "a" at each point along
the shadow boundary, as opposed to assuming "a" to be constant, is often
nessessary for accurate results. The technique presented in Section 3 is
useful in this respect.
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Figure 1: The use of rolled edge terminations to reduce diffraction into the
target zone.
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Figure 3: Methods for adding rolled edge terminations.
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Figure 4: An example of multiple definition of the rolled edge surface
when perpendicular attachment is used with concave rim-shapes.
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Figure 6: Defining p.
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Figure 7: Blended rolled edge geometry.

22



PLANE S

INTERSECTION OF S AND
ROLLED EDGE SURFACE

Figure 8: Defining the shadow boundary radius of curvature, "a'

23



F]'gure 9: A
and

24



o>

co —

m—

fO —

CXI —

.-=

o—
T-i

I

I

I

•̂
I

I

I

I

od_

JUNCTION
CONTOUiR

i r r i i i i r i i i i i i i i i
-9.-8.-7.-6.-5.-4.-3.-2.-1. 0. 1. 2. 3. 4. 5. 6. 7. 8. 9

FEET

Figure 10: Center-fed main reflector with circular junction contour.
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Figure 11: "a" along the shadow boundary contour of the center-fed main
reflector with circular junction contour.
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Figure 12: Center-fed main reflector with square junction contour.
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Figure 13: "a" along the shadow boundary contour of the center-fed main
reflector with square junction contour.
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Figure 14: Center-fed main reflector with concave junction contour.
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Figure 15: "a" along the shadow boundary contour of the center-fed main
reflector with concave junction contour.
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Figure 16: Main reflector with circular junction contour,
vertically offset 9.0/*.
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Figure 17: "a" along the shadow boundary contour of the offset-fed main
reflector with circular junction contour.
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Figure 18: Main reflector with square junction contour,
vertically offset 9.0/f.
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Figure 19: "a" along the shadow boundary contour of the offset-fed
main reflector with square junction contour.
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Figure 20: Main reflector with concave junction contour,
vertically offset 9.0ft.
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Figure 21: "a" along the shadow boundary contour of the offset-fed
main reflector with concave junction contour.
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Figure 22: A small main reflector with concave junction contour,
vertically offset 6.5ft.
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Figure 23: "a" along the shadow boundary contour of the small offset-fed
main reflector with concave junction contour.
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Figure 24: Cuts in which the scattered field has been computed. All cuts
are in the z = 15/f plane. The target zone is the shaded area.
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Figure 25: A compact range with a Gregorian subreflector feed system.
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Figure 26(a): Total PO and GO fields along principal plane cut.
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Figure 26(b): Total PO field along principal plane cut after first-order
endpoint correction.
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Figure 26(c): Total PO field along principal plane cut after first- and
second-order endpoint correction.
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Figure 26(d): Higher-order scattered fields along principal plane cut.
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Figure 27(a): Total PO and GO fields along the x = -2.5ft cut-
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y-component shown.
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Figure 27(b): Total PO field along the x = -2.5ft cut after first-order
endpoint correction.

Total PO field after first-order endpoint correction.—
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y-component shown.

46



a-

s

a-

Y(FT)

Figure 27(c): Total PO field along the x = -2.5ft cut after first- and
second-order endpoint correction.
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second-order endpoint correction

GO
j/-component shown.
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Figure 27(d): Higher-order scattered fields along the .T = -2.5/f cut.
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y-component shown.
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Figure 28(a): Total PO and GO fields along the y = 6.5/< cut-
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Figure 28(b): Total PO field along the y = 6.5ft cut after first-order
endpoint correction.

Total PO field after first-order endpoint. correction. -
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y-compoueut shown.
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Figure 28(c): Total PO field along the y = 6.5ft cut after first- and
second-order endpoint correction.
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Figure 28(d): Higher-order scattered fields along the y = 6.5ft cut.
Higher-order scattered fields

Higher-order scattered fields using first- and
approximate second-order endpoint correction
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y-component shown.
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Figure 29(a): Total PO and GO fields along the y = 8.294/f cut.
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y-component shown.
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Figure 29(b): Total PO field along the y = 8.2D4// cut after first-order
endpoint correction.
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Figure 29(c): Total PO field along the y = 8.294/< cut after first- and
second-order endpoint correction.
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Figure 29(d): Higher-order scattered fields along the y = 8.2Q4// cut.
Higher-order scattered fields

Higher-order scattered fields using first- and
approximate second-order endpoint correction —
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