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ABSTRACT

Transverse MHD bending waves are considered in an isothermal

and compressible two-dimensional current sheet of finite

thickness in which the magnetic field changes direction and

strength. The general form of the wave eguation is obtained. It

is shown that rotation of the magnetic field across the current

sheet prevents the existence of singular points so that

continuous spectrum solutions and the concomitant wave decay

disappear. Instead, normal modes exist and closed integral

solutions for arbitrary current sheet structure are found.

The results are discussed in terms of small-scale waves on

the heliospheric current sheet.

Subject headings: sun:solar wind - hydromagnetics - surface

waves



1. INTRODUCTION

Bending waves are an essentially transverse displacement of

an equilibrium interface or layer in which, to first

approximation, gradients along the layer are negligible in

comparison to gradients across the layer. Recently, Bertin and

Coppi (1985) applied the theory of MHD bending waves to a current

sheet in which the magnetic field reverses direction. They

suggested that these waves might provide an explanation for the

well-known sector structure in the interplanetary magnetic field

polarity (Wilcox and Ness, 1965) which has often been interpreted

as a warping of the heliospheric current sheet (HCS) dividing

opposite magnetic polarity regions in the interplanetary medium

(Hundhausen, 1972, op. cit.; Suess and Hildner, 1985).

It is now generally accepted that warping of the HCS does

exist but that it is a direct consequence of the large-scale

structure of the solar magnetic field as that field is carried

outward into the interplanetary medium by the solar wind

(Hoeksema, et al., 1982, 1983; Hoeksema, 1984). The large-scale

warping is therefore understandable in the kinematic limit where

the internal dynamics of the current disk is altogether

ignorable. A surface plot of the current sheet made using this

approximation is shown in Figure 1. The plot was made under the

assumption that the interplanetary field is the projection of a

"source surface" potential magnetic field model of the corona

ending at 2.5 solar radii with a constant solar wind velocity of

400 km/s. The epoch chosen is the time the Giotto spacecraft

passed by Halley's comet - approximately the same instant that



both objects passed through the current sheet. In situ

verification has shown that these projections are valid to within

one day at 1 AU.

Nevertheless, important reasons exist for studying bending

waves on the HCS. There are small-scale "ripples" on the HCS

that have so far eluded complete understanding. Consequently,

the fine-scale structure of the HCS is a topic of active

investigation (Behannon, et al., 1981). It is worth noting that

the analysis by Bertin and Coppi (1985) explicitly invoked a WKB

approximation that , a priori , made the results far more relevant

to these small-scale f luctuations in the f irst place and

seemingly invalidated their discussion in terms of the large-

scale sector structure

Here we re-analyze bending waves in the ideal MHD limit in a

two-dimensional current sheet of f ini te thickness - implicitly

invoking the WKB approximation by ignoring gradients along the

current sheet. The unperturbed state will be in equilibrium with

its surroundings, isothermal, and compressible. The waves will

also be assumed to be isothermal but incompressible; thus, we

consider the Alfven type of purely transverse waves. These are

the same assumptions made by Bertin and Coppi (1985). With no

additional complexity, we are able to consider any two-

dimensional, equilibrium current sheet in which the magnetic

field changes direction and/or strength, with a current sheet

across which the field reverses direction (a "neutral sheet") in

an arbitrary manner being a special case.



Our approach is a generalization of the often-studied

problem of hydromagnetic surface waves associated with a layer

between otherwise homogeneous domains in static equilibrium that

has been analyzed in many contexts (see Lee and Roberts, 1986, op

cit.; Hollweg, 1986; Roberts, 1983). These earlier studies have

shown that, for a layer in which the magnetic field vector does

not change direction and the field strength has no local

extremum, a singular point exists where the wave frequency equals

the local Alfven frequency. The physical consequence of this is

the decay of a surface disturbance propagating along the layer.

The decay results from "mode conversion" (sometimes called "phase

mixing") of the collective surface disturbance into local

oscillations within the interface. That is, there is no normal

mode solution for these wave numbers - a continuous spectrum of

modes exists except in the limit that the thickness of the layer

goes to zero. This behavior has been analyzed most accurately

and clearly by Lee and Roberts (1986).

Under particular circumstances it is also possible to have

normal mode solutions for a limited region in (<o,k) space (where

ui is the circular frequency and k is the wavenumber) in a

compressible medium (Hopcraft and Smith, 1986). What we show

here is that in a current sheet in which the field vector

undergoes rotation in the plane of the sheet, in addition to an

amplitude change, the region of (u,k) space permitting normal

mode solutions expands and that continuous mode solutions can

sometimes disappear altogether, along with the concomitant wave

decay. This is particularly interesting in reference to the HCS,



wherein it is observed that the magnetic field normally reverses

direction without the amplitude going to zero (Behannon, et al.,

1981) .

Our formalism assumes waves with no compressive component in

an otherwise compressible medium of finite sound speed, as

opposed to assuming the limit of infinite sound speed as outlined

by Priest (1982, eqn. (4.60)) or assuming an incompressible

medium. This allows us to reduce the order of the wave equation

for normal modes and eventually to find, for the first time, a

closed integral solution for arbitrary current sheet structure

for those conditions when normal modes exist. Our wave equation

reduces to a known equation in various limits, giving us

confidence in our results.

In the following, we explicitly formulate the bending wave

problem in section 2, present the MHD bending wave equations in

section 3, and discuss our results in an astrophysical context

and in terms of small-scale waves on the HCS in section 4.

2. FORMULATION OF THE PROBLEM

In this section, we describe the model and geometry of the

current sheet, discuss the type of bending waves which can be

excited in the current sheet, and present the governing

magnetohydrodynamic (MHD) equations needed to describe these

waves. We consider the ideal MHD equations obtained by

neglecting diffusion of the magnetic field, displacement currents

and electrostatic forces and by making the assumption that the



gas pressure is a scalar. We begin with the current sheet model,

then present the perturbations in the current sheet and the MHD

equations.

(a) The Model and Geometry of a Current Sheet

A current sheet is characterized by changing strength and

direction of the magnetic field and by the pressure balance

across the sheet. From the theoretical point of view, both the

magnetic field and the gas pressure can change across the current

sheet in an arbitrary way (Bertin and Coppi, 1985), however, for

a current sheet in static equilibrium the total (gas + magnetic)

pressure has to be constant. On the other hand, in situ

observations of the HCS (Behannon et al. 1981), across which the

field changes polarity, give restrictions on the behaviour of the

magnetic field across the current sheet; the data show that the

magnetic field predominantly rotates across the sheet but also

that some variations of the strength of the field can be seen.

In the latter case, gas pressure variations across the sheet are

needed in order to maintain the pressure balance.

In the approach presented in this paper, we consider an

isothermal current sheet in static equilibrium. We allow for

rotation of the magnetic field across the current sheet and for

arbitrary changes in the field strength; the latter requires

changes of density across the sheet to account for the pressure

variations. We impose perturbations that bend the current sheet

and look for the effects on the behaviour of MHD bending waves

when gradients of the physical parameters across the sheet are



taken into account. Variations of the physical parameters along

the current sheet are neglected in this approach as they are

assumed to be on characteristic scales much larger than those

considered across the current sheet. We introduce a coordinate

system with the x and y-axis in the plane of the sheet (the y-

axis is fixed in the direction of the magnetic field on the

"upper" edge of the sheet) and with the z-axis normal to the

sheet (see Figure 2 a ) ; all the physical parameters that describe

the medium inside the sheet vary across the sheet and show

dependence on z alone.

Having defined the coordinate system/ we can, with complete

generality, describe the rotation and gradient of the magnetic

field 6 inside the current sheet in the following way:

v A A A A

B Q ( z ) = B Q X ( Z ) X + B ( z ) y = B Q ( z ) [ x sin a ( z ) + y cos a ( z ) ] ,

( 2 . 1 )

where a is the angle between the direction of the magnetic field

and the y-axis (see Figure 2b) , and BQ (z) is an arbitrary

funct ion of z. The static equilibrium is defined by

VP0 - ^ [<V x fto) x BQ] = 0, ( 2 . 2 )

which can easily be reduced to the pressure balance of the

current sheet (along the z-axis) with its surroundings



where pQ is the gas pressure inside the current sheet, and

pi I P f $! and §* are the gas pressure and magnetic field
6 6 6 6

outside, on opposite sides of the current sheet. Both latter

quantities are assumed to be constant in the vicinity of the

current sheet as we look at wavelength larger than the thickness

*e

direction in the x-y plane.

of the current sheet. 8* and B^ need not be in the samee e

(b) Perturbations of the Current Sheet

To develop a formalism for describing small-amplitude MHD

bending waves of arbitrary frequency, we consider perturbations

of the velocity and the magnetic field normal to the current

sheet; these perturbations bend the current sheet and are

transverse MHD bending waves propagating in any directions along

the current sheet. The amplitude of the density compression is

negligible for small-amplitude transverse waves and to the first-

order approximation the driven compressional wave may also be

neglected. In the approach presented here, we neglect density

and pressure perturbations. We allow for arbitrary propagation
A O

along the current sheet (the wave vector K = kx + ky, see

Figure 3) and consider the most general form of velocity

t ) ( x , y , z , t ) and magnetic field § ( x , y , z , t ) perturbations:

0 ( x , y , z , t ) = 0 ( z ) e x p [ - i ( u t - kxx - k y ) ] , ( 2 . 4 )

and



6(x,y,z,t) = §p(z)exp[-i(u)t - RXX - kyy) ] , (2.5)

where u is the wave frequency.

As shown by equations (2.4) and (2.5), the velocity ^ (z)

and the magnetic field § (z) perturbations have three components,

however, only the z-component of the perturbations excite MHD

bending waves which are purely transverse waves propagating along

the current sheet. Purely transverse waves that show

oscillations of the velocity and magnetic field only in the xy-

plane can also be excited by the x- and y-components of equations

(2.4) and (2.5); in this case, however, the wave is not a bending

wave. Note also that this transverse wave cannot be excited by

the perturbations along the magnetic field as there is no the

restoring force acting in that direction.

(c) The MHD Equations

Our model of the current sheet and the type of the

perturbations chosen reduce the ideal MHD equations to the

following linearized form:

7 • (p0) = 0, (2.6)0

[(V x 8) x 3Q + (7 x §Q) x S] = 0, (2.7)

V x (3 x 6 ) = 0, (2.8)
O
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where p is the density inside the current sheet. Note that the

equation of motion is simplified by the static equilibrium

condition (equation 2.2) and that the perturbations of 6 and 6

can be calculated from equations (2.7) and (2.8) alone; the

continuity equation (2.6) and the solenoidal condition (v«$ = 0)

give additional restrictions on these perturbations.

The set of MHD equations (2.6) throuqh (2.8) fully describes

the propagation of purely transverse waves in a compressible

medium and allows us to generalize the approach developed for

incompressible ideal MHD (Bertin and Coppi, 1985; Lee and

Roberts, 1986).

In order to consider the effect of gradients inside the

current sheet on the behaviour of MHD bending waves the wave

equation for either the velocity U_z(z) or the magnetic field

B (z) perturbation has to be derived and solved. We will

address these problems in the next section.

3. THE MHD BENDING WAVE EQUATIONS AND THEIR SOLUTIONS

In the following, we derive the wave equations for MHD

bending waves, show general solutions and discuss limiting cases.

(a) The Wave Equations

In the standard approach, the velocity and magnetic field

perturbations defined by equations (2.4) and (2.5) are

substituted into the equation of motion (2.7) and the induction

equation (2.8). Then, with the help of the continuity equation
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( y . & = 0 ) , the wave equation for the velocity perturbation Up •
is obtained in the form

9
DAUpz

where DA = »2 - (£ -$ a ) 2 and where $. = [B_x + B_,y] /( 4 f f p J 2.
** ' f\ t\ OX ®j[ ®

This equation describes transverse MHD bendinq waves in a fully

incompressible medium and has been extensively studied by many

authors (e.g., Tataronis and Grossmann/ 1973; Roberts, 1984;

Bertin and Coppi, 1985; Lee and Roberts, 1986).

In the approach presented here, we consider a compressible

medium and combine the continuity equation (2.6) with the

induction equation. It gives

dB
ioiB + iU (£.§ ) - U (—j££) + U B X =0, ( 3 . 2 )px px o pz1- dz ' pz ox r

dB
iu>B + iU tk.S ) - U f ,oy') + U B X =0, ( 3 . 3 )py PY o pz1- dz ' pz oy r v

iuBpz + i°pa (^- f io ) = °' ( 3 ' 4 )

where xr = (dp o /dz) /pQ .

To calculate the wave equation for U we eliminate B ,p z p^

B , and B in terms of U from equations (.3.2), (3.3), and

(3.4) using the x and y components of the equation of motion.

After some algebra, we get



12 2dB k 'V?

- (£.$ )k V2
° xyy A

,* - <*.60>2 V2 '^oj-p.'- .3.5,

where \b = (dBo/dz)/BQ.

Having obtained B and B , we may eliminate them from the

z-component of the equation of motion and obtain the wave

equation for U in the formpz

V2

DAUDZ + T~ d M ( ( X b ~ A r ) D A " (*'V2xr)~S- po UDZ 1 = °'f\ \J £* P \J £t U L. c\ rt L £• W \J £t
O tl)

( 3 . 6 )

O O
where again D^ = to - (Ic*^.) is the dispersion relation for

Alfven waves. To further reduce this equation, we use the

pressure balance across the current sheet (equation 2.3) and find

(3.7)
VS

2
where V_ (= p /p ) is the sound speed. Thus, the MHD bending

o O O

wave equation for U can finally be written as

"Vpz + 37 ^OVA (DA - »2 'A>Vpz1 = °' ( 3 - 8 )

where SA = VA/Vg.

Following the same procedure, one may obtain the MHD bending

wave equation for B_z in the form
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"Vpz + {*-5o>dT

(3.9)

which is slightly different than for U_z. It is important to

know the equation for B and its solution as the magnetic field

can usually be determined more easily than the velocity from

observational data.

Both wave equations presented above may be simplified to the

well-known dispersion relation for the Alfven waves when the

gradient of magnetic field disappears (x. = 0) and no layer

exists. The general solutions can also be easily found in

analytical forms (see next subsection), however, in order to

calculate variations of the velocity or magnetic field

perturbations across the current sheet the explicit form for the

magnetic field has to be given (see subsection 3e for detailed

discussion). The rotation of the magnetic field (being forceless

in the equation of motion) does not play as important role in

equations (3.8) and (3.9) as gradients of density and magnetic

field; the latter effects introduce forces into the equation of

motion and determine the wave behavior.

Comparison of the wave equations (3.8) and (3.9) to equation

(3.1) shows that now we are dealing with first order differential

equations instead of second. Note also that the wave equations

(3.8) and (3.9) are valid for a compressible medium and have a

form that is simple to deal with.
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(b) Singular Points

In the wave equations for MHD bending waves (equations 3.8

and 3.9) the derivative with respect to z can be explicitly

calculated and the wave equations can be written in the following

forms :

dU

d6

DAS«0

Jo dz

-dz o J pz

where 5 = d(BQ )/dz, and

DAS * °A

Both equations (3 .10) and (3.11) show two singular points where

AS or 6 = 0; for incompressible medium ( 8 -»• 0) the first

singular point occurs when DA = 0 (see equation 3.1). This case

is discussed by Tataronis and Grossmann (1973) who showed that

the existence of singular points leads to a continuous spectrum

of frequencies, in which case the normal mode analysis fails, and

the solution is given by an integral over some range of wave

frequencies in addition to a possible sum of discrete modes.

They also showed that the continuous spectrum of frequencies is

responsible for decaying of MHD waves by phase mixing (see also

Lee and Roberts, 1986) .
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We begin with the first singular point and calculate the

phase velocity (UA = o>/k) for which the condition DAS = 0 is

fulf i l led. Introducing the angle 41 between the magnetic field

and the wave vector (see Figure 3), we obtain

v V? cos2*
UA =

VS

Note that for <f> = 0 this expression describes the phase velocity

of purely acoustic waves (or MHD slow waves when VA » Vg ) guided

by an intense magnetic f lux tube and is obtained when a thin f lux

tube approximation is considered (Defouw, 1976; Musie lak , et al.,

1987) .

We solve equations (3 .10) and (3.11) at the point DAS = 0 (a

singular point solubility cri terium) and find that for all layers

in which |§ | goes uniformly through a minimum and shows no

rotation there are no real wave frequencies for which the

solutions can be obtained and only continuous spectrum solutions

exist. In general, however, when rotation is taken into account

the critical condition for existence of the solutions is found as

= -(2V2 -I- V 2 ) X 2 - 2 (V 2 + V 2 ) X a X b tan*, ( 3 . 1 4 )

where x = d<j>/dz. This condition shows that non-zero anda
negative gradient of rotation of the magnetic field (X < 0)a

introduces a possibility of f inding a real wave frequency for

which the condition (3 .14) is satisfied ( jx tan*) > | x b | ) ; then,

we may define a real critical frequency ta (defined by the RHS of
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equation 3.14) that satisfies DAS = 0 and normal mode solutions

can be recovered.

To consider the second singular point, we assume that the

strength of magnetic field disappears at one particular point in

the current sheet and that the first derivative of the square of

the field strength with respect to z becomes zero in the vicinity

of this point. The second derivative, however, remains non-zero

leading to smooth and continous variations of BQ across the

current sheet. In this case, 5 =0 and using again singular

point solubility criterium, we find

1 d*o
Sirp^ dz '

If the second derivative of the magnetic field with respect to z

is positive, then no real wave frequency can satisfy equation

(3.15). The situation is different when the magnetic field

exhibits a maximum inside the current sheet and the second

derivative of the field becomes negative; it leads to the

critical frequency u defined by the RHS of equation (3.15) forc

which normal modes are the expected solutions of the wave

equations.

(c) Absence of Singular Points

As described in the previous subsection the general MHD

bending wave equations show two singular points which lead to

limits on normal mode solutions. For an incompressible medium

and non-rotating magnetic f ield, these two points are not
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removable and exist for all wave frequencies that satisfy the

condition DA = 0 in any layer (e.g. Tataronis and Grossmann,

1973; Lee and Roberts, 1986). In the case considered in this

paper, there are two agents; compressibility and rotation of the

magnetic field vector which may remove singular points from the

wave equations.

Rotation of the magnetic field across the current sheet

means that B (z) need not be zero somewhere in a "neutral" sheet

and removes the second singular points from the wave equations.

Observational data (Behannon et al., 1981) show that zero

strength of the magnetic field apparently rarely exists for the

HCS, mainly because of rotation, although variations of the

magnetic field across the HCS often show a minimum.

Now, we look for physical conditions necessary to remove the

first singular point. Suppose that the condition (3.13) is not

satisfied anywhere in the current sheet. Then, the phase

velocity of transverse bending waves is equal to one of the local

Alfven velocities characteristic of the current sheet and

condition (3.13) is never fulfilled in the sheet, at least as

long as the sound speed is less than the Alfven velocity (V^ >

Vs). The latter inequality is not satisfied in the current sheet

only in the vicinity of the point where the magnetic field

disappears (i.e., a neutral sheet) or if the field variations

across the sheet show a deep minimum. However, as shown above

both latter cases can be prevented when the magnetic field

rotates. It allows the condition V^ > Vg to be satisfied

everywhere in the current sheet (see also Behannon et al., 1981)
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and leads to absence of the first singular point. Note that when

VA < Vs the first singular point is not removable from the wave

eguations. Absence of the singular points leads to normal mode

solutions for any wave frequency.

(d) General Solutions

Having discussed the singular points of the wave equations

and their removal, we now present the general solutions of these

equations valid for absence of the singular points (DAS * 0

and 6 * 0). To integrate the wave equations, we separate the

variables and the physical parameters in equations (3.10) and

(3.11), and obtain the solution for U_, in the form

the solution for B__ is given by

c.-c (It . 6 )
" (3.17)

where U° , B° , C._, , C_. and C are constant of integrations. Thep z p z A S B o

integrals can be evaluated explicitly only for very special cases

that are discussed in the next subsection.

(e) Simplifying the Problem: Limiting Cases

In order to obtain some simple analytical solutions, we

consider limiting cases for which both MHD bending waves

equations can be s ignif icant ly reduced. The simplest solutions
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of equations (3.8) and (3.9) are found either when the gradient

of magnetic field is neglected or when the dispersion relation

for Alfven waves is satisfied (see two next cases). Simple

solutions can also be obtained when the sound speed is much

larger than the Alfven velocity (see third and fourth cases

discussed below). The problem would also be simplified if one

could assume constant Alfven velocity across the current sheet;

however, in the approach presented here (an isothermal medium)

the pressure balance for the current sheet does not allow us to

make this assumption.

(i) $ rotates, B (z) = constant

In this simple case/ both density and magnetic field

gradients disappear (A. = A = 0), leading to constant density

across the current sheet. The rotation of the magnetic field

does not introduce additional forces into the equation of motion

as

(7 x 6Q) x 6Q = 0, (3.18)

and the solutions for both Upz and B are given by the

dispersion relation for Alfven waves

I2 = 0. (3.19)

which is valid for any perturbations of the velocity and magnetic

field.



20

Purely transverse Alfven waves are the only MHD bending

waves for a current sheet consisting of an arbitrary rotation of

the magnetic field through any angle, including 180° for a

neutral sheet. To calculate the phase velocity UA for these

waves, we introduce the angle 9 between the wave vector It and the

y-axis (the axis is fixed in the direction of the magnetic field

at the upper edge of the current sheet) and obtain

= ± VA cos ( ' a ( z ) - 9). ( 3 . 20 )

For propagation along the y-axis (9 = 0°) and arbitrary direction

of the magnetic field with respect to the y-axis one gets

UA = VA cos a; and, for a magnetic field parallel to the y-axis

and arbitrary direction of the wave propagation eguation (3 .21)

gives UA = VA cos 9. In addition, one may introduce the

angle $ between the magnetic field and wave-vector ( <fr = a - 8 ) to

fur ther simplify the expression for the phase velocity. All

latter results are well-known solutions for Alfven waves in a

homogeneous medium with uniform magnetic f ield.

(ii) 8 rotates, D» = 0o «*

In this very special case, the dispersion relation for

transverse Alfven waves is satisfied and the solution for U-,P^

(eguation 3.16) reduces to the form

C C
n - u° AS
'

2 Bo V
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This solution is valid only for one particular point in the

current sheet where DA = 0 for each wave frequency; note that

this point is not a singular point for the wave equations (3.8

and 3.9) and normal mode solutions exist. In general the Alfven

velocity varies across the sheet and the dispersion relation is

not satisfied. This means that the global solution (3.16) for

UDZ must equal this value at the critical layer where DA = 0.

(iii) 8Q rotates, BQ(z) is arbitrary, Vs » VA

The later assumption (8. •»• 0) is equivalent to neglecting

the density gradient in the continuity equation (see Bertin and

Coppi 1985) and leads to the incompressible fluid approximation

(7»t) = 0). Formally, this Boussinesq type of assumption makes

the approach of studying MHD bending waves inconsistent, mainly

because the considered medium is compressible and the density

gradient in the continuity equation cannot be neglected.

Referring to the results previously obtained, we discuss this

case in order to present the solution of the wave equation for

U given by equation (3.16). For 8, -»• 0 the behaviour of MHD

bending waves is described either by the wave equation (3.1) or

by equation (3.16) reduced by the assumption DAS = DA. Now, the

first critical point is defined by the condition DA = 0 and

cannot be removed by the rotation alone. This critical point is

always present in equation (3.16), reduced for an incompressible

medium, and an integral over some range of wave frequencies

appears in addition to a sum of discrete modes (Tataronis and

Grossman, 1973; Priest, 1982). Simple solutions are found only
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for real wave frequencies that do not satisfy DA = 0 anywhere in

the current sheet (however the condition can be satisfied outside

the sheet) and according to equation (3.16), we obtain

UDZ
P

( dzI —J xbvl
where CA is a constant of integration; this integral can be

calculated when simple variations of the magnetic field across

the current sheet are assumed (see the next case) .

(iv) $Q rotates, BQ(z) = Betanh (z/d) and Vg » VA

In order to evaluate the integral in equation ( 3 . 2 4 ) , we

have to calculate the Alfven velocity as well as \, for this

specific variation of the magnetic field (Figure 4). From the

pressure balance, and assuming S; = §*2 ' = B and
6 6 6

Pe1* = Pe
2) = pe we obtain

+ 2 cosh2 (z/d)
o -

2 cosh "X z/d)
' ( 3 . 2 3 )

where &Ae = VAe/Vg, VAQ = B e /(4itp e) 2 and 2d is a thickness of

the current sheet. It can also be shown that

(pQ - pe) cosh 2 (z /d) = j Pe8Ae = const. ( 3 . 2 4 )

Using equation ( 3 . 2 5 ) , the Alfven velocity is found in the form

v2 - 2 v2 sinh2(z/d)V. - i v — = - = - . ( 3 . 2 5 )
8 + 2 cosh (2/d)
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which can be further simplified by the assumption Vg »

VA (8Ae -»• 0). Then, a simple analytical formula is found for the

integral in equation ( 3 . 2 2 ) and the solution is given by

U z = Upz "2lHj ° K coth(z/d) exp[- l/2 K cosh 3 (z /d)]

(3.26)

2 22where dQ is a constant of integration and K = CD /v\d . The

solution given by equation (3.26) is valid only for those

frequencies which do not satisfy the dispersion relation DA = 0

anywhere in the current sheet; otherwise, the continuous spectrum

of frequencies is the expected solution of the problem.

4. DISCUSSION

We have presented the normal mode analysis for ideal MHD,

incompressible (the Alfven type of purely transverse) bending

waves on a two-dimensional current sheet. The current sheet is

of completely general structure, in equilibrium with its

homogeneous surroundings. The magnetic field may undergo both

amplitude and directional changes within the sheet to simulate

what is observed to occur in the heliospheric current sheet

( H C S ) . The behavior of MHD incompressible waves is fu l ly

described by the wave equations (3 .8) and (3 .9 ) which are the

most important results of this paper. In the limit of no field

rotation and infinite sound speed, we recover the results of Lee
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and Roberts (1986) and others; that the normal mode analysis

fails, there is a continuous spectrum of solutions for any given

wave number, and that waves undergo decay through "phase mixing"

or "mode conversion" - ultimately involving dissipative and

nonlinear processes that are beyond the scope of our work but

which have analyzed by others (Steinolfson, et al., 1986, op

cit.).

A new result is that in the presence of field rotation,

finite sound speed, and/or a local maximum.in field strength, it

is possible to recover conditions under which normal modes

exist. Furthermore, there are specific conditions under which

the singularity in the wave equation that leads to continuous

spectrum solutions can be removed by using a critical point

solubility criterium such that a different class of normal modes

is recovered. There are even conditions under which continuous

spectrum solutions disappear altogether.

These results mean that disturbances on a current sheet need

not always decay through mode conversion - which leads us to

speculate on the physical processes in the HCS. First, we note

that the HCS at 1 AU apparently generally attains a field

reversal through field rotation and hence may not support decay

through mode conversion. Second, "ripples" are commonly observed

on the HCS. These ripples are, therefore, probably Alfven-like

normal modes which are undergoing no further decay. However,

near the sun the establishment of the HCS does not necessarily

require a field rotation. Thus waves present near the sun - and

it is reasonable to assume waves are present in that they are
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generally observed at 1 AU - would undergo mode conversion and

decay, ultimately leading to dissipation and local magnetic

diffusion such that the magnetic field relaxes into a

configuration having a field rotation and the waves would no

longer decay and diffusion ceases. However, this scenario is not

completely in agreement with the data for a combination of

reasons. First, Steinolfson, et al. (1986) report that viscous

decay is more efficient than ohmic decay under coronal

conditions. In view of this, we would expect heating in the

vicinity of the HCS. However, Borinni, et al. (1981) report just

the opposite - the proton temperature tends to be a minimum in

the vicinity of the HCS. The only way to circumvent this

discrepancy is if dissipation in the interplanetary medium

behaves differently than in the corona so that most of it occurs

via a decay process involving reconnection of the magnetic field.

Returning to the analysis of Bertin and Coppi (1985), it is

clear that their idea of MHD bending waves on the HCS now

deserves considerable attention, even though they misapplied

their idea in attempting to explain the warping of the HCS. Data

show that warping of the HCS can be explained as the imprint of

coronal structure. However, bending waves analyzed for small-

scale waves, when the WKB approximation universally used in their

anlaysis is valid, offer the possibility of understanding the

character and evolution of the ripples known to exist on the

HCS. Furthermore, our analysis, which includes all types of

configurations describable by a two-dimensional layer whether or

not the field actually reverses, offers tools for defining when
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surface waves will decay via mode conversion in the general

astrophysical context. Finally, the new closed integral solution

we have found is an analytic tool that simplifies finding

solutions under those conditions for which normal modes exist.



27

Acknowledgments

We would like to thank D. H. Hathaway for comments on the

manuscript. This work was completed while ZEM held a NRC-

NASA/MSFC Research Associateship, with support from the NASA

Solar and Heliospheric Physics Branch and Space Plasma Physics

Branch.



28

BIBLIOGRAPHY

Behannon, K. W., Neubauer, F. M., and Barnstorf, H. 1981, J.

Geophys. Res., 86 3273.

Bertin, G., and Coppi, B. 1985, Ap. J., 298, 387.

Borinni, G., Gosling, J. T., Same, S. J., Feldman, W. C., and

Wilcox, J. M., 1981, J. Geophys. Res., 86, 4565.

Defouw, R. J. 1976, Ap. J., 209, 266.

Hoeksema, J. T., Wilcox, J. M., and Scherrer, P. H. 1982, J.

Geophys. Res., 87, 331.

Hoeksema, J. T., Wilcox, J. M., and Scherrer, P. H. 1983, J.

Geophys. Res., 88, 9910.

Hoeksema, J. T. 1984, "Structure and Evolution of Large Scale

Solar and Heliospheric Magnetic Fields," Stanford Univ. Ph.D.

Thesis (CSSA-ASTRO-84-07) Dept. of Applied Physics.

Hollweg, J. V. 1986, in "Advances in Space Plasma Physics", ed.

by B. Buti, World Scientific, Singapore.

Hopcraft, K. I., and Smith, P. R. 1986, Planet. Space Sci., 34,

1253.



29

Hundhausen, A. J. 1972, "Coronal Expansion and the Solar Wind,"

Springer-Verlag, New York.

Lee, M. A., and Roberts, B. 1986, Ap. J., 301, 430.

Musielak, Z. E., Rosner, R., and Ulmschneider, P. 1987, Ap. J.,

(submitted).

Priest, E. R. 1982, "Solar Magnetohydrodynamics", D. Reidel

Publishing Company, Dordrecht, p. 183.

Roberts, B. 1983, in "Solar and Stellar Magnetic Fields: Origins

and Coronal Ef fec t s" , ed. by J. 0. Stenflo, IAU Symposium

102, Reidel, Dordrecht, Holland.

Roberts, B. 1984, in "Hydromagnetics of the Sun", ESA-SP-220,

137, European Space Agency, Paris.

Steinolfson, R. S., Priest, E. R., Poedts, S., Nocera, L., and

Goosens, M., 1986, Ap. J., 304, 526.

Suess, S. T., and Hildner, E. 1985, J. Geophys. Res., 90, 9461.

Tataronis, J., and Grossmann, W. 1973, Z. Physik, 261, 203.

Wilcox, J. M., and Ness, N. F. 1965, J. Geophys. Res., 70, 5793.



30

FIGURE CAPTURES

Figure 1. Topology of the heliospheric current sheet using

Wilcox Solar Observatory line-of-sight magnetic field

data, a potential field model of the corona with a

source surface radius of 2.5 RQ, and a 400 km/s solar

wind speed. At position A, Halley's Comet intersects

the current sheet on 13.1 March 1986 - at the same

time and place as the ESA Giotto spacecraft. The

Earth was at position B at the same time.

Figure 2. Sketch of the model layer with definition of

coordinate system (2a) and variations of the magnetic

field in the current sheet plane (2b).

Figure 3. Definition of the pertinent symbols relating the

directions of the local magnetic field and the wave

vector with respect to the coordinate system.

Figure 4. Variations of the magnetic field ^ (z) = $ tanh (z/d)

in the current sheet plane; 2d is a thickness of the

current sheet. The semi-circular dashed lines show

the path of the tip of the $Q(z) vector with two

arbitrary intermediate vectors shown

as S ( Z ) and 8(z).
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