NASA PATENT ABSTRACTS BIBLIOGRAPHY

A CONTINUING BIBLIOGRAPHY

Section 1 • Abstracts

JULY 1988

(NASA-SP-7039(33)) NASA PATENT ABSTRACTS BIBLIOGRAPHY: A CONTINUING BIBLIOGRAPHY. SECTION 1: ABSTRACTS (NASA) 25 p CSCL 05B

N88-25388

Unclas

00/82 0148107

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Section 1 • Abstracts

Annotated references to NASA-owned inventions covered by U.S. patents and applications for patent that were announced in Scientific and Technical Aerospace Reports (STAR) between January 1988 and June 1988.
INTRODUCTION

Several thousand inventions result each year from the aeronautical and space research supported by the National Aeronautics and Space Administration. The inventions having important use in government programs or significant commercial potential are usually patented by NASA. These inventions cover practically all fields of technology and include many that have useful and valuable commercial application.

NASA inventions best serve the interests of the United States when their benefits are available to the public. In many instances, the granting of nonexclusive or exclusive licenses for the practice of these inventions may assist in the accomplishment of this objective. This bibliography is published as a service to companies, firms, and individuals seeking new, licensable products for the commercial market.

The NASA Patent Abstracts Bibliography (NASA PAB) is a semiannual NASA publication containing comprehensive abstracts and indexes of NASA-owned inventions covered by U.S. patents and applications for patent. The citations included in NASA PAB were originally published in NASA's Scientific and Technical Aerospace Reports (STAR) and cover STAR announcements made since May 1969.

For the convenience of the user, each issue of NASA PAB has a separately bound Abstract Section (Section 1) and Index Section (Section 2). Although each Abstract Section covers only the indicated six-month period, the Index Section is cumulative covering all NASA-owned inventions announced in STAR since 1969. Thus a complete set of NASA PAB would consist of the Abstract Sections of Issue 04 (January 1974) and Issue 12 (January 1978) and the Abstract Section for all subsequent issues and the Index Section for the most recent issue.

The 16 citations published in this issue of the Abstract Section cover the period January 1988 through June 1988. The Index Section references over 4500 citations covering the period May 1969 through June 1988.

ABSTRACT SECTION (SECTION 1)

This PAB issue includes 10 major subject divisions separated into 76 specific categories and one general category/division. (See Table of Contents for the scope note of each category, under which are grouped appropriate NASA inventions.) This scheme was devised in 1975 and revised in 1987 in lieu of the 34 category divisions which were utilized in PAB supplements (01) through (06) covering STAR abstracts from May 1969 through January 1974. Each entry in the Abstract Section consists of a STAR citation accompanied by an abstract and, when appropriate, a key illustration taken from the patent or application for patent. Entries are arranged by subject category in order of the ascending NASA Accession Number originally assigned for STAR to the invention. The range of NASA Accession Numbers within each issue is printed on the inside front cover.

Abstract Citation Data Elements: Each of the abstract citations has several data elements useful for identification and indexing purposes, as follows:

- NASA Accession Number
- NASA Case Number
- Inventor's Name
- Title of Invention
- U.S. Patent Application Serial Number
- U.S. Patent Number (for issued patents only)
- U.S. Patent Office Classification Number(s)  
  (for issued patents only)

These data elements are identified in the Typical Citation and Abstract and in the indexes.
TYPICAL CITATION AND ABSTRACT

Airborne Tracking Sunphotometer Apparatus and System Patent

Yutaka Matsumoto, inventor (to NASA), Cesar Mina, inventor (to NASA), Philip B. Russell, inventor (to NASA), and William B. Vanark, inventor (to NASA) 1 Dec. 1987 10 p
Filed 29 Jan. 1986 Supersedes N86-21982 (24 - 12, p 1975)

An airborne tracking Sun photometer apparatus has a rotatable dome. An azimuth drive motor is connected to rotate the dome. The dome has an equatorial slot. A cylindrical housing is pivotally mounted inside the dome at the equatorial slot. A photometer is mounted in the housing to move in the equatorial slot as the housing pivots. The photometer has an end facing from the slot with an optical flat transparent window. An elevation drive motor is connected to pivot the cylindrical housing. The rotatable dome is mounted in the bulkhead of an aircraft to extend from the interior of the aircraft. A Sun sensor causes the photometer to track the Sun automatically. Alternatively, the photometer may be oriented manually or by computer.
18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE
Includes satellites; space platforms; space stations; spacecraft systems and components such as thermal and environmental controls; and attitude controls.
For life support systems see 54 Man/System Technology and Life Support. For related information see also 05 Aircraft Design, Testing and Performance, 39 Structural Mechanics, and 16 Space Transportation.

19 SPACECRAFT INSTRUMENTATION
For related information see also 06 Aircraft Instrumentation and 35 Instrumentation and Photography.

20 SPACECRAFT PROPULSION AND POWER
Includes main propulsion systems and components, e.g. rocket engines; and spacecraft auxiliary power sources.
For related information see also 07 Aircraft Propulsion and Power, 28 Propellants and Fuels, 44 Energy Production and Conversion, and 15 Launch Vehicles and Space Vehicles.

CHEMISTRY AND MATERIALS
Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; propellants and fuels; and materials processing.

23 CHEMISTRY AND MATERIALS (GENERAL)

24 COMPOSITE MATERIALS
Includes physical, chemical, and mechanical properties of laminates and other composite materials.
For ceramic materials see 27 Nonmetallic Materials.

25 INORGANIC AND PHYSICAL CHEMISTRY
Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry.
For related information see also 77 Thermodynamics and Statistical Physics.

26 METALLIC MATERIALS
Includes physical, chemical, and mechanical properties of metals, e.g., corrosion; and metallurgy.

27 NONMETALLIC MATERIALS
Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials.
For composite materials see 24 Composite Materials.

28 PROPELLANTS AND FUELS
Includes rocket propellants, igniters and oxidizers; their storage and handling procedures; and aircraft fuels.
For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 44 Energy Production and Conversion.

29 MATERIALS PROCESSING
Includes space-based development of products and processes for commercial application.
For biological materials see 55 Space Biology.

ENGINEERING
Includes engineering (general); communications and radar; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.
For related information see also Physics.

31 ENGINEERING (GENERAL)
Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

32 COMMUNICATIONS AND RADAR
Includes radar; land and global communications; communications theory; and optical communications.
For related information see also 04 Aircraft Communications and Navigation and 17 Space Communications, Spacecraft Communications, Command and Tracking. For search and rescue see 03 Air Transportation and Safety, and 16 Space Transportation.

33 ELECTRONICS AND ELECTRICAL ENGINEERING
Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry.
For related information see also 60 Computer Operations and Hardware and 76 Solid-State Physics.

34 FLUID MECHANICS AND HEAT TRANSFER
Includes boundary layers; hydrodynamics; fluidics; mass transfer and ablation cooling.
For related information see also 02 Aerodynamics and 77 Thermodynamics and Statistical Physics.

35 INSTRUMENTATION AND PHOTOGRAPHY
Includes remote sensors; measuring instruments and gages; detectors; cameras and photographic supplies; and holography.
For aerial photography see 43 Earth Resources and Remote Sensing. For related information see also 06 Aircraft Instrumentation and 19 Spacecraft Instrumentation.

36 LASERS AND MASERS
Includes parametric amplifiers.
For related information see also 76 Solid-State Physics.

37 MECHANICAL ENGINEERING
Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.

38 QUALITY ASSURANCE AND RELIABILITY
Includes product sampling procedures and techniques; and quality control.

39 STRUCTURAL MECHANICS
Includes structural element design and weight analysis; fatigue; and thermal stress.
71 ACOUSTICS N.A.
Includes sound generation, transmission, and attenuation.
For noise pollution see 45 Environment Pollution.

72 ATOMIC AND MOLECULAR PHYSICS N.A.
Includes atomic structure, electron properties, and molecular spectra.

73 NUCLEAR AND HIGH-ENERGY PHYSICS N.A.
Includes elementary and nuclear particles; and reactor theory.
For space radiation see 93 Space Radiation.

74 OPTICS N.A.
Includes light phenomena and optical devices.
For lasers see 36 Lasers and Masers.

75 PLASMA PHYSICS N.A.
Includes magnetohydrodynamics and plasma fusion.
For ionospheric plasmas see 46 Geophysics. For space plasmas see 90 Astrophysics.

76 SOLID-STATE PHYSICS 6
Includes superconductivity.
For related information see also 33 Electronics and Electrical Engineering and 36 Lasers and Masers.

77 THERMODYNAMICS AND STATISTICAL PHYSICS N.A.
Includes quantum mechanics; theoretical physics; and Bose and Fermi statistics.
For related information see also 25 Inorganic and Physical Chemistry and 34 Fluid Mechanics and Heat Transfer.

SOCIAL SCIENCES
Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law, political science, and space policy; and urban technology and transportation.

80 SOCIAL SCIENCES (GENERAL) N.A.
Includes educational matters.

81 ADMINISTRATION AND MANAGEMENT N.A.
Includes management planning and research.

82 DOCUMENTATION AND INFORMATION SCIENCE N.A.
Includes information management; information storage and retrieval technology; technical writing; graphic arts; and micrography.
For computer documentation see 61 Computer Programming and Software.

83 ECONOMICS AND COST ANALYSIS N.A.
Includes cost effectiveness studies.

84 LAW, POLITICOAL SCIENCE AND SPACE POLICY N.A.
Includes NASA appropriation hearings; aviation law; space law and policy; international law; international cooperation; and patent policy.

85 URBAN TECHNOLOGY AND TRANSPORTATION N.A.
Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation.
For related information see 03 Air Transportation and Safety, 16 Space Transportation, and 44 Energy Production and Conversion.

SPACE SCIENCES
Includes space sciences (general); astronomy; astrophysics; lunar and planetary exploration; solar physics; and space radiation.
For related information see also Geosciences.

88 SPACE SCIENCES (GENERAL) N.A.

89 ASTRONOMY N.A.
Includes radio, gamma-ray, and infrared astronomy; and astrometry.

90 ASTROPHYSICS N.A.
Includes cosmology; celestial mechanics; space plasmas; and interstellar and interplanetary gases and dust.
For related information see also 75 Plasma Physics.

91 LUNAR AND PLANETARY EXPLORATION N.A.
Includes planetology; and manned and unmanned flights.
For spacecraft design or space stations see 18 Spacecraft Design, Testing and Performance.

92 SOLAR PHYSICS N.A.
Includes solar activity, solar flares, solar radiation and sunspots.
For related information see 93 Space Radiation.

93 SPACE RADIATION N.A.
Includes cosmic radiation; and inner and outer earth's radiation belts.
For biological effects of radiation see 52 Aerospace Medicine. For theory see 73 Nuclear and High-Energy Physics.

GENERAL
Includes aeronautical, astronautical, and space science related histories, biographies, and pertinent reports too broad for categorization; histories or broad overviews of NASA programs.

99 GENERAL N.A.

Note: N.A. means that no abstracts were assigned to this category for this issue.
AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

N88-14071* National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

**COMBINED RIBLET AND LEBU DRAG REDUCTION SYSTEM Patent**

MICHAEL J. WALSH, inventor (to NASA), JOHN B. ANDERS, inventor (to NASA), and JERRY N. HEFNER, inventor (to NASA) 17 Nov. 1987 10 p Filed 27 Dec. 1984 Supersedes N85-28922 (23 - 18, p 3058)


The invention is a system of flow control devices which result in reduced skin friction on aerodynamic and hydrodynamic surfaces. The devices cause a breakup of large-scale disturbances in the boundary layer of the flow field. The riblet device acts to reduce disturbances near the boundary layer wall by the use of longitudinal striations forming V-shaped grooves. These grooves are dimensional on the order of the wall vortices and turbulent burst dimensions. The large eddy breakup device is a small strip or airfoil which is suspended in the upper region of the boundary layer. Various physical mechanisms cause a disruption of the large-scale vortices. The combination of the devices of this invention result in a substantial reduction in skin friction drag.

Official Gazette of the U.S. Patent and Trademark Office

AIR TRANSPORTATION AND SAFETY

Includes passenger and cargo air transport operations; and aircraft accidents.

N88-14083* National Aeronautics and Space Administration. Langley Research Center, Hampton, Va.

**LIGHTNING DISCHARGE PROTECTION ROD Patent**

CHARLES F. BRYAN, JR., inventor (to NASA) 6 Oct. 1987 7 p Filed 24 Apr. 1986 Supersedes N86-26296 (24 - 17, p 2686)


A system for protecting an in-air vehicle from damage due to a lightning strike is disclosed. It is an extremely simple device consisting of a sacrificial graphite composite rod, approximately the diameter of a pencil with a length of about five inches. The sacrificial rod is constructed with the graphite fibers running axially within the rod in a manner that best provides a path of conduction from the trailing edge of an aircraft to the trailing end of the rod. The sacrificial rod is inserted into an attachment hole machined into trailing edges of aircraft flight surfaces, such as a vertical fin cap and attached with adhesive in a manner not prohibiting the conduction path between the rod and the aircraft. The trailing end of the rod may be tapered for aerodynamic and esthetic requirements. This rod is sacrificial but has the capability to sustain several lightning strikes and still provide protection.

Official Gazette of the U.S. Patent and Trademark Office

COMPOSITE MATERIALS

Includes physical, chemical, and mechanical properties of laminates and other composite materials.

N88-18628* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif.

**CERAMIC-CERAMIC SHELL TILE THERMAL PROTECTION SYSTEM AND METHOD THEREOF Patent**

SALVATORE R. RICCITIELLO, inventor (to NASA), MARNELL

Official Gazette of the U.S. Patent and Trademark Office
commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

Official Gazette of the U.S. Patent and Trademark Office

with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

Official Gazette of the U.S. Patent and Trademark Office
and collision bonding wherein electron-sharing linkups are formed.

Official Gazette of the U.S. Patent and Trademark Office

ALIGNMENT AND ASSEMBLY TOOL FOR VERY LARGE DIAMETER CYLINDERS Patent

An alignment and assembly tool is disclosed for aligning the ends of two very large cylinders so that the ends may be welded with a cylindrical strengthening section inserted between the cylinders and aligned and welded into the joint. The tool has a U-shaped main body with a horizontal top section and two legs, which are attached to the ends of the top section and extend outward and downward. Horizontal bottom sections extend outward from the bottoms of two of the legs. The tool has one inner jackscrew and one outer jackscrew on each side of its center, extending downward from the top section. Each of the two bottom sections has an attached side clamp for clamping the alignment tool to two opposing skin stringers of the cylinders. The jackscrews are adjusted to bring the edges of a tee ring into precise alignment with the ends of the two large cylinders so that both joints may be welded around their circumference.

Official Gazette of the U.S. Patent and Trademark Office

WELDING MONITORING SYSTEM Patent

This invention relates to systems for remotely monitoring automatic welding operations, and more particularly to a system wherein the welder is readily positionable, while components of the optical system remain fixed. A welder having an electrode is mounted in an enclosure containing a pair of mirrors. The electrode...
An infrared photodetector is formed of a heavily doped p-type Ge sub x Si sub 1-x/Si superlattice in which x is pre-established during manufacture in the range 0 to 100 percent. A custom-tailored photodetector that can differentiate among close wavelengths in the range of 2.7 to 50 microns is fabricated by appropriate selection of the alloy constituency value, x, to establish a specific wavelength at which photodetection cutoff will occur.
PUBLIC AVAILABILITY OF COPIES OF PATENTS AND PATENT APPLICATIONS

Copies of U.S. patents may be purchased directly from the U.S. Patent and Trademark Office, Washington, D.C. 20231 at $1.50 per copy. When ordering patents, the U.S. Patent Number should be used, and payment must be remitted in advance, preferably by money order or check payable to the Commissioner of Patents and Trademarks. Prepaid purchase coupons for ordering are also available from the Patent and Trademark Office.

NASA patent application specifications are sold in paper copy by the National Technical Information Service at price code A02. Microfiche are sold at price code A01. The US-Patent-Appl-SN-number should be used in ordering either paper copy or microfiche from NTIS.

LICENSES FOR COMMERCIAL USE: INQUIRIES AND APPLICATIONS FOR LICENSE

NASA inventions, abstracted in NASA PAB, are available for nonexclusive or exclusive licensing in accordance with the NASA Patent Licensing Regulations. It is significant that all licenses for NASA inventions shall be by express written instruments and that no license will be granted or implied in a NASA invention except as provided in the NASA Patent Licensing Regulations.

Inquiries concerning the NASA Patent Licensing Program or the availability of licenses for the commercial use of NASA-owned inventions covered by U.S. patents or pending applications for patent should be forwarded to the NASA Patent Counsel of the NASA installation having cognizance of the specific invention, or the Associate General Counsel for Intellectual Property, code GP, National Aeronautics and Space Administration, Washington, D.C. 20546. Inquiries should refer to the NASA Case Number, the Title of the Invention, and the U.S. Patent Number or the U.S. Application Serial Number assigned to the invention as shown in NASA PAB.

The NASA Patent Counsel having cognizance of the invention is determined by the first three letters or prefix of the NASA Case Number assigned to the invention. The addresses of NASA Patent Counsels are listed alongside the NASA Case Number prefix letters in the following table.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7039, Section 1 and its supplements are available from the National Technical Information Service (NTIS) on standing order subscription as PB 88-911100 at the price of $12.50 domestic and $25.00 foreign. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.
PATENT LICENSING REGULATIONS

PART 1245—PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS

Subpart 2—Licensing of NASA Inventions

1245.200 Scope of subpart.
This subpart prescribes the terms, conditions, and procedures upon which a NASA invention may be licensed. It does not affect licenses which (a) were in effect prior to July 1, 1981; (b) may exist at the time of the Government's acquisition of title to the invention, including those resulting from the allocation of rights to inventions made under Government research and development contracts; (c) are the result of an authorized exchange of rights the settlement of patent disputes; or (d) are otherwise authorized by law or treaty.

1245.201 Policy and objective.
It is the policy and objective of this subpart to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

1245.202 Definitions.
(a) "Federally owned invention" means an invention, plant, or design which is covered by a patent, or patent application in the United States or a patent, patent application, plant variety protection, or other form of protection, in a foreign country, title to which has been assigned to or otherwise vested in the United States Government.

(b) "Federal agency" means an executive department, military department, Government corporation, or independent establishment, except the Tennessee Valley Authority, which has custody of a Federally owned invention.

(c) "NASA Invention" means a Federally owned invention with respect to which NASA maintains custody and administration, in whole or in part, of the right, title, or interest in such invention on behalf of the United States Government.

(d) "Small business firm" means a small business concern as defined at section 2 of Pub. L. 85-536 (15 U.S.C. 632) and implementing regulations of the Administrator of the Small Business Administration. For the purpose of these regulations, the size standard for small business concerns involved in Government procurement, contained in 13 CFR 121 3-8, and in subcontracting, contained in 13 CFR 121.3-12, will be used.

(e) "Practical application" means to manufacture in the case of a composition or product, or practice in the case of a machine or system; and, in each case, under such conditions as to establish that the invention is being utilized and that its benefits are to the extent permitted by law or Government regulations available to the public on reasonable terms.

(f) "United States" means the United States of America, its territories and possessions, the District of Columbia, and the Commonwealth of Puerto Rico.

1245.203 Authority to grant licenses.
NASA inventions shall be made available for licensing as deemed appropriate in the public interest. NASA may grant nonexclusive, partially exclusive, or exclusive licenses thereto under this subpart on inventions in its custody.

Restrictions and Conditions

1245.204 All licenses granted under this subpart.

(a) Restrictions. (1) A license may be granted only if the applicant has supplied NASA with a satisfactory plan for development or marketing of the invention, or both, and with information about the applicant's capability to fulfill the plan.

(2) A license granting rights to use or sell under a NASA invention in the United States shall normally be granted only to a licensee who agrees that any products embodying the invention or produced through the use of the invention will be manufactured substantially in the United States.

(b) Conditions. Licenses shall contain such terms and conditions as NASA determines are appropriate for the protection of the interests of the Federal Government and the public and are not in conflict with law or this subpart. The following terms and conditions apply to any license:

(1) The duration of the license shall be for a period specified in the license agreement, unless sooner terminated in accordance with this subpart.

(2) The license may be granted for all or less than all fields of use of the invention in specified geographical areas, or both.

(3) The license may extend to subsidiaries of the licensee or other parties if provided for in the license but shall be nonassignable without approval of NASA, except to the successor of that part of the licensee's business to which the invention pertains.
identifying the invention and prospective licensee, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period and following consideration of such objections; (ii) NASA has considered whether the interests of the Federal Government or United States industry in foreign commerce will be enhanced; and (iii) NASA has not determined that the grant of such license will tend substantially to lessen competition or result in undue concentration in any section of the United States in any line of commerce to which the technology to be licensed relates, or to create or maintain other situations inconsistent with anti-trust laws.

(2) Conditions. In addition to the provisions of §1245.204, the following terms and conditions apply to foreign exclusive and partially exclusive licenses:

(i) The license shall be subject to the irrevocable, royalty-free right of the Government of the United States to practice and have practiced the invention on behalf of the United States and on behalf of any foreign government or international organization pursuant to any existing or future treaty or agreement with the United States.

(ii) The license shall be subject to any licenses in force at the time of the grant of the exclusive or partially exclusive license.

(iii) The license may grant the licensee the right to take any suitable and necessary actions to protect the licensed property, on behalf of the Federal Government.

(c) Record of determinations. NASA shall maintain a record of determinations to grant exclusive or partially exclusive licenses.

(d) Applications for licenses will be initially reviewed by the Patent Counsel of the NASA installation having responsibility for the invention and shall normally include:

(a) Identification of the invention for which the license is desired, including the patent application serial number or patent number, title, and date, if known.

(b) Identification of the type of license for which the application is submitted.

(c) Name and address of the person, company, or organization applying for the license and the citizenship or place of incorporation of the applicant.

(d) Name, address, and telephone number of representative of applicant to whom correspondence should be sent.

(e) Nature and type of applicant's business, identifying products or services which the applicant has successfully commercialized, and approximate number of applicant's employees;

(f) Source of information concerning the availability of a license on the invention:

(g) A statement indicating whether applicant is a small business firm as defined in §1245.202(c);

(h) A detailed description of applicant's plan for development or marketing of the invention, or both, which should include:

(1) A statement of the time, nature and amount of anticipated investment of capital and other resources which applicant believes will be required to bring the invention to practical application;

(2) A statement as to applicant's capability and intention to fulfill the plan, including information regarding manufacturing, marketing, financial, and technical resources;

(3) A statement of the fields of use for which applicant intends to practice the invention; and

(4) A statement of the geographic areas in which applicant intends to manufacture any products embodying the invention and geographic areas where applicant intends to use or sell the invention, or both;

(i) Identification of licenses previously granted to applicant under federally owned inventions;

(j) A statement containing applicant's best knowledge of the extent to which the invention is being practiced by private industry or Government, or both, or is otherwise available commercially; and

(k) Any other information which applicant believes will support a determination to grant the license to applicant.

§1245.202 Processing applications.

(a) Applications for licenses will be initially reviewed by the Patent Counsel of the NASA installation having responsibility for the invention. The Patent Counsel shall make a preliminary recommendation to the Director of Licensing, NASA Headquarters, whether to: (1) grant the license as requested; (2) grant the license with modification after negotiation with the licensee, or (3) deny the license. The Director of Licensing shall review the preliminary recommendation of the Patent Counsel and make a final recommendation to the NASA Assistant General Counsel for Patent Matters. Such review and final recommendation may include, and be based on, any additional information obtained from applicant and other sources that the Patent Counsel and the Director of Licensing deem relevant to the license requested. The determination to grant or deny the license shall be made by the Assistant General Counsel for Patent Matters based on the final recommendation of the Director of Licensing.

(b) When notice of a prospective exclusive or partially exclusive license is published in the Federal Register in accordance with §1245.206(b)(1)(i), a written request for reconsideration, the written request for reconsideration within 30 days after receiving notice of denial. This 30-day period may be extended for good cause.

(c) In addition to, or in lieu of requesting reconsideration, the applicant may also appeal the denial of the license in accordance with §1245.211.

§1245.205 Notice to Attorney General.

A copy of the notice provided for in §§1245.205(a)(1)(iii)(A), and 1245.205(b)(1)(i) will be sent to the Attorney General.

§1243.310 Modification and termination of licenses.

Before modifying or terminating a license, other than by mutual agreement, NASA shall furnish the licensee and any sublicensee of record a written notice of intention to modify or terminate the license, and the licensee and any sublicensee shall be allowed 30 days after such notice to remedy any breach of the license or show cause why the license should not be modified or terminated.

§1243.311 Appeals.

(a) The following parties may appeal to the NASA Administrator or designees any decision or determination concerning the grant, denial, interpretation, modification, or termination of a license:

(1) A person whose application for a license has been denied;

(2) A licensee whose license has been modified or terminated, in whole or in part;

(3) A person who timely filed a written objection in response to the notice required by §§1245.203(a)(1)(iii)(A) or
1. Report No. | NASA SP-7039 (33)
---|---
2. Government Accession No. | 
3. Recipient's Catalog No. | 
4. Title and Subtitle | NASA Patent Abstracts Bibliography
A Continuing Bibliography
Section 1: Abstracts (Supplement 33)
5. Report Date | July, 1988
6. Performing Organization Code | 
7. Author(s): | 
9. Performing Organization Name and Address | National Aeronautics and Space Administration
Washington, DC 20546
10. Work Unit No. | 
11. Contract or Grant No. | 
12. Sponsoring Agency Name and Address | 
13. Type of Report and Period Covered | 
15. Supplementary Notes | Section 1: Abstracts
16. Abstract | Abstracts are provided for 16 patents and patent applications entered into the NASA scientific and technical information system during the period January 1988 through June 1988. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.
17. Key Words (Suggested by Authors(s)) | Bibliographies
Patent Policy
NASA Programs
18. Distribution Statement | Unclassified - Unlimited
19. Security Classification (of this report) | Unclassified
20. Security Classification (of this page) | Unclassified
21. No. of Pages | 26
22. Price * | A03/HC

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1988