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ABSTRACT

To investigate the cause of flares and quiescent filament

eruptions we have studied the quasi-static evolution of a

maqnetohydrostatic (MHS) model. The results lead us to propose

that: (1) The sudden disruption of an active-reqion filament

field confiquration and the accompanying flare result from the

lack of a neighboring equilibrium state as magnetic shear is

increased above a critical value. (2) A quiescent filament

eruption is due to an ideal MHD kink instability of a highly

twisted detached flux tube formed by the increase of plasma

current flowing along the length of the filament.

For the study we have developed a numerical solution to the

2-D MHS eguation for the self-consistent equilibrium of a

filament and overlyinq coronal magnetic field. Because the

initial arcade (potential field) configuration is completely

stable to global MHD modes, the field must evolve from a simple

arcade to a geometry with sheared field or with a detached

helically twisted tube along the axis of the filament before

reaching an unstable state corresponding to the onset of a flare

or an eruption. The change can be made by increasinq the axial

and/or the poloidal current. Increase of the poloidal current

causes increase of maqnetic shear. As shear increases past a

critical point, there is a discontinuous topoloqical change in

the equilibrium confiquration. We propose that the lack of a

neiqhboring eguilibrium triggers a flare. Increase of the axial

current results in a detached tube with enough helical twist to

be unstable to ideal MHD kink modes. We propose that this is the

condition for the eruption of a quiescent filament.



I. INTRODUCTION

Solar filaments, whether in active regions or quiet regions,

sometimes violently disrupt. An active-region filament resides

along a neutral line between regions of opposite polarity

magnetic field, where the field is strongly sheared, and where

the field magnitude is 100-1000 G. Active-region filament

eruptions along with flares are most likely to occur when and

where the field shear is strongest, i.e. when and where the field

at the neutral line becomes nearly aligned with the neutral line

(Hagyard, et al., 1984; Hagyard and Rabin, 1986). In these

events, the active region filament eruption is clearly an

integral part of the accompanying flare (Moore, et al., 1984;

Moore, et al., 1986). A guiescent filament, i.e., a filament in

a guiet region, also resides in the magnetic field above a

magnetic neutral line, but differs from an active region filament

in that the magnetic field is less sheared and no stronger than a

few tens of gauss (Tandberg-Hanssen, 1974). Some guiescent-

filament eruptions are not accompanied by appreciable flare

brightening in the chromosphere (Svestka, 1976) . Erupting

guiescent filaments often appear to have an overall helical

twist, with several complete turns from one end to the other

(Tandberg-Hanssen, 1974; Priest, 1984). In contrast, erupting

active-region filaments usually do not show obvious multiple

turns or twist; rather, they often appear to have an overall

twist of one turn or less (Roy and Tang, 1975; Moore, et al.,

1986). These differences suggest that the mechanism for eruption

of guiescent filaments may be different from that of active

region filament.



Various theoretical models have been proposed to explain

filament eruptions. Sakurai (1976) showed that the eruption can

occur due to an ideal MHD kink instability as twist increases

above a certain critical value. Noting that all eruptive

filaments and coronal loops have foot points anchored in the

photosphere, other authors have studied the effect of line-tying

on the MHD stability of a loop (Raadu, 1972; Hood and Priest,

1979; An, 1982, 1984; Einaudi and Van Hoven, 1981), demonstrating

its stabilizing effect. Other authors have studied the guasi-

static evolution of force free magnetic fields in connection with

the onset of filament eruptions and flares (Barnes and Sturrock,

1972; Low, 1977; Jockers, 1976, 1978; Heyvaerts, et al., 1982;

Birn, et al., 1978; Priest and Milne, 1980; Aly, 1985; Yang, et

al., 1985). In these studies, the magnetic field geometry is

considered to be invariant along the length of the filament

channel. The force free eguation then becomes a two dimensional

problem that can be solved by specifying the component of the

magnetic field along the filament as a function of a vector

potential that only has one component-also along the filament.

Force-free models invariably show that as the magnetic field

along the filament (closely related to magnetic shear) increases

above a critical value, no solution exists, or there is a

discontinuity in the topology of the solution. Here, these

conditions will be refered to as the lack of a neighboring

eguilibrium- a situation which has been regarded as the onset of

a filament eruption and flare.



Even though extensive studies have been done to understand

why filaments erupt, the observed differences between quiescent

filaments and active-region filaments have not been taken into

account. Is the MHD kink instability the mechanism for active-

region filament eruptions with flares, as well as for quiescent-

filament eruptions? Since an active-region filament resides in a

magnetic field that is nearly parallel to the neutral line, then

if this field becomes detached from the photosphere to form a

long, helical flux tube, the overall twist could well be small

enough as to preclude the MHD kink instability as the mechanism

for an active region filament eruption. On the other hand, it is

unlikely that the lack of a neighboring eguilibrium is the

mechanism for a quiescent-filament eruption with high field

twist. In a guiescent filament with smaller field strength than

in an active-region filament, an initial arcade field can evolve

into one with a detached flux tube with high twist from less

axial current than that for the same amount of helical twist in

an active-region filament. Under conditions that will be defined

below, increasing the axial current can instead result in the

lack of a neighboring equilibrium. However, as we will show, it

is probable that the field configuration of a quiescent filament

becomes kink unstable due to a hiqh twist before the lack of a

neighboring equilibrium is reached.

Therefore, in this study, we propose separate mechanisms for

the two eruptive phenomena, based on the observations that active

regions have highly sheared magnetic structures while guiet

regions have less magnetic shear: quiescent filaments erupt due



to ideal MHD kink instability as the initial arcade magnetic

structure evolves to have a detached flux tube with high magnetic

twist floating above the neutral line, whereas active region

flares occur due to the lack of a neighboring eguilibrium as

magnetic shear increases over a critical value. For this study,

we construct magnetohydrostatic (MHS) configurations and model

the guasi-static evolution of the configuration by changing the

magnitude of axial and poloidal currents. Most theoretical work

for guasi-static evolution has concentrated on the evolution of

force free fields with field geometry not representative of solar

filaments and have not taken into account the stability of the

magnetic fields during the evolution. The concept of the guasi-

static evolution is valid only when the eguilibrium is stable

during the evolution. Our study of guasi-static evolution

differs from the previous studies on the following aspects. We

have built realistic MHS eguilibria with geometry similar to that

of the magnetic field in and around real filaments, geometry

based on observations (Kawaguchi, 1967; Saito and Tandberg-

Hanssen, 1973; Waldmeier, 1970) showing guiescent filaments with

sheared fields in the low interiors of coronal streamers the

outer parts of which exhibit a coronal magnetic field with much

less shear. Active-region filaments are also observed (Hagyard,

Moore, and Emslie, 1984) to have highly sheared fields along the

neutral line, and to be surrounded by less sheared coronal

magnetic fields. We also apply a one-dimensional ideal MHD

stability criterion to each eguilibrium to test its stability.



We present sequences of MHS equilibria which show field

confiqurations with increasinq field twist or increasinq maqnetic

shear. The results are used to explain filament eruptions.

However, we emphasize that even though we have filaments in mind

for the study, we do not consider the detailed process of their

formation, but focus on maqnetohydrostatic aspects leadinq to

their eruption. Our model represents the entire "filament

channel", i.e., the entire closed bipolar maqnetic field

confiquration in which the filament is embedded. To qain insiqht

into why and how filaments erupt, we model the overall MHS

confiquration and how it miqht evolve to lose its equilibrium.

II. MAGNETOHYDROSTATIC MODEL FOR FILAMENT REGIONS

(a) Model Description and Governinq Equations.

Our phenomenoloqical description of filament magnetic fields

sugqests a "standard empirical model" havinq two basic features:

(i) maqnetic shear concentrated near the photospheric neutral

line so that the field within the filament above the neutral line

is predominantly directed alonq the filament, and (ii) helical

twist in this predominantly axial field in and around the

filament. Seekinq the simplest physical case as well as a model

that is mathematically tractable, we assume an isothermal plasma

in a constant qravitational field. The confiquration is shown

schematically in Fiq. 1. In this fiqure, qravity is in the

neqative z-direction, all variables are independent of the x-

coordinate, and the maqnetic neutral line is in the x-y plane and

alonq the x-axis.



Any magnetic field that incorporates these symmetries can be

written as the sum of the curl of the x-component of a vector

potential, A, and the x-component of the field. That is:

$ = 7 x (A e ) + B e (1)
X X X

The governing maqnetostatic equilibrium equations are:

x - pg e (2

7 x

P = R P T (4)

where qaussian units are used, 1 is the current density, -q &z is

the gravitational acceleration, p is pressure, p is density, T is

the temperature, R is the qas constant, and e is the unit

vector in x-direction.

These equations can be reduced to a Poisson equation for the

potential, A, which will be solved in a manner similar to that by

Low (1977), we first make a change of variable from p(x,y) to 0,

where 0 is defined as

Q = p(x,y)eXz

(5)
t CJ Q

o



Making this change and taking the scalar product of (2) with the

magnetic field allows us to show that

Q = Q(A)

That is, 0 is a function of A alone. By taking the x-component

of (2), we can also show that VA x 7BX = 0 or, eguivalently, that

BX = BX(A). Thus these two functions are constant on surfaces of

constant A- a result which will be used in specifying the

boundary conditions. With these two results, eguation (3) can be

re-written in the form:

4 e- ,
dA x dA

By defining

f(A) - 4.

we note that

i A

P(y,z) = e"AZ[P + ̂  I f(A)dA] (6)
o

where po is the ambient plasma pressure at the base of the model,

then we finally derive the desired eguation

V2A + f(A) e~Az -i- B -r̂ - = 0 (7)
X O A



which will be solved for the "flux function" A. In (7) BX(A) and

f(A) can be considered as "source functions". We note that the

pressure remains unmodified by the presence of the magnetic field

if f(A) = 0; so even thouqh BX = 0, any solution for which f(A) =

0 is, necessarily, a force free magnetic field solution.

Following the approach of Zweibel and Hundhausen (1982) in

solving (7), we assume specific functional forms for the

dependence of the two source functions on A. The selection of

these functions will be motivated by our "standard empirical

model" of the magnetic field configuration of a filament

channel. That is, that shear is confined to the vicinity of the

magnetic neutral line and the functions be smooth. We take two

cases. First:

BX(A) = y(A - Ac)
2 for A >

(8)
for AC > A > 0

and, second:

B (A) = Y(A - A )2 for 1 > A > A
X C C«r

= Yd - A )2 for A > 1 (9)c

= 0 for A > A > 0c

In both cases, we assume that

f(A) = a2A.
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In the above, A = 0 at y = ±D/2 and A = 1 at y = 0, on the lower

boundary.

The choices for BX(A) are made with the motivation of

producing axial field and hence shear only locally near the

magnetic neutral line. The dependence on A in (8) and (9)

insures that this is the case. The guadratic variation of BX

with A guarantees that it is a smooth function and is continuous

across the boundary between the regions with and without B .
A

There is no difference between the variations given in (8) and
•\

(9) if the maximum value of A lies on the lower boundary.

However, as a is increased past a particular value, (a
Df

determined by the value of y)r the location of the maximum in A

moves above the lower boundary. The physical meaning of this can

be seen more easily in terms of the magnetic field. For

a < a , all magnetic field lines intersect the lower boundary.

For a > a , some magnetic field lines are helices whose axes are

parallel to the magnetic neutral line and who lie entirely above

the x-y plane; these will be called "detached field lines". This

development of a detached helical tube will be demonstrated

(Fig.3).

It turns out that (8) leads to the absence of any

eguilibrium solutions for Y greater than a calculable critical

value/ Y , whereas (9) results in a jump to a non-neighboring

eguilibrium for Y > Y , and shows that the shear continues toc

increase as Y increases past Y . It is for this reason that the

second choice for BX(A) in (9) is introduced. We believe there
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is little physical significance in one choice resulting in a

discontinuity in solution topology and the other choice resulting

in no solutions for Y > Y since, as we will show, the solutions

at Y > Y have much larger total energy than those of Y < Y_ ando c

hence are probably physically unattainable. Rather, reaching the

critical value of Y seems to indicate the onset of dynamic non-

eguilibrium.

The physical significance of the choices for the source

functions can be seen by computing the poloidal (y-z plane) and

axial (along the x-axis) current systems produced by the source

functions. These are:

dB

-

= (£(AI e""z ̂

As indicated in Figure 1, the magnitude of A determines how

localized the poloidal current is around the x-axis.

The magnetic field lines depicted in Figure 1, which are a

solution to (7) for a specific set of parameters and not merely a

schematic, reflect the intent of our model to simulate the

standard empirical model for a filament magnetic field. The

figure shows a sheared magnetic field surrounded by non-sheared

field, motivated by the observations of solar filaments with

sheared field inside a coronal magnetic arcade with much less

shear. A localized shear can only be described by functions like

those in (8) or (9) - that are small for values of the potential
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A smaller than some specified value, so these selections for the

source function are representative of the current systems that

exist on the sun. The plasma beta (the ratio of plasma pressure

to magnetic pressure) in the model should also be representative

of the corona in filament channels. 8 is less than 10~2 in

active regions and less than 1 in auiet regions. In the model,

S depends on the detailed form and amplitude of the source

functions. Eguation (8) gives smaller 0 values for high a than

eg.(9) does, so this choice is used for modeling the evolution of

guiescent filament channels under changing a.

For boundary conditions on A, we impose the following:

A = cos(iry/D) at z = 0

= 0 at z = «>
=0 at y = ±D/2.

These conditions reguire that the potential be periodic on the

lower boundary and that no field lines cross the side-boundaries

of the computing domain. The boundary condition at z = °° then

insures that there be no source of magnetic flux except at the

lower boundary. To cover the entire domain defined by these

boundary conditions in the numerical solution to (7), we

transform y-z space to y-w space by defining a new vertical

coordinate, w, (Zweibel and Hundhausen, 1982) to be

w = e
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The computational domain, then, become 0<w<l and -D/2<y<D/2. To

solve the MHS eauilibrium equation (7) we use the Buneman Poisson

solver (Buneman, 1969). This numerical method is extremely

efficient for rectangular geometry and Dirichlet boundary

conditions - even for our highly nonlinear source functions. For

the ambient coronal plasma (Withbroe and Noyes, 1977), we adopt

temperature T = 2x10 k and particle number density n = 5x10 k

cm , so 8 is about 0.001 for an active region with field

strength about 200 gauss. For a guiet region with T = 2xl06, n =

8 — 35x10° cm , and field strength about 5 gauss, 8 is about 0.1.

The magnitude of 8 near the neutral line increases as the

eguilibrium departs from a force free state by the increase of

the longitudinal current.

(b) Definition of Field Twist

Since the concept of guasi-static evolution is physically

valid only when each eguilibrium of the seguence is stable, we

have to test the stability. According to stability calculations

of cylindrical geometry (Hood and Priest, 1980; Ray and Van

Hoven, 1982; Migliuolo and Cargill, 1983), an arcade field

configuration with all the field lines tied to the photosphere is

ideal MHD stable. However, Hood and Priest (1980) show that the

eguilibrium can be unstable when the guasi-static evolution

produces a detached flux tube above and parallel to the neutral

line inside of the arcade. Thus, we have to check the stability
«

for MHS solutions containing a detached flux tube. Bateman

(1978) calculated the stability criterium for a 1-D ideal MHD
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model, stating the result in terms of "inverse twist"; we will

use his analysis to estimate the stability of our configuration

when there is a detached flux tube. The stability of a 1-D ideal

MHS model cannot, of course, be applied to our model in detail.

However, the 1-D model does give a sufficient condition for

stability of the 2-D MHS model. This is because line-tying,

gravity, and the surrounding ambient plasma and magnetic field

are all stabilizing effects; if the 1-D model is stable, then for

the same amount of twist, our 2-D model is certainly stable as

well.

According to the 1-D analysis, and therefore approximating

the field structure of the detached flux tubes by a cylindrical

geometry, the inverse field twist of the outermost flux tube is

expressed by g, defined as:

iraB

« ' LIT*
P

Here, B and BX are the poloidal and axial components of the

magnetic field at the top of the outermost detached flux tube, L

is the tube length, and a is the diameter of the outermost

detached flux tube. We assume L/a=5 based on observations of

erupting filaments (Priest, 1984). The magnitude of g determines

the degree of field twist; lower g means higher twist. By

definition, g is the reciprocal of the number of times a field

line on the flux surface (of diameter a) wraps around the tube

per length L along the axis of the tube. With these definitions,

Bateman (1978) shows that a cylinder is stable against kink modes
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if q>l. Under the conditions in our model/ this can he taken as

a sufficient condition for stahility.

(c) Definition of Shear Lenqth

In our model, chanqinq maqnetic shear, or quasi-static shear

motion, is simulated by chanqinq Y for a qiven choice of a.

However, shear is not necessarily defined simply by a value

for Y (Jockers, 1976, 1978). It is therefore necessary to

specify exactly how maqnetic shear depends on Y. A mathematical

description of the shear lenqth, d, of a field line on a flux

surface of constant potential A is qiven by Heyvaerts, et al.

(1982):

d(A) = B (A) / |£ . (14)
X oo y

This inteqration is carried out alonq a field line on a specific

flux surface, from y=0 to y=y(A) in our case. The shear lenqth

is the physical quantity in which we are interested but its

dependence on Y, throuqh the inteqral in (14), is nonlinear.

Consequently, we will find that d(A) does not increase linearly

with Y or, equivalently, the ratio d(A)/Y depends on the value

of Y. This point will be important later in the discussion of

the behaviour of shear lenqth for Y > Y .
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III. QUASI-STATIC EVOLUTION

Because there are two independent parameters in our model,

Y and a, there are two independent ways we can simulate quasi-

static evolution correspondinq to two different physical

chanaes. Increase of axial current and helical twist is achieved

through increasinq a while holding Y constant. Conversely,

magnetic shear is increased by increasing Y while holding

a constant.

When changing the model parameters, care must be exercised

to insure that the physical quantities remain within realistic

bounds, particularly the plasma 3. As a increases, pressure

increases over the ambient hydrostatic pressure, pQ, through the

dependence of p(y,z) on £(A) shown in (6) and, hence, on a.

Therefore, increasinq a tends to increase 3. Conversely,

increasing Y causes a decrease in B because the magnetic pressure

is increased with no appreciable change in the plasma pressure.

When we study the guasi-static evolution of a qiescent filament

channel by increasing alpha we have to impose the constraint that

& be no greater than of order unity. For the corona in the

arcade over and around a guiescent filament, if we take T=2xl06k,
p _ "i

n=5x!0° cm , and B=5G, then $ is about 0.1; in the filament

itself with T=104 k, n=1012 cm"3, and B=5G, 0 is about 1. For

our model, we have found that this constraint reguires that Y>6

under changing ct. In other words, the field twist cannot

indefinitly increase without resulting in an unrealistically high

0. For a realistic 8, the magnetic field reguires some shear for

a given value of a. This constraint may explain the observed
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considerable shear angle in guiescent filaments. Leroy et al.

(1984) found that Kippenhahn-Schluter type filaments (Kippenhahn

and Schluter, 1957) have a shear angle of about 60° (30° to the

neutral line) and Kuperus-Raadu type filaments (Kuperus and

Raadu, 1974) have a shear angle of 65°. These observed angles

agree well with the shear angle 68° in our model with a=4 and

Y=6 (Fig. 3a).

Fig. 3 shows how magnetic field changes as we

increase a with Y=6. We start with sheared magnetic field with

some twist (Y=6, a=4) inside of non-sheared field. The shear

angle of the field line near the neutral line is 68°. As we

increase a (or axial current) to ct=4.5 a thin detached flux tube

appears near the neutral line. The estimate of g using eg. (13)

shows that g=2.38 implying that the eguilibrium is stable.

For a=5 the flux tube becomes bigger and g becomes 0.6 which is

less than 1, implying that the field configuration might be ideal

MHD unstable. The 3 value at the end of this seguence is about 3

on the neutral line. Further quasi-static evolution is

meaninqless beyond this point because of the instability.

Fig. 4 shows quasi-static evolution of shear

with Y for a=2. The initial confiquration, Fiq.4(a), has a shear

anqle 57.6°. Until Y increases to a critical value, Y=39.2, all

the field lines are rooted to the lower boundary; so each

equilibrium of the sequence is MHD stable. For Y =39.2 (Fiq.

4(b)), the field lines near the neutral line are highly sheared

with a shear anqle 87.9° and the maximum S value is about 0.3 for

Y=39.2. The stability allows further quasi-static evolution over

PAGE BLANK NOT
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Y=39.2. When we increase Y from 39.2 to 39.25 a discontinuous

chanqe occurs. Fig.4(c) shows a drastic chanqe from highly

sheared low lyinq field lines to seeminqly open field lines.for

the increment of Y by 0.05. Since only the lower parts of the

field lines are drawn, we cannot see the whole confiquration. Tf

we draw field lines projected on the y-w plane, which covers
~-| z

0<z<°8 by the transformation of W = e , we can see that there

are no open field lines; all the field lines are closed

(detached) or rooted in the lower boundary but hiqhly inflated.

The heiqht of the outermost closed field line is 2.6X101 cm

which is more than one third of the solar radius. Magnetic

enerqy also changes drastically. Magnetic energy built up by

increasing Y is calculated per unit length in x-direction by

2integrating B /Sir all over the y-w plane and substracting the

total magnetic energy for Y=0. Thus, Fig.5 shows the magnetic

energy build up due to shear. The magnetic energy builds up

continuously as Y increases (shear increases) up to Y=39.2, then

discontinuously increases for higher Y. Other energies

(internal, gravity) follow the same pattern with much smaller

magnitude.

IV. QUIESCENT FILAMENT ERUPTIONS AND FILAMENT-DISRUPTION FLARES:
SEPARATE MECHANISMS

Quiescent filaments have apparently stable global magnetic

structure with lifetimes of several days to weeks but most of

them erupt at least once in their life time. Observations show
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that quiescent filaments have moderate magnetic shear, the field

in the filament making an angle of 15°-30° to the neutral line

(Tandberg-Hanssen and Anzer, 1970; Leroy, 1978; Nikolsky, et al.,

1984; Leroy, et al. 1984). If a guiescent filament has detached

field lines these lines could be twisted more than one turn from

one end of the filament to the other. For a long filament, field

lines could twist several turns along the filament making it

susceptible to kink instability. Therefore, the Kuperus-Raadu

type of configuration in which a filament forms in a detached

flux tube above an x-point might not have the long term stability

that observations show. A similar model by Pneuman(1983), in

which a detached flux tube is formed by reconnection from an

arcade field, may also be MHD unstable and hence not viable as a

mechanism for filament formation. When a filament erupts,

however, observations clearly show a loop structure with magnetic

field lines wrapped several times around the loop. The stable

nature of guiescent filaments before eruption and the twisted

loop structure of an erupting filament together suggest that the

initial filament field configuration is of Kippenhahn-Schluter

type which develops a detached twisted tube before eruption.

With what mechanism, then, does the Kippenhahn-Schluter

configuration evolve to a helical configuration? The

reconnection mechanism of Pneuman(1983) is a possible mechanism

but it needs self-consistent MHD calculation to prove that the

reconnection is dynamically possible. The mechanism we consider

is the guasi-static increase of axial current and/or magnetic

shear as shown in Fig. 3 and 4. A sufficient increase of the
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axial current produces a detached tube with twisted field lines

which is unstable to ideal HHD kink instability. Then quasi-

static evolution is overtaken by instability and eruption. The

eruption may not necessarily be accompanied by violent

restructurinq of filament field lines (in other words, a flare)

because it is essentially an ideal MHD phenomenon. In this

concept, the oriqin of the axial current is not known but may be

attributed to a photospheric plasma motion.

Active reqions present a different situation. Haqyard et

al.(1984) found that flares occur in active reqions with hiqhly

sheared maqnetic field. They propose that there is a critical

value of shear for the onset of a flare. Our result supports

this view by showing discontinuous evolution of MHS equilibria at

a critical shear. Improvinq on previous studies, we have modeled

the quasi-static evolution of non-force-free equilibria rather

than force free equilibria and have a more realistic field

qeometry. As shear increases in our model, axial maqnetic field

in the shear reqion increases and maqnetic enerqy is built up in

the reqion. Since axial maqnetic field is a stabilizinq effect

for kink modes the quasi-static shear motion enhances the

stability. Fiq.4 shows that each equilibrium of the sequence is

stable up to the critical point. If shear motion enhances the

stability, what is the triqqerinq mechanism of a filament

disruption and flare in an active reqion? An attractive

mechanism is the lack of an neiqhborinq equilibrium for a shear

anqle over a critical value. Since the total enerqy(maqnetic,

qravity, and internal) increases discontinuously and by a larqe
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amount across the critical point it is not likely that the

equilibrium state of Fiq.4(b) evolves directly to the state of

Fiq.4(c). The detailed dynamic processes should he studied

numerically, but the following evolution miqht occur: Eq.{5)-(7)

imply that as shear (or Y) increases, plasma current and axial

maqnetic field increase/ causinq the enhancement of plasma

pressure in the force balance equation. Since plasma pressure

does not directly depend on Y (see equ.7), the enhancement is not

directly caused by the shear motion; the increase of shear (or Y)

causes the inflation of the maqnetic surfaces due to maqnetic

pressure build up, which, then, enhances the plasma pressure

throuqh the source term, f(A), (see equ.7). Therefore, the

enhancement of plasma pressure is reqarded as a response to the

quasi-static increase of the Lorenz force. For an isothermal

atmosphere, pressure enhancement implies density enhancement

which should be supplied from chromosphere. In our quasi-static

model, as BX(A) increases over a critical value the Lorenz force

increases discontinuously; in the actual dynamical evolution,

this may correspond to a huqe force imbalance in the shear

reqion. Hence, we identify the jump in the Lorenz force with the

onset of dynamic processes includinq reconnection, wave

qeneration and enerqy release, resultinq in a flare.

V. DISCUSSION

If there is a critical shear for a flare, is the critical

shear the same for all flares? Athay et al. (1985,a,b; 1986)
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found that flares often occur on neutral lines with strong

magnetic shear and Ha filaments. This shows that shear is both

an important and common ingredient of flares. However, they

observed that strong shear can be present without producing

flares. Why do some high shear regions produce flares (Hagyard

and Rabin, 1986) but some others do not? We suggest that

depending on the magnitude of non-force-free current, some

regions need higher shear than other regions for flaring. We

perform guasi-static shear motions by increasing Y and calculate

the critical shear length of a field line near the neutral line

for various a. Fig. 6 shows that depending on a value the

critical shear length varies. This result may explain why not

all the high shear regions flare. There is a critical shear

above which a flare is triggered but the critical value varies

depending on the non-force free current in the region.

We have modeled guasi-static shear motions by

increasing y for a prescribed form of BX(A), rather than by

increasing shear length at the lower boundary. Jockers

(1976;1978), however, pointed out that the non-neighboring

eguilibrium above a critical BX(A) does not necessarily mean a

solar flare. He solved a highly nonlinear force-free eguation

and found two solutions for a given boundary condition. As BX

increases to a critical value the two solutions merge to a

critical solution, above which no solution exists. Jockers

calculated shear length for eguilibria near and at the critical

point and found that the shear length increases from one branch

to the other through the critical point. Hence, Bv increases toyx
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the critical value as shear increases to the shear of the

critical solution but decreases as shear increases over the

critical shear. Jockers, then, claimed that because shear, not

BX, is the physical quantity to be prescribed, the lack of a

solution above a critical RX does not mean dramatic change in the

magnetic field. The continuous increase of shear length through

the critical solution only restricts the magnitude of B (A) to
A

the value lower than the critical value. The importance of this

point is recently addressed again by Aly (1984), Low (1986), and

Priest (1986) .

We have solved the MHS eguation, eg. 7, for given source

functions, egu.(8) and (10) or egu.(9) and (10). We find the

lack of an eguilibrium for critical Y (or critical BV(A)) for the
rv

source functions, egu. (8) and (10) but obtain the lack of a

neighboring eguilibrium for the source functions, egu. (9) and

(10). How does the shear length change as Y increases over the

critical value? Does the lack of a neighboring solution for BX

above the critical value not mean the dramatic change of the

magnetic field as Jockers pointed out? Fig. 7 shows how magnetic

shear changes as Y increases. Shear length d(A) of each field

line designated by A at the lower boundary, which is defined in

Eg.(12), is plotted for different Y. As Y increases to the

critical value, shear increases and is highly concentrated near

the neutral line. As Y increases over the critical value Y=39.2

to Y=39.25 the shear increases. We, therefore, believe that

Jockers's argument about the critical BX is not applicable to our

configuration. In other words, it appears that there will be a
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violent change of field configuration if the shear increases past

the critical amount.

We have checked the stability of each equilibrium of the

quasi-static evolution by applying a 1-D ideal MHD stability

criterion. The stability criterion provides only an indication

of instability; it is not a rigorous criterion. Gravity,

photosoheric line tying of field lines, and surrounding plasmas

and magnetic fields, which are all stabilizing effect of a kink

instability, will alter the instability criterion from the 1-D

MHD criterion. A rigorous analysis of the MHD stability of our

2-D model is outside the scope of this paper. We believe,

however, that the result of a full analysis would be

gualitatively the same as we found in this paper.

Active region filaments are in strong magnetic field regions

and have high magnetic shear while quiescent filaments are in

weak field regions and have moderate shear. The fundamental

difference of magnetic structure leads us to propose that these

two classes of filaments have different mechanisms for

eruption.

The magnetic structure of a guiescent filament region can

evolve to form a detached helical flux tube above the neutral

line by increasing axial plasma current. If the field lines wrap

more than one time around the tube from one end to the other,

then the loop can erupt due to ideal MHD kink instability without
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undergoing major topological change. Observations of quiescent

filament eruptions (Tandberg-Hanssen, 1974; Priest, 1982) show

field lines wrapping more than one time around the erupting

filament. We do not, however, exclude the possibility that a

guiescent filament can erupt due to the lack of a neighboring

equilibrium for a filament with low aspect ratio. Since q is

inversely proportional to the aspect ratio, lower aspect ratio

produces higher q value for given BX and B values. For aspect

ratio 3, for example, the eguilibrium of Fig.3(c) is stable

because of q>l. If we increase a over 5, we have the lack of a

neighboring eguilibrium before the eguilibrium becomes

unstable. The lack of a neighboring eguilibrium may accelerate

reconnection such that a quiescent filament erupts by the

mechanism proposed by Hagyard, Moore, and Emslie (1984). Such a

guiescent filament eruption could well produce appreciable flare

. VVIUWO t

guiescent filaments have aspect ratio higher than 3 (Priest,

1982), it appears that MHD instability is the more likely

mechanism.

On the other hand, an active region filament with high shear

has strong axial magnetic field which stabilizes the kink

instability. Our simple estimate of stability for the sequence

of equilibria with increasing shear shows that the eguilibria are

all stable until B (A) reaches a critical value. Magnetic energy
/\

is stored in the stable magnetic structure by shear motion. As

shear increases over the critical value, a violent

reconfiguration of the topology occurs, which may be interpreted

as the initiation of a flare.
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FIGURE CAPTIONS

Fig. 1: The coordinate system used in this paper with axial (j )
X

and poloidal current (j ) specified in y-z plane and the 3-D

resultant magnetic field lines. j is distributed between Ac<A<l

and j is everywhere on y>0. Gravity is in neqative z-direction.
X

The field configuration is the MHS solution for Y=6 and a=4.

Fiq. 2: Schematic representation of the displacement (d(A)) of

the foot points of a field line on the flux surface A.

Fiq. 3: Quasi-static evolution of a MHS equilibrium with

fi Q

increasing a (or axial current) for Y =6. T=2xlOa k, n=5xlO*

cm , and 8=0.1 at the lower boundary.

(a) a=4; all the field lines are rooted at the lower boundary.

The shear anqle is 9=68°.

(b) a=4.5; a detached flux tube is now present, imbedded in

sheared field lines. The flux tube is stable (q=2.4).

(c) a=5; the detached flux tube is bigger and has g=0.6. The

value of q less than 1 suggest that the flux tube is kink

unstable. The plasma has 8=3 at y=0 on the lower boundary.

Fig. 4: Quasi-static evolution with increasing Y (increasing

shear) for ct=2. T=2xl06k, n=5x!09 cm"3, and 8=0.001 on the lower

boundary at y=D/2.

(a) Y=15; all the field lines are rooted to the lower

boundary. The shear angle of the field lines near the neutral

line is 57.6°.
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(b) Y=39.2; field lines near the neutral line are highly sheared

with shear angle 87.9°. Since all the field lines are rooted to

the lower boundary the field configuration is stable even though

it is near the critical point. On the lower boundary, 0=0.3 at

x=0 .

(c) A discontinuous change of field configuration

with Y =39.25. For clarity of the figure, the field lines are

plotted only on the y>0 side of the neutral line. The field

lines look open in this figure but they are closed at the height

above one third of the solar radius.

Fig. 5: Magnetic energy build up by the guasi-static shear

motion (increasing Y) of Fig. 4. The energy is calculated in CGS

unit per length over the entire computational y-z space.

Fig. 6: Critical shear length of a field line near the neutral
c Q

line v.s. the non-force free parameter a for T=2xlO k, n=5xlO

cm , and 3=0.001 at x=D/2 on the lower boundary. The figure

shows that there is a critical shear above which a flare is

triggered but the critical value varies depending on the non-

force free current.

Fig. 7: Shear length d(A) near the neutral line for

different Y value for the case of Figure 4. Note that the shear

length increases as Y increases over the critical value, 39.2.
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