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ABSTRACT

The successful performance of the 25-kW Space
Power Demonstrator (SPD) engine during an exten-
sive testing period has provided a baseline of
free-piston Stirling engine technology from.which
future space Stirling engines may evolve. Much of
the success of the engine was due to the i n i t i a l .
careful selection of engine materials, fabrication
and joining processes, and inspection procedures.
Resolution of the few.SPD engine problem areas
that did occur has resulted in the technological
advancement of certain key free-piston Stirling
engine components. Derivation of two half-SPD,
single-piston engines from the axially opposed-
piston SPD engine, designated as Space Power
Research (SPR) engines, has made possible the con-
tinued Improvement of these engine components.
The two SPR engines serve as test-bed engines for
testing of engine components.

Some important fabrication and joining pro-
cesses are reviewed. Also, some component defi-
ciencies that, were discovered during SPD engine
testing are described and approaches that were
taken to correct these deficiencies are discussed..
Potential component design modifications, based
upon the SPD and SPR engine testing, are also
reported.

INTRODUCTION

Improvement of free-piston Stirling engine
components has been a continuing effort since the
fabrication and i n i t i a l testing of the SPD engine
during the 1984-85 period. This work effort is
being carried out as part of the SP-100 Advanced
Technology Program conducted by NASA Lewis
Research Center.

A description of the SPD engine, and details
of engine testing, have been reported elsewhere
(1,2). The SPD engine, as shown in the cut-a-way
drawing of Fig. 1, is actually two free-piston
Stirling engine/alternators constructed in an
axially opposed configuration. A brief listing of
the engine's nominal characteristics is given in
Table I.

The careful selection of materials, fabrica-
tion and joining processes, and inspection tech-
niques contributed toward the overall successful
performance of the SPD engine. As an example,
the approaches taken to ensure that welding and
brazing procedures were adequate, are Illustrated
in this paper for the SPD engine's heat exchangers.

The SPD engine performed very well. The many
technological successes achieved by the engine far
outweighed the few component deficiencies that
occurred during engine testing. As testing con-
tinued, however, it became apparent that some
engine components needed'further development work
to correct a minor problem or to improve the per-
formance of a component. Diagnostic tests were
performed to define the specific problem areas.
Work efforts were then undertaken to Improve the
performance of the appropriate components.

It was decided that component technological
development could be carried out more.efficiently
by cutting the SPD engine into two pieces to
produce two half-SPD engines. With the addition
of closure hardware to complete the pressure ves-
sel of each half-SPD engine, the engine halves
were renamed Space Power Research (SPR) engines.
One such engine is shown in Fig. 2. The SPR
engines are unbalanced engines that are either
attached to a large mass or to a vibration
absorber' to reduce the vibration amplitude of the
engine casing to an acceptable level.

Although some initial engine component test-
ing was accomplished with the SPD engine, most of
the component improvements have been carried out
with the SPR engines. One SPR engine was deliv-
ered to NASA Lewis, the other was retained by the
Mechanical Technology, Inc., Latham, New York, the
company who designed and fabricated the engines.
Both SPR engines are being used to advance free-
piston Stirling engine technology. This work 1s
continuing.

This paper concentrates upon the technologi-
cal evaluation and improvement of four engine
components that have a significant Impact upon
free-piston Stirling engine performance. These
components include the regenerator, the heat
exchangers, the piston and displacer gas bearing



system, and the alternator. Each component w i l l
be discussed separately In the following sections.

REGENERATOR

The i n i t i a l choice of regenerator matrix for
the SPO engine consisted of a stack of individual,
annular, unsintered screens which were sandwiched
between the heater and cooler tube sheets. Unsin-
tered screens were chosen over sintered screens
because previous testing of the unsintered screens
had shown that these screens provided a slight
engine efficiency advantage over the sintered
screens (3).

The regenerator matrix for each of the two
regenerators of the SPD engine is made up of a
stack of 350 annu.lar shaped, 200 mesh, woven
screens with a wire thickness of 41 \im, or a
screen crossover nominal thickness of 82 \im
(Fig. 3). The screens fill a regenerator length
of about 2.54 cm.

The loose regenerator screens were Installed
Into the base of the.heater, as shown In Fig. 4.
The cooler assembly, shown in Fig. 5, was then
slid Into place at the base of the screens and was
supposed to compress.the loose screens tightly
together. Unfortunately, the i n i t i a l batch of
screens had been subjected to-a light cold-roll
process after the wire weaving process. The roll-
Ing process has reduced each screen thickness, at
the crossovers; by 20 percent. The effect of the
cold-roll process can be seen in the scanning
electron micrograph of the "as received" screen
shown in Fig. 6. These dimensional changes were
not detected prior to engine operation, allowing
the screens to move freely within the regenerator
cavity.

After more than 75 hr of operation, the
engine was shut-down for routine inspection.
Screen debris was-found throughout-the engine.
Metallurgical analysis of the debris determined
it to be cracked-off-deformed pieces, of the 304
stainless steel regenerator screen. Scanning
electron microscopy of the cracked screens
revealed failures occurring at wire crossovers-
(Fig. 7) and fatigue striations on the .fracture
surface of the wires. It was determined that
failure of the screens occurred at wire cross-
overs where there were; a 30 percent reduction of
wire thickness, stress concentration, and a high-
ly worked microstructure, all of which provided a
site'for- crack initiation and subsequent fatigue
failure. Details of the regenerator matrix fail-
ure are reported in Ref.. 4.

After the i n i t i a l regenerator failure, a mod-
ified regenerator 'made of a sintered regenerator
matrix,-:has been used. No further regenerator
matrix failures have occurred during subsequent
engine testing:

HEAT EXCHANGERS

A tube-and-shell heat exchanger configuration
was chosen for the heaters and coolers of the SPD
engine. During engine operation, the helium work-
ing fluid flows through the heater and cooler
tubes. The heater heat transfer medium, HITEC
salt (a eutectic mixture of sodium nitrite, sodium
nitrate, and potassium nitrate), flows through the
shell of the heater (5). A water/ethylene glycol
solution flows through the shell of the cooler.

The SPD engine's heat exchanger assembly, as
shown in Figs. 1 and 8, consists of one unit which
houses the heaters, regenerators and coolers of
both engines. The region between the heaters
defines the common expansion space for the two
opposed engines. The entire assembly, including

• the tube plates and tubes, was fabricated of
Inconel 718 alloy. The assembly, except the tubes

•was E-beam welded together. During welding, the
E-beam welding parameters required careful defini-
tion in order to minimize the formation of micro-
cracks in the heat-affected-zone of each E-beam
weld. This was accomplished by welding numerous
samples, having the same geometrical configuration
and thickness as the actual heat exchanger part,
followed by metallurgical evaluation of the sam-
ples for the existence of microcracks.

Each heater or cooler Incorporated more than
1600 tubes. A total of nearly 14 000 braze joints
were needed to secure the tubes to the tube plates
in a complete SPD engine. Since Inconel 718 tends
to form a protective oxide film following machin-
ing, the braze surface areas were plated with
electroless nickel prior to brazing. To minimize
cracking of any of the numerous .braze joints, a
ductile braze compound, gold/nickel (82/18), was
used.

, Since the corrosion resistance of Inconel 718
in HITEC salt solution, was unknown, a corrosion
test was performed. Inconel 718 samples, and sam-
ples of Inconel 718 brazed with gold/nickel braze
material,'were submerged in-the HITEC salt solu-
tion at a temperature of 650 K for approximately
a 300-hr period. Only minimal corrosion of the
Inconel 718, and no apparent attack of the braze
material, occurred over that time period. Metal-
lographic examination of the cross section of each
Inconel 718 sample showed an insignificant, thin,
uniform corrosion product scale and no intergranu-
lar penetration.

The complex tube-and-shell exchangers have
performed well, without failure, for more than
350 hr of SPD (and SPR) engine testing. Although
the SPD engine's heater functioned well at the
650 K temperature, heat exchangers for advanced
engines will operate at a higher temperature
(1050 K or higher), which Is beyond the capability
of the HITEC salt. A modular type of heater head,
shown conceptually in Fig. 9, illustrates one type
of heater-regenerator-cooler heat exchanger con-
figuration that is being considered. At the
1050 K temperature of the next generation of space
Stirling engines being studied by NASA (1,2), the
heat transfer medium for the heater will be a liq-
uid metal like sodlum'or potassium. Whether a
heat pipe or' a flowing l i q u i d metal configuration
is chosen for the future heat exchangers, it Is
most likely that an all-welded design will be
selected to avoid the exposure of dissimilar met-
als to the liquid metal environment.

In the design of the modular type of heater
shown in Fig. 9, the material chosen to fabricate
the module must provide the creep-rupture strength
required for long life in space and, at the same
time, have a reasonable thermal conductivity in
order to minimize the temperature drop across the
heat pipe wall. A cross-section of a typical mod-
ule showing the helium flow passageways and the
heat pipe wall is shown In Fig. 10.



GAS BEARINGS

The SPO engine was designed to operate at a
20 mm stroke. Hydrostatic gas bearings were used
to support the piston and displacer, but the bear-
ing system was not designed for part-stroke opera-
tion. Gas for the bearing system was designed to
be pumped from the piston gas springs by an inte-
gral ported compressor. A bearing manifold pres-
sure of 5 to 7 bar was required for effective
support of the piston and displacer at full pis-
ton stroke. The bearing gas was manifolded
through passageways in the cylinder wall to orif-
ices through the walls of the piston and displacer
cylinders. This flow of helium established the
gas bearings for support of the piston and dis-
placer. The orifices can be seen in the power
piston cylinder shown in Fig. 11.

During early testing of the SPO engine, it
was necessary to operate the engine extensively at
part-stroke. Therefore, considerable modification
of the bearing system (orifices, etc.), or use of
an external compressor, was required in order to
maintain bearing manifold pressure for part-stroke
operation. An external compressor was chosen for
the engine testing.

Although the hydrostatic bearing system
worked well in the SPD engine, there are areas
where improvement could occur. First, the bearing
system should be modified to accommodate part-
stroke engine operation. Second, the hydrostatic
bearing system consumes about 10 percent of the
engine's power and this loss should be better
understood and reduced. And finally, the complex
and costly bearing manifolds and other structural
parts should be simplified.

Efforts to advance gas bearing technology are
continuing. Included in the work is the evalua-
tion of a hydrodynamic gas bearing system as
described in Refs. 1 and 2. The advantage of
hydrodynamic bearings are improved efficiency,
enhanced hardware simplicity, and an overall more
flexible design.

LINEAR ALTERNATOR

The design of the SPD engine was accomplished
under a considerable time constraint. That Is,
the entire program, from design to test, was car-
ried out in 16 months. In the interest of main-
taining schedule as well as reducing the cost of
the materials, some alternator structural support
materials, which had magnetic permeability values
considerably greater than one, were substituted
for the nonmagnetic materials i n i t i a l l y consid-
ered. For example, the power piston cylinder,
which was originally designed to be made of beryl-
lium, was actually fabricated from 4340 steel -
an alloy that quite closely matched the thermal
expansion coefficient of the beryllium piston.
Similarly, the joining ring and pressure vessel
were fabricated from a relatively inexpensive
PH13-8MO alloy. Although these material substitu-
tions were effective in helping to complete the
engine on schedule and within the planned cost,
the substitutions did, however, cause a greater
loss of alternator power than was anticipated.

As reported elsewhere (1,2), the approximate
70 percent efficiency of the SPD engine's alterna-
tor at design power was considerably lower than
the design efficiency of 93 percent. Eddy cur-
rents generated in the support structure were sus-
pected as the major source of alternator power

loss. Static diagnostic tests were performed to
define the components responsible for this loss
and to provide a rough quantitative value of the
extent of the power loss caused by each component.
With the piston/plunger held fixed to prevent its
motion, the stator coil was electrically energized
while, one-by-one, the alternator structural ele-
ments were removed and the change in electrical
power required to energize the coil was measured.
This change in electrical power was a measure of
power loss in that particular element. Figure 12
lists the structural elements that were tested and
illustrates the effect of this power loss upon
alternator efficiency.

It Is quite clear that the cylinder, joining
ring, and pressure vessel are responsible for the
major portion of the power loss. Table II com-
pares the magnetic permeability and electrical
resistivity values of beryllium and 4340 steel.
Based on this comparison, It 1s probable that.eddy
current losses in the cylinder will be drastically
reduced by the use of a beryllium cylinder.

Similarly, the joining ring and pressure ves-
sel were fabricated from PH13-8MO alloy. Substi-
tution of other materials (e.g., titanium) having
a lower magnetic permeability and higher electri-
cal resistivity should reduce the eddy current
losses 1n these components.

The causes of other minor alternator losses
are being defined in a similar manner.

CONCLUDING REMARKS

Four key SPD engine components have been
discussed. Overall, the SPD engine performed
extremely well. The minor SPD engine component
deficiencies that did occur provided an oppor-
tunity to improve and upgrade the free-piston
Stirling engine technology base. One component,
the heat exchanger, is singled out to illustrate
the degree of care that was exercised in carrying
out the joining procedures for the SPD engine's
complex heat exchanger. It was this kind of
effort throughout the SPD engine development pro-
gram that contributed to the successful completion
of the engine. Technological development of
engine components is continuing for potential
space power use in future free-piston Stirling
engines.
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TABLE I. - SPACE POWER DEMONSTRATOR ENGINE NOMINAL OPERATING CHARACTERISTICS

Mean pressure, MPa . . ...
Frequency Hz
Heater metal temperature, <
Cooler metal temperature K
Piston PV power kW
PV efficiency (power to piston/heat in ) percent

15
105

. 630
315
25
2]

TABLE II. - PHYSICAL PROPERTIES OF SOME ALTERNATOR STRUCTURAL SUPPORT

MATERIALS

Material

Beryllium
4340 alloy
PH13-8MO

Titanium

Electrical
resistivity,

viQ-cm
a3.25

C29.7
d!02.0

a43.1

Temperature,
C

22
299
100

22

Magnetic
permeability

Dlamagneticb
Ferromagnet1cc

d52
127
85
65
53

el .00005 to 1.00001

Field
strength,
oersted

10.5
54.7
110.5
164.5
217.0
20.0

aRef. 6
bRef-. 7
CRef. 10
dRef. 8
eRef. 9
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FIGURE 2. - SPACE POWER RESEARCH ENGINE.
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FIGURE 3. - STACK OF 350 TYPE 301 STAINLESS STEEL
REGENERATOR SCREENS.

FIGURE H. - DISASSEMBLED ENGINE SHOWING ANNULAR SPACE AT
BASE OF HEATER WHERE REGENERATOR SCREENS ARE LOCATED.
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FIGURE 5. - COOLER ASSEMBLY.

FIGURE 6. - SCANNING ELECTRON MICROGRAPH OF "AS-RECEIVED"
REGENERATOR SCREEN.
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FIGURE 7. - SCANNING ELECTRON MICROGRAPH OF WIRE FRACTURE
AT CROSSOVER.

FIGURE 8. - SPD ENGINE'S HEAT EXCHANGER HOUSING.
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HEAT EXCHANGER
CONTAINMENT TUBE

HEAT EXCHANGER MODULE
ASSEMBLY (LEFT TO RIGHT:
COOLER-REGENERATOR-
HEATER/HEAT PIPE)

FIGURE 9. - STIRLING MODULAR HEAT EXCHANGER ASSEMBLY.

FIN
STRUCTURE

-He PASSAGE
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INTERIOR
WALL

FIGURE 10. - CROSS SECTION OF MODULAR HEATER.
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FIGURE 11. - SPD ENGINE'S CYLINDER SHOWING BEARING ORIFICES.

• MEASUREMENTS AT 100 HERTZ IDENTIFY LOSSES IN:

• CYLINDER 9.5 EFFICIENCY POINTS

• JOINING RING 9.3

• STATORS 6.3

• PRESSURE VESSEL 5.5

• PLUNGER 1.2

• TUNING CAPACITORS 0.2

• TOTAL MEASURED EFFICIENCY--
POINT LOSSES 35

• ENGINE/ALTERNATOR TEST EFFICIENCY:
POINT LOSSES 30

FIGURE 12. - MEASURED SPD ENGINE ALTERNATOR LOSSES.
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