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Abstract

This paper is concerned with digital transmission for satelllte-based land mobile
communications. To satisfy the power and bandwidth limitations imposed on such
systems, we consider a combination of trellis coding and continuous-phase modulated
signals. Some schemes based on this idea are presented, and their performance an-
alyled by computer simulation. The results obtained show that a scheme based on
differential detection and Viterbi decoding appears promising for practical applica-
tions.

1 Introduction

In satellite-based land mobile communication systems, both bandwidth and power are

limited resources. In fact, they generally employ frequency-division multiple access with

an assigned channel spacing, and the fraction of out-of-band power must be very small

to prevent interferences to adjacent channels. On the other hand, the satellite distance

from earth, its power limitation, and the need for low-cost (and hence low-gain) mobile

antennas further limits the power efficiency of the system.

In an environment which is simultaneously bandwidth- and power-limited, a bandwidth-

and power-efficient coding/modulation scheme must be used. Trellis coded modulation

(TCM) [7] offers a viable solution, since it increases the reliability of a digital transmission

system without increasing the transmitted power nor the required bandwidth. Due to the

strictly bandlimited environment created by the mobile satellite channel, the signals to

be used in conjunction with trellis codes must be chosen very carefully. An additional

constraint comes from the requirement of constant-envelope signals to be used on satel-

lite transponders operating in a time-division multiple access (TDMA) mode. A class

of bandwidth-efficient signals that satisfies this constraint is offered by continuous-phase

modulated (CPM) signals, based on phase modulation where phase continuity is intro-

duced to reduce the bandwidth occupancy.

The synergy between TCM, which improves error probability, and CPM signals, which

provide constant envelope and low spectral occupancy, is expected to provide a satisfactory

solution to the problem of transmitting on mobile satellite channels.

In this paper we consider the design and the performance of three trellis-encoded CPM

schemes. The detection models considered are: coherent detection, coherent detection with

time diversity, and differential detection with interleaving.

The organization of the paper is the following. In Section 2 we provide a brief overview

of CPM signals. A discussion of the channel impairments affecting satellite-based mobile

communication systems is provided in Section 3. The modulation/detection schemes stud-

ied in this work are described in Section 4, where simulation results are also presented.
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2 Continuous-phase modulated (CPM) signals

A continuous-phase modulated signal [1] is defined by

s(t,a)=  cos(2 /ot + 0(t,a)) (I)

where £m isthe symbol energy,Te isthe symbol time,and f0 the carrierfrequency.The

transmittedinformationiscontainedin the phase

OO

S(t,a)=2_h _ a,_q(t-nT,) (2)
_n co

with q(t) the phase-shaping pulse given by q(t) = ft_oo g(z)dT, and g(t) is the frequency

pulse with finite duration LT,. In (2), a = ..., a-2, a-l, a0, al,"- denotes the symbol se-

quence at the output of the trellis encoder. The symbols an take values -{-1, +3,.-., ± (A_-

1), where Air = 2 '_, m a positive integer. The parameter h is called the modulation index,

and we shall assume h = 2p/q, with p, q relatively prime integers. The total number of

states is qA4 L-1. As a special case, for full-response signaling there are Alfq signal paths,

and q states: this reduction in the number of paths and states, and hence in the complexity

of the modulator-demodulator pair, is traded for an inferior spectrum.

2.1 Detection of CPM signals

Coherent detection. Optimum (maximum-likelihood sequence) estimationof CPM

signalsinvolvesmaximization of the probabilitydensityfunctionfor the observed signal

conditionedon the symbol sequence a. Under the assumption that the only disturbance

affectingthe receivedsignalisan additivewhite Gaussian noise process n(t),i.e.,that

r(t)= s(t,a)+ n(t),optimum (maximum-likelihood)detectiongivesa biterrorprobability

that,forhigh signal-to-noiseratios,can be roughly approximated by

where

Pb(e) _ _erfc \_),

mi.'n s t,a) s(t,a')12dt.d_r_= ,_a' oo [ ( -

(3)

Differential detection. The complex envelope of the received signal _'(t) is multiplied

by _*(t - Ta) and sampled every Te seconds. A discrete signal is obtained whose phase is

21ffoTm + AOn+ Wn, where AOn represents the change over one symbol interval of the signal

phase, and qn represents the change in phase due to the noise. Under the assumption that

foTa is an integer number, estimate of this phase provides a noisy estimate of A0n, which

is used to recover the information sequence.

Discriminator detection If the observed signal r(t) is passed through a limiter and a

frequency discriminator, we get the derivative of the information-bearing phase.
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2.2 Combining CPM with TCM

If CPM signals are combined with an external convolutional encoder, or, equivalently,

they form the signal constellation to be used in a TCM scheme, a further improvement

can be obtained. This new scheme is obtained by observing that at the output of the

trellis encoder we get a multilevel signal, which in turn can be used as the input to the

continuous-phaee modulator. The design of the coding scheme and of the modulator

scheme should be performed jointly, in order to maximize the Euclidean distance resulting
from the combination of the two.

Two possible implementations of TCM/CPM are feasible. The first one takes advan-

tage of both the bandwidth efficiency and the power efficiency of CPM codes, by using a

receiver which combined the trellis structure of TCM and that of CPM. In this situation,

TCM and CPM can be integrated in a single entity (see [5] and the references therein). As

a result, the number of states necessary for a trellis representation of these signals is the

product of the number of states needed by TCM and the number of states needed by CPM.

Unfortunately, this number can grow very large, so that the complexity of the receiver

becomes quickly unmanageable, and suboptimum solution must be devised. Essentially,

we should trades a decrease in complexity for a decrease in power efficiency (but not in

bandwidth efficiency). This is obtained by giving up maximum-likelihood decoding of

the CPM signals, which are instead demodulated symbol-by-symbol through a differential
demodulator, or a discriminator.

2.3 Selection of parameters

In this section we follow the notations and the numerical results contained in [6]. The

selection of modulation and coding formats is based on the following data:

* _, the information rate, equal to 4.8 Kbits/sec.

• B, the transmission bandwidth available, equal to 5 KHz. We assume that B includes

99.9_ of the signal power.

• The error probability to be achieved is 10 -s.

In this case we get _/B _ 1 bit/sec Hz. If we consider using M-ary CPFSK with

h : l/M, we have B : 2.7/Ta, and hence R = 2.7 bits/channel use. This shows that

octonary CPFSK may be adequate, since it gives R ---- 3. For P(e) = 10 -s we must

have, from (3), d_r_/4N o = 4.7. Now, for octonary CPFSK we have d_ree/2£ . - 0.2. By

denoting £b the energy per bit, £b/No = £a/RNo _ 15.7, which corresponds to 11.9 dB.
Thus, coding is necessary if this signal-to-noise ratio exceeds the available value.

Consider also that the computations performed so far assume that transmission takes

place over an additive white Gaussian noise channel. Some modifications have to be

introduced to cope with the effects of fading: among them, we may consider introduction

of time diversity and an interleaving (or interlacing) scheme.

2.4 Convolutionally encoded CPM

We consider now the design of a convolutional encoder to be put in front of the CPM

encoder [4,6]. Two possible perspectives are possible to understand the interaction of
CPM with the convolutional code.
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On oneside,we observethat the code introducesa correlationbetween the symbols

at the input ofthe CPM modulator. As a result,some transitionsin the CPM trellis

are pruned out,thus decreasingthe connectivityofthe trellis.Thus, the minimum merge

lengthisincreased.Sincegenerallylargermerge lengthsinvolvelargerEuclideandistances,

the errorperformance of the CPM system isimproved.
On the other side,the system can be viewed as a trellis-encodedscheme using CPM

signalsin orderto take advantage of theirhigh bandwidth efficiency.

Here we consider32-aryCPFSK, as used totransmit3 bitsper channeluse inconjunc-

tionwith a rate4/5 convolutionalencoder and rate-l/2time diversity.The cutoffrateR 0

of a 32-ary CPFSK isequal to R0 = 3 bits/channeluse _ £b/No = 10 dB, which shows

that in principleitispossibleto achievean arbitrarilysmall errorprobabilityprovided

that £b/No > 10 dB.

3 The channel model

BesidesadditiveGaussian noise,which isthe standard environment forthe analysisofcod-

ing schemes forthe transmissionofdigitaldata or speech,thereisa number ofadditional

sourcesofperformance degradationthatmust be taken intoaccount to assessthe meritsof

a proposed transmissionscheme formobile satellitechannels.The most important among

them are [2,3]:

• Doppler shifts. They are due to mobile vehicle motion. The information-bearing

phase is shifted by an amount 21ffdTa, where 1/Ts is the data symbol rate, and fd

is the Doppler frequency shift, which, for transmission at L-band, can be expected

to be on the order of up to 200 Hz. At a rate of 2400 symbols per second, the

corresponding phase shift is 30 ° .

• Fading and shadowing. This is the most serious source of impairment. The

transmitted radio signal reaches the receiver through different paths caused by re-

flections from obstacles, yielding a signal whose components, having different phases

and amplitudes, may either reinforce or cancel each other. Shadowing is caused by

the obstruction of radio waves by buildings and hills.

• Adjacent channel interference. The 5-KHz mobile channel used for transmission

operates in a channelized environment: in fact, it is a slot in a frequency-division

multiple access systems. As a result, signals suffer from interference from signals

occupying adjacent channels. Since the receiver treats the interfering signals as

noise, there is an upper limit to the power level of adjacent channel interference that
can be tolerated.

Impulsive noise. This originates from a variety of man-made sources. This noise

occurs in the form of randomly shaped pulses which may extend over several symbol

intervals.

• Channel nonlinearities. Primarily because of the high-power amplifier in the

transmitter, operated at or near saturation for better power efficiency, the channel

is inherently nonlinear.

• Finite interleaving depth. In order to break up the error bursts caused by am-

plitudes fades of duration greater than symbol time, encoded symbols may be in-

terleaved. Now, infinite interleaving provides a memoryless channel, but in practice
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the interleaving frame must be lhmted. In fact, for speech transmission the total

coding/decoding delay must be kept below 60 ms in order not to cause perceptual

annoyance. If the depth of interleaving cannot be larger than the maximum fade

duration anticipated, this causes a performance degradation. Similar considerations

hold if interlacing is used instead of interleaving.

4 Results

D_t_t_u- schemes considered4.1 - ^_ "^-

Coherent detection. For coherent detection in the presence of fading, it is necessary to

assume that additive white Gaussian noise is the only disturbance affecting the received

signal. In particular, the effects of fading must be removed. This can be obtained by

assuming that fading sample measurements are available to the receiver.

These measurements are obtained by using a single pilot tone inserted in the middle of

the bandwidth occupied by the useful signal. To do this, a notch is created in the signal

spectrum by proper addition of redundant symbols to the sequence of data entering the

continuous-phase modulator.

Coherent detection and time diversity. The performance of the optimum decoder

of CPM over fading channels turns out to be sensitive to fading bursts. Therefore, some

kind of diversity or interleaving should be used to cope with fading. However, interleaving

is unfeasible with coherent detection, because it would destroy the memory intrinsic in

CPM, and hence its spectral efficiency. Hence, we consider time diversity as paired with
coherent detection.

In communications over fading channels, the term diversity refers to different observa-

tions of the same block of symbols. A simple way of achieving diversity is by repeating

twice each block of m symbols. The redundancy added can be taken advantage of by

using diversity selection or maximal ratio combining. If r 1(t) and r2 (t) denote the signals

received from a block and its replica, and R1, R2 denote the samples of envelope fading

measured during the time intervals corresponding to rl(t), r2 (t), diversity selection implies

that r1(t)isaccepted and processedifR1 > R2, while r_(t)isaccepted and processedif

R2 > RI. For maximal ratiocombining,Rift(t)-{-R2r2{t)isprovided to the receiverfor

processing.The latteroperationcan approximatelybe performed by coherentlydemodu-

latingthe receivedwaveform using the pilottone.

Symbol repetitioncausesa decreasein data rate,that we can avoid by doubling the

number ofphase levelstransmittedon the channel.

Differential detection and interleaving. Assume that the complex envelope of the

received signal _(t) is delayed by T, seconds, transformed into its conjugate _*(t - T,), and

multiplied by itself. Then, the real and imaginary components of the signal _(t)_*(t - T,)

are sampled every T, seconds, deinterleaved, and then input to the trellis decoder.

4.2 Simulation results

In the firstscheme we consider,trellis-encodedCPM signalsare coherentlydetected by

a maximum-likelihood sequence receiver,based on Viterbialgorithm.Simulation results

are presentedin Fig.1. This refersto a 16-phaseCPM with q ----14 and h - 0.1429.The
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Figure I:Simulationresults.Error probabilityvs. _/No. (I)Idealcoherent receiverover

additivewhite Gaussian noise channel. (2) Idealcoherent receiver,fadingchannel. (3)

Coherent receiverbased on fadingchannel informationobtained through a pilottone.

Viterbireceiverhas 56 states.The fadingchannelissimulatedby usinga Rice model with

K = 10 dB. Perfectsymbol synchronizationisassumed.

In the secondscheme we consider,diversitywith maximal ratiocombining isintroduced

to combat the effectsoffading. Diversityisachieved by repeatingeach coded sequence

twice.This impliesthat the number ofCPM phase levelshas to be increasedfrom 16 to

32 to avoid reducingthe data rate.Simulationresultsreferringto thisscheme are shown

in Fig.2. Here,h = 0.0526,q --38,while the Viterbidetectorhas 76 states.The channel

isthe same asforthe resultsofFig.1.

In our thirdscheme (seeFig.3),interleavingisintroducedtospread the burstsofnoise

due to deep fadesamples. With differentialdetection,the interleavercan be insertedbe-

tween the trellisencoder and the continuous-phasemodulator. A block of I symbols is

arranged in the form of an R × C matrix,I = RC. Then the symbols are transmitted

columnwise. Deinterleaving,which consistsof restoringthe originalorderof the symbols,

takes place between the differentialdemodulator and the Viterbidetector.Doppler fre-

quency shift,due to a vehiclevelocityv MPH, isassumed to be perfectlycompensated

for.Perfectsymbol synchronizationisalsoassumed.

5 Conclusions

We have consideredthe combination ofCPM signalswith trelliscodes forapplicationto

digitaltransmissionover a mobile satellitechannel. Three differentcombination schemes

have been considered,and theirperformance analyzed by means ofcomputer simulation.

The resultspresentedseem to indicatethat a scheme based on differentialdetection,

interleaving,and Viterbidecoding of the trelliscode alone ispromising for practicalap-

plications.Infact,differentialdetectionisrelativelyeasy to implement, whileinterleaving

reduces sensitivityto channel noisebursts.
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Figure 2: Simulation results. Error probability vs. £b/No. (1) Ideal coherent receiver over

additive white Gaussian noise channel. (2) Coherent receiver based on fading channel

information obtained through a pilot tone.
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Figure 3: Simulation results. Error probability vs. _'_/No. (1) Ideal coherent receiver over

additive white Gaussian noise channel. (2) Differentially detected CPM, with I = 128,

C= 16, v=20. (3) Same as in(2),with I=64. (4) Same as in (3),withy= 80. (5)

Differentially detected CPM with no interleaving.
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