
A 4.8 KBPS CODE EXCITED LINEAR PREDICTIVE CODER

THOMAS E. TREMAIN, JOSEPH P. CAMPBELL, JR., VANOY C. WELCH

U.S. Department of Defense, R5
Fort Meade, Maryland, U.S. A. 20755-6000

Abstract

In 1984, the Department of Defense established a program under the direction of the Na-
tional Security Agency (NSA) to develop a secure voice system (STU-111) capable of providing
end-bend secure voice communications to all segments of the Federal Government, Federal
Government coniraciors, and citirens oi the United States. Based on the work performed by
the Digital Voice Processor Consortium, NSA determined that the terminal for the new system
should be built around the DoD Standard LPC-10 voice processor algorithm.

While the performance of the present STU-111 as a processor of speech is considered to be
good, its response to nonspeech sounds, such as whktles, coughs and impulse-like noises, may
not be completely acceptable. Speech in noisy environments also causes problems with the
LPC-10 voice algorithm. In addition, there is always a demand for something better. We hope
to complement LPC-lo's 2.4 kbps voice performance with a very high quality speech coder
operating at a higher data rate. This new coder is one of a number of candidate algorithms
being considered for an upgraded version of the STU-111 in late 1989. In this paper, we address
the problems of designing a code excited linear predictive (CELP) coder to provide very high
quality speech at a 4.8 kbps data rate that can be implemented on today's hardware.

1 INTRODUCTION
Speech coding algorithms that achieve high quality speech a t high da ta rates are well known (i.e.,
64 kbps PCM, 32 kbps ADPCM and 16 kbps APC). However, high quality speech coding at lower
da ta rates has been achieved only very recently. Codebook excited linear prediction (CELP) was
introduced by B.S. Atal and M.A. Schroeder a t the 1984 International Communications Confer-
ence [I]. The introduction of CELP sparked one of the speech coding community's greatest research
efforts t o achieve high quality speech at 4.8 kbps within reasonable computational complexity.

In this paper, we present a detailed description of our CELP coder, various tradeoffs to obtain a
4.8 kbps data rate, and computational complexity reduction methods to allow practical implemen-
tation of our coder using a pair of new generation digital signal processor (DSP) chips.

2 CELP DESCRIPTION

Our CELP decoder is shown in Figure 1. The parameters required for this model are the codebook
index and gain, the pitch indejr and gain, and the short-term predictor parameters. To further

Codebook
0 -

Fine Structure Spectral Envelope
(Pitch) (Formants)

Synthet~c
Short Delay Speech

Predictor Output

Codebook Index Codebook G a ~ n P~tch Index & G a ~ n Spectrum (LSPs) I Transm~t

Figure 1: CELP decoder.

4 4 4 1

4 J R p = 4 J J

Ratelhame

Frame Size

Filter

Sn -
T

Analysls
10th Order

Eo'l Coded
4- Spectrum

T Parameters - Sn

Figure 2: CELP encoder.

Spectrum
Inverse
Fllter
(Zero Filter)

Spectrum
Inverse
Fllter
(Zero Filter)

Figure 3: Closed loop pitch calculation.

reduce the quantising noise at the expense of negligible computation, we added a postfilter based
on the pole-xero filter described in reference [2] with adaptive spectral tilt compensation.

As labeled in Figure 2, the CELP encoder consists of four parts: 1)The short-term predictor
(spectrum) parameters are calculated in an open loop format; 2) The pitch index and gain are
calculated on a spectrum-only residual signal in a closed loop format on a subframe basis relative to
the spectrum parameters; 3) The codebook index and gain are calculated on a spectrum and pitch
residual signal in a closed loop format on a subframe basis relative to the spectrum parameters; 4)
The decoder is run in the transmitter to update all the filter states, which are then used to calculate
the next frame of speech in the closed loop format.

Figure 3 shows the closed loop pitch calculation using the filtering approach. The reconstructed
pitch prediction signal, V,, is convolved with the perceptual weighting filter's impulse response. The
convolution is calculated for each of the 128 pitch lags, which vary from a minimum (rdn) of 16 to a
maximum of 143. For this convolution, there is only one impulse response in the convolution interval.
Each pitch lag's convolution is then correlated with the short-delay (spectrum only) predictor's
speech residual. The optimum pitch lag for a 1-tap predictor maximixes the error function and has
positive gain. Since the pitch predictor is calculated over 128 lags, a brute force calculation requires
33 million instructions (multiplies and adds) per second (33 MIPS). However, aa shown in Section 4,
the number of instructions can be significantly reduced.

The codebook search using the filtering approach is given in Figure 4. The codebook is convolved

Eo'2 Eo"3

Short Delay Only
Speech Residual

Eo'(n+n +J?)

ORIGINAL' PAGE IS
OF POOR QUALIm

Perceptual
We~ght~ng
Fllter
(Pole F~lter)

Percepual
Welghtlng
Fllter's
Impulse
Response
(hk)

Reconstructed Pitch Prediction S~gnal

T Perceptual

(Pole F~lter)

Vn(-%in +- 'Gn~n + a
Vn(-(tmin + 1) +-(%in + 1) + A}

Vn(-Kmin + 127)-e-(%in + 127) +J?}

Eo' Eo" '

ShortDelay only Short Delay and Long Delay
Speech Res~dual Predictor Speech Res~dual
(for Closed Loop Pltch) (for Codebook Search)

0

1 *
Correlate

: + Convolve I +" Yi

O Yi = V n - (~ + i) * h k

127 Energy

Codebook
Filter's Speech Residual

Resoonre E o " (e n +A)

Option
Spectrum Frame
Samples Q8 kHz
Bits Q4.8 kbps
Spectrum (LSPs)
Pitch Index
Pitch Gain
Codebook Index
Codebook Gain
Bits Used

Codebook
Index

Figure 4: Codebook search.

with the perceptual weighting filter's impulse response. The convolution ia calculated for each of
the 256 codewords. For this convolution, there can be several impulse responses in the convolution
interval as determined by the pitch index. Each codeword convolution is then correlated with the
speech residual from the short-delay (spectrum) predictor and long-delay (pitch) predictor. The
optimum codeword maximizes the error function for the codebook. For a 256 codeword codebook, a
brute force calculation requires 66 MIPS. However, as shown in Section 4, the number of instructions
can be significantly reduced.

Table 1: Options studied for a 4.8 kbps CELP coder.

CODING AND COMPLEXITY ESTIMATES

1
20 msec

160
96
36

2 * 7 = 1 4
2 * 3 = 6

2 * 1 4 = 2 8
2 * 6 = 1 2

Option 1 in Table 1 is a coding scheme presented by Bell Labs in reference [3]. This approach was
not studied because it is too computationally complex. As shown in Table 2, it requires more than
5 billion multiplies and adds per second (5 GIPS) using brute force calculations. Options 2 and 3
are more practical from the implementation point of view; however, the output speech is very rough
because of the small codebook size and the pitch is not updated at the same rate as the codebook.
Option 4 provides better speech quality than 2 or 3 because the pitch is updated at the same rate
as the codebook. However, the speech is still rough because of the small codebook. Option 5 has
an acceptable size codebook, but the speech is rough because the pitch and codebook are updated
at different rates.

We selected Option 6 because it provides the best speech quality of the options listed in Table
1 and it is practical to implement. Tables 2 and 3 show that the codebook and pitch calculations
with brute force calculations require about 100 MIPS. Table 4 shows most of CELP's remaining
calculations, which add up to only 1.27 MIPS.

t
20 msec

160
96
36

2 * 7 = 1 4
2 * 3 = 6

4 * 5 = 2 0
4 * 5 = 2 0

3
22.5 msec

180
108
36

2 * 7 = 1 4
2 * 4 = 8

4 * 6 = 2 4
4 * 6 = 2 4

4
25 msec

200
120
36

4 * 7 = 2 8
4 * 4 = 1 6
4 * 5 = 2 0
4 * 5 = 2 0

5
25 msec

200
120
36

2 * 7 = 1 4
2 * 4 = 8

4 * 8 = 3 2
4 * 6 = 2 4

6
30 msec

240
144
36

4 * 7 = 2 8
4 * 5 = 2 0
4 * 8 = 3 2
4 * 6 = 2 4

Table 2: Computational Complexity Comparisc

11 Ootion 11 8 I 3
Convolution
Sire *16,384
Instructions 53,084,160 26,240 66,240
Correlation 32,768
Rame *80 *40 *45
Instructions 2,621,440 2560 5760
Total Inst. 55,705,600 28,800 72,000
Rate * 100 *200 *177,777
Total IPS 5,570,560,000 5,760,000 12,800,000

1s for Codebook Calculations.

I I 5 I 6 n

Table 3: Computational Complexity Comparisons for Closed Loop -- Pitch Calculations. --

" Option 1 8 9 4 5 6
Convolution 3240 3240 4095 1275 5050 1830
Pitch Lags * 128 *I28 * 128 * 128 * 128 * 128
Instructions 414,720 414,720 524,160 163,200 646,400 234,240
Correlation 256 256 256 256 256 256
Pitch Frame * 80 * 80 *90 *50 * 100 * 60
Instructions 20,480 20,480 23,040 12,800 25,600 15,360
Total Inst. 435,200 435,200 547,200 249,600
Pitch Rate * 100 * 100 *88.88 * 160 *133.33
TotalIPS 43,520,000 43,520,000 48,640,000

. -

Table 4: Remaining calculations in CELP coder

Zero Filter 264,000
Pole Filter 320,000

406,667
Pitch Filter 24,000

92,667
Adaptive Post filter 1 1 162,667
Total IPS 1 I 1 1,270,000

Table 5: End-Correction Computational Complexity Reduction.

Instructions I 234,240 1 9,450 1 5,640 11 468,480 1 17,130 1 5,655
Correlate 1 256 1 256 1 256 11 512 1 512 1 512

Operation

Convolve

4 COMPUTATION REDUCTION STUDIES

Clo~ed Loop Pitch

Force
1830
*I28

I $60 1 *6!) 1 *50 / I c6C I -60 1 *GO

End-correction, shown in equations 1 - 3, can be applied to the closed loop pitch convolution calcula-
tion. The results are identical to the brute force convolution. As shown in Table 5, the computation
is reduced by an order of magnitude from 33 to 3 MIPS. Also, a slight further reduction can be
obtained by reducing the weighted impulse response from 60 to 30 samples.

I Code book

Y0,O = 0
i - 1

(1)

6.0 = C x ~ f f . n + j hi- j where 1 < i < t
j=O

(2)

Yi ,k = Y i - l , k - 1 + %off se t -k hi where 1 < i 5 t and 1 5 k 5 lags (3)

Brute I End- (End-Correct 11 Brute 1 End- I End-Correct
Correct

1830
+127*60

-

In Atal and Schroeder's original design [I], their codebook was generated from a zero-mean unit-
variance white Gaussian sequence where each codeword consisted of an independent segment of this
sequence. End-correction can also be applied to the codebook convolution calculation if a special
form of codebook with overlapping codewords is used. In our case, each codeword contains one new
sample and all but one sample of the previous codeword. When using overlapped versus indepen-
dent codebooks, the difference in synthesired speech is virtually unnoticeable and the reduction in
segmental signal-to-noise ratio is less than a fraction of a decibel for a 256 codeword codebook. As
shown in Table 5, end-correction reduces the computation by an order of magnitude from 66 to
6 MIPS for a 256 codeword codebook. Also, a slight further reduction can be obtained by taking
advantage of any zero samples in the codebook (which we center clip 75% of the samples to reduce
high frequency noise).

30 Impulse
1830

+127*30

30,720
47,850

*133.33
6,380,000

30,720
499,200
*133.33

66,560,000

Instructions
Total Inst.
Rate
Total IPS

5 IMPLEMENTATION

30,720
36,375

*133.33
4,850,000

Implementation of our CELP coder on a pair of new generation DSP chips is very practical. The end-
correction techniques we have described, when applied to the pitch and codebook calculations, yield
a 10 MIPS CELP algorithm. When implementing speech coders of this type on DSP chips, typically,
only one-third to one-half of the DSP chip's peak computational power can be used because of breaks
in the multiply-accumulate pipeline, random logic, and control overhead. By analyzing our CELP
coder's computationally intensive algorithm segments, we determined that it can be implemented on
various new generation DSP chips or other processor chips (i.e., AT&T's Graph Search Machine).
For example, our CELP algorithm can be implemented on a pair of AT&T's 12.5 MIPS DSP32C
DSP chips or on a pair of TI'S 16.6 MIPS TMS320C30 DSP chips. If slightly optimistic processor

\

Force
1830
*256

15,360
249,600
*133.33

33,280,000

Correct
1830

+255*60

15,360
24,810

*133.33
3,308,000

~ 1 7 5 % zeros
1830

+255*15

15,360
21,000

*133.33
2,800,000

utilization efficiency can be attained, our CELP algorithm may even fit on a pair of TI'S 10 MIPS
TMS320C25 DSP chips!

6 CONCLUSIONS
In this paper, we described the practical implementation of a CELP coder, we examined different bit
allocations that can be used to implement a 4.8 kbps coder, and we determined the computational
complexity of the coder for each bit allocation. The CELP coder we describe produces high quality
speech and is practical to implement on a pair of new generation DSP chips.

The end-correction techniques applied to the codebook search and closed loop pitch calculations
have each been shown to reduce the computational requirements by an order of magnitude without
causing a loss in the quality of the output speech signal. We also found that the best speech quality
was obtained with the parameters referred to as Option 6 in Section 3.

Our CELP coder has no problems with background noise (in fact, it is faithfully reproduced) and
even works well with multiple speakers. Informal listening tests indicate that our CELP's speech
intelligibility and quality are comparable with 16 kbps APC and 32 kbps CVSD!

We formally measure speech intelligibility and quality using Dynastat's diagnostic rhyme test
(DRT) and diagnostic acceptability measure (DAM), respectively. We will report our CELP's DRT
and DAM scores in the future. (As reference points, 32 kbps CVSD has a DRT score of 93.2 and a
DAM score of 63 while 2.4 kbps LPC-10 has a DRT score of 90 and a DAM score of 53.)

Our future work will focus on error protection techniques and determining a 4.8 kbps standard
to allow interoperability between current and future CELP coders. We expect future CELP coders
to offer even better performance by exploiting the next generation's more powerful hardware.

7 ACKNOWLEDGMENTS

We are grateful to the following for their contributions: Tom Barnwell, Shawn and Elizabeth C a m p
bell, Allen Gersho, George Kang, Dan Lin and Bell Communications Research. We thank our
in-house support, especially Dave Kemp, and our in-house tools development team. We wish to
give special recognition to the AT&T Bell Laboratories Acoustics Research Department, especially
Bishnu Atal and Peter Kroon, for their outstanding contributions.

References

11) Atal, B.S. and M.R. Schroeder, 'Stochastic Coding of Speech at Very Low Bit Rates,' Proc. of
International Communications Conference, 1984, pp. 1610-1613.

[2] Chen, J.H. and A. Gersho, 'Real-Time Vector APC Speech Coding at 4800 bps with Adaptive
Postfiltering," Proc. of Int. Conf. Acoust., Speech, and Signal Process., 1987, pp. 2185-2188.

13) Kroon, P. and B.S. Atal, UQuantization Procedures for the Excitation in CELP Coders," Proc.
of Int. Conf. Acoust., Speech, and Signal Process., 1987, pp. 1649-1652.

