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ACTIVE FEED ARRAY COMPENSATION FOR REFLECTOR ANTENNA

SURFACE DISTORTIONS

Roberto J. Acosta
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

The feasibility of electromagnetic compensation for reflector

antenna surface distortions (non-random) 1s Investigated. The

performance characteristics (gain, sldelobe levels, etc.) of large

satellite communication reflector antenna systems degrade as the

reflector surface distorts, mainly due to thermal effects from a solar

radiation. The technique developed In this dissertation can be used

to maintain the antenna boreslght directivity and sldelobe level

Independent of thermal effects on the reflector surface. With the

advent of monolithic microwave Integrated circuits (MMIC), a greater

flexibility 1n array-fed reflector antenna systems can be achieved.

MMIC arrays provide Independent control of amplitude and phase for

each of the many radiating elements In the feed array. By assuming a

known surface distortion profile, a simulation study 1s carried out to

examine the antenna performance as a function of feed array size and

number of elements. Results Indicate that the compensation technique

can effectively control boreslght directivity (within 1-3 dB of the

undlstorted) and sldelobe level (within 1-5 dB of the undlstorted)

under peak surface distortion 1n the order of tenth of a wavelength.

Furthermore, the computational ease of the compensation technique

allows It to be Implemented adaptlvely 1n a large satellite reflector

antenna system.



CHAPTER 1

INTRODUCTION

Future space communication multibeam antenna system w i l l utilize

large reflector surfaces. Maintaining the surface accurracy of this

large reflector antennas 1s important, particularly when high gain

(higher than 50 dB> and low sldelobes (lower than -30 dB> are

required. Reflector surface errors are generally classified into the

following types:

(i) Random surface error in the order of several mils due to

manufacturing imperfection (Refs. 1-3).

(ii) Large-scaled surface error in the order of inches due to

thermal, gravitational and other effects (Ref. 4).

It is the large-scale surface error that is of interest in this

dissertation work. Methods for reducing this type of surface error

include the use of better antenna supporting structure, better

thermally-insensitive material, and mechanically tunable surfaces. A

different approach Is to compensate for the degraded antenna performance

due to surface distortions by using an active phased array feed. The

later approach is becoming increasingly attractive due to recent

advances In monolithic microwave integrated circuits (MMIC). MMIC

arrays provide independent control of amplitude and phase for each of

the many radiating elements in the feed array. Surface error

reduction methods (mechanical/material) and surface error



compensation techniques (electromagnetlcally) are complementary, each

approach can further Improve the antenna performance independently of

the other.

This dissertation investigates surface error compensation

techniques for large scale surface distortions. In chapter 2,

techniques for calculating the reflector antenna secondary pattern are

presented. A special emphasis is placed on the aperture integration

and the physical optics methods. These techniques are necessary tools

in evaluating the reflector antenna performance (directivity, sidelobe

levels, etc.). .

In chapter 3, a method for uniquely representing the surface

errors of a distorted reflector antenna is developed. The distorted

reflect.or surface (numerically specified) is separated into two

components: an undlstorted surface component (represented by a best

fit paraboloid) and a surface error component (expanded into a fourier

series). Correlation between surface error spectral components and

antenna radiation performance is examined. The result is compared

with the ones obtained by using a spline interpolation algorithm.

Chapter 4 presents one of the two approaches for calculating the

compensating feed array complex excitations, namely the indirect

conjugate field matching (ICFM) approach. It is "indirect" because

the compensating feed array excitations are determined by using the

transmitting mode and the reciprocity theorem. The design of the

compensating feed array (array size, number of elements, etc.) and its

relation to the surface distortion are examined.
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Chapter 5 presents the second compensation approach based on the

receiving mode, namely the direct conjugate field matching (DCFM)

approach. It is "direct" because the compensating array excitations

are determined by integrating directly the induced surface currents on

the reflector under a receiving condition. In contrast to the first

approach, the DCFM allows the reflector be illuminated by an. incident

plane wave with a taped amplitude. The level of taper can effectively

control the sidelobe level of the compensated antenna pattern. A case

study is presented for comparing results between the DCFM and ICFM

techniques.

Finally, concluding remarks are given and some future work

evolving from this dissertation research are discussed in chapter 6.



CHAPTER 2

REFLECTOR ANTENNA SECONDARY PATTERN COMPUTATION

2.1 Introduction

Reflector antennas are widely used in communication satellite

systems because they provide high gain at low cost. In analysing

reflector antennas the computation of the secondary pattern is the

main concern. The basic techniques for calculating the scattered

vector fields from a reflector surface has been extensively developed

in the open literature (Refs. 5 to 25). The best known of these

techniques are the ones based upon aperture integration and physical

optics methods.

(i) Aperture Integration Method (AI, Fig. l(a)>. The fields

on the aperture plane Z»ap are first calculated by tracing a

reflected ray P] Or ?2 using geometrical optics (GO) theory and an

edge diffracted ray PI 0^ P£ using geometrical theory of diffraction

(GTD). The fields over the aperture plane Z*ap are then integrated

via a fast fourier transform algorithm (FFT) to obtain the scattered

vector fields.

(ii) Physical Optics Method (PO, Fig.. Kb)). The induced

currents on the reflector surface ]CS is approximated by 2 • ft x H i.

Where H'j is the incident magnetic field intensity on the surface,

and n is the surface normal. An integration of this current over

the curved reflector surface Hs gives the scattered vector fields.
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(a) Aperture integration method.
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(b) Physical optics.

1 Methods for calculating the scattered vector fields Es(r)
from a reflector surface



The exact solution of the scattered vector field can be expaned

in a high-frequency asymptotic series (Refs. 26 to 27), namely,

(2.1)

Where K is the free space wavenumber.

The two pattern computational methods described above recover terms in

(2.1) to various degrees, as summarized in Table 1.

TABLE 1. - ACCURACY AND LIMITATIONS OF PO AND AI

Methods

AI (with GO rays
and no edge
diffracted rays)

PO

AI (with GO rays
and edge dif-
fracted rays)

Accuracy

Recover Ao

Recover TJo and
partial A]

Recover «o and K]

Limitation

Not accurate for
wide-angle sidelobes

Infinite field at
caustics

A detailed description of the computation of the incident field

and the power radiated by the feed source is presented in section 2.3.

The AI and PO methods are described in sections 2.4 and 2.7

respectively. A numerical discussion is presented in section 2.8.

2.2 Description of Problem

The goal of reflector antenna secondary pattern computation can

be described as follows: Given the feed element characteristics

(location, polarization and element pattern) and reflector surface
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characteristics (x,y,z, its first and second derivatives), it is

required to compute the scattered vector field at an arbitrary

observation point in the far-field zone. The geometry of the problem

under consideration is depicted in Fig. 2.

The reflector is shown in the main coordinate system (x.y.z).

The feed coordinate system (xf,yf,Zf) facilitates the description of

the feed polarization and radiation characteristics. This coordinate

system is related to the main coordinate system by a set of Eulerian

angles (Ref. 29). The time factor e^ut ^s suppressed throughout.

It is assumed that the feed source has a well defined "phased center"

at PI with coordinates (xi.yi.zi), and radiates.a spherical wave

denoted by (H1,.?*). If the feed source is an array, each element in

the array is considered separately. The secondary pattern of the.

array-fed reflector antenna is then obtained by vectorially adding the

individual element scattered fields. The conducting reflector surface

may be described by an analytical equation or by a set of points. For

the numerically specified case, an interpolating technique (Refs. 30 to

32) should be used for obtaining the required surface derivatives

(first and second derivatives).

2.3 Incident Field Computation

The radiated electric and magnetic fields from the feed source

have the following asymptotic form

, v e "jKrf ? (6-, <>-> (2.2a)
[V ~ r. f V

(2.2b)
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Es(r),'Hs(r)

j INCIDENT ELECTROMAGNETIC
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MAIN COORDINATE SYSTEM

2 Geometry for calculat ing the scattered electromagnetic vector
fields from a reflector antenna



Where (rf, 9f, <|>f) are spherical coordinates of an arbitrary

observation point in the feed coordinate system, Z is the wave

impedance, r (6f, <j>f) is a vector function describing the feed source

radiation pattern, K = 2ir/X is the wavenumber, X is the wavelength,

and rf is the distance from the source to an arbitrary point in the

reflector surface. The vector function f (0f , <t>f) in Eq. (2.2a) can

be approximated (Ref. 23) by Eq. (2.3).

f(6f, <t>f> = 6f UE(6f) (ae^ cos 4>f + b sin <f>f) +

?f UH(9f) <b cos 4>f - ae sin «|>f)

where UE (0f) is the feed E-plane pattern and UH Of) is the

corresponding H-plane pattern, a.b, and i|» are the feed

polarization parameters:

TABLE 2. - FEED POLARIZATION PARAMETERS

Polarization type

Linear X

Linear Y

Right-hand circular (RHCP)

Left-hand circular (LHCP)

a

1

0

0.707

0.707

b

0

1

0.707

0.707

t

0

0

90°

-90°

Typically the element pattern can approximated by a (cos Of))0!

function that is,

(2.3)
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UE (6f) = (cos (6f))(1E (2.4a)

UH (6f) = (cos (6f»q
H (2.4b)

If Eqs. (2.4a) and (b) are used to represent the feed

radiation pattern, the power radiated by a single feed source Is given

as

p _ (qE + qH + 1) (y -.
rad ~ 60(2qE + D(2qH * 1) ^-3I

For a feed array with M elements (Ref. 33) the power radiated is

given by Eq. (2.6).

Prad- I I ynAmn (2'6)
m=l n=l

where Im is the m-th element complex excitation, A is a square

matrix. The derivation for the matrix A is included in appendix A.

The radiated power of an antenna is an important quantity, since it is

used in the computation of its directivity (section 2.8).

Figure 3 illustrates the Eulerian angles (G1.G2.G3) which

determine the rotational relationship between the main coordinate

system (x.y.z) and the feed coordinate system (xf,yf,Zf). The

definition of these angles are as follows. The angle Gl describes a

counterclockwise (ccw) rotation about the z axis which brings the x

axis to the x" axis aligned with the line of nodes (line of

intersection between x-y and xf-yf planes), angle G2 defines a

rotation about the line of nodes in a ccw sense as indicated so that



°f the
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this brings the z axis to Zf, and angle G3 is another rotation about

the Zf axis.and aligns the x" axis with the Xf axis in a ccw

sense.

In general the feed coordinate system orientation is expressed

relative to the main coordinate system by a set of three orthogonal

unit vectors (Xf.yf.Zf). Let these unit vectors be expressed by:

Xf = axl £ + ax2 y + ax3 z

yf = ayl x" + ay2 y" + ay3 z"

Zf = azl x + az2 y% az3 x

Then, the Eulerian angles are given by:

.-1 /azlGl = tan

G2 = tan

-1

-az2

2 ;

G3 = tan

- az3
az3

ax3
azl x ax2 - axl x az2

It can be shown that

where

, *""» *~* s~̂ . T ~ . s* ̂- •̂  T(Xf yf Zf)' = B(x y z;'

B =

bll b!2 b!3

b21 b22 b23

b31 b32 b33

in which the elements of the Euler.ian matrix B are defined as

follows:

b]i = cos Gl cos G3 - si'n Gl cos G2 sin G3

bi2 = sin Gl cos G3 + cos Gl cos G2 sin G3

(2.7a)

(2,7b)

(2.7c)

(2.8a)

(2.8b)

(2.8c)

(2.9)

(2.10)

(2.lib)
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bi3 » sin G2 sin G3 (2.lie)

= - cos Gl sin G3 - sin Gl cos G2 cos G3 (2.lid)

= - cos .Gl cos G2 cos G3 - sin Gl sin G3 (2. lie)

b23 = sin G2 cos G3 (2.11f)

= sin Gl sin G3 (2.11g)

= - cos Gl sin G2 (2.11h)

b33 = cos G2 (2.111)

Thus, a point on the reflector surface with coordinates Ps:

(xs,ys,zs) in the main coordinate system is transformed into the feed

coordinate system through the transformation.

(2.12)

where (x],yj,zi) is the origin of feed coordinate system indicating

its transformation with respect to the main coordinate system. The

corresponding spherical coordinates for this point is given by

<2.13a)

"xfs"

yfs

-ZfS-

= B

"xs - xl"

ys - yi
.zs - zi.

rf = \Axfs
2 + yfs2 + Zfs2>

= COS
-1 (2.13b)

= tan"
fs

(2.13c)

The incident electric and magnetic fields are obtained from

Eqs. (2.2a), (b) and <2.13a) to (c). Notice that t1 (rf) and J

are in the feed coordinate system. Let the spherical vector components

of tUrf) and H^(rf) be denoted by



14

- (Erf,

7l1(rf) , HQf,

(2.14a)

(2.14b)

The incident field is converted from spherica'l into rectangular

components by using the following transformation equations:

(Hxf Hyf Hzf)T = D (Hrf' H6f

(Exf Eyf Ezf)T ' D <E Erf 6f

(2.15a)

<2.15b)

Where D is defined by:

'sin 0f cos ^

sin 6~ sin 4>f

cos 6^

cos 9r> cos 4>f

cos Qf sin 4>^

-sin 6^

-sin 4),:"

COS <|)f

0

(2.16)

Finally, the incident field and ' Ri in the feed coordinate system

(Xf.yf.Zf) is transformed into the main coordinate system (x,y,z) by

using the following equations:

•xf

y
:zf.

(2.17a)

FH
= B

z.

xf

V
V.

(2.17b)
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Where B is given by 2.10.

2.4 Aperture Integration Method

The Aperture Integration Method is illustrated in Fig. 4. The

surface 2-rg is a Huygen surface enclosing the reflector and feed.

This surface can be of arbitrary shape (typically spherical, cylindrical,

etc). For the special case of a planar surface 2-»ap (aperture plane)

located In the radiation side of the reflector (the field over the

shadow portion 2J$n are assumed to be zero), the tangential fields

on the aperture plane and the radiated far-fields are related by a

Fourier transform (Ref. 6). The equivalence principle (Ref. 9)

provides the basis for obtaining the radiated far-fields from the

tangential t and R at 2-*ap- Note that the aperture plane 2_*ap

is taken perpendicular to the z-axis.

Let the tangential electric and magnetic field at 2-/ap be

denoted by Tap and Tfap respectively. Consider the following

vector functions:

JJ tn (x ,y) e dx dy (2.18a)
v- ap

= JJ t (x ,y ) eJK(ux + v^dx dy < 2 . 1 8 b >v ap

where u = sin 0 cos <J>

v = s i n 9 s i n < | )

K = 2WX
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r GAUSSIAN SURFACE Eg

INCIDENT FIELDS

FEED

-£ap APERTURE PLANE
A A

n = 2

n X I = T?ap TANGENTIAL
AnxE r

SCATTERED FIELDS
Î o.Pm

OBSERVATION POINT

4 Aperture and observation parameters for constructing the
aperture Integration (AI) formulation
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(r,9,4>) spherical coordinates of the far-field observation

point.

Since the aperture fields are tangent to the x-y plane, then

,v) = fx(u,v))T + fy(u,v)f (2.19a)

,v) = gx(u,v)lT + gyCu.v^ (2.19b)

The radiated far-fields from a current distribution can be obtained

using potential theory (Ref. 10). In the aperture plane 2̂ ap the

induced currents are given by the following

"?s = "n x lt
r (Electric current) <2.20a)

J^s = - fT x E
r (Magnetic current) (2.20b)

Where Er, Hr are reflected electric and magenetic fields (section

2.6). The vector potential corresponding to the two induced currents

(far-field approximation) are obtained from the following equations.

/f(r) = Me_"
r // (n x ihe-J"' '

 ) dx dy (2.21a)
Eap

t(r> . ff^ // -(n x l̂ e-̂  ' ̂  dx dy <2.21b>
Eap

where, A and Y are the magnetic and electric vector potential

respectively.

r = x* sin 6 cos <J> + y sin 9 sin <(> -t- z cos 9 (2.21c)

"r1 = x xVy y* (2.21d)

In the far-field region, ts and Hs are related as in a spherical

TEM wave,
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The far-fields Es(r) and Hs(r) expressed in terms of vector potential

functions A(r) and Rr) are given by,

= -ju A*(r) + jcoZ?xf(r) (2.23a)

= -jco ?(r) - £*-? x i(r) (2.23b)

Equations (2.23a) and (b) imply that both electric (Js) and

magnetic currents (Ĵ ŝ  are included in the evaluation of far fields. If

only the electric current or the magnetic current is present, the far-field
-5> -) ->

electric field Es (r) is determined by A(r) or Rr) alone. From

the field equivalence principle (Love's equivalence principles)

formulations, three different expressions arise for Es(r), namely,

(1) Using both Ts and Jms;

sEe = ̂ irr — (fx cos * -t- ^y sin 4> + Z cos 6 (g cos <j> - gx sin

(2.24a)

(COS 9 (f COS * ~ f Sin *) " Z (g sin * + 9 COS4irr y ~ x " y x

(2.24b)

(2) Using 2J (Assume the aperture surface is a perfect
electric conducting surface)

-iKr
Ee " "1KZ ' C°S 6 (g cos^ - g Sln *> (2'24C)

-iKr
— (g sin <J> - g cos <J>) (2.24d)y x

(3) Using 2Jmc (Assume the aperture surface is a perfect

electric conducting surface)

s
V= r (fx cos * + fy Sln 4>) <2.24e)
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cos 9

(fy cos * - fx Sln *> <2"24f)

The results given by (2.24a) and (b) are the average of (2.24c)

to (f) respectively. It requires the values of both tangential electric

and magnetic fields at JL^ap- *n practice it is more convenient to use

either (2.24c) to (f) since they require the knowledge of only either

the tangential magnetic or electric field over the aperture plane.

This method is exact if the fields everywhere in 2^^ are known

accurately. For electrically large reflectors the fields in the

aperture plane w i l l be usually small outside. an area defined by the

projection of the reflector boundary on the aperture .plane.

2.5 Aperture Integration Method and the Fast Fourier Transform (FFT)

To employ an FFT algorithm, the integrals in (2.18a) and (b)

must be rearranged so that the form of integral matches the definition

given by the FFT subroutines. In general, two dimensional FFT

subroutines assumes the function being considered to be periodic in

x and in y with period of 1 in both dimensions. Hence, a typical

aperture plane grid as shown in Fig. 5, must be scaled accordingly.

To illustrate the transformation of the given integrals into

integrals with an FFT format consider the equation (2.18a) and extend

the result to (2.18b). Each of these equations have two components,

(fx,fy) for Eq. (2.18a) and <gx,9y> for (2.18b). First consider the

component fx in Eq. (2.18a).

f x ( u , v>
'ymax Pxmax

ymin Jxm in
dx dy (2 .25)
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y|
VMAX « • > • • • •

XMIN XMAX X

(a) Aperture grid. (b) FFT grid.

5 Typical aperture plane grid and its corresponding FFT grid
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where E,u is the x-component of ~? (x,y) in (2.18a). Using the
dX dp

following change in variable,

and (xmax - xmin) = Lx, (ymax - ymin) = Ly, Eq. (2.25) becomes

n
fx(u,v).Cl

where

n
o jo

E (xmin + X (L ), ymin + Y (L ))
d A A • y

jK(u(L >X+v(L
x e y dX dY (2.27a)

= (Lx)(Ly)eJ
K(u (2.27b)

The expression E (xmin + (L )X, ymin + (L )Y) within thed.x x y

integral may be interpreted as 'E v(x,y) scaled in FE- -(a,b) within
d X dX

the l i m i t s 0 < a < 1 and 0 < b < 1 (Fig. 5b). FEax(a,b) may be

approximated by

N2 M2

FE (a,b) . V y T e
j2ir(mX+nY) (2.28)ax L L mn

n=Nl m=Ml

where T are the Fourier coefficients obtained by using an FFT

subroutine. For example if one considers a 32 by 32 FFT grid points,

then

Nl = Ml = -15 and N2 = M2 = 16

From (2.27a) and (b) and (2.28),

PI PI N2 M2
f(u,v) .x

10 J 0 n=Nl m=Ml
T EXP (m.n.u.v) dX dY (2.28a)mn

where
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jK«mA+u(L ))X+(nA+v(L
EXP (m.n.u.v) = e x * (2.28b)

Interchanging the summation and integral signs and noting that

... W .'$
ej^n dx = V̂ Tx (2.29)

0

the expression for f Is given by,
A

^— -sr1* . r— (m+n)
ftf(u,v> = C, > Z_ C ej * SF(m,n,u,v> (2.30a)
x ' n-Nl m=Ml mn

where SF Cm,n,u,v> 1s given by,

u(L ) sin <nX + v(Lu»
SF (m.n.u.v) = - - - - . . U/ - -*—' <2.30b>

(Jj(mX + u(Lx» x(Jj(nX + v-(L>)

In summary, to evaluate the integrals (2.18a) and (b) one

needs to first calculate Tmn of Eq. (2.28) by an FFT algorithm and

then calculate fx (u,v) via (2.30a) and (b). The other components

(fy,gx,gy) In Eqs. (2.18a) and (b) can be easily transformed into an

FFT format (Eq.( 2.30a) and (b)) following a similar approach.

2.6 Computation of the Aperture Plane Tangential Fields

The geometry for calculating the tangential fields on the

aperture plane is depicted in Fig. 6. For a given feed point PI and

an observation point P£, a reflection point Or may exist on the

reflector surface. This point is called a specular point (Ref. 34).

This type of reflection satisfies Snell's law of reflection. The
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REFLECTOR -r

Ps: (xs ,ys , f(xs ,ys))

OBSERVATION POINT
IN THE APERTURE
PLANE Eap GRID

6 Geometrical optics ray tracing for calculat ing the
aperture f ie lds
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reflector surface is assumed to be a perfect conductor. Appendix B

presents a method for obtaining the specular points on the reflector

surface. The geometrical" optics approximation of the reflected electric

fields (Refs. 35 - 36) at an observation point P£ is given by,

tr <P2) = DF e~'
JKd2 (2(n • t*)n - i1) (2.31)

where,

d£ distance between P£ and Or

•E1 incident electric field (see Section 2.3)

n the reflector surface unit normal at Or

DF divergence factor given by Eq. (2.32)

DF = ] ] (2.32)

+ (dg/R^) \/l + (dg/RlJ).

Rp R~ Principal radii of curvature of the reflected wavefront
passing through Or.

Appendix C contains a derivation of the principal radii of

curvature of the reflected wavefront for a general surface of

revolution. In summary for a given P] and ?2, there may be more

than one reflection .point. Then the total reflected field at the

aperture grid is the superposition of the contribution from each

reflection point. If for any ?2 there is no specular reflection

point on the the reflector surface, then the reflected field is zero.

The approximation in Eq. (2.31) only takes into account the reflected

rays. To improve the computation of the tangential fields on the

aperture plane one may include edge diffracted rays (Refs. 37 to 43).
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A similar expression to (2.31) can be found (Ref. 23) for this type of

fields. In general edge diffracted fields and reflected field are

superimposed at the aperture plane. For electrically large reflector

antennas the contribution due to edge diffracted fields is very small

and generally can be neglected.

2.7 The Physical Optics Method

The currents which excite the scattered field are induced on

the reflector surface (assuming a perfect conductor) by an incident

electromagnetic field E i, Tr (see section 2.3). Figure 7 illustrates

the geometry for calculating the scattered fields using the physical

optics approach. In the physical optics method the induced surface

current distribution (Refs. 5 to 6) is approximated by

J*s = 2(n x ft
1) On the illuminated side £,$• (2.33a)

Js = 0 On the shadowed side 2-^SH- (2.33b)

These approximations to the induced surface current are va l i d

when the reflector size, the radii of curvature of the reflector

surface, and the radius of curvature of the incident wavefront are all

much larger than the wavelength. A fringing current component can be

added to improve the current accuracy (Ref. 44). The fringing

component is needed for applications that require the scattered fields

to be known over wide observation angles away from the antenna

boresight. .
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7 Geometry and parameters for constructing the physical
optics (PO) formulation
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The electromagnetic field solution to Maxwell's equations due

to an electric current distribution in an unbounded region (Ref. 6) is

given by Eqs. (2.34a) and (b).

E(r) = T~ «J •)V + r) dS (2.34a)s s R

'(r) = c x ̂ > I dS (2.34b)
S K

Equations (2.34a) and (b) are valid at any arbitrary

observation point P:(r,6,<J>). In the integrands of Eqs. (2.34a) and

—^(b) the operator V operates on the coordinates of the source current

alone. Expanding all the terms involved in the above integrands one

obtains the following expressions,

i\e-
jKR~ill R (2.35a)

R)R + MK +

(2.35b)
* V K/l *

where

K = r^-= u \f\Ic wavenumber

R The distance from source element to the observation point P.

A far-field approximation to Eqs. (2.34a) and (b) can be obtained by

considering

R = r - "r • $ (for phase terms) (2.36a)

R = r (for amplitude terms) (2.36b)
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and by taking into account only 1/R variations in Eq. (2.35a) and

(b). With these approximations, Eqs. (2.34'a) and (b) are simplified

into the following forms.

4irr r)r) e " r dS (2.37a)

/2 ̂  ~ ,^ . „ (2.37b).

where r is such that the following constraint is satisfied.

?n
r > — (2.38)

\ . • •-

D the diameter of reflector antenna

•X the operating wavelength

The surface integration appearing in Eqs. (2.37a) and (b) is

performed on the reflector curved surface. The differential area is

(2.38)

The square root factor above is commonly known as the Jacobian of the

surface. It can be shown that the integral (2.37) and dS given in

(2.38) may be represented in terms of a series of many two-dimensional

Fourier transforms (Ref. 45). Typically, one needs the first few terms

in this series to achieve a converging solution. The physical optics

radiation integrals may be evaluated in many different ways (Refs. 12

to 14) and its efficient evaluation has been a challenging problem.
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2.8 Directivity Computation

The far-zone electric field is usually divided into two

orthogonal polarizations. Following Ludwig's definition 3 (Ref. 46),

the following unit polarization vectors are introduced:

'R = 0 (ap e^P cos $ + bp sin <j>) + $(-ap e^P sin $ + bp cos 4>) (2.39a)

C = 6 <ap e'̂ P sin <t> - bp cos 4>) + <?(-ap e~^P cos 4> + bp sin <j>)

(2.39b)

where (ap,bp,<|/p) are the far-field polarization parameters. These are

related to the feed polarization parameters (section 2.3). For a

single reflector these relationships are given by;

ap = a, bp = b, ij»p = t + * (2.40)

for example, a feed linearly polarized in the yf direction

w i l l produce a secondary radiation beam linearly polarized in the y^

direction. A RHCP feed produces an LHCP secondary beam. For dual

reflectors this relation may be more complex depending upon the

coordinate systems and offset direction used. It is best to determine

this relation in each Individual problem..

If the secondary pattern can be expressed as (Eqs. (2.23a) and

(b) and (2.37a) and (b),

*s e'JKr As ~ s\ES(r) = £-— 9 El + 4>EJ (2.41)r \ e vj

the reference polarization expression for Es(r) is given by (2.42a),

ER(r) = fs • (R7) (2.42a)

and the cross polarization expression is given by (2.42b)

EC(r) = "?s • (C*") (2.42b)
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The directivity associated with the reference polarization is defined

by

DR (6, 4>> = ~- (ts • R*)2 r2/Z (2.43a)

Similarly the directivity for the cross polarization is defined by

DC (6, <J>> = ̂ - (P • C*)2 r2/Z (2.43b)

where Pracj is the power radiated by the feed source (section 2.3).

2 .-9 Numerical Results and Discussion

This section presents some numerical results to establish

numerical accuracy of the aperture integration method (GO and GO + GTD)

and the physical optics method. Far-field radiation patterns are

presented for the following offset parabol 1c reflector configuration.

Reflector geometry: D = 257.89 X diameter

(refer to Fig. 8) f = 637.48 X focal length

H = 135.51 X offset height

Other parameters: Frequency = 30 GHz

Aperture points = 200x200

y^-polarized feed

-18 dB edge taper

A block diagram of a computer implementation (Refs. 22 to 23)

for the aperture integration method (GO and GO + GTD) and the physical

optics method are presented in Figs. 9(a) and (b) respectively. The
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FEED ARRAY
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1
DIRECTIVITY

COMPUTATION

(a) Aperture integration algorithm.

9 Block diagram of a computer implementation for calculating
the secondary radiation pattern of a reflector antenna
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(b) Physical optics algorithm.

Fig. 9. - Concl.
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block diagrams describes all the computational routines that are

required by both methods. .

Figures 10(a) and (b) show far-field radiation patterns

(reference and cross polarizations) for the boresight case and

Figs. 10(c) and (d) show a 6-beamwidth scanning case. As expected

radiation patterns calculated by each method are in good agreement.

The gain, half-power beamwidth (HPBW) and first sidelobe level for the

boresight case are shown in Table 3.

TABLE 3.. - SUMMARY OF ANTENNA PERFORMANCE

Method

Gain (dB)

HPBW (deg)

SLL (dB)

AI (GO)

56.88

0.279

-33.89

AI (GO + GTD)

56.89

0.281

-35.2

PO

56.85

0.283

-33.3

Note that the gain and HPBW obtained in all the methods are

almost identical. The differences comes in the sidelobe level. The

addition of the edge diffracted rays into the AI method improves the

sidelobe level prediction, although for such electrically large

reflector it does not seem to change the gain or the HPBW.

Table 4 shows the computation times for the methods on an IBM

370 computer.

TABLE 4. - SUMMARY OF COMPUTER EXECUTION
TIMES

Method

IBM 370,

C.P.U.
(sec)

AI (GO)

80

AI (GO + GTD)

150

PO

100
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The AI (GO) method was the fastest as expected. The FFT

algorithm makes this method numerically efficient. If the edge

diffracted rays option is used then the AI become the slowest, but the

most accurate. The PO is a trade-off between sidelobe accuracy and

computational time.



38

CHAPTER 3

REFLECTOR ANTENNA SURFACE ERROR REPRESENTATION

3.1 Introduction

Reflector antennas 1n a space environment are subject to

continuous variation 1n temperature distribution, and are thus distorted

from Its true geometrical shape (typically parabolic, hyperbolic,

elliptical, etc.). The distorted reflector surface has In general a

very complicated shape and hence can not be represented with an exact

analytical expreslon. The analysis of a distorted reflector antenna

defined by a set of discrete surface points require the use of numerical

techniques. Many numerical techniques for analyzing the performance

of reflector antennas defined by a set of points have been extensively

reported 1n the open literature (Refs. 4, 32, 47 to 53). The most

popular of these techniques represents the reflector surface either

globally or locally by using polynomial splines (Refs. 54 and 55). The

polynomial splines and other techniques require the surface points to

be orderly labeled. This Is an undeslred characteristic because It can

result In a nonunlque approximation for the desired reflector surface.

The order of the spline polynomial necessary to best fit the reflector

surface points 1s In general unknown a priori, and therefore 1t

Involves a trial and error procedure for checking the accurracy of the
/
Interpolation.
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The distorted reflector surface points can be best approximated

by two analytical components, an undlstorted surface component and a

surface error component. The undlstorted surface component Is a best

fit paraboloid polynomial for the given set of points and the surface

error component 1s the deviation of the actual surface points from the

best fit paraboloid. This residual error component Is then described

with a sinusoidal Fourier series expansion. This approximation

technique Is Insensitive to the labeling of the reflector surface

points and can describe the surface errors very accurratly. Similar

to a time signal the spatial spectrum of the surface error component Is

unique to the reflector under consideration. Therefore spatial spectra

can be utilized as a performance index for comparing distortion profile

1n reflector antennas.

3.2 Description of the Problem

The best analytical representation of the distorted reflector

antenna surface points that uniquely identifies surface errors can be

obtained as follows: the reflector surface points are separated into

two components, a best fit paraboloid component and a sinusoidal

Fourier series expansion of the residual. Figures 11 illustrates a

conceptual layout of the problem under consideration.

In analyzing large reflector antenna performance it is

necessary to accurately characterize the reflector surface points.

Any derivation from its ideal geometry causes the antenna performance

to degrade. The surface error component provides an independent

performance index against which distorted reflector antennas can be

compared. The surface error component by definition is a sinusoidal
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* * *
* *

11 Distorted reflector surface points separated into an undistorted
surface component and a surface error component
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Fourier series expansion of the difference between the actual reflector

surface points and the best fit paraboloid geometry. Informations

such as root mean square value (RMS), peak surface error and

two-dimensional distortion profile can be calculated from the surface

error component. The Fourier coefficients 1n the series expansion

represents the spatial spectrum that uniquely Identifies the distorted

reflector under study. The best fit parabolic surface represents the

reflector antenna surface 1n an average sense. When the surface error

1s zero the best fit paraboloid surface reduces to the ideal or the

design surface geometry.

3.3 Undlstorted Surface Component

A generalized two dimensional second order polynomial

(paraboloid of revolution) 1s given by Eq. (3.1).
2 2 2S (x,y,z) = a^ x + a2 y + a- z + a. xy + a5 yz + ag zx + a7 x

+ ag y + z + a1Q (3.1)

This polynomial form can be transformed Into a different coordinate

system in which Eq. (3.1) w i l l have the following form,

S'Cx'.y'.z1) = x'2 + y'2 - FL z1 (3.2)

Where FL 1s a constant. Figure 12 shows a generalized

parabola of revolution (Eq. (3.1)), the (x,y,z> coordinate system and

the (x'.y'.z1) coordinate system. These two coordinate system are

related by set a of Eulerlan rotations (Ref. 56) and a translation.

Let the distorted reflector surface be represented by

DS (xi,yi,zi> = 0, 1-1..N (3.3)

Using the method of least squares (Ref. 57) the distorted

reflector surface points from an approximating parabolic polynomial

given by Eq. (3.1) can be determined in the manner described below.
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12 Illustration of a generalized paraboloid of revolution
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The minimization index Is defined as

N
M ,y , ,z . ) - S ( x , , y . , z . ) ) 2 (3.4)

1 = 1 1 1 1 1 1 1

where

DS (x.,y.,z.) nth order surface polynomial representing the
distorted reflector surface points.

S <x.,y,,z.) the approximating parabol ic polynomial in
Eq. (3.1)

N total number surface points

Substituting Eq. (3.1) and (3.3) into (3.4) yields the following

result,

I = <a1 x
2
 + a2 y

2 + a3 z
2 + a4 x^ + a5 y.z. + a6 z.x.

2+ a7 x^ + ag y^ + z1 + a1Q) (3.5)

For minimum I it is required that,

9 1 8 1 3 1 3 I
o d-i d a^ 3 do 3 = 0 (3 .6)

Equation (3.6) results in the following set of equation,

TT}- £ 2 <S<x1,y1,z.))x
2 = 0 (3.7a)

f-J£- £2 (S(x.,y.,z.))y2=0 <3.7b)

. . 1 y . , z i ) ) z = 0 (3.70

£ 2 ( S ( x . , y . , z . ) ) x i y . =0 (3.7d)
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N

3 I
3 a.

2(S(x1,y1.z1»y|2l.O

N

1=1

N

2 (S(x1,y1,z1»x.z. = 0

-£_ 2 (S(x.,y.,z.))x. = 0
1 = 1 1 1 1 1

N
£ 2 (S(x1,y1,z.))y. = 0
i = 1

3 I - o

(3.7e)

(3.7f)

(3.7g)

(3.7h)

(3.71)
1=1

Equations (3.7a) to (1) can be arranged in a matrix form given by,

R (50 = E (3.8)

where R is a 9x9 real symmetric matrix with the following

coefficients,

x. y.x. z.x. y.x.i 1 1 1 1 1 1

x. y y z ,y; z y
1 1 i 1 1 1 1

x.z. y.z. z. x.y.z.
1 1 1 1 i 1 1 1

x.y. y.z. z.x.y. xy.
1 1 1 1 1 1 1 1 1

xyz y z . yz. xyz
1 1 1 1 1 . i i 1 1 1

x z x y z x z . x y z
1 1 1 1 1 1 1 i i i

x x y . x z . x y
i 1 1 1 1 1 1

x y y y z . x y
1 1 i 1 1 i i

x . y . z . x y .
1 1 i 1 1

y.z.x. z x. x.
1 1 1 1 1 i

x z y xyz x.y.
i 1 1 1 1 i 1 1

y.z. x.z. x.z.
1 1 1 1 1 1

x.y.z. x.y.z. x.y.
1 1 1 1 1 1 1 1

y z . x y z x y z
1 1 1 1 1 i i i

x y . z. x z. x z .
1 1 1 1 1 1 1

xyz x z x
1 1 1 1 1 i

y.z. x.y.z. x.y.
1 1 1 1 1 1 1

y.z. x z. x.
1 1 1 1 i

y x x
i i i

yi yi

yiZi Zi

x.y. x.y.
1 1 1 1

yizi yi2i

x.y.z. x.z.
1 1 1 1 1

y z. x
1 1 i

y. y.i i
yi

(3.9)
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E is a column vector with the following elements,

E =

1 = 1

2i

xizi

x.Zj

(3.10)

and X column vector with the following elements,

(3.11)

The solution to Eq. (3.8) provides the optimum coefficients for

a best'fit paraboloid defined by Eq. (3.1) in the least square sense.

Differential geometry (Refs. 58 and 59) forms the basis for

obtaining the translational and rotational relationship between the

(x,y,z) coordinate system and the (x',y',z') coordinate system. In

order to find the translation between both systems it is necessary to
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find the vertex of the paraboloid defined by Eq. (3.1). Let's define

the following variables,

P = a3 (3.12a)

Q = as y + as x + 1 (3.12b)

R = A] x2 + a? y
2 + 34 xy + a; x + as y + aio (3.12c)

and rewrite Eq. (3.1) as a function of the new variables P,Q and R.

This yield the following,

S(x,y,z) = Pz2 + Qz + R (3.13)

the roots of the Eq. (3.13) describes a generalized paraboloid in the

form z = f(x,y),

.

the positive root is discarted because yields a solution in the

negative z-direction. Differential geometry formulae can be used on

Eq. (3.14) for obtaining the vertex of the paraboloid. The vertex is

located at a point (xO.yO.zO) at which the two principal curvatures

have equal magnitudes. The principal curvatures of a surface of

revolution are defined as follows:

Km +N/(Km
2 - Kg) (3.15a)

<2 = Km -\/(Km
2 - Kg) (3.15b)

where

Eg--- (mean curvature) (3.15c)
2(EG - F^)

K = eq " f , (Gaussian curvature) (3.15d)
9 (EF - F2)
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In Eq. (3.15c) to (d) the variables (e.g.f) and (E.G.F) are

the first and the second fundamental coefficients associated with a

surface of revolution. These coefficients are defined as follows,

E = 1 + f2 (3.16a)
' A

F = f f (3.16b)x y

G = 1 + f2 (3.16C)

e = Af (3.16d)
A A

f = Af (3.16e)
y

g = Afyy (3.16f)

A = -U/(l + f2 + f2))'1 (3.16g)
\ y /

^ (3.16h)

f „ (3
xx ^

f = d f(x'V) (3.16J)
* d y

with these definitions, the required derivatives are obtained from

Eq. (3.14) with following results,

f • -_* 1 d V(Q2 - 4PR) ... ,7 ,fx = ~ 2P d x ' 2P dx (3.l/a)
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"V

1 dy/ (Q2 - 4PR)f _ry = " 2P d y " 2P dy

f _ 1 d2 Q '_ 1 d2 \/(Q2 - 4PR)
xy ~ ' 2P d x dy ~ 2P d x d y <3.17e)

where

(Q2 - 4PR) = x2 (ag
2 - 4 a3 a|) .+ y2 (a5

2 - 4 a3 a,.)

• + xy (2 a,- afi - 4 a, a.) + x (2 afi a^ - 4 a- a-,)

+ y (2 a, aQ - 4 a., aa> + (a 2 - 4 a, a i n ) (3.18). . 3 y jo y j i u

Using the fol lowing substi tut ions

2
m, = (a,. - 4 a- a,) <3 .19a )l b J l

m2 = (a5 - 4 a3 a-) (3 .19b)

m, = (2 a, a, - 4 a, aJ (3 .19c)J b o j 4

rn4 = (2 a6 ag - 4 a3 a?) (3.19d)

m5 = (2 a5 ag - 4 a3 ag> (3.19e)

m6 = (a9 ~ 4 a3 a!0) <3.19f)

the required derivatives in Eq. (3.17a) to (e) are obtained as follows,

2
Tv = — H'V ~~ = mi x + y mT + m& (3.20a)A \J A ' I J . *T

, (3.20b)
'



49

2
T Q \ U ~ * * f r i A / .,-. —. / *5 *^ rt ,*. \= — ri~Tj = m. y + x m- •»• m,. (.3.duo

T d2(Q2 - 4 PR) • ..Tyy = -^7 m2 (3'20d)

-3

By letting V =^(Q - APR), one obtains the following result.

d4 = °-5 v"1/2 TX
 (3-21a)

^r = 0.5 V1/2 Tyy + -0.25 T2 V'3/2 <3 .21b)
d x

(3.210

^5 = 0.5 V"1/2 T + -0.25 T 2 V"3/2 (3.21d)d / . yy y

(3'21e)

a6 (3.21f)

= 0 (3.21g)
d x

(3-21h)

O (3.211)d y

Equations (3.21a) to (j) evaluates the set of derivatives required in

Eq. (3.14) for calculating the vertex. The location of the vertex is
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found numerically. Reflector surface points are searched for a unique

point at which the two principal curvartures are equal (K) = K2>.

The rotational characteristics between the (x,y,z) coordinate

system and (x'.y'.z1) coordinate system can be obtained by first

finding the inward unit normal at the vertex point. This will be the

z1 axis direction. The other two axes directions relative to the

(x.y.z) coordinate system are found from the normal direction. The

unit normal at the vertex is given by,

^ f - x + f y + f z ^
n = x y —^— = z , (3.22)

/(f2 + f
2
 + f

2)V x y z

where -f and f are defined in (3.16h) and 3.16J) respectively, andx y .

f = H'Z'* . The projection of this unit normal n on the x-y

plane is given by,

V * V -
nxy - -

JFF̂ F' «•»>

The Eulerian rotations can be calculated by using the following

expressions,

cos (Gl) = n • (-y) (3.24a)xy

cos (G2) = n • z (3.24b)

G3 = 0

The surface points defined in the (x,y,z) coordinate system are

transformed into the (x'.y'.z1) coordinate system using the following

matrix equation:



'xi"
*i
2i.

=
'ell 612 e13'

621 622 623

.e31 632 e33.

xi " X0

*i -*o
zi - zo.
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(3.25)

where

en = cos 6 (3.26a)

612 = sin <j> (3.26b)

ei3 = 0 (3.26c)

621 = - cos 9 sin <|> (3.26d)

622 = cos e cos $ (3.26e)

623 = sin 6 (3.26f)

631 = sin <j> sin 0 (3.26g)

632 = - sin 0 cos 4> (3.26h)

e33 = cos 6 (3.26i)

: With ail reflector surface points transformed to the

(x'.y'.z1) coordinate system the best fit paraboloid of revolution

have the desired form given by Eq. (3.2). The only parameter unkown

in Eq. (3.2) is the constant FL.

Let's define the following least square index

N 0
<DS'<xj,yj,xj> - S'<xj (3.27a)

where

DS'(x',y',z') nth order surface polynomial representing the

distorted reflector surface points.

S'Cx'-.y1 ,z') paraboloid of revolution defined by Eq. (3.2)

substituting Eq. (3.2) into (3.27a) we obtain,
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V f<x')2 + ( ')2

r = Z_ P-Tr-̂ --z: (3.27b)

Differentiating with respect to 1/FL one obtains,

' d I
d 1/FL

N

= 0 (3.28)

2 (3.29)

Solving for 1/FL yields

1-1 zi((xi>2 + (yi1~l U --1/FL = ~ - -- (3.30)
^

/• Thus the equation for the paraboloid of revolution in the

(x'.y'.z1) coordinate system is given by

x'2 + y'2 = (1/FDz1 (3.31)

3.4 Surface Error Component ... .

The surface deviations of the distorted reflector surface

points with respect to the best fit paraboloid is defined as the

surface error component. The surface error component can be

expressed as,

zz! = Dz! - zj , 1 = 1,N (3.32)

where

(xl.y' Dzp reflector surface points

z! =

2 2
x! + y! best fit paraboloid

1 " 4F
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A two-dimensional continuous function like the one above and/

defined in the domain, -K < x < K and -L < y < L can be approximated

by a two-dimensional Fourier series (Ref. 60).

a 0 n c o s < > . b 0 n , 1 .

* I Is lnCWU L. Z_|am n

=f, t1n<!!p, t

(3.33)

where the Fourier coefficients amn,bmn,cmn and dmn are given by,

(L fK
f(x,y) cos (—) cos C1 )̂ dx dy (3.34a)

-L ^K

(L PK
f(x,y) cos(̂ ) cos(̂ ) dx dy

-L ^K
(3.34b)

f(x,y) C O S ( ) c o s C ) dx dy <3.34c)
-L -K

(L PK
f(x,y) cos(̂ ) cos(̂ ) dx dy

-L ^K
(3.34d)

If the function z = f(x,y) have the following symmetry

conditions,
f(-x,y) = -f(x,y) and f<x,-y) = -f(x,y) (3.35)

Then Eq. (3.33) can be simplified to,
00 CO

f<x,y) = Z. 2_ d „ sin(̂ ) sin(̂ ) (3.36)
m=l n=l mn R L

a two-dimensional sinusoidal Fourier series.
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In general the surface error component zz1 is defined over a
i

region xmin < x'< xmax and ymin < y'< ymax (Fig. 13). Equation

(3.36) requires zz1 to satisfy the symmetry conditions given by Eq.
i

(3.35). A coordinate system (x",y",z") is used for rearranging the

reflector surface points in a format such that the symmetry conditions

are satisfied. First the surface error points in Eq. (3.2) are

translated to the first quadrant of the (x",y",z") coordinate system.

The other three quadrants are filled with data points corresponding -to

the symmetry conditions in Eq. (3.35). This process is illustrated in

Fig. 14. The Fourier coefficients of the zz" surface error
. i

component can be obtained as follows, .

JL '2 Z < > s 1 n ( * S l n ( r * > (3-37)

where

Mx = £- + 1 (3.38a)
- ' **

M = |- + 1 (3.38b)

A ,A sampling spacings in x and (3.38c)A y
y dimensions respectively

xV = x! - xmin translation in x dimension (3.38d)

Yj = yj - ymin translation in y dimension (3.38e)

Let us define the Fourier matrix D,
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K = XMAX - XMIN

L = /MAX - yMIN
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14 Illustration of reflector data points augmentation and
. translation
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D =

d!2 d!3 '•'• dln'

22 ••' d 2n

(3.39)

nl "nn

Where dmn are the Fourier coefficients defined by Eq. (3.37).

The elements of the matrix D defines the spatial spectra of the

surface error for a given reflector antenna surface. The order n of
\

this matrix is estimated by including only the coeffients with

amplitude greater than X/200 or it can be arbitrarily chosen.

Another parameter of interest is the root mean square (RMS) value of

the surface error component, which is defined as,

2 2 2 2 2 2RMS = (d,, + d,0 + ... d, + d,,, + dn,, + ... + dl d.'11 'In J21 J22

nl +

2n

2 1 / 2 (3.40)

3.5 Numerical Results and Discussion

Figure 15 represents a block diagram of a computer simulation

of the above stated problem. The reflector surface points are usually

obtained from a holographic, photogrametric or any other surface

detection technique. The computer algorithm was tested with known

distortion profiles and TRASYS-SYNDA-NASTRAN (Ref. 4) simulated

thermal distortions superimposed into a reflector antenna geometry.
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15 Computer Implementation for obtaining an analytical
representation for a reflector surface defined by a set
of points
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The distortion profiles considered for the simulation are

described in Table 5 and the reflector geometry illustrated in Fig. 16.

Case A in Table 5 describes a small (X/20 or less) distortion profile

and case B illustrates a large (of the order of several wavelengths)

distortion profile. The frequency used for the simulation was 10

GHz. A set of equally spaced data points (100x100) were needed to

generate the distorted reflector surface.

TABLE 5. - DISTORTION PROflLE PARAMETERS

Case A

Case B

Fourier Coefficients
(In wavelength)

"ll

.o.osoo

.0.0300

<I2

.0.0700

,-.0.3000

"13

-0.0300

-2.000

"21

.0.1500

-3.000

"22

-0.0040

.0.4000

"23

.0.0900

.3.000

d31

-0.0033

-1.000

"32

-0.0083

.5.000

"33

-0.0310

-0.3000

The estimated surface errors and best fit parabolic surface geometry are

described in Table 6.

TABLE 6.. - ESTIMATED DISTORTION PROFILE PARAMETERS

Case A

Case 8

Fourier Coefficients
( In wavelength)

«n
«o.ow
.0.0318

"12

.0.0710

*0.2999

"13

-0.0305

-1.998

"21

.0.1501

-2.999

"22

-0.0039

.0.4108

"23

.0.0913

.2.988

"31

-0.0032

-0.9999

"32

-0.0082

.5.100

"33

-0.0312

-0.2991

. Estimated focal length:
Case A 3.290109 ft
Case B 3.313091 ft

Figures 17(a) and (b) show the estimated surface profile

corresponding to case A and case B and their respective far field

radiation patterns. The results presented in Table 6 are in good

agreements with the input distortion by Fourier coefficients on
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16 Offset parabolic reflector geometry
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<a) Case A (small distortion profile).

17 E-plane radiation pattern and their estimated distortion
profile
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(b) Case B (large distortion profile).
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Table 5. It was found that the Fourier matrix had higher order

coefficients with non zero values but they were one order of magnitude

less than the lowest amplitude of the Fourier coefficient presented on

Table 6.

The technique was compared with results obtained by using a

spline polynomial technique for approximating the distorted reflector

surface points (Ref. 4). In this case the distorted reflector surface

points were obtained by simulating thermal deformation with a

TRASYS-SINDA-NASTRAN computer programs. In brief, TRASYS and SINDA

are used to characterized the on-orb1t thermal envlroment, NASTRAN

calculates the thermally Induced mechanical distortions. Figure 18

shows the temperature distribution on the reflector antenna surface

for the case under consideration. The reflector geometry Input to the

thermal programs Is presented 1n Fig. 19. The frequency considered

was 28.75 GHz and a 100x100 surface points were used for the analysis.

The far field radiation pattern corresponding to the thermal

slmulatatlon case Is presented 1n Fig. 20. The continuous line pattern

corresponds to the polynomial spline algorithm (Ref. 4) and the dotted

line pattern the corresponds to the best fit paraboloid and Fourier

series expansion approximation. There Is no major differences between

beam direction or sldelobe levels, Indicating a good agreement between

the two techniques. The best fit paraboloid and Fourier series

algorithm was very slow, about 3 hr of c.p.u. time 1n an IBM 370

computer. The spline polynomial algorithm takes about 1/2 hr on CRAY

xmp computer. The long computation can be justified as a trade off to
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TEMPERATURE ISOTHERMS, °F

18 Temperature distribution on the reflector surface
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19 Offset parabolic reflector geometry
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obtain vital Information about the distorted surface characteristics.

These are the amplitude spectra of the surface error, the distorted

surface profile, the RMS value and largest deviation on the reflector

antenna surface. These are not directly available by any of the other

existing techniques.

3.6 Concluding Remarks

One advantage of the developed technique Is that It can be

easily Implemented In any existing reflector antenna secondary pattern

computational methods. It can easily be extended to nonparabollc

reflectors surfaces (spherical, planar, hyperbolic, elliptical, etc) by

modifying the least square polynomial approximation. In applications

Involving the fabrication and design of precision reflector antennas

the technique can be used as a computer aided tool. Information such

as the average focal length, a root mean square of the surface error

(RMS), surface error profile and the amplitude spectra for the reflector

antenna under consideration are easily accessible from the algorithm.

One draw back, of the algorithm Is that It 1s slow. This can be

Improved by using faster computer such as a CRAY and optimizing the

computer codes for faster computing time.
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CHAPTER 4

COMPENSATION METHOD I: TRANSMITTING APPROACH

4.1 Introduction

The performance characteristics (gain, sldelobe level, etc.)

of space communication reflector antenna systems degrades as the

reflector surface distorts due mainly to thermal (Ref. 4) effects

caused by solar radiation. The compensating technique described here

w i l l maintain the desired boreslght directivity (antenna performance)

Independently of thermal effects on the reflector surface. A feed

array can be designed to compensate for thermally Induced surface

distortions.

For a better understanding of reflector surface error

compensation, 1t is convenient to think of the antenna in the receiving

mode. Figure 21(a) shows a uniform plane wave Incident on a perfect

parabolic reflector. In the geometrical optics sense, all rays w i l l

converge to a single point at the focus of the parabola, where they can

be collected by a single feed element. Figure 2Kb) shows a uniform

plane wave Incident on a distorted parabolic reflector. In this case,

the rays w i l l not converge to a single point, but w i l l spread over the

focal plane. Reflector surface error compensation w i l l be achieved,

If a feed array can capture all the energy spread over the focal plane

and sum it constructively 1n the feed network. Improvement in the

antenna performance due to compensation in the receive mode w i l l
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FEED

(a) Rays converging at focus of an undlstorted parabolic reflector surface.

21 Plane wave incident on a reflector antenna
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(b) Rays spread over the focal plane of a distorted reflector surface.

Fig. 21. - Concl.
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produce Improvement In the antenna performance 1n the transmitting

mode by reciprocity.

The concept of conjugate field match (CFM) is utilized to

determine the complex excitation coefficients of the feed array.

Specifically the compensating feed array excitation coefficients are

determined from the complex conjugate of the focal plane electric

field (Ref. 33) distribution due to a uniform plane wave incident on

the distorted reflector surface from the desired beam direction. In

the transmitting approach (Ref. 61) the focal plane electric field

distribution is determined by computing the far zone electric field in

the desired beam direction due to a dipole source at a specified

location in the focal plane. This computation procedure is performed

for all specified feed array element locations in the focal plane and

their conjugate values are used as the compensating feed array

excitations.

4.2 Determination Of The Compensating Feed Array Geometry

It is assumed that the distorted reflector surface (usually

described by a discrete set of points) is known a priori. The

distorted reflector surface points can be approximated with two

analytical surface components (see chapter 3): an undistorted surface

component and a surface error component. The undistorted surface

component is mathematically expressed with a best fit paraboloid

polynomial and the surface error component is described as a

sinusoidal Fourier series expansion of the residual. The surface error

component with .the largest spatial frequency and amplitude product
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determines the feed array area required <Ref. 62) to capture all the

energy spread In the focal plane (Fig. 2Kb)).

The geometry of the best fit paraboloid (undlstorted surface

component) Is Illustrated 1n Fig. 22. This geometry Is completely

specified by the following angles:
eoff: off-set angle of the reflector
emax: half-angular extent of the reflector surface

The minimum area consisting of D by D (Fig. 22) in the

focal plane needed for capturing about 80 percent of the energy spread

(Ref. 62) is approximately given by

°= (1 +C0$eoff) <4>1

where e = 2.71828...,

B: amplitude of the largest surface error component

T: number of periods of the largest surface error

component over the extent of the reflector surface.

The required number of elements that can fit into the

compensating area D (Eq. (4.1)) varies according to the desired array

configuration and on the element aperture area. Typically horns,

microstrlps and dipole antennas are considered as radiating elements

in either a hexagonal or rectangular array geometries. The gain and

sidelobe level requirements of the subject reflector antenna w i l l

usually determine the number of radiating elements on the feed array

(Refs. 63 and 64). A rule of thumb criteria for the element spacing

for a given feed array configuration is to have minimum spacing in
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22 Best fit parabolic geometry



74

order to reduce the spillover when illuminating the reflector. This

is a good criteria for cases In which the feed array is located in the

near field zone of the distorted reflector. For cases in which the

feed array is located in the far field zone, the spacing should be

determined such that there are no grating lobes generated within the

reflector surface.

4.3 Computation of the Compensating Feed Array Excitation Coefficients

The focal plane electric field distribution contains the

necessary Information for finding the required number of elements,

their best location and their proper complex excitations. Conceptually

this field distribution results from an Incident uniform plane wave

impinging (F1g. 23) on the distorted reflector surface from the desired

beam direction. The complex element excitation are obtained by taking

the complex conjugate of the focal plane electric field distribution.

This concept is known as conjugate field matching principle (CFM).

Let's assume that the feed array contains N elements located

in the focal plane. The complex excitation coefficients, represented

by a column vector I, .

I = HI, I2, 13 W1 - <4.2)

are to be determined.

Let us first calculate the far field radiation pattern of the

distorted reflector antenna due to the mth element in the feed array

(Fig. 24), namely due to the following array excitations,
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23 Uniform plane wave i l l u m i n a t i n g the distorted reflector
antenna
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Im - 1, and all other 1 ^ = 0 (4.3)

The corresponding far zone electric field can be written as,

~ • ~ •
<REm(6,<t>) + CFm<e,«>» . (4.4)

where (r = °°, 9 = 6BEAM' * = *BEAM) 1s the sPner^ca1 coordinate of the
/\ -A

desired observation point in the far field zone, (R,C) are unitary

complex vectors describing the reference and the cross polarization of

the reflector antenna (Ref. 46) respectively.

Let the column vector,

F(eBEAM'<l>BEAM) = <El>E2'E3 EN>T ".5>

represent the reference polarization electric field in the observation

direction ^RCflM'^RFAM^ clue to each of the inc|ividual elements in the

feed array. The far fields in Eq. (4.5) can be easily obtained by

using either a physical optics or an aperture Integration technique

(see chapter 2). Typically the physical optics method is chosen due

to Its computational ease. This method requires that the induced

current distribution on the distorted reflector surface be integrated

in order to obtained the radiated electric field at the desired

observation direction (eBEAM'*BEAM)'

Appendix D shows that by applying Lorentz reciprocity

principle (Ref. 9) the focal plane electric field distribution of a

distorted reflector antenna can be indirectly obtained from the

transmitting electric fields due to dipole sources located in the focal

plane (Refs. 61 and 62). In the receiving solution the focal plane
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electric field distribution 1s directly obtained by integrating the

Induced current distribution due to an Incident uniform plane wave on

the distorted reflector.

In the transmitting approach, the compensating feed array

excitation coefficients are determined by using the reciprocity

principle. The resulting complex excitation coefficients are given by

Eq. (4.6).

1 - E*(eBEAM'*BEAM) <4'6)

where ^RPAM'^RFAM^ 1s tne desired beam direction. This approach for

determining the compensating array excitation coefficients is called

indirect conjugate field matching (ICFM). This method has been widely

used for more than 10 years (Refs. 11, 33 and 66 to 77) for

applications requiring compensation of degraded antenna performance

due to off-focus feeds.

4.4 Numerical Results and Discussion

A block diagram of a numerical implementation for the

transmitting approach for calculating the compensating feed array

excitations is presented in Fig. 25. Notice that for each of the feed

element location (xm,ym,zm) in the focal plane a far zone electric

field is computed (Eq. (4.4)) In the desired beam direction

(6BEAM><t)BEAM> by Us1ng a Phys1ca1 optics algorithm.
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As an example of a surface error compensation using a feed

array,, consider the undistorted reflector and a given surface error

profile presented in Figs. 26(a) and (b) respectively. The operating

frequency is 30 GHz and the feed element type are considered to be

square horns with a (1.6X x 1.6X) aperture dimension. The undistorted

E and H-plane far field reflector antenna patterns with the single

feed horn located at the focal point are shown In Fig. 27. The

undistorted antenna boresight directivity 1s 58 dB. With the given

surface error profile (Fig. 26(b)) superimposed on the undistorted

reflector geometry (Fig. 26(a)) the resulting E and H-plane far

field reflector antenna patterns with a single feed horn located on the

focal point are shown in Fig. 28. The antenna boresight directivity

is seen to be reduced,to 38 dB (20 dB loss). It is required to

compensate for the loss in directivity due to the surface distortions

with a feed array. The first step is to design a compensating array

configuration that w i l l capture most of the energy spread in the focal

plane. By applying Eq. (4.1) to the reflector geometry and considering

the distortion profile shown 1n F1gs. 26(a) and (b), we obtain the

following compensating area,

.7697X0.5)X
sin (20°)

iv . v e J V T T / w . / o j / y \ u . a . / A / •, ___ / / i o < > \ \ i-? •>•»
D = _i_ / o n o x (1 + COS (43 )) = 17.3X

The radiating elements are square horns with a (1.6X x 1.6X)

aperture dimension. The number of elements necessary for a rectangular

array geometry are estimated to be 121 elements (a 11 x 11 array) at

about 1.6X spacing. The corresponding compensated E and H-plane

reflector antenna pattern are shown in Fig. 29. The compensated
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(a) Reflector configuration.

T = 0.7697
B = 0.5X

(b) Surface error profile.

26 Distorted offset reflector antenna geometry
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27 Undistorted reflector antenna radiation pattern
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boreslght directivity 1s within 0.969 dB of the undlstorted boreslght

directivity; clearly showing a good design for the feed array size and

element excitation coefficients. For comparison purposes let us consider

another feed array geometry shown in Fig. 30. Note that the majority

of the array elements are located along the vertical dimension of the

array and very few elements are allocated horizontally. This feed

array design has been made by taking advantage of the a priori

knowledge of the distortion profile. Since there is no distortion

variation in the horizontal dimension of the reflector 1t 1s expected

that elements located horizontally in the feed array w i l l contribute

very little to performance compensation. The corresponding compensated

E and H-plane antenna patterns are shown in F1g. 31. The compensated

directivity for this case is within 1.7 dB of the undistorted boresight

directivity. No major differences in the compensated E or H-plane

pattern shape or boreslght directivity is observed when compared to

those obtained by using a 11 x 11 rectangular array configuration. The

reason for this results 1s due mainly to the one-dimensional variation

of the surface error profile (Fig. 26(b». Therefore the excess of

radiating elements In the 11 x 11 array distributed horizontally in

the feed array did not add any extra compensation to the antenna

pattern shape and directivity.

In general the surface error profiles due to thermal effects

are estimated to have two dimensional variations (Ref. 4). This

implies a large number of radiating elements to be required for a

rectangular feed array configuration. Consequently the distortion
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30 37 element feed array geometry



87

60 r E-PLANE
H-PLANE

1.0 2.0 3.0-3.0 -2.0 -1.0

31 Compensated reflector antenna radiation pattern (37 element
feed array)



88

error profile 1s a factor that needs to be taken Into consideration

when designing the compensating array. This technique clearly shows

an Improvement to the degraded reflector antenna directivity. The

only draw back 1s lack of sidelobe control 1n the compensated antenna

performance. For applications involving space reflector antenna where

the main concern lies in maintaining the boresight directivity

independently of thermal effect the transmitting approach certainly

lend Itself to an adaptive implementation.
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CHAPTER 5

COMPENSATING METHOD II: RECEIVING APPROACH

5.1 Introduction

Array-fed reflector configurations are very desirable for

space communication multiple and contour beam antenna systems. The

radiation performance of these reflector antennas is degraded because

of surface distortions Induced by thermal effects from solar radiation.

Distortions caused by thermal gradients are inherently a large scale

phenomenon. By using computer programs such as TRASYS-SYNDA and

NASTRAN (Ref. 4) to simulate thermal distortions, antenna performance

degradations can be calculated. For example, boresight directivity

loss of 3 to 8 dB, sidelobe level increase of 10 dB, and pointing loss

of 0.1° to-2°, have been predicted by TRASYS-SINDA and NASTRAN

simulation. The chapter describes a technique to compensate such a

degradation, so that the antenna performance is virtually Independent

of thermal effects on the reflector surface.

The compensating technique is briefly .outlined below. Normally

in a multiple beam antenna system, each beam is excited by a single

element in the feed array (one-to-one excitation) such an excitation

is not good enough if the reflector surface distortion is present. In

the latter case, we w i l l use a cluster of N elements (7 to 35 or even

more feeds) to excite a single beam (N-to-one excitation). By adjusting

the complex excitation coefficients of the cluster feed, the antenna
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degradation due to reflector surface distortion can be partially

restored. The degree of restoration depends on the number of feeds in

the cluster, and the precision of realizing the desired excitation.

Obviously, the N-to-one excitation scheme is more complex than

the conventional one-to-one scheme. The former requires both the

excitation amplitude and phase control of all elements in the feed

array. With the advent of monolithic microwave integrated circuits

(MMIC), such a control becomes realizable without excessive effort

(Ref. 78). It should be mentioned that in addition to electromagnetic

compensation techniques studied here, other efforts have been carried

out to reduce the impact of thermal distortion. Most of them are of

mechanical nature (Refs. 79 and 80).

5.2 Problem Description

Given the desired boresight directivity, far field sidelobe

envelope and distorted reflector surface points (x.y.z), the

compensation problem is to determine the minimum number of feed array

elements, their best location and their excitations that w i l l give rise

to the desired antenna performance despite of the surface distortion.

The approach here is based on the receiving antenna mode, as

outlined below. Let the distorted antenna be illuminated by an incident

"plane wave" from a prescribed direction and with a prescribed

polarization. That direction and polarization are those of the main

beam when the antenna is in a transmitting mode. The "plane wave" has a

planar phase front as in the ordinary plane wave case, but with a

tapered amplitude, in contrast to the constant amplitude in the ordinary

plane wave case (Fig. 32).
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Using this concept, the resulting fields In the focal plane of the

reflector antenna can be calculated by Integrating the Induced current

distribution on the distorted reflector surface. The focal plane

electric field distribution contains the necessary Information for

determining the required number of feed array elements, their best

location and complex excitations necessary to compensate for the

surface errors. The set of excitation coefficients of the

compensating feed array Is obtained as a complex conjugate of the

received focal plane electric field distribution. With this set of

excitation coefficients the feed array Illuminates the distorted

reflector surface with a wavefront designed to compensate for

reflector surface distortions. This method of obtaining the

compensating array excitations is called direct conjugate field

matching (DCFM). Next, the difference of the present DCFM from the

other compensating technique w i l l be explained.

In the past, conjugate field matching principle was used for

obtaining the compensating element excitation coefficients in

applications where degraded reflector antenna performance arises from

off-focus feeds (Refs. 11,76,77, and 82). Recently the same technique

was applied to the compensation of large scale surface distortions

(Refs. 61,65, to 68) with a "feed array. It is named indirect

conjugate field matching (ICFM) because the transmitting mode and

reciprocity theorem were used in determining the feed array

excitations. The difference between DCFM and ICFM lies in the

following facts:
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(i) DCFM is based on the receiving antenna mode. Hence the

tapered plane wave can be conveniently added in the

formulation. Since the aperture field and the far field

of an antenna are related by a Fourier transform, there

is an explicit relation between the plane wave taper and

the antenna sidelobe level.

(ii) The compensating excitation coefficeints in ICFM are

invariably determined under the condition that the

reflector antenna is in a transmitting mode. The

aperture field taper is not an explicit design

parameter, and therefore cannot be conveniently

controlled.

As a consequence, we note that ICFM often leads to antenna

patterns with high sidelobe envelopes (see Chapter 4). Such a problem

can be alleviated by the present DCFM.

5.3 Computation of the Focal Plane Fields

Consider a linearly polarized (y) tapered plane wave incident

on the distorted reflector surface from an (Fig. 33) observation

direction (9,<j>).

•* "̂
t1 (Xp^.z.) = E(p> e^Kr " K u (5.1)

Where,

E(p) = c + (1 - c)Cl - (p/a)2] (5.2a)

{ys - yc}
2] (5.2b)
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33 Geometry for calculating the focal plane electric field
distribution
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c = 10ET/2°; ET: Is the edge taper of (5.2c)

the incident plane wave

y a: reference lengths (Fig. 34)

(x ,y ,z ): distorted reflector point

. **« *"* *•*.

r = x$ x + ys y + z$ z (5.2d)

K = 2 ir/X: wavenumber . (5.2e)

X: operating wavelength

K = sin 6 cos 4> x + sin 9 sin <J> y + cos e z (5.2f)

(9,4)): spherical angles describing the
observation direction.

u = u x + u y + u z: • polarization vector (5.2g)x y z

2
u = (- sin 9 cos 4> sin j>) (5.2h)

u = (cos2 9 + sin2 9 cos2 4>) (5.2i)

u_ = (-cos 9 sin 6 sin 4>) (5.2j)
z. d

d = {(sin2 9 cos <j> sin <|>)2 -t- (cos2 6 + sin2 9 cos2 <j>)2

+ (cos 9 sin 6 sin <t>2)}1/2' (5.2k)

.One needs to calculate the electric field at a point

(xi.y^.zp in the focal plane of the distorted reflector antenna.
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34 Geometry for calculating the amplitude tapered of the Incident
plane wave
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•̂  îThe Incident electromagnetic field E1, H1 induces an

electric surface current distribution js on the distorted reflector

surface, which is assumed to be a-perfect conductor. The induced

electric current distribution (Ref. 5) is given by

3 = 2 n x ft1 (5.3)

where

df ~ df ~ ~x + *z
surface normal (5.4)

z = f(x ,y ): distorted reflector surface
j " b S

By assuming also that the incident field is a transverse

electromagnetic wave (TEM) one can make use of the following

auxiliary relationship,

fi1 = -!-=—— (5.5)

where

I - 120 ir: free space wave impedance

s. = - sin 9 cos <j> x - sin 9 sin 4> y - cos 9 z (5.6)

Substituting (5.6) into (5.1), yields

3S = 2 {n x [s. x t1]} (5.7)

The scattered E and H fields from the distorted reflector surface

in terms of the electric current surface distribution Js is given

(Ref. 6) by
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dS

dS

(5.8a)

<5.8b)

Where

w = 2trf: and f is:the operating frequency, in Hz

-12'8.854x10 :j permitivity of free space (farads/meter)

r = - x) ) + (z. -

(5.9a)

(5.9b)

The time dependent factor has been taken as eJut and is

omitted through out the analysis.
-4

In the integrands of Eqs. (5.8a) and (b), the operator 7

acts locally on the the coordinates of the source element. By

expanding integrand of Eqs. (5.8a) and (b) we obtained the following

expressions,

(<»/> (* • (5.10a)

<5.10b)

where r, =
y + (z. -

(5.10c)
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Substituting (5.10a) and (b) into Eqs. (5.8a) and (b) gives the

corresponding focal plane fields EfP and H^P

dS (S.lla)

5.4 Determination of the Compensating Feed Array Geometry and

Element Complex Excitation Coefficients

This section w i l l address the determination of the complex

excitation coefficients of the compensating feed array . But before

the analysis is presented a broad guideline w i l l be established for

obtaining the best compensating array configuration. Several

procedures for designing an array-fed reflector antennas have been

reported in the literature (Refs. 23,33,61,63,64,68). The most

popular approach utilizes the focal plane field distribution as a

guideline for obtaining the array boundaries.

To provide reflector distortion compensation, a feed array must

be designed such that it will capture the energy spread in the focal

plane (receiving mode) and sum it constructively in the feed network.

Improvements in antenna performance due to compensation in the receive

mode w i l l produce improvements in antenna performance in the transmit

mode by reciprocity. To determine the necessary compensating feed

array area for capturing the energy spread in the focal plane fields
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1t Is necessary to truncate the focal plane fields to within a

predetermined relative value. This Is necessary because In general

this fields cover a large focal plane area. Another aspect that should

be considered in estimating the compensating feed array area lies in

the electronics of the devices of the feed network. For example the

limiting factors in the ampliflers of the feed network are mostly due

to finite dynamic range, noise level and finite number bit quantization

levels. These limiting factors determine the minimum amplitude level

that can be resolved by the feed network. The minimum amplitude level

is used to locate the compensating feed array boundaries by filtering

out focal plane fields lower than the minimum amplitude. This process

geometrically maps the boundaries of the compensating feed array.

With boundaries of the compensating array estimated by truncating the

focal plane fields, the next step is to choose a feed array element.

The element type is usually determined by the desired reflector gain

and sidelobe level (Ref. 63). The number of elements in the feed

array can be estimated from the truncated focal plane area divided by

the aperture area of the individual element. The element spacing

should be keep to a minimum to minimize the spill-over losses. Once

the compensating feed array configuration is determined, the relative

amplitude and phase of each array element must be determined.

Let us consider a distorted parabolic reflector antenna with a

feed array of N elements. The complex excitation coefficients,

represented by a column vector I,
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I = [I], I2, I3,...IN]
T (5.12)

are to be determined. Let us first calculate the focal plane electric

field distribution (S.lla) at each (xi.yj.Zj) feed array element

location. The focal plane electric field distribution is denoted by,

£fP <x1,y1,z.) = Exf
p x + EY[P y + Exfp z 1=1.N (5.13)

Let's define the unit vector ^ to be the focal plane

reference polarization. The distorted reflector geometry and the

vector "p^ are presented in Fig. 35. The unit vector Tc is given

by Eq. (5.14). This vector is directed from the focal point to the

geometrical center of the distorted reflector.

x x + y y + (z - F) zc c
Sr = (5.14)
U / t\^ n n

c + yc + (zc ~ F> >
where

(x ,y ,z ): coordinate of the geometrical center of the
c c c

distorted reflector surface

F: focal point

By considering only y polarized feed elements, the corresponding

reference polarization unit vector is given by,

pf = pxy + pzz (5.15)

where

p = — c — <5.16a)
x ' ? ? ?

"c + V + (2c - F) '

—in-̂ n (5J6b)
(zc -
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Considering only the focal plane electric field in the direction of the

focal plane reference polarization vector p,

E. .,y.z.) • pf (5.17)

Let the column vector

E = [E1,E2,E3,...,EN] (5.18)

represent the focal plane reference polarization of a distorted

reflector at each element location in the feed array.

In the transmitting mode the distorted reflector antenna is

being illuminated by the compensating feed array with excitation

coefficients that are obtained as a complex conjugate of the reference

polarization electric field (Eq. (5.18)) in the focal plane. The

resulting compensating complex excitations in the feed array are given

by

12

'3

IN

E2

E3

.EN.

(5.19)

Equation (5.19) describes the direct conjugate field match

(DCFM) approach or the receiving approach for compensating the large

scale surface distortions. It is called direct because it computes

the excitation coefficients directly by integrating the induced

currents on the distorted reflector surface.
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5.5 Numerical Implementation

A block diagram of a numerical Implementation of the receiving

approach for compensating large scale surface distortions is presented

in Fig. 36. It consists of three numerical algorithms; a surface

analyzer, a compensation analyzer and a radiation pattern analyzer.

These algorithms form a complete set of techniques for compensating

and evaluating the large scale surface errors (thermal distortions

type) in a distorted reflector antenna systems.

The first algorithm, reflector surface analyzer is Illustrated

In a block diagram in Fig. 37. It takes the distorted reflector

surface points as the input and finds the best fit paraboloid

polynomial (see chapter 3). The difference between the best fit

paraboloid polynomial and the input points (residual) is expanded into

a sinusoidal Fourier series. Essentially this algorithm converts the

input discrete points into two analytical surface components.

The second algorithm, the compensation analyzer is illustrated

in a block diagram in Fig. 38. It determines the focal plane electric

field distribution due to a tapered plane wave Incident on the

distorted reflector from an observation direction. The algorithm uses

physical optics techniques for obtaining the focal region fields. The

compensating feed array are obtained by assigning the complex conjugate

values of the focal region field at the corresponding feed element

locations. In summary this algorithm w i l l compute the relative complex

excitation coefficients of the feed array.



105

• ELEMENT PATTERN

• NUMBER OF ELEMENTS

• ELEMENT LOCATION

REFLECTOR SURFACE ANALYZER

REFLECTOR SURFACE COMPENSATION

ALGORITHM

(BEST SIOELOBES)

COMPENSATING FEED ARRAY

ELEMENT EXCITATIONS

DISTORTED REFLECTOR RADIATION

ALGORITHM

COMPENSATED FAR-FIELD

ANTENNA PATTERN

- MEASURED SURFACE POINTS
• OPTICAL
• HOLOGRAPHY
«PHOTOGRAMETRY

• ANALYTICALLY DESCRIBABLE SURFACES

• POLYNOMIAL

-B.F.P. <X««2+Y»«a / ( 4F )

- DEVIATIONS FROM THE aF.P.

ARE EXPANDED IN A

FOURIER SERIES

• DIRECT CONJUGATE

FIELD MATCHING

- INDIVIDUAL ELEMENT AMPLITUDE

AND PHASE EXCITATIONS

- GENERALIZED REFLECTOR

DIFFRACTION ANALYSIS

WITH FEED ARRAY

36 A computer Implementation of surface error analysis and
compensation algorithm (receiving approach)
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37 A block diagram of the reflector surface analyzer algorithm
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38 A block diagram of the reflector surface compensation
algorithm
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The third algorithm, distorted reflector radiation analysis is

illustrated in a block diagram in Fig. 39. It determines the

compensated boresight directivity and far field radiation pattern.

The array-fed distorted reflector geometry and compensating array

excitation coefficients are the input to this algorithm. The algorithm

utilizes a physical optics approach (chapter 2) for obtaining the far

field radiation pattern and boresight directivity.

The three algorithm are combined to produce the generalized

compensation algorithm for large scale surface distortions. Basically

two inputs are to be defined, the feed array geometry and the distorted

reflector surface points. The feed array geometry usually contains the

feed element type (typically microstrip, open waveguide, horn, etc.),

array shape (typically rectangular, hexagonal, etc.), number of

elements and relative location of each elements. The distorted

reflector surface points are usually obtained from optical, microwave

holography, photogrametry, or any other metrology technique. The

distorted reflector surface points can be described in either an

equally spaced grid or in a nonequally spaced grid.

5.6 Numerical Results and Discussion

To evaluate the usefulness of the receiving approach for

compensating large scale surface distortions with a feed array, the

distorted reflector surface w i l l be simulated by superimposing a given

distortion profile (Fig. 40) into an offset parabolic reflector

(Fig. 41). First the effects of truncating the focal plane fields to

a finite amplitude level on the compensated boresight directivity and

sidelobe envelope w i l l be investigated. Next the effects of tapering
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39 A block diagram of- the distorted reflector secondary
pattern algorithm
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the Incident plane wave amplitude on the compensated antenna

performance w i l l be studied. For comparison purposes the result of

the conjugate field matching technique applied to a simulated distorted

reflector w i l l also be presented in this section.

The parameters describing the simulated surface error profile

(Fig. 40) are outlined in Table 7. The surface error profile was

chosen to resemble a typical large scale distortion profile caused by

thermal effects. The undistorted and distorted E-plane radiation

pattern obtained by using a single feed element are shown 1n Figs. 42

and 43 respectively. Table 8 presents a description of the feed

parameters. The calculated undistorted and distorted boresight

directivities are 39.1 dB and 30.30 dB respectively. The undistorted

and distorted antenna performance provides the upper and lower limits

in which the compensation technique can be applied.

The effects of truncating the focal plane fields at a finite

amplitude level are evaluated by first computing the focal plane

electric field distribution due to a tapered plane wave (-17 dB)

incident on the distorted reflector surface from the boresight direction.

The -17 dB taper 1n the incident plane wave is the required amount of

taper for achieving a first sidelobe level of -33 dB in the compensated

pattern. This value is calculated from the aperture illumination edge .

taper consideration that w i l l give rise to a far field sidelobe level

of -33 dB. Figure 44 shows a three-dimensional plot of the focal

plane plane electric field distribution resulting from Illuminating

the distorted reflector with taper plane wave (-17 dB) from the
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41 Undlstorted offset parabolic reflector geometry
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TABLE 7. - SURFACE ERROR PROFILE PARAMETERS

TWO-DIMENSIONAL FOURIER COEFFICIENTS IN WAVELENGTHS

d11

0.001500

"12

0.002100

d13

-0.000900

d21

0.004500

"22

-0.000121

d23

0.002578

"31

-0.000099

d32

-0.000250

*33

-0.000928

TYPICAL ELEMENT IN THE SERIES: dmn SIN [(y - 0.1)(m)(27r)]siN [(x + 0.5)(n)(27l)]
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43 Distorted E-plane radiation pattern



116

TABLE 8. - SUMMARY OF FEED SOURCE PARAMETERS

OPERATING FREQUENCY, GHz 10

FEED POLARIZATION y LINEAR

E-PLANE FEED PATTERN COSqE(6) . . . qE = 17

H-PLANE FEED PATTERN COŜ H(0) . . . qH = 17

FEED LOCATION (FOCUS), METERS . . (0,0,1.0)

EDGE TAPER, dB -17
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boresight direction. Three different focal fields cutoff (truncating)

amplitude levels, -10, -20, and -30 dB wi l l be evaluated. Figure 45

shows a center cut plot of the focal region fields and also shows the

corresponding array areas <D1, D2, D3) for the given focal plane field

cutoff levels. Figures 46(a) to (c) presents rectangular feed array

geometries corresponding to the -10, -20 and -30 dB focal fields cutoff

levels respectively. The element spacing and element pattern are the

same for all cases. The parameters describing the array elements are

presented in Table 9. The resulting compensated E-plane radiation

pattern are shown in Figs. 47(a) to (c) respectively. The calculated

compensated boresight directivity were 36.51, 34.7, and 32.3 dB

respectively. Note the sldelobe envelope was best compensated for the

-20, and -30 dB cases. The best compensated boresight directivity was

2.59 dB from the undistorted reflector with a single feed case.

In evaluating the effects of tapering on the incident plane

wave the compensating rectangular array configuration that corresponds

to the -30 dB focal fields cutoff level (Fig. (46(c>> w i l l be selected.

The taper levels that w i l l be examined are 0, -9, -17, and -26 dB. For

each taper amplitude level a new set of feed array complex excitation

coefficients are computed. Figures 48(a) to (d) presents the
i

compensated E-plane radiation patterns for the 0, -9, -17, and -20 dB

taper level case respectively. The calculated boresight compensated

directivity were 38.87, 37.56, 36.51, and 32.12 dB respectively.

Notice that the best compensated boresight directivity occurs for the

0 dB (Fig. 48(a)) taper, but this case also produced the worst

compensated sidelobe level envelopes. The side.lobe envelope is best
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(b) -20 dB focal field cutoff level case.

46 Feed array geometry
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(c) -30 dB focal field cutoff level case.
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TABLE 9. - SUMMARY OF FEED ARRAY ELEMENT

PARAMETERS

OPERATING FREQUENCY, GHz . . . . . . . . 10

FEED POLARIZATION. . y LINEAR

E-PLANE FEED PATTERN COS^CO) . . . qE = 1

H-PLANE FEED PATTERN COSqH(e) . . . qH = 1
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compensated for an amplitude taper of -17 dB (Fig. 48(c». For the

case of -9 dB taper a high sidelobe envelope was obtained and for the

-26 dB taper good sidelobe level was achieved but with a lower

compensated boresight directivity. This result indicates that

tapering the incident plane wave provides a direct control on the

compensated sidelobe structure and also achieves a good boresight

compensated directivity (withing 1 to 3 dB of the undistorted boresight

directivity).

In the previous analysis the receiving approach for

compensating large scale surface errors has been demonstrated. The

next step is to compare the receiving compensating technique with

results obtained by the other conjugate field matching approach (see

chapter 4). Let us consider the undistorted offset parabolic geometry

and a surface error profile shown in Figs. 49 and 50 respectively.

The parameters describing the simulated surface error profile are

presented in Table 10. Figures 51 and 52 show the undistorted and

distorted E-plane radiation patterns obtained with a feed element at

the focal point. Table 11 presents the parameters describing the feed

element. The antenna boresight directivity has been reduced to 38 dB

with the distortion. Let us consider the compensating array geometry

in Fig. 53. The compensated E-plane radiation pattern using the

receiving approach is shown in Fig. 54. The taper level of the

incident plane wave is -15 dB. The compensated E-plane radiation

pattern using the transmitting approach (see chapter 4) is shown in

Fig. 55. The transmitting approach assumes a uniform plane wave
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49 Offset parabolic reflector geometry
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50 Surface error profile
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incident on the distorted reflector. The compensated directivity for

both approaches were within 2 dB of the undlstorted value. The major

differences occurred in the compensated sidelobe level envelopes. Note

the sidelobe level for the receiving approach were 3 to 5 dB lower than

those produced by the transmitting approach. This again indicates that

amplitude the tapering of the incident plane wave have a direct control

on the compensated sidelobe envelopes.

Considering the computational speed, the receiving approach was

fast and numerically efficient in computing the compensating feed array

coefficients. The receiving approach requires N steps for computing

the distorted reflector currents induced by the tapered plane wave. The

transmitting approach w i l 1 require M*N steps, to calculate distorted

reflector currents Induced by the M feed elements in the focal plane.

This makes the transmitting approach slower and numerically Inefficient.

For the case that has just been illustrated the receiving algorithm was

very fast requiring about 20 mln of C.P.U. time about 1 hr of C.P.U.

time In an IBM 370.

The receiving approach for compensating large scale reflector

surface distortions was demonstrated and compared with other exciting

techniques. The effects of truncating the focal plane fields to a finite

amplitude level and the effects of the tapering the incident plane wave

in the receiving approach were investigated. The results shows that the

receiving approach was able to compensate sidelobe levels and also

provided a reasonably good compensated directivity (withing 1-3 dB). The

method also indicates computational ease and suggests its application in

an adaptive type of implementation involving large reflector antenna system.
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TABLE 10. - SURFACE ERROR PROFILE

PARAMETERS

f (x,y) = By Cosily ̂  ~ 1/l5

L yMAx
Py = 0.5X

Ny = 0.7697

yMAX = 52.8 IN.

.8)1

J
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53 Compensating array geometry <37 elements)
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TABLE 11.. - SUMMARY OF FEED ARRAY PARAMETERS

OPERATING FREQUENCY, GHz 30

FEED POLARIZATION .... LINEAR

E-PLANE PATTERN COSqE(9) qE = 20

H-PLANE PATTERN COSqH(0). . . . . . . qH = 20

FEED LOCATION (FOCUS), METERS . . . (0,0,3.35)

EDGE TAPER, dB ....'. -11
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CHAPTER 6

SUMMARY

6.1 Concluding Remarks

The reflector antenna surface distortion arised from thermal

effects can be adequately compensated by using an active phased array

feed. There are two approaches to design the array excitation

coefficients, the indirect conjugate field matching (ICFM) discussed

in chapter 4 and the direct conjugate field matching (DCFM) in chapter 5.

The DCFM method produces the lowest compensated sidelobe and the ICFM

method produces the highest directivity. Due to its computational

ease (computational speed) DCFM lends itself to a simple realization

in hardware (if the distorted reflector surface is known at all time),

and may be very useful in an adaptive type Implementation. This is

particularly true considering the recent advances in MMIC feed array

technology, where each radiating element in the feed array can be

controlled Independently to provide the compensating excitations

(amplitude and phase).

6.2 Suggestion for Future Work

The compensation technique should be experimentally

demonstrated by using a distorted reflector with an MMIC feed array.

A detection scheme is necesary to obtain the distorted discrete surface

points as input to the compensation algorithm for any real time

application. The two algorithms can be used in an adaptive

implementation for compensating thermal distortion in a space
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environment. The method presented here can be extended for

nonparabollc surfaces, such as spherical reflectors and should find

applications in antennas used in satellite communications, space

radiotelescopes, microwave power transmission and radiometers.
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APPENDIX A

POWER RADIATED BY AN ARRAY FEED

The generalized feed array geometry 1s Illustrated In Fig. A-l.

The feed position corresponding to the mth element 1s at (xm,ym,zm) and

Its complex current excitation 1s Im. The radiated electric field

due to this element in the array can be expressed by,

-4 e-JKr ̂
Em(r) ~ V- Ve'*> (A-]>

where the vector function rm(.Q,4>) defines the mth element polarization

and far-field radiation pattern. This vector function may be

approximated by,

fm(e,<|>) = "eUEm(e)(ae3t cos <j> + b sin <J>) + $UHm(e)<bcos <j> - ae^f sin <J>)

(A.2)

where

UEm(6) E-plane pattern of the mth element

UHm(6) H-plane pattern of the mth element.

Typically, the far-field element patterns may be approximated by a

(cos S)Q function, i.e.,

UEm<6) = (cos 6>q
E (A.3a)

UHm(9) = (cos e)Q
H (A.3b)

The radiated far-field of the feed array is the product of the element

pattern given by A.I and the array factor, i.e.,
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M = TOTAL NUMBER OF ELEMENTS
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Geometry of the generalized feed array
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"^ *™~ J- T C I 1 • fc*

(A.4)
a i i ay f.— in in

m=l .

where E (r) is given by A.I andm

t? = sin 6 cos 4> x + sin 6 sin <j> y + cos 6 2 (A.5a)

The total t ime-averaged radia ted power of the array is g iven by,

fir /2 r2i

"

= ]_
rad = Z0 J

Sln e de

0 J0

where EaricA is the electric field radiated by the feed array given

by A.4 and Z = VJJT77 = 120 ir.

Substituting (A.4) into (A.6) we obtain

fir /2 P2irM M
P - \ \ /I I* -K ~ Z

m=l n=l

INTEGRAND (m,n,e,<t>» de

'0
' (A.7a)

where

-4 JKu • ̂ p - p ; ? ,A
INTEGRAND (m,n,e,<J)) = E_(r) • E*(r) e m n r^ sin e Vrt>

m n

Defining the power radiated as follows,

' n „
where A is given by the expression in the brackets of Eq. (A.7a).

It can be shown that,

Em(r> • EJ (r) = ̂  { (
a2uEm(e)UEn(e> + b2UHm(6)UHJ(e)V cos

2 4>

+ (b2UEm(6)UEj(e) + a
2UHm(e)UH*(e)J sin2 ^

+ ab cos <|)KUEm(e)UE*(e) - UHn(9) - UHm(e)UH*(6)J sin 2<|» j (A. 9)



substituting (A.9) Into (A .7b ) , then the expression for A is
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given by

\nn = 2

fir/2

0 \r

a2UEm(9)UE*(e> + b2UHm<e)UHj(6)Jcos2 <fr +

fb2UEm(6)UHj(e) + a2UHm(e)UH*(6)Jsin

;<e>) sin

*(Uab cos i|r (UEm(e)UEJ<e)

(s1n cos
- UHm(6)UH

•f COS 6 COS 6)

2 <b\ x e

sin 6 d9 d<|>

where

- V2 * (zm - V2

•-

rmn

(A.lOa)

(A. lOb)

(A. lOc)

•-
Wi th the use of the following integration formulas,

2ir j 5 cos (<|> - *)
c 2ir

(A. lOd)

(A. l la)

-2*
cosco%

n^ 4.

cos

? ir cos(2

(A. l ib)

The result after <f> integration is reduced to
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mn ~ Z UEm(6)UE*<e) + UHm<6)UHj ) < K rmn s 1 n emn s 1 n e >

x sin 6 e
jKr cos 9mn cos 9mn mn

fir/2

de + (i - CQ) j ^UEm(e>uEjj<e>

where

cos e cos
- UH <9>UH*<e))J0 (Kr sin 6 sin 9) sin 6 em n / i mn mn

(2-12a)

CQ = 1 + 2ab cos Y sin 2 jm + (a2 - b2) cos 2 $ (2-12b)
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APPENDIX B

SPECULAR REFLECTION

For a given feed at point PI (xi.yi.zi) and an observation

point ?2 (tZ'yZ'ZZ) (Fig- B.I), a reflection point Or may exit on the

reflector surface <x,y,f(x,y)). The vectors

di = (x - xi> x + (y - y-|) y + (2 - Z]> z (B.la)

d£ « (x - X2> x + (y - y£) y + <x - X£) z (B.lb)

are the connecting vectors between PI and Or, and from Or to P2,

respectively. A necessary condition for which the reflection points

must satisfy is that the total distance (dl + d2) must be stationary,

i.e.,

^ (d1 + d£) = 0 and Hy <di + d2) = ° (B'2)

after differentiation we obtain,

i- (x- X]) + (f(x,y> - z^ ^ + i- (x - x2) + (f(x,y) - z^ = 0

(B.3a)

i- (y- y]) + (f(x,y) - Z]> & + 1- (y - y,,) + (f(x.y) - z,,)̂  . 0

(B.3b)

A root (x.y.z = f(x,y)) of the two nonlinear equations in

(B.3a) and (b) gives location of a reflection point. For a given point

P! and P£, there may be none, one, or more than one reflection point.

It may be shown that (B.3a) and (b) is equivalent to satisfying Snell's

law of reflection (Ref. 6).
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Or: (x.y,f(x,y))-

APERTURE
PLANE

P2:

P,: (xvyvZl)

B.I Geometry for the specular reflection calculation
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The system of Eqs. (B.3a), and (b) can also be satisfied if

PI, Or, and ?2 are col linear Suich an unwanted root may be

eliminated by imposing an additional condition.

fx - xi x - M2 '(y - yi y - M2 fz - zi z - Z2V
—^ + —j + —3 + —:; + —j + —^ > eV di da J V di d2 ; V di d2 ;

(B.4)

where e is a small positive number. One can preset e = 0.00001. A

root of (B.I) may or may not fall inside the boundary of the reflector.

Each root (x,y,f(x,y)> must be checked if is inside the desired

boundary.
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APPENDIX C

PRINCIPAL RADII OF CURVATURES OF THE REFLECTED WAVEFRONT

Differential Geometry (Ref. 83) forms the basis of the

computation of principal curvatures of the reflected wavefront

(R^.R^). The three orthonormal base vector of the incident ray bundle

are chosen to be (Fig. C-l)

V1 y x x. x(z - z, ) - z(x - x, )

y x x.
(C.la)

/((z - + (x -

«;• x x.

x(x - y(y - y,) + z(z - z,)

\/(x - x^2 + (y - y^2 + (z - z^2

where (x,y,z) are the coordinates of the reflection point Or.

reflected orthonormal unit base vectors are given by

- 2<xj • n) n

• n) n

X3 =
- x) - y> z(z2 - z)

(C.lb)

(C.lc)

The

(C.2a)

(C.2b>

<C.2c)
\/ ((x2 - x) - y) -z)2)

The vectors (C.2a) to (c) are chosen to satisfy a left-hand system,

i.e., x, x x. -x.,. This selection is invariant with respect to the
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reflected curvatures (R1, R2>. The three orthonormal base vectors of

the reflector surface at Or are chosen to be

x + z f

A Q X A -I

s s
X- X X,

X3 = n
-y

(C.3a)

(C.3b)

(C.30

where

f d_f(x,y)
x = dx

fy = dy

z = f(x,y) reflectro surface function

Let define the following parameters be defined,

P m n = * l ' * n m= ]'2'3' n=1'2'3'

<C.3d)

(C.3e>

(C.3f)

(C.4)

Substituting Eqs. (C.la) to (c) and (C.3a) to (c) into (C.4) we obtain,

(z - z^ - f x < x - x,)

21

rll =
M / 2

\/«l * fj) v

P1 - fv ( x -
•"10 -

/
V Ad

^'
-(x -

/ ( ( X - X^ +

. x l ) + f x ( z -

\/[(x - x^2

x , ) (y - y, ) - M>

v.i — lay

//~ ch\vU . ju /

f (Z - Z^2]

r - y , ) ^ - * , )

N/d * f^> \/{<x - (y - [(z - (x - (y - y (z - Z) }

(C.5c)
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REFLECTOR

OBSERVATION POINT

FEED

C.I Principal vector directions of the Incident and
reflected rays
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f f (x - x )(y - y ) + (1 + f ) [(z - z )2 * (x - x )2] - f (y - y )(z - z )
i _ x y 1 1 x ] ] y 1 1

2
l + T

22

)i _ J_
33 ~ dl fy(y - y]> - (z -

(C.5d)

(C.5e)

where

(C.5f)

Let the 2x2 matrix P be defined for the first four parameters in

Eq. (C.5a) to (d). If we define another set of parameters by the

the following definition,

nn m=1.2,3 and n=l,2,3 (C.6)

it can be shown that

P:, = pi
Pr - P112 ~ 12

(C.7a)

(C.7b)

(C.7c)

(C.7d)

The curvature matrix of incident ray bundle is given by

Q1 -

rdj 0

0 (C.8)

The curvature matrix of the reflector surface at the reflecting point

is given by
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where

eA2(G - F2/E) A(eF - fE)/E

[A(eF - fE)/E A2(gE - 2fF + eF2/E)
(C.9)

E - l + . f J . F = f x f y > G - l + f J

e . - Afxx , f . - Afxy , g . Afyy

f d2f(x.y) f = d2f(x.y) f = d
2f(xty)

xx = dx2 xy dx dy yy dy2

The desired reflected curvature matrix Qr may be computed from the

following equation

Qr = Q1 + 2 '1 QS(P1)~1 (C.10)

in general Qr Is a 2x2 matrix, with elements denoted by Q,,,

Q10, Q01 and Q00.I d. C\ LL

Then radii of curvature of the reflected wavefront is given by the

following expression,

(C.ll)
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APPENDIX D

FOCAL PLANE FIELDS COMPUTATION BY THE RECIPROCITY PRINCIPLE

It is required to calculate the focal plane electric field at

pont 1 produced by an incident uniform plane wave (Fig. (D-l) from an

observation direction ̂ RFAM'^BEAM^ ' Jt 1s assume tnat tne un^orm

plane wave is generated by a dipole source located at point 2 in the

far field of the distorted reflector antenna. The dipole source at

point 2 has the following.current distribution,

32(r> = u2 S (r - r2> (D.I)

where u~ is a unit vector describing the polarization of the dipole.

In the neighborhood of any distorted reflector surface point the

incident field is a local uniform plane wave. This uniform plane wave

can be described by,

e J (D.2)i.

where

(x,y,z) any point on the distorted reflector surface

£ = K (sin 6 cos <{> x + sin 9 sin.4> y + cos 6 z)

6 = 9BEAM and * = *BEAM

K - 2 ir/X

the received focal plane field at point 1 is denoted by,
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/ U1 RECEIVING DIPOLE

OBSERVATION
DIRECTION
(eBEAM'<l)BEAM)

2 TRANSMITTING
DIPOLE J2

D.I Uniform plane wave Incident on the reflector surface
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?/P <?1>, ft/' <?,) (D.3)

Let us now assume that the distorted reflector is being

considered In the transmitting mode with a dlpole source J] located

at point 1 1n the focal plane of the reflector (Fig. D.2). The dlpole

source at point 1 have the following current distribution

(̂r) = Uj 6 (r - *j) (D.4)

where U] is a unit vector describing the transmitting polarization

of the dlpole source in the focal plane. With this dipole as the

radiating element, the distorted antenna produces a far zone electric

field at point 2 denoted by

?2
tran(?2), fi2

tran <?2> (D.5)

The Lorentz reciprocity theorem relates the transmitting fields

on Eqs. (D.3) and (D.5) with the respective sources described by Eqs.

(D.I) and (D.4) respectively. Mathematically the reciprocity principle

can be expressed as follows,

p • yrans - yrans •
dv ( D . 6 )

L I i . t - I t - I I £ J

V

for the particular case under consideration one can use the following

assumptions,

* fP v 7 * tran C
. £ n Q ^ X i

0 and F,ir=--^ . JL1-1011 , - ̂ -= —

(D.7)
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U2: (RECEIVING DIPOLE)

OBSERVATION
DIRECTION
(6BEAM'<|)BEAM)

FOCAL PLANE

X0l TRANSMIHING DIPOLE 7l

71

D.2 Illumination of the reflector surface by a dipole source on
the focal plane
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under this assumptions the following result 1s obtained.

0 . fff [?/P • 1, - !2
tran • 1}] dv (D.8)

J J J

V

substituting Eq. (D.I) and (D.4) Into Eq. (D.8) yields the final result,

VP • "2 - V™ ' "1 (D'9)

This result shows that by reciprocity, the focal plane fields

produced by an Incident uniform plane wave on the distorted reflector

surface can be obtained Indirectly from the far zone electric field

generated by a dlpole source at a specified location in the focal

plane of the distorted reflector.
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