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ACTIVE FEED ARRAY COMPENSATION FOR REFLECTOR ANTENNA
SURFACE DISTORTIONS

Roberto J. Acosta
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
SUMMARY

The feasibility of electromagnetic compensation for reflector
antenna surface distortions (non-random) is investigated. The- '
performance characteristics (gain, sidelobe levels,~etc.) of large
- satellite communication reflector antenna systems degrade as the
'reflector surface distorts, mainly due to thermal effects from a solar
radiation. The technique developed in this dissertation can be used
to mainta1h the anfenna.boresight dire¢t1v1ty and ;1delobe level
tndependent of thermal effects on the feflectbr surface.  With the
advent of ﬁono]ithic microwave integrated circuits (MMIC), a greater
flex1b1l1ty-1n array-fed reflector antenna systems can be ach1eved.:.
MMIC arraysvprovide'indepehdent control of amplitude énd phase for
each of the mahy radiating elements in the feed array. By assuming a
known surface distortion profile, a simulation study is carried out to
examine the anténna'performanCe as a function of feed array size and
number of elements. Results indicate that the compensation technique
can effectfvely control boresight dire§t1vity (within 1-3 dB of the
undistorted) and sidelobe level (within 1-5 dB of the undistorted)
under peak surface distortion in the order of tenth of a wavelength.
Furthermore, the computationalveasevof the compensatidn technique
allows 1t'to be implemented adaptively in a large satéllite reflector

antenna system.



CHAPTER 1
INTRODUCTION

Future space communication multibeam antenna system will utilize
large reflector surfaces. Maintaining the surface accurracy of this
large reflector antennas is important, particularly when high gain
(higher than 50 dB) and low sidelobes (lower fhan -30 dB) are
required. Reflecfor surface errors are generally classified into the
following types: |

(i) Random surface error in the order of several mils due to

hanufactdring.1mperfection (Refs.‘1—3).

(11) Large-scaled surface error in the order of inches due to

‘thermal, gravitational and other effects (Ref. 4).

It is the large-scale surface error that is of interest in this
dissertation work. Methods for reducing this type of surface erfor
include the use of better antenna supporting structure, better
therhal]y-insensitive material, and mechanically tunable surfaces. A
different approach is to compénsate for the degraded antenna performance
due to surface distortions by using an active phased array feed. The
later approach is becoming increasingly attractive due to recent
advances in monolithic microwave integrated circuits (MMIC). MMIC
arrays provide independent control of amplitude and phase for each‘of
the many radiating elements in the feed array. Surface error

reduction methods (mechanical/material) and surface error




compensation techniques (electromagnetically) are complementary, each
approach can further impfove the antenna performance independently of
the other. ‘

This dissertation invesfigates surface error Compensétion
techniques for large scale surface distortions. In chapter 2,
'techniques”for calculating the reflector antenna secendary pattern are
presented.A A special emphaeis is placed on the aperture integration
and the physical optics methods. These techniques are necessary tools
in evaluatingdihe reflector antenna performance (directivity; sidelobe
ievels, etc.). |

. .In_chapter-3, a method for uniquely represehting the surface

errors df a distorted reflectof antenna is developed. The distorted
refleptpr.surfece (numerically specified) is separated into two
dompedentse van undistorted surface component (represented by a best
f?t:paraboloid) and a surface error cdmponent (eipanded into a fourier
eerdes)- Correlation between surface error spectrai components and
antenna radiation perfermance is examined. The result 15 compared
with the ones obtained by usjng a spline 1nterpdlation algorithm. .

_ Chapter 4 presents one of the tdo approaches'fdr calculating the
cempensating_feed array complex e*citations, namely the indirect
conjugate field matching (ICFM) approach. It is findirect"'because
the ;ompensatind.feed array excitations are determined by using the
transmitting mode and the reciprocity theorem. The design of the
compen;eting feed array (array size, number of elements,.etc.) and its

relation to the surface distortion are examined.
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Chapter 5 presents the second compensation approach based on the
réceiving.mode, namely the direct conjugate'fieid matching (DCFM)
approach. It is "direct" because the compensating array excitations
are detérmined by integrating directly the induced surface currents on
the reflector under a receiving condjtion. In contrast to the first
approach, the DCFM allows the reflector be illuminated by an. incident
plane wave with a taped amplitude. The level of taper can effectively
qpntrol the éideTobe level of the compensated antenna pattern. A case
study is preﬁented for comparing resulfs between the DCFM and ICFM
fechniques. | '

Finally, cohcluding remarks are given and some futurevwork

evolving from this dissertation research are discussed in chapter 6.



CHAPTER 2
REFLECTOR ANTENNA SECONDARY PATTERN COMPUTATION

2.1 Introduction

. -.Réflector antennas are widely usedAin comhunication satellite
systems bécaUse they provide high gaih at low cost; In anafysing
reflector'ahtennas the computation of the secondary pattern i$ the
“main concern.- The basic techniques for calculating fhe scatteféd |
Véc%orbfieldsyffom a reflector surface has been extensively deyelopéd
~in the open Iitérafure (Refs. 5 to 25). The besf kﬁown of these |
techﬁiques are the ohes based upon aperture integratibn and physicatl
6ptics mefhods.

(i) Aperture Integration Method (AI, Fig. 1¢(a)). The fields

on the aperture plane E:ap are first calculated by tracing a
reflected. ray ETfBF—F} using geometrical optics (GO) theory and an
edge diffracted.fay P1 od P2 using geometrical theory of diffraction
(GTD). . The fields over the aperture plane E:ap. are then integrated
via a fast fourier transform algofithm (FFT) to obtain the scattered
vector fields..

~(ii) Physical Optics Method (Po; Fig..l(b)).' The induced .

currents on the reflector surface E:S is approximéted by 2 . ﬁ»x ﬁi.
>

Where HY is the incident magnetic field intensity on the surface .

and T is the surface normal. An integration of this current dver

the curved réfleqtor surface Z:s gives the scattered vector fields.
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(b)-Physical optics.

1 Methods for calculating the scattered vector fields Eé(r)
from a reflector surface



The exact solution of the scattered vectof field can be expaned
in a higthreduency asymptotic series (Refs. 26 to 27), namely,
Pscr) ~ IS E (r) k12 Ry + KT Rytr) « ... for K> w
" .' -  _<2.1>
Where K 1is the free space QaVenumber.
The two pattern computational methods described above recover te%ms'in
(2.1) to vartous degrees, as summarized in Table 1)

TABLE 1. - ACCURACY AND LIMITATIONS OF PO AND Al

Methods _ Accuracy . Limitation

Al (with GO rays | Recover Kb

~and no edge

diffracted rays) : Not accurate for

wide-angle sidelobes
PO - Recover .33 and '
partial A,

AL (with GO rays Recover A, and R) | Infinite field at

and edge dif-. _ o caustics

fracted rays)

’-_A detailed description of the computation of thé‘incident field
.and the power radiated by the feed source is presented:iﬁ séctioh 2.3..
The Al ahdAPO methods are described in sections 2.4'and 2.7
respectively. A numerical discussion is presented in settion 2.8.

2.2 Description of Froblem

The goél of reflector antenna Secondary péttern COmputation cén
be described as follows: -Given the feed element characteristics

(location, pdlarization and element pattern) and reflector surface



characteristics (x,y,z, its first and second derivatives), it is
required to cbmpute the scattered vector field at an arbitrary |
observation point in the far-field zone. THe geometry of thé problem
under consideration is depicted in Fig. 2.

The_reflectof is shown in the main coordinate system'(x,y,z>.
The feed coordinate system (xf,yf,2Zf) faci]itates the description of
the feed polarization and radiation characteristics. This coordinate
system is related to the main cobrdinate system by a set of Eulerian
angles (Ref. 29). The time factor e-Jut 15 suppressed throughout.
It is assumed that the feed source has a well defihed fphaséd center"
at Py with coordinates (xy,y1,zy), and radiates a spherical wave
denoted by (#i,_fi). If the feed source is an array, each element in
the array is considered‘separétely. .The secondary pattern of the.
array—fed.reflector antenna is theﬁ obtained by vectorially adding the
individual element scattered fields. The conductﬁng reflector surface
may be described by an analytical eqﬁation or by a set of points. For
the numerfcélly specified cése, anvinterpolating'fechnique (Refs. 30 to
32) should be used for bbtaining the required surface derivatives
(first and second derivatives).

2.3 Incident Field Computation

The radiated electric and magnetic fields from the feed source

have the following asymptotic form

. -JjKr |
-31(rf) e e ? ©p, 6p) (2.2a)
T'f_- .

i e X ? (r.)
ilere) -~ —f——z—i (2.20)
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2 Geometry for calculating the scattered electromagnetic vector
fields from a reflector antenna



Where (r¢, Of, ¢f)Aare spherical coordinates of an arbitrary
observation point in the feed coordinate system, Z fs the wave
impedance, ?;(ef, ¢f) is a vector function describing‘the feed source
radiation pattern, K = 2#/X is the wavenumber, A is the wavelength,
and - rf is the distance from the source to an arbitrary point in the
reflector surface. The vector function ? (0f, ¢f) in Eq. (2.23) can
be approximated (Ref. 23) by Eq. (2.3).

2., 6. = 60 UEOL) (aed¥ cos 6. + b sin 6.) +
fr 9p) = O UE(S; £+ £

% UHBL) (b cos ¢ - ael sin ¢p) (2.3)

where UE (8f).is the feed E-plane pattern and UH (8f) is the
corresponding H-plane pattern. a,b, and y are the feed

polafization parameters:

TABLE 2. - FEED POLARIZATION PARAMETERS

Polarization type a b ¥

Linear X ' 1 0 0
‘Linear Y 0 1 0

Right-hand circular (RHCP) | 0.707 | 0.707 | 90°

Left-hand circular (LHCP) 0.707 | 0.707 | -90°

Typically the element pattern can approximated by a (cos CO

function that is,
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UE (of)

“(cos (of))0E (2.43)

UH (6f) = (cos (oAl L (2.4b)

If Eqs. (2.4a) and (b) are used to represent the feed
radiation pattern, the power radiated by a single feed source is given

as

_ (qE + gH + 1) _
Prad = 50C2qE + 1(2qH + 1) 2.5)

For a feed array with M elements (Ref. 33) the power radiated is

given by Eq. (2.6).

MM |
Prag = E: E: II AL | @8

where Iy s the m-th element complex excitation, A 1is a square

matrix. The derivation for the matrix A is‘inCIuded in appendix A.

~ The radiated power of an antenna is an important quantity, since it is

used in the computatioh of jts directivity (section‘2.8).

Figure 3 illustrates the Eulerian angles (G1,G2,G3) whichA
détermine the rotational feléfionship between the main cobrdinate
system‘(x,y,z) and the feed coordinate system (xf,yf,zf). The
definition of'these.angles are as follows. The angle G] describes a
counterclockwise (ccw) rotation about_the z axis which brings the x
axis to the ~x" axis qligned with the line of nodes (line of

intersection between x-y and xf-yf planes), angle G2 defines a

rotation about the 1ine of nodes in a ccw sense as indicated so that



B



| this brings the 2z axis to 2z, ahd angle G3 is another rotation abédt'
the - z¢ axis.and aligné the x"_axi§ with the x¢ axis in a ccw
sense. '

In general the feed coordinate system orientation is expressed
relative to the main coordinate syétem by a set of three orthogonal

unit vectors (f},§;,§;). Let these unit vectors be expressed.by:

Xf = axl X + ax2 ¥ + ax3 2 (2.7a)
VF =ayl X+ ay2 ¥y + ay3 7 (2:7b)
7 = azl X+ az2 T+ az3 X 2.7¢)
Then, the Eulerian angles are given by: A
. . -1 (a2l S :
G] = t;an (:ﬁ) | . : ‘(2.8.6)‘
S 2\ | -
G2 - tan“( l—:—iil->. . (2.8D)
_ az3 E o
coo=1 (- - ax3 N
G3 = tan (az]~x ax2 - axl x azZ) 1 (2.8¢)
It can be shown that - , _
| (Xf y¢ 20T = B(X ¥ DT ' @
where | |
r ]
bll bi2 b13
B = |b21 b2 b23 (2.10)
b31  b32  b33|
L J
in which the elements of the Eulerian matrix B are defined as
follows:
b1y = cos Gl cos G3 - sin Gl cos G2 sin G3 (2.11a)
by2 = sin Gl cos G3. + cos Gl cos G2 sin G3 2.1
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byg = sin G2 sin G3 (2.11¢)

b1 = - cos Gl sin G3 - sin Gl cos G2 cos G3 ~  (2.1%d)
bpp = - cos Gl cos G2 cos G3 - sin Gl sin G3 - (2.11e)
b23 = sin G2 cos G3° . (2.11F)

b37 = sin Gl sin G3 ﬂ (2.119)

by = - cos Gl sin G2 2.11h)

b33 = cos G2 (2.111)

Thus, a point on the reflector surface with coordinates Pg:
(Xg,¥5,2g) in the main coordinate system is transformed into the feed

coordinate system through the transformation.

Xfs Xs = X1
Yfs| = B {¥s - 1 . < (2.12)
Zfgl 25 - 7]

wherev(X],yj,zj) is the origin of feed coordinate system indicating
its transformation with respect fo the main coordinate system. The

corresponding spherical coordinates for this point is given by

rf = V&foZ + yfs2 + Zfsz) . (2.13a)
, z '
0 = cos™! <}ﬁ§> | S 2.13D)
re ,
e
¢f = tan (xfs> (2.13¢)

The incident electric and magnetic fields are obtained from
Eqs. (2.2a), (b) and (2.13a) to (c). Notice that ’?i (r¢) and ﬁi(rf)
are in the feed coordinate system. Let the sphericél vector components

of '?i(rf) and 'ﬂi(rf) be denoted by
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?1_<rf>>= (Erf, Eof, Ef)T - (2.143)

) - i
i, exBep
£/ 771 = e

of Mog)  (2.140)

¢f
~ The incident field is converted from spherical into rectangular

icomponents by using the fol]owing transformation equatioﬁst

)T

[}
o

(H H (Hogo Hgps Hee)T Qs

xfr Rype Hae £ Mo Hoe)

)T (E E

E (E g

[}
o

(E E E T . (2.15b)

xf* “yf* “zf of* “¢f

Where D 1is defined by:'

. sin 6f cos ¢f cos ef cos(¢fA -sin ¢f
D = |sin ef sin ¢  COS ef sin ¢ cos ¢e (2.16)
“fcos 0 : -sin 9, 0 :

anélly, the incident field B and B in the feed coordinate system
(Xf,¥F,2F) is transformed into the main toordihéte system (x,y,z) by

using the following equations:

- 'E T
X =T xf )
Ey =B Eyf , (2.17a3)
'_Ez_ LEzf_
er- =T erf ,
H| =B |H (2.17b)
y yf
_Hz_ _Hzf_
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Where B is given by 2.10.

2.4 Aperture Integration Method

The Aperture Integration Method is illustrated in Fig. 4. The
surface :E:g is a Huygen surface enclosing the reflector and feed.
This surface can be of arbitrary shape (typically épherica], cylindrical,
etc). For the special case of a planar surface :z:ap (aperture planef
located in the radiation side of the reflector (the field over the
shadow portion :EZSH are assumed to be zero), the tangential fields
on the aperfure plane.and the radiated far—fie]ds_are.related by a
Fourier transform (Ref. 6). The equivaience principie (Ref. 9)
provides the basis fér obtaining the radiated férffields from the
tangential'z? and -ﬁ at :E:ap- Note that the aperture plane :E:ap
is taken péfpendicular to the z-axis. ‘

Let the tanQentia] electric and magnetic field at :E:ap be
denoted by E;p and 'ﬁép respectively.v Considér'the following

vector functions:

O )| ?ap (x,y) eIKUX + VY 4y gy (2.18a)
Eap ' '
v - ),:U B Oy &KX Way gy (2.8
ap
where u = sin © cos ¢
v = sin® sin ¢

2w/

~
[}
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4 Aperture and observat1on parameters for constructing the |

aperture integration (AD) formulation
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(r,8,¢) spherical coordinates of the faf-field observation
point.
Since the aperture fields are tangent to the x-y plane, then

?&u,v)

BCu,v) = gy(u, WX + gyu, VY (2.19p)

FxCu, VX + Fyu, VY | (2.19a)

The radiated far-fields'from a current distribution can be obtained
using potential theory (Ref. 10). In the aperture plane :E:ap the
induced currenfs are given by the following
. o
32 =N x H" (Electric current) - (2.20a)
~" 2 '

3;5 = - n x ET (Magnetic current) (2.20b)
Where 'Er"ﬁr are reflected electric and magenetfc fields (section
2.6). The vector potential corresponding to the two induced currents

(far-field approximation) are obtained from the following equatfdns.

-jKr ' O %
Ry = he Jf o x BmyendKT o T gy gy (2.21a)
I Eap : ,
: -JKr 3 s ' |
P - et [ Bryemdker o 70 g, dy (2.21b)
| L,

where, K and '? are the magnetic and electric vector potential

respectively.
F=Xsin®cos ¢+ sin 6 sin ¢ + Z €os © (2.210)
Pax Ry T ) 2.21d)

In the far-field region, ?S and -ﬁs are related as in a spherical

TEM wave,

; x’ﬁs(r)

_9 »
ES<_r> - -5 (2.2
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- - .
The far-fields ES(r) and HS(r) expressed in terms of vector potential

Funcfions 'Z(r)'and ?&r) are given by,

B = sjo RO + JZ Tx Py (2.232)
BS(r) = —jo P(r) - logy Koy (2.23b)

Equations (2.23a) and (b) imply that both electric (Jg) and
magnetic currents (3%5) are included in the evaluation of far fields. If
only the electric current or the magnetic current ii‘present, thé far—field

e 1 2 L . 3 .
electric field ES (r) is determined by A(r) or F(r) alone. From
the field equivalence principle (Love's equivalence.printiples)
fbrm01ations, three different expressions arise for~‘?5(f>, namely,

_(l) Using both 32 and ms

.~ JKr ‘ '
Ke ™ . : .
Eé = }—Z;;- (fX cos ¢ + fy sin ¢ + 71 cos Q (gy cos ¢ - 9, Sjn ¢)) N
: . (2.243)
ES', iEQ:iE: (co§ o (f cos‘¢ -~ f_ sin ) - 2 -(g> sin ¢‘+'g cos ¢))
¢ bur . y X 4 7y T 9y
(2.24b)

2 Usind 23: (Assume the aperture surface is a perfect
electric conducting surface)

jKr

s jKZ e~ cos 6 .
.Ee = oy (gy cos ¢ - g, sin $) (2.24¢)
. -jKr .
s _JKZ e ' o5 © . o
: E¢ = Sy (gy sin ¢ - g, cos $) (2.244)

(3) Using fjgs (Assume the aperture surface is a perfect
electric conducting surface)
o-iKr |

s K - . .
Ee = (fx c§s é + fy sin ¢) (2.24e)
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-JKr cos ©

s _ JKe .
E¢ = = (fy cos ¢ - fx §1n $) (2.24F)

The results given by (2.24a) and (b) are the average of (2.24¢)
to (f) respectively. It requires the values of both tangential electric
and magnetic fields at :Z:ap- In practice it is more convenient to use
either (2.24c¢) to (f) since they require the know]edée of only either
the tangentia} magnetic or electric field over the aperture plane.

This method is exact if the fields everywhere in IZ:G are known
accurately. Fér electrically large reflectors thé fields in the
aperture plané wjl] be usually small outside.an area defined by the
projection of the‘ref]éctor boundary on the.éperturé.plane.

2.5 Aperture Inteqration Method and the Fast Fourier Transform (FFT)

To employ an FFT algorithm, the integrals in (2.18a) and (b)
must be rearranged so that the form of integral matches the definition
given by the FFT subroutines. In general, two dimensional FFT
subroutines assumes the function being considered to be periodic in
x and in y with period of 1 in both dimensions. Hence, a typical
aperture plane grid as shown in Fig. 5, must be scaled accordingly.
| To illustrate the transformation of the given integrals into
integrals with an FFT format consider the equation (2.18a) and extend
the result to (2.18b). Each of fhese equations have two components,
(fx.fy) for tq. (2.183) and (gyx,gy) for (2.18b). First consider the
component fy in Eq. (2.18a).

ymax Xxmax .
TR =J J £, (el KXY gy gy (2.25)
ymin Jxmin
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where Eax is the x-component of Ezp (x,y) in (2.18a). Usfng the
following change in variable, |

X - xmin

__y - ymin : :
Y = ymax - ymin , (2.26b)

and (xmax - xmin) = Ly, (ymax - ymin) = Ly, Eq. (2.25) becomes,

1M
fx(u,v) = C] JO JO Eax(xmln + X (LX), ymin + Y (Ly))

JKQCL X4y (L Y
X e Yo dy (2.27a)

where

C.= (Lk)(Ly)ejK(U Xmin+v ymin) (2.27b)

1
The expression Eax (xmin + (LX)X, ymin + (Ly)Y) within the
integral may be interpreted as ‘Eax(x,y) scaled in -FEéX-(a,b) within

the limits 0 <a <1 and 0 <b < 1 (Fig. 5b). FEax(a,b) may be
approximated by

N M2
iy (D) = ) Y eddmmean) (2.28)
n=N1  m=M] '

where Tmn are the Fourier coefficients obtained by using an FFT
subroutine. For example if one considers a 32 by 32 FFT grid points,
then
Nl =Ml = -15 and N2 = M2 =16
From (2.27a) and (b) and (2.28),
1Tt N2 M2
f W) = C 2 > T__EXP (m,n,u,v) dX dY  (2.28a)
0J0 n=N1 m=M1 ™

where
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JKCmA+UCL ) Xe (MA+VCL DY)

EXP (m;n,u,v) = e (2.28b)
Interchanging the summation and integral signs and noting that |
. [wC
T : (n'c) J(i—)
sin = e
j eIKCX 4y - A (2.29)
0 e
(%)
the expression for fx is given by,
N2 M2 T
4 . — (m+n)
Fauw=c = Z ¢ eI SF(m,n,u,v)  (2.30a)
T N mewt ™ |

where SF (m,n,u,v) is given by,

. [ fr -VE_ ' |
s1n((§ifmx + u(Lx) s;n (x)(nx + v(Fy))) (2.300)
(i)(mk + UL, x(i)<nx + V(L)

In summary, to evaluate the integrals (2.18a) and (b) one

SF ‘(m,n,u,v) =

needs to first calculate Ty, of Eq. (2.28) by an FFT algorithm and
then calculate fy (u,v) via (2.30a) and (b). Thé other components
(fy.gx.9y) in Eqs. (2.18a) and (b) can be easily transformed into an
FFT format (Eq.( 2.30a) and (b)) following a similar approach.

2.6 Computation of the Aperture-Plane Tangential Fields

The geometry for calculating the tangential fields on the
éperture plane is depitted in Fig. 6. For a given feed pbint' Py and
an observation point Py, a reflection point OF may exist on the
reflector surfacé. This point is called a specular point (Ref. 34).

This type of reflection satisfies Snell's law of reflection. The



REFLECTOR -

o130

Pz: (Xon2112)
OBSERVATION POINT
IN THE APERTURE
PLANE Eap GRID

Pg: (xs.ys,t(xs.ys))—/

6 Geometrical optics ray tracing for calculating the
aperture fields
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reflector surface is assumed to be a~perféct conduﬁtor. Appendix B
“presents a method for obtaining the specular points on the reflector
surface. The geometrical optics approximation of the reflected electric
fields (Refs. 35 - 36) at an observation point Py is given by, :
2r Py = 0F e 3Kd2 (R o BDHA - B) (2.3

where, |

| dy distance between Py and OF |

:ﬁffi ihcident electric field (see Section 2.3)

| n _ the reflector surface unit normal at Of

DF divergence factor given by Eq. (2.32)

DF = ! '
_ _ E—
JU o+ @R 1w /R

Principal radii of curvature of the reflected wavefront

(2.3

RT'

;
Ry» Ry

v passing through 0.

Appendix C contains a derivation of the principal radii of
curvature of the reflected wavefront for a géneral surface of
revolution. Ih summary for a given Py and Py, there may be more
than one.reflection‘point; ‘Then the total reflected field at the
aperture grid is the superposition of the coﬁtribution from each -
reflection point. If for any Py there is no specular reflectfon
pqint on the the reflector surface, then the reflected field is zero.
-The approxjmation in Eq. (2.31) only>takes into account the réflected

rays. To improve the computation of the tangential fields 6n the

aperture plane one may include edge diffractéd rays (Refs. 37 to 43).
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A similar expression to (2.31) can be found (Ref. 23) for this type of
fields. In general edge diffracted fields and reflected field are
superimposed at the aperture plane. For electrically large reflector
antennas the contribution due to edge diffracted fields is very small
-and genera]ly can be neglectgd.

2.7 The Physical Optics Method

The currents which excite the scattered field-aré iﬁduced on
the reflector surface (assuming a perfect conductor) by an incjdent
electromagnetic-fielé ‘?i, ﬁﬁ (see’section 2.3).  Fjgure 7 illustrates
the geoﬁetry for calculating the scattered fields us%ng the;physicai
optics approach. In the physical optics method the induced surface
current distribution (Refs. 5 to 6) is approximated by '

F. - 2@« B> On the illuminated side Duc. . (2.330)
32 = 0 On the shadowed side :Z:SH' (2.33b)

These approximations to the induced surface current are va]id
when the reflector size, the radii of curvatﬁre of the réflector
surface, and the:radius of curvature of the incideﬁt Wavefront are all
much larger than the wavelength. A frihging current component can be
added to improve the current accuracy (Ref. 44). The fringing
component is needed for applications that require the scattered fields
to be known over wide observation angles away from the antenna

boresight.
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SCATTERED FIELDS
BMAEO
OBSERVATION POINT
P: (r.0.0)

7 Geometry and parameters for constructing the physical
optics (PO) formulation '
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The electromagnetic field solution to Maxwell's equations due
to an electric current distribution in an unbounded region (Ref. 6) is

given by Eqs. (2.34a3) and (b).

9 s __) —'JKR
ES(ry = =L «F «eHT+k¥TH e 4 (2.34a)
4rwe S , s R
ES
B ~3KR
Aoy =] : e
AS(ry - e H <Jmp?5 x D " g (2.34b)
ES

Equations (2.34a) and (b) are valid at any arbitrary
observation point P:(r,0,4). in the integrands of Eqs. (2.34a) and
(b) the operator 5’ operates on the coordinates of the source current
alone. Expanding all the terms involved in the aboveAihtegrands one

obtains the following expressions,

-jKR ~3KR.. | |
3 (% >= (;'.K . %)% R (2.353)
L, —jKR) o U
e 2 3/ 1
<3’S D ?7’<§ _{x ds ¢ ROR + 3 (JK . R)(JS e R) R
| | 32 ! e'jKR
- (JK‘+ §> : (2.35b)
where
K 2
= 3= wVHE wavenumber

R The distance from source element to the observation point P.
A far-field approximation to Eqs. (2.34a) and (b) can be obtained by
considering | |
Rzr-7Te3 (for phase terms) (2.36a)

R=r (for amplitude terms) (2.360)
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and by taking into account only 1/R variations in Eq. (2.35a) and
(b). MHith thesevapprpximations, Egs. (2.343) and (b) are simp]ified

into the following forms.

o - :%%e'j” ” (3‘ - <3‘ e DD BT s (2.37a)
| Z% . ' '
foe. 1/2 n s ~ '
ﬁs r) - e~ JKr ” (P—) AT TEACKI (2.370)
Tl'r . € S . .
. | L _

where r is such that the fol]owing constraint is satiéfied.

. apnl K . ‘
o & | @3

D the diameter of refiector antenna
‘A the operating wavelehgth
The surface integration appearing in Egs. (2.37a) and (b) is

perfO(méd on the’reflector curved surface. The differential area is

ds = dx dy\/ (g’;) (%5—) : (2.38)

The square root factor above is commonly known as. the Jacobian of the

shrface} It éad be shown.that the.integral (2.37) and dS gi&en_in
(2.38) may be represented in terms Qf a series of many two-dimensional
-Fourier transforms (Ref. 45). Typically, one needs the first few térms
in this series to achieve a converging sblution The phys1cal optics
radiation integrals may be evaluated in many d\fferent ways (Refs. 12

to 14) and its efficient evaluation has been a challenging problem.
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2.8 Directivity Computation

The far-zone electric field is usually divided into two
orthogonal polarizations. Following Ludwig's definition 3 (Ref. 46),
the following ﬁnit polarization vectors.are introduced: |
-8 (ap ejwp cos ¢ + bp sin ¢) + 3(—ap e¥D sin ¢ + bp cos &) (2.39)

A

5] (ap e“ij sin ¢ - bp cos ¢) + $V—ab e'j¢p cos ¢ + bp sin ¢)

Oy oD
|

(2.39b)
where (ap,bb,wp) are the far-field polarization barameters. These are
related to_the feed polarization parameters (section 2.3). fof a
single reflector these relationships are given by; -

| ap=a,bp=b,wp=y+m (2.40)

For éxample, a feed linearly polarized in the i? direction
will produce a secondary radiation beam linearly polarized in the §>
direction. A RHCP feed produces an LHCP secondary beam. For dual
reflectors this relation hay be more compliex depending upon the
coordinate systems and.offset direction-used. It is best. to determine
this relation_in each individual problem. . |

If the secondary pattern can be expressed as (Eqsl (2.23a) and

(b) and (2.37a) and (b),

Zs A AT |
E°(r) = . e Ee + ¢E¢ » (2.40)
the reference bolarization expression for ?S(r) is given by (2.423),
ER(r) = ES o (RD) | (2.423)

and the cross polarization expression is given by (2.42b)

EC(r) = E% e (C*) (2.42b)
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The directivity associated with the reference polarization is defined

by
, e ,
DR (8, ¢) = 50— (E* e R0Y? ¥z (2.43a)
rad : - _

Similarly the directivity for the cross polarization.is defined by

DC (B, §) = 50— @ em? 2z @

o rad : o

where Prag 1s the power radiated by the feed source (section 2.3).

2.9 Numerical Results and Discussion

This section presents some numerical resu]ts to establish
numefical.accuraCy of the aperture 1ntegratfon ﬁethod (GO and GO + GTD)
and the physical optics method. Far-field radiationvpatterns are
presented for the following offset parabolic‘feflecfér configufation.

_Refléctor‘geometry: 257.89 A ~diameter

‘D =
(refer to Fig. 8) f - 637.48 A focal length

H =135.51 A offset height
‘Other parameters: . Frequency = 30 GHi

Aperture points = 200x200
§tpolarized feed

-18 dB edgé taper

A block diagram of a cohputer implementation (Refs. 22 to 23)
for the aperture integration method (GOiand GO + GTD) and the physical

optics method are presented in Figs. 9(a5 and (b) respectively. The
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REFLECTOR ' FEED ARRAY
GEOMETRY | CONFIGURATION
INCIDENT FIELD
COMPUTATION
l — { OPTIONAL
REFLECTED FIELD EDGE DIFFRACTED
COMPUTATION - FIELDS -
(G0) . COMPUTATION
— - (6TD)

APERTURE PLANE TANGENTIAL
ELECTRIC FIELDS

Y
" FAST FOURIER TRANSFORM
(FFT)
FAR-FIELD RADIATION DIRECTIVITY.
ANTENNA PATTERN COMPUTATION

“(a) Aperture integration algorithm.

9 Block diagram of a computer implementation for calculating
the secondary radiation pattern of a reflector antenna
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block‘diagrams.desckibes all the computational routines thatlére
required by both methods.

Figures 10¢a) and (b) show far-field radiation patterns
(reference and cross polarizafions) for the boresight case and
Figs. 10(¢) and (d) show a 6-beamwidth scanning case. As éxpected
‘radiation patterns calculated by each method are ih good agreement.
The gain, hélf-power beamwidth (HPBN) and first sidelobe level for the
boresight cése are shown in Table 3. '

TABLE 3. —.SUMMARY OF ANTENNA PERFORMANCE

_ Method Al (GO) | AI (GO + GTD) PO
Gain (dB) 56.88 56.89 . | 56.85
HPBW (deg) 0279 | 0.281 | o0.283
SLL (dB) | -33.89 -35.2 | =33.3

Note that the gain and HPBW obtained in ail the methods afe
almost identiﬁa].A The differences comes in the sidelobe level. The
additjpn of the edge diffracted rays into the Al me thod improves the

.sidelobe level prediction, although for such electrically large
-reflector it does not seem to change the gain or the HPBMW. |

Table 4 shows the computation times for the methods on an IBM

370 computer. |

TABLE 4. - SUMMARY OF COMPUTER EXECUTION
TIMES

Me thod Al (GO) | AI (GO + GTD) | PO

I8M 370, o ' ’
80 150 100
C.P.U. - '

(sec)
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The Al (GO) method was the fastest as expected. The FFT
algorithm makés this method numerically efficient. If the edge
diffracted rays option is used‘then {he Al become the slowest, but the
most accurate. The Pd is a trade-off between sidelobe accuracy and

computational time.



38

CHAPTER 3
REFLECTOR ANTENNA SURFACE ERROR REPRESENTATION

3.1 Introduction

Reflector antennas in a space environment are subject to

continuous variation in temperature'distributfon,.and are thus distorted

from its true geometrical shape (typically paraboTic, hyperbolic,

elliptical, etc.). The distorted reflector surface has in ‘general a

very complicated shape and hence Can not be represented with an exact
analytical expresion. The analysis of a distorted reflector antenha
defined by a set of discrete surface points require the use of numerical
techniques.>lManyvnumerical techniques for analyiing_the performance

of reflecfor antennas defined by a set of points have:been extensively
reported in therpen‘11teratUre (Refs. 4, 32, 47 to 53). -The most
popular of these techniques represents the refleétor surface either

globally or locally by using polynomial splines (Refs. 54 and 55). The

.polynomial splines and other techniques require the surface points to

be orderly labeled. .This is an undesired characteristic because it can
result in a nonunique approximation for the desired reflector surface.
The order of the spline polynomial necessary to best fit the reflector
sﬁrface pbintsAis in general unknown a priori, and'therefore it
involves a trjal and error procedure for checking the accurracy of the

{
interpolation.
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The distorted reflector surface points can be best approximated
by two analytical components, an undistorted surface component and a
surface error component. The undistorted surface Eombonent is a best
fit paraboloid polynomial for the given set of points and the surface
error component is the deviation of the actual surface points from the
best fit paraboloid. This residual error component is then described
with a sinusoidal Fourier series expansion. This approximation
technique is insensitive to the 1abeling'of the reflector surface
points and can describe the surface errors very accurratly. Similar
to a time 31gnal’the spatial spectrum of the surface error component is
unique to the reflector under éonsfderation. Therefore spatial spectra
can be utilized as a performance index for comparing distortion profile
in reflector antennas.

3.2 Description of the Problem

The best analytical representation of the distorted reflector
antenna surface points that uniquely identifies surface errors can be
obtained as follows: the reflector surface points are separated into
two components, a best fit paraboloid component and a sinusoidal
Fourier series expansion of the residual. Figures 11 illustrates a
conceptual layout of the problem under consideration.

In analyzing large reflector antenna‘pérformance it is
necessary to accurately characterize the reflector surface points.
Any derivation from its ideal geometry causes the antenna performance
to degrade. The surface error component provideé an independent
performancé fndex against which distorted reflector antennas can be

compared. The surface error component by definition is a sinusoidal
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Dlstorted reflector surface points separated into an undlstorted
surface component and a surface error component -
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Fourier series expansion of the difference between the actual reflector
surface boints and the best fit paraboloid geometry. Informations
such as root mean square value (RMS), peak surface error and
two-dimensional distortion profile can be calculated from the surface
error component. The Fourier coefficients in the series expansion
represents the spatial spectrum that uniquely identifies the distorted
reflector under study. The best fit parébol1c surface represents>the
reflector antenna surface in an average sense. MWhen the surface error
is zero the best fit paraboloid surface reduces to the ideal or the
design sufface‘geometry. |

3.3 Und1sforted Surface Component

A generalized two dimensional second order polynomial
(paraboloid of revolution) is given by Eq. (3.1). |
S (x,y,2) = 3, x2 +a, y2 + a3 z2 + A, XY B YZ 4 A ZX 4 Ay X
| +38y.+2+a]OA (3.1
This polynomial form can be transformed into a different coordinate
system in which Eq. (3.1) will have the following form,

S'x',y,z) = xl eyl iRl (3.2)
Where FL 1s a constant. Figure 12 shows a genefalized

parabola of revolution (Eq. (3.1)), the (x,y,z) coordinate system and
the (x',y',z').coordinate system. These two coofdinate system are
related by set a of Eulerian rotations (Ref. 56) and a translation.
Let the djstorted reflector surface be represented by
DS (xj,y¥3,23) =0, i=1,N (3.3)
Using the method of least squares (Ref. 57) the distorted |
reflector surface points from an approximating parabdlic polynomial

given by Eq. (3.1) can be determined in the manner described below.
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paraboloid of revolution
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The minimization index is defined as
2

. .
X ,2:) - X:o¥:r2: .
2 (DS D =S OGLYgLz) (3.4)

where

DS (x, Y5 ) nth order surface polynomial representing the
distorted reflector surface points.

S (xi,y1,zi) the approximating parabolic polynom1a1 in
Eq. (3.1)

N total number surface points
Substituting Eq. (3.1) and (3.3) into (3.4) yields the following

result,

ZM. 2 2
(a Xi * Ay ¥y 3325+ 3, XyYy o+ A5 Y425+ 3p ZyX,

| ) |
+ag Xy o+ a8.yi + z.1 + a1o) (3.5
For minimum I it is required that,
31 3l a3l 31
- - = ... = =0 (3.6)
33, 33, 3 a4 8 34
Equation (3.6) results in the following set of equation,
a1 N 2
73 5 2 (S(x;,y;,Z)XS = 0 (3.7a)
&-%zmx 2. y% = 0 (3.7b)
3a, - Y%y = '
2 i=1
8L _ LN(, 2 (S(x;,y,,2,02% = 0 (3.7¢)
3 a, = . irYi02477% = :
3 i=1
8l | % 2 (S(Xe.y. .2 Xeye = 0 (3.7d)
3a, - 5 i-¥i02i77% Yy = '
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@
—

M=

D
o
1

(S)]

=
.MZ'

—
I}
a—

i=1

N

> 2 (S(xy,y,,2, 0y,

i=1

M=

N
T2 (SU,Y;,20% |

2 (S(xi‘yi’zi))yizi

2 (S(Xi’yi’zi))xizi

2 (S(xifyi’zi))] =

0

(3.7e)
(3.7F)
(3.79)

(3.7h)

(3.71)

Equations (3.7a) ‘to (i) can be arranged in a matrik form given by,

RGO <=E

‘where R is a 9x9 real symmetric4matrix with the following

coefficients,

2% i HX
%Y 2y, %2y
zi' xiyiz1 yiz
z.x.y. Xy, x.y.2
Yi% 5%E
x.z, x yiii XY
3 Vi Y
YiZi i %7
% Y5 y;2

(3.8)
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E is a column vector with the following elements,

N
X V.2, : :
= E Vi (3.10)
y.Z.

i=1

and X column vector with the following elements,

-

4

X = (3.1D

The solution to Eq. (3.8) provides the optimum coefficients for
a best fit paraboloid defined by Eq. (3.1) in the least square sense.

Differential geometry (Refs. 58 and 59) forms the basis for
obtaining the transliational and rotational relationship between the
(x,y,2) coordinate system and the (x',y',z") coordinaté system. In

order to find the translation between both systems it is necessary to



46
find the vertex of the paraboloid defined by Eq. (3.1, Ltet's define 
the following variables, - |

P = a3 ' (3.12a8)

Q=agy+agx+1 - | (3.12b)
R = a1 X2 + 3, y2 + ag xy + a7 X + g y + a1 (3.12¢)

and rewrite Eq. (3.1) as a function of the new variables P,Q and R.

~This yield the following,
S(X,y,2) = P2° + Qz + R (3.13)
- the roots of the Eq. (3.13) describes a generalized paraboloid in the

form z = fix,y),

Q- V@ —awr) (3.14)

Z= ~ 2P
tbe positive root is di§carted because yields a solution,in the
negative z-direction. Differential geometry formﬁlae can be used on
Eq. (3.14) for obtaining the.verfex of the paraboloid. fhe vertex is
tocated at a point (x0,y0,z0) at which the two principal curvatures‘
have equal magnitudes. The_principal curvatures of a surface of
revolution are defined as follows:

Ky = Kp +/ (Kp? -~ Kg) : (3.153)

Ka = Km -\/(Kn? ~ Kg) | (3.15b)

where
K, = Eqg .- 2fF 5 eG (mean curvature) 1 (3.15¢)
: 2(EG - F™) )
eqg - £2 .
K =89 =" - (Gaussian curvature) . (3.15d)

2

9 (EF - F9)
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In £q. (3.15¢c) to (d) the variables (e,qg,f) and (E,G,F) are

the first and the second fundamental coefficients associated with a

surface of revolution. These coefficients are defined as follows,

E=1+f (3.16a)
Feff o (3.16b)
G=1+ fi - (3.16¢)
e = Afxx ' (3.16d)
f=af,, o  (3.16e)
g - of, 316D
A= -<\[(1 + f)z( + f§)>‘] o - (3.769)
fooafxy (3.16h)
X d x »
d2E(x.y)
Fry = —-—-—51- : (3.161)
d x
o= 9TOGY) (3.163)
y gy |
d2E(x.y) |
f = *““T?L' (3.16k)
yy dy |
Py
fry =-"E"I'E'§X' (3.161)

with these definitions, the required derivatives are obtained from

Eq. (3.14) with following results,

Ve - |
Fom-ts 0 LAV - PR  (3.17a)

X 2P dx ~ 2P X
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L2 3 e
e oL g_g LI WVARC R T VR ERT

1
XX 2P dx 2P d x2
_ 1. dQ_ 1 dV/ Q% - 4PR)
fy=- 25y - 29 5 (3.17¢)
e oL do 1 V- (3.17d)
yy = " 2P . 2 " 2P 2 :
dy dy :
. 29" 1 & Vg -awr
f = - == - == ' (3.17¢)

~nNo
b

Xy d x dy - 2P dxdy

where

Q° - 4Ry = x° (af - 4 aya) + ¥ (af - 4aga)
+ xy (2 ag 3, - 4 a3_a4) + x dp g - 4 aq a7)

2

+ y}fz g 34 f 4.a3 a8) + (a9 - 4 aq a]O)_ | (3.18)
Using the following substitutions
m o= (a2 - 4a, a,) (3.19a)
1~ 76 3N v :

2 ' '
m2}= (a5 -4 a3 az) (3.l9b)
my = (2 dg ¢ - 4 aq a4) _ - (3.190)
m4'= (2 a6 a9 -4 a3 a7) (3.19d)
me = (2 ag ag - 4 a3 a8) (3.19e)

2

Mme = (a9 - 4 aq alo) (3.19)

the required_derivatives in Eq. (3.17a) to (e) are obtained as follows,

_ 4% - 4 PR)

Tx d x

=m X+ ym, +mg (3.20a)

CdiQ® - arr)
- 4 PR) _

T
XX dX‘

m (3.20b)

1
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2 .
_d°(Q - 4 PR) _
Ty = Ty =My y + XMy + me (3.20¢)
2,.2 ' ,
7 o9 -4PR) (3.200)
yy d y2 2
2.2
_d°Q° - 4R
Ty ™ —axdy =M (3.20e)

By letting V = (Q2 - 4PR), one obtains the following result.

d Vv /2

0.5 v

ax - TX (3.2
a%v -1/2 2 _3/2 |
Voosvir v 025 T2V (3.210)
X
d x
dv -1/2 '
dV _o.5y 12y 210
- y | 3.2
d%v -1/2 2 .-3/2
a4V _osv 27 L, 02572y (3.21d)
d y@ yy y
v _ 0.5 9-1/2 T +-0.257 71 v-3/2 (3.21e)
dxdy Xy ) X 'y ’
dQ _
s - a6 | (3.21F)
4%Q -
5= 0 (3.219)
d x
a9 '
- a5 (3.21h)
d2 -
——95 =0 | (3.211)
dy _
_d®Q 0 . (3.213)
dxdy " <)

Equations (3.21a) to (j) evaluates the set of derivatives required in

Eq. (3.14) for calculating the vertex. The location of the vertex is



50

found numerically. Refléctor.sqrface pointsvére'searched for a'unique
po{nt at which the two principai curvartures are equal (Ky = K2).

The rotational characteristics between the (x,y,z) coordinate
systeh and (x',y',z") coordinate syétem-can be obtained by first |
finding the inward unit normal at the vertex point, ‘This wilf be the
z' axis direction.A The other two axes direcfions rel;tive to the
(x,y,2) coofdinate system are found from tﬁe nOrmai direction. - The

unit normal at the vertex is given by,
f-xx + fyy + fZZ

w//<f2 + F2 4 £
. X Yy Z

where *fx and fy are defined in (3.16h) and 3.16j) respectively, and

n

-z, 32D

~

fz _d f(g 2 X) .- The projection of this unit normal n on the x-y

~plane is given by,

- f;f.f; .
noo= —X% Y ‘ (3.23)

Xy ) -
(£ + £

The Euleriah'rotationSvcan be calculated by using the following

expressions,

cos (G1) =-ny o (-y) o (3.242)

cos (G =nez T Gl

G3 =0 )
The surface points defined in the (x,y,z) coordinate system are
_tranéformed_into the (x',y',z') coordinate system using the following -

matrix equation:
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1 (e &1z i8] [ %]
Yil = 187 €y &3l Y5 - Yo (i=1,N) (3.2%
2] B ®3; 33 (37 %
where
e1] = cos 6 | | (3.26a)
eqg = sin ¢ o (3.26b)
e13 =0 - (3.26¢)
€71 = - €OS © sin ¢ | (3.26d)
e22 = COS 6 cos ¢ (3.26€)
e23 = sin © 1 (3.26)
e3] = sin ¢ sin ® (3.269)
e32 = - sin e cos ¢ (3.26h)
€33 = COs © . (3.261)

WNith ail reflectof surface points transformed to the
(x',y',z') coordinate system the best fit paraboloid of revolution
have the desired form given by Eq. (3.2). The only pafameter unkown
in Eq. (3.2) is the constant FL. |

Let's define the following least square index

=

I' = 308 Oyl - STy, z 0P (3.27a)
3 i*7i i i
where
DS'(x',y',2') nth order surface polynomial representing the
distorted reflector surface points.
S'(x',y',2') paraboloid of revolution defined by Eq. (3.2)

substituting qu (3.2) into (3.27a) we obtain,



52 o : . L . ”
| ZZ: ((X%)z . (yi)z )z oo
71 - ~ -z | (3.27b)

i=1

bifferentiating with respecf to l/FL> one obtaihs,

1 o |
S =0 G

o 'jg: [(x%)z v yp? ] ) 2) -
. _O ?‘i=1 2 i - Z4 Qxi) -+(¥i) - (3.29

Solving for 1/FL yields

S 2
i Zi((xi) + ) )

1/FL = A}A K(x%)z +‘<y%)2) (3.30)
. 1=l . V .
| 'Thus the equation for the parabolbid of rerlution in;the
(k',y',z') cdordinaté system’is given by |
x? 4yt o ALz S (3.3D)
3.4, Surface Error Component |
The surface deviationsvof'the_diétorted réflgctor surface
points with reépect to the best fit paraboloid fs_défined a§ the
surface error component; The sutfacé error componént can be
expressed aﬁ.
‘ 22} =Dz -2 , 1= 1N Ga
where
(x%;y%,Dz%)vr . reflector surface points

x%z + y%z‘ best fit_parabolpid

2= TaF
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A two-dimenstonal continuous function like the one above and
defined in the domain, -K < x < K and -L <y < L -can be approximated

by a two-dimensional Fourier series (Ref. 60).

%0, 1 Ny L
fi(x,y) = 4 3 z; ( cps ( L )+ bOn 519 ( L )) + 3 Eé%

N < (X mrx mox nmy
X (amo cos( K )+ €m0 sin ( )) + ;Z% Eg%(amn cos( ) cos( L )

- EEK __1 i MUX nwy mwx nwy
+ bmn cos( ) sin( )+ Cn gln( K ) cos¢( L ) + dm sin( K ) s1n( ))

(3.33)

where the Fourier coefficients apn,bpn.cmn and dpn are given by,

rL (K
a f(x,y) cos(m%l).coscﬂ%1> dx dy’ (3.34a)
L J—K ’ ‘
L [K mrx nw
b = £(x,y) cos(™™Xy cos (MM dx dy (3.34b)
mn ] K L
4L dk
' L [K mrx nmy
C = f(x,y) cos(=~) cos¢—=) dx dy (3.34¢)
mn K L
L 2K :
d = - [ F(x,y) cos(MXy cos(M™Yy gx d (3.34d)
mn - v.y K CO L y .
I LK

If the funcfjon z = f(x,y) have the following symmetry

conditions,
f-x,y) = -f(x,y) and fix,-y) = -f(x,y) (3.3%)

Then Eq. (3.33) can be simplified to,

FOx,y) = 2> Z ¢ sin(@) sin (3.36)
m=1 n=1

a two-dimensional sinusoidal Fourier series.



54

In general the sqrfacé error component zz: is defined over a
region xmin ¢ x'<¢ xmax and ymjn Cy'< ymaX'(FigT_l3). iEquatjon
(3.36)'requfres sz to satisfy the syﬁmetry conditions givenrby Eq.
(3.35)7 A coordina;e system (x",y",z") is used for rearranging the
reflector -surface points in a format such that the symmetry_cdnditions
are satisfied. Firsf the surface érror pointé in Eq.A(3.2)'are
translated.fo fhe first quadrant of the (x“,y",z“) coordinate system.
The other thrée quadrants are filled with data points‘corresponding-to
the symmetry cbnditions-in Eq. ¢(3.35). This procesé is jl]ustrafed iﬁ
Fig. 14. The Fourier coefficients_of the = zz" sdfface.érror
7COhﬁonentvcan be obtained as follows, ]

_ ' MM _ j
_4_4 : " " " '-mlr__u =° Djr_n_
At T AxAy'liéf jzi- zzy (xy,y§) sinCY xi).§1n( L_yi? (3.3D)
where
M, = & 41 . (3.380)
=3 (3.
. X
M = — +1 _ (3.38b)
y = b . _
Y
| Ax,Ay sampling spacings in x and (3.38¢>
y dimensions respectively =~~~ =
X - Xx; - xmin translation in x dimension (3.38d)
i = y; - ymin transiation iny dimension (3.38e)

Let us define the Fourier matrix D,



(XMIN,YMAX)

55 .

(XMAX , YMAX)

,—(x;.yg,zz})
7/

~1  REFLECTOR SUR-
pd FACE POINTS

N

(XMIN,YMIN)

(XMAX,yMIN)

13 Reflettor_surface points defined over'a rectangular gfid
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K = XMAX - XMIN

y,,“"» L = yMAX - YMIN
' y - “ . . .
(-K.L) . 2Kp QUADRANT _1ST QUADRANT  (K.L)
(-x¥.yr.-227)—"] - : IT— f.y%.22)
: ;;xn-
(-x'i'»,-y‘-,',zz.‘-;)-\_\\ ’/./'— (xi.-y].-zz7)
(-K.-L)  3rD QUADRANT 4TH QUADRANT  (K.-L)
]

14 Illustration of reflector data points augmentation and
. translation s
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[dyy dyy dy3 -ty
921 922 - donl

- 5-1..... . . (3.39)
CRTEE T d,

Where dp, are the Fourier coefficients defined by Eq. (3.37).
The elements of the matrix D defines the spatial sbectra of the
sgrface error for a given reflector antenna surfaée. The order n of
tﬁ}s matrix is estimated by including only the coeffients with
amplitude greater than i/ZOO or it can be arbitréri]y chosen.
Another parameter of interest is the root mean square (RMS) value of

the surface error component, which is defined as,

2 2 2 2 L2 2
RMS = (d]] + d]2 + ... d]n + d2] + d22 ...+ dZn
2 2 .1/2
+ + dn] + dnz + + dr|n ) (3.40)

3.5 Numerical Results and Discussion

Figure 15 represents a block diagram of.aAcémputer simulation
of the above stated problem. -The réflector surface pbints are usualfy
obtained from a holographic, photogrametrjc 6r any other surface
detection technique. The computer algorithm was tested with known
distortion profiles and TRASYS-SYNDA-NASTRAN (Ref. 4) simulated

thermal distortions superimposed into a reflector antenna geométry.
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DISCRETE # RECTANGULAR GRID
# RREGULAR GRID

BIVARIATE
INTERPOLATION # OPTIONAL ONLY FOR IRREGULARLY
DISTRIBUTED SURFACE POINTS

FOURIER MATRIX |. :
——1 COBFRACIENT Z = FOURIER SERIES
ALGORITHM -

15 Computer implementation for obtaining an analytical

representation for a reflector surface defined by a set
of points
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The distortion profiles considered for the simulation are
described in Table 5 and the reflector geometry illustrated in Fig. 16.
Case A in Table 5 describes a small (X\/20 or less) distortion profile
and case B illustrates a large (of the order of several wavelengths)
distortion profile. The frequency used for the simulation was 10
GH;. A set of equally spaced data points (100x100) were needed to

generaté~the.distorted reflector surface.

TABLE 5. ~ DISTORTION PROFILE PARAMETERS
fourier Coefficients .
(In wavelength)
N 42 93 921 422 923 931 932 433
Case A | +0.0500 | +0.0700 | -0.0300 | +0.1500 | -0.0040 | +0.0900 | -0.0033 | -0.0083 | -0.0310

Case B8 | +0.0300 |.+0.3000 | ~2.000 -3.000 +0.4000 | +3.000 -1.000 +5.000 -0.3000

The estimated surface errors and best fit parabolic surface geometry are

described in Table 6.

TABLE 6. - ESTIMATED OISTORTION PROFILE PARAMETERS

fourier Coefficients
(In wavelength)

1 412 a3 d21 d22 d23 . 431 932 d33
Case A | +0.0497 | +0.0710 | -0.0305 | +0.1501 | -0.0039 | +0.0913 | -0.0032 | -0.0082 | -0.0312

Case 8 | +0.0318 | +0.2999 | -1.998 -2.999 +0.4108 | +2.988 ~0.9999 | +5.100 -0.2991

. Estimated focal length:
Case A 3.290109 ft
Case B 3.313091 ft

Figures 17(a) and (b) show the estimated surface profile
corresponding to case A and case B and their respective far field
radiation patterns. The results presented in Table 6 are in good

agreements with the input distortion by Fourier coefficients on
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17 E-plane radiation pattern and their estimated distortion
profile
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Table 5. It wa§ found that the Fourier matrix had higher order
'.coeff1c1ents with non zero values.but they were one order of magnitude
less than the'lowest amplitude of the Fourier coefficient presented on
Table 6. |

The technique was compared with results obtained by using a
spline polynom1a1 technique for approximating the distorted reflector
surface points (Ref. 4); In this case the d1sforted reflector surFace
points were obtained by simulating thermal deformation with‘a
TRASYS-SINDA-NASTRAN computer programs. In brief,‘TRASYS and SINDA -
are used to characterized the on-orbit thermal enviroment, NASTRAN
calculates the thermally induced mechanical distortions. 'Figuré 18
shows the femperature distribution on the reflector antenna surface
for the case hnder consideration. The reflector geometry input to the
thermal programs is presented in Fig. 19. The frequency considered |
'was 28.75 GHz and a 100x100 surface points were usedvfor the analysis.
The far field radiation pattern correspdnding to the thermal
simulatation case is presented in Fig. 20. The continuous line pattern
corresponds to the polynomial spline algorithm (Ref. 4) and the dotted
1ine pattern the corresponds to the best fit paraboloid and;Fourier
serfes expansion épproximation. There 1s no major differences between
beam direction orvside]obe levels, indicating a good agreement between
the two techniques. The best fit paraboloid and Fourier éeries
algorithm was very slow, about 3 hr of c.p.u. time in an IBM 370
computer. The spline polynomial algorithm takes abouf 1/2 hr on CRAY

xmp computer. The long computation can be justified as a trade off to
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18 Temperature .distribution on the refl‘ector surface’
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obtain vital information about the distorted surface characterisfits.
These are the amplitude spectra of the surface error, the distorted
surface profile, the RMS Qalue and largest deviation on the reflector
antenna surface. These are not directly available by any of the other
existing techniques.

3.6 Concluding Remarks

One advantage of the developed technique is that it can be
easily implemented in any existing reflector antenna secondary pattern
computatidﬁal methods. It can.easily be extended to'nonparabolic
reflectors surfaces (spherical, planar, hyperbolic, elliptical, etc) by
modifying the least square polynomial approximation. In apblications
involving the fabrication and design of precision reflector antennas
the technique Can be used as a computer aided tool. Information such
as the average focal length, a root mean square of the surface error
(RMS), surface error profile and the amplitude spectra for the.reflector
antenna under consideration are easily accessible from the algorithm.
One draw back of the algorithm is that it is slow. This can be
improved by using faster computer such as a CRAY and optimizing the

computer codes for faster computing time.
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'CHAPTER &
COMPENSATION METHOD I: TRANSMITTING APPROACH

4.1 Introduction

Thé peffbrmance characteristics (gain, sidelobe level, etc.)
of space communication reflector antenna systems degrades as the
reflector surface distorts due mainly to thermal (Ref. 4) effecté
caused by solar radiation. The ;ompensating technique described here
will maintain the de;ired boresight direttivity~(antenna performance)
fndependently of thermal effects on the reflector surface. A feed

array can be designed to compensate for thermally induced surface

distortions. -

For a befter understanding of reflector surface error
compénsation, it is convenient to think of the antenna in the receiving
mode. Figu}e 21(a) shows a uniform plane wave 1ncfdent on a perfect
parabolic reflector. In the geometrical optics sense, all rays will
converge to a single point at the focus of the parabola, where they can
be collected by a single feed element. Figure 21(b) shows a uniform
plane wave incident on a distorted parabolic reflector. In this case,
the rays will not converge to a single point, buf will spread over the
focal plane. Reflector surface error compensation will be achieved,
if a feed array can capture all the energy spread over the focal plane
and sum it constructively in the feed network. Improvement in the

antenna performance due to .compensation in the receive mode will
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(a) Rays converging at focus of an undistorted parabolic reflector surface,

21 Plane wave incident on a reflector antenna
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pfoduce improvement in the antenna performance in the transmitting
mode by reciprocity.

The concept of conjugate field match (CFM) is utilized to
determine the complex excitation coefficients of the feed array.
Specifically the compensating feed array excitation coefficients are
determined from the complex conjugate of the focal plane electric
field (Ref.'33) distribution due to a uniform plane wave incident on
thé distorted ref]ectbr surface from the desired beam direction. In
the transmittihg approach (Ref. 61) the focal plane electric field
distribution ié_determined by computing the far zone electric field in
the desired beam direction due to a dipole source at a spécified
location in the focal plane. This computation procedure. is performed
for all specified feed array element lécations in the focal plane and
their conjugate values are used as the compensating feed array

excitations.

4.2 Determination Of The Compensating Feed Array G&dﬁéf?im

It is assumed that the distorted reflector sUrface (usually
descrﬁbed by a discrete set of - points) is known a priori. The
distorted reflector surface points can be approximated with two
analytical surface components (see chapter 3): an uhdistorted surface
component and a surface error component. The undiStorted-surface
component is mathematicajly expressed with a best fit paraboloid
polynomial and the surface error compongnt is described as a
sinusoidal Fourier serie§ expansion of the residual. The surface error

component with the largest spatial frequency and amplitude product
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determines the -feed array area required (Ref. 62) to capture.all the-
energy spread in the focal plane (Fig. 21(b)).

The geometry of the besf fit paraboloid (undistorted surface
component) is illustrated in Fig. 22. ThiS geometfy is completely |
specified by the following angles:

Ooff: off-set angle of the refliector

Omax - half-angular extent of the reflector surface

The minimum area consisting of D by D (Figi 22) in the
focal plane needed fof capturing about 80 percent of the energy spread
(Ref. 62) is approximately given by
er T B

D = 373_5;;; (1 + cos eoff) | 4.1)
where e = 2.71828...,
B: amplitude of the largest surface error component
T:. number of periods of the largest surface error |

component over the extent of the reflector surface.

The required number of elements that can fit into the
compensating area D (kq. (4.1)) varies according to the desired array
configdration and on the element aperture area. Typiéaily horns,
microstrips and dipolé antennas are considered as radiating elements
in eithef a héxagonal or rectangular array geometriés. The gain and
sidelobe level requirements of the subject reflecfof antenna will
usually determine the number of radiating eléments on the feed array
(Refs. 63 and 64). A rule of thumb criteria for the element spacing

for a given feed array configuration is to have minimum spacing in
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order tovreduce the spillover when illuminating the reflector. This
is a good criteria for cases in which the feed array_is located in the
near field zone of the distorted réflector. For cases in which the
feed array is located in the far field zone, the spacing should be
determined such that there are no grating lobes generatéd within the
reflector surface. |

4.3 Computation of the Compensating Feed Array Excitation Coefficients

The focal plane electrﬁc field distribution contains the
necessary information for finding the required number of elements,
their best location and their proper complex excitations. Conceptually
this field distribution results from an incident uniform plane Qavé~
impinging'(Fig. 23) on the distorted reflector surface‘from the desired
beam ﬁirection;' The complex element excitation are obtained-by taking
the cohp]ex conjugatevof the focal plané electric field distribution.
This concept is known as conjugate field matching principle (CFM).

!Let's assume that the feed array contains N eleménts located
in the focal plane. The complex excitation coefficients, represented
by a column vector I,

I-11, Iy, I3,....INT @
are to be determined. |

Let us first calculate the far field radiatfon pattern of the
distorted reflector antenna due to the mth element in thé feed array

(Fig. 24), namely due to the following array excitations,
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In=1, and all other Ij5 =0 (4.3)
The corresponding far zone electric field can be written as,

=-jKr o

B (?) = E—— (RE_(0,4) + CF_(6,4)) (4.4

m r

where (r = =, 8 = Bgcay, & = bgeay) 15 the Spherical coordinate of the
desired observation point 1ﬁ the far field zone, (3;8) are unitary. ’
comhlex vectofs describing fhe reference and the cross polarization of
the reflector antenna (Ref. 46) respectively. |

| Let the,columﬁ vector, ,

. EOpe - PEan’ =A(E1,E2,E3,...,EN)T - (4.5)
represent the reference polarizatién electric field‘in the}obsérvation
direction (eBEAM’¢BEAM) due to each of the individuai é]emépts in the
féed array. The far ffelds in Eq. (4.5) can_be easily obtained by
using either'a'physical optics or an aperture integration technique
(see chapter 2). Typically the physical optics method is chosen due
to its computational ease. This me thod requires that the induced
currenf distribution on the distorted reflector surface be integrated
in order to.obtained the radiated electric field at the desired
obsefvatioh direction (eBEAM;¢BEAM)‘ ‘ |
Appendix D shows that by applying Lorenfz reciprocity

principle (Ref. 9) the focal p]ahe electric field distribution of a
distorted reflector antenna can be 1ndfrectly obtained from the

transmitting electric fields due to dipo]e sources located .in the focal

plane (Refs. 61 and 62). In the receiving solution the focal plane
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electric field distribution is directly obtained by 1ntegrat1ng the
induced current distribution due to an incident unlform plane wave on
the distorted reflector. .

In the transmitting approach, the compensating feed array
excitation coefficients are determined by using the.reciprocityl
principle. The resulting compiex excitation coefficients are given by
£q. (4.6). | |

I = E (6

BEAM® $BEAM
‘where <eBEAM’¢BEAM) is the desired beam d1rect1on; This approach for
determlnlng the compensating array excitation coefficients is called
indirect conjugate field matching (ICFM) This method has been widely
'used for more than 10 years (Refs. 11, 33 and 66 to 77) for
applications requ1r1ng compensation of dagraded-antenna performance

due to off-focus feeds.

4.4 Numerical Results and Discussion | |

| A block diagram of a numerical 1mplementat1on for the

‘ transmitting approach for calculat1ng the compensating feed array
excitationa 15 presented in Fig. 25. Notice'that for each of the feed
element: location (xgm,¥m,2Zm) in thé focal plane a_faf zone electric
field is computed (Eq. (4.4)) in the desired beam direction

(e > by using a physical optics algorithm.

BEAM® PBEAM

(4.6) -
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As an example of a surface error compensation using~a feed
array;.considér the undistorted reflector and a given surféce error
'profile presented in Figs. éG(a)'and (b)-respéctively. fhe opefatiné
frequency is 30 GHi and the feed element type are considered to be
square horns with a (1,6X‘x 1.6X) aperture dimenéion. The hndistorted
E and H-plane far field reflector antenna péttefﬁs With thevsingle
- feed horn locatéd at the foca] point are sﬁoﬁn in Fig. 27. The
- undistorted antenna boresight dfrectivity is 58 dB. With the given
sdfface errof profile (Fig. 26(b)) superimposed on the undistorted
reflector geometry (Fig. Zéka)) the résulfing__E and H-plane far
field reflector antenna patterns with a single Feedvhorn Tocated on the
focal point are shown in Fig. 28. The antenna boresight dire@tivity
is seen. to be reduced to 38 dB (20 dB loss). It is required to
compensate for the_Lbss in directivity due to the surface distortions
with a feed array{” The first sfep,is:to design a compen§éting array
~configuration tﬁat wfii capture most of the energy spread in the focal
planef By applying Eq. (4.1) to the reflector gebmetry and considering
the,distoftion profile shown in Figs. 26(a) and (b), we obtéin the
following compensating area, o

D - (e)(w)(0.7697)¢0.5)
- sin (20°)

(1 + cos (43°)):= 17.3x

~ The radiating elements are square horns with a (1.6X x 1.60)
aperture dfmensién. »The number of elemehfs necessary for a rectangular
array geometfy are estimated to be 121 elements (a 11 x 11 array) at
about 1.6 spacing. The corresponding compensated E and H-plane

reflector antenna pattern are Shown in Fig. 29.  The compensated
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boresight directivity is within 0.969 dB of the undistorted boresight
difectivity; clearly showing a good design for the feed array size and
element excitation coefficients. For combarison purpbses-]et us consider
another feed array geometry shown in Fig. 30. Note that the majority
of the array elements are located along the vertical dimension of the
array and very few elements are allocated horizontally. This feed
array design has been made by taking advantage of the a priori
knowledge of the distortion profile. Since there is no distortion
variation in the horizontal dimension of the reflector it is expected
that elements located horizontally in the feed array will contribute
very little to performance compensat1on.. The corresponding compensated
E -and H-plane antenna patterns are shown in Fig. 31. The compensated
directivity for this case is w1thih 1.7 dB of the undistorted boresight
directivity. No major difFefence§ in the compensated E or H-plane
pattern shape or boresight directivity is observed when compared to
those obtained by hsing a 11 x 11 rectangular array configuration. The
reason for this results is due mainly to the one-dimensional variation
of the surface error profile (Fig. 26(b)). Therefore the excess of
radiating elements in the 11 x 11 array distributed horizontally in
the feed array did not-add any extra compensation to the antenna
pattern shape and directivity.

In general the surface error profiles due to thermal effects
are estimated to have two dimensional variations (Ref. 4). This
implies a large number of radiating elements to be required for a

rectangular feed array configuration. Consequently the distortion
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error profile is a factor that needs to be taken into consideration
when designing the compensating array. This technique clearly shows
an 1mpr6vement to the dégraded reflector antenna directivity. .The
only draw back'is lack of sidelobé control in the compensated antenna
performance. For applicétions involving space reflector antenna where
the main concern lies in maintaining the boresight directivity
independently 6f thermal effect the transmitting approach certainly

lend ftself to an adaptive implementation.
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CHAPTER 5
COMPENSATING METHOD II: RECEIVING APPROACH

5.1 Introduction

Array-fed reflector configurations are very desirable for
space communication multiple and contour beam antenna systems. The
radiation performance of these reflector antennas i§ degraded because
of surface distortions induced by thermal effects from solar radiation.
Distortions caused by thermal gradients are inherently a large scale
phennmenon. .By using computer prograns such as TRASYS-SYNDA and
NASTRAN (Ref. 4) to simulate thermal distortions, intenna performance
degradation; can be calculated. For example, bofesight directivity
loss of 3 to 8 dB, sidelobe 1eve] increase of 10 dB, and pointing loss
of 0.1° t0»é°, havé been predicted by TRASYS-SINDA and NASTRAN
simulation. vThe chapter describes a technique to compensate such a
degradafion, §o that the antenna performance is vfrtually independent
of thermal effects on the reflector surface.

The compensating technique is briefly outlined below. Normally
in a multiple beam antenna system, each beam is excited by a single
element in tne feed array (one—to-oné excitation) such an excitation
is not good enough if the reflector surface distortion is present. 1In
the latter case, we will use a cluster of N element§ (7 to 35 or even
more feeds) to excife a single beam (N-to-one excitation). By adjusting

the complex excitation coefficients of the cluster feed, the antenna
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degradation due to reflector surface distortion can be partialfy
restored. The degree of restoration depends on the number of feeds in‘
the cluster, and the precision of realizing the desired excitatién.
Obviously, the N-to-one excitation scheme is more complex than
the conventional one-to-one scheme. The former requires both the -
excitation amplitude and phase control of all elements in the feed
array. -Nith the advent of monolithic microwave integrated circuits
(MMIC), such a control becomes realizable Without excessive effort
»(Ref. 78). It shoufd be mentioned that in additioﬁ»to'electfomégnetic
compensation techniques studied here, other efforts have beeh carried
out to reduce the impact of thermal distortion. Most of them are of
mechanical nature (Refs. 79 and 80). |

5.2 Problem Description

Given the desired boresight directivity, far field sidelobe
envelope and distorted ref]ecfor surface points (x,y,2), the |
compensation problem is to determine the minimum number of feed array
'elements,-their best location and their excitations that will give rise
to the desifed antenna performance despite of the surface d1§tortion.

The approach here is based on the receiving antenna mode, as
1 outlined below. Let the distorted antenna be illuminated by an incident
"plane waQe" from a prescribed direction and with a prescribed
'polarization. That direction and polarization are those .of the main
beam when the antenna is ih a transmitt1ng mode. The "plane wave" has a
planar phase front as in the ordinary:plane wave case, but with a
tapered amplitude, in contrast to the constant amplitude in the ordinary

plane wave case (Fig. 32).
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32 Distorted reflector antenna being illuminated by a tapered
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Using this concept, the resulting fields in the focal plane of the

reflector antenna can be calculated by integrating the induced current
‘distribution on the distorted reflector surface. The focal.plane
electric field distribution contains the necessary information for
determining the required number of feed array elements, fheir best
location and comp]ex‘excftations necessary to compensate for the
surface-erfors. The set of excitation coefficients of the
compensating feed array fs obtained as a complex conjugate of the
received}focal.pléne'electric field distribution. With this set of
excitation coefficients tHe feed array 1lluminates the distorted
reflectof surface with a wavefront designed to.compensate for
reflector surface distortions. This method of dbfaining the
compensating array excitations is called direct conjugate field
matching (DCFM). “Next, the difference of the preseﬁt DCFM from the
other compénsating technique will be explained.

| In the past, conjugate field matching principle was used for
obtaining the compensating element excitation COefficients in
applications where‘degraded reflector antenna performance arises from
_off—focus feeds (Refs. 11,76,77, and 82). Recently the same technique
was applied to tﬁe compensation of large scale surface3&15tortions
(Refs. 61,65, to 68) with a feed array.v It is named indirect
V conjugate field matching (IC?M) because the transmitting mode and
reciprocity theorem were used in determining the feed array
excitations. The difference between DCFM and ICFM lies in the

following facts:
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(i) DCFM is based on the receiving antenna mode. Hence the
t;pered plane wave can be conveniently added in the
formufation. Since the aperture fieid and the far field
of an antenna are related by a Fourier transform, there
is an explicit relatioh between the plane ane taper and
the antenna sidelobe level. ‘

(ii) The compensatihg extitétion coefficeinf; in-ICFM are
invariably determined under the conditfbn that the
reflector antenna is in a transmitting mode. The
aperture field taper is hot an explicit design
parameter, and therefore cannot be conveniently
controlled. |

As a consequence, we note that ICFM often leads to antenna

patterns with high sidelobe envelopes (see Chapter 4). Such a problem
can be alleviated by the present DCFM.

5.3 Computation of the Focal Plane Fields

Consider a linearly polarized (?) tapered plane wave incident
on the distorted reflector surface from an (Fig. 33) observation

direction (8,4).

+IKE o E_a

t(xiuyg.z) = B e (5.1)
Where,
E) = ¢ + (1 - O - (p/ar?l - (5.22) _
7 2
p = v/{{xs} + {yS - yc} ] (5.2b)

>
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c =10 ; ET: is the edge taper of (5.2¢)
the incident plane wave

Yooa: reference lengths (Fig. 34)

(xs,ys,zs): distorted refleétor point

~ ~ ~

X X+ Y Y+ 22 - 2

‘r!
S

K

2 w/X\: wavenumber ) (5.2e)

X: operating wavelength

~

K = sin 6 cos ¢ ; + sin © sin ¢ §'+ cos © ; (5.2f)

(6,4): spherical angles describing the
observation direction.

-~ ~ ~

u=u

KH Uy uz z: - polarization vectof . (5.29)
uy = (= sin’ ocos g sing (5.2h)

Uy = (cos2 0 + Zinz 2) cos2 $) (5.21)
u24= (-cos 6 s;n 8 sin ¢) | | (5.23)

2

d =‘{(sin © cos ¢ sin ¢)2 + (cos2 0 + s‘in2 2] cos2 ¢)2

1/2

+ (cos © sin 6 sin ¢2)} (5.2k)

“One needs to calculate the electric field at a point

(xj,¥y,23) in the focal plane of the distorted reflector antenna.



96

AY PROJECTION OF
REFLECTOR SURFACE
IN THE x-y PLANE

DISTORTED ﬁ
REFLECTOR

TER

- o 4»
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The incident electromagnetic field E', H' induces an
electric surface current distribution 32 on the distorted reflector
surface, which is assumed to be a perfect conductor. The induced

electric current distribution (Ref. 5) is given by

3 -2 nx B (5.3)

where

surface normal -(5.4)'

zo = flxg,y e distorted reflector surface
By assuming also that the incident field is a tranSver;e
electromagnetic wave (TEM) one Can make use of the following

auxiliary relationship,

gl : (5.5)

where .

Z

120 w: free space wave impedance

~

S

; - sin 6 cos ¢ x - sin 6 sin ¢y - cos 9z (5.6)

Substituting (5.6) into (5.1), yields
I, -2 {(n x [21 x £'1} (5.7)
R ) _
The scattered E and 'ﬁ fields from the distorted reflector surface

' bt b 2L
in terms of the electric current surface distribution Jg is given

(Ref. 6) by
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. mie—” K3 + 3 o Dy} o5 | L G
(R ” 3 x is | (5.8b)

Where

< 2vf: and f is'the operating frequency, in Hz

e = 8.854x10']2# permitivity of free space (farads/meter)

e-jKr _ :
¥ = _ - (5.93)
- 7 T2
= \,/{(xi - xS) + (yi - ys) + (zi - zs) } (5.9b)

The time dependent factor has been taken as eJot and is
omitted through out the analysis. |

In the integrands of Eqs. (5.8a) and (b), the operator v
atts:locally on the the coordinates of the source element. By
expanding 1ntegrand'6f Eqs. (5.8a) and (b) we'obtained'the following

expressions,

A
r

| 13. (¢) = (jK + })(e iKr>]
(7 O,
b

_jKr .
oS (JK . l)] e (5.10b)

(5.103)

e OV - [{3; e ridry+

= W
~|—

r

- (xi - xs) X + (y1 - ys) y + (zi - zS) 2z

where ry = ; (5.10¢)
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Substituting (5.10a) and (b) into Eqs. (5.8a) and (b) gives the

) 2 >
corresponding focal plane fields EfP and HfP

gfe (X;.¥1.24) = =1 JJ[KZjS - ¢ (js . ;]) .

4rrwe 1

(=

-jKr
3 (e 1 ~y e 9 N e
F (JK + F) (JS ° r]) r] - r (JK + 9] - ds (5.113)

' -jKr
e R 10 7) e D)
AP Lyi2) = & JJ [ Yo7 (el ] —ds G

5.4 Determination of the Compensating Feed Array Geometry and

Element Compliex Excitation Coefficients

This section will address the determination of the complex
excitation coefficients of the compenséting feed array . But before
the analysis is presented a broad'guideline will be established for
obtaining the best compensating array configuratibn. Several
procedures for designing an array-fed reflector antennas have been
reported in the literature (Refs. 23,33,61,63,64,68). The most
popuiar Approach utilizes the focal plane field distribution as a
guideline for obtaining the array boundaries.

To provide reflector distortion Compensation; a feed array must
be designed such that it will capture the energy spread in the focal
plane (receiving mode) and sum it constructively in the feed netyork.
Improvements in antenna performance due to compeﬁsation in the receive
mode will produce improvements in antenna performance ih‘the transmit
mode by reciprocity. To determine the necessary compensating feed

array area for capturing the energy spread in the focal plane fields
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it is necessary to truncate the focal plane fields to within a

predétermined relative value. This is necessary bécausé in geﬁeral

this fields cover-é large focal plane area. Another aspecf'fhat should

be considered in estimating the compensating feed Array area lies in
~ the e]ectrbnics,of the devices of the feed network. For example the
limiting factors in the amplifiers of the feed nefwork are mostly due
to finite dynamiﬁ range, noise level and finite number bit quantization
levels. These 1imiting factors determine the minimum amplitude level
that can be resolved by the feed network. The minimum amplitude levé]
is used to locate the cdmpensatihg feed array boundaries by filtering
out focal plane fields lower than the minimum amplitude.- This'proceés
geometrically maps the boundaries of thé compensating feed array.
With boundaries of the compénsating array estimated by truncating the
focal plane fields, the next sfep is to choose a feed array element.
The element type is usually deterhined by the desired reflector gain
and sidelobe level (Ref. 63). The number of elements in the feed
array canAbe estimated frdm the truncated focal p1ané'érea divided by
the aperture'area of the.individual element. .The_element spacing
should be keep to a minimum to minimize the spill-oyer losses. Once
thé compensating feed array configuration'is'determined, the're]ative
amplitude and phase of'each array element must be determined.

Let us consider a distorted parabolic reflector. antenna with a

feed array of N elements. The complex excitationlcoefficients,_

represented by a column vector I,
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1=10Iy, Iy, I3,...Iy17 (5.12)
are to be determined. Let us first calculate the focal plaﬁe electric
field distribution (5.11a) at each (xj,yj,zj) feed array element
location. The focal plane electric field distributioﬁ is denoted by,

fp
i

fp

B ogyzp P x ey edP oo (5.13)

Lét'é define the unit vector '3} to be the focal plane
reference polarization. The distorted ref1ect6r geometry and the
vector 3f are presented in Fig. 35. The unit vector E} is given-
by-Eq. (5.14). This vector is directed from the focal point to the
geometrical center of the distorted reflector. |

Xe X+ Yo ¥+ (zc -F) 2z

- o
e T 2 2 Z
_ V/(xc vy vz -

(5.14)

where

(xc,yc,zc); coordinate of the geometrical center of the
' distorted reflector surface

F: focal point
By considering only ?’ polarized feed elements, the corresponding

reference polarization unit vector is given by,

Pe = DY + P2 ~(5.15)
Where
b, - 2 _xz 2 - (5.16)
\/(xc * Yo+ (~zC - )
D = (zc - F) (5.16b)

X
2 2 2
\/(XC + Y, +'(Zc - )%
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Considering only the focal plane electric field in the direction of the

focal plane reference polarization vector Bf,

~

fp _
E; = 3 (X;,¥42;) @ pe (5.17)

Let the column vector

- [E],EZ,E3,...;ENJT (5.18)
represent the focal plane reference polarization of a distorted
reflector at each element location in the feed array.

In the transmitting mode the distorted reflector antenna is
being illuminated by the compensating feed array with excitation
coefficients that are obtained as a complex conjugate of the reference
polarization electric field (Eq. (5.18)) in the focal plane. The

reéulting compensating complex excitations in the feed array are given

by
- - - 1 %
L E)
I, £y
. (5.19)
I Es
I LEw

EqUation (5.19) describeﬁ the direct conjdgate field match
(DCFM) approach or the receiving approach for compensating the large
scalé surface distortions. It is called direct because it computes
the excitation coefficients directly by integrating the induced

currents on the distorted reflector surface.
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5.5 Numerical Implementation

A block diagram of a numerical implementation of the feceiving
approach fdr cbmpénsating large scale surface disfoftions is preéented
in Fig. 36. If consists of three numerical algorithms; a surface
analyzer, a compensation analyzer and a radiation pattern analyzer.
These algorithms form a complete set of techniques for cbmpensating
and eva]uating the large scale surface errors (thermal distortions
type) in a.distorted reflector anténna systems. |

The first algorithm, reflector sufface analyzer isvillustrated

in a block diagram in Fig. 37. It takes the distorted reflector
surface pojnts as the input énd finds the best fit péraboloid_
~polynomial (see chapter 3). The difference between the best fit
paraboloid polynomial and the input boints (residual) 1$.expahded ihto
a sinusoidal Fourier series. Essentially this a]gorithh converts the
input discrete points into two analytical surface components.

The second aigorithm, the compensation analyzer is illustrated
in a block diagram in Fig. 38. It determines the focal plane electric
field distribution due to a tapered plane wave incident on the
distorted reflector from an observation direction. The algorithm uses
physical optics techniques for obtaining the focal region fields. The
compensating feed array are obtained by assigning the complex conjugate
values of the focal region field at the corresponding feed element
locations. In summary this algorithm will compute the relative complex

excitation coefficients of the feed array.
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The third algorithm, distorted reflector radiation analysis is

illustrated in a block diagfam in Fig. 39. It determines the
compensated boresight directivity and far field radiation pattern;

The array-fed distorted reflector geometry and compensating array
excitétion coefficients are the input to this algorithm. The algorithm
utilizes a physical optics approach (chapter 2) for obtaining the far
field radiation pattern and boresight directivity.

_ The three algorithm are combined to produce the generalized
cohpensatﬁon algorithm for large scale surface distortions. 'Basicé1ly"
th inputs are to be defiﬁed, the feed array geometry and the distorted
reflector surface poinfs. vThe feed array geometry uéua]ly contains the
feed element type (typically microstrip, open wavegUidé, horn, etc.),
érray shaper<typica]ly rectanéular, hexagonal, etc.); number of .
elements and relative location of each elements. The distorted
reflector surface points are Usually obtained from optical, migrowave
holography, photogrametry,_or ény other metrology technique. The
distorted reflector surface points.can be described in either an
equally spaced grid or in a nonequally spaced.grid. 

5.6 Numerical Results and Discussion

To evaluate the usefulness of,the}receivihg‘approach for
compensating large scale surface distortions with a feed array, the
distorted reflector surface wjll be simulated by superimposing a given
distortion profile (Fig. 40) into an offset parabolic reflector
(Fig. 41). First the effects of trunééting the focal plane fields to
a finite amplitude level on the compensated boresight directivity and

sidelobe envelope will be investigated. Next the effects of tapering
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the incident plane wave amplitude on the compensated antenna

performance will be studied. For comparison purposes the result of
the conjugate field matching techhique applied"to'a simulated distortedv
reflector will also be presented iﬁ this section.
The parameters describing the simulated surface error profile

(Fig. 40) are outlined in Table 7. The surface error profile was
chosen to resemble a typical large scéle distortfon profile caused by
‘thermal effects. The undistorted and distorted E-plane rddiatiOn
pafégfﬁ'bbtatned by usihg a single feed element are shdwn in Figs. 42
. and 45 respectively. Table 8 preSents a description of the feed
“bafaheters. The calculated undistorted and distorted boresight
directivities are 39.1 dB and 30.30 dB respectively. The undistorted
. and distorted antenna performance provides the upper and lower limits
in which the‘compensatioh technique can be applied. |

. The effects of truncating the focal plane field§ at a f1nité
amplitude level are evaluated by first computing thé focal plane
electric field distribution due to a tapered plane wave (-17 dB)
incident on the distorted reflector surface from the boresight direction.
The -17.dB taper in the incident plane wave is the required amount of
taper for achieving a first sidelobe level of -33 dB in the compensated
pattern. This value is calculated from the_aperture illtumination edge
taper consideration that will give rise to a far field sidelobe level
of -33 dB. Figure 44 shows a three-dimensional plot of the chal
plane plane electric field distribution resulting from illuminating

the distorted reflector with taper plane wave (-17 dB) from the
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TABLE 7. - SURFACE ERROR PROFILE PARAMETERS

TWO-DIMENSIONAL FOURIER COEFFICIENTS IN WAVELENGTHS

BT

dqp

d13

d21

422

d23

d39

d3p

d33

0.001500

0.002100

-0.000900

0.004500

-0.000124

0.002578

-0.000039

-0.000250

-0.000928

TYPICAL ELEMENT IN THE SERIES: dmp SIN[(Gy - 0.1)(m)(2m|[SIN{(x + 0.5)(n)(2M
mn
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TABLE 8. - SUMMARY OF FEED SOURCE PARAMETERS

OPERATING FREQUENCY, GHZ . . » . . + . . . 10

FEED POLARIZATION. . . . . . . . .. y LINEAR
E-PLANE FEED PATTERN C0S%E(@) . . . qE = 17
H-PLANE FEED PATTERN Cosd¢e) . . . aH = 17
FEED LOCATION (FOCUS). METERS . . (0,0.1.0)

EDGE TAPER, dB . . . . . .« . « « ¢« « . -17




"
‘boresight direction. Three different focal fields cutoff (truncating)
amplitude levels, -10, -20, and -30 dB will be evaluated. Figure 45
shows a center cut plot of the focél region fields and also shows the
corresponding array areas (D1, D2, D3) for the given focal plane field
cutoff levels. Figures 46(a) to (c) presents rectangular feed array
geometries corresponding to the -10, -20 and -30 dB focal fields cutoff
levels respgctively. The element spacing and element pattern are the
same for all cases. The parameters describing the array elements are
presented in Table 9. The resulting compensated E-plane radiation
pattern are shown in Figs. 47(a) fo ) respectively. The calculated
compensated boresight diréctivity were 36.51, 34.7, and 32.3 dB
respectively. Note the sidelobe envelope was best compensated for the
-20, and -30 dB cases. The best compensated boresight direcfivity was
2.59 dB from the undistorted reflector with a single feed case.

In evaluating the effects of tapering on the incident plane
wave the compensating rectangular array configuration that corresponds
to the -30 dB focal fields cutoff level (Fig. (46(c)) will be selected.
The taper levels that will be examined are O, —9; -17, and -26 dB. For
each taper amplitude level a new set of feed array complex excitation
coefficients are computed. Figures 48(a) to (d) presents the
compensated E-plane radiétion patterns for the 0, -9, -17, and -20 dB
taper level case respective]y. The calculated boresight compensated
directivity were 38.87, 37.56, 36.51, and 32.12 dB respectively.

Notice that the best compensated boresight directivity occurs for the
0 dB. (Fig. 48(a)) taper, but this case also produced the worst

compensated sidelobe level envelopes. The sidelobe envelope is best
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46 Feed array geometry
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TABLE 9. - SUMMARY OF FEED ARRAY ELEMENT

PARAMETERS

OPERATING FREQUENCY, GHz . . . .
FEED POLARIZATION. . . . . . . .
'E-PLANE FEED PATTERN C0s%E(e) .
" H-PLANE FEED PATTERN cos@Hce) . .

PR [0
. y LINEAR

. .QgE=1
. qH =1
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(c) -30 dB focal field cutoff level case.

Fig. 47. - Concl.



126 _
compensated for an amplitude taper of -17 dB (Fig. 48(c)). For the

case of -9 dB taper a high sidelobe envelope was obtainedvand fdr the
'—26 dB taper good sidelobe level was achieved but with a lower
compensated boresight directivity. This result indicates that

tapering the incident plane wave provides a direct control on the
compensated sidelobe structure and also achieves a good boresight
compensated directivity (withing 1 to 3 dB of the undistorted boresight
directivity).

In the previous analy%is the receiving approach for
compenséting large scale surface errors has been‘demonstrated. The
next step is. to compare the receiving compensating technique with
results obtained by the other conjugate field matching approach (see
chapter 4): Let us consider the undistorted offset parabolic geometry
and a surface error profile shown in Figs. 49 and 50 respectively.

The parameters describihg the simulated surface error profile are
presented in Table 10. Figures 51 and 52 show the undistorted and .
distorted E-plane radiation patterns obtained with a feed element at
the focal point. Table 11 presents the parameters describing the feed
element. The antenna boresight directivity has been reduced to 38 dB
with the distortion. Let us consider the compensating array geometry
in Fig. 53. -The compensated E-plane radiation pattern using the
récéiving approach is shown in Fig. 54. The taper level of the
incident piane wave is -15 dB. The compensated E-plane radiation
pattern using the transmitting approach (see chapter 4) is shown in

Fig. 55. The transmitting approach assumes a uniform plane wave
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incident on the distorted reflector. The compensated directivity for
both approabhés were within 2 dB of the undistorted value. The major
differences occurred in the compensated sidelobe level envelopes. Note
the sidelobe level for the receiving approach were 3 to 5 dB Tower than
those produced by the transmitting approach. This again indicates that
amplitude the tapering of the incident plane wave have a direct control
on the compensafed sidelobe envelopes.

Considering the computational speed, the receiving approach was
fast and numerically efficient in computing the compensating feed array
coefficients. The receiving approath requires N steps for computing
the distorted reflector currents induced by the tapered plane wave. The
transmitting approach will require MxN steps, to calculate distorted
reflector currents induced by the M feed elements in the focal plane.
This makes the transmitting approach slowey and numerically inefficient.
For the case that has just been illustrated the receiving algorithm was
very fast requiring about 20 min of C.P.U. time about 1 hr of C.P.U.
time in an IBM 370.

The receiving approach for compensating large scale reflecfor
surface distortions was demonstrated and compared with other exciting
techniques. .The effects ofrtruncating the focal plane fields to a finite
amplitude leQel and the effects of the tapering the incident plane wave
in the receiving approach were investigated. The results shows that the
receiving approach was able to compensate sidelobe levels and also
provided a reasonably good compensated directivity (withing 1-3 dB). The
method also indicates computational ease and suggests its application in

an adaptive type of implementation involving large reflector antenna system.
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| TABLE 10. - SURFACE ERROR PROFILE

 PARAMETERS

YMAX
By = 0.5A
Ny = 0.7697
yMAX = 52.8 IN.

NLy)=Bya5PyWW-M&8q
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TABLE 11. - SUMMARY OF FEED ARRAY PARAMETERS

OPERATING FREQUENCY, 6HZ . . . . . . . . . .30
FEED POLARIZATION . . . . .. .... LINEAR
E-PLANE PATTERN Cc0S%Ece). . . . . . . QE = 20
H-PLANE PATTERN cos@). . . . . .. aH =20
FEED LOCATION (FOCUS), METERS . . . (0.0,3.35)

| EDGE TAPER, dB. . . .. .. ...... LN
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54 Compensated E-plane radiation pattern using the
receiving approach (DCFM)
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55 Compensated E-plane radiation pattern using the transmitting
transmitting approach (ICFM)
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CHAPTER 6
SUMMARY

6.1 Concluding Remarks

The reflector antenna surface distortion arised from thermal
effects can be adequately compensated by using an active phased array
feed. There are two approaches to design the array excitation
coefficients; the indirecf conjugate field matching (ICFM) discussed
in chapter 4 and the direct conjugate field matching (DCFM) in chapter 5.
The DCFM method produces the lowest compensated sidelobe and the ICFM
method produces the highest directivity. Due to its computational
ease (computational speed) DCFM lends itself to a simple realization
in hardware (if the distorted reflector surface is known at all time),
and may be very useful in an adaptive type implementation. This is
particularly true considering_the recent advances in MMIC feed array
technology, where each radiating element fn'the feed array can be
controlled independently to provide the compensating excitations
(amplitude and phase).

6.2 Suggestion for Future Work.

The compensation technique should be experimentally
demonstrated by using a distorted reflector with an MMIC feed array.
A detection scheme is necesary to obtain the distorted discrete surface
points as input to the compensation algorithm for any real time
application. The two algorithms can be used in an adaptive

implementation for compensating thermal distortion in a space
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environment. The method presented here can be extended for
nonparabolic surfaces, such as sphericél reflectors and should find
applications in antennas used in satellite commuhicétions, space

radiotelescopes, microwave power transmission and radiometers.
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APPENDIX A
POWER RADIATED BY_ANVARRAY FEED
The generalized feed array geometry is illustrated in Fig. A-1.
The feed position corresponding to the mth element is at (Xm»Ym»2Zm) and
its complex'curfent excitation is Ip. The radiated electric field
due to this element in the array can be expressed by,

P )4‘*_jKlr
mr

- ?;<e,¢> (A1)

where the vector function ?}<e,¢) defines the mth element bolarization
and far-field radiation pattern. This vector functjon may be
approximated by,v o | o L ' v
?;(e,¢)_='3UEm(e)(aej¢ cos ¢ + b sin ¢) + $UHm(e)(bco$ ¢.- aed¥ sin ¢)
| | ETW3

where o

Utm(e) E-plane péftern of the mth elemenf‘

UHm(®) H-plane pattern of the mth element.
Typically, the far-field element patterns may be approximated by a
(cos ©)0 function, i.e.,

UEm(®) = (cos ©)aE B (A.33)

, UHp(8) = (cos ©)aH o (A.3b)
The radiated far-fie1d of the feed array fs the product of the element

pattern given by A.1 and the array factor, i.e.,
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A-1 Geometry of the generalized feed array
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2 Mo +jKa o 7 | |

Earl) = > E ) Ie m (A.“4)
m=1

- .
where Em(r) is given by A.1 and

ﬁ‘=sinecos¢’x\+sinesin¢§+cose'z\ ~(A.53)
/\' Pl N\ .
Ph=xpg X+ yn ¥+ 2n2 (A.5b)

The total time-averaged radiated power of the array is given by,

1
P =
rad ZO

r/z [Zﬂ ?arg; . E’;;ng 2 sin 0 do dé (A.6)

0 0
where ar$£§ is the electric field radiated by the feed array gived

by Aldand Z = Vu /e =120 .
Substituting (A.4) into (A.6) we obtain

| M | ) w2 (2w | :
= *
Prag ™ 2 I Z, INTEGRAND (m,n,6,4)) do d¢
=1 n=1] ‘

0

0 _
(A.73)
where
v -
' . jKu e (p -’3)
INTEGRAND (m,n,0,4) = E;(r) . Eﬁ(r) e | m n‘ r2 sin © (A.7b)
Defining the power radiated as follows,
, M M .
. - *
Prad = m% ré'l Im;n Amn (A.8)

where Amn is given by the expression in the brackets of Eq. (A.73).

It can be shown that,
E (r) o E* (r) = 1= { (a2UE_(&)UE (8) + b2UM (e>UH*<e>)' coszb ¢
m n B r2 m n m n :

2

2 . . 2 .
+ 6) UEm(e)UEn(e) + a UHm(e)UHn(e)) sin. b

* * P
+ ab cos ¢((UEm(e)UEn(6) - UHn(e) - UHm(e)UHn(e)) sin 2¢} (A.9)
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substituting (A.9) into (A.7b), then the expression for Amn 1;

given by
- w/2 [2w 5 o ' 5
-— * %
Amn =3 (a UEm(e)UEn(e) +b UHm<e)UHn(e)) cos” ¢ +
0
0 0
2 . 2 e 12
+ (b 'UEm(e)UHn(e) + a UHm(e)UHn(e)) sin® ¢ + ab cos ¢ (UEm(e)UE;<e)
jKr_ (sin @ sin O cos (b -¢_)
- UHm(e)UH;(e)) sin 2 ¢yxe M mm mn
+ COS emn cos ©) '
sin 6 do d¢ : (A.10a)
where
2 2 2
*an il(xm - xn) + (ym - yn) + (zm - zm) (A.10b)
2 -2
0, = cos”’ ("'r (A.100)
mn
-1 Im = Yy \
¢ = tan —_— (A.10d)
mn Xn = X
With the use of the following integration formulas,
2" € cos (¢ - 6.)
e d¢ = 2r J (&) (A.11a)
0 o
2w
cosz N J £ cos (¢ - ¢c)
e dé = v J_ (E) = r cos(2 ¢EJ (¢)
. 2 o] 2
sin” ¢ ,
o)
(A.11b)

The result after ¢ integration is reduced to
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w/2 :
L * * 3
Amn =3 J . <UEm(6)UEn(6) + UHm(e)UHn(9)> JO(Krmn sin em.n sin ©)

o

jKr  cos & cos O m/2 .
x sin & e : de + (1 - Cy) (UE (8)UEX ()
o m n

JKrp ., cos 6 cos & .o

, N . . . mn
- UHm(e)UHn(e)> J2 (Krmn sin emn sin @) sin 9 e

(2-12a)

where

2

, 5
Co =1 + 2ab cos y sin 2 ¢mn + (@a" - b") cos 2 ¢mn (2-12b)



APPENDIX B
SPECULAR REFLECTION
For a given feed at point Py (x7,y7,27) and an observation |
point Pj (Xz,yé,ZZ) (Fig. B.1), a reflection point dr may exit on the
reflector surface <x,y,f(x,y)). The vectors

dj (X - xP) x+y-yp)y+(z-27)2 (B.1a)

d2

(X - X2) X +_(y -y y+ (x - x3) 2 (B.1b)
are the connecting vectors between P and O", and from O to P2,
respectively. A necessary condition for which the reflection points
must satisfy is that the total distance (d1 + d2) must be stationary,

i.e.,

y=0 and L, sdp -0 (8.2

(d] +d dy

Q.lQ_
>

2

after differentiation we obtain,

! ¢ 1 " o _
E; (x- x]) + (f(x,y) - z]) x * dz (x - xz) + (f(x,y) - 22)dx =0
(B.33)
L | if 1 df _
5; (y- y]) + (f(x,y) - z]) dy + dz (y - y2) + (F(x,y) - Zz’dy =0
(B.3b)

A root (x,y,z = f(x,y)) of the two nonlinear éqUations in

(B.3a) and (b) gives location of a reflection point. For a given point
Py and Py, there may be none, one, or more than one reflection point.
It may be shown that (B.3a) and (b) is equivalent to satisfying Snell's

law of refléction (Ref. 6).
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B.1 Geometry for the specular reflection calculation
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The system of Eqs. (B.3a), and (b) can also be satisfied if
Py, O, and Py are collinear Suich an unwanted root may be

eliminated by imposing an additional condition.

(X - X . X —'x2)2‘+'<y - Y . y - yz)z . (z - Z4 . z - 22)2 .-
g d, d d, 9 d,

(B.4)

where ¢ 1s a small positive number. One can preset e = 0.00001. A
root of (B.1) may or may not fall inside the boundary of the reflector.
Each root (x,y,f(x,y)) must be checked if is inside the desired

| boundary.
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APPENDIX C
PRINCIPAL RADII OF CURVATURES OF THE REFLECTED WAVEFRONT
Differential Geometry (Ref. 83) forms the basis of the

computation of principal curvatures_of'the-reflected wavefront

r
)

are chosen to be (Fig. C-1)

r
(R],R

~ ; X ; ;(z -2,) - ;(x-— Xy)
X} = |= Ai3 = 1 ] (C,
y x X| 2 2
3 Va2t oo xph
~i T
~ Xq X X
‘= 3] (.
Xr x x. :
3 1
- XX = X)) + Yy = y )+ 2(z = 20)
i 1 1 1
X = (C.
3 7 2 7
\/(x - x]) + (y - y]) + (2 - z])
where (x,y,z) are the coordinates of the reflection point 0". The
reflected orthonormal unit base vectors are given by
“r i o7
Xy = Xy - 2(x] en)n (C.
“r i ~ 7
Xy = Xy = 2(x2 ®en)n {C.
- ;(x, - X) + g(y -y + ;(z -2)
X, = < 2 - 2 (C.

r
3 7 7 2
\/((x2 - x)" + (y2 -y o+ (z2 -}z) )

The vectors (C.2a) to (c¢) are chosen to-satisfy a left-hand system,

~ ~

r r

The three orthonormal base vector of the incident ray bundle

1a)

1b)

1c)

2a)

2b)

2¢)

i.e., Xy % xE = -X3. This selection is invariant with respect to the
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r

reflected curvatures (R], R2). “The three orthonormal base vectors of

the reflector surface at o' are chosen to be

xS = (C.3a)

S S
3 1 _

Xy = = s (C.3b)
3 1

S on- X y (C.30)
3 R
\/(f + fS 4+ '
X
where
_ 4 fy |
fx = I (C.3d)
d fix,y) _
f =" .
y = dy (C.3e)
= f(x,y) reflectro surface function (C.3F)

Let define the following parameters be defined,

i ~i S :
Pmn =X, ® X, m= 1,2,3, n=1,2,3. (C.8

~

Substituting Eqs. (C.1a) to (c¢) and (C.3a) to (c¢) into (C.4) we obtain,

; (z - z]) - f (x - x])

" s
V@« i Jux - xp?e @ - 2pd

i -f (x - x1) + f (z - 21))

12 °©
\/A(] + fx) -\/[(X - X]) + (2 - 21)2]
-(x - x )(y—y)—f(y—y)(z-z)

\/(1+f) \/{x—x) (y—y) +[(z—1) +(><-x)] +ly-y) (Z—Z))

(C.5¢)

P (C.53)

(C.5b)
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ff(x—x)(y—y)+(l+f)[(z—z) +(x—x)]—f(y-y)(z-z)

\/A(l+g) \/Cx—x) (y—y]) +[(z—z) +(x—x)] +(y-y‘2(z-z)}

(C.5d)
i1 '
P33 a1 A(f (x - x]) + fy(y - y]) - (z - z])) (C.5e)
{
where
2 2 -1/2 '
= (fx + fy + 1) (C.5F)

Let the 2x2 matrix P' be defined for the first four parameters in
Eq. (C.5a) to (d). If we define another set of parameters by the

the following definition,

Pl %" e%> m=1,2,3 and n=1,2,3 (C.6)

Ar AS
mn - oTm n
it can be shown that
r i
P]] = P]] (C.70)
P g i
P]2 = P]2 (C.7b)
r i
P2] = P21 (C.7¢0)
- i
P22 = P22 (C.7d)
| The curvature matrix of'incident ray bundle is given by
o d] 0
o (C.8)

The curvature matrix of the reflector surface at the reflecting point

is given by



166

e0(G - F2/E)  ACeF - fE)/E

Q- ) ) | (C.9)
ACeF - fED/E AT(gE - 2fF + ef~/E)
where

2 2
E=l+f, F=ff , G=14+f

e = - Afxx , f=- Afxy , g = Afyy

2 2 2

F . d™fix,y) F oo d f(x,y) P d™f(x,y)
XX dx2 Xy dx dy yy dyz

The desired reflected curvature matrix Gr may be computed from the

. following equation

=r =i i
o =0 +2 Py,

51.T,-1 1

«8H D! gy (C.10)

in general Gr is a 2x2 matrix, with elements denoted by 'Q]].
Qz» Oy and Qyp-
Then radii of curvature of the reflected wavefront is given by the

following expression,

] ) 2
=3 {(Qn ¢ Q) =\ Q@ + Q0 - 4 () 0y - 012021’}

(C.11)

=, |-
N
3
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APPENDIX D
FOCAL PLANE FIELDS COMPUTATION BY THE RECIPROCITY PRINCIPLE
It is required to calculate the focal plane electric field at
pont 1 produced by an incident uniform plane wave (Fig. (D-1) from an
observation direction (eBEAM’¢BEAM)’ It is assume that the uniform
plane wave 1is generated by a dipole source located at point 2 in the
far 'field of the distorted reflector antenna. The dipole source at

point 2 has the following current. distribution,

> - > > .
32<r) =u, 8 (F-F) EEEORD

where GZ is a unit vector describing the polarization of the dipole.
In the neighborhood of any distorted reflector surface point the

incident field is a local uniform plane wave. This uniform plane wave

can be described by,
(D.2)

where

~ ~

* ~
r=XXxX+yy+2zz

(x,y,2) any point on the distorted reflector surface

R =K (sin© cos & x + sin © sin.¢ ; + €OS © 2)
6= Ogpay  and & = dgppy

K =2 n/)

the received focal plane field at point 1 is denoted by,
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e ey, AP (D.3)

Let us now assume that the diétorted reflector is being
considered in the transmitting mode with a dipole source 3? located
at point 1 in the focal plane of the reflector (Fig. D.2). The dipofe
source at point 1 have the following current distribution

ES

L -u s -t (0.4
where G} is a unit vector describing the transmitting polarization
of the dipole source in the focal plane. MWith this dipole as the

radiating element, the distorted antenna produces a far zone electric

field at point 2 denoted by

2 tran 2 tran ,»
g Gy, A, (Fp) (D.5)

The Lorentz reciprocity theorem relates the transmitting fields
on Eqs. (D.3) and (D.5) with the respective sources described by Egs.
(D.1) and (D.4) respectively. Mathematically the reciprocity principle

can be expressed as follows,

A

2 fP trans trans fP
R - & . R, ] ©ds =
NSL
Nib
(2 fP trans _- trans _ 2 fP_
J _zl ..32 - tz . j] + ﬁz o« M, - ﬁ] . Mz] dv (D.6)
v

for the particular cése under consideration one can use the following

assumptions,

X r

2 fP ] tran
My=M =0 and A" =--—5—, 7 - -

E 1 Eztran « ;
z
(D.7).
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D.2 Illumination of the reflector surface by a dipo]e‘source on
the focal plane
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~under this assumptions the following result is obtained.

0- J” [E]fp o3, - g,tran, 3]] dv (D.8)

Vv
substituting Eq. (D.1) and (D.4) into Eq. (D.8) yields the final result,

fP = tran ~
LR

2 * u, (D.9

This result shows that by reciprocity, the focal plane fields
produced by an incident uniform plane wave on the distorted reflector
surface can be obtained indirectly from the far zone electric field
generated by a dipole source at a specified location in the focal

plane of the distorted reflector.
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