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Institute for Computer Applications in Science and Engineering 

NASA Langley Research Center 

Hampton, VA 23665 

ABSTRACT 

The scaling properties of plane homogeneous turbulent shear flows in a rotating frame 

are examined mathematically by a direct analysis of the Navier-Stokes equations. It is 

proven that two such shear flows are dynamically similar if and only if their initial di

mensionless energy spectrum E*(k*,O), initial dimensionless shear rate 8Ka/ea, initial 

Reynolds number Kg/vea, and the ratio of the rotation rate to the shear rate 0,/8 are 

identical. Consequently, if universal equilibrium states exist, at high Reynolds numbers, 

they will only depend on the single parameter 0, / 8. The commonly assumed dependence of 

such equilibrium states on 0,/8 through the Richardson number Ri = -2(0,/8)(1- 20,/8) 

is proven to be inconsistent with the full Navier-Stokes equations and to constitute no more 

than a weak approximation. To be more specific, Richardson number similarity is shown to 

only rigorously apply to certain low-order truncations of the Navier-Stokes equations (i.e., 

to certain second-order closure models) wherein closure is achieved at the second-moment 

level by assuming that the higher-order moments are a small perturbation of their isotropic 

states. The physical dependence of rotating turbulent shear flows on 0,/8 is discussed in 

detail along with the implications for turbulence modeling. 

This research was supported by the National Aeronautics and Space Administration under NASA Con
tract No. NASl-18107 while the authors were in residence at the Institute for Computer Applications in 
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 
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1. INTRODUCTION 

A variety of geophysical and engineering systems of interest contain turbulent shear 

flows which evolve within a rotating framework (e.g., ocean currents, atmospheric boundary 

layers, turbomachinery, etc.). Consequently, it is essential that the effects of rigid body 

rotations on turbulent shear flows be understood if such physical systems are to be modeled 

properly. In order to gain insight into these complicated systems, a variety of researchers 

have considered the idealized problem of plane homogeneous turbulent shear flow in a 

steadily rotating frame (see Bradshaw!, Ferziger and Shaanan2 and Bardina, Ferziger, and 

Reynolds3
). This work, which is somewhat empirical in its orientation since it is based 

on turbulence modeling, has shed some important new light on the physical structure 

of rotating turbulent shear flows. However, several fundamental questions related to the 

scaling of rotating turbulent shear flows remain unanswered. To be specific: (a) which 

dimensionless parameters must be invariant to ensure the similitude of two homogeneous 

turbulent shear flows in a rotating frame, (b) when will equilibrium states exist that 

depend only on the ratio of the rotation rate to the shear rate 0,/8, and (c) when is this 

dependence on 0,/8 exclusively through the Richardson number Ri = (20,/8)(1 - 2o'/8)? 

The answers to such scaling questions playa crucial role in the construction of turbulence 

models that have the correct physical behavior in rotating frames. The motivation for the 

present paper is therefore to derive scaling laws for homogeneous turbulent shear flows in 

a rotating frame based on a direct analysis of the N avier-Stokes equations. 

It will be shown that two homogeneous turbulent shear flows in a rotating frame are 

dynamically similar if and only if their initial dimensionless energy spectrum, shear rate, 

and Reynolds number (all scaled by the initial turbulent kinetic energy and dissipation 

rate) are identical in addition to the ratio of the rotation rate to the shear rate 0,/8. 

It then follows that if an equilibrium structure exists at high Reynolds numbers which 

attracts all initial conditions (Le., a universal equilibrium), its turbulence statistics will 

be determined by a single parameter - the ratio of the rotation rate to the shear rate 

0,/8. We will examine the circumstances under which the dependence of such equilibrium 

states on 0,/8 collapses to Richardson number similarity. It will be proven that Richardson 

number similarity does not hold for general solutions of the N avier-Stokes equations for 

homogeneous turbulent shear flow in a rotating frame. However, it will be demonstrated 

that low order truncations of the Navier-Stokes equations such as certain second-order 

closure models (which are obtained by assuming that third-order moments are a small 

perturbation of their isotropic state) do exhibit Richardson number similarity with respect 

to the turbulent kinetic energy, dissipation rate and Reynolds shear stress. This result 

has important implications for the modeling of rotating turbulent shear flows where it has 
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been a common practice to modify simpler turbulence models by the inclusion of an ad 

hoc Richardson number dependence to account for rotations4- 6• The broader implications 

of these results for the modeling of rotating turbulent shear flows will be discussed briefly 

in the last section. 
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2. DIMENSIONAL INVARIANCE OF ROTATING TURBULENT SHEAR 

FLOWS 

We will consider the problem of homogeneous turbulent shear flow in a rotating frame 

for a viscous incompressible fluid (see Figure 1). The governing equations of motion for 

this flow are the Navier-Stokes and continuity equations given by7 

Bv 2 - + v . \7v = -\7 P + v\7 v - 2f2 x v 
Bt 

\7·v=O 

(1) 

(2) 

where v is the velocity field, P is the modified pressure (which includes the centrifugal 

acceleration potential), v is the kinematic viscosity of the fluid, and 

f2 =Ok (3) 

is the rotation rate of the reference frame relative to an inertial framing. As in the usual 

treatments of turbulence, the velocity field v and pressure P are decomposed into ensemble 

mean and fluctuating parts as follows 

v = v + u, P = P + p. (4) 

For those turbulence statistics which are homogeneous, the ergodic hypothesis can be 

invoked and ensemble averages can be replaced by spatial averages. The spatial average 

of a flow variable f is defined as follows8 

l(t) = lim VI r f(x, t)d3 x. 
V->oo lv 

For the plane turbulent shear flow under consideration, 

BVi 

BXj (
0 8 0) 
000 
000 

or, equivalently, in Cartesian tensor notation 

BVi 
- = 8Dl"D2" B ' J Xj 

(5) 

(6) 

(7) 

where 8 is the shear rate and Dij is the Kronecker delta. It is a simple matter to show that 

the mean velocity field given by "ih = 8DliD2jXj is consistent with the Reynolds equation 

and mean continuity equation 

Bv - 2 - + v· \7v = - \7 P + v \7 v - 2f2 x v 
Bt 
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\7·y=O (9) 

which are obtained by taking the ensemble mean of Eqs. (1)-(2) and making use of the fact 

that the divergence of the Reynolds stress tensor 'Tij -UiUj vanishes since the turbulence 

is homogeneous. Specifically, Y identically satisfies the continuity equation (9) and the 

Reynolds equation (8) if 

p = -nSy2 + constant. (10) 

The fluctuating velocity u is a solution of the momentum and continuity equations 

given by 
au _ _ 2 
- + v . \7u = -u' V'u - u· \7v - V'p + vV' u - 20 x u 
at 

\7·u=O 

(11) 

(12) 

which are obtained by introducing the decomposition (4) into (1)-(2) and then differencing 

the resulting equations with (8)-(9). For the rotating homogeneous turbulent shear flow 

under consideration, equation (11) takes the component form 

aUi aUi aUi ap ( ) 2 - + SDklDj2Xj- = -Uk- - - - SDilDk2 - 2nC3ik Uk + v\7 Ui 
at aXk aXk aXi 

(13) 

where Cijk is the permutation tensor. 

Now, we will non-dimensionalize these equations by introducing the dimensionless vari

ables 
Ui 

u~ = -1' 
t KJ 

Pco 
*- --2' P - SKo 

XiCO * - --3 Xi - _ 
KJ 

t* = St 

(14) 

(15) 

where Ko and co are, respectively, the initial turbulent kinetic energy and dissipation rate. 

It should be noted that since the turbulence is homogeneous, the turbulent kinetic energy 

K and dissipation rate C defined by8 

1 
K(t) = 2UiUi, C(t) = aUi aUi 

v----
aX· ax· J J 

(16) 

are functions of time alone. The introduction of (14)-(15) into (12)-(13) yields the dimen

sionless equations of motion 

au; * au; co * au; ap* * * co 1 ,,*2 * -- + Dk1D·2X.-- = ---uk-- - -- - A·kuk + ---- v u· 
at* J J aXk SKo aXk ax; t SKo Reo t 

aUk = 0 
axic 
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where K2 
R - 0 eo--

Veo 

Ai. ~ ouo., - 2(0/ 8)",;. ~ ( 20j 8 
1- 20/8 0) 

o 0 
o 0 

The equations of motion (17)-(18) must be solved subject to the initial condition 

u* (x*, 0) = utO) (x*) 

(19) 

(20) 

(21) 

at time t* = O. We will restrict our attention to the case where the turbulence is initially 

isotropic - the same initial condition that has been used in previous physical and numerical 

experiments on homogeneous turbulent shear flows (c.f., Champagne, Harris, Corrsin9
, 

Tavoularis and Corrsin10
, Rogalloll

, and Bardina, Ferziger, and Reynolds3
). Given an 

isotropic turbulence, the hierarchy of turbulence statistics are derivable from the energy 

spectrum E(k, t). For example, the turbulent kinetic energy K and dissipation rate care 

given by 

K(t) = fooo E(k, t)dk 

e(t) = 2v fooo k2 E(k, t)dk 

and the skewness 8 k in the quasi-equilibrium range12 takes the form 

8 _ -3V3Q roo k4E(k)dk 
k - v "J 0::;0-----

7 [fooo k2 E(k)dk] ~ 

(22) 

(23) 

(24) 

Hence, if we are only interested in the time evolution of the Reynolds stress tensor 'Tij and 

turbulent dissipation rate e, it is reasonable to believe that we need only be concerned with 

initial conditions on the fluctuating velocity u*(x*, 0) through the initial energy spectrum 

E*(k*,O). These initial fields are related by 

E* (k*, 0) = 412 k*2 /00 Q;i(r*)e-ik*.r* d3r* 
7r -00 (25) 

where 

Q;j(r*) _ ui(x*, O)uj(x* + r*, 0) (26) 
3 

is the dimensionless two-point velocity correlation tensor and k* = kKg / e is the dimen-

sionless wavenumber. 

Thus, it has been demonstrated that two homogeneous turbulent shear flows in a 

rotating frame (evolving from an initially isotropic state) are dynamically similar in a 

statistical sense if the following flow parameters are identical: 
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• the initial dimensionless shear rate 8 Ko/ co 

• the initial dimensionless energy spectrum E* (k*, 0) 

• the initial Reynolds number K6/vco 

• the ratio of the rotation rate to the shear rate 0,/8. 

When these four parameters are the same for two different homogeneous turbulent shear 

flows in rotating frames, their dimensionless Reynolds stress tensor rtj and dissipation rate 

c* (as well as other moments constructed from u*) will evolve identically with respect to 

the dimensionless time t* = 8t. Consequently, if universal equilibrium states exist (which 

are solutions for t ---t 00 that are completely independent of initial conditions), they will 

only depend on a single parameter - the ratio of the rotation rate to the shear rate 0,/8. 

In the next section, we will explore when such universal equilibrium states depend on 0,/8 

through the Richardson number -2(0,/8)(1- 20,/8). 
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3. RICHARDSON NUMBER SIMILARITY 

Bradshaw! presented an analogy between rotating and stratified turbulent flows. In 

that study, he defined a Richardson number for rotating shear flows as follows 

° -20(8 - 20) 
R1,= 8 2 

(27) 

This is analogous to the Richardson number for density stratified flows in that (27) serves 

as the square of the Brunt-ViiisiWi frequency WBV for small amplitude inertial oscillations 

induced by the application of a rotation to shear flow. Although the analysis leading to 

Eq. (27) is straightforward, we feel that it would be instructive to include it here since 

Bradshawl did not provide the details. If we consider small homogeneous perturbations of 

shear flow of the form 

v = 8y i + u(t) 

P = -08y2 + p(t) 

(28) 

(29) 

it is a simple matter to show, by substituting Eqs. (28)-(29) into (13), that u a solution 

of the equation 

Uk = -AklUl (30) 

where Akl - 80kl0l2 - 20E:3kl. Equation (30) has a general dimensionless solution of the 

form 
u * - a eiVRl t" + -iVRl t" 1 - 1 a2e 

u* - a' eiVRl t" +. , -iVRl t" 
2 - 1 a2e 

(31) 

(32) 

where ai and a~ are related to the initial conditions. Hence, the Brunt-Viiisiilii frequency 

for this perturbation of homogeneous shear flow in a rotating frame is given by 

WBV = v'Iil (33) 

as argued by Bradshaw. This motivated Bradshawl to propose a modification of the mixing 

length, to account for rotations in turbulent shear flows, that is of the form 

£ 
"0 = 1- f3R o 

{..o 1,. 
(34) 

In (34), £ is the mixing length with rotations, £0 is the mixing length in the absence of 

rotations, and f3 is an empirical constant. Various investigators in the intervening years 

have modeled rotating turbulent flows with a mixing length of the same form as (34) (c.f., 

Lezius and Johnston\ Launder, et a1.5
, and Howard, et a1.6

). When such a length scale is 

used in a turbulent eddy viscosity model, the Reynolds shear stress, as well as the turbulent 
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kinetic energy and dissipation rate, will exhibit Richardson number similarity. Hence, it is 

critical to know in what sense such similitude is consistent with the Navier-Stokes equations 

if we are to properly evaluate these turbulence models. 

We will now demonstrate that Richardson number similarity is not consistent with 

general solutions of the Navier-Stokes equations. In order to accomplish this task, we will 

eliminate the pressure from equation (17) by taking the divergence of that equation and 

making use of the constraint (18). This yields the Poisson equation 

\7*2 * __ ~ au~ au; _ (~ s- 0 ) au~ 
P - SK a * a * A;k + ;l k2 a * o Xi X k Xi 

(35) 

which has the solution 

* 1 100 
1 [eo au~ au; * au~l 3 * P = - ----+E-k - d z 

47r -00 Ix* - z*1 SKo azi aZk ; 8zi 
(36) 

in an unbounded flow domain where 

Elk A;k + Oil Ok2 

( 

0 2 - 20,/S 
20,/S 0 

o 0 ~) 
(37) 

Hence, u* is a solution of the integro-differential equation 

au~ * *; 
. aUi + OklOj2 X j ax* 

at* k 
-~u* au; _ A~ u* ~_I_\7*2u~ 

SKo kax~ tk k + SKoReo ; 

~~/OO 1 [~au~ au~ + B* au~l d3z* 
47r ax; -00 Ix* - z* I S Ko az'l azic fJc az'l 

(38) 

Since the eigenvalues of A;j are ±iVJ[1, and the eigenvalues of Eii are ±iV Ri - 20,/ S 

there exists no basis relative to which the dependence of (38) on 0,/ S can be collapsed to a 

Richardson number dependence. Hence, Richardson number similarity does not follow from 

the full Navier-Stokes equations. The recent large-eddy simulations of Bardina, Ferziger, 

and Reynolds3 were the first to cast grave suspicions on such Richardson number scaling. 

In figure 2, results of these large-eddy simulations for homogeneous turbulent shear flow 

in a rotating frame are shown for 0. / S = 0 and 0, / S = 0.5 - the two values of 0, / S 

which correspond to a Richardson number Ri = O. Clearly, the turbulent kinetic energy 

and dissipation rate associated with these two cases are quite different and thus indicative 

of a violation of Richardson number similarity (the initial conditions for both flows were 

identical) . 
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We will now proceed to show that certain low-order truncations of the Navier-Stokes 

equations do exhibit Richardson number similarity. Second-order closure models will be 

considered wherein the infinite hierarchy of moments obtained from the Navier-Stokes 

equations are truncated at the second-moment level by modeling the higher-order moments. 

This second moment level consists of the Reynolds stress transport equation 

iij = q)ij - AikTkj - AjkTki 

where Tij - -UiUj is the Reynolds stress tensor and q)ij given by 

.if.. (aUi aUj)· aUi aUj '¥ij = -p -- + -- + 2v----
aXj aXi aXk aXk 

(39) 

( 40) 

is the sum of the pressure strain and dissipation rate correlations. Equation (39) (which is 

not a closed system for the determination of Tij) is obtained by taking the ensemble mean 

of the symmetric part of the product of equation (13) with Uj . . Closure can be achieved 

by assuming that q)ij is a functional of the variables T, V'\7 and c as follows in an inertial 

frame l 

q)ij = q)ij(b, V'\7, K, c) ( 41) 

where bij = -(Tij + ~KOij)/K is the anisotropy tensor. Since for isotropic turbulence, q)ij 

is given by8 

2 
q) -- = -cOiJ-' tJ 3 ( 42) 

the physical motivation for (41) is clear: anisotropies in q)ij arise from the mean velocity 

gradients Vv which are then reflected in nonzero values of b. For small perturbations of 

isotropy, we have 

b = ob, V'\7 = o(Vv) 

To the first order in ob and o (V'\7) , q)ij is given by 

(
aq)--) (aq)--) q)ij(b, Vv, K, c) = (q)ij)O + a~J o· ob + av; o· o(V'\7) 

(43) 

2 (av- avo) 
3COij + clcbij + C2

K ax; + ax: 

where (-)0 denotes a function evaluated at b = 0, Vv = 0 (i.e., for the state of isotropy) 

and Cl and C2 are dimensionless constants. Equation (43) is obtained by making a Taylor 

expansion about the isotropic state (see the Appendix). The modeled equation for q)ij is 

tThe reader should note that in a rotating frame oVi/oxi must be replaced by OVi/oxi + f:kiio'k (see 
Speziale12) • 
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precisely the same as that used in the Rotta-Kolmogorov model13 if we take Cl = 3.21 and 

C2 = -0.112. 

As an alternative to this approach, the pressure strain and dissipation rate correlations 

can be modeled separately. Since dissipation is manifested primarily at the small scales 

(which are not far removed from isotropy at high Reynolds numbers) the dissipation rate 

correlation can be approximated by its isotropic form 

aUi aUj 2 
2v---- = -COij. 

aXk aXk 3 
( 44) 

The pressure strain correlation vanishes for isotropic turbulence and for homogeneous 

turbulence can be shown to be of the form (see Shih and Lumley14) 

(
aUi aUj) a'iIk 

p -+-- =~j+Mijkf.--
aXj aXi aXf. 

(45) 

in an inertial framing where ~j(t) and Mijkl(t) are functionals of the energy spectrum 

tensor Eij(k,t) over wave number space. It can be assumed that (see Shih and Lumley14) 

Rij = ~j(b,K,c) 

Mijkf. = Mijkf.(b, K, c) 

(46) 

( 47) 

For small anisotropies, (46)-(47) can be expanded in a Taylor series which, to the first 

order in b, yields the following expression for the pressure strain correlation in a rotating 

frame15,16: 

(
BUi aUj) 

-p -+-
aXj aXi ( 

a'iIi a'iIj ) --
C1cbij + C2K aXj + aXi + C3K(bik S jk + bjkSik 

(48) 

-~bkf.Skf.Oij) + C4K(bikWjk + bjkWid 

where 
- 1 (a'iIi a'iIj ) - 1 (a'iIi a'iIj ) 
Sij = 2" aXj + aXi ' Wij = 2" aXj - aXi + CmjiOm ( 49) 

and we have made use of the fact that the pressure strain correlation is traceless and must 

vanish in the limit as b, Vv, and 0 go to zero. If we take C 1 = 1.8, C 2 = -004, C3 = -0.6, 

and C4 = -0.6, the Launder, Reece, and Rodi11 model is obtained. 

When closure relations for q,ij of the general form (41) are substituted into (39), closure 

is achieved once a modeled transport equation for c is provided. For high Reynolds number 

turbulence that is homogeneous, the exact transport equation for c takes the form11 

Dc 7171' au· aUk a 2u· a 2u· _ = -2v_'_t __ 2V2 , __ t 
Dt aXk aXe aXe aXkaXe aXkaXf. 

(50) 
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It can be shown that the lowest-order model for (50) is of the form 

Dc c c2 

Dt=CelKP-Cd K 
(51) 

where P _ rij8vi/8xj is the turbulence production and Gel and Ge2 are dimensionless 

constants (see Lumley18 and Launder, Reece, and Rodi17). Equation (51) is obtained by 

assuming that the higher-order correlations on the right-hand-side of (50) are functions of 

b, V'v, K, and c which are expanded in a Taylor series to the first order in b (c and K merely 

set the length and time scales for dimensional consistency). For the Rotta-Kolmogorov 

model,§ Gel = 1.8 and Ge2 = 2.0 whereas for the Launder, Reece, and Rodi Model, 

Gel = 1.45 and Go2 = 1.90. When (51) is solved in conjunction with (39) and a model 

of the form of (41), a closed system of equations for the determination of the Reynolds 

stress tensor and the turbulent dissipation rate are obtained. This constitutes a low order 

truncation of the hierarchy of moments of the Navier-Stokes equations (achieved at the 

second moment level) by assuming that higher-order moments are a small perturbation of 

their isotropic state. 

Equation (39) can be vvritten in the alternative dimensionless matrix form 

i* = <1>* - A*1* -,,* A*T (52) 

where '(* = '1/ K o, <1>* = <1>/ K o8 and A *T denotes the transpose of A *. If we introduce the 

variable 

'1** = A *'1* + ".* A *T, (53) 

then (52) can be written in the alternative form 

. ** -"'** A* ** **A*T r ='¥ - '1-'1 (54) 

where 

<1>** = A*<1>* + <1>* A*T (55) 

Equation (54) is obtained by adding the two equations that result from the pre-multiplication 

of (52) with A* and the post-multiplication of (52) with A*T. Since, 

it follows that 

A * = [ 0 1 - 20/
8 1 

20/8 0 

1** = [2(1 - 20/8)r;2 

r* d 

r* 1 
4(0/ :)Tj, 

(56) 

(57) 

§The Rotta-Kohnogorov model is actually based on a transport equation for the length scale which, for 
homogeneous turbulence, can be converted to a transport equat~on for e of the form (51). 
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[ 

(1 - 20'18)7,i -2Ri 7;2] 
A*T** = T**A*T = 

-2Ri 7;2 20,18 7d 

where 

7J = (1- 20,18)7;2 + 20,187;1 

Taking the trace of (54) and dividing by two we obtain the equation 

.* 1 i!i.** * 
T12 = -tr ~ - 7d 

2 

whereas the 1,2 - component of (54) yields the equation 

.* i!i.** 2R' * Td = ~12 - '1, T12 • 

(58) 

(59) 

(60) 

(61) 

Equations (60)-(61) must be solved in conjunction with the turbulent kinetic energy and 

dissipation rate equations given in the dimensionless form 

co * • * - c K* = 712 - 8K
o 

(62) 

*2 c* co c 
E;* = Ce1 K* 7;2 - Ce2 8 Ko K* (63) 

where K* = KI Ko and c* = c/co. The system (60)-(63) is solved subject to the initial 

conditions 

K*(O) = 1, 

7;2(0) = 0, 

c*(O) = 1 

2 
7;(0) = -3 

(64) 

(65) 

Hence, for a given initial value of col8Ko, (60)-(63) will yield solutions for K*, c*, 7;2 and 

7,i which exhibit Richardson number similarity provided that 

tr<I>** = f( T;2' 7J, K*, c*, col 8Ko, Ri) 

<I>~; = g(7;2' 7J, K*, c*, col 8 K o, Ri) 

(66) 

(67) 

where f and g are arbitrary functions that need only be sufficiently smooth. For the 

Rotta-Kolmogorov model, 

** co c* * * 
tr<I> = - 2C1 8K

o 
K* 712 + 2C2K (68) 

<I>** - ~~ * - c ~~(~K* *) 12- 3 8Ko
c 18KoK* 3 +7d (69) 
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which satisfies (66)-(67). Hence, the Rotta-Kolmogorov model exhibits Richardson number 

similarity. However, in the Launder, Reece, and Rodi model, 

'" (4 '" * ) eo e '" T. '" '" 711 722 -2C1----712 + 2C2 K - 2C3K 1-+ - + -
SK K'" \3 K* K* 

o '" '" 
(

1"11 1"22) + 2C4 (1 - 20/ S) K* - K'" 

tr ~"'* 
(70) 

n..** 2 co '" C eo e'" (2 '" "') 1 '" (40) ( 20) '" 
'J.'12 = 3" SKo e - 1 SKo K'" 3"K + 1"d - 3C31"12 - C4 1- S 1- S 1"12 (71) 

which clearly violates (66)-(67). Consequently, the Launder, Reece, and Rodi model vio

lates Richardson number similarity. In figure 3, computed results for the time evolution of 

the turbulent kinetic energy is shown for a Richardson number Ri = 0 (which corresponds 

to the two dimensionless rotation rates of O/S = 0 and O/S = 0.5) for the second-order 

closure models considered in this study. Consistent with the proofs already presented, 

the Rotta-Kolmogorov model yields the same results for both cases whereas the Laun

der, Reece, and Rodi model yields results that are dramatically different (and which, in 

comparison to the large-eddy simulations, deviate too strongly from Richardson number 

similarity). Both the Launder, Reece, and Rodi model and the Rotta-Kolmogorov model 

predict a universal equilibrium for the dimensionless shear rate S K / c and anisotropy ten

sor bij in the limit as t -+ 00. These results are shown in Table 1. Clearly, the results 

obtained from the Rotta-Kolmogorov model exhibit Richardson number similarity whereas 

those obtained from the Launder, Reece, and Rodi model do not. 

Finally, we would like to comment in more detail on the asymptotic long time be-

havior of the Rotta-Kolmogorov model which constitutes the lowest-order second moment 

truncation of the N avier-Stokes equations. It can be shown that for dimensionless time 

t'" » 1, the Rotta-Kolmogorov model yields solutions such that (see Speziale and Mac 

Giolla Mhuiris19) 

K"'(t"') ~exp[l(b12)OO+ (s~)J t"'] 

e*(t*) ~ exp [I (b12 ) 00 + (S~) J t"'] 
(72) 

(73) 

for intermediate rotation rates -0.11 < O/S < 0.61. For values of O/S outside of this 

range, the flow undergoes a relaminarization (Le., K and e -+ 0 as t -+ (0). In figure 4, 

the time evolution of the turbulent kinetic energy computed from the Rotta-Kolmogorov 

model is shown for rotation rates in both characteristic regimes (Le., for 0/ S = 0.25 in the 

unstable regime and for O/S = 0.75 where a relaminarization occurs). It is interesting to 

note that the existence of an unstable flow regime, at intermediate rotation rates, where 

13 



there is an exponential growth in time of the turbulent kinetic energy and dissipation rate 

has been argued based on alternative models (see Bertoglioll , Rogallo20, and Tavoularis21). 

Furthermore, the Rotta-Kolmogorov model predicts the existence of universal equilibrium 

states in this unstable regime where the anisotropy tensor and dimensionless shear rate 

approach the values of (bij)oo and (SKje)oo which depend only on njB through the 

Richardson number19 - a result which is a crude approximation of numerical simulations 

of the Navier-Stokes equations3• 
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4. CONCLUSION 

Conditions for the dynamic similarity of homogeneous turbulent shear flows in a rotat

ing frame have been obtained based on a direct analysis of the Navier-Stokes equations. 

It was proven that the dimensionless parameters which established similitude are the ini

tial energy spectrum E*(k*,O), the initial shear rate SKojeo, the initial Reynolds number 

K5!veo, and the ratio of the rotation rate to the shear rate nj S. It was proven that the 

commonly assumed dependence of the Reynolds stress tensor and dissipation rate on nj S 

through the Richardson number Ri = -2(nj S)(1 - 2nj S) is not a rigorous consequence 

of the Navier-Stokes equations. In fact, only the lowest-order second-moment truncation 

of the Navier-Stokes equations (Le., the Rotta-Kolmogorov model) exhibits Richardson 

number similarity with respect to the turbulent fields T;2' Td, K*, and e*. The second mo

ment closure of Launder, Reece, and Rodi deviates quite strongly from Richardson number 

similarity. 

The introduction of an ad hoc Richardson number dependence in the length scale for 

a one equation turbulence model can only yield a crude approximation of the turbulence 

structure for rotating shear flows. However, the commonly used turbulence models tend to 

be so empirical in nature that the errors introduced in making the assumption of Richard

son number similarity may be comparatively unimportant. There is, of course, a need 

to develop turbulence models which can more accurately predict the turbulence structure 

in rotating turbulent flows. We believe that such improved models should be based on 

physically motivated modifications of the Reynolds stress and dissipation rate transport 

equations, which rationally account for rotational strains, rather than on the introduc

tion of an ad hoc Richardson number dependence. The development and testing of such 

improved turbulence models will be the subject of a future paper. 

15 



REFERENCES 

1p. Bradshaw, J. Fluz"d Mech., 36, 177 (1969). 

2J. H. Ferziger and S. Shaanan, Phys. Fluz"ds, 24, 1923 (1981). 

3J. Bardina, J. H. Ferziger, and W. C. Reynolds, Stanford Unz"versz"iy Report TF-19, (1983). 

4D. K. Lezius and J. P. Johnston, J. Fluz"d Mech., 11, 153 (1976). 

5B. E. Launder, C. H. Priddin, and B. 1. Sharma, ASME J. Fluz"ds Engrg., 99, 231 (1977). 

6J. H. Howard, S. V. Patankar, and R. M. Bordynuik, ASME J. Fluz"ds Engrg., 102, 456 

(1980). 

7G. K. Batchelor, An Introductz"on to Fluid Dynamz"cs (Cambridge Univ. Press, New York, 

1967) . 

8J. O. Hinze, Turbulence (McGraw-Hill, New York, 1975). 

9F. H. Champagne, V. G. Harris, and S. Corrsin, J. Fluz"d Mech., 41, 81 (1970). 

lOS. Tavoularis and S. Corrsin, J. Fluid Mech., 104, 311 (1981). 

llR. S. Rogallo, NASA Technz"cal Memorandum 81315 (1981). 

12C. G. Speziale, Phys. Fluz"ds, 22, 1033 (1979). 

13G. L. Mellor and H. J. Herring, AIAA J., 11, 590 (1973).-

14T._H. Shih and J. L. Lumley, Cornell Universz"ty Technz"cal Report FDA-85-3, (1985). 

15W. C. Reynolds, Lecture Notes for Von Karman Institute, AGARD Lecture Series No. 

86 (1987). 

16C. G. Speziale, Phys. Fluz"ds, 28, 69 (1985). 

17B. E. Launder, G. Reece, and W. Rodi, J. Fluz"d Mech., 68, 537 (1975). 

18J. L. Lumley, in Advances z"n Appl£ed Mechanics, edited by C. S. Yih (Academic Press, 

New York, 1978), Vol. 18, p. 124. 

19C. G. Speziale and N. Mac Giolla Mhuiris, ICASE Report 88-27, NASA Langley Research 

Center (1988). 

20J. P. Bertoglio, AIAA J., 20, 1175 (1982). 

21S. Tavoularis, Phys. Fluz"ds, 28, 999 (1985). 

16 



APPENDIX 

The Taylor expansion (43) can be written in the form 

_ 2 8~ 
<1>ij(b, \7v, K, E) = -f.Oij + Cijklbkl + d ijke -

8 3 Xl 
(AI) 

where we have made use of representation (42) for (<1>ij)O and also of the fact that ob = b 

while o(\7v) = \7v. In this form of the expansion, Cijkl and d ijkl are defined by 

( 8<1>ij ) 
Cijkl = 8b

kl 
0 (A2) 

(8<1> .. ) 
d ijkl = 8- '3 

Vk,l 0 
(A3) 

where ?h,l = 8?hj8xl. We remind the reader that (')0 denotes a function evaluated at 

b = 0, \7v = 0; therefore Cijke and dijkf. are functions of K and E alone. 

Dimensional and tensorial invariance along with the symmetry of cPij and bij yields the 

following form for Cijkf.: 

Cijke(K, f.) = Cl i( OikOjf. + OjkOif.) + c~ COijOkf. (A4) 

where Cl and c~ one dimensionless constants. Since bkl is traceless it follows that 

Cijkebkl = CIEbij (AS) 

The same arguments can be used to show that 

dijkf.(K, c) = C2 ~ (OikOjf. + OjkOif.) + C~KOijOkf. (A6) 

and, hence, 

d 8?h (8Vi aVj) 
i j kf.-

8 
= C2 K -8 + -8 . 

Xf. Xj Xi 
(A7) 

where C2 is a dimensionless constant. The final form of equation (43) then follows. 
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Rotta-Kolmogorov n/B = 0 n/B = 0.5 Launder, Reece n/B = 0 0,/5=0.5 

Model and Rodi Model 

(BK/e) 00 3.71 3.71 (BK/e) 00 5.42 00 

(b12)00 -0.337 -0.337 (b12) 00 -0.369 0 

(bu)oo 0.483 -0.241 (bll)oo 0.381 -0.240 

(b22 )00 -0.241 0.483 (b22 )00 -0.190 0.320 

(rd/ K)oo -0.426 -0.426 (rd/ K)oo -0.477 -0.427 

Table 1. Equilibrium values of the Rotta-Kolmogorov model and the Launder, Reece, and 

Rodi model for a Richardson number Ri = o. 
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Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

. LIST OF FIGURES 

Homogeneous turbulent shear flow in a rotating frame. 

Time evolution of the turbulent kinetic energy for a Richardson number 
Ri = 0 taken from the large-eddy simulations of Bardina, Ferziger, and 
Reynolds3

• 

Time evolution of the turbulent kinetic energy for a Richardson number 
Ri = 0 and initial condition col SKo = 0.496: 0 Large-eddy simulations3 , 

- - Rotta-Kolmogorov model, - Launder, Reece, and Rodi model. 

Time evolution of the turbulent kinetic energy obtained from the Rotta
Kolmogorov model for an initial condition co/SKo = 1 (0,/8 = 0.25 and 
0,/8 = 0.75). 
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Figure 1. Homogeneous turbulent shear flow in a rotating frame. 
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Figure 2. 

o/s = 0.0 
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Time evolution of the turbulent kinetic energy for a Richardson number 
Ri = 0 taken from the large-eddy simulations of Bardina, Ferziger, and 
Reynolds8 . 
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Large Eddy Simulations 

Rotta-Kolmogorov Model 

Launder, Reece and Rodi Model 
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Figure 3. 
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t* 

Time evolution of the turbulent kinetic energy for a Richardson number 
Ri = 0 and initial condition eol SKo = 0.496: 0 Large-eddy simulations3

, 

- - Rotta-Kolmogorov model, - Launder, Reece, and Rodi model. 
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Time evolution of the turbulent kinetic energy obtained from the Rotta
Kolmogorov model for an initial condition col SKo = 1 (0.1 S = 0.25 and 

nls = 0.75). 
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