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ABSTRACT 

A computer code for solving the Reynolds averaged full N avier-Stokes equations has 

been developed and applied using sheared H-type grids. The Baldwin-Lomax eddy-viscosity 

model is used for turbulence closure. The integration in time is based on an explicit 

four-stage Runge-Kutta scheme. Local time stepping, variable coefficient implicit residual 

smoothing, and a full multigrid method have been implemented to accelerate steady state 

calculations. Comparisons with experimental data show that the code is an accurate vis­

cous solver and can give very good blade-to-blade predictions for engineering applications 

in less than 100 multigrid cycles on the finest mesh. 

*This research was supported by the National Aeronautics and Space Administration under Contract 
No. NASl-18107 while the first author was in residence at the Institde for Computer Applications in Science 
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 



INTRODUCTION 

The capability to correctly predict the various flow conditions that can occur in tur­

bomachinery blade passages is a basic step for the design and the improvement of the 

modern compressors and turbines. As indicated by the research of the past few years, 

flow solutions can be obtained rapidly by solving the potential equation, but this equation 

does not allow for vorticity and entropy changes related to shock waves. Recently, many 

numerical methods have been developed which solve the Euler equations. However, an 

inviscid analysis requires some assumption about the circulation to get an unique solution, 

and the problem may become ambiguous when dealing with a rounded trailing edge. In 

addition, heat transfer and boundary-layer thickening, that can lead to separation and hot 

spots, cannot be represented in an inviscid solution. 

By coupling a boundary-layer model with an inviscid procedure one can remove some 

of the previous limitations, but such an approach is difficult to extend to three-dimensional 

flows. The improvement in the numerical schemes and in the performance of modern com­

puters suggests investigating the solution of the Reynolds averaged N avier-Stokes equa­

tions. Although significant progress has been made in the development of N avier-Stokes 

solvers for cascade flows, as evident from [1-3], much work remains before computer codes 

capable of efficiently solving the wide range of blade geometries and flow conditions that 

can be encountered in the design process are available. 

The objective of the present work is to develop a fast and accurate method for the 

computation of viscous cascade flows. A four stage Runge-Kutta scheme with acceleration 

techniques for steady-state solutions is used to advance in time the Reynolds averaged 

Navier-Stokes equations. Numerical efficiency has been achieved through local time step­

ping, variable coefficient implicit residual smoothing, and a full multigrid method. Sheared 

H-type grids are used to discretize the computational domain. These grids are easy to 

generate algebraically and to extend to three-dimensional problems, and they generally 

provide sufficient resolution for engineering purposes. 

In this paper, numerical results are presented for a bicircular arc cascade, for a typical 

gas turbine high loaded cascade with thick, rounded trailing edge, and for a bump in a 

channel. The bicircular profile is studied for the case of subsonic, laminar, separated flow 

and for the case of transonic, turbulent flow with separation at the foot of the shock and 

near the trailing edge. For the gas turbine blade, subsonic and transonic conditions are 

considered, and solutions are compared to experimental data. Finally, the capability of the 

present prediction technique to compute supersonic flows is demonstrated with the bump 

in a channel problem. For all these cases, convergence histories are shown. 
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GOVERNING EQUATIONS 

Let p, u, v, p, T, E, and H denote respectively the density, velocity components in the x 

and y cartesian directions, pressure, temperature, specific total internal energy, and specific 

total enthalpy. The two-dimensional, unsteady N avier-Stokes equations, neglecting body 

forces and heat sources, can be written in conservative form in a cartesian coordinate 

system as, 

where 

u= 

and 
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The pressure is obtained from the equation of state, 

p= pRT. 

(1) 

(2) 

(3) 

(4) 

(5) 

According to the Stokes hypothesis A is taken to be -2/3JL and a power law is used to 

determine the molecular coefficient of viscosity JL. The effect of turbulence is taken into 

account by using the eddy-viscosity hypothesis. That is, the molecular viscosity JL and the 

molecular thermal conductivity k are replaced with, 

JL = JLI. + JLt 

2 

(6) 

(7) 



where cp is the specific heat at constant pressure, Pr is the Prandtl number, and the 

subscripts land t refer to laminar and turbulent. The turbulence quantities Ilt and Prt 

are computed using the two-layer algebraic model of Baldwin and Lomax [4]. 

The Euler equations can be easily obtained by neglecting the right hand side of equation 

(1). 

SPATIAL DISCRETIZATION 

A finite-volume approach is applied to discretize the equations of motion. The com­

. putational domain is divided into quadrilateral cells, fixed in time, and for each cell the 

governing equations are written in integral form as follows, 

a
a f r Udxdy + r (Fdy - Gdx) = r (Rdy - Sdx) 
t 10 lao lao 

(8) 

where 0 is a generic cell and ao its boundary. 

A cell-centered discretization is used, and the line integral of (8) is approximated with 

the midpoint rule. The convective fluxes at the cell faces are obtained by simple averaging 

of adjacent cell-center values of the dependent variables (see [5]). The spatial derivatives 

necessary to compute the viscous terms are evaluated by means of Green's theorem. For 

example, consider the arbitrary cell 0 (EFGH) in Fig. 1. The contributions U z and uti to 

the viscous flux across each cell face (i.e., GH) are determined using 

r uzdO' = rudy 101 lao l 

(9) 
r utldO' = - r udx 101 Jaol 

where 0' is an auxiliary cell (CGNH for face GH in Fig. 1). In a similar manner, Vz and vtI 

are computed. Additional details for finite-volume treatment of viscous stresses and heat 

conduction terms are found in [5] and [6]. 

BOUNDARY CONDITIONS 

It is well-known that the reflective behavior of numerical boundary conditions can sig­

nificantly influence the convergence rate of a marching scheme. Thus, boundary conditions 

must be chosen carefully. According to the theory of characteristics, three quantities are 

specified at a subsonic inflow boundary. In the present work, the total enthalpy, the total 

pressure, and flow angle are specified if the axial flow is subsonic; the outcoming Riemann 

invariant R- is taken from the interior. For supersonic axial inlet all the flow variables 

are computed from the prescribed inlet conditions. At a subsonic axial outlet, the static 
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pressure corresponding to the desired isentropic Mach number is prescribed, while the out­

going Riemann invariant R+ , the total enthalpy, and the component of the velocity parallel 

to the boundary are extrapolated from the interior. If the axial outlet is supersonic all 

the variables are extrapolated. On the solid wall, the only contribution to the convective 

fluxes is the pressure, which is obtained by extrapolation from the interior of the flow field. 

For viscous flow calculations, the velocity is set to zero on the solid surface, which is taken 

to be adiabatic in the present work. 

ARTIFICIAL DISSIPATION 

For inviscid flows the finite-volume scheme does not contain any dissipative terms. In 

order to prevent odd-even point decoupling and oscillations near shock waves or stagnation 

points, artificial dissipation terms are added to the governing discrete equations. For 

viscous flows dissipative properties are present due to diffusive terms; however, away from 

shear layer regions (Le., boundary layers, wakes) the physical dissipation may not be 

sufficient to guarantee stability, especially in the case of stretched meshes. Although shock 

waves can be captured by defining the shock structure and solving the full Navier-Stokes 

equations, the required mesh resolution is not practical. Thus, to maintain the stability 

and robustness of the numerical procedure, artificial dissipation is also included in viscous 

calculations. A semidiscrete form of (8) is then given by 

a 
at(V. U) + Q(U) - D(U) = 0 (10) 

where V is the volume of the mesh cell being considered, Q is the discrete operator for the 

convective and physical diffusive terms, and D is the operator for the artificial dissipative 

terms. 

The artificial dissipation model considered in this paper is basically the one developed 

by Jameson, Schmidt, and Turkel [7]. This nonlinear model is a blending of second and 

fourth differences. The quantity D(U) in (10) is defined as 

D(U) = (D~ - D~ + D~ - D~)U (11) 

where (€, 17) are arbitrary curvilinear coordinates, 

(12) 

(13) 

i,i are indices (for a cell center) associated with the € and 17 directions, and ~e, V' e are 

forward and backward difference operators in the € direction. Following [6] and [8] the 
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variable scaling factor is defined as 

(14) 

where 
..J... ·(r) . (A")' , 0/1

" 
.. I", 

(15) 
l/Ji,;(r) - 1+ri.;, 

r is the ratio A,.,/ Ae, Ae and A,., are the scaled spectral radii of the flux Jacobian matrices 

(associated with the e and 11 directions) for the Euler equations, and the exponent ~ is 

generally defined by ~ :::; ~ :::; 1. The spectral radii for the e and 11 directions are given by 

Ae = Iuy,., - vx,.,1 + CVY~ + x~, 

A,., = Ivxe - uYel + cvx~ + y~, 

(16) 

(17) 

and c is the speed of sound. The coefficients c(2) and c(4) use the pressure as a sensor for 

shocks and stagnation points, and they are defined as 

(18) 

I
Pi-I'; - 2Pi,; + PHi,; I 

Vi,; = , 
Pi-I,; + 2Pi,; + Pi+1,; 

(19) 

(4) [ ((4) (2»)] c '+! ' = max 0, K - c '+!, , 
I 2J I 2 J 

(20) 

where typical values for the constants K(2) and K(4) are ~ and 1~8' respectively. 

For the normal direction (11), the dissipation contributions are defined in a similar way, 

except 

(21) 

Care must be taken, especially for internal flows, in defining the smoothing fluxes on the 

boundary. If the computation of the dissipative terms is carried out in each coordinate 

direction as the difference between first and third difference operators, conditions on those 

terms can be imposed at the boundary such that no errors in the conservation property 

are introduced, globally, by the numerical dissipation [9]. Moreover, such a scheme reduces 

the presence of undamped modes and guarantees a dissipative behavior for the dissipative 

operator D. 
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TIME-STEPPING SCHEME 

The system of differential equations of (10) are advanced in time towards the steady­

state solution with a four stage Runge-Kutta scheme. This scheme is fourth order accurate 

in time for the linear problem and second order accurate for the nonlinear problem. It can 

be written for the time level n in the form 

U(2) = U(O) + lX2~tR(U(1») 

U(3) = U(O) + lX3~tR(U(2») 

U(4) = U(O) + lX4~tR(U(3») 

(22) 

where at the (q + l)st stage we have in the case of a single evaluation of the dissipation 

(23) 

and a good set for the coefficients lXm(m = 1,4) is 

(24) 

For economy the viscous terms are computed at the first stage and then frozen for the 

remaining stages. In multigrid computations, the driving scheme must be designed to 

rapidly damp out high frequency modes. Good high frequency damping properties are 

obtained with this scheme by evaluating the artificial dissipation terms on the first and 

second stages and freezing them for the remaining stages [10]. 

It is also important to note that the Runge-Kutta scheme has the desirable property 

that the steady-state solution is independent of the time step; therefore, the scheme is 

particularly amenable to convergence acceleration techniques. 

ACCELERATION TECHNIQUES 

Three methods are employed to accelerate convergence of the basic explicit time­

stepping scheme. These techniques are as follows: 1) local time stepping; 2) residual 

smoothing; 3) multigrid. They are discussed in the subsequent subsections. 
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Local Time Stepping 

When the interest is only in the steady-state solution, a faster expulsion of disturbances 

can be achieved by locally varying the time step. In the present work the actual time step 

limit ilt is computed using 

(25) 

where iltc is the limit due to the convective terms, iltd is the limit due to the diffusive 

terms, and Co is a constant usually taken to be the Courant-Friedrichs-Lewy (CFL) number. 

In particular, 

(26) 

(27) 

where .\e,.\1'/ are defined in (16) and (17), respectively, and kt is a constant that has been 

set equal to 2.5 based on numerical experiments. 

Residual Smoothing 

The stability range of the basic time-stepping scheme can be extended using implicit 

smoothing of the residuals. This technique was first introduced by Lerat [11] for the Lax­

Wendroff scheme, and later devised by Jameson [12] for the Runge-Kutta scheme. For 

two-dimensional flows the residual smoothing can be applied in the form 

(28) 

where the residual Rm is defined by 

Rl - al tt[Q(U(O») - D(U(O»], 

am tt[Q(u(m-l») - D(U(l»)], (29) 

m=2,4 

and computed in the Runge-Kutta stage m, and Rm is the final residual at stage m after 

the sequence of smoothing in the € and.,., directions with the coefficients Ee and EI'/. 

The use of constant coefficients in the implicit treatment has proven to be satisfactory 

(extending the CFL number by a factor of two to three) even for highly stretched meshes, 

provided additional dissipative support such as enthalpy damping [5] is introduced. How­

ever, the use of enthalpy damping, which assumes constant total enthalpy throughout the 

flow field, precludes the solution of problems with heat transfer effects. The need for en­

thalpy damping can be eliminakd by using variable coefficients Ee and EI'/ that account 
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for the variation in cell aspect ratio. For the factorization of (28) effective expressions for 

the coefficients fe, f" can be derived by following the procedure of Martinelli in [6]. These 

expressions are written as 

fe = max{~ [(gfft· >./'l>.q .¢(r))2 -1] ,o}, 

f" = max { ~ [(gfft . . >,€~>,q • ¢(r-1
) r -1] ,o} , 

(30)) 

where ¢(r) and ¢(r-1) are the same quantities defined for the artificial dissipation, CFL is 

the local Courant number (usually taken to be 5), and the asterisk refers to the unsmoothed 

scheme. 

Multigrid Strategy 

MuItigrid methods were first introduced for the solution of elliptic problems [13], and 

later Ni [14] and Jameson [10] applied them to the Euler equations. Actually, multigrid 

methods can be implemented to obtain improvement in the convergence rate in solving 

not only the Euler but also the Navier-Stokes equations [6,15]. The basic idea is to use 

coarser grids to speed up the propagation of the fine grid corrections. The Full Approxima­

tion Storage (FAS) scheme in conjunction with the Runge-Kutta time stepping algorithm 

developed by Jameson [10] has proven to be an effective multigrid technique. 

For the multigrid process coarser meshes are obtained by doubling the mesh spacing. 

On the auxiliary meshes, the solution is initialized as 

u,
(O) _ EVhUh 
2h - V2h 

(31) 

where the subscript refers to the mesh spacing value and the sum is over the four fine grid 

cells that compose the 2h grid cell. This rule conserves mass, momentum, and energy. On 

a coarse grid, a forcing function P is added to the governing discrete equations in order 

to impose the fine grid approximation. After the initialization of the coarse grid solution, 

this function is computed as follows: 

(32) 

Then, the time-stepping scheme on the (q + 1) sf stage becomes 

(q+l) u,(O) A [R (U,(q») p(O)] U2h = 2h - aq+lut 2h 2h + 2h • (33) 

We can also define a new value R* for the residual as 

(34) 
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collect this value, restrict the solution U2h to the next coarser grid, and repeat the process. 

The corrections computed on a coarse grid are transferred back to a finer grid with bilinear 

interpolation. 

Two types of simple fixed cycle multigrid strategies are primarily used. They are the 

V cycle and the W cycle. In the present work, results were obtained with both cycles. 

The structure of these cycles in the case of four grids is shown in Fig. (2). The W cycle is 

defined recursively since it becomes complex as the number of grids increases. At a given 

grid level subiterations (additional time steps) can be performed in both cycles. Moreover, 

the application of two Runge-Kutta (R-K) steps on the 2h grid and three R-K steps on all 

succeeding coarser grids is an effective strategy. 

In viscous flow calculations the viscous terms are computed also on the coarser grids, 

while the turbulent viscosity is evaluated only on the finest grid and then determined 

on each succeeding coarser grid by a simple averaging of surrounding finer grid values. 

The artificial dissipation model for the finest grid is replaced on the coarser grids with a 

simple constant coefficient second difference dissipation model. On each grid, the boundary 

conditions are computed in the same manner and updated at every Runge-Kutta stage. 

In order to provide an improved initial solution on the finest grid of the sequence of grids 

in the basic multigrid procedure, the Full Multigrid (FMG) method is employed. With 

the FMG method the solution is initialized on a coarser grid of the basic sequence of grids 

and iterated a prescribed number of cycles using the FAS scheme. The solution is then 

interpolated to the next finer grid. The process is repeated until the finest grid is reached. 

In the present work, three refinement levels are used. The first and second levels include 

two and three grids, respectively, and 50 cycles are performed on each. There are five grids 

in the final level. 

RESULTS AND DISCUSSION 

Bicircular Arc Cascade 

In [14] Ni presented results for inviscid flow over a 20 percent bicircular arc cascade 

with gap/chord ratio of 2. Then, Chima and Johnson [15] studied a 10 percent bicircular 

arc cascade for the case of laminar flow. The present numerical method has been used to 

study the first cascade geometry for laminar and turbulent flow conditions with separation. 

In Fig. 3(c) the 129 x 97 H-type grid used for the laminar calculation is presented. The 

spacing between the wall and the first cell center is 3 x 10-4 chords and 10-2 chords is the 

minimum spacing in the streamwise direction. For this case, the exit Reynolds number 

Re2' = 500, the exit isentropic Mach number (Mih = .5, and the angle of attack is zero 

degrees. The second difference artificial dissipation is set to zero. Figure 3(a) shows the 
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convergence history for the root mean square of the residual of the continuity equation 

scaled by the initial value. To indicate the monotone behavior of the multigrid scheme, 

300 iterations were performed on the finest grid. Using 5 grid levels and a V cycle with 

subiterations there are 7.2 decades decrease in the residual. In Fig. 3 (b), the predicted 

isentropic Mach number distribution for the viscous solution is compared with that for 

the inviscid solution. The Euler solution was computed on a grid with the same number 

of cells but. with a minimum spacing in each coordinate direction of 10-2 chords. Mach 

number contours for this case are given in Fig. 3(d). The flow is separated at about the 

90 percent chord location. Due to the low Reynolds number, we found that this is one of 

the cases where it is important to compute the viscous terms on the coarser grids. 

Results for transonic turbulent flow (Mi = 0.675) are presented in Fig. 4. Figure 

4(c) displays the 129 X 97 mesh used in this test case. The minimum spacing at the wall 

boundary is 10-4 chords, and in the x direction a spacing of about 1.5 x 10-2 chords is used 

to obtain a good representation of the shock wave. For the inviscid mesh the minimum 

spacing at the wall is equal to the one in the x direction. Figure 4(a) shows the convergence 

history for a V cycle with subiterations. The variations in the computed isentropic Mach 

number are given in Fig. 4(b). In this case, the flow exhibits a little separation, involving 

about three cells, at the foot of the shock. Then, the flow reattaches and remains so until 

the 78 percent chord position. The Mach number contours for this flow (Fig. 4( d)) reveal 

a clean capturing of the shock. 

Gas Turbine Rotor Blade 

The present numerical method has been tested on several internal flow cases. In. order 

to validate the method for turbomachinery applications, computations were performed for 

a Von Karman Institute (VKI) gas turbine rotor blade. This blade was tested extensively, 

as seen in [16,17]. At the inlet the flow angle with the respect to the turbine axes is 30 

degrees. The flow is turned about 96 degrees by the blade. For the solutions included 

herein the inlet Mach number is about 0.27 and the outlet isentropic Mach number (Mih 
varies from 0.81 to 1.20. Viscous results are compared with inviscid ones and with the 

available experimental data. 

The mesh used for the inviscid calculations is shown in Fig. 5. It is a 145 X 33 grid 

with minimum spacing in the x and y directions equal to 1.5 X 10-2 chords. For the viscous 

computations (Fig. 6) the number of points in the y direction is increased to 65, and the 

spacing between the blade and the first cell center in the direction normal to the blade is 

set to 10-4 chords. In both the meshes 32 points are located in the x direction before the 

blade, 65 points on the blade, and 48 points after the blade. A fine mesh is maintained 

after the blade in order to obtain good resolution of the shock system in the case with 
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supersonic outlet flow. 

In Fig. 7 the convergence history, Mach number distribution, and Mach number con­

tours for the condition (Mih = .81 are displayed. The Navier-Stokes solution is in good 

agreement with the experimental data. This solution shows less tendency than the Euler 

one for overexpansion on the pressure side at the trailing edge. Some loss of accuracy in 

the trailing edge flow can be attributed to the mesh distortion of the H-type grid. Such 

distortion would also occur for a C-type grid. 

Results for transonic conditions ((Mih = 1.0) are presented in Fig. 8. Again, there is 

good agreement between the viscous result and the experiment. Convergence histories for 

this case using the W cycle, V cycle with and without subiterations, and the basic scheme 

(CFL = 2.5) with only local time stepping are given in Fig. 9. Similar convergence behavior 

is obtained with both the W cycle and the V cycle with subiterations.Approximately 

the same amount of work (Le., computer CPU time) is required for each cycle. The 

performance of the standard V cycle is not as good as that of the V cycle with subiterations. 

The convergence rate with each multigrid cycle is significantly faster than that of the basic 

scheme. 

In the case of supersonic outlet flow ((Mih = 1.2) the numerical predictions are shown 

in Fig. 10. The agreement with the experimental measurements is good, and Mach number 

contours reveal a good resolution of the shock system. 

All the cases presented here suggest that engineering accuracy can be achieved in less 

than 100 multigrid cycles with the finest mesh. 

Supersonic Internal Flow 

Figures 11 and 12 show results for supersonic flow conditions. The geometry (see Fig. 

12) is the same as that investigated by Ni [14]; it is a duct with a 4 percent bump. No 

experimental data are available for this case, but comparisons between Euler solutions 

obtained from [14] and those from the present work indicate close agreement. Figures 

12(a) and (b) display respectively the viscous and inviscid Mach number contours for an 

inlet Mach number of 1.4. A 145 x 97 mesh was used for the viscous calculation, and a 

145 x 33 mesh was used for the inviscid one. For the viscous flow, ~Xmin = 1.5 X 10-2 

chords and ~Ymin = 2 X 10-4 chords, and for the inviscid flow, ~Xmin = ~Ymin = 1.5 X 10-2 

chords. The two grids have a similar stretching in the Y direction; this is why the shocks are 

smeared in almost the same way. To examine the shock capturing properties of the scheme, 

an inviscid computation on a weakly stretched 145 X 65 mesh was performed. As indicated 

in Fig. 12(c), the shock system is sharply captured with no tendency for smearing. Note 

that the same input coefficients were used in the dissipation model. Thus, care must be 

exercised in stretching the mesh when computing flows with strong oblique shocks. Next, 
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in Fig. l1(b) the Euler and Navier-Stokes solutions for the Mi distribution are presented. 

This disagreement is probably due to the interactions between shocks and boundary-layers. 

In fact, all the shocks cause separation at the locations where they impinge on the walls. 

The convergence history for the viscous case is given in Fig. l1(a). 

CONCLUSION 

The use of a Runge-Kutta scheme with acceleration techniques has proven to be fast, 

reliable, and accurate for the study of transonic internal flow. No problems lie in the 

extension of the numerical method to three-dimensional applications due to the versatility 

of the H-type grid. In addition, the very good convergence of the full multigrid process 

indicates the value of the method in turbomachinery component design. 
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Fig. 5: 145 x 33 inviscid flow mesh for VKI LS59 gas turbine rotor blade. 
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Fig. 6: 145 X 65 viscous flow mesh for VKI L859 gas turbine rotor blade. 
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Fig. 12: Supersonic internal flow (Ml = 1.4). 
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