
",

!~ .

,

$IJ/l C'R- /ft~p-

NASA Contractor Report 181645 NASA-CR-181645
19880016540

SEMI-MARKOV ADJUNCrION
TO THE
CAME PROGRAM

GENE ROSCH,
MONICA A. HUTCHINS,

. FRANK J. LEONG,
and PHlllP S. BABCOCK IV

THE CHARLES STARK DRAPER LABORATORY, INC.
CAMBRIDGE, MA

Contract NAS9-17S60
APRIL ~988

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665-5225

1111111111111 11111111111111 11111111111111 1111 '
NF00932

f: ~ '" ,,' i/" t,.', '. I,' f' ~ {"; ~ ·:/~., ... 7

l
' ~j'~.' t,-,., ',f.;....t'" r, 1 ~I'~;" ~I
~J' :~ \~,. f> f." .'.',. ',. ~~.~ :·~.:i ~ J

JUN 'I. ::1 \q!\:~

Ullln\ q' 1-~[$"I\f{CH eEN1ER

\
lllr,;\';,/ fl"C.~

til- .\f·iQ~l, VINOINIA

1

1

,,- ' 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
I

TABLE OF CONTENTS

ABBREVIATIONS AND ACRONYMS
1.

2.

3.

4.

5.

6.

7.

8.

INTRODUcnON
TIlE CAME PROGRAM
2.1
2.2

2.3
2.4

Overview •••••
System Specification
2.2.1 System Architecture Window
2.2.2 Reconfiguration Window .•.
2.2.3 Performance Requirements Window•
2.2.4 Funher Specifications Window •..••..•..........
2.2.5 Functions Defined Within the World of the CAME Program ..
MOOel Construction
Model Evaluation •.• •••

SEMI-MARKOV ADJUNcnON •••
3.1 -Approach ••••••••••••••
3.2 Changes to the System Specification
3.3 Changes to the Model Building Process
3.4 Evaluation of the Constructed Model

AN EXAMPLE: IAPSA II
4.1
4.2
4.3
4.4

Flight Control Computation
Pilot Sensing .•. . . • •
Body Motion Sensing
Discussion

CONCLUSIONS

REFERENCES

TABLES •.•.•••••••••.•.••••••••••••.••••••.•.•.....•....•..•..

FIGURES

APPENDIX A

i

ii

1-1

2-1
2-1
2-2
2-2
2-2
2-3
2-4
2-4
2-5
2-7

3-1
3-1
3-2
3-3
3-6

4-1
4-2
4-4
4-7
4-9

5-1

6-1

7-1

8-1

"-1

~
k/"P - ;<~~9c:lL/

ASSIST
BMAC
CAME Program
CAREm
CSDL
DIU
FDIR
FMEA
FI'P
HARP
I/O
IAPSAll
MARKl
MTIF
SURE Program

ABBREVIATIONS AND ACRONYMS

Abstract Semi-Markov Specification Interface to the SURE Tool
Boeing Military Aircraft Company
Computer-Aided Markov Evaluator Program
The Computer Aided Reliability Evaluator
The Charles Stark Draper Laboratory, Inc.
Device Interface Unit
Fault Detection, Isolation and Reconfiguration
Failure Modes and Effects Analysis
Fault Tolerant Processor
The Hybrid Automated Reliability Predictor
Input/Output
Integrated Airframe/Propulsion Control System Architecture
The Markov Modeling Package .
Mean-Time-To-Failme
Semi-Markov Unreliability Range Evaluator Program

ii

"

1. INIRODUCflON

The desire for a reliable product has become a major goal in the design of many
systems. Tactical military systems, spacecraft, civilian aircraft, nuclear power plants, and
undersea vehicles, to name a few, are all systems which have stringent requirements
regarding their reliability. Failure of the system can cause the loss of use of the system
until it is rep~ the damage or loss of the system itself, or ultimately the loss of life.
Therefore, it follows that the ability to accurately estimate the probability of failure of these
types of systems is an important task in the development of these systems and in verifying,
in fact, that a particular system satisfies its reliability requirements.

Accurately predicting the reliability of a highly reliable system is often not a simple
task. Though the reliability of many of the hardware components comprising these
systems continues to improve, the strictness of the reliability requirements imposed on the
system frequently leads the design into the realm of fault-tolerant systems. Hardware
redundancy and software logic are utilized to achieve a greater reliability than would
otherwise be possible without the repetition of hardware. As a result, in predicting the
probability of failme of these systems, the repetition of the hardware and the effect of the
redundancy management scheme which the system incorporates in utilizing this hardware
need to be adequately accounted for.

Life testing to establish the reliability is generally n~~ practical for highly reliable
systems. Life testing would consist of selecting a random sample of n systems, testing
them under specified environmental conditions, and observing the time to failure of each
system. Since, typically, the mean-time-to-failure (MTfF) is measured in years and the
cost of individual systems high, life testing generally does not permit the accumulation of a
statistically significant sample.

A more practical approach to predicting system reliability is to analytically model the
behavior of the system based on the known failure modes of its components and the
anticipated effect of the redundancy management scheme. The failure modes of the
components which make up the system and the actual rates of occurrence of these modes is
frequently known or can be practically established through life testing. From these ~own
failure modes and a thorough understanding of how the system will react to these failure
modes, a mathematical model can then be constructed to predict the reliability of the
system.

Generally, analytical modeling techniques fall into three categories - simulation
techniques, combinatorial techniques, and Markov (and semi-Markov) modeling
techniques. Simulation techniques, such as a Monte Carlo approach, tend to require a
prohibitively large number of simulation runs to generate statistically significant results for
highly reliable systems. With combinatorial techniques, such as a fault tree approach, it is
difficult to capture the sequence dependent nature of events inherent in fault tolerant

1-1

systems. Markov and semi-Markov models offer a method of incorporating the sequence
dependency of events in a fault-tolerant system into the structure of a model which can be
realistically solved. Their growing use is indicative of the utility of this technique for
modeling fault-tolerant system reliability [1,2,3,4].

A Markov or semi-Markov reliability model consists of a set of states reflecting the
operational status of the system and the transition probabilities between these states due to
component failures or redundancy management decisions. Written as a set of differential
equations with respect to time, the system reliability can be predicted by solving for the
state probabilities as a function of time. Usually this is done numerically by propagating
the state vector from the initi,al conditions. The reliability of the system is represented by
the probability of the system being in any of the states identified as operational.

The construction of a Markov or semi-Markov model from a well-defined system
description is conceptually straightforward, but, in application, it can be a difficult and
tedious process. Generally, there are two reasons why this is so. First, the person
constructing the reliability model needs to manually perform the system-level failure modes
and effects analysis (FMEA). That is, for each possible component failure, or combination
of component failures, the modeler must discern the consequences of the failure and the
resulting operational status of the system. Second, the number of states required to
satisfactorily represent the behavior of the system can easily become unmanageably large.

Currently there exists a number of packaged comp~ier programs available which
expedite the process of describing fault-tolerant systems and provide a solution algorithm
for the full system model [2]. CARE m [5, 6], HARP [7], MARK 1 [8, 9], and SURE
[10] are representative of these paC?kages. CARE m and HARP are computer programs
which use behavioral decomposition to separate the modeling of the fault-occurrence
processes from the fault-handling processes. MARK 1 is a generic program for solving
systems which can be described by Markov models. SURE is a computer program which
solves semi-Markov models. Though these programs are extremely useful, in all of these
packages it is left up to the analyst to construct the necessary model to predict the reliability
of the system.

In the past few years, the C. S. Draper Laboratory, Inc. (CSDL),has attempted to
address this problem.. As an Independent Research and Development project, a computer­
aided reliability analysis tool called the Computer-Aided Markov Evaluator (CAME)
program is currently being developed to automate the model construction process [2, 11,
12]. The objective of this tool is to automatically create an appropriate fault-occurrence
model from a top-down system description utilizing a set of rules that reflect Markov
modeling techniques.

The CAME program has matured to the level where it is becoming a practical tool.
Given a high-level description of a system, the CAME program constructs a strictly
Markov model to predict the reliability of the system and provides features to evaluate the

1-2

created model. The analyst provides the program with the failure modes of the components
which make up the system to be analyzed, how these components relate to one another and
the operational properties of the system at large. Then the analyst can select from the
available options which influence model construction - that is, the model truncation and
aggregation techniques which should be applied during the model construction process.
From this information, the CAME ·program can automatically perform the system-level
FMEA and construct an appropriate Markov model. In this way, the CAME program is
performing the system-level FMEA - not the analyst.

With the aid of the CAME program, larger systems can be analyzed. The program
can methodically apply model truncation and aggregation techniques to ultimately reduce
the size of the Markov model constructed. In addition, since the model is now constructed
automatically, the practical size of the Markov model is only limited to the physical
constraints of the computer the program runs on and the time the analyst is willing to wait
for the construction and solution of the model.

One shortcoming of the CAME program is its inability to incorporate detailed
modeling of the intricacies of fault detection, isolation and reconfiguration (FDIR) into the
constructed reliability model. The user interface of the program allows the analyst to
include the details of the redundancy management strategy'into the system description and,
through coverage parameter, the analyst can direct the program to account for the
possibility of FDIR errors. But, these fault-handling processes are assumed to occur
instantaneously and the coverage parameters are simply weighting factors in the transition
probabilities in the constructed model. So, the model constructed by the CAME program
may not accurately model all fault-handling processes. If the details of this aspect of the
system being analyzed is a relevant factor in determining its reliability, then ultimately, the
results produced from the constructed model will be inaccurate.

The objective of this project is to expand the rule-based CAME program in its
ability to incorporate fault-handling processes into a constructed model. Specifically, it is
to modify the program so that it can develop an appropriate semi-Markov model when the
input system description includes events which have distributions that are locally time
dependent - such as those characteristic of the fault-handling processes in many fault­
tolerant systems. In addition, the program will be modified so the constructed model can
be output in a form which can be directly evaluated by the SURE program. The purpose of
this report is to document the changes made to the CAME program to accommodate this
new feature and to illustrate its use.

This report is organized so as to provide a clear explanation of the alterations and
additions made to the CAME program. Section 2 provides a relatively brief discussion of
the basic CAME program. A general overview is given of the features and capabilities of
the program with sufficient detail provided for those areas which are impacted by this
project. Section 3 documents the alterations and additions made to the program to allow for
semi-Markov events to be incorporated into a reliability model. To exemplify the use of

1-3

this new feature and evaluate its utility. the CAME program was used to analyze portions of
the Integrated Airframe/Propulsion Control System Architecture (lAPSA m [13]. This is
presented in Section 4. Section 5 discusses the conclusions reached regarding the semi­
Markov adjunction to the CAME program.

1-4

2. TIIECAMEPROGRAM

2.1 Overview

The objective in creating the Computer-Aided Markov Evaluator (CAME) program
is to automate much of the process of modeling and analyzing the reliability of fault-tolerant
systems. In this way, an analyst with a basic understanding of Markov models, and their
utilization in reliability analysis, can use the CAME program to construct an appropriate
Markov model to predict the reliability of the system of interest. The analyst need not be
well versed in Markov modeling techniques. He must have a thorough understanding of
how the system being analyzed responds to failures of its components, but the expertise
needed to construct an accurate and useful model is incorporated into the program.

The CAME program is implemented in the ZET ALISP programming language on a
Symbolics 3600-series computer. ZET ALISP is a dialect of LISP copyrighted by
Symbolics, Incorporated. The CAME program is designed to run on any of the Symbolics
Systems using Release 6 of the software. Specifically, the program has been developed on
the 3640 and 3670 Systems using Release 6.1 of the software. The program makes much
use of the flavor feature of ZETALISP and extensively employs the graphical input/output
features of the Symbolics machine.

Figure 2-1 is a block diagram of the functional modules of the CAME program.
The user interface provides the means through which the user inputs a description of the
system to be analyzed, controls the construction of an applicable Markov model, and then,
controls the numerical evaluation of the model. The user-interface is designed to be utilized
interactively dming the analysis process and considerable effort has been invested into
making it flexible, consistent and user-friendly. The input from the user interface is stored
in the system data base. The actual construction of the Markov model is perfonned by the
model builder using the infonnation in the system data base and the rules for model
building in the rule base. The constructed model is stored in the model data base. The
model inspector module allows the user to examine and verify, in detail, the model
constructed by the model builder. The model evaluator module is the portion of the
program containing the implementation of the numerical algorithms which the user can
invoke to numerically evaluate the constructed model.

The analyst operates the CAME program through six "windows" - the System.
Architecture Window, the Reconfigurations Window, the Performance Requirements
Window, the Further Specifications Window, the Markov Modeler Window, and the
Model Evaluator Window. The ftrst four are used to describe the system being analyzed.
This infonnation is stored in the system/application database. The control of the model
builder module and the ability to examine and display the model stored in the model data
base is done through the Markov Modeler Window. The Model Evaluator Window
controls the model evaluator module.

2-1

2.2 System Specification

The CAME program models systems which consist of a collection of interconnected
components (hardware or software) with known exponential failure rates. The analyst
specifies the system to be modeled to the program through four windows. These windows
are discussed in detail in the subsections which follow.

To facilitate the discussion of the system specification windows, consider the
example system presented in Figure 2-2. This figure illustrates the screen display of a
simple, user specified system. The screen is set so all four of the system specification
windows can be displayed at once. All of the objects shown in the windows are mouse­
sensitive and defmed by the user through an interactive menu system. The system being
modeled is a trivial example of dual-channel control system. The system consists of three
components - two processors (PI and p2) and a node which interconnects them. The
system is operational as long as one of the two processors is operating and is in control.
Initially, pI is in control. In the event of a failure of pI, control can switch to p2. But this
transfer of control requires the link connecting the two processors (the component node) be
operating.

2.2.1 System Architecture Wmdow

This window defines the components which comprise the system and how they are
interconnected. Each component defined by the user represents an object the program can
fail individually to discern the failure modes of the whole system. Associated with each
component are a number of properties alterable by the user. These are the name of the
component, which "classes" it is a member of, the failure rate of the component, the
fraction of failures of this component that are covered, the repair rate of the component, and
whether or not the component should be treated as a cold spare. A "class" is a tag which
the user can use to specify a group of components which have a common dependency or
use to denote the group of components some place within the system specification without
individually specifying each component The interconnections between architecture
components can be specified to indicate the possible directions information can flow
between the components. This is primarily used in determining whether a "path" exists
from one component to another within the system architecture.

In the System Architecture Window of Figure 2-2, the three components of the
dual-channel control system (pI, p2 and node) are shown. ,An interconnection is also
defined between these components, but in this case it is not pertinent to the defmition of the
system.

2.2.2 . Reconfigurations Window

System reconfigurations in response to specified changes in component
functionality can be defined within the Reconfigurations Window. Through state transition

2-2

diagrams, the user can define entities which will evaluate to some specified component (or
label) dependent on the state they were in before a particular component failure is assumed
(during the process of model construction) and the current condition of its components.
These entities can be used to reflect the reconfiguration strategies within the system.

Consider the dual-channel controller specified to the CAME program in Figure 2-2.
A relevant quantity in defining the system is the processor which is in control. The
reconfiguration strategy for which processor is in control is specified to the program with
the state transition diagram labeled p-in-control in th~ Reconfigurations Window. The two
circles represent the two possible states for p-in-control to evaluate to -pI or p2.
Initially, pI is in control (the label is located over the initial state). According to the
defInition of this system, in the event that pI is no longer operating (jaileli), control can
transfer over to p2 if node is operating (un/ailed). The arrow specifIes the possible
transition from state pI to state p2 and the text above it indicates the condition which
triggers the transition. The text is written using the syntax of the USP language. So, in
order for the transition to be trigge~ (during construction of the Markov model) the
triggering condition must evaluate to "T" (the logical true of USP).

The triggering condition

(and (failed pI) (wifailed node))

will evaluate to T only if the function

(failed pI)

and the function

(un/ailed node)
I"~

both evaluate to T. The functions/ailed and un/ailed are functions defined within the world
of the CAME program. Failed evaluates to T when the component within the list is failed
and ~ otherwise. Alternately, un/ailed evaluates to ~ when the component within the
list is failed and T otherwise. Therefore, the p-in-control transfers from pI to p2 whenever
pI has failed and node is not failed.

2.2.3 Perfonnance Requirements Wmdow

The Performance Requirements Window is where the user specifies the defmition
of system operation and, if desired, degraded modes of operation. The performance levels
of the system being described are specifIed with logic diagrams using functions defIned
within the world of the CAME program - such as and, or, un/ailed, or path - and user
defmed functions. When multiple performance levels are specifIed, the program presumes
the system will be operating in the highest performance level possible. The achievement of
none of the specifIed performance levels is a system failure or system loss.

2-3

For the example of the dual-channel controller, only one performance level is
specified. The system is operating as long as one of the two processors is operating and is
in control. This is specified by the user-defined object defmed as

(un/ailed (current p-in-control» .

Again, the syntax of this function is that of LISP and the functions un/ailed and current are
defined in Section 2.2.5. If any particular Markov state (as the Markov model is being
constructed) cannot satisfy this performance level, then the performance level of the system
is assumed to be Nil., (system loss).

2.2.4 Further Specifications Wmdow

The Further Specifications Wmdow permits the definitions of user-defined
functions used in other parts of the system description and the specification of additional
performance requirements for groupings of components (i. e. classes). This is the window
where the user defines all the symbols which could be used to specify a failure rate, a
coverage value, or a repair rate within the properties of the architecture components.

Symbols exist within the CAME program to clearly define to the user which
parameters within a constructed Markov model can be changed in value without effecting
the integrity of the model. With the exception of a coverage value of one, two parameters
(where a parameter may be a failure rate, coverage value, or repair rate specified for each
architecture component) are assumed to be the same only if they are the same symbol. This
is an important definition when the program performs aggregation in the construction of a
model.

In Figure 2-2, the Further Specifications Window shows the failure symbolfp and
the coverage symbol cp defined by the user. Though not shown in the figure, the
components pJ and p2 are both assigned a failure rate offp and a coverage value of cp
through the properties menu of the System Architecture Window. Therefore, these
symbols need to be defined in the Further Specifications Window and respectively assigned
values.

2.2.5 Functions Defined Within the World of the CAME Program

Figure 2-2 illustrates how functions are used to define the dual-channel controller
example to the CAME program. Essentially, any of the primitives ofUSP can be used by
the analyst in the Reconfigurations, Performance Requirements, and Further Specification
Windows. Very few prove to be of great use directly. The and and or logical functions are
commonly utilized in specifying systems. In fact, to facilitate the clarity of the system
description, the and and or functions can be displayed as graphical objects within the
Performance Requirements and Further Specifications Windows. In addition, a number of
functions are defined which are particularly useful in defining fault-tolerant systems and

2-4

":' ~.' -.,. .. -. , ~~; .. " ~ .. ' ~. '--. ..~ .. ~

have rigid definitions within the CAME program. Some of the most useful are listed as
follows:

• (failed comp) This returns T if the architecture component comp is failed
and NIL otherwise.

• (unfailed comp) This returns T if the architecture component comp is
unfailed and NIL otherwise.

• (fwu:tional comp-or-class) If comp-or-class is an architecture
component, then this function returns T if comp-or-class is functional and
NIL otherwise. If comp-or-class is a class, then this function returns T if at
least one component which is a member of the class comp-or-class is
functional and NIL otherwise. (The functionality of an architecture
component can be defined by the user the same way performance levels are
defined for a system. Therefore, whether or not a component is functional
can depend on other factors besides whether or not the component has
failed. If the functionality of a component is not explicitly defmed within
the system specification, the functions unfailed and functional are
synonymous.)

• (at-least-n1unctionaI n class-or-list-oJ-comps) This returns T if at least n·
components with the class or the list of components class-or-list-oJ-comps
are functional and NIL otherwise.

• (cw-rent std) This returns the label of the current state of the state
transition diagram std in the Reconfigurations Window.

• (path from-comp-or-list-oJ-comps to-comp-or-list-oJ-comps) This
returns T if a path exists from the component (or list of components) from­
comp-or-list-oJ-comps to the component (or list of components) to-comp­
or-list-oJ-comps and NIL otherwise.

2.3 Model Construction

After a system is properly defined within the four system specification windows,
the user can direct the CAME program to construct an appropriate Markov model through
the Markov Modeler Window. Using the menus of this window, the user would first
select the model truncation and aggregation rules which should be applied in the
construction of the model, then initiate model construction, and finally, he could inspect the
model which was built.

The CAME program provides several options, available to the user, to reduce the
size of the Markov model which is ultimately constructed. These are:

'I
2-5

1. Model truncation

2. Perfonnance-level aggregation at the next-to-final failure level

3. Aggregation of the next-to-final failure level into one performing state

4. System loss state aggregation

5. Outward aggregation

6. Backward-sweep aggregation

i·'
i.

Though the evaluation of the model has been automated and included as part of the
program, for many real systems the constructed model can grow very quickly to a size
which overburdens the computational power and/or memory capacity of the machine the
program is run on. By carefully combining states in accordance with the options selected,
the CAME program can, if possible, reduce the ultimate size of the model without
sacrificing its integrity. This reduces the time and memory required for constructing and
solving the model.

The CAME program builds a Markov model failure level by failure level. Model
construction starts with an initial state in which the system is assumed to have no failures.
For each state within the present failure level, all functional components are failed one at a
time and the appropriate state (or states) is created in the next failure level. Therefore, all of
the possible transitions from each state within a particular failure level will be defined
before expanding the next higher failure level.

As each state of the Markov model is created, the perfonnance and reconfiguration
definitions are reviewed and the appropriate performance level and reconfiguration status is
assigned. The failed, functional, and in-use lists are also determined and assigned to the
state. The failed list contains the actual components which were failed to reach this state.
In contrast, the functional list contains all the components which are functional in this state.
Note that whether or not a component is functional can depend on other factors besides
whether or not the component has failed. The in-use list contains those components which
satisfy the highest perfonnance defmition possible. Therefore, for this particular state they
can be thought of as "in use" by the system.

Excepting backward sweep aggregation, the selected truncation and aggregation
rules are applied as the model is being constructed. The truncation option can be used to
truncate the constructed model at a specified failure level or at a specified number of failure
levels past the appearance of the first system loss state. Perl"ormance-level aggregation at
the next-to-final failure level aggregates the states at the next to final failure level with the
same performance level into a single state for each performance level. Aggregation of the
next-to-final failure level into one perfonning state has a similar effect except all states
which are not system loss states would be aggregated into a single state. System loss

2-6

aggregation causes the system loss states at each failure level to be aggregated into a single
system loss state for that failure level. Outward aggregation compares all of the states at
each failure level as each failure level is constructed and if any two states both have the
same in-use list and the same functional list, then these two states can be aggregated into a
single state.

After the complete model is constructed, backward sweep aggregation will take
place if this option was selected by the user1• Starting with the failure level two failure
levels before the last failure level and working toward the initial failure level, backward
sweep aggregation is performed on each failure level. Two exit transitions, emanating
from different states, are said to match if both have the same transition rate and both
terminate at the same state. If two states within the same failure level have the same exit
transitions (meaning that there is a one-to-one match between each exit transition of the first
state to that of the second state) and they both have the same performance level, then they
can be aggregated during backward-sweep aggregation.

The Markov Modeler Window also provides features which allow the user to
inspect a Markov model. Once a model has been constructed from the system description
in the system specification windows, the model can be examined in a textual format or
interactively through the graphical.interface. The textual description can be displayed
directly in the Markov Modeler window or stored in a file and subsequently printed through
an output device. The textual description describes the sta~s of the model and the
transitions between them to a degree in which it is possible for the user to validate the
model. This same information can be examined interactively through the Markov Modeler
Window. The user can direct the program to graphically display the structure of the
constructed model and then interactively probe the individual states and transitions of the
model.

2.4 Model Evaluation

Through the Model Evaluator Window, the user can invoke one of the available
algorithms to numerically solve the state transition matrix represented by the constructed
Markov model. The solution can then be displayed as a plot of the probability of system
loss as a function of time or simply as a value (or the calculated bounds) at the final time
specified. The state vector at the final time or at the calculated intermediate times can also
be displayed.

Presently, three solution algorithms are available iIil the CAME program. The first
is an implicit Euler integration algorithm that evolves the state vector iteratively by repeated

1 Actually, in order for backward sweep aggregation to take place, the user must also select the
model truncation option and either the performance-level aggregation at the next-to-final failure
level option or the aggregation of the next-to-final failure level into one performing state option.
Therefore. the fmal two failure levels will have been aggregated to the maximum extent possible
as the model was constructed.

2-7

multiplications of the vector times the transition matrix. If ~ is the discrete-time transition
matrix, P is the state probability vector, and ~t is the integration step time then:

and the solution is P(t) = P(~t).

P(At) = M P(O)
P(2At) = M P(~t)

•
•
•

P(~t) = M P«n-l)~t)

(2-1)

The second algorithm is a variation of the Euler integration which takes advantage
of the time invariance of the transition matrix. Note that since M is time invariant, Equation
(2-1) can be rewritten as:

! :!

P(nAt) = Mn P(O) (2-2)

Therefore ~ can be solved by repeatedly squaring the transition matrix. If ~t is selected
such that n = 2i, where i is an integer, then Equation (2-2) is sufficient to get P(t). If,
however, n :I: 2i then products of intermediate squarings of the matrix must be used to get
P(t). Options exist in the CAME program to supply a At that is either used directly or is
used as a guide for selecting a time step such that n = 2i.

The third algorithm is a hybrid of the first two algorithms. While matrix squaring
can produce faster solutions and data points logarithmically spaced in time, it is not capable
of generating linearly spaced outputs. For these cases a hybrid of matrix squaring and
Euler integration is invoked by the CAME program. Matrix squaring is used to generate a
"base transition matrix" and Euler integration operates on this matrix to reach the solution
P(t).

A more thorough discussion of the latter numerical solution techniques of Markov
models can be found in [14].

2-8

.... ,.':' ..

3. SEMI·MARKOV ADJUNCflON

3.1 Approach

The objective of this project is to modify the CAME program so that it can develop
an appropriate semi-Markov model when the input system description includes events
which have distributions that are locally time dependent -' such as those characteristic of
the fault-handling processes in many fault-tolerant systems. In deciding the approach to
accomplishing this, a number of assumptions are made at the inception. The first is that the
altered CAME program should be able to solve a useful class of problems. The second is
that the interest is in demonstrating the feasibility of generating semi-Markov models with
the CAME program to model fault-handling processes. Therefore, though a few different
approaches are viable, the approach taken is not necessarily the best. In fact, the intention
is to add this new ability to the program in the simplest fashion possible. The third

, assumption is that the models constructed by the CAME program will be solved ,using the
SURE program [10]. Therefore, the approach taken should be compatible with this
solution technique.

Currently, the method by which the CAME program incorporates the effect of
FDIR errors into the Markov model it builds is through the coverage property associated
with each architecture component. When an architecture co~ponent is failed which has a
coverage parameter other than one, two states are created by the CAME program in the next
failure level. The first is the completely covered state. The transition rate to this state from
the cmrent state is the coverage value times the failure rate of the component failed. The
second state created is the state which results if this component failure is uncovered. The
transition rate for this event is the sum of one minus the coverage value times the failure
rate of the component. In this way the fault-handling behavior of the system being
modeled is reflected in the constructed Markov model as the weighting factor of an event
which has an exponential distribution. Therefore, though the outcome of the processes
which perform the FDIR are incorporated into the constructed model, the details of the
processes themselves are not.

In a reconfigurable fault-tolerant system, the response of the system to fault arrivals
occurs at a finite rate and does not necessarily have an exponential distribution. Though
this reconfiguration rate is generally much faster than the rate of failure of any of the
components, the reconfiguration time can have an impact th,e system's reliability. The
longer this time period, the greater the probability that a second event will occur (such as
the failure of another component) while the system is still performing FDIR. This nearly
coincidental event could have a critical effect on the perfonnance of the system by
confusing the FDIR process - resulting in an uncovered failure. It is this phenomenon
that the CAME program is modified to include in the constructed model.

3-1

The approach taken to adding this new capability to the program is to associate a
new property with each architecture component which, when enabled, would directly cause
the creation of an additional state (or states) to account for the effect of the fault-handling
processes which are enacted when this component fails. The possible states are:

1. The state which models correct FDIR in response to the component failure.

2. The state which models incorrect FDIR in response to the component
failure.

3. The state which models the nearly coincidental failure.

The transitions to the first and second states are semi-Markov since they model the FDIR
processes of the system. The transition to the third state is Markov since the event which
causes it is the failure of a component. The following three subsections discuss the
alterations made to the CAME program to implement this approach~

3.2 Changes to the System Specification

To allow the user to specify a system in which the fault-handling processes are
modeled with semi-Markov transitions, two changes are made within the system
specification windows. The first is an alteration to the architecture component object of the
System Architecture Window; the second is the addition of a semi-Markov transition class
object to the Further Specifications Window. t;

A new property is now associated with each architecture component of the System
Architecture Window. This new property will be the semi-Markov transitions which may
be triggered when the architecture.component is failed. Figure 3-1 illustrates the changes
made to the menus used to define the properties of an architecture component. The upper­
left menu is the object menu for an architecture component object and the two menus below
it are the properties menu and the semi-Markov properties menu. Both are accessed
through the architecture component object menu. The user specifies this new property
through the question "Are there semi-Markov transitions?" in either the properties menu or
the semi-Markov properties menu for an architecture component. "Yes" enables this
property for the particular component selected; "no" leaves the component to be treated in
the nonnal manner.

The semi-Markov properties menu permits the user to specify the possible
transitions which can result when the selected component fails (see Figure 3-1). This is a
new menu added to the CAME program. Since the SURE program will be used to solve
the semi-Markov models constructed by the CAME program, the possible fast transitions
can be specified with White's method [10]. Therefore, the conditional mean transition
time, the conditional standard deviation of the transition time, and the transition probability
are the necessary and sufficient parameters which specify the fast transition. These are the
parameters the user would input for the "Fast Transition Specification" of the semi-Markov

3-2

,
~ .i

properties menu. The default values of a mean of 1.0 x 10-6 h, a standard deviation of 1.0
x 10-7 h, and a transition probability of 1.0 are shown in Figure 3-1.

The question "Object must be in use for fast transition to occur?" of the semi­
Markov properties menu allows the user to impose the additional condition that the
component be "in use" in order for the semi-Markov transitions to be generated. If "yes" is
chosen, then the component must be "in use" (that is, on the in-use list) when it is failed in
order for the subsequent semi-Markov transition(s) to take place. If "no" is chosen, then
this is not a necessary condition.

The final entry to the semi-Markov properties is the specification of the "Critical
Component(s)". The critical component(s) would be the cqmponents whose near
coincident failure would cause a system loss if it occurred before the fast transition event·
(FDIR) is completed.

The second change to the system s~cation is the addition of a semi-Markov
transition class object. This object is created to conform with the methodology the CAME
program has for handling numbers and symbols. A semi-Markov class object is the
symbol which could be used in place of the mean, standard deviation and transition
probability in the Fast Transition Specification of the semi-Markov properties menu. Its
use is analogous to the use of the failure symbol and coverage symbol discussed in Section·
2.2.4.

3.3 Changes to the Model Building Process

Figure 3-2 illustrates how the model building process is altered when an
architecture component is encountered which has a fast, semi-Markov transition associated
with it. State A represents the current state from which tl"aIlsitions will be generated. State
A is at the n failure leveL As before, all functional componc:nts in this state will be failed to
create states in the next failure leveL But now, if a component whose failure could
possibly trigger a semi-Markov transition is encountered, the generation of the state in the
next failure level will proceed differently. First, it must be decided whether or not the
semi-Markov transition will take place. That is, whether or not the component must be in
use to have a semi-Markov transition and, if it must be in use, whether or not it is. If the
semi-Markov transition is not be triggered, then the model building will proceed as is
currently implemented in the CAME program - a standard Markov transition is
constructed.

If the semi-Markov transition is triggered, then the states generated will follow as in
Figure 3-2. State B, and the appropriate transition from state A, is created as a result of the
failure of the component. The transition, represented by the rate Acomponent, is handled
as transitions are currently handled in CAME, but state B would have to be treated
specially. System performance and reconfigurations are not analyzed in state B. This is to
avoid interpreting state B as a system loss state since a subsequent FDIR event may bring
the system back to an operational state. Instead, state C ana the semi-Markov transition

3-3

from state B to state C is generated. The semi-Markov transition from state B to state Cis
completely specified by the conditional mean transition time (JJ.), the conditional standard
deviation of the transition time (a), and the transition probability (p). Perfonnance and
reconfiguration analysis is done and assigned to state C. If state C evaluates to a system
loss, then the transition to this state from state B should be assigned a transition probability
of one and state D is not generated.

If p is less than one and state C does not evaluate to a system loss, then state D and
the semi-Markov transition from state B to state D are created. State D represents a system
loss state at the (n+ 1) failure level due to an incorrect reconfiguration.

After states B, C and D are created, the building of the (n+ 1) failure level continues
until completed. Then the (n+ 1) failure level is expanded to create the (n+2) failure level.
When state B is encountered as the (n+ 1) failure level is expanded, only one transition is
created and it will have a destination of state E. State E is the system loss state due to
coincident failures. The rate of the transition from state B to state E is the sum of the failure
rates of all the components which are still failable and identified as "critical components" by
the user for the component whose failure created state B. ~ .

State C can be treated as any other state in the (n+ 1) failure level. Building the
transitions which emanate from it to the states at the next failure level can proceed as is
presently implemented in the program.

With some modification, the truncation and aggregation rules available in the
CAME program can also be utilized with the construction of semi-Markov models. What
follows is a summary of how they are altered to function with regard to the states and
transitions generated from the semi-Markov property of an architecture component:

2

1. Model Truncation

Generally, model truncation remains unchanged. In the course of
constructing a model, when the truncation rule is triggered2 only one more failure
level will be created and it will consist of a single state. All operational states at the
next to last failure level (including any B states) ar~ ,assigned a single exit transition
which goes to the single aggregate state at the final failure level. The rate of this
transition is the sum of the failure rates of all the components defined in the
architecture window.

2. Perfonnance-Level Aggregation at Next-To-Final Failure Level

This state aggregation technique functions as it had - with the exception
that B states are treated specially. When this aggregation technique is triggered,
states created at the next-to-final failure level will be aggregated together according

The user specifies the number of failure levels to be constructed or the number of failure levels to
constructed beyond the appearance of the fll'St system loss state.

3-4
• :.1,
\ t"

'-,' . ~ 'r, -. '. r •

to perfonnance level. The B states will remain unaggregated since they have no
performance level. After the next-to-final failure level is completed, any B states
with the same exit transitions will then be aggregated together.

3. Aggregation of the Next-To-Fmal Failure Level into One Performing State

This state aggregation technique is altered in the same manner with regard to
the B states as performance level aggregation at the next-to-final failure level.

4. System Loss State Aggregation

When triggered, all the system loss states -' ~including those generated as
the result of the failure of an architecture component with an enabled semi-Markov
property - will be aggregated within each failure level.

5. Outward Aggregation

Two states, at the same failure level, can be outwardly aggregated if both
the "in use" list and the "functional" list of the first state respectively matches those
of the second. When semi-Markov transitions have been included in the
constructed model, this process is altered to include the C states. The C states are
handled as any of the normal Markov states. This includes the aggregation of C
states with the nonnal Markov states. The B states are excluded from any outward
aggregation.

6. Backward-Sweep Aggregation

Two exit transitions, emanating from different states, match if both have the
same transition rate and both terminate at the same state. If two states have the
same exit transitions (meaning that there is a one-to-one match between each exit
transition of the first state to that of the second state) and they both have the same
performance level, then they can be aggregated during backward-sweep
aggregation.

When semi-Markov transitions have been included in the constructed
model, backward sweep aggregation may still take place - but with one
modification. Now, when two transitions are compared, they have the same
transition rates if one of the following two statements are true:

1. They are both Markov and have the same rate.

2. They are bOth semi-Markov and have the same conditional mean
transition time, conditional standard deviation, and transition

b b·l· I· pro a llty. ."

Otherwise, they are not the same and cannot be aggregated.

3-5

3.4 Evaluation of the Comtructed Model

Once a model is construc~ by the CAME program, the CAME program can output
it in a fonn which can be directly evaluated with the SURE reliability analysis program
[10]. The solution algorithms within the Model Evaluator Module of the CAME program
are not applicable to solving semi-Markov models. Therefore, to numerically solve the
models generated with this new feature to the program, commands have been added which
allow the user to create a listing of the model in the input language of the SURE program.
This listing can be read directly by the SURE program.

Figure 3-3 illustrates the command menus of the Model Evaluator Window and the
two commands which are added to create the input listing. The menu in the upper left of
the figure is the command menu accessed directly from the window. The second menu is
accessed by selecting the "Other operations" command of the first menu. The commands
"Describe front end for SURE" and "Save front end for SURE" are the new commands
which create the input listing. "Describe front end for SURE" displays the input listing on
the screen of the Symbolics machine. "Save front end for SURE" stores the input listing in
a file specified by the user.

Two points need to be noted regarding the CAMElSURE interface. The ~first is that
the labeling conventions available to the user in defining a system within the system
specification windows of the CAME program are much more liberal than those of the
SURE input language. In the process of creating an input listing, the CAME program may
alter many of the labels given to components to make them compatible with the character set
and length limitations of the SURE program.

The second point regards the interpretation of the numerical results calculated with
the SURE program for a truncated mode1. When the user indicates to the CAME program
that he desires the constructed model to be truncated, the effect is that the model will no
longer produce a single result. The solution of the model '~r the probability of system loss
yields a lower and an upper bound reflecting the approximation introduced by truncation.
IT the SURE program is utilized to solve a constructed semi-Markov model, it will compute
the lower and upper bounds of the probability of being in each of the death states (the
system loss states). IT the semi-Markov model made use of the truncation technique, then
the ultimate result after using the SURE program is the bounds on the lower and upper
bounds for the probability of system loss. Therefore, the sum of the lower bounds
calculated by the SURE program for each of the lower bound system loss states produced
from the CAME program represents the lower bound of system loss. The sum of the upper
bounds calculated by the SURE program of all of the system loss states (including the
upper bound aggregate system loss state) represents the upper bound of system loss.

" ; .

3-6

/t
I

4. AN EXAMPLE: IAPSA n

On June 8, 1987, the Boeing Military Aircraft Company (BMAC) gave a
presentation at the NASA Langley Research Center which included their reliability analysis
of the Integrated Airframe/Propulsion Control System Architecture (lAPSA ll) reference
configuration being developed under NASA Contract No. NASI-18099 [13]. The
reliability analysis was performed by C. William Lee. The approach taken by the BMAC to
analyzing the reliability of the IAPSA IT was to divide the system into a number of smaller
groups distinguished by their functions. The intent was to select each of these functional
groups with the goal to maximize the independence between them. Individual models were
created to predict the reliability of each of the functional groups.

The reliability models necessary to predict the probability of system loss for each of
the functional groups were generated utilizing the Abstract ~emi-Markov Specification
Interface to the Sure Tool (ASSIST) program [15, 16, 17]." The ASSIST program is a
program which translates an abstract specification of a semi-Markov model (in the input
language of ASSIST) into a format which can be input to the SURE program. The input
language of the ASSIST program allows the user to specify the model at a higher level than
enumerating each of the possible states and each of the possible transitions between these
states. The program generates the actual model from the user's more general specification
of the processes which are taking place. In the BMAC reliability analysis of the IAPSA IT,
the created models were solved using the SURE program.

As a means of evaluating the alterations made to the CAME program to support the
construction of semi-Markov models and of evaluating the CAME program itself, the
CAME program is used to model the reliability of three of the defined functional groups of
the IAPSA IT. In this way, the results produced from the models constructed with the
CAME program can be directly compared with the results from the reliability model created
using the ASSIST program. rt

In the presentation given by BMAC, several reliability models were used to predict
the safety of the flight control section. The ASSIST program was used to create models for
the functional groups: Flight Control Computation, Pilot Sensing, Body Motion Sensing,
Airflow Sensing, and Pitch Surface Control. Of these five, three functional groups are
modeled using the CAME program. They are: Flight Control Computation, Pilot Sensing,
and Body Motion Sensing. These three groups best illustrate the strengths and weaknesses
in the model approach used by the·CAME program.

The intention of this exercise is to evaluate the CAME-program, not to provide an
analysis of the IAPSA IT. The system being modeled with the CAME program is the
system defined in BMAC's presentation and ASSIST input listings specifying the reliability
models. (The ASSIST input listings for the Flight Control Computation, Pilot Sensing,
and Body Motion Sensing Groups are included in Appendix A.) No attempt is made to

4-1

--,'

independently analyze the IAPSA II directly. Therefore, no claim is made that the results
produced from the CAME program generated models represent predictions of the reliability
of the IAPSA ll. The Flight Conu;ol Computation, Pilot Sensing, and Body Motion
Sensing models created by the CAME program are compared to the respective models
generated with the ASSIST program. The objective is to independently reproduce the
results generated through the ASSIST models with comparable models generated with the
CAME program.

4.1· Flight Control Computation

The ASSIST listing of BMAC's Flight Control Computation model does not
specify any semi-Markov transitions. It is included as one of the groups modeled by the
CAME program because it provides a benchmark for comparing the ASSIST and CAME
programs which does not invoke the semi-Markov adjunction to the CAME program.

Figure 4-1 illustrates the Flight Control Computation Group. According to
BMAC's reliability analysis, the Flight Control Computation Group is a quad fault tolerant
processor (FfP) consisting of 10 components - the 4 individual channels of the FTP and
the 6 network interfaces. The group is defined to be operational as long as at least 2 of the
4 channels are operational and at least one of these two channels has access to one of the
two I/O networks (i.e., one of these two channels has an operating network interface).
Otherwise, the Flight Control Computation Group is at system loss. In addition, the
following system level FMEA applies:

1. A failure of a FI'P channel also brings down the network interfaces within
that channel.

2. A failure of a network interface results only in the loss of that network
interface; the FI'P channel it is attached to rriay still be operational.

~ j ,

i"
The input system description used to describe the Flight Control Computation

Group to the CAME program is shown in Figures 4-2 and 4-3. Figure 4-2 shows the
System Architecture Window. Note thatftpl,ftp2,ftp3, andftp4 are the four channels of
the FTP. The six components labeled parmn are the respective network interfaces for each
of the channels of the FTP (m indicates the network being interfaced with and n specifies
the channel it is associated with). The specified interconnections between the FI'P channels
and the network interfaces have no bearing on the description and are included only to be
illustrative.

The Performance and F~er Specifications Windows are presented in Figure 4-3.
With regard to safety, the Flight Control Computation Group has two possible states -
operational (p-levell) or system loss. This is specified to the CAME program by defining
the p-level shown in the Performance Requirements Window. The definition for p-levell
of the system shows that the system is at p-level 1 if at least two of the four channels of the

Pi

4-2

FrP are functional and at least one of the six network interfaces is functional. If p-level 1
is not satisfied, the state of the system is assumed to be at system loss.

The Further Specifications Window specifies the classes and symbols utilized. The
class definitions are used to limit the functional network interfaces to those attached to a
FrP channel which is functional. Note that the four defined classes pI , p2, p3, and p4
each depend only on whether or not one particular channel of the FrP is functional.
Though not shown in Figure 4-2, the following components are assigned to classes:

1. Component par 11 is a member of the class pl.

2. Component par 12 and par22 are members of the class p2.

3. Components par13 and par23 are members of the class p3.
I

4. Component par24 is a member of the class jJ4.

In this way, when a particular channel fails, the program assumes the attached network
interfaces will also become non-functional. Therefore, in the specification ofp-levell, it is
not necessary to indicate the connection between the functional network interface and the
functional channel. The two failure symbol definitions shown in the Further Specifications
Window, channel and inter/ace, are used to specify common failure rates for the channels
of the FrP and for the network: interfaces, respectively.

From the input system description for the Flight Control Computation Group, the
Markov model described by the SURE input listing in Figure 4-4 is generated by the
CAME program. The truncation rule is set so that the model is truncated one failure level
after the appearance of the first system loss state. The aggregation rules are set to allow the
maximum possible aggregation of states to take place. The result is the model described by
the SURE input listing of Figure 4-4 which is a 15 state mooel with 28 transitions that
extends to the fourth failure level. The relevant measures of the created model, along with
the time it took the CAME program to generate this model, are given in the first entry of
Table 4-1- "Loss of access to both networks".

Table 4-1 presents a comparison of the models generated by the ASSIST and
CAME programs for Flight Control Computation, Pilot Sensing, and Body Motion
Sensing Groups. The relevant measures for the Flight Control Computation Group are
recorded as the first line of this table. The ASSIST generated model for this group is
obtained directly from the ASSIST program using the corresponding input listing obtained
from BMAC's analysis of the IAPSA II reference configuration3• (See Appendix A.) Note
that the "Run Time" listed in Table 4-1 is the execution time of the respective program.

3 The ASSIST and SURE programs are run on a Digital Equipment Corporation VAX 11/8600
using Version 4.4 of the VMS operating system.

4-3

4 .',

Therefore, the ''Run TlIDe" represents the model construction time by the respective
program, either the CAME program or the ASSIST program.

For the mission time and failures rates used in BMAC's safety analysis of the
IAPSA II, the bounds on the probability of system loss are calculated using the CAME
generated model of the Flight Control Computation Group. BMAC utilized a mission time
of 3 hours and failure rates of 220.0 x 10-6 and 40.0 x 10-6 failures/hour for the channel
and network interfaces of the FfP, respectively. These failure rates are listed in Table 4-2.
The results produced with these parameters are recorded as the first entry in Table 4-4
along with those predicted from the ASSIST generated modeL Note that bounds calculated
for the probability of loss for both models are all 1.15 x 10-9.

To provide an additional example for the evaluation of the CAME program, a
variation of the Flight Control Computation Group is contrived. This variation is identical
with the original definition of the Flight Control Computation Group except, in this case,
the FfP must be able to access both I/O networks. To use the ASSIST program to
generate an appropriate model, all that is necessary is to change the DEA THIF statement in
the original input listing to:

DEATHIF (NGFTPI + NGFTP2 + NGFTP3 + NGFfP4 < 2)
OR (NPARll +NPARI2+NPARI3 < 1)
OR (NPAR22 + NPAR23 + NPAR24 < 1);

To use the CAME program, all that is needed is to alter the input system description shown
in Figures 4-2 and 4-3 so the Performance Requirements Window is as presented in Figure
4-5.

For this variation, the relevant measures of the models generated from the CAME
and ASSIST programs are reported in Table 4-1 as the "Loss of access to either network"
and the respective predictions for the probability of loss at 3 hours is recorded in Table 4-4.
Again, the numerical results are in close agreement even though the models are quite
different. With the exception of the predicted upper bound calculated from the CAME
generated model, the bounds for the models generated from both the ASSIST and CAME
programs are all 1.52 x 10-9. The upper bound calculated from the CAME generated
model is slightly higher than this -1.53 x 10-9.

4.2 Pilot Sensing

The Pilot Sensing Group is that part of the input/output network which provides the
sensor information from the cockpit for flight control to thclflight control FfP. It includes
the redundant sensors of the pitch stick, roll stick and rudder pedal and the two I/O
networks. Each sensor type is qUadruplicated with each one assigned to one of the four
device interface units (Dills) of the cockpit. Two of the Dills interface with one I/O
network and the other two with the second I/O network. Figure 4-6 shows the complexity

4-4

of Flight Control I/O Network 1 and how the Ollis for the cockpit sensors assigned to this
network are attached. Figure 4-7 illustrates Flight Control I/O Network 2 and how the
other two Dllis are assigned to this network.

4 . ~~
The Pilot Sensing Group is considered operational as long as valid sensor

information is available to the flight control computer for each of the three sensor types -
pitch stick, roll stick and rudder pedal. Valid sensor information is available for each
sensor type if the good values outnumber the bad values to mask faults. Bad sensors can
be detected and removed from the voting process, but this takes a finite amount of time. If
a failure of one sensor occurs and a second sensor failure of this same type occurs before
the fIrst is removed, then the good sensors no longer outnumber the bad since there are
only four sensors of each type. So this second nearly coincidental failure causes a system
loss. If the system can be reconfIgured to remove the first failure from the voting process
before the second occurs, then the system continues to function since the good sensors
outnumber the bad by two to one.

Failures within the flight control I/O networks effect the ability to access sensor
information by the flight control FrP. A failure of a node or link within one of the
networks would cause the permanent loss of communicatio~ through that component In
addition, this failure may cause the temporary loss of the entire network until the network
can be regrown. In BMAC's analysis, a worst case assumption is made to model the I/O
networks. All failures within a network are assumed to cause a regrowth of the network.
All sensors on the network would be unavailable to the flight control FrP until regrowth is
completed. Therefore, there are two ways in which failures within the flight control I/O
networks can contribute to a loss of the Pilot Sensing Group. The first is the occurrence of
a nearly coinCident failure of a sensor on one network while the other network is being
regrown because of a failure. For this sensor type, the good sensors no longer outnumber
the bad, so a system loss occurs. The second way results when the failure of one of the
cockpit sensors on one network occurs and then a failure occurs which causes the other
network to be regrown. Again, for at least one of the three sensor types, the good sensors
no longer outnumber the bad and a system loss results. Note that this second failure,
which can occur anytime after the cockpit sensor failure, causes a temporary exhaustion of
the necessary number of sensors of one of the three types of cockpit sensors.

·:;f
Four categories of fault sequences are identified in BMAC's analysis:

1. Exhaustion of the necessary number of sensors of one of the three types.

2. Nearly coincident sensor failures for sensors of the same type.

3. Nearly coincident sensor failure and a network recovery.

4. Temporary exhaustion of the necessary number of sensors of a particular
type.

4-5

_. " ~:- .. -

The fIrst three can all be accounted for with the expanded version of the CAME program.
The fourth category cannot be accounted for. As is specified in Section 3.3, the state of the
semi-Markov model which directly results from the failure of a component in which the fast
transitions will take place (state B in Figure 3-2) does not have its performance evaluated.
Therefore, the delay before reconflguration takes place is, by default, an operational state.
This precludes the modeling of the temporary exhaustion failure mode. (It would not be a
difficult program change to alter the program to enable it to model this failure mode.)

Figures 4-8 through 4-11 present the four system specillcation windows of the
CAME program with the input system description for the Pilot Sensing Group. The Pilot
Sensing Group is the fIrst example which invokes the CAME program's ability to construct
an appropriate semi-Markov model.

Figure 4-8 presents the System Architecture Window and Figure 4-9 illustrates the
Reconflgurations Window. As in BMAC's analysis of the Pilot Sensing Group, because
of the size and complexity of the two flight control I/O networks, it is necessary to use an
approximation to model these networks. ' The architecture components par 11, par 12,
par13,par14 andpar1S and the reconflguration diagrampartition-1-in-use are used to
approximate the behavior of I/O Network I exclusive of the two nodes the sensors are
attached to. The component par 11 is initially in use and the other four components par 12,
par 13, par 14 and par IS are specilled as cold spares (failable only when in use). All of
these components can cause the generation of semi-Markov transitions. These fIve
components will sequentially fail and the next one will be broUght into use to approximate
the failures within the I/O network which cause regrowth of the network but do not cause
isolation of the cockpit nodes. The components par21, par~2, par23, par24 and par2S and
the reconflguration diagrampartition-2-in-use are used in the same way to approximate the
behavior of I/O Network 2. The components node1, node2, node3 and node4 represent
the cockpit network nodes, along with their respective Drus and primary electrical
systems. The pit, roll and nul components respectively represent the pitch stick, roll stick
and rudder pedal sensors.

Figure 4-10 shows the Performance Requirements Window for the Pilot Sensing
Group. The Pilot Sensing Group is considered operational as long as at least two sensors
of each of the three sensor classes are functional. Functional in this context means they are
providing good data to the flight control FfP. The pit components are the members of the
class pitch-sensor, the roll components are the members of the class roll-sensor, and the
nul components are the members of the class yaw-sensor. Each of these sensors is
functional only if it has access to the network is is attached to.

The Further Specillcations Window is shown in Figure 4-11. The classes n1, n2,
n3, and n4 are utilized to specify how each sensor is attach~ to the networks. The
components pit1 , rollI, and rOO1 are defmed as members of class n1. So, when class n1
fails (which it does when either the component node1 fails or partition-1 fails), the
components pit1, rollI, and null will become non-functional. Similarly, the components

4-6

•••• _ •••••• _ ~. '. • -_ _ ••• ~ •• __ "'-- _._ - .p •••••• _ ••• , -.- ... - -. ~, "', -, •••••••••• , •• r.- _; .. 1_',_'

pit2, roll2, and rud2 are defined as members of class 112; pit3, 70113, and rud3 as members
of class 113; andpit4, 70114, and rud4 as members of class n4.

Using the input system description for the Pilot Sensing Group, the CAME
program generated an appropriate semi-Markov model to predict its reliability. In order to
create a model which would calculate sufficiently tight bounds for the prediction of the
probability of system loss, the model is built out through the fourth failure level. Figure 4-
12 presents the structure of the model as displayed through the Markov Modeler Window
of the program. The relevant measures of this model are recorded in Table 4-1 (as the line
labeled "Original" under "Pilot Sensing") along with the other groups being analyzed.
Note that Table 4-1 includes two entries for the ASSIST generated model. The first entry
is the model generated from the original input listing from BMAC's analysis. The second
entry is the model which is generated if the temporary exhaustion failure sequences are
removed from the ASSIST input listing. This is done by removing the lines of code in
Appendix A.2 which are marked with a bar in their left margin.

Using the model generated by the CAME program and the same input parameters
used in the BMAC analysis (see Tables 4-2 and 4-3), the bounds for the probability of loss
of the Pilot Sensing Group are calculated for a mission time of 3 hours with the SURE
program. These are recorded in Table 4-4. Also recOrded,,~or the Pilot Sensing entry are
the predictions from BMAC's ASSIST generated model and the prediction from BMAC's
model with the temporary exhaustion failure sequences removed. Note that the bounds
predicted from the CAME generated model do not contradict the results produced from
either of the two ASSIST generated models and all three are reasonably close. This is
because the temporary exhaustion failure sequences, which are not included in the CAME
generated model, only represent about 25 percent contribution to the probability of system
loss. So, the predictions of both of the ASSIST generated models fall within the bounds
from the CAME generated model. .

4.3 Body Motion Sensing

In terms of analyzing its reliability, the Body Motion Sensing Group is very similar
to the Pilot Sensing Group. The Body Motion Group is the part of the I/O network which
provides sensor infonnation from the body motion sensors to the flight control FfP. It
includes the eight gyros, the eight accelerometers, and the two I/O networks. Two gyros
and two accelerometers are assigned to each of the four Dills. Figure 4-6 and 4-7 illustrate
how these four DIU s are linked to the two Flight Control I/O networks.

The Body Motion Sensing Group is considered operational as long as valid sensor
infonnation is available to the flight control computer for both of the sensor types - the
gyros and the accelerometers. Since the gyros and accelerometers are skewed sensors,
valid sensor infonnation can be derived for each sensor type as long as the good sensors
outnumber the bad sensors by at least 3 or more to mask faults. As in the Pilot Sensing
Group, bad sensors can be detected and removed from the voting process, but this takes a

4-7

I.

finite amount of time. If one gyro fails and then one of the other three Body Motion
Sensing DIUs (i. e., not the DIU this gyro is directly attached to) fails before this gyro is
removed from the voting process, then the ratio of good to bad gyros is only 5 to 3. The
result is a system loss. If the bad gyro is removed from the voting process before the
second failure (the failure of the DIU), then the Body Motion Sensing Group remains
operational. The effect of failures within the I/O networks exclusive of the nodes and DIU s
directly attached to the body motion sensors is as described for the Pilot Sensing Group.
(See Section 4-2 for a discussion of this effect.)

The same four categories of failme sequences exist in the Body Motion Sensing
Group as the described for the Pilot Sensing Group:

1. Exhaustion of the necessary number of sensors of one of the two types.

2. Nearly coincident sensor failures for senso? of the same type.

3. Nearly coincident sensor failure and a network recovery.

4. Temporary exhaustion of the necessary number of sensors of a particular
type.

BMAC's analysis identified the temporary exhaustion of body motion sensors as the
dominant failure sequence with regard to flight safety [13]. Since the CAME program is
unable to incorporate this failure sequence into the models it constructs, the Body Motion
Sensing Group should highlight this deficiency in the program.

The input system description of the CAME program for the Body Motion Sensing
Group is presented in Figures 4-13 through 4-16. Note that the system description for the
Body Motion Sensing Group is very similar to that of the Pilot Sensing Group. Figures 4-
13 and 4-14 are, respectively, the System Architecture Wmdow and the Reconfigurations
Window. The same modeling approximation to model the, effect of the two I/O networks
as is utilized in the Pilot Sensing Group is employed in the system description for the Body
Motion Sensing Group. The architecture components par 11 , par 12, par 13, par 14, par 15,
par21 , par22, par23, par24, and par25 and the reconfiguration diagrams partition-l-in-use
and partition-2-in-use mimic the behavior of the I/O Network 1 and I/O Network 2
exclusive of the four nodes the sensors are attached to. These objects are used as the
objects with the same names in the system description for the Pilot Sensing Group. The
components nodel, node2, node3 and node4 represent the network nodes, along with their
respective DIU s and primary electrical systems, the gyros and accelerometers are directly
attached to. The gyro and ace architecture components respectively represent the gyros and
accelerometers - the body motion sensors.

Figure 4-15 presents the Perfonnance Requirements Window and Figure 4-16
shows the Further Specifications Window. As displayed in the Performance Requirements

.\

Ii

4-8

Window, the Body Motion Sensing Group is operational (p-levell) as long as at least four
gyros and at least four accelerometers are functional. Functional in this context means they
are providing good data to the flight control FTP. In the Further Specifications Window,
the classes nl, 112, n3, and n4 are utilized to specify the dependency of the individual body
motion sensors on the nodes they are directly interfaced to. The components gyrol, gyro2,
aecl, and aec2 are dermed as members of class nl. So, when class nl fails, the
components gyroi, gyro2, aecl, and acc2 will become non-functional. Similarly, the
components gyro3, gyr04, acc3, and ace4 are defined as members of class n2; gyro5,
gyr06, aceS, and ace6 are defined as members of class n3;, and gyro7, gyroB, aee7, and
aee8 are dermed as members of class n4. .

From the system description, the CAME program generated a semi-Markov model
to predict the Body Motion Sensing reliability. In order to create a model with sufficiently
tight bounds for the prediction of the probability of system loss, the model is constructed
out through the fourth failure level. The relevant measures of this model are recorded in
Table 4-1 (as the line labeled "Original" under "Body Motion Sensing") along with the
other groups being analyzed. Note that, as with the Pilot Sensing Group entries, two
models are created from BMAC's ASSIST input listings for comparison. The first is the
model generated directly from the original input listing. The second is the model generated
with the temporary exhaustion sequences removed from the input listing4.

Using the same input parameters as those used in the BMAC analysis (see Table 4-
2 and 4-3), the bounds for the probability of system loss of the Body Motion Sensing
Group are calculated for a mission time of 3 hours with the SURE program. These are
recorded in Table 4-4 along with the predictions for the tw()models created from the
ASSIST input listings. Note the wide divergence between the predictions of the original
ASSIST generated model and those of the CAME generated model. This divergence is
attributable to the CAME program's inability to incorporate the temporary exhaustion
failure sequences into the constructed model. Note that for the ASSIST model with the
temporary exhaustion failure sequences removed, there is close agreement with the
predictions of the CAME generated model.

4.4 Discussion

The predictions from the CAME program for probability of loss of the Flight
Control Computation, Pilot Sensing, and Body Motion Sensing Groups compare well with
those produced with the ASSIST program for these groups. As indicated in Table 4-1, the
actual models produced for each group from the two programs are quite different A
comparison of the states of the models for each group is difficult because of the size of
most of the models and is avoided. But the numerical predictions derived from these
models is comparable for each group because both programs are attempting to construct a

. 4 This is done by removing the lines of code in Appendix A.3 which are marked with a bar in their
left margin.

4-9

semi-Markov model to calculate the probability of system loss for the same physical
system.

Care should be taken in comparing the measures recorded in Table 4-1 for the
ASSIST and CAME programs. For each of the groups examined, the model construction
time ("Run Time") is recorded as being much faster for the ASSIST program. For the Pilot
Sensing and the Body Motion Sensing Groups it is orders of magnitude faster. The
ASSIST and CAME programs are each run on different machines so a rigid comparison of
the model construction times between these two programs is misleading. However, the
differences in model construction times are too great to be attributed only to the speed of the
host machines. The CAME program attempts to incorporate more of the analysis process
into the program itself than the ASSIST program does. Therefore, the results of Table 4-1
do not reflect the total time it takes to construct a model- only the time it takes each of the
two programs to construct a model from their respective input specifications.

The measures of the size (number of states and transitions) of the models generated
by the ASSIST and CAME programs in Table 4-1 should also be compared with caution.
The CAME program provides the user the option of invoking a number of model truncation
and state aggregation rules which are applied as the modeljs being constructed to minimize
the ultimate size of the model. These options are utilized iIi the construction of all of the
models generated with the CAME program. In contrast, BMAC's ASSIST input listings
show little attempt made at reducing the size of the constructed models. Therefore, though
the results of Table 4-1 show the models constructed by the CAME program to be smaller
in size than those constructed with the ASSIST program, the reason for including these
measures is to . highlight the wide divergence between the models created with the two
programs.

The predictions for the Flight Control Computation Group from the CAME and
ASSIST generated models recorded in Table 4-4 are in very close agreement because both
are creating a strictly Markov model for a well defmed physical system which falls within
the capabilities of both programs. Though the Flight Control Computation Group is a
realistic system, its behavior with regard to reliability is conceptually very straightforward.
Since both programs are constructing a Markov model to predict the probability of system
loss, the fact that the predictions are in such close agreeme~~ tends to validate the models
produced from the two programs.

The difference between the predictions of the probability of system loss from the
CAME and ASSIST generated models for the Pilot Sensing and Body Motion Sensing
Groups in Table 4-4 is attributed to the CAME program's inability to incorporate the failure
mode of temporary exhaustion of sensors. With this failure mode removed from the
ASSIST generated models, the predictions from the models generated from both programs
are in close agreement. Since this failure mode represents a major contributor to system
loss in the Body Motion Sensing Group, this limitation of the CAME program is
highlighted by this example.

4-10

III

S. CONCLUSIONS

The feasibility of utilizing the CAME program to generate appropriate semi-Markov
models to model fault-handling processes is successfully demonstrated. The CAME
program is still very much a tool in its research and development phase. But the usefulness
of such a tool has been illustrated. The functional groups of the IAPSA II represent a
realistic physical system in which the creation of analytical reliability models, without some
tool to aid in the construction of these models, would be an extremely difficult task. With
the exception of the temporary exhaustion of sensors failure mode, the CAME program is
able to construct semi-Markov models which accurately predict the reliability of the system
(i. e., as compared with the prior analysis done by the BMAC).

With slight modification, the CAME program would be able to model the temporary
exhaustion of sensors failure mode in the Pilot Sensing and Body Motion Sensing Groups
of BMAC's functional groups. For the system defined by the IAPSA IT, a minor change in
the pro~ would allow it to recognize the temporary exhaustion of sensors failure mode.
However, the program is being developed as a tool for analyzing the reliability of many
types of systems - not just the IAPSA IT. Further research is required before
incorporating such a change into the general program.

The CAME program is a useful tool in the analysis'hf the IAPSA II. The
methodology of the program and the structure of the user interface are conducive to the task
of model the reliability of the IAPSA IT. In fact, should the need arise to independently
analyze a system like the IAPSA IT, a modified version of the CAME program could be
created which would recognize all of the identified types of failure modes.

The CAME program presents a framework which can be adapted to allow the·
modeling of many reliability problems. The program automates the model construction
process and incorporates many of the techniques available for reducing the size of the
ultimate model. At this time, all the capabilities of the program have not been explored nor
all its facets defined. Just what features should be included in the program is a current area
of research.

5-1

6. REFERENCES

[1] Schabowsky, Jr., R. S., E. Gai, B. Walker, J. Lala, and P. Motyka,"Evaluation
Methodologies for an Advanced Information Processing System", Proceedings of
the 6th IEEElAIAA Digital Avionics Systems Conference, December 1984.

[2] Babcock, IV, P. S., F. Leong, and E. Gai, Qn the Next Generation of Reliability
Analysis Tools. NASA Contractor Report 178380, The Charles Stark Draper
Laboratory, Inc., Cambridge, MA, October 1987.

[3] Walker, B. K., A Semi-Markov Approach to Quantifying Fault-Tolerant System
Perfonnance. T -717, The Charles Stark Draper Laboratory, Inc., Cambridge, MA,
July 1980.

[4] Geist, R. M. and K. S. Trivedi, "Ultra-high Reliability Prediction for Fault­
Tolerant Computer Systems", IEEE Transactions on Computers, Vol. C-32,
December 1983, pp. 1118-1127. .

[5] Bavuso, S. J., D. L. Peterson, and D. M. Rose, CARE III Model Overview and
User's Guide, NASA Technical Memorandum 85810, June 1984.

[6] Trivedi, K S. and R. M. Geist, A Tutorial on the CARE III Approach to Reliability
Modeling, NASA Contractor Report 3488, December 1981.

[7] Dugan, J. B., K. S. Trivedi, M. K. Smotherman, and R. M. Geist, The Hybrid
Automated Reliability Predictor, Duke University, 1985.

[8] Lala, J. H., MARK 1 - Markov Modeling Package, The C. S. Draper Laboratory,
Inc., Cambridge, Mass., March 1983.

[9] Lata, J. H.,"Interactive Reductions in the Number of States in Markov Reliability
Analysis", Proceedings of the AIAA Guidance and Control Conference, August
1983.

[10] Butler, R. W., The SURE Reliability Analysis Program, NASA Technical
Memorandum 87593, 1986.

[11] Schabowsky, Jr., R. S., M. A. Radlauer, and J. Brandner, "Automated Markov
Reliability Model Formulation", Proceedings of Robotics and Expert Systems
Conference, June 1986.

[12] Schabowsky, Jr., R. S., M. A. Luniewicz, and M. A. Radlauer, "Automated
Reliability Model Construction", Proceedings of AIAA Guidance. Navigation. and
Control Conference, August 1986.

6-1

[13] Viewgraphs & ASSIST Ustings from BMAC's IAPSA IT Presentation, NASA
Langley Research Center, June 8, 1987.

[14] Babcock, IV, P. S., An Introduction to Reliability Modelin~ of Fault-Tolerant
Systems, CSDL-R-1899, The Charles Stark Draper Laboratory, Inc., Cambridge,
MAt September 1986.

[15] Butler, R. W., An Abstract Specification LanfWa~e for Markov Reliability Models,
NASA Technical Memorandum 86423, April 1985.

[16] Butler, R. W., "An Abstract Specification Language for Markov Reliability
Models", IEEE Transactions on Reliability, Vo1. R-35, No.5, December 1986.

[17] Johnson, S. C., ASSIST User's Manual, NASA Technical Memorandum 87735,
August 1986.

6-2

" j
-'

Table 4-1. Comparison of the Models Generated with the ASSIST and CAME Programs

ASSIST GENERATED MODEL CAME GENERATED MODEL
FUNCTIONAL

GROUP Run Number Number Run Number Number
Tune of of Tune of of
(s) States Transitions States Transitions

Flight COnttol Computation .
Loss of access to both networks 22.06 224 1120 48 s 15 28

Loss of access to either network 17.51 220 818 43 s 17 36

Pilot Sensing

Original 14.63 266 353 17h 12m 99 356

Without temporatory exhaustion 12.94 249 336
failure sequences

Body Motion Sensing
I

Original 57.11 252 516 13h 14m 40 110

Without temporatory exhaustion 33.64 235 495
failure sequences

,

Table 4-2. Failure Rates Used in Analysis of IAPSA IT Reference Configuration

COMPONENT

FlightControlCompumtion

FTPChannel

FTP Network Interface

Pilot Sensing

Pitch Position Sensor

Roll Position Sensor

Yaw Position Sensor

Network Node (including DIU and
Primary Electrical System)

Network Temporary Oumge

Body Motion Sensing

Gyro

Accelerometer

Network Node (includes DIU and
Primary Electrical System)

Network Temporary Oumge

7-2

FAILURE RATE
(failures /106 h)

220.0

40.0

10.0

10.0

10.0

50.0

561.0

50.0

30.0

50.0

561.0

Table 4-3. Semi-Markov Transition Parameters Used in Analysis of IAPSA II Reference
Configuration

STATISTICS
TYPE

Mean Standard
(hours) Deviation

(hours)

Sensor Recovery Time 3.0 x 10-4 1.0 x 10-4

Temporary Network Outage Duration 3.0 x 10-4 1.0 x 10-4

'41

7-3

I

,

1

I

1

!

Table 4-4. Results Produced with SURE Program

PROBABILITY OF LOSS AT 3 h
FUNCfIONAL

GROUP ASSIST GENERATED MODEL CAME GENERATED MODEL

Lower Bound I Upper Bound Lower Bound I Upper Bound

Flight Control Compumtion
. .~:.

Loss of access to both networks 1.15 x 10-9 1.15 x 10-9 1.15 x 10-9 1.15 x 10-9

Loss of access to either network 1.52 x 10-9 1.52 x 10-9 1.52 x 10-9 1.53 x 10-9

Pilot Sensing

Original 2.22 x 10-10 . 2.25 x 10-10 1.64 x 10-10 2.26 x 10-10

Without temporatory exhaustion 1.64 x 10-10 1.67 x 10-10
failure sequences

Body Motion Sensing
.

Original 5.04 x 10-7 5.06 x 10-7 7.74 x 10-10 9.46 x 10-10

Without temporatory exhaustion 7.74 x 10-10 7.91 x 10-10
failure sequences

OJ
I

User
Interface

System/Application I .. I
Data Base

Model
Inspector

Model
Evaluator

Model
Builder

Model
Data Base

Figure 2-1. Block Diagram of CAME Program

Rule
Base

co
I

N

~ Computer Aided Markov Evaluator EXAMPLE Verslon-3

~~CSDl CAME

EXAMPLE fp
p-Ievel: 1 FAILURE SYMBOL

cp
(unfailed (current p-in-control» COVERAGE SYMBOL

-- .

Performance Further Specifications

G-
p-in-control

... node p2 0 (and (failed pI) (unfailed node» 8
... p2

System Architecture Reconfigurations

Screen Configurations System Options

Figure 2-2. Example System Description

co • w

name component
edit properties of component
edit semi-Markov properties

delete object

Component name: NIL
Member of class{es) (if any):
Failure rate [failures per hour or a symbol]: 1.0d-6
Probability that failure is covered (number, symbol or table): 1.0·
Repair rate [repairs per hour or a symbol]: O.OdO
Are there semi-Markov transitions?: Yes No
Is this object a cold spare (failable only when in use)?: Yes No

Doit 0

Are there semi-Markov transitions?: Yes No
Fast Transition Specification [mean, stan. dev., prob.]: 1.0d-6, 1.0d-7, 1.0
Object must be in use for fast transition to occur?: Yes No
Critical Component (s):

Doit D

Figure 3-1. Alterations to System Architecture Menu

co
I
~

nF (n + I)F (n+2)F

Acomponent Acritical

<11,0', (1 - p»

Figure 3-2. Alteration to Model Building Process

co
I

U'1

Select model construction rules
Construct model

Other operations
Move to color screen

Clear display
Describe states

Describe front end for SURE
Save front end for SURE

Change output of state description
Save Markov state description

Approximately aggregate
Trace Evaluation of a particular state

Display Markov model on black and white screen
Set up two screen black and white display of Markov model

Figure 3-3. Alterations to Model Evaluator Menus

(X)
I
0\

Network Root Nodes

FfP Channels Interfaces

Channell

•.••......•••....•••...• · -.' . ..' . : Fe! ~ l : .:. :: : :
: : • •

........... : Remainder of i
: CDL ~ •••••••••••• ; Flight Control :
· l ! I/O Network 1 i

: : · :
Channel 2 : : .. .,' ..: .

: FC3 ~•... ~ .•. : : .' :: :
••••• • • ·

........................
Channel 3

Channel 4

..... : :: :
•• • • FC2 ·······.·····f · I...:: : : : • • · . · . • • ••••• · R . d f· l... : emmnero :

• CDR ;0 •••••••••••• : Flight Control :
•• • liON •1 : etwork 2 : • • · . · . · . · . ..: : •• • •............ ~ .
:: : ' .. ~~: : · . •....•••....•.••.....•.•

Figure 4-1. Flight Control Computation Group

OJ
I

""-J

Bc:::.nu,er CAdMEkOV
Evalua'or F L I G H T - CON T R 0 L - COM P U TAT ION

a e

6.. --e
SysteM Architecture

Screen Configurations SystemOptions

Figure 4-2. System Architecture Window for the Flight Control Computation Group

co
I
co

• Com'pul~r Aided Markov Evalualor

~O CSDL CAME FLIGHT-CONTROL-COMPUTATION

niGHT -COHTROL-COMPUTRTlOH
p-Ievel: 1

A

1
(at-Ieast-n-functlonal 2 (ftp1 ftp2 ftp3 ftp4)) (at-lean-n-functlonaI1 (par11 par12 par22 par13 par23 par24»

PerforMance

p1 p2 p3 p4
CLRSS CLRSS CLRSS CLRSS

interface
rRILUR[S'MOOL

channel
ftp1 ftpZ ftp3 ftp4

rRILUR[S\MOOL
rUHCTlOHRL ruHCTlOHAL rullCTlOllAL rlJllCTlOl1Al

Further specifications
Screen Configurations System Options

Figure 4-3. Perfonnance Requirements and Further Specification Windows for the Flight
Control Computation Group

(* The following is a file created by the CAME program
in the language of the SURE program.

Name of System: FLIGHT-CONTROL-COMPUTATION
DATE CREATED: 12/02/87 14:34:56 *)

(* WARNING!!! Original symbol name interface changed to inter *)
inter - 4. Od-5;
(* WARNING!!! Original symbol name channel changed to chann *)
chann - 2.2d-4;
(* Failure rate for component ftpl is the symbol chann *)
ftp1 - chann;
(* Failure rate for component ftp2 is the symbol chann *)
ftp2 ... chann;
(* Failure rate for component ftp3 is the symbol chann *)
ftp3 -= chann;
(* Failure rate for component ftp4 is the symbol chann *)
ftp4 ... chann;
(* Failure rate for component par11 is the symbol inter *)
par11 ... inter;
(* Failure rate for component par12 is the symbol inter *)
par12 ... inter;
(* Failure rate for component par13 is the symbol inter *)
par13 ... inter;
(* Failure rate for component par24 is the symbol inter *)
par24 ... inter;
(* Failure rate for component par22 is the symbol inter *)
par22 = inter;
(* Failure rate for component par23 is the symbol inter *)
par23 ... inter;
(* User should only edit values not symbols after the model is built *)

1,3 ... ftp3 + ftp2;
1,2 ftp4 + ftp1;
1,4 ... par24 + par11;
1,5 ~ par23 + par22 + par13 + par12;
2,7 chann;
2,6 ... ftp3 + ftp2;
2,8 ... par23 + par22 + par13 + par12 + inter;
3,9 chann;
3,6 ftp4 + ftp1;
3,10 ... inter + par24 + inter + par11;
4,8 ... chann;
4,10 ftp3 + ftp2;
4,11 chann;
4,12 - par23 + par22 + par13 + par12 + inter;
5,10 ... chann;
5,8 ... chann + ftp4 + ftp1;
5,12 - inter + par24 + inter + inter + par11;

Figure 4-4. SURE Input Listing for Flight Control Computation Group

8-9

;/

- chann + chann; 6,13
6,14
7,13
7,14
8,14
inter;
9,13 =
9,14 -
10,14
11,14
par22
12,14
inter
14,15
par13

inter + inter + inter;
ftp2 + ftp3;
par12 + par13 + par22 + par23;
chann + chann + chann + inter + inter + inter +

ftp1 + ftp4;
par11 + par24;

ftp1 + chann + fpt4 + inter + inter + inter;
chann + chann + chann + inter + inter + inter +

+ par23;
ftp1 + ftp2 + ftp3 + fpt4 + inter + inter +

+ inter;
ftp1 + ftp2 + ftp3 + fpt4 + par11 + par12 +

+ par24 + par22 + par23;

(* WARNING!! A truncated model was constructed by the CAME program.
Therefore, discretion should be used in interpreting the lower and
upper bounds of the probability of system loss results from SURE. *)

(* WARNING!! Model was aggregated by the CAME program. *)

(* The lower bounds of the probability of system loss of the SURE model
is the sum of the lower bounds of the states generated by the CAME
program. That is, the sum of the lower bounds of states 13 *)

(* The upper bounds of the probability of system loss of the SURE model
is the sum of the upper bounds calculated by the SURE program
of all the system loss states generated by the CAME program
That is, the sum of the upper bounds of states 13 15 *)

(* White's method is assumed *)
(* The following default values are used: *)
list = 2;
time .. 10;
run sure.out;
exit

Figure 4-4. SURE Input Listing for Flight Control Computation Group (Continued)

8-10

. .

co
I

......

.• c:::Jlueu CAMEkoV
Evaluaeor F L I G H T - CON T R 0 L - COM P U TAT ION

(It-Iust-n-functlonalt (ftp1 ftpt ftp3 ftpol»

PerforMance
Screen Configurations

niGHT -CONTROl-COMPUTATION
p-Ieveh 1

(at-least-n-functlonaI1 (par11 par12 par13» (at-least-n-functlonIl1 (paru part3 partol»

System-Opti ons

Figure 4-5. Variation of the Flight Control Computation Group

co
J

A
N

Pitch Stick

0 Network

i1. Node Roll Stick

D DIU ~ Rudder Pedal

A FfP Accelerometer Channel

b Gyro

Figure 4-6. Flight Control I/O Network l'

(X)
I
-'

A Pitch Stick
'" "' w

o Network &.. RollStick Node

DDIU A. Rudder Pedal

FfP A Accelerometer Channel

&. Gyro

Figure 4-7. Flight Control I/O Network 2

co
I
~

~ Computer Aided Marko11 E11aluator

~CSDL CAME PILOT-SENSING

eeaea 5eeee
SysteM Architecture

Screen Configurations System Options

Figure 4-8. System Architecture Window for the Pilot Sensing Group

co
I

01

~ Computu Aided Markov Evaluator

~CSDL CAME PILOT-SENSING

partltlon-1-In-use ,.

(failed par") (faDed par12) (faUed par13) (faDed par14)

partition -z -In -use

(failed par21) (faDed parZ2) (faDed parZ3) (faDed par24)

Reconfigurations
Screen Configurations System -Options

Figure 4-9. Reconfigurations Window for the Pilot Sensing Group

en
I

0\

~ Compue~r AI'd~d Markov Evaluaeor

~CSDL CAME·

(at-least-n-funotlonaI2 pltch-sensot)

Perfornance
Screen Configurations

PILOT-SENSING

PilOT -SDlSIIIO
p-tel/ell 1

(at-least-n-functlonaJ 2 toU-sensot) (at-teast-n-funottonal2 yaw-sensor)

System Options

Figure 4-10. Perfonnance Requirements Window for the Pilot Sensing Group

00
I
--'
'-l

B Com'pur~r Aid~d Markov Evalua'or

~o CSDL CAME PILOT-SENSING

n1 n3
CLASS CLASS

seml-1
SMr CLASS

A
rudf

fAILURE S'MIIOL

l 1
node1 partltlon-' node3 plI'tltlon-z

rollt fUllCTlOIIAL rullCTlOl1AL rUIICTlOIIAL fUlICTlOIlAl
fAIlUR[S'MIIOL

nZ n1
pitt ClASS

CLASS
fAILUR[S'MBOL

nodef
fAIlUR[S'r11110L

outage
fAIlUR[S'MIIOL nodet partltlon-, node4 partltlon-z

fUllCTlOllAL rullCTlOIIAL fUIICTlOI1AL fUI1CrlOllAL

Further specifications
Screen Configurations System Options

-----_.- --

Figure 4-11. Further Specifications Window for the Pilot Sensing Group

co
I
--'
co

~ Compu'er Aided Markov Evalua'or

~CSDL CAME PILOT-SENSING
This is state: 1 Top level perforMance: 1

Merkov Modeler
Screen Configurations System Opt1ons

. Figure 4-12. Semi-Markov Model for the Pilot Sensing Group

ex>
I

1.0

~ Compu,.r Al'ded Markov Evalua,or

~CSDL CAME BODV-MOTION-SENSING

eeeee eeeee
SysteM Architecture

Screen Configurations System-Options

Figure 4-13. System Architecture Window for the Body Motion Sensing Group

ex>
I

N o

~ Computer Aided Markov Evaluator

~CSDL CAME

partltlon-1-In-use e '''''' --")

partition -2 -In -use

Reconfisurations
Screen Configurations

BODV-MOTION-SENSING

(faRed par14)

(faRed par22) (faRed par23) (faRed par24)

System Options

Figure 4-14. Reconfigurations Window for the Body Motion Sensing Group

co
I

N

~ Comput4r Aid4d Markov Evaluator

~CSDL .CAME BODV-MOTION-SENSING

PerforMance

(at-least-n-fun~tional 4 gyros)

Screen Con fi gUI';a ti ons

BODV-MOTIOH-SEHSIHG
p-Ieveh 1

A

(at-least-n-functlonaI4 ac~s)

System -Optlons

Figure 4-15. Performance Requirements Window for the Body Motion Sensing Group

co
I

N
N

B Comput~r Aid~d Markov Evaluator

O~CSDL CAME BODV-MOTION-SENSING

n1 n3
CLASS CLASS

A A seml-t
SMT CLASS

outage
FRILURE S'rt1BOl 1 _1 1

node1 partltlon-1 node3 partltlon-z FUnCTIONAL FunCTIonAL FUlICIIONAl FUNCTIONAL

aeet
FAILUR['..,.IBOl

nZ n4
CLASS CLASS

nodef A A FAILURE S'rMBOl

gyrof
FAILUR[S'ItIBOl ! ! ! 1

node2 partltlon-1 node4 partltlon-t
FUNCTlOIiAl FUnCTlOIiAl FUNCTlOIiAl FUNCTlOlllll

Further specifications
Screen Configurations System Options

-- -

Figure 4-16. Further Specifications Window for the Body Motion Sensing Group

APPENDIX A

A. BMAC'S ASSIST INPUT LISTINGS

A.I Flight Control Computation

SPACE" (NGFTP1: 0 •• 1 , (* FTP CHANNEL STATUS *)
NPAR11: 0 •• 1, (* PARTITION INTERFACE STATUS *)
NGFTP2: O •• 1, (* FTP CHANNEL STATUS *)
NPAR12: O •• 1, (* PARTITION INTERFACE STATUS *)
NPAR22: O •• 1, (* PARTITION INTERFACE STATUS *)
NGFTP3: O •• 1, (* FTP CHANNEL STATUS *)
NPAR13: O •• 1, (* PARTITION INTERFACE STATUS *)
NPAR23: O •• 1, (* PARTITION INTERFACE STATUS *)
NGFTP4: O •• 1, (* FTP CHANNEL STATUS *)
NPAR24: O •• 1); (* PARTITION INTERFACE STATUS *)

START ... 1,1, 1,1,1, 1,1,1, 1,1);

DEATHIF NGFTP1 + NGFTP2 + NGFTP3 + NGFTP4 < 2
OR NPARll + NPAR12 + NPAR13 (* SINGLE PARTITION SUCCESS CASE *)
+ NPAR22 + NPAR23 + NPAR24 < 1; (* SINGLE PARTITION SUCCESS *)

LAMFTP - 220.0E-6; (* FTP CHANNEL FAILURE RATE *)
(* ---INCLUDES CENTRAL POWER SOURCE--- *)

LAMCOM - 40.0E-6; (* FTP NETWORK INTERFACE FAILURE RATE *)
(* ---INCLUDES ROOT NODE--- *)

IF NGFTP1 > 0 TRANTO NGFTPl .. 0, NPARll - 0
BY LAMFTP;

IF NGFTP2 > 0 TRANTO NGFTP2 .. 0, NPAR12 .. 0,
NPAR22 .. 0
BY LAMFTP;

IF NGFTP3 > 0 TRANTO NGFTP3 - 0, NPAR13 .. 0,
NPAR23 ... 0
BY LAMFTP;

IF NGFTP4 > 0 TRANTO NGFTP4 - 0, NPAR24 - 0
BY LAMFTP;

IF NPARll > 0 TRANTO NPARll - 0 BY LAMCOM;
IF NPAR12 > 0 TRANTO NPAR12 .. 0 BY LAMCOM;
IF NPAR13 > 0 TRANTO NPAR13 .. 0 BY LAMCOM;
IF NPAR22 > 0 TRANTO NPAR22 ... 0 BY LAMCOM;
IF NPAR23 > 0 TRANTO NPAR23 .. 0 BY LAMCOM;
IF NPAR24 > 0 TRANTO NPAR24 .. 0 BY LAMCOM;

A-I

."'. - f'~ '.. . _ ". .,' '. -- _. '-" ._- , :- ~ " .. '.'" ... _ .. - -.--. -.-~ :-~r-'~-:_"'h_~'" •• -- - .•.. '.~ ,'- -.'. __ .", ••.. -_. __ ~ •• _ -:- ._.: ... ~~ ..

A.2 Pilot Sensing

SPACE"" (NGPIT: 1..4, (* NUMBER OF ACTIVE PITCH STICK SENSORS *)
NFPIT: O •• 2, (* NO. OF RECOVERING PITCH SENSORS *)
NGROL: 1..4, (* NO. OF ACTIVE ROLL STICK SENSORS *)
NFROL: O •• 2, (* NO. OF RECOVERING ROLL SENSORS *)
NGYAW: 1. .4, (* NO. OF ACTIVE RUDDER PEDAL SENSORS *)
NFYAW: O •• 2, (* NO. OF RECOVERING YAW SENSORS *)
NGCOM: 0 •. 4, (* NO. OF COCKPIT NETWORK NODES *)
P AROUT : 0 •• 2); (* PART ION RECOVERY INDICATOR *)

START'" (4, 0, 4, 0, 4, 0" 4, 0);

DEATHIF (NGCOM - 4 AND NGPIT + NGROL + NGYAW < 9) OR (* SPECIAL *)
(NGCOM "" 3 AND NGPIT + NGROL + NGYAW < 6) OR (* TRUNCATION *)
NGPIT-NFPIT < 2 OR NGROL-NFROL < 2 OR NGYAW-NFYAW < 2 OR
NFPIT + PAROUT > 1 OR NFROL + PAROUT > 1 OR
NFYAW + PAROUT > 1 OR NGCOM < 2;

LIST
TIME
PRUNE
ECHO

== 3;
"" 3.0;
"'"1.OE-15;

LAMP IT
LAMROL
LAMYAW
LAMCOM
LAMOUT
LAMDIU
LAMELEC
RECMEAN
RECSTD

0;

... 10.OE-6;
"" 10.OE-6;
... 10.OE-6;
- 15.0E-6;
- 561. OE-6;
- 15.0E-6;
- 20.0E-6;
- 3.0E-4;
- 1. OE-4;

(* POSITION SENSOR FAILURE RATE

(* NETWORK NODE FAILURE RATE
(* NETWORK TEMPORARY OUTAGE RATE
(* DIU FAILURE RATE
(* PRIMARY ELECTRICAL SYSTEM FAIL
(* SENSOR RECOVERY TIME MEAN
(* SENSOR RECOVERY TIME SDT DEV

IF NGPIT > 0 AND NFROL ... 0 AND NFYAW - 0
TRANTO NFPIT "" NFPIT+l BY (NGPIT-NFPIT)*LAMPIT;

IF NGROL > 0 AND NFPIT "" 0 AND NFYAW - 0
TRANTO NFROL "'" NFROL+l BY (NGROL-NFROL)*LAMROL;

IF NGYAW > 0 AND NFPIT ... 0 AND NFROL "" 0
TRANTO NFYAW ... NFYAW+l BY (NGYAW-NFYAW)*LAMYAW;

*)

*)
*)
*)

RATE *)
*)
*)

(*** PARTITION OUTAGE FAILURES AND SENSOR RECOVERIES ***)

IF NFPIT > 0 TRANTO NGPIT = NGPIT-l, NFPIT = NFPIT-l BY
< RECMEAN, RECSTD >;

IF NFROL > 0 ~RANTO NGROL ... NGROL-l, NFROL ... NFROL-l BY
< RECMEAN, RECSTD >;

IF NFYAW > 0 TRANTO NGYAW "" NGYAW-l, NFYAW "" NFYAW-l BY
< RECMEAN, RECSTD >;

IF PAROUT = 0 AND (NGCOM "" 4 AND NGPIT+NGROL+NGYAW > 9 OR
NGCOM = 3 AND NGPIT+NGROL+NGYAW > 6)
TRANTO PAROUT "" 1 BY LAMOUT;

A-2

,.

IF PAROUT - 1 TRANTO PAROUT - 0 BY < RECMEAN, RECSTD >i

(*** TEMPORARY EXHAUSTION DUE TO OUTAGE ***)

IF NFPIT - 0 AND NFROL - 0 AND NFYAW - 0 AND PAROUT - 0 THAN
.IF NGPIT= 2 OR NGROL=2 OR NGYAW=2 TRANTO PAROUT = 2 BY LAMOUT/3.0i

ENDIFi

(*** NODE FAILURE TRANSITIONS ***)
(*** ONLY FULL TRANSISTIONS CARRIED ***)

IF NGCOM > 0 AND NFPIT - 0 AND NFROL - 0 AND NFYAW - 0 AND PAROUT = 0
THEN

ENDIFi

TRANTO NGPIT-NGPIT-l, NGROL-NGROL-l, NGYAW=NGYAW-l,
NGCOM-NGCOM-l BY NGPIT*NGROL*NGYAW *
(LAMCOM + LAMDIU + LAMELEC) / NGCOM**2i

A-3

A.3 Body Motion Sensing

SPACE - (NGGYRO: 0 •• 8, (* NO. OF GYROS
NFGYRO: 0 .• 2, (* NO. OF FAILED GYROS BEING RECOVERED
NGACC: O •• 8, (* NO. OF ACCS
NFACC: O •• 2, (* NO. OF ACC BEING RECOVERED
NGCOM: 1. .4, (* NO. OF NETWORK NODES
PAROUT: 0 •• 2); (* PARTITION OUT INDICATOR

START = (8, 0, 8, 0, 4, 0);

DEATHIF NGGRYO < 4 OR
NGACC < 4 OR
NFGYRO + PAROUT > 1 OR NFACC + PAROUT > 1 ;

LIST .. 3;
TIME .. 3.0;
PRUNE - 1.0E-15;
ECHO ... 0;

LAMG - 50.0E-6; (* GYRO FAILURE RATE
LAMA - 30.0E-6; (* ACCELEROMETER FAILURE RATE
LAMC -= 50.0E-6; (* NETWORK NODE AND DIU AND ELECTRICAL

(* SYSTEM FAILURE RATE - INCLUDES
(* LAMDIU ... l5.0E-6 LAMELEC = 20.0E-6

LAMOUT ... 561. OE-6; (* PARTITION OUTAGE RATE
RECMEAN ... 3. OE-4; (* SENSOR AND PARTITION MEAN RECOVERY TIME
RECSTD .. 1. OE-4; (* SENSOR AND PARTITION SDT DEV

(*** GYRO FAILURES ***)

IF NGGYRO > 0 AND NFGYRO ... 0 AND NFACC ... 0 AND PAROUT ... 0 THEN
TRANTO NGGRYO-NGGRYO-l, NFGYRO - NFGYRO + 1 BY NGGYRO*LAMG;

ENDIF;

(*** ACCELEROMETER FAILURES ***)

IF NGACC > 0 AND NFGYRO = 0 AND NFACC ... 0 AND PAROUT = 0 THEN
TRANTO NGACC=NGACC-l, NFACC = NFACC + 1 BY NGACC*LAMA;

ENDIF;

(*** SENSOR RECOVERIES AND PARTITION OUTAGE CASES***)

IF NFGYRO > 0 THEN _
TRANTO NFGYRO=NFGYRO-l BY <-RECMEAN, RECSTD >;
TRANTO PAROUT=l BY LAMOUT;

ENDIF;

IF NFACC > 0 THEN
TRANTO NFACC=NFACC-l BY < RECMEAN, RECSTD >;
TRANTO PAROUT=l BY LAMOUT;

ENDIF;

(*** PARTITION TEMPORARY OUTAGE ***)

A-4

*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)
*)
*)

IF NFGYRO .. 0 AND NFACC - 0 AND PAROUT a 0 THEN
TRANTO PAROUT - 1 BY 2 * LAMOUT;

(* PARTITION EXHAUSTION FAILURES *)

IF NGGYRO < 7 OR NGACC < 7 THEN
IF NCOM = 4 THEN

IF NGGYRO a 6 AND NGACC > 6 TRANTO P AROUT = 2
BY 3*LAMOUT/7;
IF NGGYRO - 6 AND NGACC .. 6 TRANTO PAROUT = 2
BY 75*LAMOUT/98;
IF NGGYRO - 6 AND NGACC .. 5 TRANTO PAROUT = 2
BY 17*LAMOUT/14;
IF NGGYRO - 5 AND NGACC > 6 TRANTO PAROUT = 2
BY LAMOUT;
IF NGGYRO .. 5 AND NGACC - 6 TRANTO PAROUT .. 2
BY 17*LAMOUT/14;
IF NGGYRO = 5 AND NGACC = 5 TRANTO PAROUT = 2
BY 3*LAMOUT/2;
IF NGACC - 6 AND NGGYRO > 6 TRANTO PAROUT = 2
BY 3 *LAMOUT /7 ;
IF NGACC - 5 AND NGGYRO > 6 TRANTO PAROUT = 2
BY LAMOUT;

ENDIF;

IF NCOM .. 3
TRANTO PAROUT - 2 BY LAMOUT;

ENDIF;

ENDIF;

(*** PARTITION RECOVERY AND SIMULTANEOUS FAILURES ***)

IF PAROUT > 0 THEN
TRANTO PAROUT .. PAROUT-l BY < RECMEAN, RECSTD >;
TRANTO NFGYRO .. NFGYRO + 1 BY (NGGYRO*LAMG)/2;
TRANTO NFACC = NFACC + 1 BY (NGACC*LAMA)/2;

ENDIF;

(*** NODE FAILURE TRANSITIONS ***)

IF NCOM > 0 AND NFGYRO = 0 AND NFACC .. 0 AND PAROUT = 0 THEN
TRANTO NGGYRO=NGGYRO-2, NGACC=NGACC-2, NCOM=NCOM-l
BY NGGYRO*(NGGYRO-l) *NGACC*(NGACC-l) *LAMC/
(4*(2*NCOM-l)*NCOM*(2*NCOM-l»;

IF 2*NCOM-NGGYRO > 0 THEN
TRANTO NGGYRO=NGGYRO-l, NGACCaNGACC-2, NCOM=NCOM-l
BY 2*NGGYRO*(2*NCOM-NGGYRO)*NGACC*(NGACC-l)*LAMC/
(4*(2*NCOM-l)*NCOM*(2*NCOM-l»;

IF 2*NCOM-NGGYRO > 1 THEN
TRANTO NGACC=NGACC-2, NCOM=NCOM-l BY (2*NCOM-l-NGGYRO)*
(2*NCOM-NGGYRO)* NGACC*(NGACC-l)*LAMC/
(4*(2*NCOM-l)*NCOM*(2*NCOM-l»;

IF 2*NCOM-NGACC > 0 THEN

A-5

• ~ .~.,' p- •• - • -' -.- ".---' .~-":"-.

TRANTO NGACC-NGACC-l, NCOM-NCOM-l
BY (2*NCOM-l-NGGYRO)*
(2*NCOM-NGGYRO)* 2*NGACC*(2*NCOM-NGACC)*LAMC
/ (4*(2*NCOM-l)*NCOM*(2*NCOM-l»;

IF 2*NCOM-NGACC > 1 THEN
TRANTO NCOM=NCOM-l BY (2*NCOM-l-NGGYRO)*
(2*NCOM-NGGYRO)*
(2*NCOM-l-NGACC)*(2*NGCOM-NGACC)*LAMC
/ (4*(2*NCOM-l)*NCOM*(2*NCOM-l»;

ENDIF;

ENDIF;

ENDIF;

IF 2*NCOM-NGACC > 0 THEN
TRANTO NGGYRO=NGGYRO-l, NGACC=NGACC-l, NCOM=NCOM-l BY
2*NGGYRO* (2*NCOM-NGGYRO)* 2*NGACC*(2*NCOM-NGACC)*
LAMC/ (4*(2*NCOM-l)*NCOM*(2*NCOM-l»;

IF 2*NCOM-NGACC > 1 THEN
TRANTO NGGYRO-NGGYRO-l, NCOM=NCOM-l BY
2*NGGYRO* (2*NCOM-NGGYRO)*
(2*NCOM-l-NGACC)* (2*NCOM-NGACC)*LAMC/
(4*(2*NCOM-l)*NCOM*(2*NCOM-l»;

ENDIF;

ENDIF;

ENDIF;

IF 2*NCOM-NGACC > 0 THEN
TRANTO NGGYRO=NGGYRO-2, NGACC-NGACC-l, NCOM=NCOM-l BY
NGGYRO* (NGGYRO-l)* 2*NGACC*(2*NCOM-NGACC)*LAMC/
(4*(2*NCOM-l)*NCOM*(2*NCOM-l»;

IF 2*NCOM-NGACC > 1 THEN
TRANTO NGGYROaNGGYRO-2, NCOM=NCOM-l BY
NGGYRO* (NGGYRO-l) * (2*NCOM-l-NGACC) * (2*NCOM-NGACC) *
LAMC/(4*(2*NCOM-l)*NCOM*(2*NCOM-l»;

ENDIF;

ENDIF;

ENDIF;

A-6

I,

'.

/
/

Standard Bibliographic Page
1. ReportNo.

NASA CR-181645
·1· 2. Government Accession No.

4. TItJa and SUbtitle

Semi-Markov Adjunction to the CAME Program

7. Author(s) Gene Rosch, Monica A. Hutchins,
Frank J. Leong, and Philip S. Babcock N

9. Performing Organization Name and Address

The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Cambridge, MA 02139

3. Recipient's Catalog No.

5. Report Date
Ap.ri 1 .1988

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-66-71-02
11. Contract or Grant No.

NAS9-17560
I I 13. Type of Report and Period Covered
12. Sponsoring Agency Nama and Address

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

15. SUpplementary Notes

Langley Technical Monitor: Daniel L. Palumbo

Contractor Report

14. Sponsoring Agency Code

This report was. prepared for Langley under Ta~k 87-50 of Johnson Space Center
contr;\r-t NASQ_17J:>f\n .. '.

16. Abstract
In recent years, the utilization of Markov (and semi-Markov) models has been established as a

useful technique in analyzing the reliability of fault-tolerant systems. However, the process of
constructing an appropriate model for a complex system can be an overwhelmingly difficult and
tedious task. As an attempt to address this problem, the C. S. Draper Laboratory, Inc. is currently
developing a computer-aided reliability analysis tool called the Computer-Aided Markov Evaluator
(CAME) program. The goal of the tool is to automatically create an appropriate fault-occurrence
model from a top-down system description utilizing a set of rules that reflect Markov modeling
techniques. As the objective of this project, the rule-based CAME program is expanded in its ability
to incorporate the effect of fault-handling processes into the construction of a reliability model.

This new capability is added to the CAME program by modeling the fault-handling processes
as semi-Markov events. When this new capability is invoked, the CAME program constructs an
appropriate semi-Markov model. To solve a constructed semi-Markov model, the CAME program
outputs it in a form which can be directly solved with the Semi-Markov Urireliability Range Evaluator
(SURE) program.

As a means of evaluating the alterations made to the CAME program to support the
construction of semi-Markov models and of evaluating the CAME program itself, the CAME program
is utilized to model the reliability of portions of the Integrated Airframe/Propulsion Control System
Architecture (lAPSA IT) reference configuration being developed under a NASA contract. The
reliability predictions are compared with a previous analysis done by the Boeing Military Aircraft
Company (BMAC). The results bear out the feasibility of utilizing the CAME program to generate
appropriate semi-Markov models to model fault-handling processes. .

17. Key Words Suggestec:l by Author
Reliability Analysis,
Markov Models,
Semi-Markov Models,
Automated Model Construction

18. Distribution Statement

Unclassified-Unlimited
Subject Category 38

19 Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified
21. No. of Pages 122. Price

66 A04

End of Document

