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ABSTRACT

The Li-Strahler canopy reflectance model, driven by Landsat Thematic Mapper (TM) data, provided regional
estimates of tree size and density in two bioclimatic zones in West Africa. This model exploits tree geometry in
an inversion technique to predict average tree size and density from reflectance data using a few simple parame-
ters measured in the ficld (spatial pautern, shape, and size distribution of trees), and in the imagery (spectral sig-
natures of scene components). Trces are trcated as simply-shaped objects, and multispectral reflectance of a
pixel is a function of the proportion of trce crown, shadow, and understory in the pixel. These, in turn, are a
direct function of the number and size of trees, the solar illumination angle, and the signatures of crown, shadow
and understory. Becausce the inversion is quite sensitive to correct determination of component signatures, pred-
ictions of size and spacing are not very accurate within small (e. g., 200-400 ha) areas. However, individual
errors cancel when larger regions are considered, and the procedure has the potential to predict size and density
of trees over large areas of open woodland with good accuracy.

Reflectance properties of the trees were measured in the study sites using a pole-mounted radiometer. The
measurements showed that the assumptions of the simple Li-Strahler model are reasonable for these woodlands;
canopy spectral components, shadowed and sunlit tree crown and understory, have distinct reflectance charac-
teristics in red and infrared wavebands. The field radiometer measurements were used to calculate the normal-
ized difference vegetation index (NDVI), and the integrated NDV1 over the canopy was related to crown
volume.

Predictions of tree size and density from the canopy model were used with allometric equations from the litera-
ture to estimate woody biomass and potential foliar biomass for the sites and for the regions. Estimates were
compared with independent measurements made in the Sahelian sites, and to typical values from the literature
for these regions and for similar woodlands. If combined with a vegetation stratification at the appropriate scale,
this approach could provide regional estimates of woody biomass for fuelwood inventory. Estimates of foliage
biomass could be used in forage production modeling and inventory. Both could be used in regional and global
scale models of biogeochemical cycling. g

In order to apply the inversion procedure regionally, an area must first be stratified into woodland cover classes,
and dry-season TM data have also been used to generate a stratum map of the study areas with reasonable accu-
racy. The method used was unsupervised classification of multi-date principal components images. While ini-
tial classification results were poor, accuracy was comparable with results reported in the literature for Level III
land cover classes when a lenient accuracy criterion was used. When sample points identified as being one den-
sity class higher or lower that classified were counted as correct, overall accuracy was around 90 percent, and
class accuracy was greater than 80 percent for most classes. Contextual classification or spatial/spectral image
segmentation will be more powerful techniques than per-pixel classification for stratification of complex vegeta-
tion patterns when they are commonly available as part of image processing systems. However, results based on
conventional digital image processing techniques are nonetheless useful. The accuracy achicved is adequate for
stratification of woody biomass at a rcgional scale. :



PREFACE

February 11, 1796. About noon we saw at a distance the capital of Kaarta,-situated in the middle
of an open plain — the country for two miles around being cieared of woud by ine great consump-
tion of that article for building and fuel... (Park 1893)

The city of Kaarta was located in the Sahel, in what is now northwestern Mali. This quote illustrates that
land degradation caused by human land use patterns is not just a modern problem. However, human develop-
ment and technology have reached the scale where the global climate, and even thé survival of the planet is
threatened. Now more than ever before there is a need for accurate baseline data on the type and condition of
landcover for large areas of the earth (NASA 1983, Houghton et al. 19_83, Woodwell 1984). Terrestrial biota
greatly affect the climate, énergy budget, hydrologic cycle and biogeochemistry of the Earth, and are in tumn
affected by these processes. Quantifying the effects of human impact on the biosphere requires a greaﬂy
improved understanding of the influence of human-induced changes in land cover (such as deforestation,
‘‘desertification,”” and conversion of land to agricultural and urban uses) on the spatial and temporal dynamics
of terrestrial vegetation. This understanding may in turn hclp resource planners improve land use practices in
areas where degradation of range and farmland and loss of fuelwood contributes to problems of starvation and

disease.

Global land-cover information is traditionally derived from small-scale vegetation maps and FAO statis-
tics, and more recently from satellite imagery (Tucker et al. 1985, Justice et al. 1985, Matthews 1983). These
estimates vary considerably, due to lack of consistency betweén data sources, particularly concerning ‘ 4
classification and methodology (Ajtay et al. 1979, Matthews 1983). The accurate assessment of land cover and
biophysical parameters of woody vegetation, such as productivity, biomass, albedo, canopy height (surface |
roughness), surface temperature, and evapotranspiration, are important for determining the relationship between

the land surface and the aitmosphcre and for driving modcls of climate, energy balance and biogeochemical
cycling (Botkin er al. 1984, Hobbie et al. 1984).

Degradation of arid and semi-arid ecosystems has accelerated in recent years due to increased human use
for fuel and food production, coupled with climatic fluctuation. Degradation is defined as a reduction in peren-
nial phytomass and ecosystem productivity, elimination of woody cover, soil exposure, compaction, and erosion,

and loss of stored nutrients and carbon (Dregne 1983, Petrov 1976, Vinogradov 1980, Reining 1978, and Hare
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1983). This has occurred in sub-Saharan Africa, particularly the Sahel, in the last two decades.

In the development of remote sensing techniques for vegetation assessment, ihe spectral vegetation indices
and transforms that have been applied successfully to estimate vegetation amount in agricultural and grassland
ecosystems do not work as well in forests énd semi-arid woodlands, bush, and shrublands, because the bulk of
_ the biomass is not green biomass but in the woody structures. Absorption and shadowing by woedy parts and
the amount of bare soil visible has a complicated effect on greenness measures. Thus, it is important to account
for the ecosystem architecture. Further, the information classcs in remotely sensed scencs of arborescent
landscapes are composed of spectral mixtures of objects (such as trees, shrubs, grass, and soil) and form a

mosaic at the scale of satellite sensor resolution.

We have tested a geometric/optical canopy reflectance model which exploits the canopy geometry in an
inversion technique to predict tree height and density. This model was applied in a savanna ecosystem, an

ecosystem of great importance in terms of global ecology and human utilization.

This report summarizes the research supported primarily by NASA under Grant NAGW-788. Additional
support was provided through a NASA Training Grant (NGT 05-010-804), and a UCSB General' Affiliates
Dissertation Year Fellowship. Each section describes a separate experiment or phase of the research. The
figures, tables and refercnces for each part appear at the end of that section. We have tried keep the redundancy )
among sections to a minimum, but there will be some repetition of introductory material. Section 1 also
comprised-the Final Report for NASA Training Grant NG;T 05-010-804, and has been accepted for publjcation'-:?:.l
by IEEE Transactions on Geoscience and Remote Sensing, with Janet Franklin, and Alan Strahler as authors,“'
and with NASA'’s support acknowledged. This report also serves as the doctoral dissertation submitted by Janet
Franklin to the Department of Geography, University of California at Santa Barbara.
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Chapter 1

INVERTIBLE CANOPY REFLECTANCE MODELING OF

VEGETATION STRUCTURE IN SEMIARID WOODLAND

Abstract

The Li-Strahler canopy refectance model, driven by Landsat Thematic Mapper (TM) data, provided
regional estiﬁmtes of tree size and density within twenty percent of sampled values in two bioclimatic
zones in West Africa. This mod«] exploits tree geometry in an inversion technique to predict average tree
size and density from reflectance data using a few siml;le parametel;s measured in the field (spatial pat-
tern, shape, and size distribution of trees) and jn the imagery (spectral signatures of scene components). 1

Trees are treated as simply shaped objects, and multispectral reflectance of a pixel is assuined to be

related only to the proportions of tree crown, shadow, and understory in the pixel. These, in turn, are a
direct function of the number and size of trees, the solar illumination angle, and the spectral signatures of
crown, shadow and understory. Given the variance in reflectance from pixel to pixel within a homogene-

Al

ous area of woodland, caused by the variation in the number and size of trees, the model can be invérted

hd
B
»

to give estimates of average tree size and density. Because the inversion is sensitive to correct determina-
tion of component signatures, which is a difficult procedure at best, predictions of size and spacing are not
very accurate within small (e. g. 10-100 ha) areas. However, individual errors cancel when larger regions

are considered, and the procedure may predict size and density of trees over large areas of open woodland

with good accuracy.

-1-



CHAPTER 1: MODELING OF VEGETATION STRUCTURE

I. INTRODUCTION

REl\'IOTELY sensed data are commonly used to produce thematic land-cover maps, but aiso can provide
quantitative information on biophysical variables, such as vegetation structure, amount, productivity,
(reviewed in [1] and {2]), photosynthesis, and transpiratidn [3] [4). These biophysical characteristics of
vegetation and their spatial and tempofal distribution are critical inputs to ecological models that describe
the interaction between the land surface and climate, energy balance, and hydrologic and biogeochemical
cycles [5] (6] [7] [8] [9] [10] [11]. Remote sensing provides the only tool that can measure these variables
for large areas {12] [13] [14]. In this paper we use a canopy reflectance model and multispectral satellite
data to estimate canopy structure in sparse woodland, a vegetation type of great spatial extent and
importance.

A family of mathematical models of the reflectance of a plant canopy composed of discontinuous
woody cover allows the direct estimation of plant size and density from remotely sensed reflectance data

(15]. These Li-Strahler models are geometric in character, treating trees (plants) as solid, discrete, three- - 3

dimensional objects on a contrasting background. They use geometric optics to estimate the proportion of.
each pixel in tree canopy, shadow, and background. In the simplest model, tree density is assumed to be
sufficiently low that the overlapging of trees and shadows may be ignored. Using this simple model, Li~

and Strahler [15] predicted tree size and density from Landsat MSS data within ten percent of actual -

values for sparse pine forest in northern California. B
oF

We have extended this model and tested it using Landsat Thematic Mapper (TM) data in a different
environment where the basic assumptions of the model hold, but the parameters must be modified. The

model was tested in sparse woodland and wooded grassland in the Sahelian and Sudanian bioclimatic

v

zones in West Africa.
iI. BACKGROUND

In plant canopy reflectance modeling, radiative transfer theory and geometric optics are used to

predict the reflectance of a plant canopy as a function of the biophysical properties of the canopy ele-

ments, such as the size, shape, spatial distribution and optical properties of plants or plant parts. If a

reflectance model can be mathematically inverted, the biophysical properties of the plant stand can be

TRECESTEE PAGE BLANK NOT oLl
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CHAPTER 1: MODELING OF VEGETATION STRUCTURE

inferred from spectral reflectance measurements. The simple Li-Strahler model describes reflectance as a
function of vegetation structure for a canopy composed of large woody plants distributed at low density
on the landscape. The model represents an early formulation of a general modeling approach which expli-
citly treats the interaction of three-dimensional illuminated discrete objects with the spatial sampling
interval imposed by a digital image [16] [17] [18] [19] [20] {21] [22]. In the simple model it is assumed that
the canopy is imaged by a multispectral scanner with pixel size several times larger than tree size, but
with resolution fine enough that the sampling unit interacts with the size and placement of the trees.
Thus, the model predicts variance as well as average reflectance. ‘It uses covariance statistics from
estimatccl mixtures of scene commonents across pixels for inversion to predict average tree size and density
in a stand. While other canopy models are invertible, most predict the bidirectional reﬂectance distribu-
tion function (BRDF') of a canopy, and in inversion use field or aircraft radiometric measurements from
varying look angles' to predict some property of the vegetation, such as Leaf Area Index (LAI) [23] [24]

[25] [26] [27], or leaf reflectance {28]. The Li-Strahler model is different from these other models in that it ’

el
e

explicitly considers discretely distributed trees.

A. Formulation of the Canopy Model

The simple Li-Strahler model is discussed in detail elsewhere [15] [29] and will be reviewed in this "
section for clarity. The only modification to the simple model is the change in the shape parameter. ‘The

model assumes that a woodland stand can be modeled geometrically as a group of solid objects (trees)

with simple shapes, casting shadows-on a contrasting background (uﬁderstory, grass or soil). Furthermore:

— A tree crown is a simple geometric form. In the sparse woodland, we use an ellipsoid on a stick
(Fig. 1) for trees of all sizes.

—  Tree counts vary from pixel to pixel as a Poisson function with a fixed density, i. e., the spatial pat-
tern is random at the scale of sensor resolution.

—  The size distribution function of trees is known, so that C », the coeflicient of variation of squared
crown radius, can be determiped for the stand.

—  The tree crown and its associated shadow have spectral signatures that are distinct from that of the

background.




CHAPTER 1: MODELING OF VEGETATION STRUCTURE

The reflectance of a pixel is modeled as a linear combination of the signatures of scene components
(illuminated tree crown, illuminzted background, shadowed tree, and shadowed background) weighted by
their relative areas. Pixels from an area of homogeneous tree cover can be used to estimate average
reflectance of a stand of a given density. Interpixel variance exists because the number of trees per pixel
and their size distribution vary. In the simple model, we ignore overlapping of trees and shadows, which
~ would also produce pixel-to-pixel variance. Other proportion estimation models similarly predict cover as
a function of brightness in canopies with incomplete cover [30] [31} {32] [33] [34] [35]. This effect has been
modelled by Otterman [36] (37]. However, the Li-Strahler model solves for tree size and density using the
distribution functions and statistical independence of these two parameters.

1) Model Parameters: The variables describing the stand are:

A Area of a pixel.

n Number of trees in a pixel.

N Average density of trzes per m® in astand ( =1 /A ).

r Squared crown radiu: of tree.

R? Average r° for a pixel.
R? Average R? for all pixels in a stand.
C » Coeflicient of variation of squared crown radius determined for stand. .

m — N R> , |

Note that since 7 R? is the average area of a crown, m 7 is the proportion of woody cover in the sb:ﬁxd.
As a three dimensional object, the ellipsoid on a stick casts a shadow on the background. To quan-

tify the area of canopy and shadayv, a geometric factor, I', is used. I' is defined such that mI" is the pro-

portion of a pixel covered by tre: crown and shadow (i. e., the tree cover adjusted to include shadowing).

Based on the geometry of an ellinsoid illuminated at solar zenith angle 6 (Fig. 1),

= T
Tt cost’ 4o

where

if (b + h)tand > r[l + ],

0, cosl/

rz[ﬂ—‘/ﬁsinQ[i)[l-{- 1 ] clse

cosd'

Aoz




CHAPTER 1: MODELING OF VEGETATION STRUCTURE

and

and

0’ = t,an’l _iai .
(r/b)
While we tested the model in areas of flat terrain, it is a simple modification to adjust the shadow-

ing geometry for a sloping surface {38]. If A;, A, , A,, and A, are the areas of sunlit background and

crown, and shadowed background and crown within the pixel, then
A, +A +A, =nT
and
A, =1-mT. | o

(Y]

The signature of pixel z in band j, S;;, is then modeled as

Ss’j = (Aa GJ) + (Ac GJ) + (Az 'ZJ’) + (At TI) (1)

where G, C, Z and T are the reflectance signatures for a unit area of sunlit background and crown; and

PN

shadowed background and crowr:, respectively. Equation (1) can be wri}:ten
%
Sig = A Gy +(1-4,) X, 5

Cety »

w‘here X is the average reflectance of a tree and its associated shadow.

Fig. 2 (modified from (15]) shows an idealized plot of the four spe.ctral components on greenness (.
e., infrared to red contrast) and brightness spectral axes. A bright soil background (G ) has high bright-
ness and low greenness, and sunlit canopy (C') has high greenness and is less bright than the background.
Shadowed canopy (T') and background (Z ) are less bright and less green. The composite tree signature

X falls within the triangle CTZ . When cover is low, the pixel signature S varies along the line GX4

with distance from G proportional to tree cover (m ). However, as cover increases, the proportion of
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shadowed background decreases and t.he relative proportion of sunlit crown increases. This occurs because
shadows fall on the near-vertical sides of trees instead of the background, and are thus less visible from
nadir. At full canopy closure, only sunlit and shadowed crowns are present. The composite tree signature
is then X, which falls on the line TC'. As coverage increases, the signature will thus diverge from the
line GX toward X o, and the simple (linear) model is no longer appropriate.

Substituting the expressions for A, and (1 — A, ), dropping the subscripts in (1) for convenience, and

solving for m we have for each pixel

G -8
m = (G —Xg (2)

From (2) we can derive the variznce of m :

m)=—V(E) '
= T e @

where V(S) is the variance in reflectance for all pixels in the stand. N

For multiple spectral bands m should be the same if deterimiiied from any band. However, varianc

in the signatures and stand parameters will cause m to vary, and thus m can be taken as a weighted

average or selected as the median value.

2) Model Sensitivity: The sensitivity of this model to noise in S and the component signatures_,"and

X N
to errors in estimation of parameters, can be shown by taking the partial derivative of m with respect to
p.

a
»

these variables.

am - -1
25 T T(C - X9

am S -Xo — 1

5C ~ TG _XoF ~ TG - %9 (because when cover is low S = G)

am G -5 m
09X, L(G - X,)? G -X,

om _ S -G -m
ar TG - Xy) T
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When the spectral contrast between background and tree is high, sensitivity to noise in §, G and X, will
be reduced, because (G — X) is in the denominator. When density is low (m is small), noise or error in

estimating X and T are less important than the contrast between tree and background (G - X),

because m is in the numerator.

8) Inversion of the Model: If size and density are independent, then the expressions for the mean and

variance of independent .product-.; can be applied ([15] p. 709). If V(R 2) = V(rz)/n ~ V(r?)/N , then

V(Wl) ~ (N+ Org N + Org)(R2)2 == (M + Crg M + Cr2 :R-Q)R.2 (4)

where M 1s the average m in the stand. Solving for R2, we obtain:

[(1+ Co? M2+ 4V (m)C 2 - (1 + C. M
R*= 2C , ) )

Applying the approximation vV1 4+ 2 = 1 + z /2, we obtain:

V(m)
(1+ C M~

2~

This should be reasonably accurate if V(m ) is fairly large. Finally, substituting (2) and (3), the expres-.
sions for mean and variance of r, into (5) or (6), R? and N can be found from the reflectance values of :

the pixels in a stand. . D

III. STUDY SITES IN MALI ' | ' "
The Li-Strahler model was originally developed and tested for sparse pine woodland in northeastern

California. However, there are many other landscapes for which the assumptions of the model hold: Aca-
cia and broadleaf savanna or woodland in Africa also consist of trees at low density, with a uniform, con-
trasting understory of grass or-soil at some point in the annual cycle. Further, the plants can be regarded
as having simple shapes, invariaat with size, and with little overlap, thus casting shadows that can be
predicted from tree geometry a.nd. sun angle. Savanna canopies are more translucent than conifers, having
lower LAIJ, and cast weaker shadows. The simple model is still applicable because the components’ signa-

tures are calibrated from the imagery, although the contrast between G and X will be reduced in this

woodland type.

-
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Woodland and savanna, or wooded grassland, will be defined as the subtropical and tropical vegeta-
tion formations where the grass stratum is continuous, trees and shrub cover is greater than five percent
and less than eighty percent, where fire occurs, and where the growth is closely associated with alternating
wet and dry seasons [39]. We chose to test the model for woodland sites in Africa because of the global
extent and importance of this physiognomic type. Woodland and wooded grassland cover ten to twenty
percent of the land surface, greater than any other surface cover type (except desert and ice) [40]. Dry
woodlands and wooded savanna (with tree cover greater than ten percent) are presently estimated to
cover 486.4 million ha or 22.2 percent of the continent of Africa, including 8.6 million ha in Mali [41].
Woodlands are often monospecific (one or two dominant types of trees) or nearly so, of low density, have
a uniform herbaceous understory, and occur over extensive areas of flat terrain.

We tested the model in study sites in the Sahelian and Sudanian bioclimatic zones in Mali, West
Africa (Fig. 3). The Sahel is usually defined with reference to mean annual isohyets and corre%ponds to

the 200-600 mm annual precipitation zone [42] {43] [44] [45] {46]. The vegetation of the Sahel ranges from

an open annual grassland with less than ten percent woody cover in the north to perennial grasses with 25

percent or more tree cover in the south. In the Sahelian zone in northern Mali, four test sites were o
located in the Gourma region, three from among those being monitored by ILCA/Mali (The International
Livestock Centre for Africa) in collaboration with the GIMMS Proj.ectv (Global Inventory, Monitoring and

Modeling System; National Aeronautics and Space Administration, Goddard Space Flight Center) [47] (48]

[49] [50]. The fourth site was added in this study. Although tree cover is generally low in the Sahef,
woodlands are locally dense in lew-lying inundated areas, and all of our sites were located in these dense
woodland stands (thirty to sixty percent cover). Three of these sites are dominated by Acacia seyal Del.,
one by Acacia nilotica (L.) Willd. ex Del. (all nomenclature follows [51]).

The Sudanian zone is the region to the south of the Sahel, lying between about 11° and 13° N in
West Africa, where the rainfall is 600 to 1000 mm, the rainy season lasts 4 to 5 months, and there is per-
manent agriculture. The vegetation is a mosaic of open crop/woodland or savanna, with trees up to 15 m
tall, some closed woodland, and edaphic bush thickets and grasslands [52]. The Sudanian test sites are

located within the administrativ: region of Ségou, Mali. The crop/woodland type of vegetation is formed
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when crops are grown under a woodland of useful trees that are preserved when land is cleared [53].
Three sites are dominébed by Butyrospermum parkii (G. Don) Hepper and three by Acacta albida Del. All
sites are located in the house fields, cultivated areas near the village where shrubs and weeds are cleared
regularly.

We emphasize that these sites were carefully chosen based on prior field investigations, reconnais-
sance, and photo interpretation, to be representative homogencous woodland stands of a certain minimum
size and range of cover. Without any modification, the simple model must be applied to a stand of uni-
form density and composition. Therefore, the landscape must be stratified prior to regional application of
the model.

IV. METHODS

Tree shape parameters and tree cover, size and density were measured in the field to parameterize
and test the model. Sites ranged in size from about 9 to 90 ha (100 to 1000 TM pixels), with most sites
abo‘ut 20 to 40 ha (200 to 500 pizels). This corresponds roughly to the size of the 1 km diameter circular ’

plots used by Hiernaux and Just.ce (49] in their AVHRR (Advanced Very High Resolution Radiometer)

study. T
Four to eight fixed-radius piots were located systematically within sites (at regular intervals on a
rectangular grid c;r line) in order to sample all parts of the stand, and not bias the location of the plots.
Plot radius was fixed within, but variable among sites, and was established by takiﬁg preliminary deé}sity

measurements and choosing a radius that would include approximately fifty trees per site (see Fig. 4 for

an example of plot size). Tree height (H), crown diameter (= 2r ), and height to widest crown diameter

were measured for all trees in each plot.

o

Average b and b (see Fig. 1) were calculated for the site, and were used with the sun angle for the
TM scene to calculate I' from the geometry of an ellipsoid on a stick. The model parameter C ; was cal-
culated from sample data for the sites. Size distribution was examined by inspecting histograms of tree
size (expressed both as crown siz: and height) for all sites. Spatial pattern was established by mapping
point patterns of 200-900 trees from low-altitude aerial photographs in sample quadrats within test sites

for which there was good photo coverage (sites 2, 15 and 20), and analyzing using quadrat analysis [15]
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[54) and second-order analysis of intertree distances [55).

Observed cover for the sites was estimated from the sample plot data. Independent cover estimates
for.some of the plots from line transect (from [48] and [50]) and photointerpreted point intercept on a grid
(by the authors; see {56] for méthods) were also used to test At,he model. These compared favorably with
the field measurements, within the expected range of varian;:e (see [22] Table I).

TM data were used to test this model. Early dry season imagery was chosen to enhance the con-

_trast between trees (still green for most species) and background (a dry herbaceous layer, or bare soil).
The TM scene for the Sahelian sites was acquired 9 September 1984 at the end of a very poor rainy season
[49] [57], but just afper a local rainfall event in the study area [47]. A second Sahelian scene, acquired 7
May 1985 at the end of the dry season, was also used to test the model. The scene for the Sudanian sites
dates from 17 November 1984, after the harvest, so the fields beneath the tree canopy have been cleared.
The mean and variance of reflectance for all pixels (S and V(S)) were computed for xeach spectral band

in the test sites.

The component signatures required by the model are simply the relative brightnesses of the com-

ponents (background, tree and shadows) compared to the mean brightness of the stand, not the absolute - *
radiance or reflectance. The signatures were established from the satellite data, because it would have;_'f"
been very difficult to calibrate them .accurﬁely_from field radiometer measurements in a heterogeneous
enﬁronment, and to projecﬁ them through a n-lod.ellec.l atrr{osphere Signatures for background and ca!nopy
(G and X) were initially computed from small training areas in the image, using aerial photograph% as a
guide. Areas of no tree cover in or near sites were used to estimate G, and pixels with high tree cover
were used to estimate Xy, Comparable and satisfactory results were obtained by automa-tically choosing
the extreme pixel values from the histogram of the brightness values in the site as the G and X signa-
tures. It was possible to predict G and X, using the model in these sites for which N and R? were
known, and compare predicted values to those observed in training sites or the histograms.

The model was tested by providing the stand parameters (I' and C, 2) and the spectral parameters
(G, Xo, S and V(S)), predictirg R? and N for each site, and comparing to actual R? and N from field

measurements. Observed and predicted values were compared by simple regression. The model was
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tested for all visible and infrared TM bands (1-5 and 7; see Table I for wavelength bands) and then for a
subset of bands, TM 3, 4 and 7. Band 3 was chosen because in our experience red reflectance is strongly
related to tree cover [58] [59], Band 4 because of its relationship to green vegetation amount [60], and
Bz\.ncl 7 because it had the highest variance in the sites, and has also been shown to be related to tree
cover [61]. These bands are from. different regions of the spectrum and tend to be uncorrelated. Finally,
the model was tested using transformed spectral channels, the NDVT (Normalized Difference Vegetation
Index [62] [63]) representing image greenness, and the first principal component representing image bright-

ness.
V. RESULTS
A. Stand Parameters
The tree shape measurements for the sites (height, H, and crown radius, 7) and the deri\{ed model
parameters I' and C , are shown in Table II. The trees in the Sudanian sites are taller, with relatively
narrower crowns, and in the Sah:lian sites, the trees are shorter with relatively wider crowns. In site 15 ':'j'::

the trees are essentially balls of foliage sitting on the ground, and I" is smaller than for site 101 because °

even though the average crown is smaller in 101, it is elevated off the ground and more shadow is visible.

The average T for the Sahelian sites is 5.1. The Sudanian sites have larger I' because the TM scene was"

~

imaged later in the fall so the solar angle is greater. Average I' for the Sudanian sites is 7.1.

]

Tree size distributions for all sample populations were slightly to extremely right-skewed. This*con-

¢

curs with other studies of the West African savanna (summarized in [64]). Log-transforms produced

normal-looking distributions. Fig. 5 presents two examples of size parameters (crown area and height) as

log-normalized. Thus, if field measurements were not available, the assumption of a lognormal size distri

bution is valid for these sites, and the formula for C’rg for a lognormal distribution could be used. How-
ever, for these sites C,, was calc alated directly from sample data, and ranges from .26 to .77 (Table II).
There is no apparent difference in the C ; values between the two regions; however, the value is sensitive
to the presence of a few very large crowns in the sample population (as in sites 2 and 15).

Fig. 6 shows the point locations and results of second order analysis for one of the sites. In all sites

there is generally an inhibition distance of five to ten meters, below which the probability of finding two

-11-
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trees is very low, but at relevant sensor resolution (20 to 50 m) a Poisson model is adequate. This is sup-
ported by the quadrat analysis (Table III). At larger distances (50 to 100 m) a Poisson model still fits in
many of the sites, including the sparser stands (site 2} at densities where the Poisson model broke down in
our earlier studies of California pine stands [15].

The actual tree size (expressed as squared crown radius), density, and cover for the sample sites are
shown in Table IV. Sahelian sites have small trees at higher density. Sudanian sites have very large trees
~at low density, and generally lower cover.

In order to compare observed size, density and cover with predicted values obtained by model inver-
sion, estimates of sample variancs in these quantities are required. These estimates help to indicate how
much of the difference between the predicted and observed values results from sample variance rather
than disagreement between model and measurement. For 2, variance is simply determined using the
many individual tree count measurements for all plots taken at a site. However, for N, the sample size
within a site was small, ranging from four to eight. To determine whether or not sample variance should

be based on within-site measurements, or are sufliciently similar between sites or regions that pooled esti-

mates should be used, we conducted three analyses of variance (ANOVAs) (Table V). The ANOVAs
showed significant difference at region and site levels, indicating that pooling was inappropriate. Accord-
ingly, the standard deviations shown in Table IV are based on within-site measurements.

B. Effect of Model Approzimations B

Equation (6) was almost always the best predictor, although in a few cases Equation (5) was bEtter.
Therefore, (6) was accepted as being a reasonable approximation (V (m ) was fairly large), and in all ana-
lyses, the results from this approximation are presented.

C. Eaxrly vs. Late Dry Season Imagery

For the Sahelian study region, we ilypothesized that the September 1984 image (recorded following a
rainfall event) would have a green herbaceous layer of varying density or standing water in sites 15, 20
and 21, causing low separability of component signatures, and that late dry-season (May 1985) imagery
would work better in the model. This is true for site 20, the only site for which G obs {brightest pixel in

stand) is darker than G .4 (protably due to herbaceous growth or inundated soil in the site). However,
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2

the May 1985 late dry season imagery did not consistently pr;adict cover better than thé 1984 imagery for
the Sahelian sites (see Fig. 7). It is difficult to discern a pattérn with only four points; however, it appears
that as long as there is some spe:tral contrast between background and tree, the model can be inverted.

It can be seen in Fig. 8 (shown for 1984 data) that for sites 15 and 101, G and X, don’t separate well in

greenness (NDVI), but the contrast is better in brightness, and the predictions of the model are reason-

able.
D. Effect of Stand Parameters

We used the average values of C » (.45) and T (7.1 for Sudanian scene, 5.1 for Sahelian), and there
was no systematic change in the accuracy of predictions. There is little change in the predicted values of
R?and N, and no system;mt,ic error caused by holding the stand variables constant. Predicted cover

values only changed by three to four percent, improving or degrading the prediction by only that much

(Table VI).

E. Effect of Shape Model

In order to evaluate the effects of shape on the inversion procedure, we develéped an alternative for. %
mulation of I for the shape of a hemisphere on a stick. At least some of the trees in each plot could be.‘:-:; ‘
considered to fit this shape reasonably well. To test this change, we calculated I" for the sites using theif"
hemisphere model to see if it performed better or worse than that of an ellipsoid. There was no consiéteﬁt
difference in the results using the hemisphere shape. As T in_creasés, predicted R ? increases (and prgéi;c:tia'd
N doesn’t change), so, as T’ {ncréases ;esults should improve in cases where cover was underest.ima.té‘;d,
and vice versa. Since there were cases where cover was over- and underestimated, there was no overall
improvement in model results (see Table VI).

F. Component Signature Estimation

Using unadjusted co_mponent signatures, density (/N ) is overestimated and size (R 2) is underes-
timated for all sites and all bands. This is because the brightest pixel reflectance in the stand (or signa-
tures from training sites) are overestimates of the background signature G . If G is overestimated, the

model predicts too many trees, and if N goes up, R 2 must go down, so size is underestimated. When

observed and predicted G and X were regressed, the coefficient of determination (r?) values were very
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. high (.96-.99). The distributions of G .4/ G o5, and Xg,,.q /X goss Were very peaked (see Fig. 9), so the
average (median) values of G ,.e4/ G ops a0d X gprea/ X gobs In each region were used to scale G and X, (.90
and 1.15 in the Sudanian sités, .98 and 1.05 in the Sahelian sites). Thus, G is slightly darker than the
brightest pixel and X slightly brighter than the darkest in all spectral channels including the near-
infrared (Band 4), and in composite image brightness (the first principal component of the spectral data).
This pattern is reversed in cémposite image greenness (the NDVI in this analysis). When G and X are
adjusted using these simple scaling factors, the results improved, especially for predictions of cover and
density. Thi;s adjustment was necessary for obtaining reasonable predictions, even though it only changed
the signatﬁres By a few DNs (““digital numbers” or brightness levels, quantized to 256 levels for TM data)

because of the extreme sensitivity of the model to the component signatures, especially to the background

signature G .

G. Multispectral Predictions

We tested the model for single spectral bands for all sites (each band is assumed to be an indepen-
dent predictor). When observed a.nci predicted size and density were compared for- all sites and all single”»."
bands, the results were highly vzriable. However, the resﬁlts_ substantially improved when the median - - °
predictions from among the bands was compared to the observed value. The median improved the cor;:'é-
lation between observed and predicted values because the scaling of G sometimes caused spurious regults
for a band. For example, if scaled G (G ,..4) Was closer than S to X, the result was a negative R2'_§)re-
diction, or an extremely large predicted N. The fesults were also calculated for the median prediction
from Bands 3, 4, and 7, bands which are not strongly correlated (Fig. 7 and Table VI). Results are
slightly better for the six band median. Fig. 7 (e) and (f) also shows that although the variance in
observed N and R? (estimated from the plot data) is large in some cases, it is not as great in the “vari-
ance’ in the multispectral predictions (shown as the range of the three-band prediction).

H. Transformed Spectral Channels
Successful inversion of the model requires goéd spectral separability of G and X, (Fig. 2); thus, we

explored the use of multiband trznsforms to define G and X . For this analysis, we selected the first

principal component of the images as a brightness channel, and used the NDVI as a greenness channel.
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Although NDVI is not necessarily orthogonal to the first principal component, it is well known to respond
to.green vegetation in a fashion independent of image brighiness. Averaging the predictions of size and
density obtained from these two transformed bands did not produce a better result than the median of
Bands 3, 4 and 7 (Table VI), but the results are helpful for graphic interpretation because they correspond
to the idealized spectral channels used by Li and Strahler in their original formulation of the model. The
effect of scaling G is to create a linear relationship between G, S and X,. Fig. 8 shows the position of
G, Xoand S for the Sahelian sites (15, 20, 21, 101) for both observed and predicted (adjusted) values of
G and X,. Separation between G and X is best for sites 20 and 21, and cover, size and deﬁsity are
predicted more accurately for thase sites than for sites 15 and 101 where separation is poorer. The pat-
terns are similar for the Sudanian sites.
I. Regional Estimates

When the observed and predicted tree size and density are averaged for all sites in a region, the
results clearly differentiate the two distinct_ive regions. As Table VII shows, the tree dimensions and dis- ~.j'::

tribution are very different in the two regions and the averaged predictions for size and density are very -

close to the observed averages for the regions. T-tests show that the regions have signiﬁcantly different’ - *
average size and density (all at least at the 0.0005 level). Observed and predicted values for each regioﬁ
are not significantly different; however, it should be noted that the sample size for the t-test is small.
VI. SUMMARY AND DISCUSSION

The models doesn’t predict tree size very well for the ten test sites (r? - .20). Size is both urfc'ier-
and overestimated. The model predicts density and cover better (r® is .62 to .78) in these test sites, where
cover ranges from approximately ten to forty percent. It is a reasonable assumption that V (m) (variance
in cover among pixels) is large at this samﬁling scale (30 m TM pixels), and Equation (6) can be used to
approximate R? for these samples (100-1000 pixels).

The results support our prediction that the model is sensitive to the choice of the G signature and
to the separability of G and Xo. When G is overestimated, tree size is systematically underestimated,

and density overestimated. Scaling ¢ dramatically improved results. Sites and spectral bands with good

separability between G and X generally showed better predictions (sites 1, 20, 21, Bands 3, 5, 7),
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although there were exceptions. Also in support of our predictions for these sites with low cover {(small

m ), the model is not sensitive to variance or error in estimating tree shape and size parameters (I' and
()r._»). Using a different shape mcdel that slightly changed T, or using standardized I' and C . had very lit-
tle effect on the overall results.

Best results were obtained by using all spectral channels for the predictions, and selecting the
median value from among them. This is because scaling the component signatures can cause spurious
results for an individual band. The best results come from selecting the median predictions from all six
visible and infrared TM bands. Neither parameter was systematically over- or underestimated for the
sites. Reasonable predictions of tree size and density were also obtained using three largely uncorrelated
bands (3, 4 and 7). Actually, correlation among the spectral bands should be an advantage, not a prob-
lem, given the formulation of the model. It is not a system of equations requiring independent variables

for its solution, but rather the bands are instrumental variables that help to separate the signal from the

noise.

The sites that were not predicted well‘ are helpful in illustrating the limits of the simple model.
Cover is underestimated in site 20, which has the highest cover value. As cover increases, trees and sha:j; o
dows do, in fact, overlap. X, will approach X, as shown in Fig. 2. Therefore, our estimate of X is tdo
dark, and for a given brightness, tree cover will be underestimated. Either tree size is underestimated
when variance is low, or density is underestimated when variance is higher. However, in this site thé'
actual cover may also be overestimated by our plot data (see Fig. 7 (d) and Table IV). g

For several of the sites (2, 4, 5, 7), tree density is as low as one to three trees per pixel. In this case,
the predictions of the model will be strongly influenced by variations in the background (G'). This will
contribute to errors in the prediction of both N and R®. Also, X, will be incorrectly estimated at low
density, causing errors in the prediction of R, This can be seen in site 7. The darkest pixel in the stand
doesn’t represent X because it ontains background. Therefore X is too bright and R? is overestimated.

If X, is assigned a lower brightness, closer to the values for the other Butyrospermum parki sites

(Xo = .98 X), the predicted value is much closer to observed (see Fig. 7 (c)).
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In site 2, density is overestimated and cover underestimated. This may be because scaled G is still
brighter than the actual background signature, although when inspecting the imagery for the stand, there
are not any anomalously bright pixels included in the training data. However, our photpinterpret.ed cover
for the stand is much greater than is calculated from the plot daté, and closer to the value predicted from
the model. In this case the observed values for tree size and density may be low, due to sample variance

or errors in the field measurements.

We conclude that at this scale, in small sites on the order of 0.5 km?, variations in the undersiory
signature and other stand parameters cause site-specific predictions, particularly of tree size, to be poor.
This 1s not surprizing, as many of the factors contributing to reflectance are not accounted for in the sim-
ple model, nor were they controlied for in this study. One of the most important is the heterogeneity in
the background reflectance caused by differences in soil color, variable leaf litter cover, and slopes or
microrelief causing local differences in surface illumination. These would all contribute to interpixel vari-
ance. On the other hand, the atmospheric- haze so prevalent over the Sahel would tend to reduce inter- =. ’

i
Lo

- . « e . - . - o u“"
pixel variance. Nevertheless, when our predictions were averaged within the Sudanian and Sahelian Yt

regions, regional differences in the structuré of these woodland types were accurately detected and
quantified by the inversion procedure. |

Therefore, this procedure c§uld be used most effectively as part of a multistage inventory to est}i*
mate the average size and density of woody plants directly over large areas in woodlands ranging frc{’:ni;tén .
to forty percent cover. In an auiomated procedure, G and X c;)uld be selected from the histograr;i; for
twenty or thirty sites in a stratified region. C , and T' can be chosen a priori for a vegetation type. We
would expect a good prediction of tree size and density for a stratum within a region baséd on the average
from these sites. We feel that the model could be inverted using Landsat MSS data in this landscape
because stands are sufficiently large t,l;at, even at 80 m resolution there are enough pixels (100 or more) to
estimate variance.

Because size and spacing are often related to leaf and woody biomass, this technique could also pro-
vide woodland biomass est,ima.tefs over large areas [65]. Besides their obvious relationship to standing

biomass, important enough in itself, height and spacing could be used to determine surface roughness and
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other parameters important to land-surface climatological models [11]. Also, regional-scale ecological
models of ecosystem photosynthetic production and biogeochemical cycling may require input parameters
of vegetation structure of the type obtainable through our inversion procedure 4] [66]. This is especially
true in open woodland where trez canopy is not homogeneous, and its interaction with radiation and the
atmosphere near the ground cannot be approximated by homogeneous plane-paralle]l models.

Finally, the inversion procedure may help monitor desertification — the spread of desert-like condi-
tions into arid and semi-arid lands, such as the Sahel, caused by drought and overexploitation of vegeta-
tion and soil in the region [67]. In general, drought reduces density by killing individual trees (observed
by Poupon [68]), while over-use of trees (coppicing and woodcutting for fuel and fodder) reduces crown
area, while number of individuals may actually increase [69]. These two phenomenon could be distinguish
in-a regional context using the inversion procedure, which could be applied to historical Landsat data to
examine changes in the recent past.
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Table I

TM SPECTRAL BANDS
™ Wavelength
band (pm)

1 0.45-0.52
0.52-0.60
0.63-0.69
0.76-0.90
1.55-1.75
2.08-2.35

w

N O W

Table 11

TREE SHAPE MEASUREMENTS FOR STUDY SITES

Site Species . Height (m) Crown Radius (m) r c.
mean l o mean l o r
SUDANIAN SITES
1 Vitellaria paradozxa 35 8.35 | 2.44 3.67 1.19 7.00 | .5164
2 | Vitellaria paradoza 50 8.61 | 2.94 | 4.13 1.60 6.67 | .7780
3 | Acacia albida 32 | 11.07 | 1.96 4.15 1.02 7.28 | .2612 SO
4 } Acacia albida . 63 | 13.17 | 3.01 5.57 2.06 7.10 | .5682 :
5 | Acacia albida - 60 .;°'11.58 | 2.58 4.91 1.72 7.07 | .5616
7 Vitellaria paradoza 50 | 12.60 } 2.71 4.72 1.36 7.55 | .2969
SAHELIAN SITES
15 | Acacia nilotica 56 5.64 | 1.59 3.56 1.25 4.72 | .6816
20 | Acacia seyal 87 5.27 | 1.66 3.06 1.08 5.00 | .4385
21 | Acacta seyal 75 488 | 1.53 2.50 0.88 5.30 | .5151
101 | Acacia seyal 105 5.02 | 1.16 2.45 0.90 5.30 | .5797

ety
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Table 111

QUADRAT ANALYSIS: FIT TO P0I1SSON DISTRIBUTION

Quadrat n n
Size quadrats points mean x? df
Site 15 (Acacia_nilotica)

10 784 587 0.7 4.7 3

20 196 587 3.0 4.7 9

25 121 567 4.7 80 12

30 81 547 6.8 3.1 13

35 64 587 9.2 9.1 18

40 49 587 12.0 20.9 24

50 25 466 18.6 10 27

Site 20 (Acacia seyal )

20 182 838 4.6 10.0 10

25 121 877 7.2 248 18

30 81 850 10.5 259 19

35 56 780 139 T 15 28

40 42 757 18.0 T 51* 30

Site 2 (Vitellaria paradoza )

10 625 223 0.36 3.1 0

20 144 212 1.47 0.3 4

30 64 213 3.3 3.9 7

40 . 36 213 5.9 58 14 a
50 925 223 8.9 6.4 17 L
60 S 16 213 131 11.3 26 o

* significantly different at .05 level

Table IV
ACTUAL TREE S1ZE, DENSITY, AND COVER o
) (Crown radius)? (m®) Density (ha™) Cover (%) o
Site »
mean o n mean 1 g n | sampled l photo
SUDANIAN SITES
1 14.85 10.67 35 45.74 | 13.84 4 22
2 19.58 17.27 50 30.36 6.65 6 19 27
3 | 1825 9.33 32 35.72 7.44 | 4 21
4 35.18 26.52 63 21.40 12.23 8 24
5 27.02 20.25 60 12.74 8.37 6 11
7 | 24.05 | 13.11 50 10.61 3.08 | 6 08
SAHELIAN SITES
15 | 1421 [ 1173 | 56 | 7130 | 4053 | 4 32 23
20 10.53 6.97 87 168.07 24.63 3 56 39
21 7.03 5.04 75 149.21 26.29 4 33 44
101 6.82 _5.19 105 133.69 | 154.55 4 29
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Table V

ANOVA OF DENSITY IN SAMPLE SITES

Source of Variation F P
Regions vs. plots within regions 1357.51  0.0000
Sudanian Sites, sites vs. plots within sites 61.82 0.0000
Sahelian Sites, sites vs. plots within sites 4.51 0.02
Sahelian Sites, without site 101 36.48  0.0001
Table VI

SUMMARY OF MODEL RESULTS
REGRESSION, OBSERVED VS. PREDICTED STAND PARAMETERS

Trial a b r?
COVER

Six Bands Median . 674 +.036 74
Bands 3, 4, 7 Median .922 +.094 .62
Standard T" and C’rg .038 +.682 72
Hemisphere shape model .039 +.652 .76

TREE SIZE (R °)
Six Bands Median - .586 - +8.352 .28
Bands 3, 4, 7-Median .756 +7.449 .16-
Standard I and C o - .348 +6.511 18
Hemisphere shape model .399 +5.207 .18 i
Brightness and NDVI 270 +13.170 04 :

DENSITY (V) ;',.‘
Six Bands Median .822 +15.280 72
Bands 3, 4, 7 Median .807 +17.992 .75 .
Standard T and C , .810 +7.887 .78 !
Hemisphere shape model .807 +17.992 .75 )
Brightness and NDVI 591 +36.750 17 o

Table VII

AVERAGED REGIONAL ESTIMATES OF TREE SIZE ANDDENSITY

R? N

Region n Observed Predicted Observed Predicted
mean o mean a mean o mean | o
Sudanian 6 23.16 | 7.30° | 27.42 | 10.24 26.10 | 13.69 38.22125.80
Sahelian 8 9.65 | 3.23 | 12.89 5.25 | 130.57 | 38.83 | 123.97 |44.40




Fig. 1 — Tree shape and illumination geometry for an ellipsoid on a stick.

Greenness

Brightness

Fig. 2 — Idealized plot of spectral components on brightness and greenness spectral axes.
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29




GH I3
OF POOR QUAILXEY

AL PA

ORIGIN

RS

.Wr}
28

A
gt
2

3
L7

AL

%
7,

3055 447,
7

Fig. 4 — A portion of site 15 shown on an aerial photograph with plot size (25 'm radius) indicated by the cir-

cle.

30



25 .
C\> Acacia nilotica (n = 60)

20}

13

o] ]

o) —l"_l_—l : |

— T T T T T 1
° 50 100 150 200 250 300

CROWN AREA (m?)

l«_)) 250 & L

200
n r
E
< 150
e |
= .
pd .
Z oot
e} .
2 res ;
(&) B

so L . . _',_,,_"'

J‘M
asenr® .
- T T 1 1 1
-3 -2 -1 e 1 2 3
QUANTILE QUANTILE PLOT (standard deviations)
. . ) - )
5
o) .

3.0 b . N 3

‘iEt 2.e L A
J- .

5 2.8 L __..1"
: =
§ 2.A4 L
Q
S 2.2 L =

2.0 L

18 1 1 L 1 L

-3 -2 -1 [ 3 2 3

QUANTILE QUANTILE PLOT (standard deviations)

Fzg 5 — Histograms of size distributions for (a) Acacia nilotica (crown area) and (d) Acacia albida (height).
The quantile-quantile (Q-Q) plots represent the data plotted against corresponding quantiles of the normal distri-
bution (units are standard deviations). If the points fall in a straight line, they are nommally distributed. (b), (¢)

raw values; (c), (f) lognormal values.
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(height). The quantile-quantile (Q-Q) plots represent the data plotted against corresponding quantles of the nor-
mal distribution (units are standard deviations). If the points fall in a straight line, they are normally distributed.
(b), (¢) raw values; (c), (f) lognormal values. .

32



SECOND ORDER ANALYSIS
@ GOURMA SITE 15
(n-589)

L;(d)

RN

~eeet

Cety.

5 ) 20 25 40
d(m)

Fxg6 — (a) Point locations of trees, Gourma Site 15 with grid of 30 m quadrats overlain.. (b) Cumulative fre-
quency of observed interpoint distances (L;[d]). The diagonal is the expected frequency for a Poisson distribu-
tion, and the lines surrounding it are the .05 significance level.
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Fig. 7 — (cont.) Observed vs. predicted stand parameters for Band 3, 4, 7 median, (a) cover, (b) density V), (c)
size (R?), (d) cover substituting photointerpreted values for sites 2, 15, 20, () density with sample variance (£
one standard deviation) and range of predicted values plotted, (f) size with sample variance (+ one standard
deviation), and range of predicted values plotted. A star (*) indicates predicted values in one band that is much
greater than the range of the y-axis shown. Points are labeled by site number; numbers followed by .5 are based
on 1985 TM data. All other points are based on 1984 spectral data.
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Chapter 2

REFLECTANCE PROPERTIES OF WEST AFRICAN SAVANNA TREES

FROM FIELD RADIOMETER MEASUREMENTS

Abstract

Reflectance properties of savanna trees were measured using a pole-mounted radiometer for four Sahelian
and two Sudanian species in West Africé. The measurements showed that canopy spectral components, viz sha-
dowed and sunlit tree crown and background, have distinct reflectance characteristics in red and infrared
wavebands as modelled by Li and Strahler (1986). Sunlit canopy is the greenest coﬁxponem, and sunlit back- .
ground (consisting of bare soil with some brown herbaceous matter) the brightest. Shadowed crown is the dark;

est component, and is greener than shadowed background. The field radiometer measurements were used to cal-

culate the normalized difference vegetation index (NDVI), and the integrated NDVI over the canopy was related ‘3'

to crown volume.
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1. Introduction

Models of radiative transfer and of biophysical properties (reflectance, photosynthesis) that treat vegetation
as a horizontally homogeneous photosythesizing medium may be appropriate for the field layer of a vegetation
canopy (Suits 1972, Smith 1983, Sellers 1987), but, the three-dimensional geometry of the vegetation must be
considered for the tree layer (Kimes and Kirchner 1982, Otterman 1984 and 1985, Li and Strahler 1985 and
1986). This is particularly necessary when analyzing radiative transfer in savanna vegetation for the purpose of
inferring biophysical properties from remotely sensed data (Prince 1987), because both the tree and ficld layer
are important in influencing reflectance, and in terms of ecosystem productivity (Bourliére and Hadley 1983).
The transmission of radiation through semiarid savanna tree canopies is presaged by the observation that there is
an unexpectedly good relatiémship between field-layer primary production and spectral vegetation indices derived
from satellite data, despite savanna tree cover of up io 30 percent (Prince and Astle 1986, Prince and Tucker

1986).

We measured canopy reflectance in the red and infrared wavebands for typical, individual savanna trees

because we were interested in the effect of the aver;ge tree canopy and its shadowing on reflectance. A cancpy
reflectance model for sparse woodland that treats trees as opaque Lambertian solids with distinct spectral proper- :
ties for shadowed and sunlit tree canopy and background has been developed (Li and Strahler 1985). While this
model can be empirically calibrated using component signatures obtained from satellite reflectance data, we
wanted to establish that these spectral components exist anci are distinct when measured in the field. G
The effect of shadowing geometry and background (soil) or understory properties on canopy reﬂectance:
particularly the bidirectional reflectance distribution function and greenness indices, has been modeled and meas-
ured in crops (Suits 1981, Verhoef and Bunnik 1976, Huete et al. 1985, Norman et al. 1983, Ranson et al.
1985), and forests (Heimes and Smith 1980, Kimes et al. 1986, Ranson et al. 1986, Kleman 1986, Li and
Strahler 1985 and 1986, Ranson and Daughtry 1987, Jupp et al. 1986, Walker et al. 1986). However, the spec-
tral components as defined by Li and Strahler (1986), (i. ¢., shadowed and illuminated canopy and background)
have not been méa:;ured separately in the field. Measurements of canopy layer interception have been made

which demonstrate that a large amount of the incident solar and sky radiation is transmitted through a typical

savanna canopy, primarily due to the low leaf area index (LAI) of semiarid savanna tree canopies (Prince 1987).
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Thus, the opaque solid assumption of the Li and Strahler model appears unrealistic for this application. In order
to reconcile these approaches, and to define the spectral properties of the equivalent opaque solid objects, we

have examined the effect of these canopies on the red and near infrared components of the incident radiation.

Specifically, we are concerned about the effect of the tree layer on satellite measurements of the properties
of the field layer and of the entire community. An understanding of the reflectance of individual trees as three-
dimensional objects that are self-shadowing and cast shadows on a background is important fo; a better under-
standing of the relationship between ratio vegetation indices and orthogonal transforms of red and infrared spec-
tral bands and green vegetation (Tucker 1979, Jackson 1983, Perry and Lautenschlager 1984, Asrar et al. 1985)

in woodlands and savannas.

The infrared/red indices have been found to be asymptotically related to green vegetation amount, and a
radiative transfer model shows that infrared reflectance is linearly related to intercepted photosynthetically active
radiation (Sellers 1987). However, many studies, including our own, have shown that, particularly in canopies
with incomplete cover, woody vegetation amount (measured as cover, woody biomass or timber volume) is
better correlated with red absorption than with near;iﬁfrared reflectance (Franklin 1986, I.ogan and Strahler
1982, Logan 1983, Frank 1985, Olsson 1984, Colwell 1981). This is primarily due to the three-dimensional sha- :

dowing geometry of the woody plants.

The savanna trees we measured generally have very open canopies (low LAI and thin branches), and do

not cast very deep shadows. Prince’s (1987) data suggests that they will transmit a great deal of radiation to the
ground and back to the sky. In spite of this, the tree canopy and the shadow it casts are distinct in panchromatic
aerial photography, even when the tree is ir_n a leafless condition. Therefore, we wanted to measure the bispec-

tral reflectance properties of the tree canopy and its shadow and to determine its effect on the background

reflectance properties.

2. Methods

The study sites were in the Sahelian and Sudanian bioclimatic zones (as defined in Aubréville 1949) in
Mali, West Africa. The measurements were taken for a total of 32 trees, twelve Balanites aegyptiaca (L.) Del.,

five Acacia seyal Del., three Acacia senegal (L.) Willd., six Combretum glutinosum Perrolt, three
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Butyrospermum parkii (G. Don) Hepper, and three Acacia albida Del. (nomenclature follows Hutchinson et al.
1963 and Von Maydell 1983). The B. aegyptica, A. seyal, A. senegal and C. glutinosum were located in or near
Site 20 (15° 16’ N, 1° 32" W) of the study area described in Hiernaux and Justice (1986). The A. albida were
located in Site 4 (13° 19" N, 6° 38" W) of the study area described in Franklin and Strahler (1988), and the B.
parkii were located in the same study region, near Site 7 (13° 15" N, 6° 35" W). We chose trees short enough to
measure with hand-held equipment, and with relatively even (isotropic) canopies because measurements were

made on only a single transect through the center of the tree (see below).

Butyrospermum parkii is a deciduous member of the Sapotaceae, with rather large sclerophyllous (leath-
ery) leaves which-it loses in the dry season. This tree typifies those found in the cultivated Sudanian zone in
West Africa (Nielsen 1965). Acacia albida is one of the most common Sahelian-Sudanian zone trees, which can
attain great size (20-30 m in height). It is a microphyllous Acacia, which (atypically) remains leafless in the
rainy season and produces néw leaves, and flowers, in the early dry season (September-October). Butyrosper-
mum parkii and Acacia albida had the grgagest leaf area (by visual estimation) of the trees we measured. Acacia
seyal and Acacia senegal are also microphyllous, but are much smaller trees. They both occupy clay loam
plains that are normally flooded during the rainy season, although A. senegal is more typically found on sandy
soils with good drainage. When the measurements were taken, all trees were in leaf, but the Acacia seyal is
characterized by sparse leaf coverage. Balanites aegyptiaca and Combretum glutinosum are common Sahelian-.
Sudanian small trees or large shrubs with irregularly shaped canopie§ (sec Figure 1). Balanites aegyptiaca ha{s\:;:‘. '
small leaves, but has green (photosynthesizing) current-year twigs and spines. Combretum glutinosum has sorge-

what glaucous leaves.

We measured the radiance of individual tree canopies using an Exotech radiometer with a 15° field of
view (FOV) in two wavelength bands corresponding to Landsat Thematic Mapper (TM) Bands 3 (.63-.69 pm)
and 4 (.76 - .90 um), red (R) and near infrared (NIR) radiance. The radiometer was mounted on a pole with an
adjustable length of up to 6 m, and held by hand 1 m above the canopy pointing downward while we measured
reflectance upwelling from above the tree canopy. We then measured reflectance upwelling from the ground
below the canopy (at 1.5 m). Data were collected at 1 m intervals on a six- to ten-m transect in the principal

plane of the sun. We measured from the sunlit to the shadowed side of the tree, and using this design radiance
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could be measured in all four components (sunlit and shadowed canopy and background).

We also measured irradiance using the Exotech radiometer in hemispherical mode on the ground below
the canopy at the same points on the transect. However, these measurements were subject to variation due to
gaps in the canopy. Thus, we modified this technique in the second season by taking radiance measurements
with the 15° FOV instrument pointed downward from 1 m height at a Kodak gray card placed on the ground.
The known reflectance factors for the gray card in the two wavelength bands (18.36 percent and 19.47 percent,
respectively) were used to calculate irradiance. Although this method ignores possible non-Lz;mbertjan surface
effects of the gray card, paired hemispherical and gray card measurements taken in the open were well-cor-
related. From these paired measurements, we deﬁved the same reflectance factors that were given as the gray

card specifications.

Red and infrared reflectance were then calculated from radiance using the following relation: R =L/E,
where R is reflectance, L is the radiance of the target, and E is irradiance. The hemispherical irradiance meas-

urements taken in the open the sunlit end of the transect were used to approximate irradiance conditions during

all measurements. From red and infrared rcﬂéctancé, we calculated the normalized difference vegetation index
(NDVI), which is defined as (V/[R —R)Y/(NIR +R). All measurerﬁents were taken in November 1986 and
October 1987 under a clear sky between 10 a.m. and 2 p.m. local time. *An entire set of measurements for a
tree took less than twenty minutes, so the effect of chénging sun angle was minimal. No changes in atmos-

pheric conditions (cloudiness) were observed during a set of measurements.

There was no green herbaceous layer at the time of these measurements and the field layer was a hetero-
geneous mixture of sunlit light-colored dry soil and dry herbaceous material, shadows from sources other than

the measure tree (plow furrows and other microrelief), and some green herbs and subshrubs near the transect.

Acacia albida and Butyrospermum parkii are typically 7 to 12 m tall, so we were forced to choose imma-
ture individuals for sampling, and the spectral characteristics of their crov((ﬁg may not be representative of the
population as a whole. This seemed particularly likely for the sampled Butyrospermum parkii because the indi-
viduals we measured appeared to have lower leaf density than mature individuals. Acacia albida canopies, on
the other hand, looked representative of the local population despite the small size of the sampled trees. Acacia

seyal and Balanites aegyptiaca are smaller and the individuals that we selected were of typical size and
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morphology for the region. Ideally the sampling interval along the transect would have been shorter because the
trees were quite small, but it was not possible to position the radiomieter at shorter intervals using a hand-held

pole. In spite of these limitations, general patterns emerge.

3. Results

Solar zenith angles were between 23° and 52° for all measurements (see table 1). Tree dimensional meas-
urements are also shown in table 1. These are height (total height of the tree), height-to-width (height the wid-
est part of the crown) and width of the crown. From these and a simple geometric shape model for the trees
(Franklin and Strahler 1988) the amount of the transect in sunlit and shadowed crown and background can be
estimated. Silhouettes of some of the canopies are shown in figure 1. Reflectance was averaged by species in
case where the individual trees did not differ greatly in diameter, and the averaged reflectances are show in
figures 2 through 4. Averaging may have masked some meaningful variability, and some patterns observed in
the composite may be artifacts of averagiqg trees with slightly different leaf area, crown diameter and shape.

Examples of the reflectance plots for a few individual wees are shown in figure 5, to illustrate the variability due

to the heterogeneous canopy.

Some discussion of the generalized pauern of reflectance and irradiance that we observed may be helpful.
First, consider the red band. In the red, the trec crown will be relatively dark due to strong absorption by
leaves. Soil will be lighter, and the sky hemisphere will have some brightness due to scattering in the red. In'
the case of downward mcasurements above the canopy (figure 2), red reflectance is high over sunlit backgrougd,
decreases as the radiometer’s FOV encounters the canopy, decreases further over shadowed canopy, and
increases slightly over shadowed background. In the near-infrared, the scene will appear somewhat different.
Because transmission and scattering by the crown is strong, it will appear as a light object against a black sicy
background. Soil will appear dark in contrast to the crown. The generalized pattern for this type of scene

shows near-infrared reflectance to be high over sunlit background, increase over sunlit canopy, decrease over

shadowed canopy, and decrease further over shadowed background.

The result of these different patterns for the red and infrared wavebands is that NDVI increases over the

canopy, but the pattern is shifted slightly shadow-ward from the crown. This is because infrared reflectance

-43-



ORIGINAL PAGE IS

OF POOR QUALITY CHAPTER 2: REFLECTANCE PROPERTIES OF SAVANNA TREES
increases as soon as the canopy is encountered on the sunlit side, whereas red reflectance does not decrease until
further along the transect, owing to the open nature of the canopy at its edge. On the shadowed side, although
the infrared reflectance is decreasing, the red reflectance remains low, and the ratio therefore remains high for a
short distance into the shadow. The result of this shift is that the integrated area under the NDVI curve approxi-

mates the leaf area or green biomass of the tree crown fairly well.

This general picture holds well for crowns with reasonable leaf area. However, if leaf area is very low, as
is the case with many of the trees measured in this study, the pattern will be somewhat different. Although
infrared reflectance increases when the sunlit side of the crown is encountered, it drops off more quickly over
the canopy due to fewer leaves and absorption by brown twigs and branches. Also, the shadow cast by the tree
in the red is not as deep, and red reflectance may start to rise again past the center of the tree. Consequently,
the NDVI increases over the canopy, but this increase is shifted towards the sunlit side of the tree as compared

to the pattern for the denscr canopy.

The averaged reflectances above the canopy for each species are shown in figure 2 (a-h). Balanites aegyp-
tiaca (figure 2e) shows the first pattern descrii)ed m(?st clearly because, although it has few leaves, it has a
dense, compact canopy with green stems and spines. Butyrospermum parkii and Acacia albida (figure 2f and g)
had more heterogeneous canopies with some openings, and the red reflectance was not as depressed in the sha-
dowed background, consequently the rise in the NDVI follows the tree outline more closely. This is imermedi-"”
ate between the two patterns we described. Acacia senegal and Combretum glutinosum (figure 2b, ¢ and d) ‘l
illustrate the second pattern, with NIR falling off past the leading edge of the tree, and the peak in NDVI shlfted
towards the sunlit edge. Acacia seyal had so few leaves that for some trees there was hardly any increase in
infrared reflectance, although there was a decrease in fed reflectance over sunlit canopy, and consequently a
slight increase in the NDVI (figure 2a). For tree 13 (figure 2h) red absorption was minimal but a slight rise in

infrared reflcctance causcd there to be an NDVI signal.

The typical downward-looking pattern under a dense canopied tree at 1.5 m (figure 3a-g) illustrates the
effect of tree canopy shadowing on the red and near infrared radiances and the NDVI for a background consist-
ing of bright soil with virtually no green plants. At first, NIR increases slightly as the radiometer sees NIR radi-

ation scattered onto the ground near the tree augmenting the solar beam. The NIR falls as the radiometer field
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of view begins to include the NIR shadow, which is deeper as canopy attenuation increases. As the beam path
length through the canopy decreases, the depth of the the shadow decreases and NIR rises as the radiometer
FOV emerges from the shadow. The situation for the red is similar, except that there is less initial scattering to
supplement the solar and sky irradiance at the sunward edge of the tree. The result is a slight rise in NDVI that
is centered around the shadowed edge of the tree. This pattern is again seen most clearly for Balanites aegyp-
tiaca (figure 3¢). The results are similar but noisier for Combretum glutinosum, Buty}ospermum parkii, Acacia

albida and A. seyal owing to the open nature of the crowns.

The irradiance measured under the canopy (figure 4a-h) is high in both bands in the open, then decreases
in equal proportions under the sunlit canopy and shadowed canopy to a minimum in the shadow of the cahopy.
Both bands rise again as the edge of the shadow is neared, because of ﬂme increase in diffuse irradiance. The
relative enrichment of infrared irradiance, due to scattering by the canopy, causes a slight rise 'in the NDVI of
incident radiance. The NIR signal under the canopy is somewhat noisier than the red due to gaps and openings
in the canopy, and greater transmission by the canopy in the NIR. This can be seen in the hemispherical irradi-

ance plots for Acacia albida, Butyrospermum parkii‘and A. seyal (figure 4f, g and h). This is why irradi-

ance was calculated from radiance of a known target in the 1987 season. The predicted pattern for a dense
canopy is illustrated best by Balanites aegyptiaca (figure 4e), and also by Acacia senegal and Combretum glu-
tinosum (figure 4b and c). For Acacia seyal (figure 4a) the pattern is slightly different because the crown is so:
open. Because the canopy of tree 13 (figure 4h) strongly reflected NIR, and red was absorbed more strongly 1}1‘ ’
the shadow than over the canopy, the irradiance shows a drop in NDVI under the canopy, and an increase in ghe

shadow. The slight rise in NDVI is located on the sunlit edge of the crown.

The above-canopy measurements discussed earlier show the strongest response of NDVI to the presence of
vegetation canopy. This provides and opportunity to try to relate NDVI, as integrated across the entire crown,
with leaf area. Figure 5 shows scatterplots of integrated NDVI o'ver the crown versus crown volume for all
trees, z;nd for subsets of species. To calculate integrated NDVI, the red and infrared reflectances over bare soil
were subtracted from each of the measurements over the canopy. Then NDVI was then calculated, and these
values were summed. For crown volume, the volume of a sphere with radius » of each crown (half of the

width, from table 1) was scaled by the proportion of that sphere filled with foliage.” This scalar was estimated
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by choosing a subsample of the trees, laying a grid over a high-contrast horizontal photograph of the crown (as
in figure 1), and estimating the proportion of a circle of radius r covered with crown by dot count. An éverage
value was chosen for each species. The values used were 1.0 for Balanites aegyptiaca, 0.40 for Acacia seyal,
0.45 for A. senegal, 0.50 for Combretum glutinosum and Acacia albida, and 0.75 for Butyrospermum parkii. A
value ‘of 0.20 was used for trees 13 and 14, because these A. seyal had very few leaves in the 1986 season.
These estimates of volume actually include twigs and branches, as well as leaves, but they are reasonable

approximations in the absence of measurements of leaf area.

Tree 9 had a very low NDVI compared to the other Balanites aegyptiaca, and is considered to be an
outlier. A linear regression calculated for the remaining trees yielded an r2 of 0.50. It would be better to look
at this relationship for individual species. The large differences in leaf morphology and canopy structure make
interspecific comparisons difficult, especially given our proxy measure of leaf area. Unfortunately, our sample
size for each species was quite small. The relationship between integrated NDVI and volume was poor for
Balanites aegyptiaca. This was probably because the canopies were extremely irregular in shape, and our esti-

mate of crown volume was probably not well-related to leaf area for that species. Scatterplots for Combretum

glutinosum, and Acacia albida and Butyrospermum parkii grouped together are also shown in figure 5 with r2 of *, e

0.75 and 0.81 respectively.

4. Discussion - E
An important conclusion from.this work is the verification of the four-component model — i. e., shadowed
and sunlit tree crown and background exhibit different reflectance characteristics in the wavebands measured.
Although the transitions are not as abrupt as Li and Strahler’s (1986) simple model assumes, the observed pat-
tern could be predicted from more sophisticated models that consider the transmission of radiation through Lhe»
tree canopy (Prince 1987, Li and Strahler 1988) and the non-Lambertian infrared scatter from the canopy. Li
and Strahler’s (1986) assumptions are born out in that the shadowed crown (their component T') is the darkest

component, and that it is greener (has greater infrared to red contrastt) than shadowed background (Z). Figure

+ We are using the term *‘greener’’ here in the sense of the greeness component of Kauth and Thomas (1976).
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6 shown the generalized reflectance and irradiance patterns, and the location of the four spectral components on

the x axis.

Our measurements also show that the NDVI, which is most affected by diverging red and infrared values,
is relatively insensitive to self-shadowing of the savanna tree canopies examined using measurements of irradi-
ance from below the canopy. When viewed from above however, an a'uea of elevated NDVI is detected which is
proportional to the volume of the canopy, but is sﬁifted shadow-ward slightly in the case of dense crowns, and
shifted sunward for sparse crowns. The NDVI, measured above or below the canopy, does not remain constant
for sunlit and shadowed background consisting of bare soil, but rather rises slightly in the shadow. This is due
to the influence of the canopy which causes some scattering of NIR. This effect was also noted by Diarra and

Hiernaux (1986) for the sites in the Gourma region, Mali.

All canopies measured here were very open and sparse (low leaf area) and in denser canopies the observed
effects can be expected to be more pl;onOunced. The NDVI tends to saturate at an LAI around 7 or 8 (Spanner
et al. 1984, Holben et al. 1980) or at green biomass of about 700 g/m? dry weight (Tucker 1979). For com-
parison, our Acacia seyal and Balanites aegyptica rﬁéasurements were taken in a site with about 100 g/m? tree
foliage biomass (maximum standing crop; Diarra and Hiernaux 1987) at roughly 50 percent crown closure,
which gives approximately 200 g/m? witlhin the tree canopy. In a Guirea savanna woodland Menaut and César
(1982) measured an LAI of 1 with canopy cover of 45 percent or approximately an LAI of 2 within the tree Py
canopy. 2

"~ While our results show that the NDVI is responding to photosynthetic biomass, it is also responding to
shadowed bare ground. Therefore, estimatgs of total photosynthetic biomass of the tree and grass layer may be
affected by the shadows cast on the ground by the trees, particularly at low sun angle or large satellite view

angle. As solar zenith angle increases, the path length though the canopy increases, so that shadows not only

lengthen, they deepen. This would increase the effect of shadows on the composite scene reflectance.

Our results are somewhat limited by the difficulties of data acquisition in remote study areas, but they do
indicate the effects of tree reflectance properties on measurements of spectral radiance. This has important
implications for remote sensing models of composite scene reflectance, particularly three-dimensional discrete

object models, and for vegetation monitoring using the NDVI.
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Table 1
Tree
Number Species Height Width Width
(m) (m) (m)
Solar zenith angle, 8 = 39°
1 Balanites aegyptica 3.1 2.5 2.3
2 Balanites aegyptica 4.1 2.7 32
3 Balanites aegyptica 3.1 1.5 32
4 Balanites aegyptica 4.0 2.8 3.6
5 Balanites aegyptica 2.3 1.7 2.1
6 Balanites aegyptica 2.8 14 24
Solar zenith angle, § = 30°
7 Balanites aegyptica 4.0 - 3.5
8 Balanites aegyptica 35 - 3.7
9 Balanites aegyptica 35 - 4.0
10 Balanites aegyptica 4.0 - 3.7
11 Balanites aegyptica 3.5 - 3.5
12 Balanites aegyptica 3.0 - 2.6
Solar zenith angle, 6 = 30°
13 Acacia seyal 2.90 2.1 33
14 Acacia seyal 3.81 24 49
15 Acacia seyal 4.0 - 5.5
16 Acacia seyal 1.5 - - 3.7
17 Acacia seyal 3.1 - 4.3
Solar zenith angle, 8 = 25°
18 Acacia senegal 2.1 - 32
19 Acacia senegal 24 - 3.5 S
20 Acacia senegal 3.0 - 3.5 '
Solar zenith angle, § = 38°
21 Combretum glutinosum 3.0 - 32
22 Combretum glutinosum 2.6 - 2.5
23 Combretum glutinosum 3.6 - 5.0 o
24 Combretum glutinosum 2.1 - 3.8 2
25 Combretum glutinosum 3.7 - 6.0
26 Combretum glutinosum 3.5 - 2.7
Solar zenith angle, 6 = 52°
27 Vitellaria paradoxa 43 2.7 3.8
28 Vitellaria paradoxa 3.8 2.7 2.9
29 Vitellaria paradoxa 5.0 3.2 42
' Solar zenith angle, 6 = 36°
30 Acacia albida 4.88 4.1 42
31 Acacia albida 6.25 3.8 5.5 .
32 Acacia albida 5.49 3.8 42
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Figure 1. Silhouettes of several of the tree canopies included in the study from high-contrast photo-

graphs.
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(tree 13).
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(.63-.69 um) and 4 (.79-.90 pm), and calculated NDVI for trees averaged by species. a. Acacia
seyal (trees 16-17), b. Acacia senegal (trees 18-20), c. Combretum glutinosum (trees 21, 22, 24
and 26), d. Combretum glutinosum (trees 23 and 25), e. Balanites aegyptiaca (trees 7-12). Irra-

diance calculated from a hemispherical radiometer. f. Butyrospermum parki (trees 27-29), g.
Acacia albida (trees 30-32), h. Acacia seyal (tree 13).
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Chapter 3

ESTIMATING LEAF AND WOOD BIOMASS IN SAHELIAN AND SUDANIAN WOODLANDS

UsSING A REMOTE SENSING MODEL

Abstract

Predictions of tree size and density from a remote sensing model were used with allometric equations
from the literature to estimate woody and foliage biomass in sparse woodlands. Study sites were located
in the Sudanian and Sahelian bioclimatic zones in Mali, West Africa, with cover ranging from ten to fifty
percent. Our estimates are compared to independent measurements made in the Sahélian sites, and to
typical values from the literature for these regions and for similar woodlands. If combined with a vegeta-

tion stratification at the appropriate scale, this approach could provide regional estimates of woody

and inventory. Both could be used in regional and global scale models of biogeochemical cycling.
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INTRODUCTION

Predictions of tree size and density {rom a remote sensing model were used to estimate wood and
foliage biomass in sparse woodland sites in Mali, West Africa. When combined with a vegetation
stratification at the appropriate scale, this approach could provide estimates of foliage and woody biomass
for large areas. Regional estimates of biomass are important for fuelwood inventory, for forage production

modeling and inventory, and as input to regional and global scale models of the biogeochemical cycles.

One way to measure biophysical vegetation parameters over large areas is with satellite reflectance
data (NASA 1983, NAS 1986). Photosynthetic biomass and intercepted photosynthetically active radia-
tion (IPAR) have been inferfed from satellite spectral measurements at céntiﬂental and regional scale
(Goward et al. 1985, Tucker et al. 1985a), and vegetation has been stratified into physiognomic classes on
a continental scale (Tucker et al. 1985b, Nelson et ai. 1986). Remote sensing techniques that use spectral
greenness indices to predict biomass, productivity and other ecosystem characteristics are based on theory
which holds true only for vegetation .whose canopy i1s composed of homogeneous photosynthetic biomass

such as agricultural crops, natural grasslands and dense forests (Sellers 1986). In this paper we show hoyfg‘

. . . . . St
structural characteristics of vegetation, estimated from remotely sensed data using a reflectance model, -
can be used to predict two parameters of the woody component of an ecosystem, its foliage biomass and'
above ground woody biomass. This technique was applied to two types of sparse woody vegetation, +

sparsely wooded grassland (sometimes referred to as savanna) and open wood}and. S

7,
4y

13

Woody biomass must be quantified in semiarid regions.for the purpose of fuelwood inventory. u"\’Vood
and charcoal derived from these woodlands are the primary energy source for most of the developing
worlds’ population in Africa, South America, India and throughout Asia ( Gillet 1980, Le Houérou 1980,
Earl 1975, Arnold and Jongma 1978, Dunkerley et al. 1981). Although change in forest area in developing
countries has been shown to be related to population growth and agricultural expansion (Allen and Barnes
1985), as well as cli‘matic‘ change (Livingston 1978), there is little agreement on the current distribution or

magnitude of changes in these woodlands (Allen 1985, UNEP/FAO 1982).

It is also important to measure foliage biomass in sparse woodlands. Estimates of {oliage biomass

can be used in forage production modeling and inventory {Justice and Hiernaux 1986, Hiernaux and
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Justice 1986, Hiernaux et al. 1984). In regions like the Sahel, foliage biomass production can be of the
same order of magnitude as grass biomass production for woodland sites. Areas with high tree density
may cover only a small fraction >f areas of pastoralism and transhumance (e.g. probably less than ten per-
cent of a 2,000 km? area in our Sahelian study region), and not all foliage biomass is available to animals
as browse (because they can’t reach it, Hiernaux 1980, Pellew 1980). However, browse may be the only
available fodder during the very long dry season (Hiernaux and Ciss€ 1983, Penning de Vries and Djitéye

1982, Okafor 1980), and during drought or poor growing seasons (Diarra and Hiernaux 1987).

Estimates of woody and foliage biomass in major biomes are parameters in regional and global scale
models of biogeochemical cycling (Woodwell et al. 1978). Most of the carbon and nutrients tied up in ter-
restrial vegetation are in the woody structures. Although sparse woodland has considerably fewer trees
than dense forest, these woodlands cover more area than any other vegetation type on the earth’s surface
(Ajtay et al. 1979, Houghton et al. 1983), and they are rapidly changing. Photosynthetic biomass is also a
critical component of regional nutrient cycling. In West Africa, virtually all nitrogen fixation takes place '

during regrowth of natural vegetation in grazed or fallow savanna woodlands or grasslands (Robertson angs '

Rosswall 1986).

In this study, the regional averages of the structural parameters (tree size and density) derived fro'fn
the remote sensing model were used with allometric equations from the literature to estimate above s

ground woody and foliage biomass for the test sites. The two types of woodland investigated were ,’ '

Sahelian Acacia woodland and Sudanian parkland (crop/woodland) in West Africa. We compared our
estimates to independent measu-ements made in the Sahelian sites (Hiernaux and Justice 1986, Diarra and
Hiernaux 1987), and to typical values from the literature for these regions and for structurally similar

woodland types.

BACKGROUND

A canopy reflectance model based on a simplified geometric model of trees and their projected sha-
dows predicts tree size and density from satellite reflectance data in open stands of woody vegetation (Li

and Strahler 1986). The model assumes that the soil background is bright, and the presence of trees
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reduces reflectance, particularly in the visible and middle infrared wavebands. Within ihe range of cover
considered, multispectral brightness recorded by the satellite is inversely and linearly proportional to vege-
tation cover. Similar remote sensing models have been used by Colwell (1981), Ustin et al. (1986), Pech et
al. (1986), Pech and Davis (1987), and Otterman and Tucker (1985) to estimate vegetation cover in
semiarid regions. Further, by modelling the trees as a simple geometric shape with a given size distribu-
tion, the area of shadow can be predicted if the sun angle is known. Thus the estimate of canopy cover
can be refined. The satellite rean‘dS radiance over a particular field of view (approximately 812 m2 for
the data used in this study) and these measurements are arranged in a regular array. Therefore, a
number of measurements falling within a woodland stand are replicate sanﬁples of reflectance. The mean
is related to average cover, and the variance is related to the size and density of the plants. A stand of
small trees at high density will have low variance, and large trees at low density will have high variance.

These parameters (size and density) can be solved for if they can be assumed to be independent.

The Li-Strahler model was applied to Thematic Mapper data from the Landsat satellite for study

sites in Mali, West Africa. Predictions of canb’py cover and density were reasonably accurate, but crown;-":
size was not predicted well. Site specific predictions werehot very accurate because this simple model o
does not account for all the factors contributing to reflectance, in particular, variance in background
brightness due to leaf litter, shadowing from microscale topography, and so forth. However, the errots
were not systematic. Therefore, when predictions for sites within bioclimatic regions (Sahelian ver511:;s.~:" :

. . . . - 1 .
Sudanian) were averaged, crown size as well as density were estimated with greater success. (See Franklin

and Strahler, 1988, for a detailed discussion of the model and its performance in these study sites.)

The strength of the model is that it uses the shadowing geometry of the vegetation to derive struc-
tural information about tree size and density from covariance analysis. A well-calibrated empirical remote
sensing model that accurately predicted canopy cover from reflectance data could also be used to estimate
biomass. However, average tree size would have to be known from some independent source or cover and
biomass would have to be direct'y related (see Hellden 1987). An empirical relationship between cover
and biomass will only hold for a particular vegetation formation, and therefore direct estimates of size and

density will probably yield more accurate biomass estimates. In other words, within a particular
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vegetation type, a stratum with many small trees will have different biomass parameters than one with

few large trees, even though the cover may be the same.

PREVIOUS WORK IN THE STUDY AREA

Average tree size (crown area) and density were sampled in the field and predicted using the remote
sensing model for ten sites in two regions. This work was presented in Franklin and Strahler (1988), and
only a few key points will be repeated for clarity. Sites ranged in size from 10 to 100 ha. Field sample
plots ranged from 0.1 to 1.1 ha, depending on woodland stand density. Plot size was fixed within a site,
and four to eight plots per site were sampled. In each plot each tree was enumerated and the crown
dimensions measured. Six of the sites were located in the Sudanian bioclimatic zone in crop/woodland

_type of vegetation, near Ségou, Mali (average rainfall roughly 800 mm).‘ These sites were dominated by
Bufyrospcrmum parkit (G.Don) Hepper (nomenclature follows Von Maydell 1983, and Hutchinson et al.
1963) and Ac‘acz'.a albida Del. at *-ery low dgnsity with crops grown under them. Four Sahelian zone sites
were located in woodland dominateé by Acaéia seyal Del. and A. nilotica (L.) Wiild. Del. in the Gourm :
region of Mali (average rainfall, 250 mm). These sites are:.monitored as part of an ongoing study by thg
International Livestock Centre for Africa (see Diarra and 'Hiernaux 1987). Tree cover is generally less

than ten percent in the Sahel, but was twenty to fifty percent in the low-lying, seasonally inundated 'qifes"

used in this study. r,

: R
Table 1 (modified from Franklin and Strahler, 1988) shows the averaged predicted and sample_i'i

values of crown area and density" that were used to estimate average biomass for the sites. The Sudanian

sites have fewer larger trees, anc the Sahelian sites have smaller trees at higher density. Because the

equations predicting biomass from crown or basal area (iescribe an area-to-volume relationship, errors in

the estimation of tree size for individual sites would be magnified. Therefore, we did not attempt to esti-

mate biomass for individual sites but only for these averaged values.
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BIOMASS EQUATIONS

Data on crown area and tree density are needed to predict foliage and woody biomass using
allometric 'equations from the literature. These parameters are predicted from the remote sensing model.
Sometimes stem (trunk) size and/or height are used to predic-t biomass., especially in more mesic forest
types. In semiarid woodlands, trunks and crowns increase in diameter as the tree gets older (but not
necessarily taller; see Poupon 1977). Therefore, crown area can often be used as the independent variable
to predict biomass. However, existing biomass equations and common sense both indicate that crown area

will be a better indicator of leaf biomass than of wood biomass, and this will be discussed further below:

Foliar Biomass

Table 2 presents regression equations from the literature predicting leaf biomass from structural
parameters for several of the species occurring in our sites. Ciss¢ (1980) related crown area to biomass for

Acacia seyal, A. albida and A. nslotica (Equations 2.1, 2.2, and 2.3), and for several other Sahelian species

using a sample stratified by size class. Trees were sampled at the Niono field station in Mali (average

rainfall about 580 mm). Bille (1377) calculated multipliexfs relating basal circumference to different com‘:‘: 2
ponents of biomass for Acacia seyal (Equation 2.4) at the Féte Ol¢ study area in Senegal, an area w1th
average rainfall similar to our Sahelian sites (250 mm). Bille’s equations could not be used with the s
parameters predicted from the model, because the model predicts crown area, not stem circumferenfé’,“:‘éh-d
we could not establish a strong relationship between crown area and basal area for the trees in our é,am-

ple. We did use the equations from Bille to predict biomass from average stem diameter sampled in the

field, in order to compare these biomass figures to those predicted from other equations, or sampled at the

sites.

According to Bille (1980), who reviewed allometric equations established at savanna sites throughout
Alrica, the relationship between the log of foliage biomass and the log of trunk diameter is fairly constant
for Sahelian tree and shrub specres, with a y-intercept less than one and a slope of about two. However,
the equations he presents from Cisse (1980) are incorrect. Bille identifies diameter as the independent

variable, and Ciss€ actually used circumf{erence, so the slope is wrong by a factor of (log #), and is
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actually closer to one. In spite cf this error, there does seem to be a similar pattern in Cissés data relating
crown area to biomass, where the y-intercept is again less than one, and the slope is between 1.2 and 1.8.
If this holds true, it will be possible to estimate biomass [or species that have not been sampled, or in
stands of unknown or mixed composition. Ledf biomass equations for Butyrospermum parkii could not be
found. Although this tree is a source of browse, it is more commonly managed as a tree crop (its fruit is

the source of a valuable cooking oil) or a timber resource, if it 1s managed at all.

In Table 3, the equations from Table 2 are used to predict leaf biomass per tree and per hectare
from the regionally averaged crown area and tree density sampled for the sites or predicted from the
reflectance model. FFor comparison, leaf biomass was predicted from stem circumference measured in the
field using equation 2.4. It should be noted that this equation was based on measurements of Acacta
seyal, and m.ay not be applicable to the other two species. IFor the Sahelian sites the predicted biomass
values can be compared to the range of biomass values observed in three of the four sites over several

growing scasons (1984-86) by Diarra and Hiernaux (1987). They measured biomass by clipping a stratiﬁedtf‘j':__

subsample of branches and weighing leaves weét and dry. The figures shown in the table (observed foliageé

biomass) represent the interseasonal variation in maximum standing crop. The number chosen was the .
aximum folia,ge biomass at one sampling interval during the growing season. We used these figures f(.)ll'
comparison because the allometric cquations were established by weighing all the leaves on the tree a}‘the
time of sampling. This does not actually take into account all production during the growing season}l'
some of which is lost to herbivory.

Our estimates based on sainpled and predicted crown area and density compare favorably with
measured values for the Sahelian sites [or both species (Acacia nilotica and A. seyal). The sampled versus
predicted values may differ by a factor of two due to error in the prediction of crown area by the remote
sensing model, but they are of the same order of magnitude. This is well within the spatial and interan-
nual variability in biomass one would expect in woodland sites of this type. For comparison, the esti-

mates based on the measured trunk circumference fall within the same range of values.

Predictions for the pooled Sudanian sites are based on Cissés equation for Acacia albida (becanse

there were none available for Butyrospermum parkit). There were no measurements of foliage biomass
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made in the Sudanian sites, so these figures can only be compared in a general way to values from the
literature. Table 4 shows ranges of values found for foliage biomass in West African savanna and wood-
land. The first part shows volurie per tree for different Sahelian species. The second part shows esti-

mates or measures of annual production for woodland types similar to our sample sites.

Our estimates based on crewn area for the Sudanian sites (24-29 kg/tree) seem high compared to
Cisse highest of biomass values ffor Acacia albida (14 kg/tree), but our sample had a much larger average
basal diameter (54 ¢cm) than the largest size class sampled at Niono (30 cm). This may b; because the
Acacia albida we measured were located near the village and in the flood plain of the river and may have
been receiving more water and nutrients than the trees measured at Niono. The estimate based on meas- '

ured trunk circumference is very high, and probably an overestimate, indicating that equation 2.4,

developed for Sahelian Acacia seyal cannot be extrapolated to these large Sudanian Acacia albida.

Woody Biomass

Dimensional analysis refers to the destructive sampling of woody plants to develop allometric regrgg“—

sions relating biomass to non-destructive measures (crown area or trunk diameter). There have been ve‘ry -
few of these studies done for Sahelian species (Table 5). Olsson (1985) destructively measured biomass'if-'or
39 trees and shrubs in the Iordofan region, Sudan. She calculated a log-log regression equation predik'tirfg
the wet weight of woody biomass from crown area for a mixture of species (Equation 5.1). Studies 1‘1}‘ tem—
perate forests have shown that equations for different speéies in the same genus have very similar re:!;rres-
sion slopes; therefore equations can be cautiously applied to species with similar growth forms for which
equations do not exist (Gholz et al. 1979). However, some of the species sampled by Olsson (1985) have
very different growth forms (forpxample, baobab versus Leptadenia sp.), so her equation is probably not
valid. The equation presented by Hellden (1987) may be more useful. Hellden used 32 of the trees from
Olsson’s sample and added nine trees measured in Ethiopia (Equation 5.2). The regression is based pri-
marily on Acacia species with similar growth forms although it includes Balanites aegyptiaca which is

quite different. In addition, Hellden calculated a regression for crown cover and biomass based on seven

one-hectare plots in Ethiopia (Equation 5.3). He felt that this relationship should hold for Acacia-
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dominated shrub and woodlands. If this is the case, an empirical relationship between remotely-sensed
reflectance and canopy cover could be used to estimate biomass. Also included in this table is an equation

from Bille (1977) predicting wood biomass from trunk circumference for Sahelian species {(Equation 5.4).

Table 6 shows the biomass values calculated for our sample sites using the regression equations.
Biomass is also predicted from crown cover using Equation 5.3. There are no measures of woody biomass
for our field sites, but the figures can be compared to values from the literature (Table 7). Again, values
based on predicted versus sampled crown size and density differ by no more than a factor of two. Predic-
tions based on the equations usif.g basal circumference as the independent variable are about the same
(slightly higher for the Sudanian sites) than estimates based on crown area. This gives some independent

evidence that our predictions are of the right order of magnitude.

DISCUSSION AND CONCLUSIONS

Our estimates indicate that a remote sensing model predicting average tree size and density in

sparse woodland (ten to fifty percent cover) can be used to estimate foliage biomass using allometric equa

tions from the literature. Although results based on modelled versus sampled size and density differ by‘_}
almost a factor of two in some cases, they are of the same order of magnitude. This is probably as préc-ise
as biomass estimates based on extensive field sampling due to the inherent spatial variiability of bi'om;;‘slS 1n
savanna. For éxample, leaf area index varied from 0.6 to 1.1 between adjacent transects in souther{;;‘gfri-
can savanna (Walker 1980). Correr, or the number and size of trees, is only one of the factors deber;?nining
potential leaf biomass. Actual productivity is controlled by the amount and pattern of annual rainfall.

Modeling of forage production from cover and rainfall has been conducted on a very limited basis in the

Sahel, the work of Diarra and Hiernaux (1987) being one of the few examples.

Results regarding wood biomass are encouraging but inconclqsive. Further work must be done to
verify our findings by testing our approach in more sites where biomass is known by independent measure-
ments. Although Hellden (1987) found a strong relationship between crown area and above ground wood
biomass for a small sample of tr-;es, we would expect trunk diameter and height to be better predictors of

wood volume. In some studies t-unk diameter, height and crown area are all intercorrelated (for example
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in Ciss€ 1980, r? was greater thzn 0.8). In this case, woody biomass would be proportional to crown area.
However, in our sites correlation between height and crown area was much lower (r 2 ranging from 0.3 to
0.5). This is probably because the trees are lopped. Crown diameter and height are limited by cutting,
while the girth may continue to increase. The trees in our sample were not stratified by size class, and a

proper sample design might impiove the correlation.

Better allometric equations are needed for Sahelian and other African woodland species. Equations
for fruit production are also important for Acacta albida (Le Houerou 1980) and Butyrospermum parkii.
Allometric relationships should be based on a sound sampling scheme, such as the stratified sample used
by Ciss¢ (1980). Our approach must be used in conjunction with a vegetation stratification or land cover
inventory indicating the areal extent of vegetation strata. This could be produced using remébely sensed
imagery (Hellden 1980, Adeniyi 1985, USAID-TAMS 1983, Franklin 1988) or a reliable existing land cover

map could be used.

Other remote sensing techtiques for quantifying herbaceous biomass in the field layer rely on the

spectral properties of green vege:ation in the red and infrared wavebands. However, the red to infrared

contrast is not a good indicator of vegetation amount when cover is incomplete. In semiarid areas with‘; a
sparse vegetation on a bright soil background, canopy cover is strongly related to brightness in all
wavelength bands. We used a model based on this principal that predicts cover and then divides it into |
its components ol average tree size and density based on a few simple assumptions about stand -chax:%étér
(tree size distribution and spatial pattern). These assumptions are generalizable and need not be cai'i-
brated at each site. From tree size, average biomass per tree can be calculated from existing biomass
equations, and when multiplied by the density estimate, gives an estimate of biomass per unit area. This
stratified approach, using existing field data and a remote sensing model, provides a viable method for

estimating biomass on a regional scale. This technique may provide a useful input to forage production

modelling.
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Table 1
AVERAGED REGIONAL ESTIMATES OF TREE SIZE AND DENSITY
Crown Area (m?) N (per ha)
Region Species n Sampled Predicted Sampled Predicted
mean [«2 mean [og mean o mean g -
Acact {
Sahelian caca seya 4 |30.32*% | 10.15 | 40.50 | 16.49 | 130.57+ | 38.83 {123.97 | 44.40
Acacia niotica :
Sudanian | BUtyrospermum parkit | o 2o g6k | 99 93 | 86,14 | 32.17 | 26.10 | 13.69| 38.22 | 25.80
Acacia albida

n is the number of sites that were averaged

* _ Average crown area (sampled) is actually based on == 60 trees per site.

}
T —

\verage density {(sampled) is actually based on 4 to 8 plots per site.

Table 2
FOLIAGE BIOMASS EQUATIONS
No Study Site Species (n) Equation r?
2.1 | Cisse 1980 | Niono, Mali Acacia nilotica | 301 | FB (g [tree) = .0021 CA (dm?)"*!
2.2 | Cisse 1980 | Niono, Mali | Acacia seyal sol | FB (g /tree) = .21 CA (dm*)'*
2.3 | Cisse 1980 | Niono, Mali Acacia albida | 50' | FB (g /tree) = .32 CA (dm?)"* 96"
2.4 | Bille 19777 | Fete Ole, Scnegal | Acacia seyal ? | FB (kg /tree ) = .0032 BCHcm?) B
Notes:

1 — Sample stratified by diameter class.

2 — In Penning de Vries and Djiteye 1982, p. 295.
FB = Foliar Biomass

CA = Crown Area

BC = Circumference at breast height (1.3 m).
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Table 3
PREDICTED FOLIAGE BIOMASS
Equation Independent Variable Foliage Biomass
Species from Source CA BcC predicted observed®
Thbl. 2 (dm? (em) | kg Jtree | kg /ha kg /ha
2.1 sampled’ | 3031.6 85 | 11118
Acacia niotica 2.1 predicted 4049.5 14.8 1829.0 554-1133
2.4 measured 66.4° | 141 | 18482
2.2 sampled' | 3031.6 3.7 484.9
Acacia seyal 2.2 predicted” | 4049.5 5.3 654.9 141-1034
2.4 measured 42.8° 5.9 767.9
2.3 sampled’ | 7275.9 23.5 613.4
Acacia albida 2.3 predicted” | 8614.3 29.1 1111.2 —
24 measured 170.0 92.5 2413.0
Notes:
1 — Independent variable is the average for the field sites based on sample measurements (see Table 1).
2 — Independent variable is the average for the field sites predicted from the reflectance model (see
Table 1).
3 — Independent variable is based on sample measurements from each field site. L
4 — TFoliage biomass (maximum standing crop) was measured (sampled) in the field sites in 1984, 1985 ; ?‘

and 1986, and the range is given. - ' R

5 — Basal Circumference was multiplied by 0.8 to estimate circumference at breast height (1.3 m).
CA = Crown area
BC == Circumference at Breast Height (1.3 m).
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Table 4

MEASUREMENTS AND ESTIMATES OF FOLIAGE BIOMASS IN SAVANNA WOODLAND

Locat’on, Species Basal Biomass
Study (n) .
Annual ppt. or type Diam. (c¢m) kg [tree
Poupon 1977 Fete Ole, Senegal Acacia senegal 292 2.0-26.0 .14-1.36
Bille 1980 Fete Ole, Senegal Acacia seyal 3 8.4-15.9 .58- 3.34
Balanites aegyptica 6 5.1-27.3 .05- 5.58
250 mm (*) Commuphora africana 4 13.4-21.5 .28- 91
Guiera senegalensis 6 3.8-10.2 .55- 2.85
Adansonia digitata 4 100-320 14.3-99.0
Bille 1980 Oursi, Burkina Faso Acacia laeta ? 0-25 .15- 3.5
Acacte seyal ? 0-30 .60- 8.0
440 mm Acacia tortilis ? 0-30 .50- 1.6
Balanaites aegyptica ? 0-30 .50-10.5
Guiera senegalensis ? 0-15 .04- .90
Cisse 1980 Niono, Mali Acacta albida 50! 1.8-29.7 .04-14.01
Acacia seyal 451 2.3-26.6 | .05-13.44
580 mm Pterocarpus lucens 451 2.6-26.9 .05- 4.32
Ziziphus mauritiana 40! 1.9-23.8 .05- 6.62
Commiphora africana 501 2.1- 3.2 .06- 3.92 _
Balanites aegyptica 50! 2.0-30.2 .07- 9.44 :
ANNUAL PRODUCTION OF LEAVES Lt
Study Location { Type Density Cover kg /ha /yi,ﬂF"ﬁw~
UNESCO 1979 Sahel, 200-600 mm literature review 60-300+""F,
Penning de Mali, 400-1100 mm Sahelian transect 60-1,100
Vries and =
Djiteye, 19823
Hiernaux 1980 | Niono, Mali Acacta laeta mixed ? ? 668 .
Acacia seyal mixed ? ? 52§ s
580 mm A. seyal, B. aegyptica ? ? 2,250
Hiernaux 1980 | Sahel, 500 mm regional average - - 500{700
Sud-sahelian, 600 mm | regional average - - 750-860
Menaut 19774 Ivory Coast, 1000 mm | Guinea savanna 300 20 1,700

Notes:

*

quite different. For example, rainfall at Fete Ole was 33 mm in 1972.

1 —
2 — p.133.
3 — p.293.
4 —

In UNESCO 1979, p. 134.

LAI = Leal Area Index
CC = Crown Cover

Stratified sample; numbers are mean for each size class.

Annual precipitation figures are long term averages. Actual rainfall during sampling season may be
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Table 5
WooDY BIOMASS EQUATIONS

No. Study Site Species (n) Equation r?
5.1 | Olsson 1985 | Kordofan, Sudan mixed’ 39 | WW (kg /tree ) = 1.55CDYm %)t 3 .94
5.2 | Helden 1987 | Sudan, Ethiopia | mixed? 41 | WW (kg /tree ) = 1.01CD(m )4 98
5.3 |Helden 1987 | Sudan, Ethiopia {? 7 | WW (tonnes /ha) = ~5.58 + .143CC (%) | .99
5.4 | Bille 19771 | Fete Ole, Senegal | Acacta seyal | ? WB (kg [tree ) = .054BC*? (cm?) -
Notes:
] —

Acacia albida, A. mellifera, A. tortilis, Albizzia amara, Balanites aegyptica, Adansonia digitata, Bos-
cia.senegalensis, Commiphora africana, Guiera senegalensis, Leptadenia sp.

[

Acacia albida, A. mellifera, A. tortilis, Albizzia amara, Balanites aegyptica, 32 trees from Olsson 1985
and nine from Ethiopia.

3 — Aacia seyal, Commiphora africana, Sclerocarya birrea, Ximenia americana, Grewia bicolor, Balanites
. ) /
aegypluaca.

4 — In Penning de Vries and Djiteye 1982, p. 295.

WW = Woody Biomass, Wet weight

CD = Crown Diameter

CC = Crown Cover

BC = Circumference at Breast Height (1.3 m).

ety m
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Table 6

PREDICTED WOODY BIOMASS

Region/ Eqn. Independent Variable Woody Biomass
. _ . kg /tree kg /ha
Species Tbl. 5 Source | Variable Value 9/ I 9/ T
wet dry wet dry
Sahelian 51 | sampled> | CD(m) 6.2 | 166.3 | 123.1 | 21,719 | 16,072
predicted® | €D (m) 72 | 2410 | 1783 | 20,876 | 22,108-
Sahelian 52 | sampled> | CD(m) 6.2 | 1945 | 1439 | 25468 | 18,846
predicted® | €D (m) 72 | 2051 | 2184 | 36583 | 27,071
Sahelian 5.4 measured | BC({em) 50.6° 138.3 18,112
Sahelian 5.3 szxmp]ed;r Cover (%) | 29-56 28,449‘I 21,052
predicted® | Cover (%) | 20-54 47,607 | 35,206
Sudanian 5.1 sa.mplcd“’ CD (m) 9.6 506.9 377.1 13,300 9,842
predicted® | €D (m) 105 | 633.0 | 4684 | 24,192 | 17,902
Sudanian 5.2 sa,rn'pled-'2 CD (m) 9.6 685.3 507.1 17,885 | 13,235
predicted® | CD (m) 105 | 847.5 | 647.1 | 33,424 | 24,734
Sudanian 5.4 measured | BC(cm) 141.6 1082.7 28,259
Notes:

1 — Conversion factor: dry==0.74 wet (in Olsson 1985, quoted from Lamprey 1974).

2 — Independent variable is the avérage for the field sites based on sample measurements (see Table 1).,

3 — Independent variable is the average for the field sites predicted {rom the refiectance model (see .
Table 1). ‘ L

4 — ’Bioma.ss. was predicted from cover for each of the four sites and the results averaged.

5 — Basal Circumference was multiplied by 0.8 to estimate circumference at breast height (1.3 m).

BC = Basal Circumference
CD = Crown Diameter
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Table 7

MEASUREMENTS AND ESTINMATES OF WOODY BIOMASS IN SAVANNA WOODLAND

Study ~ Location, Vegetation Density | Cover Biomass
d Annual Ppt. type (per ha) | (%) kg /ha
mixed” 133 8 3,500
Bille and Poupon 19721 Fese Ole, 250 mm dune summits - 2.8 2,000
depressions - 40 24,000
Olsson 19853 Sudan, 150-450 mm forest reserve 34-109 18 4,692-15,042
agricultural 4-34 6 552-4,692
Cisse 1983 Niono, 580 mm mixed® ? 2 |17,000-54,000
Kelly and \Valker_lQTGD Zimbabwe 500 mm mopane ? ? 21,367
Martin 1974° Zimbabwe 600 mm mopane ? ? 67,783
Martin 19745 . Zimbabwe 600 mm dry miombo ? ? 21,161
Rutherford 1979° N. Transvaal 700 mm | Burkea, Terminalia ? ? 16,237
Menaut 19771 Ivory Coast, 1000 mm shrub savanna 300 20 32,600
? 15% 18,000
Hellden 1987 Ethiopia, 1000-2300 mm | Acacia woodland ? 35% 40,000*
? 65 90,000*

Notes:

In UNESCO 1979, p. 133-124.

biomass calculated from equation 5.3.

[

<
I

These values were interpolated from a graph, p. 27.

Reviewed in Walker (1980).

Acacia senegal, Balanites cegyptica, Boscia senegalensis, Commiphora africana, Guiera senegalensi
Grewia bicolor, Acacia albida, A. mellifera, A. tortilis, Albizzia amara, Balanites aegyptica.

TFor 36 sites cover and density were measured from air photos, crown size was calculated, and

Pterocarpus lucens, Anogeissus lerocarpus, Combretum micranthum, Boscia angustifolia, A. seyql, .

Commiphora africana, Sclerocarya birrea, Ximenia americana, Grewta bicolor, Balanites aegyptiaca

and others.
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Chapter 4
LAND COVER STRATIFICATION USING LANDSAT THEMATIC MAPPER DATA

IN THE SAHELIAIN AND SUDANIAN ZONES IN MALIL, WEST AFRICA

ABSTRACT

Natural vegetation in two regions of semiarid Africa were classified using Landsat Thematic Mapper
data. The method used was unsupervised classification of multi-date principal components images. While
initial classification results were poor, accuracy was comparable with results reported in the literature for
Level III land covexl classes when a lenient accuracy criterion was usgd. When sample points identified as
being one density class higher or lower that classified were counted as correct, overall accuracy was
-around 90 percent, and class accuracy was greater than 80 percent for most classes. The methodology
'coul'd be improved by applying the lessons learned from biophysical remote sensing and thematic mapping

In other areas with part,ial vegetation cover and complex landscape patterns. Contextual classification or RO

spatial/spectral image segmentation will be m;c;re powerful techniques than per-pixel classification for 5
stratification of complex vegetation patterns when they alfe commonly available as part of image proce_s‘.s'-l
ing systems. However, my results based on conventional digital image processing teéhniques are nonetl;‘é-
less useful. The accuracy achieved is adequate for stratification of woody biomass at a regional scales

Stratification will reduce variance in estimates of biophysical variables based on traditional field sanﬁﬁhé,

b
u

or remote sensing models.
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1. Introduction

Remote sensing has long been promoted as a tool for monitoring natural resources in developing
countries, including Africa {Deutsch 1975). Several studies have employed manual interpretation of
Landsat satellite data (Ackerson 1985, Jacobberger 1986, Makhanya 1986, Cooley and Turner 1982,
USAID-TAMS 1983, Parry and Williams 1986, Mushala 1986, Schultz 1979), and digital analysis of agri-
cultural land (Adeniyi 1986). However, few have applied digital image classification techniques to Africa
semiarid shrub and woodland (Adeniyi 1985, Negri 1985, Kihlblom and Johansson 1980, Hellden 1980).
(Justice 1986). Ultimately, in Alrica as in other places, comprehensive resource analysis must be based on
data integrated from different satellite sensors (Malingreaux el /. 1987) and other environmental data,
analyzed in a geographic information system (Hellden 1987)! A thematic map of vegetation cover derived
from satellite reflectance data may be an important layer of information in such a system. Land cover
must be known to predict soil erosion and runoff (Hellden 1987}. Vegetation and soils must be s‘tratiﬁed
for regional woody biomass inventory by conventional methods (Strahler 1981, Franklin et al. 1986) or

using a remote sensing model (Franklin and Strahler 1988).

It has been argued that direct correlation of satellite spectral measurements with the biophysical -
variable of interest, [or example, herbaceous biomass, is a better use of environmentd satellite data than
thematic mapping (Jensen 1983). In semiarid Africa the land cover consists of varying mixtures of woody
and herbaceous vegetation cover and different soil backgrounds. Complex land-use practices (drylal}é" '
farming in small fields, bush fallow rotation, and grazing) impose their own pattern on the landscapg.
While Landsat data are clearly not of sufficient temporal resolution (or affordable cost) for capturing the
dynamics of the herbaceous layer, they are adequate for assessilig woody cover and soil brightness in
semiarid areas. This is particularly true in the dry season when herbaceous vegetation does not confuse
the picture (see Olsson 1985). A woody cover stratification based on Landsat data may assist in calibrat-
ing biophysical remote sensing models of herbaccous biomass production (Prince and Astle 19806,

Townshend and Jussice 1986).

In this paper I have applied several conventional image classification procedures for stratifying

woody vegetation classes to Landsat Thematic Mapper data in two study regions in Mali, West Africa.
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The level of land cover categoric resolution (species groupings and density) corresponds to level III land

cover classes (Anderson et al. 1978). In previous work in the study area, a remote sensing model success-

fully predicted tree size and density from spectral measurements when data from woodland stands were
aggregated by region (Franklin and Strahler 1988). Effectively, the woodland sites were stratified into two

tree cover classes, one with 5-25 percent cover and one with 25-45 percent cover. Therefore, if an area

were stratified into broad cover and soil brightness classes, the model could be used to predict average

tree size and density for a stratum over a region by applying th: model to woodland stands from within

the stratum. In the future, advanced landscape and image analysis techniques could be used to further
automate the application of this type of model at a regional scale. These include spatial/spectral image
segmentation, and applying thg ‘nodel to a.digital image using a moving window. However, the present

study shows that a reasonable stratification, useful for many purposes, can be achieved using conventional .
procedures available on most image processing systems. This is critical for applied geographical analysis

in developingl countries that must use methods that are accessible ahd affordable.

t

2. Study Area

The study area included sites dominated by savanna woodland and wooded grassland in the Sahgi_ian
and Sudanian bioclimatic regions of Mali, West Africa. Woodland and wooded grassland cover ten tg"
twenty percent of the land surface, greater than any other vegetation type (Ajtay et al. 1979); Dry iyébd-

lands and wooded savanna (with tree cover greater than ten percent) are estimated to cover more than 20

percent of the continent of Africa (Lanley and Clement 1982).

The Sahel is usually defined with reference to mean annual isohyets and corresponds to the 200-600
mm annual precipitation zone (Le Houerou 1980). Rain falls in the summer months (primarily June
through August). The vegetation of the Sahel ranges from an open annual grassland with less than ten
percent woody cover in the north to perennial grasses with 25 percent or more tree cover in the south. In
the Sahelian zone in northern Mali, two study areas were located in the Gourma rggion, one near the town
of Gossi (15°50' N, 1°20' W) and one near Hombori (15° 15’ N, 1°45" W). These study areas encom-

pass nine of the thirty sites along a trans-Sahelian transect being monitored by ILCA/Mali (The



CHAPTER 4: LAND COVER STRATIFICATION

International Livestock Centre for Africa) in collaboration with the GIMMS Project! (Hiernaux and Jus-

tice 1986, Hiernaux and Diarra 1986, Diarra and Hiernaux 1987).

The Sudanian zone is the region to the south of the Sahel, where the rainfall is 600 to 1000 mm, the
rainy season lasts up to four or ﬁve months, and there is extensive dryland agriculture. The vegetation is
a mosaic of open woodland savainna, with trees up to 15 m tall, closed woodland, and edaphic bush thick-
ets and grasslq.nds (Schnell 1977}. The Sudanian study area is located within the administrative region of
Ségou, Mali, and includes the tovn of Konodimini (13° 20’ N,-6° 20’ W). The “parkland” type of vege-
tation prevelent in this area is formed when crops are grown under a woodland of useful trees that are
‘preserved when land is cleared (Nielsen 1965). The land is cultivated using a bush fallow rotation system.
Fields near the villages are cultivated continuously, but distant fields are rotated, with a fallow period

varying in length from five to 50 years. This creates a landscape of woodland patches in varying stages of

succession.

3. Methods

. siaey
‘ UL. 73

For the Gourma region, a -SJ September 1984 TM qu;n'ter scene was first chosen for analysis becau§é
it coincided with field data collection by Hiernaux et al. (1984). Also, I presumed that an early dry seais‘s;n
image would provide the greatest spectral contrast between the dry herb layer and green tree canopy-fni' |
However, a rainfall event in the study area just prior to scene acquisition caused patchy greening up,”of
the grass layer. Therefore, a late dry season image (7 May 1985) was also acquired. Areas with higi near
infrared (NIR) reflectance in September 1984 (green vegetation growth) had lower NIR reflectance in May

1985 (e.g., the dune area northwest of Gossi). A single date (17 November 1984) TM image was used for

the Ségou study area. On that date the fields beneath the tree canopy had been harvested.

The two-date data set for sthe Gourma subimages was registered, and image principal components
were calculated from a subset of the bands. The principal components images were used in the

classification. The classification of the Sé€gou subimage was based on five of the TM bands. Subimages

1 Global Inventory, Monitoring and Modeling System; NASA (National Aeronautics and Space Administra-
tion), Goddard Space Flight Center, Greenbelt, Maryland, USA.
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\

corresponding to the three study areas were selected and iteratively clustered, classified and labeled using
unsupervised clustering and a m:unimum distance classifier.” Because principal components and clustering
are both data-dependent, empirical procedures, the subimages were processes separately (Franklin et al.

1986). Dimensions and locations of subimages are given in Table 1.

3.1. Registration of the Gourma subimages

For relative registration of the two-date images, the May 1985 image was selected as the reference,
and the September 1984 image vras registered to it. Five of the TM bands were processed during registra-
tion, Bands 1-4 and 7. Band 6 v-as not used because of its coarser spatial resolution, nor Band 5 because
it was of poor quality in the 1984 image.

The ERDAS program GCF creates the file containing control points, and then COORD?2 is used to
compu'te a transformation matrix for rectification using the control points and least squares regression.

The rms (root mean square) error is computed for each control point. If the sum of the rms errors for all "

[

control points is greater than the user-speciﬁe:d- tolerance (1.0 pixel in this case), the control point having
the largest ris error is eliminated. The cocflicients are recomputed using the remaining control points"
until the total rms error is less than the tolerance entered. For the Gossi image, with 27 control point,s:‘
input, 21 control points were used, and the total rms error was 0.85977. For the Hombori image, with lé
‘).. ) :

control points input, 10 control »oints were used, and the total rms error was 0.97810. k2

iy
The data were transformed with a first order (linear) transformation matrix using the program REC-
TIFY. A nearest neighbor resampling algorithm was used, that takes the DN3 value from the closest

input pixel, and assigns it to the computed output pixel location. Subimages of the registered images

were used in further analysis.

2 Image processing was done using ERDAS software at the UCSB Geography Remote Sensing Research Unit
(RSRU) and Maps and Imagery Laboratory (MIL).

3 Digital Number or brightness value, scale 0-255 representing 8-bit data.
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3.2. Principal Components Images

The program PRINC creates an output image whose bands are the principal components of the
spectral bands in the input file. A covariance matrix and cigenvectors are computed from the input
image. Once the linear combinations needed to transform the image from the original spectral axes to the

transformed principal componenis axes are identified, each pixel is converted into the new system.

Bands 3 (red, .63-.69 um ), 4 (near infrared, .76-.90 pm ) and 7 (mid infrared, 2.08-2.35 pm ) from
the September and May scenes were used to create a six-band multitemporal image for input to PRINC.
These bands were chosen because they are from relatively uncorrelated spectral regions, and each has a

characteristic response to vegetation amount and soil moisture.

In the Gossi subimage, 99.5 percent of the variance in the six-band multitemporal image was con-
tained in the first four principal components (see Table II). The transformed data channels resulting from

principal components analysis are described below:

1) The first Principal Component (PC1) ha‘s positive loadings in all spectral bands, a common result for ; -
o e

multispectral scanner data, and is a measure of overall image brightness in both dates.

2)  The second Principal Component (PC2) has negative loadings in Bands 3 and 4 and positive in Band

7 for both dates. A low value in PC2 indicates bright (herbaceous) vegetation on both dates.
3)  The third Principal Component (PC3) has negative loadings in Bands 3 and 7 for September 1984,

b

positive loadings in 3 and 7 for May 1985. This emphasizes difference in herbaceous cover between

seasons. A low value in PC3 indicates that soil moisture was high (or vegetation present) in Sep-

tember 1984, and low in May 1985.

4)  The fourth principal component (PC4) has a high negative loading in Band 4 for September 1984,
and a positive loading in Band 3 for May 1985. This is similar to PC3 in that a low value for PC4
indicates an area that had green vegetation in 1984, and were bright in Band 3 in May 1985 (low
vegetation).

The third and fourth principal components both emphasize herbaceous vegetation differcnces between the

two dates. This helped separate areas where herbaceous growth saturated the reflectance signal in the
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September image from areas of varying woody cover density.

The first four principal components resulting from the Hombori subimage contained 99.6 percent of

the spectral variance (see Table II) and are as follows:

1) The first Principal Component is again measure of overall scene brightness (positive weightings in all

spectral bands).

13
~—

The second principal component has negative loadings in all bands for September 1984, and positive

in all bands for May 1985, emphasizing areas that are brighter (less vegetation or greater soil mois-

ture) in the late dry season.

3)  The third principal component is similar to the Gossi PC2. It emphasizes the difference between

.

red/IR and mid-IR reflectance. A low value in PC3 indicated bright (herbaceous) vegetation.

4)  The fourth principal component has positive loading in Band 4 (NIR) in September 1984 and a large

positive loading in Band 3 in May 1985 (similar to PC4 in Gossi but the scale is reversed)..

These transformed spectral channels!éapture the important multitemporal spectral features in the scene;, ote

these are overall scene brightness, woody cover, and the differences in herbaceous cover and soil moisture

between early and late dry seascn.

In a classification test using small (256 x 256) single-date (1985 Bands 3, 4, and 7) imégery versys
PC1-4 as input, visual inspection of the resulting clusters showed clearly that woody cover classes wé_ré"
better discriminated using the PT image. September 1984 data alone were not useful at all for discﬁim-

inating woody cover classes because of confusion caused by the flush of green vegetation that occurred in

responsc to the early September rainfall event.

3.3. Classification

Classification was performed using iterative unsupervised clustering and a minimum distance
classifier. Clustering is an empirical procedure which divides spectral measurement space according to
user-specified parameters. This technique for thematic mapping assumes that spectral classes are homo-

geneous with respect to ground cover types. In iterative clustering, large spectral classes that consist of
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mixtures of land cover classes are again input to the clustering algorithm. In this way, spectral space is

more finely divided.

The program CLUSTR is a two-pass sequential clustering algorithm. The first pass accumulates the
cluster means. The second pass applies a minimum-distance classifier using the cluster means that were
acquired in the first pass. In the first pass, cluster accumulation is controlled by several parameters, the
maximum number of clusters (NMAX), the minimum distance between clusters (C), the maximum allow-
able cluster radius (R1), and the number of points until merger (M). A pixel cannot be included in a clus-
ter if the distance between the pixel and the current cluster mean is greater than R1. Every M points, the
cluster means are compared to determine if any are within distance C of each other. If so, the two clus-
ters are merged to form a single new cluster. The image was subsampled (every 10th line and 10th pixel)
to speed up processing. The default parameters were used in clustering each of the subimages except in
cases where a large percentage of the image was reclustered. Then, NMAX was set to 50, C to 4 and R1

to 6.

For Gossi, there were 27 classes in the output of the first clustering. There were several large,

N 3

heterogencous spectral classes that contained more than one information (vegetation) class.” Twenty-one

percent of the image was labeled, and the remaining classes were further subdivided into fifty classes. For
Hombort, 74 percent of the image was labeled after the first clustering, and the remaining 24 percent (m -

eight classes) was re-clustered and classified into 27 classes. In the Sé€gou subscene, 32 percent of t,hg,;{)

b

image was labeled in the first iteration, and 67 percent (in seven classes) was reclustered. '

Itterative clustering was accomplished by using the program MASK to set all the labeled pixels to
zero, and re-clustering the image spectral data only for the pixels falling in the un-labeled classes. The
second clustering successfully separated the woody cover classes. RECODE assigns a new class value
number to classes, creating an output file with the new class numbers. Finally, OVERLAY combines the

recoded images to produce the final classified image where the DN corresponds to the class number.

The final step in the classification procedure was image smoothing, or reassigning isolated pixels to
the classes surrounding them by a simple majority rule. This was a quick and dirty way of achieving a

minimum mapping unit greater than a pixel. A more desirable procedure would have been to spatially

Co-
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filter the image using a specified minimum mapping unit and class weightings (Franklin et a/. 1986) but

this type of filter was not available on the image processing system used.

Spectral classes were assigned information class labels using the 1956 air photos, the ILCA photos
where .a.vaila.ble, a color composite of the image itself, and based on knowledge of the study area and the
spectral properties of the vegetation. In addition, for Hombori and Gossi, sample points were photointer-
preted and labeled by a local expert (P. Hiernaux) who was hot involved in the image processing, and
these points were used in clustering labeling. These were the same points used in accuracy assessment

{sce below), which introduces a bias to the accuracy figures, but it was the best information at hand for

labeling.

The land cover classificatic: system used (Table IIT) was modified from Kuchar (1979) for this study
to include a soil label. The classes for Ségou are slightly different; the soil label only indicates the bright-
ness of the soil background as light (sandy, silty and clayey loams under cultivation) or dark (lateritic

gravels and outcrops, dark clayey alluvium). This was necessary in the absence of an accurate soils map

or more detailed understanding ol the lithology in the Ségou study area.

3.4. Accuracy Sampling

Accuracy was assessed based on a sample of points located in each subimage according to a
stratified, systematic, unaligned sample design. Sample points were photointerpreted as to their actifal
(true) class. Hiernaux (for the Gourma sites). Crosstabulations were made of the labeled and photointer-

preted classes for all the sample points in each subimage. This is referred to as a confusion table, and was

analyzed by several methods for overall and per class accuracy.

Initially, the number of sample points in each sample class was chosen using the method of Rosen-
feld et al. (1982) based on the binomial distribution (a pixel can be correctly or incorrectly classified). The
cumulative binomial probability determines the minimum sample size, n, required for each map category

ziven an allowable error E and an a priori estimate of the probability of correct classification p, .

PB = E Or’l por (l_po )n—r

. . .ORIGINAL ppgp IS
G- . OF POOR QUALITY,

¢
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where k(n) = [n(p, + E) is the largest integer greater than or equal to n (p, + E ), and

r == z,+..+z, where z = 1 or 0 (correctly or incorrectly classified). Thé minimum sample size is the
smallest integer k (n ) such that Pp is greater than or equal to 0.05 (if 95 percent confidence intervals are
required). If allowable error (E} is set to 10 percent, and p, (with no former experience in this area) set
to 0.80 (0.85 for the water class) then 24 sample points are needed for each class (19 for water). In retros-
pect, it appears that 80 percent "vas an overestimate of classification accuracy for some classes, and there-

fore more sample points should Lave been used, but it was not possible within the time frame of this pro-

jees to add points and have them interpreted by the local expert in Africa.

In addition, for the Gourma region, the sample points were divided between the Gossi and Hombori
subiiages proportional to the area of the class in each subscenz. Although the sample points were origi-
nally allocated among the fourteen cover types assigned by the image analyst (Franklin) in class labeling,
the classiﬁcmion was subsequently modified and classes were re-labeled based on the response of the local

expert (Hiernaux). The final classification consists of 29 vegetation/soil classes, so the 270 samples (allo-

cated before the final classification) are wholy’ inadequate for a statistically sound accuracy assessment of

this arca. However, they do give some indication of the thematic map accuracy when the land cover Lo
classes arc pooled. In Scgou theie were better quality, more recent air photos available, and therefore the

image classification and accuracy analysis could be done by the same person.

3.5. Accuracy Assessment

Accuracy assessment {or this typ.e of thematic map is difficult, because it is impossible to know the
“yrue’’ category for every point on the landscape. In addition to classification error, there can be photoin-
terpretation error of the “true’ :lass. Even if every point were visited in the field, there is the problem of
spatial sampling or cartographic generalization. A label must be assigned to a pixel or group of pixels,
and a category chosen for the ecuivalent arca on the ground. Accuracy was assessed by four different
measures to demonstrate the variability in different estimates of error. The measures uses were commis-
sion error (diagonals divided by row totals, for_ confusion tables arranged as described below), omission

error (diagonals divided by column totals), errors adjusted for marginal sums (by the method of Card
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1982), and the Kappa coeflicient of agreement (Congalton and Mead 1983, and see Hudson and Ramm,

1987, for the correct formula).

4. Results

The land cover statistics resulting from image classification of the study areas are shown in Table IV
and Table V. For the Gourma study area the types were aggregated by vegetation class (the soils classes
are lumped). The classification error matrices are shown in Table VI and Table VII. The columns
represent the “true’ (photointerareted) category, and the rows the “mapped” (by image classification)
category. The diagonal represents points that were correctly classified. The row totals for the Se€gou
subimage are not all equal to 24 (the original number of points allocated to each class). In assessing the
accuracy, a sample pixel was considered correctly classified is one of its immediate neighbors was the same
class as the photointerpreted cfass, so some points changed classes. In Sé€gou the Bare soil and Grassland
classes (light soil) were lumped, because they could not be distinguished by the photointerpreter in dry
season air photos. As explained abo;'e, the Gourma subimage was relabeled after the sample points v;'erfa" T
allocated, and so there are uneven numbers of sample points in the classes (more or less proportionate tg

the area of the stratum). Therefore, the accuracy results must be interpreted with caution. ’

The results from the differer}t accuracy assessment measures are shown in Table VIII and Table.;I-X.;f
These tables include the lower and upper confidence limits for the omission errors (percent correct g}r)}en
mapped category), and for the pzrcent correct given the true category (the accuracy adjusted for thi mar-
ginal proportions). These conﬁd;nce limits were calculated by the method given in Card (1982). The
Kappa coeflicient is supposed to take into account omission and commission errors, and has been recom-
mended as a standard for thematic map assessment (Rosenfeld and Fitzpatrick-Lins 1986), but for these
data it seems to be strongly related to commission error. The method adjusted for marginal totals gave
the lowest estimates because for several classes the percent of the area in each category as estimated by
the classification differed greatly from that estimated from the sample points (for example, classes 5 and 7

in Ségou, and class 7 in Gourmal).
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For Ségou, a woodland (classes 4-7) versus non-woodland classification would yield accuracies of .96
and .93 (omission), and .91 and .97 (commission), respectively. Individual class accuracies were low.
Overall accuracy was between 80 and 90 percent and most class accuracies weer greater than 70 pércent.
when the woodland classes were pooled (effectively aggregated to level II). Because level.HI classes were
being resolved (woodland density on an ordinal scale), there was a large potential for error in both pho-
tointerpretation and class labeliﬁg. Due to the heterogeneity of the landscapé, a sample point could easily
have been assigned to the wrong density class if the woody cover was borderline between classes. How-
ever, the purpose of a stratification is to reduce the variance within classes of some variable that is subse-
quently sampled. Therefore, accuracy was also estimated in a more lenient way: a point was counted as
labeled correctly if it fell in the correct class or one density class higher or lower than the “true’ class.
This gives an indication of the usefulness of the classification as a stratification. In S€gou, overall accu-
racy is close to 90 percent, and most class accuracies are greater than 80 percent using this accuracy

measure.

g

For the Gourma subimage, the acéuracy figures for classes 1 and 2 are meaningless, because of the g
small sample size. Overall and individual class accuracies are low by all measures. Using the lenient
accuracy criterion, overall accuracy is about 90 percent, and most class accuracies are greater that 80 pér-

cent (Table 0). The greatest confusion that remains is between class 6 (Grassland) and class 4 (Woocféd ::‘

Grassland, sparse). Six of these 9 confused points occur on gravels, where the dark substrate is conf{jsléd
g

with tree cover. E

I}

5. Conclusions

Mapping of vegetation density classes in open shrub and woodland from Landsat satellite data is
difficult using per-pixel‘ multispe:tral image classification. At Landsat Thematic Mapper spatial resolu-
tion, pixel reflectance represents a variable 4mixt.ure of vegetation and soil background. In some cases,
different components (tree patch vs. bare area) of the same information class (open woodland) are resolved
as different spectral classes. In this study, accuracy was poor unless tﬁe criterion for accurate

classification of a sample point was relaxed to include adjacent tree density classes. Then results are
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reasonable accurate. In this environment, the product of a multispectral classification might not be an
accurate map, but it may provide a good stratification for inventory (of tree density, or biomass) and for
application of biophysical remote sensing models. Spatial-spectral classification would presumably pro-
duce a more accurate map, but until the algorithms are commonly available on commercial image process-
ing systems, it does not provide a viable alternative for environmental analysis in remote regions. For
resource assessment over large a;eas, and research on macroscale biophysical processes, an accurate

stratification is a very useful tool.

REFERENCES

Ackerson, V., “Multistage variable probability sampling of tropical dry woodlands for fuelwood resource

assessment,’”’ Masters Thesis, Department of Geography, University of California, Santa Barbara,

1985,

1774, 1985.

Adeniyi, P. O., “Agricultural land use inventory and mapping in Nigeria: the application of remote sens-

oo
ing,” in Remote Sensing and Tropical Land Management, ed. John Wiley and Sons, pp. 175-187,. '

kT
x
v

1986.

»~

ety

Ajtay, G. L, Ketner, P., and Duvigneaud, P., “Terrestrial primary production and phytomass,” in The
| Global Carbon Cycle, ed. B. Bolin, E.T. Degens, S. Kempe and P. Ketner, pp. 129-181, SCOPE 13,

John Wiley and Sons, New York, 1979.

 Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E., “A Land-use and Land Cover
Classification System for Use with Remotely Sensed Dadta,” U.S. Geologic Survey Professional
. Paper 964, p. 28, 1976.
Card, D. H., “Using known map category marginal frequencies to improve estimates of thematic map

accuracy,” Photogrammetric Engineering and Remote Sensing, vol. 48, pp. 431-439, 1982.



CHAPTER 4: LAND COVER STRATIFICATION

Congalton, R. G. and Mead, R. A, “A quantitative method to test for consistency and correctness in pho-

tointerpretation,” Photogrcmmetric Engineering and Remote Sensing, vol. 49, pp. 69-74, 1983.

Cooley, M. E. and Turner, R. M, “Application of Landsat products in range- and water-management
problems in the Sahelian zone of Mali, Upper Volta, and Niger,” U. S. Geologic Survey Professional

Paper 1058, p. 52, United States Government Printing Office, Washington, D.C., 1982.
Deutsch, M., East African Seminar and Workshop on Remote Sensing of Natural Resources and Environ-

ment, Geologic Survey Report No. IR-NC-41 Washington, D.C., Nairobi, Kenya, 1975.

Diarra, L. and Hiernaux, P., “Evolution de la végetation sahélienne aprés la s€cheresse bilan du suivi des
sites du Gourma en 1986, Programme des Zones Aride et Semi-aride, Document du Programme,
Centre International pour ’Elevage en Afrique (CIPEA), Bamako, Mali, 1987.

Franklin, J., Logan, T. L., Woodcock, C. E., and Strahler, A. H., ““Coniferous forest classification and
inventory using Landsat ar.d digital terrain data,” IEEE Transactions on Geoscience and Remote

Sensing, vol. GE-24, pp. 159-149, 1986.

Franklin, J. and Strahler, A. H., “Invertible canopy reflectance modeling of vegetation structure in

semiarid savanna,” IEEE Geoscience and Remote Sensing, 1988. Accepted for publication.

Hellden, U., A Test of Landsat-2 Imagery and Digital Data for Thematic Mapping, Illustrated by an ..

Yy
Environmental Study in Northern Kenya, Lund University Department of Physical Geographys;, .-

T
I

1980.

ety

Helldén, U., “An assessment of woody biomass, community forests, land use and soil erosion in Ethiopia
— A feasability study on the use of remote sensing and GIS-analysis for planning purposes in

developing countries,” Lur.d Studies tn Geography, vol. 14, Department of Geography, University of

Lund, Lund, Sweden, 1987.

Hiernaux, P., Ciss€, M. 1., and Diarra, L., “Bilan d’une saison d‘es pluies 1984 trés deficitaire dans la
Gourma (Sahel Malien). Premiére campagne de suivi et télédetection experimentale, Annexe: Fiches
descriptives des sites,”” Programme des Zones Aride et Semi-aride, Document du Programme, Centre

International pour ’Elevage en Afrique (CIPEA), Bamako, Mali, 1984.

-96-



CHAPTER 4: LAND COVER STRATIFICATION

Hiernaux, P. and Diarra, L., ‘“Pour une technique de télédetection appliquée au sui de I’evolution de la
végetations sahelienne,” Programme des Zones Aride et Semi-aride, Document du Programme, Cen-

tre International pour I’Elevage en Afrique (CIPEA), Bamako, Mali, 1986.

Hiernaux, P. H. Y. and Justice, C. O., “Suivi du développement veégetal au cours de 1’ét€ 1984 dans le

Sahel Malien,” International Journal of Remote Sensing, vol. 7, pp. 1515-1531, 1986.

Hudson, W. D. and Ramm, C. \f‘f‘., “Correct formulation of the Kappa coefficient of agreement,’”” Photo-

grammetric Engineering ar.d Remote Sensing, vol. 53, pp. 421-422, 1987.

Jacobberger, P. A., “Geomorphology of the upper inland Niger delta,” Journal of Arid Environments,

1986. Submitted for publication

Jensen, J., “Biophysical remote sensing,”” Annals of the Association of American Geographers, vol. 73, pp.

111-132, 1983.

Kihlblom, U. and Johansson, D., Satellite Monitoring of Végetation and Geology in Semi-Arid Environ-

Fon gl 1T

e

ATl
&

ments, p. 98, V a.ttenbyggn.-u‘lst;{yra‘n_ Ltd,, Stockholm, 1980. <
Lanley, J. P. and Clement, J., “Tropical Forest Resources Assessment Project (in the framework of GEI?ISK
- Global Environmental Monitoring System),” in Forest Resources of Tropical Africa, Part 1-

Regional Synthesis, UN FAO /UNEP (United Nations Food and Agricultural Organization/ United ;.
\

Nations Environmental Programme), Rome, 1982. W
£

Le Houerou, H. N., “The rangelands of the Sahel,” Journal of Rangeland Management, vol. 33, pp.,‘§1-46,

1980.

Makhanya, E. M., ‘““‘Agricultural land use mapping in Lesotho: Problems and limitations,” in Remaote

Sensing and Tropical Land Management, ed. John Wiley and Sons, pp. 215-222, 1986.

Mushala, H. M., “Multistage remote sensing land systems and soil erosion in central Tanzania,” in

Remote Sensing and Tropizal Land Management, ed. John Wiley and Sons, pp. 223-234, 1986.

Negri, D. S., Vegetation mappiny using Landsat in a semi-arid region of Africa, University of California,

Santa Barbara, 1985. Masters thesis

-97-



CHAPTER 4: LAND COVER STRATIFICATION

Nielsen, M., Introduction to the Flowering Plants of West Africa, University of London Press, London,

1965.

Olsson, K., “Remote sensing for fuelwood resources and land degradation studies in Kordofan, the
Sudan,” Ph.D. Dissertation., The Royal University 6{' Lund, Department of Geography, Lund,
Sweden , 1985. 182 pp.

Prince, S. D. and Astle, W. L., “Satellite remote sensing of rangelands in Botswana. I. Landsat MSS and
herbaceous vegetation,”” International Journal of Remote Sensing, vol. 7, pp. 1533-1553, 1986.

Rosenfeld, G. H., Fitzpatrick-Lins, K., and Ling, H. S., “Sampling for thematic map accuracy testing,”
Photogrammetric Engineering and Remote Sensing, vol. 48, pp. 131-137, 1982.

Rosenfield, G. H. and Fitzpatrick-Lins, K., “A coefficient of agreement as a measure of thematic
classification accuracy,” Protogrammetric Engineering and Remote Sensing, vol. 52, pp. 223-227,
1986.

Schuell, R., Introduction d la Phytogéographie. des Pays Tropicauz: 8. La Flore et la Vegetation de

UAfrique Tropicale., Gauthiers-Villars, Paris, 1977.

Schultz, J., “Applications of Landsat satellite imagery for resource inventory and evaluation in developing
countries,” GeoJournal, vol. 3.1, pp. 53-62, 1979.

Strahler, A. H., “Stratification of natural vegetation for forest and rangeland inventory using Landsat " -

digital imagery and collateral data,” International Journal of Remote Sensing, vol. 2, pp. 15-41,

1981.

Townshend, J. R. G. and Justicc, C. O., “Analysis of the dynamics of African vegetation using the nor-
malized difference vegesation index,” Internalional Journal of Remote Sensing, vol. 7, pp. 1433-1445,

1986.

USAID-TAMS, Le Ressources Terrestres au Mali: Mali Land and Water Resources, Government de la

Republique du Mali Ministere Charge du Development Rural, 1983.

Williams, M. G., “Landsat and the detectability of land systems in northern Kenya,” in Remote Sensing

and Tropical Land Management, ed. J. T. Parry, pp. 101-130, 1986.

-98-



CHAPTER 4: LAND COVER STRATIFICATION

Table 1

Thematic Mapper Scenes

Name Date Path Row Scene ID
Gourma 9 Sep 1984 195 49 5019209552
Gourma 7 May 1985 195 49 5043209552
Scgou 17 Nov 1984 198 51 5026110142

Subimage Coordinates

Starting Starting  Number Number

Name . .

Sample Line Samples Lines
1984 Gossi * 1865 1 1536 1536
1985 Gossi * 1120 - 1 1536 1536
Gossi clas. 1 256 1 1024 1280
1984 Hombori * 821 1 1536 1024
1985 Hombori * 70 1 1536 1024
Hombori clas. 1 256 256 1280 768
Segoul * 977 1905 1024 512
Segou? * 2001 1629 512 512

* with reference to TM quadrat

# with reference to registered subimages
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Table I
Summary of Principal Components Analysis — Gossi
Principal Components (first four)

Spectral band 1 2 3 4
1984 Band 3 0.437 -0.582 -0.433 0.150
1984 Band 1 0.351 -0.249 0.118 -0.832
1984 Band 7 0.517 0.445 -0.558 0.088
1985 Band 3 0.355 -0.311 0.421 0.527
1985 Band 0.295 -0.082 0430 -0.027
1985 Band 7 0.453 0.545 0.353 0.005
Eigenvalues - 2275.727 204.561 73.7_79 26.199
Percent var. 87.769 7.889 2.845 1.010
Cumul. percent 87.769 95.695 98.504 99.514

Summary of Principal Components Analysis — Hombori

Principal Components (first four)

Spectral band 1 2 3 4
1984 Band 3 0.391 -0.352 0.292 -0.402
1984 Band 4 0.339 -0.257 0.562 0.645
1934 Band 7 © 0475 -0.562 20.490 -0.120
1985 Band 3 0.384 0.417 0.236 -0.515
1985 Band 0.346 0.360 0.236 Q.025
1985 Band 7 0.490 0.429 -0.498 0.377
Eigenvalues 1395.398 112.214 17.356 10.613
Percent var. 90.533 7.280 1.126 0.689
Cumul. percent 90.533 97.813 98.940 99.628
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Vegetation Classification System
Woody Cover (dark) Background (light)
Class B% Cover|Symbol | Water Rock | Gravels, | Sand sht | Clay, Silt, Loamy Sand
outcrops silts rck/grv loams loams sands dunes
Woodland 20-80 w
dense 40-80 Wd g g gh
sparse 20-40 Ws g g g gh_ (s) g
Wooded Grassland 3-20 WG
dense 10-20 | WGd g g gh g,h (s) h gh
sparse 3-10 WGs g,h g gh gh gh (s) gh gh
very sparse 1-3 WGvs gh g g,h gh g,h gh gh
Woodland /Bush WB
thicket, 80-100 | WBt _
dense 40-80 | WBd (s)
sparse 20-40 WRBs (s)
Wood/Bush Grsind 3-20 WBG
dense 10-20 | WBGd
sparse 3-10 | WBGs
Bushland B
thicket 80-100 | Bt gh
dense 40-80 Bd (s)
sparse 20-40 Bs
Bush Grassland 3-20 BG
dense 10-20 BGd
sparse 3-10 BGs
Grassland 0-1 G (s) g gh g.h gh gh gh gh
Water 0 H (s) g,h :
Bare 0 S (s) g.h g.h (s) g,h
Riparian veg. - R (s)
"»
g — class occurs in Gosst subimage ;’":
h — class occurs in HMombori subimage o

(s) — class occurs in Segou (soil only differentialed as dark or light)
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Table IV

Land Cover — Gourma

Number  Symbol Cover Type Perm;:nt. Areat*
of subimg. {ha)
1. Wwd Woodland, dense 0.23¢% 475
a. Ws Woodland, sparse 1.04 2147
3. WGd Wooded Grassland, dense 6.05 12490
4, WGs Wooded Grassland, sparse 12.24 25268
5. WGvs Wooded Grassland, very sprs 34.87 71985
* Bt Bushland thicket 0.40 826
6. G Grassland 4043 83463
7. S Bare (soil) 2.13 4397
8. H Water (lake) 0.42 867
Total 100.00 206438
Aggregated by vegetation class (s0il classes not diflerentiated).
$ sum of areas in Gossi and Hom bori subimages
* — not sampled in accuracy assessment
** __ estimate based on 30x30 m TM pixels
Table V
Land Cover — Segou
Number Symbol Cover Type Soil of:i;?ltg‘ Aael:;*
1 Gl Grassland light 6.31 4031 .
2 Sl Bare light 0.43 275 !
3 WGsl Wooded Grassland, sparse  light 23.95 15299 W
4 Ws) Woodland sparse light 4.76 3041 o
5 WGdl Wooded Grassland, dense  light 16.38 10463 M
6 WBsl Woodland/Bush sparse _ light 6.46 4127 '
7 WBdl Woodland/Bush dense light 25.67 16397
8 Bdd Bushland dense dark 6.72 4293
9 R Riparian 4.05 2587
10 Sd Bare dark 0.42 268
11 H Water 4.86 3105
Total 100.00 63878

** __ estimate based on 30x30 m TM pixels
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Table VI

Classification Error Matrix — Gourma subimages

) Reference (Photointerpreted) Data

Classified

Wd Ws WGd WGs WGvs G S Water Total mmp
1. Wd 0 1 0 0 0 0 0 1 0.0
2. Ws 0 4 1 0 0 1 1 0 7 0.01
3. WGd 1 2 3 3 -0 1 1 0 16 0.06
4. WGs 0 1 8 15 9 9 2 0 44 0.12
5 WGvs 0 2 2 12 35 24 11 0 36 0.35
6. G 0 0 3 7 13 13 7 0 73 0.40
7.8 0 0 0 0 1 6 15 0 22 0.02
8. Water 0 0 0 0 0] 0 0 21 21 0.0
Total 1 9 23 37 58 8- 37 21 270 1
tmp 0 0.03 0.08 0.16 0.3 0.39 0.12 0 1 0.0

mmp: mapped marginal proportions
tmp: true marginal proportions

Table VIT
Classification Error Matrix — Segou subimage

. Reference (Photointerpreted) Data X

Classified - =
GI/SI WGsl WGdl Wsl WBsl WBdl Bdd Sd R H Total mmp

1,2 G1/S1 50 0 0 0 0 0 0 0 0] 0 50 0.07
3. WGsl 2 25 1 0 0 4] 0 0 0 0 28 024
4. WGdl 0 4 10 1 2 3 2 0 0 0 22 016
5. Wsl 2 1 2 4 2 0 0 3 0 0 14 0.05
6. WBsl 0 0 2 0 23 1 1 0 0 0 27 0.8
7. WBdl 0 1 1 0 4 20 1 0 0 0 27 '70.26
8. Bdd 1 0 0 0 0 1 14 1 4 0 21 > 0.07
9. Sd 0 0 0 0 0 0 0 24 0 0 24 0.004
10. R 2 2 0 1 1 0 0 2 18 0 26 0.04
11. Water 0 0 0 0 0 0 0 0 0 25 25 0.05
Total 57 33 16 G 32 25 18 30 22 25 264 1.00
tmp 0.1 0.24 0.14 0.04 0.13 0.24 0.08 0.04 0.05 0.05 1.00

mmp: mapped marginal proportions
tmp: true marginal proportions
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Table VIII
Accuracy of Classification — Gourma subimages
. t

No. Class Commission %45;;:33‘ upper  lower % g:ize“ upper  lower | Kappa
1. Wwd 0.0 0.0 NA NA 0.0 NA NA 0.0
2. Ws 0.57 0.44 041 0.48 0.18 0.15 0.22 0.56
3. WGd 0.50 0.35 0.31 0.39 027 0.23 0.31 0.45
4. WGs 0.34 0.41 0.36 0.45 0.30 0.26 0.35 0.24
5. WGvs 0.41 0.60 0.53 0.68 0.69 0.62 0.77 0.24
6. G 0.59 0.51 0.44 0.59 0.53 0.46 0.61 0.40
7. S 0.68 0.41 0.38 0.43 0.07 0.05 0.10 0.63
8. H 1.00 1.00 0.97 1.03 1.00 0.97 1.03 1.00

Total 0.52 0.52 0.0 0.0 0.51 NA NA 0.40
* _ j.e., omission

Lenient Accuracy Criterion

No. Class | Commission | Omission | Kappa
1. Wwd 0.0 0.0 0.0
2. Ws 0.67 0.86 0.85
3. WGd 0.74 0.81 0.93 -
4. WGs 0.81 073 | 0.66
5. WGvs 1.00 0.95 0.76 e
6. G 0.87 0.96 .| ,0.97 e
7. S 0.89 1.00 1.29 A
8. H 1.00 1.00 1.00 v

Total 0.91 0.91 0.87 )

v
\
A‘.'r’:
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Table IX

Accuracy of Classification — Segou subimage

No Class Commission % Correct upper lower % Correct | K
1 . as S y
S Mapped* pp True upper lower | Kappa

1,2 Gl/si 1.00 0.88 081  0.94 0.61 054 067 | 1.00
3 WGsl ' 0.89 0.76 0.62 0.90 0.74 0.60 0.88 0.88
4 S WGdL - 0.45 0.63 0.52 0.73 0.73 0.62 0.83 0.42
5 Wsl 0.29 0.67 0.59 0.75 0.73 0.65 0.81 0.27
6 WDBs] 0.85 0.72 0.65 0.79 0.37 0.30 0.44 0.83
7 WIRdl 0.74 0.80 0.64 0.96 0.85 0.69 1.01 0.71
8 Bdd 0.67 0.78 0.69 0.87 0.62 0.53 0.70 0.64
9 Sd 1.00 0.80 0.78 0.82 0.09 0.07 0.12 1.00
10 R 0.69 0.82 0.75 0.88 0.69 0.62 0.75 0.66
11 Water 1.00 1.00 0.91 1.09 1.00 0.91 1.09 1.00

Total 0.81 0.81 0.0 0.0 0.76 0.70 0.83 0.78

' Pooled Classes

1,2 Gl/si 1.000 0.877 0.813 0.942 0.686 0.621 0.750
3,4,5  WGd,sl/Wsl 0.762 0.873 0.857 0.839 0.758 0.742 0.774
6,7 WBd sl 0.889 0.842 0.826 0.858 0.707 0.691 0.724
3 Bdd 0.667 0.778 0.772 0.783 0.218 0.213 0.224
9 Sd ' 1.000 0.828 0.477 1.178 0.714 0.363 1.064
10 R 0.692 '0.818 0.409 1.228 0.817 0.408 1.227
11 Water 1.000 ‘ 1.000. 0.883 1.117 1.000 0.883 1.117

Total 0.863 0.863 0.807 0.908 | 0.469 0.405 G.534
* . }.e., omission

Lenient Accuracy Criterion

No. Class | Commission | Omission | Kappa
1,2 Gl/sl 0.91 1.00 1.03 o
3 WGsl 0.88 1.00 1.02 S
| WGdl 0.9 0.77 0.71 ‘
5 Wsl 0.83 0.57 0.45 ’
6 - WBsl 0.97 0.96 1.06
7 WRdI 0.84 0.89 0.82
3 Bdd 0.78 0.67 0.64
9 Sd 0.80 1.00 1.00
10 R 0.82 0.69 0.66
11 Water 1.00 1.00 1.00

Total 0.89 0.89 0.87
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