
Grant Number NAG8-093

AN INTELLIGENT PROCESSING
ENVIRONMENT FOR

REAL-TIME SIMULATION
< f f l S A - C E - 1 8 3 C 5 6) Afc J M E L L 1 G E A 1 tBCCESSIHG

i C B H A L - l l f l S I H I A l I C h
t r i v .) 189 p CSCL 09B

N88-26119

Unclas
G3/61 0149215

by

Chester C. Carroll

Cudworth Professor of Computer Architecture

Department of Electrical Engineering

College of Engineering

The University of Alabama

Tuscaloosa, Alabama

and

Buren Earl Wells, Jr.

Graduate Research Assistant

Prepared for

National Aeronautics and Space Administration

The University of Alabama
College of Enginee'

Bureau ot Engin arch
PO Box 1968

Tuscaloosa. Alabama 35487-1968
jihone: (205) 348-1591

Bureau of Engineering Research

The University of Alabama

May 1988

BER Report No. 426-17

THE UNIVERSITY OF ALABAMA
COLLEGE OF ENGINEERING

The College of Engineering at The University of Alabama has an undergraduate enroll-
ment of 2000 students and a graduate enrollment exceeding 200. There are approximately
100 faculty members, a significant number of whom conduct research in addition to
teaching.

Research is an integral part of the educational program, and research interests of the
faculty parallel academic specialities. A wide variety of projects are included in the overall
research effort of the College, and these projects form a solid base for the graduate
program which offers fourteen different master's and five different doctor of philosophy
degrees.

Other organizations on the University campus that contribute to particular research
needs of the College of Engineering are the Charles L. Seebeck Computer Center, Geologi-
cal Survey of Alabama, Marine Environmental Sciences Consortium, Mineral Resources
Institute—State Mine Experiment Station, Mineral Resources Research Institute, Natural
Resources Center, School of Mines and Energy.Development, Tuscaloosa Metallurgy
Research Center of the U.S. Bureau of Mines, and the Research Grants Committee.

This University community provides opportunities for interdisciplinary work in pursuit of
the basic goals of teaching, research, and public service.

BUREAU OF ENGINEERING RESEARCH

The Bureau of Engineering Research (BER) is an integral part of the College of Engineer-
ing of The University of Alabama. The primary functions of the BER include: 1) identifying
sources of funds and other outside support bases to encourage and promote the research
and educational activities within the College of Engineering; 2) organizing and promoting
the research interests and accomplishments of the engineering faculty and students;
3) assisting in the preparation, coordination, and execution of proposals, including
research, equipment, and instructional proposals; 4) providing engineering faculty,
students, and staff with services such as graphics and audiovisual support and typing and
editing of proposals and scholarly works; 5) promoting faculty and staff development
through travel and seed project support, incentive stipends, and publicity related to
engineering faculty, students, and programs; 6) developing innovative methods by which
the College of Engineering can increase its effectiveness in providing high quality educa-
tional opportunities for those with whom it has contact; and 7) providing a source of timely
and accurate data that reflect the variety and depth of contributions made by the faculty,
students, and staff of the College of Engineering to the overall success of the University in
meeting its mission.

Through these activities, the BER serves as a unit dedicated to assisting the College of
Engineering faculty by providing significant and quality service activities.

Grant Number NAGS-093

AN INTELLIGENT PROCESSING ENVIRONMENT
FOR REAL-TIME SIMULATION

by

Chester C. Carroll
Cudworth Professor of Computer Architecture

and

Buren Earl Wells, Jr.
Graduate Research Assistant

Prepared for

The National Aeronautics and Space Administration

Bureau of Engineering Research
The University of Alabama

May 1988

BER Report No. 426-17

ABSTRACT

This report is concerned with the development of a highly efficient

and thus truly intelligent processing environment for real-time general

purpose simulation of continuous systems. Such an environment can be

created by mapping the simulation process directly onto The University

of Alabama's OPERA architecture. To facilitate this effort this report

explores the field of continuous simulation, highlighting areas in which

efficiency can be improved. Areas in which parallel processing can be

applied are also identified, and several general OPERA type hardware

configurations that support improved simulation are investigated. The

report then introduces three direct execution parallel processing

environments each of which greatly improves efficiency by exploiting

distinct areas of the simulation process. These suggested environments

are candidate architectures around which a highly intelligent real-time

simulation configuration can be developed.

11

LIST OF ABBREVIATIONS

ACSL Advanced Continuous Simulation Language

BA2 Fourth-Order Parallel Two Processor Block Predictor-Corrector

CISC Complex Instruction Set Computer

ER Euler

h Integration Step Size or Calculation Interval

I/O Input/Output

OPERA Optimally Parallel Environment for Real-Time Applications

P2 Second-Order Predictor-Corrector

PA Fourth-Order Predictor-Corrector

P22 Second-Order Parallel Two Processor Predictor-Corrector

P2A Second-Order Parallel Four Processor Predictor-Corrector

PA2 Fourth-Order Parallel Two Processor Predictor-Corrector

RISC Reduced Instruction Set Computer

R2 Second-Order Serial Runge-Kutta

RA Fourth-Order Serial Runge-Kutta

TP Variable-Step Trapezoidal

111

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

2 CONTINUOUS SIMULATION LANGUAGES 6

2.1 Common Features 6

2.2 General Structure 8

2.3 Popular Integration Methods 12

2.3.1 Euler Method 13

2.3.2 Multistep Predictor-Corrector Methods 1A

2.3.3 Runge-Kutta Methods 16

2.3.A Numeric Stability 18

3 PARALLEL TECHNIQUES FOR IMPROVED SIMULATION 19

3.1 Parallel Derivative Function Evaluations 20

3.1.1 Partitioning by Differential Equations 20

3.1.2 Guided Missile Example 25

3.1.3 Partitioning by Low-Level Tasks 37

3.2 Parallel Integration Algorithms 38

3.2.1 Parallel Predictor-Corrector Algorithm 39

3.2.2 Parallel Block Predictor-Corrector Algorithm A3

3.2.3 Parallel Taylor Series Algorithm A 7

- 3.2.A Parallel Runge-Kutta Algorithm A8

3.2.5 Integration Algorithm Comparison A8

3.3 Combined Approach 55

IV

A GENERAL CONFIGURATIONS THAT SUPPORT IMPROVED SIMULATION 57

A. 1 Current Configurations 57

A. 2 Direct Compilation 58

A. 3 Direct Translation 60

A.A Direct Execution 61

A. 5 Parallel Configurations 62

5 INTELLIGENT PROCESSING ENVIRONMENTS 66

5.1 An Environment for Parallel Derivative Evaluations 67

5.2 An Environment for Parallel Integration Algorithms 72

5.3 Environments for Combined Execution 77

5. A Other Considerations 82

5.5 Summary 85

References 86

Appendix A: Task Allocations and Performance Measurements 90

Appendix B: Integration Programs 99

Appendix C: Benchmark Examples 161

v

LIST OF FIGURES

Figure Page

1.1 Steps in Computer Simulation 2

2.1 Structure of the ACSL Model Definition File 10

3.1 ACSL Source Code for Guided Missile Example 26

3.2 Set of Differential Equations for Guided Missile Example 27

3.3 Speed-Up Ratio versus Number of Processors 32

3.4 Relative Cost versus Number of Processors 34

3.5 Utilization versus Number of Processors 35

3.6 Effectiveness versus Number of Processors 36

3.7 Flow Diagram for Parallel Predictor-Corrector Method 41

3.8 Flow Diagram for Parallel Block Predictor-Corrector Method.... 46

3.9 Effective Number of Derivative Calls versus Local Error 52

3.10 Effective Number of Floating Point Operations
versus Local Error.. .- 54

4.1 Parallel Configurations for Improved Execution 63

5.1 Parallel Derivative Function Environment 69

5.2 Parallel Integration Algorithm Environment 74

5.3 Parallel Combined Environments 78

VI

CHAPTER 1

INTRODUCTION

Computer simulation is a major application area of digital

computers, through which the behavior of physical systems can be better

understood by observing how their computer models respond as the

external conditions are varied. In this way physical systems can be

carefully evaluated before they are actually constructed. For certain

controller type applications the computer system performing the

simulation is interfaced directly to the outside world through a group

of sensors and actuators, with the computer acting as a substitute for

the actual physical system it is simulating. In these cases, the

computer simulation must be able to respond within the real-time

environment of the actual physical system.

The steps needed to perform computer simulation of physical systems

are shown in Figure 1.1. The first step in the simulation process is to

fully understand the physical system so that it can be expressed

mathematically using numerical and logical relationships. This step is

usually not trivial and must be done accurately, or the simulation will

be of little practical importance. The next step is to model the system

by coding the mixture of numerical and logical relationships within the

computer. This can be done through the use of a general purpose

computer language or by using a special purpose simulation language

UNDERSTANDING THE
PHYSICAL SYSTEM

Expressing it
Mathematically

CREATING THE MODEL

Model should accurately
represent the system

±
EXERCISING THE MODEL

UNDER VARYING CONDITIONS

T
OBSERVING THE BEHAVIOR

OF THE MODEL

i
INTERPRETING THESE OBSERVATIONS

Relating the observations
to the physical system

Figure 1.1 Steps in Computer Simulation

specifically designed for computer simulation applications. The next

step in the simulation process is to exercise this model by applying

external conditions to it representing conditions that might be applied

to the actual physical system. In a controller type implementation

these external conditions would originate in real-time from physical

systems present in the outside world. As the model is exercised its

behavior should be observed. In a controller type environment these

observations result in real-time control data being transferred to the

outside world to control some physical system. In a nonreal-time

environment, time may be taken to interpret these results through the

creation of charts and graphs. In such a way the results of the

simulation can be related to the actual physical system.

Computer simulation can be divided into three different areas,

continuous system simulation, discrete event simulation, and combined

simulation. Continuous systems are time varying in nature and are

usually modeled within the computer using sets of differential equations

and/or transfer functions. In continuous simulation the dependent

variables change in a continuous manner as functions of the independent

variables. Discrete event simulation is concerned with the occurrence

of distinct events in time and space. Examples of such simulations are

stochastic processes and queuing problems. In discrete simulation the

dependent variables change in a discontinuous manner as functions of the

independent variables. Combined simulation allows for portions of the

problem to be modeled continuously and other portions to be modeled

discretely. Such simulations are in general difficult to implement.

Most physical systems can be adequately represented using continuous

simulation. Thus within this report only continuous system simulation

will be considered.

Today's computers can be used to simulate most physical systems

accurately, allowing for much flexibility. Unfortunately, such

simulations often require an excessive amount of time to execute,

usually running much slower than real-time. They also tend to be very-

sensitive to the complexity of the physical system that is being

simulated, the more complex the system the slower its simulation. This

report researches the creation of intelligent processing environments

leading to more efficient and therefore faster general purpose

continuous simulation.

The remainder of this report is organized in the following manner.

Chapter 2 describes the common features and general structure associated

with most conventional general purpose continuous simulation languages.

Continuous simulation languages are surveyed and described, and several

popular integration algorithms are introduced. Chapter 3 is concerned

with how to best apply parallel techniques to simulations written in

continuous simulation languages. Three major methods in which parallel

processing can be applied to continuous simulation are discussed. These

include parallel derivative function evaluations, the use of parallel

integration algorithms, and combining parallel derivative evaluations

with parallel integration methods. Also, within this chapter several

integration algorithms, parallel and serial, are compared with one

another through a number of benchmark examples. Chapter 4 suggests

several general hardware configurations that can be used to improve

efficiency during continuous simulation. These configurations support

the direct compilation of a continuous simulation language to object

code, the direct translation of the continuous simulation language to a

general purpose high-level language, or the direct execution of the

continuous simulation language itself. Chapter 5 discusses the design

of three types of parallel continuous simulation language direct

execution environments based around many of the concepts employed within

The University of Alabama's OPERA computer architecture. All three of

these environments represent an intelligent processing environment

suitable for real-time simulation.

CHAPTER 2

CONTINUOUS SIMULATION LANGUAGES

Continuous simulation languages have been developed to support the

special needs associated with the simulation process. Such languages

allow attention to be focused upon the actual physical system that is

being simulated, removing many of the details that have to be understood

when programming is done using a more general purpose type language.

They also provide a possible mechanism for improved simulation. If the

hardware environment is specifically tailored around the execution of a

continuous simulation language then improved simulation speed is

possible. Before this can be accomplished the general execution of

continuous simulation languages and principles of continuous simulations

must be thoroughly understood.

2.1 Common Features

Unlike general purpose languages such as FORTRAN, continuous

simulation languages were developed specifically for the purpose of

allowing the simulation of complex continuous systems. Such languages

have been designed to allow easy modeling of complex physical systems

and provide the control mechanism needed for the simulation of such

systems. Most continuous systems can be described by time dependent

nonlinear or linear differential equations and/or transfer functions.

.Continuous simulation languages facilitate the entry and execution of

such relationships through the unique features they contain. Examples

of continuous simulation languages that have been introduced recently

include CSMP [1], developed by IBM; CSSL-IV [2-3], developed by

Simulation Services Inc; EASY5 [A], developed by Boeing Computer

Services; DARE [5], developed at the University of Arizona; COMET [6],

developed at The University of Alabama; and ACSL [7-8], developed by

Mitchell and Gauthier Associates. Although each of these languages

differs in some way from the others, there are several important

features common to each of them.

In 1967 the Society for Computer Simulations (SCS) developed a set

of guidelines by which future continuous simulation languages were to be

based [9]. Most of the modern continuous simulation languages adhere

quite closely to these guidelines, including most of them as features of

the language. The guidelines require that the structure of the

language be clear, allowing for a block-oriented representation of the

physical system. Furthermore, the continuous simulation language should

be easy to use, having a set of operators capable of easily handling

most problems that are modeled with differential equations. Since

integration is a major part of the continuous simulation process, the

guidelines require that the language contain a number of built-in

integration routines in addition to allowing the inclusion of integration

routines written by the user. The guidelines also specify that the

language be expandable through user-created subroutines written in a

separate general purpose high-level language. Another requirement is

that the language contain a set of prepackaged input and output routines

while also allowing for the users to implement custom input and output

routines of their own. The guidelines also suggest that the simulation

language be able to automatically sort modeling statements to assure

their proper execution order. Furthermore, the user should be able to

modify all parameters between simulation runs, but not necessarily

during the simulation. As with most computer languages, these

continuous simulation languages are expected to have some sort of

diagnostic capability to help define and locate user errors.

Many continuous simulation languages have an added number of

features not mentioned in the guidelines. Some languages have a more

interactive set of run-time commands that allow the user to interact

in a limited way with parameters as the simulation progresses. Some

allow the user to create macros within the simulation language, allowing

the language to be expanded internally without the need for creating

routines in a separate high-level language. Others have built-in

statistical routines that can be used in comparing accuracy of

simulations run under differing conditions.

2.2 General Structure

The general structure of a continuous simulation language is

different from that of a typical high-level language. First, most

continuous simulation languages have two basic types of commands,

modeling statements and run-time commands. The modeling statements

are used to describe the physical system, and the run-time commands

exercise the model allowing various parameters to be altered. The

modeling statements are usually contained within a separate modeling

definition file, and the run-time commands are executed in an

interactive manner. The structure of the continuous simulation language

can be understood by carefully examining the execution of each section

within the model definition file as the simulation progresses.

Figure 2.1 shows the general structure of a Model Definition File

required by the Advanced Continuous Simulation Language (ACSL) [8].

This file is similar in structure to model definition files required by

a number of other continuous simulation languages. The file has three

main sections, INITIAL, DYNAMIC, and TERMINAL. The INITIAL and TERMINAL

sections both execute in a standard sequential manner. Program control

is passed to the INITIAL section at the beginning of each simulation

run, and control is passed to the TERMINAL section at the end of the

run. The major portion of the simulation is spent processing the

DYNAMIC section which is not executed sequentially. Instead the DYNAMIC

section is processed at regular intervals throughout the simulation.

Statements that reside within the DYNAMIC section but not within a

subsection are executed once every communication interval. The

communication interval is the amount of time that transpires between the

transferring of data with the outside world. Usually the I/O statements

reside within this section.

The DYNAMIC section also contains two subsections, the DERIVATIVE

and the DISCRETE subsections, which will now be discussed. By far the

10

PROGRAM

INITIAL

END

DYNAMIC

Statements performed before the run begins.

DERIVATIVE

Statements executed at every calculation
interval. These statements are needed to
perform each integration step.

END

DISCRETE

END

Statements executed after a each specified
time interval. This subsection is designed
to provide a method for communication to
occur between the outside world and the
simulation at fixed intervals.

Statements executed at every communication
interval. This usually includes the I/O
statements.

END

TERMINAL

Statements executed at the end of the
simulation. Section is entered when
the termination condition becomes true.

END

END

Figure 2.1 Structure of the ACSL Model Definition File

11

most important subsection is the DERIVATIVE subsection which contains a

set of algebraic and differential relationships that make up the model.

The differential relationships are entered by the user as a set of

first-order differential equations defined through the use of the

integration operator. These relationships are automatically sorted to

insure the proper order of execution. The order that the statements are

entered into the section have no bearing on the solution (this is not

the case in the INITIAL and TERMINAL sections). Code within the

DERIVATIVE Section is executed at least once during each calculation

interval; the actual number of times being dependent on the integration

algorithm chosen. The calculation interval is a variable that is

specified by the user and indicates the step size of the integration

process. It must be set equal to or smaller than the communication

interval. As will be discussed later, some integration algorithms cause

the step size to vary throughout the simulation. In such cases the

limits over which the step size is allowed to vary are entered by the
s

user.

The DISCRETE section allows communication to occur with the outside

world at fixed intervals of time independent of the communication

interval. This section is provided to improve the flexibility at which

the simulation can be made to operate. Equivalent subsections are not

present in many simulation languages.

Knowledge of the structure of simulation languages allows for the

development of better hardware configurations that support the execution

of such languages. For example, since the DERIVATIVE subsection is

generally executed most often during the simulation, it is a reasonable

12

assumption that the overall execution speed of the simulation can be

increased by placing this subsection in the fastest memory possible.

Thus in a system with a standard memory hierarchy the DERIVATIVE section

might reside in fast external cache type memory or, if cost permits, in

the very fast on-chip memory of the processor. Chapter 4 describes

general configurations that improve the execution of continuous

simulations.

2.3 Popular Integration Methods

Continuous simulation languages allow simulation to occur through

the repeated execution of the derivative type section (sometimes called

the derivative function evaluation) under the direction of an

integration formula. In this way continuous simulation languages are

based around numerical integration routines that solve sets of

S

first-order ordinary differential equations. Normally the simulation

language provides the user with a choice of integration algorithms that

can be used during the simulation process. This flexibility is provided

because there is currently no one integration algorithm that works best

for all types of applications.

Most simulation languages have a derivative type section composed

of algebraic and differential equations that are executed a number of

times during each integration step. The number of times this section is

executed depends on the integration algorithm. In most cases the

separate algebraic and differential relationships contained in this

13

section can be combined and simplified in such a way that the section

can be considered to be made up only of a set of first-order

differential equations. Thus the section can be described in the "state

variable" form

Y. — F. (Y. tijt • • - ,Y ,t),
»

Y = F9(Y.,Y ,...,Y ,t),2 2 1 2 m (2<1)

where YlfYn,...,Y represent the state variables of the
1 L m .system,

Y^Y^.-.-.Y represent the rates of change with respect
to time (the derivatives) of the state
variables, and

t represents the independent variable, time.

Throughout the remainder of this report this "state variable" form is

described using the vector notation

Yi = F(Yi,t) = Fi, (2.2)

where the vector F(Y.,t) or F. represents the derivative function
/

evaluation for the set of differential equations at integration step i.

This notation simplifies the integration equations and makes it easier

to describe each method of integration.

With this in mind several of the more common and popular

integration methods will now be discussed.

2.3.1 The Euler Method

The Euler Integration Algorithm is by far the simplest integration

method discussed within this report. It requires that the derivative

14

type section of the continuous simulation be executed but once during

each integration step. It can be represented by

Yi+l - Yi + hFi> (2'3)

where i is the current integration step number,

h is the integration step size,

Y. is the current state variable vector, and

Y.L1 is the state variable vector for the next
1+1 4.integration step.

The amount of local error introduced with this method is large, on the

2
order of h . Thus a relatively small step size is usually required to

achieve a reasonable amount of accuracy. Therefore, this method is

rarely used to perform continuous simulations.

2.3.2 Multistep Predictor-Corrector Methods

Multistep integration methods arrive at new solution points by

considering the solutions found at other points in time. The

predictor-corrector methods discussed in this section are made up of two

separate multistep equations. One of these equations uses solution

values found for past integration steps to arrive at a predicted

solution for the next integration step. The other improves the accuracy

of this solution by combining the predicted solution found in the

previous equation and a certain number of solutions taken at past

integration steps into a multistep corrector formula. The number of

solution points considered within each of the equations represents the

order of that equation. Most predictor-corrector integration schemes

15

contain predictor and corrector equations which are of the same order.

In general, the larger the order of a predictor-corrector scheme the

more computer memory will be required to store past solution points.

The Adams -Moulton predictor-corrector method makes use of

derivative function evaluations, F(Y,t), that have occurred at past

integration steps to arrive at new values. During each integration step

only two new function evaluations must be performed regardless of the

order of the algorithm. The equations for the second-order and

fourth-order Adams -Moulton predictor -corrector methods are

second-order predictor-corrector equations

(2 A)

fourth-order predictor-corrector equations

._2 -9F
C._3), ^ ̂

19FC. - 5FC..1 + F
C._2).

Since the predictor-corrector equations depend on a number of past

values, the method is not self starting. Thus the first few data points

must be calculated by some other method before the predictor-corrector

routines can be implemented.

The corrector equation in a predictor-corrector pair can be used to

estimate the relative accuracy of the solution for each integration

step. In this way the adequacy of the step size can be determined

during the simulation. If the step size is not proper it can be

adjusted accordingly. Such variable-step approaches add to the

complexity of the integration software and often do not perform well due

to the added overhead associated with constantly changing the step size.

16

Another type of variable-step approach, this one based upon the

trapezoidal formula, is presented in reference [10]. This approach uses

a simple Euler type predictor formula to obtain an initial predictor

value. This formula is

YP.X1 = Y°. + hF°..
i+l i i

The predicted value, Y . . is then initially placed into the recursive

corrector formula

YCi+l '
 Y°i + h/2(F°i + FCi+l>« (2'6>

£

for the Y . variable. This equation is then repeatedly executed in a

Q

recursive manner with each value of Y . . being compared with the

£

previous Y . . value. When these values differ percentage wise from

c
each other by less than some chosen amount, then the value of Y . is

accepted and a new integration step is begun by reapplying the predictor

formula. The accuracy of this integration method is dependent on the

accuracy of the corrector formula and the integration step size.

2.3.3 Runge-Kutta Methods

Runge-Kutta methods comprise a popular set of single-step

integration methods commonly used for continuous simulation. Because

these are single-step methods, all calculations are contained within

each integration step, and thus each method is self starting. Each

Runge-Kutta algorithm causes a derivative function evaluation, F(Y,t),

to be performed a number of times during each integration step. The

number of function evaluations that occur during each step is equal to

17

the order of the algorithm. The equations for the second-order and

fourth-order Runge-Kutta algorithm are

second-order Runge-Kutta equations

= Yi + 1/2<ki + V' (2'7)

where

fourth-order Runge-Kutta equations

Yi + 1/6(ki + 2k2
 + 2k3 + V' (2'8)

where kl = hF(Y.,t),

k3 = hF(Yi+k2/2,t+h/2),

k^ = hF(Yi+k3,t+h).

The local error associated with these Runge-Kutta methods are

relatively small, on the order of h and h for the second-order and

fourth-order routines, respectively, meaning a relatively large step

size can be used during the simulation. The improvement in simulation

speed associated with this large step size is at least partly offset by

the fact that in the higher order methods several function evaluations

must be performed for each integration step. In most cases these

function evaluations represent the most time consuming portion of the

simulation.

With the standard Runge-Kutta equations discussed above, the local

error is difficult to estimate, and it is hard to develop a

variable-step approach. However, there are different variations of

Runge-Kutta methods that allow for automatic step size control, such as

the Merson, Verner, and Fehlberg methods [10].

18

2.3.4 Numeric Stability

An integration method is unstable if the accuracy of its results

begins to decrease drastically as the computation proceeds. Stability

depends on the properties of the algorithm and the properties of the

system being simulated. In addition, most integration routines become

unstable if the integration step is made too long relative to the

fastest time constants of the system. The single-step Euler method

(Equation 2.3) and Runge-Kutta methods (Equations 2.7 & 2.8) are very

stable if the step size is made sufficiently small. The multistep

predictor-corrector (Equations 2.4 - 2.6) routines are somewhat less

stable. There are currently several integration routines that have been

developed for improved stability at the expense of large step size

accuracy [11]. Such algorithms can be used to simulate systems that

exhibit qualities associated with instability, such as widely varying

time constants.

CHAPTER 3

PARALLEL TECHNIQUES FOR IMPROVED SIMULATION

A logical approach to improving the execution speed of continuous

simulation is to create a processing environment in which several

processors work together in parallel, each on separate portions of the

problem, to obtain the solution. Such an environment has the potential

of simulating continuous systems several orders of magnitude faster than

is possible with a totally sequential environment. In addition,

performance in a parallel environment tends to be more independent of

the complexity of the system that is being simulated. This is because

conventional sequential environments are naturally very sensitive to the

complexity of the system. As the system becomes more complex the

sequential simulation time will continue to increase. Another factor

favoring parallel processing is that the current state of technology has

progressed to the point where implementing highly parallel computer

systems is now economically feasible.

As discussed in Chapter 2 the execution of continuous simulation

languages on a digital computer results from two basic processes being

performed, the derivative function evaluation and the integration

formula execution. Both of these lend themselves to parallel

processing techniques which will result in greatly improved execution

time.

19

20

3.1 Parallel Derivative Function Evaluations

During each step (calculation interval) of a continuous simulation

run there is at least one derivative function evaluation that is

performed. The actual number of function evaluations depends on the

particular integration algorithm that is used, with some single-step

algorithms requiring four or more derivative function evaluations for

each calculation interval. For most applications, the function

evaluation process is the most time consuming portion of the simulation.

Therefore a large improvement in overall system performance can be

expected if parallel processing is effectively used to improve the

execution time of this portion of the simulation.

3.1.1 Partitioning by Differential Equations

Before parallel processing can be used, the function evaluation

section must be broken up into a number of concurrent tasks with each

task being assigned to separate processors of the system. One way this

can be done, without effecting simulation accuracy, is to assign each

processor a set of one or more first-order differential equations to

evaluate [12]. Any number between one and N parallel processors can be

used to speed up the simulation; where N is the number of first-order

differential equations that make up the system. With this assignment

scheme the maximum amount of parallelism possible occurs when each

differential equation in the system is individually assigned to a

21

separate processor. As will be noted later, this maximum amount of

parallelism does not always lead to the most efficient simulation.

Some continuous systems contain a set of differential equations

that are a good bit more complex than the other differential equations

in the system. This is especially true when a system contains a few

nonlinear differential equations that are very complex or require the

use of a number of system library routines (such as logarithmic or

trigonometric function evaluations). In this case it is beneficial to

implement another level of parallelism to further subdivide the

processing of each differential equation. The University of Alabama's

OPERA architecture provides a hardware environment that fully supports

such two-level parallelism. More will be discussed on this topic in

Chapter 5.

In the parallel processing environment just described, every time a

function evaluation is performed the processors must exchange a number

of state variables. This means that a certain amount of time will be

lost, due to the communication delay associated with the network that

interconnects the processors. This delay is highly dependent on the

type and speed of the interprocessor communication network used and can

include such factors as propagation delay, delay due to contention, and

delay due to switching time of dynamic elements. The number of state

variables that must be shared between processors depends on how closely

coupled the differential equations are and how the differential

equations are partitioned among the processing elements. For a given

continuous system this number can be anywhere from 0 to N; where N is

the number of differential equations in the system. It is desirable

22

to provide a balance between the amount of processing that occurs within

each processing element of the system and the amount of interprocessor

communication.. Such a processing environment makes optimal use of

parallelism and results from an intelligent allocation of differential

equations to processing elements.

In cases where the number of first-order differential equations

exceeds the number of processors to be used, the intelligent allocation

of differential equations to processing elements is a very complex task.

This allocation process can theoretically be accomplished dynamically

during the simulation, or can occur statically in a preprocessing

environment. Dynamic allocation has the advantage that the allocation

scheme can be adjusted to reflect changing conditions imposed on the

simulation by the outside world. The complexity of this allocation

process, however, tends to favor static allocation, since the proper

allocation of differential equations to processors can be very time

consuming. There are several factors inherent in the continuous system

to be simulated that are important for proper allocation. The

processing time of each differential equation, the number of state

variables that must be transferred between processors, and the dynamic

requirements of the continuous system, must all be considered before the

differential equations can be properly partitioned and assigned.

Most continuous systems are modeled using a set of differential

equations that vary from each other in complexity. Since the processing

time required is generally proportional to complexity, it is reasonable

to assume that these differential equations will have varying execution

times. If communication delay and the dynamic requirements of the

system are ignored, then the optimal allocation is the one that best

23

balances the amount of execution time required at each processor. Even

under these ideal conditions it is very difficult to determine if a

particular allocation is optimal, because the list of possible

assignments is often very large. Also, even an optimal assignment will

most often result in a speedup of less than would be predicted by

dividing the sequential processing time by the number of processors in

the system. This is because it may not be possible to distribute the

processing load evenly among all of the available processors.

Unfortunately, with the speed of today's interconnection networks,

the interprocessor communication delay cannot be ignored. Instead it

must be considered carefully to arrive at an optimal allocation. Such

an allocation results in the fastest run time by partitioning the

differential equations in such a way that there is an appropriate

balance between the amount of processing performed by the processors and

the amount of communication performed between the processors.

Differential equations that describe many physical continuous systems

can be easily partitioned into separate blocks that require relatively

little intercommunication between each block [13]. Often such

partitioning results in decreased execution time, even though the amount

of processing that occurs at each processor is not balanced.

There exists a general class of physical systems called delay-line

models that are especially easy to partition in a way that allows a

balanced amount of processing and only a small amount of interprocessor

communication. In such systems, only a few state variables need to be

passed between adjacent processors. This means a relatively simple

interconnection network such as a nearest neighbor mesh or systolic

array [14-15] can be implemented. These delay-line systems include

such real-world phenomenons as transmission line analysis, blood

circulation, fluid transport phenomena, pollution diffusion in river

systems, irrigation systems, and sewers [16]. Of course, a general

purpose continuous simulation language system should not be restricted

to just these applications. Therefore a more general type of

interconnection scheme seems more appropriate.

Some physical systems are modeled using a set of differential

equations in which certain sections change with time much more rapidly

than others. In other words, the dynamics of the system are such that

several sections have greatly differing time constants. Partitioning in

such "stiff" systems can be performed in such a way that the fast

sections are processed by separate processors. On processors that are

processing these fast sections a different integration formula can be

used [13]. Since this integration formula is better suited to process

the fast sections than the general purpose one used by the other

processors, the calculation interval can remain relatively large. This

effectively decreases the amount of processing time required for

accurate simulation.

Unfortunately, partitioning the system of differential equations on

the basis of system dynamics alone cannot be expected to result in

balanced processing or small interprocessor communication time [16].

There is usually a point reached where the benefits associated with

partitioning by system dynamics are overshadowed by that obtained by

balancing processing load with interprocessor communication.

Currently there is much research worldwide into the development of

allocation algorithms that provide optimal or near optimal process

25

allocation [17-21]. Some of these algorithms work well in cases where

the number of processors is relatively small, but not so well in larger

cases. Other algorithms are centered around interconnection structures

that are not well suited for general purpose continuous system

simulation. Research in this area is just in its beginning stages, and

a major breakthrough might occur at anytime. Until then, allocation of

differential equations to processing elements will have to be performed

using algorithms that have a limited scope. Perhaps the user can be

allowed to choose from several allocation algorithms that are made

available as part of the continuous simulation language. The user can

then select an allocation algorithm in much the same manner as the

integration algorithm is currently selected. This would give the user

the flexibility to try several allocation schemes before choosing the

one that is more suitable to the particular application.

3.1.2 Guided Missile Example

To illustrate the improvement possible by applying parallel

processing to derivative function evaluations, consider the Optimal

Control of Guided Missile Example. This example is a variation of a

well known control type problem which has been presented in a number of

publications [22-25]. The Advanced Continuous Simulation Language

(ACSL) source code representation of this example is shown in Figure

3.1. The example is modeled with fourteen first-order ordinary

differential equations which are tightly coupled. These equations,

along with the initial conditions, are shown in Figure 3.2.

26

PROGRAM GUIDED MISSILE

INITIAL
CONSTANT TEND=1
CONSTANT A=-9,B=17,G=0.5,QT=3
CONSTANT SS1=14.5

MINTERVAL=1.0E-7
MAXTERVAL=1.0

END

DYNAMIC
DERIVATIVE

P1DOT=-G*P4*P4
P2DOT=P1-G*P4*P7
P3DOT=P2+A*P4-G*P4*P9
P4DOT=P3+B*P4-G*P4*P10
P5DOT=2*P2-G*P7*P7
P6DOT=P3+P5+A*P7-G*P7*P9
P7DOT=P6+B*P7+P4-G*P7*P10
P8DOT=2"P6+2*A"P9-G*P9*P9
P9DOT=P8+B"P9+P74-A*P10-G»P9*P10
P10DOT=2*P9+2*B*P10-G*P10*P10
P11DOT=-P2--QT-G*P4*P14
P12DOT=P11-P5*QT-G-VP7*P14
P13DOT=P12+A*P14-P6*QT-G*P9:;:P14
P14DOT=P13+B*P14-P7*QT-G-P10*P14

P1=INTEG(P1DOT,SS1)
P2=INTEG(P2DOT,0)
P3=INTEG(P3DOT,0)
P4=INTEG(P4DOT,0)
P5=INTEG(P5DOT,0)
P6=INTEG(P6DOT,0)
P7=INTEG(P7DOT,0)
P8=INTEG(P8DOT,0)
P9=INTEG(P9DOT,0)
P10=INTEG(P10DOT,0)
P11=INTEG(P11DOT,0)
P12=INTEG(P12DOT,0)
P13=INTEG(P13DOT,0)
P14=INTEG(P14DOT,0)

TERMT(T .GT. TEND)
END

END
END

Figure 3.1 ACSL Source Code for Guided Missile Example

27

Constants:

A=-9,B=17,G=0.5,QT=3

Set of Differential Equations:

PI = -G(P4)(P4)

P2 = PI - G(P4)(P7)

P3 = P2 4- A(P4) - G(P4)(P9)

P4 = P3 + B(P4) - G(P4)(P10)

P5 = 2(P2) - G(P7)(P7)

P6 = P3 + P5 + A(P7) - G(P7)(P9)

P7 = P6 + B(P7) + P4 - G(P7)(P10)

P8 = 2(P6) + 2(A)(P9) - G(P9)(P9)

P9 = P8 + B(P9) + P7 + A(P10) - G(P9)(P10)

P10 = 2(P9) + 2(B)(P10) - G(P10)(P10)

Pll = -P2(QT) - G(P4)(P14)

P12 = P11-P5(QT)-G(P7)(P14)

P13 = P12 + A(P14) - P6(QT) - G(P9)(P14)

P14 = P13 + B(P14) - P7(QT) - G(P10)(P14)

Initial Conditions:

Pl=14.5,
P2=P3=P4=P5=P6=P7=P8=P9=P10=P11=P12=P13=P14=0

Figure 3.2 Set of Differential Equations for Guided Missile Example

28

Before a comparison can be made between the serial and parallel

execution of the derivative function evaluations, certain performance

measures must be defined. These measures include the speed-up ratio,

utilization, cost, and effectiveness, all of which are described in

reference [26].

The speed-up ratio, Sp, for a parallel implementation in comparison

with serial implementation is defined by

Sp = Ts/Tp, (3.1)

where Ts is the serial execution time, and
Tp is the parallel execution time.

It is always desirable to have a speed-up ratio much greater than one.

The ideal speed-up ratio is equal to the number of processors in the

system.

The efficiency or utilization, Ep, of a parallel implementation is

Ep = Sp/p, (3.2)

where Sp is the speed-up ratio, and
p is the number of processors.

This is the proportion of time that the least productive processor in

the system is busy carrying out useful calculations.

The relative cost, Cp, of the parallel implementation is defined by

Cp = p*Tp, (3.3)

where p is the number of processors, and
Tp is the parallel execution time.

This relative cost should be compared with the serial execution time.

Ideally, the cost should remain constant regardless of the number of

processors that are in the system. In most practical situations,

however, the relative cost of a parallel implementation will continue to

rise as the number of processors increases.

29 .

The relative effectiveness, REp, of the parallel implementation is

defined by

REp = (Sp)*(Ep), (3.A)

where Sp is the speed-up ratio, and
Ep is the efficiency or utilization.

If the speed-up ratio and efficiency are of equal importance, then the

relative effectiveness is a good figure of merit to use to determine the

optimal number of processors needed for the parallel implementation.

For cases where the Euler integration algorithm is selected to

perform continuous simulation, the total execution time can easily be

described by a set of algebraic equations. (The Euler integration

algorithm is considered here due to its simplicity; similar equations

can be derived to determine the execution time for other integration

methods.) These equations take into account the communication delay of

the interprocessor communication network, and are valid provided the

following assumptions concerning the parallel processing environment are

true:

(1) The communication network allows for general broadcast
type communication to occur between processors.

(2) Only one broadcast type message can occur at a given
time throughout the network.

(3) No interprocessor communication can occur when processing
is occurring within any of the processing elements.

Using these assumptions the processing time, TPi, required for each

processor i is given by

TPi = (TD1+...+TDJ) + j*2 +1, (3.5)

where j is the number of differential equations allocated to
processor i, and

TD1+...+TDj is the total processing time for the
differential equation(s) allocated to processor i.

30

Therefore the total parallel execution time, Tp, is given by

Tp = max(TPl,...,TPi,...,TPn) + Sv*cd, (3.6)

where TP1,...,TPi,...,TPn represent the set of processing times
for each processor i of the system,

Sv is the number of state variables that must be passed
between processing elements, and

cd is the communication delay associated with the network.

These performance measures can now be used to better understand the

merits of parallel derivative function evaluations during the simulation

of the Guided Missile Example.

In investigating this example, the number of floating point

operations (additions, subtractions, multiplications, and divisions)

occurring in each of the fourteen differential equations of Figure 3.2

were individually totaled. For simplicity each floating point operation

was given an equal weight. These values were then used as rough

estimates of the relative time required to execute each differential

equation.

Before this example was simulated, the allocation of the

differential equations to processing elements was performed using a very

primitive software routine that is contained in Appendix A. As the

number of processors in the system was varied from two to twelve, the

routine produced an allocation based on balanced processing time. In

each case, the allocation produced was the one with the best run time of

the approximately 60,000 random allocations tried. In the cases of

systems with thirteen and fourteen processors, an optimal allocation was

manually performed. A list of these allocations also appears in

Appendix A. For each case, the communication delay, cd, of the

interprocessor communication network was allowed to take on four

distinct values. The communication delay was measured in relative

31

terms, as a multiple of floating point operations. Substituting these

selected values of communication delay into the equations discussed

previously, four tables of performance measurements were created (see

Appendix A).

From the data in these tables, the performance measurements are

charted on separate graphs as the number of processors is allowed to

vary from one to fourteen. Within each graph, separate performance

curves are plotted for interprocessor communication delays of 0.0, 0.5,

1.0, and 3.0 floating point operations, respectively. Each of these

graphs will now be discussed.

Figure 3.3 shows the speed-up ratio versus the number of processors

for the Guided Missile Example. Notice for all curves on the graph,

that as the number of processors increases, the speed-up ratio also

tends to increase but at a diminishing rate. In the case where

communication delay is ignored (cd=0.0), the maximum speed-up ratio of

9.73 occurs in systems that have thirteen or fourteen processors. Since

it is unlikely that the allocations made on this graph are all optimum,

there is a chance that the maximum speed-up ratio of 9.73 could also

occur in systems that use ten, eleven or twelve processors if a better

allocation can be found. (It would take at least ten processors to

obtain a speed-up ratio of 9.73, since the maximum speed-up ratio

possible for a system is equal to the number of processors in that

system.) In cases where the communication delay does not equal zero,

the graph shows that the speed-up ratio is reduced by a considerable

amount. In the case where the communication delay is the largest

(cd=3.0), the speed-up ratio peaks at about 2.0. If the communication

delay were increased much beyond this point, the speed-up ratio would be

less than 1.0 and approach zero as the number of processors increases.

32

0
tn
!0
0)

u
su

tn
CD

o
ol

tt
V)

a
i

•a
a
va.

u
3

dp —

33

This tends to illustrate the importance of having the fastest possible

interprocessor communication network, and the need to consider

interprocessor communication time during the allocation process. An

allocation that considers interprocessor communication time tends to

minimize the use of the communication network and is therefore less

sensitive to the speed of such a network.

Figure 3.4 shows the relative "cost" of each parallel

implementation as the number of processors is varied. With a few

exceptions this "cost" tends to increase on the given system as the

number of processors increases. The exceptions to this rule are caused

by a more efficient allocation of the differential equations to the

processing elements. The graph shows that relative "cost" is greatly

affected by the amount of communication delay present in the network.

As the communication delay is increased, this "cost" can skyrocket.

Figure 3.5 illustrates the utilization or efficiency that occurs

under the current allocation, as the number of processors is varied.

This utilization can be thought of as the proportion of time that the

least productive processor in the system is busy carrying out useful

calculations. As might be expected, the graph shows that for each case,

the utilization tends to decrease as the number of processors is

increased. There are a few exceptions to this, caused again by the more

efficient allocation of the differential equations to the processors.

The effect of increasing communication delay in the network is also

shown in the graph. As the communication delay increases, there is a

sharp decrease in utilization present in the system.

In Figure 3.6 the effectiveness is plotted with respect to the

number of processors used. This performance measure can be used to find

V)u
o
ifl
V)
0)
u
0u

2-

U)
3
VIu
a)

V)
-0u

(0
r-t
a

u
a
3d

35

_ 0

- <O

a
en
<n
ai
u
o

<o
J2

e

Ulu
o

u
o

o
u
Ji

u
3)

O

in
en
a)

36

_ CSI

_ O

01
01
(J
a
£

*5

E
3

W
U
O

u
0

u
Ji
§
z
VI
3
Wl
u
(U

0)

Cd

rn
0)u
3
oa

00

the optimal number of processors if both the speed-up ratio and the

utilization are considered to be of equal importance. In the case where

the communication delay is zero (cd=0.0), the maximum effectiveness

occurs when thirteen processors are used. Notice that when the

communication delay is not zero, the point at which the maximum

effectiveness occurs changes. In the case where the communication

delay equals 0.5, the maximum effectiveness occurs when seven processors

are used. When the communication delay is 1.0, the maximum

effectiveness occurs with four processors, and when the communication

delay is 3.0, the maximum effectiveness occurs with one processor.

3.1.3 Partitioning by Low-Level Tasks

Another approach to the parallel execution of derivative function

evaluations is to partition the function, not at the differential

equation boundary, but rather into lower-level concurrent tasks. These

low-level tasks can then be assigned to separate processors for parallel

execution. With this allocation scheme it is possible to implement a

higher degree of parallelism than can often be done in cases where the

smallest unit of allocation is the differential equation. The amount of

processing performed by each processor in the system is also more evenly

distributed.

Much research has been undertaken into the general area of

decomposing equations into a set of concurrent tasks [27-29]. A major

problem stems from the fact that most of the methods that have been

38

developed produce such finely grained tasks, that if each task is

executed on a separate processor the communication delay negates any

possible performance advantage. Allocating several of these finely

grained tasks to each processor in the system is one approach to reduce

this communication delay. Unfortunately, this is not always effective,

and is most often a very complex process. Another problem is that few

of these decomposition strategies have been converted into software,

which tends to illustrate their relative complexity.

3.2 Parallel Integration Algorithms

The major problem with the parallel execution of derivative

function evaluations is the difficulty associated with properly

allocating and partitioning the problem in an optimal manner. Because the
0

efficiency of execution is highly dependent upon how the partitioning is

performed, it is hard to predict the amount of performance gain that can

be expected without carefully analyzing each application.

A more general approach would be to improve performance by making

use of parallel integration algorithms. With this approach, parallelism

results from the nature of the algorithm itself, not by parallel

operations being performed within the set of differential equations.

Such an approach allows for a more predictable and application

independent implementation, which is much easier to realize. It does

not, however, allow for the ability to take advantage of the decreased

interprocessor communication that occurs in lightly coupled systems.

39

3.2.1 Parallel Predictor-Corrector Algorithm

A parallel variation of the classical Adam-Moulton

predictor-corrector algorithm has been presented by Miranker and Liniger

[30]. This algorithm allows for processing to be divided among an even

number of processing elements, resulting in half the processing elements

processing predictor equations and the other half processing corrector

formulas. Each processing element processes a different integration

step, with the predictor processors always processing integration steps

that are ahead of the corrector processors. During every integration

step, each processor will perform one derivative function evaluation.

The set of differential equations are assumed to reside within the local

memory of each of the processors in the system, otherwise contention

will result.

As with the serial Adam-Moulton method, this parallel algorithm is

not self starting. Before the simulation begins, the first few

integration steps have to be performed using another integration

algorithm. This algorithm can be expanded to incorporate any even

number of processing elements, but only the two and four processor cases

will be presented here.

The equations for the second-order and fourth-order two processor

predictor-corrector algorithms are

second-order two processor predictor-corrector equations

YP = YC. . + 2hFP.,
i+l i-l i (3<7)

YC. = Y0..̂ + h/2(FPi + F
0..̂),

fourth-order two processor predictor-corrector equations

YP = Y°. , -I- h/3(8FP. - 5F°. . + 4FC. , - FC. ,),
i+l i-l i i-l 1-2 i-3 /_ Rx

YC. = Y°. . + h/2A(9FP. +19F°. , - 5F°. , - F°. ,).
i i-l i i-l i-2 i-3 •

A simple flow diagram of the second-order and the fourth-order

two processor cases are shown in Figures 3.7a and 3.7b. Notice in both

cases, one processor executes the predictor equations, and the other

executes the corrector equations. As would be expected the predictor

processor is one integration step ahead of the corrector processor. At

the end of each integration step, data is transferred between the

processors. This data includes the predicted derivative values (F™),

the corrected state variables (Y) and, in the fourth-order case, the

f\

corrected derivative values (F); all of which are vectors of size equal

to the number of differential equations in the system. At the end of

every step, each processor's internal time variable is incremented by

one calculation interval, and the next processing step is begun.

The equations for the second-order four processor case are

predictor equations

- Y<=2i-2

corrector equations

YC2. = YC2..3 - h/2<»"21 - W'̂).

*C2i-l = YC21-3 + 2hF°2i-2-

The flow diagram for this four processor case is shown in Figure

3.7c. Notice that two processors execute predictor equations, and the

other two execute the corrector routines. One of the predictor

41

(a) 2nd-0rder Parallel Predictor-Corrector Method
(Two Processor Case)

LF- F5M i . r l i -

r<. - r'^ .

f(YC.,t)

Ff V?
Predictor Processor i+1 Corrector Processor i

(b) 4th-0rder Parallel Predictor-Corrector Method
(Two Processor Case)

T'. . YC. ,
l*t l-l

v'T i-l fi,

YC. • YC » h/24(?FP. *

((YC.,t)

Predictor Processor Corrector Processor i

(c) 2nd-0rd»r Parallel Prodictoi—Corrector Method
(Four Processor Case)

' rF»l .. ,Yt-.

T' • i* > IK'
»•! Il-l 11

1

..r,,.,.,,

tF7i«a

1 rfn! r *' i

''u.i ' ''»-, ' »«"':, '
1

Si.!'"

•Fj[i4

.Yfi-.

''» ,'

1

^-,

pf Yi,-,

f'u • ''11-1 • """'n ' "'u-!1

i

'"'»

i

'Yt,

,tl

1 f.i

Fa,-a YC,

•"ll-l ' •*.!-. ' ^2i-l

1

'" ii-r"

"Y~-'

Pridictor Proctnor 2i»2 Prtdlctor Procejsor 2i*l Corrector Procetiar 2i Corrector Processor 2j-l

Figure 3.7 Flow Diagram for Parallel Predictor-Corrector Method

42

processors executes one integration step ahead of the other predictor

processor and, in a similar way, one of the corrector processors

executes one integration step ahead of the other corrector processor.

Both predictor processors execute ahead of the two corrector processors.

At the end of each processing step, data is transferred between the

processors. This data includes the predicted derivative values (F™'s),

the corrected state variables (Y 's), and the corrected derivative

values (F *s); again all of which are vectors whose size is equal to the

number of differential equations in the system. At the end of every

processing step, each processor's internal time variable is incremented

by two calculation intervals, and the next processing step is begun.

The speed-up ratio associated with these methods can be easily

calculated. In the two processor cases (Equations 3.7 & 3.8) there is a

theoretical speed-up ratio of two over the sequential

predictor-corrector methods (Equations 2.4 & 2.5), since the predictor

and corrector equations are now being processed concurrently. In the

four processor case (Equation 3.9), there is a theoretical speed-up

ratio of four, since in addition to spreading out the predictor and

corrector calculations between separate processors, state variable

calculations are being made for two integration steps at a time. This

of course assumes no interprocessor communication delay. For the two

processor cases, there are two or three vectors each of size N; where N

is the number of differential equations in the system that must be

transferred between processors. In the four processor case there are

five such vectors. This means that there is the potential for a large

amount of communication delay, if the number of differential equations

A3

is large. This can be largely overcome by carefully designing the

system architecture around the integration algorithm.

Unlike the case where parallelism occurs through parallel execution

of the derivative functions, using a parallel integration algorithm can

have an effect on simulation accuracy and stability. According to

Miranker and Liniger [30] the error characteristics of the parallel

predictor-corrector algorithm are comparable to that of the serial

method. To confirm this conclusion both the serial and parallel

algorithms were applied to a number of benchmark examples (see

Appendixes B and C). The two processor predictor-corrector methods

produce results that have approximately the same accuracy as the same

order serial method. With the four processor predictor-corrector method

the accuracy of the results decreases somewhat for each benchmark. This

causes concern about the practicality of expanding the number of

processors with this algorithm indefinitely. Furthermore, the

stability observed in these benchmarks tends to decrease as the number

of processors in the system is increased. The serial algorithm provides

the most stability, and the four processor parallel algorithm is least

stable. Whether this is a serious problem depends on such factors as

the stability of the system being simulated and the required accuracy.

3.2.2 Parallel Block Predictor-Corrector Algorithm

Another parallel predictor-corrector algorithm is the block

implicit algorithm presented-by Shampine and Watts [31-32]. This

44

algorithm requires that time be divided into series of blocks, where

each block is in turn subdivided into a number of steps of time. The

predictor equations for each step within a block can then be

concurrently processed, since they only require values from previously

executed blocks. Derivative function evaluations at each step can also

be executed concurrently. At this point, data must be transferred

between the predictor portion to the corrector portion of the block.

The corrector equations for each step and the derivative function

evaluations can then be concurrently executed. With this algorithm,

data is transferred between tasks twice during each block, once in the

middle of the block when data is shared between different predictor and

corrector steps, and once at the end of the block.

As with the other predictor-corrector algorithms the block method

is not self starting. Before the simulation begins, the first few

integration steps have to be performed using some other integration

algorithm.

The equations for the fourth-order two-step parallel block

predictor-corrector algorithm are

predictor equations

p - i/3(Yc._2 + Y'..! + Y
C.) +

h/6(3FC.._2 - F
C
1_1 4- 13F

CJ,

= 1/3(YC._2 + Y'..! + Y
C.) +

h/12(29FCi_2 - 72F
C
1_1 + yQF^), (3.10)

corrector equations

45

Figure 3.8 represents a flow diagram for this case. Notice that there

are two time steps, i+1 and i+2, that are being processed during each

simulation block. Both time steps are first processed by separate

predictor equations and then by separate corrector equations.

Derivative function evaluations occur directly after processing by each

equation. Since the two predictor and two corrector equations are

completely independent from each other, separate processors can be

assigned to process the two time steps. As Figure 3.8 shows, between

the predictor and the corrector sections, predicted data is transferred

between processors. This data is in the form of the F . - and the F*5. „

vectors which are each of size N; where N is the number of differential

equations in the system. After the corrector sections have completed

their execution, the corrector data must be transferred between

processors, this time to start a new simulation block. The corrector

data that is transferred during this time are the Y . ., F . ., Y . „,

Q

and the F _ vectors, each of which are also of size N; where N is

again equal to the number of differential equations in the system. At

the end of each block, both processor's internal time variables are

incremented by two calculation intervals, and the execution of the next

block is begun.

With this two-step parallel algorithm there is a theoretical

speed-up ratio of two over the same order sequential predictor-corrector

method (Equation 2.5). This is because processing is performed for two

integration steps at a time. This of course is assuming the ideal case

of no interprocessor communication delay. During each block there are a

total of six vectors that must be transferred between the processors.

4th-0rder Parallal Block Prodictor-Corrector Method
(Two-Step Case)

?
F.̂

"nrf ̂ ̂

. . V.1«1 « Y I

v.cYi-i v.cTI-I Yf =,-, F«.

F,",,

y JF̂ F,:

I

Precjic tor

Eva 1uations

Correc tor

Eva luations

Processor i+1 Processor i+2

Figure 3.8 Flow Diagram for Parallel Block Predictor—Corrector Method

47

This compares to the three vectors that must be transferred when using

the parallel two processor predictor-corrector algorithm presented in

Equation 3.8. The actual amount of interprocessor communication that

occurs in both instances is actually the same, since the two-step block

method produces values for two time intervals, whereas the other method

processes data for only one. As has been discussed previously, the

adverse effect of interprocessor communication delay can be negated

somewhat by carefully mapping the parallel computer architecture

directly to the integration algorithm.

The accuracy of the block method compares closely with that of the

serial predictor-corrector algorithm for each of the four benchmark

examples contained in Appendix C. The stability was found to be less

than the serial method, but greater than the four processor

predictor-corrector algorithm described by Equation 3.9. The stability

of this two-step block method generally compares favorably with that of

the two processor predictor-corrector method of Equation 3.8. In

exploring the benchmark examples, the stability of the block method was

found to be equal to, or only slightly less than, that of the two

processor predictor-corrector method.

3.2.3 Parallel Taylor Series Algorithm

Another parallel integration approach is introduced through the

EMPRESS project'of ETH in Zurich, Switzerland [33-34]. This project

centers around the development of a parallel simulation environment

using the the Taylor Series Expansion as the means of integrating

48

differential equations'. This algorithm uses symbolic analytic recursion

techniques to calculate the higher derivatives that are necessary for

acceptable accuracy. The algorithm has been proven very well suited to

parallel processing despite its heavy use of recursion, and the

resulting method seems to work well for a number of engineering type

applications.

In the EMPRESS project, the algorithm is processed in an

environment where the processors execute under either a master or slave

status. Synchronization is maintained by a centralized device called

the job control unit that is also responsible for assigning the

processors their master or slave status.

This algorithm is difficult to explain and depends heavily on the

type of implementation. Therefore it will not be discussed further.

3.2.4 Parallel Runge-Kutta Algorithm

A parallel version of the Runge-Kutta algorithm is also presented

by Miranker and Liniger [30]. This algorithm is inherently unstable,

leading to greater error as the integration step size is made smaller.

For this reason, the algorithm is not considered further.

3.2.5 Integration Algorithm Comparison

To gain a practical perspective into the continuous simulation

process, six serial and four parallel integration algorithms were

49

applied to four benchmark examples (see Appendixes B and C). The

integration algorithms were implemented in the form of computer programs

written in the C language. Each algorithm was then compiled into a

separate file. In a similar manner, the four benchmark examples were

also coded in the C programming language and compiled into separate

files. Then each one of the algorithm files was linked together with

each of the benchmark files, allowing the ten integration routines to be

applied to all four benchmarks. The programs were written in such a way

that the total number of derivative function calls, the total number of

floating point operations, and the maximum local error that occurred

during the simulation run, were all calculated and reported. In the

cases of the parallel algorithms, the effective number of function calls

and floating point operations were reported, taking into account the

parallelism of the algorithm. Through these measures the various

algorithms were compared.

The six serial integration algorithms that were implemented were

the Euler (Equation 2.3), the variable-step trapezoidal (Equation 2.6),

the second-order Runge-Kutta (Equation 2.7), the fourth-order

Runge-Kutta (Equation 2.8), the second-order Adam-Moulton

predictor-corrector (Equation 2.4), and the fourth-order Adam-Moulton

predictor-corrector (Equation 2.5) algorithms. The parallel algorithms

were the second-order parallel predictor-corrector two processor case

(Equation 3.7), the fourth-order parallel predictor-corrector two

processor case (Equation 3.8), the second-order parallel

predictor-corrector four processor case (Equation 3.9), and the

fourth-order two-step parallel block predictor-corrector (Equation 3.10)

methods. The continuous systems that served as benchmarks were the

Spring Dashpot System [35], Orbiting Maneuvering Vehicle [36], Pilot

50

Ejection [8], and the Optimal Control of Guided Missile [21-25]

Examples. Each of these benchmarks appears in Appendix C.

In applications where the number of differential equations is large

or exceedingly complex, the dominant amount of time during the

simulation will be spent performing derivative function evaluations. In

these cases a good indication of execution time is the total number of

equivalent function evaluations that are to be performed. If accuracy

is not considered, then for a given calculation interval the integration

algorithms will have the following relative execution times. The four

processor predictor-corrector algorithm will have the fastest execution.

This is followed by the serial Euler method along with the block and the

two processor parallel predictor-corrector routines, each of which have

the same execution time. The serial predictor-corrector algorithm and

the second-order Runge-Kutta algorithm then follow, each with similar

execution times. The slowest case is the fourth^order Runge-Kutta with

an execution time of eight times slower than the fastest method—the

four processor predictor-corrector method.

Of course the speed of the simulation is of little consequence if

its results are not accurate. In fact, the accuracy of the simulation

is of vital importance in determining the relative performance of each

integration algorithm. An integration routine that executes faster with

a given integration step size (calculation interval), but is less

accurate than another routine, often requires a longer execution time to

achieve results of the same accuracy. To increase the accuracy of such

a routine a smaller integration step size must be used. Thus a larger

number of integration steps will be executed during the simulation,

which in turn leads to an increased execution time. The Euler

integration method is an example of an algorithm that executes very fast

51

for a given integration step size, but in general is not very accurate.

Because of its error characteristics this algorithm results in very slow

simulation times to obtain reasonable accuracy and is rarely used to

simulate most continuous systems.

Figure 3.9 shows the effective number of derivative function calls

versus the maximum local error for the ten integration methods that were

applied to the Spring Dashpot Benchmark. As would be expected for each

integration algorithm, when the amount of error in the simulation is

allowed to increase, the number of derivative function calls required

decreases. If the derivative function evaluations are the dominant

portion of the simulation, then the effective number of derivative

function calls will be roughly proportional to the execution time for

the simulation. Thus the graph can be interpreted to show, that as the

solution accuracy decreases, the execution time for each method also

decreases.

A comparison of the different integration algorithms in Figure 3.9

shows that the fourth-order algorithms tend to execute faster for this

application than the second-order ones. The faster execution times

associated with the second-order algorithms for a given integration step

size are more than offset by the amount of error that is present in the

results. The routine with the fastest execution time is the

fourth-order two processor parallel predictor-corrector algorithm

followed closely by the fourth-order parallel two-step block

predictor-corrector algorithm. The fourth-order serial

predictor-corrector algorithm and the fourth-order Runge-Kutta

algorithms are next. When the maximum error is less than 10 the fifth

and six fastest algorithms are the second-order four processor parallel

predictor-corrector algorithm and the second-order two processor

52

SPRING DASHPOT EXAMPLE
Integration Algorithm Comparison

s'o
10 -7 10 10 1 0 "4 1 0 ~J 10

Local Error

10

ED Eulir

TP V»riiDlf6ttp Tnpttoidjl

R? 2nd-tird«r Runqe-Kuttl

R4 4th-0riiir Ruixje-Kutti

P2 2nd-flrd«r Predictor-Corrector

P4 4tli-flrd«r Prrtictor-Correctur

P22 2nd-0rdir P»r«ll i l Pridictor-Comctor
(t»o proctnor cue)

P24 2nd-0rdtr Ptri l l i l Prtdictor-Corrictor
(four procmor cut)

P42 4tb-flrder P j r j l l e l Predictor-Corrector
(t«o processor cue)

B42 4th-flrder Pirillil Slock Predictor-Corrector
(tiro proctiior

Figure 3.9 Effective Number of Derivative Calls versus Local Error

53

parallel predictor-corrector algorithm, respectively. For errors

greater than 10 , the two algorithms execute at about the same speed.

Thus even the speedup gained through the use of four processors does not

always make up for the inaccuracy of the algorithm. The four slowest

integration algorithms for this example are all low-order serial

algorithms. The seventh fastest algorithm is the second-order

predictor-corrector, followed closely by the second-order Runge-Kutta

algorithm. The variable-step trapezoidal algorithm is next, with the

Euler algorithm being by far the slowest algorithm.

The Spring Dashpot System is modeled using only two rather simple

differential equations. Therefore, the derivative function calls may

not represent the dominant portion of the simulation. It is probably

more accurate to estimate the relative execution time by the equivalent

number of floating point operations that are performed during the

simulation. This was done for each of the ten integration methods,

with each type of floating point operation being given the same weight.

Figure 3.10 shows a graph of the effective number of floating point

operations versus the error for each of the ten integration algorithms

in the Spring Dashpot System. A primary difference between this graph

and that of Figure 3.9 is that the serial fourth-order Runge-Kutta

algorithm is now the second fastest algorithm, replacing the parallel

fourth-order two-step block predictor-corrector algorithm. With this

particular system, implementation of a serial integration algorithm is

almost as efficient as implementing the fastest parallel algorithm.

Another important difference between this graph and that of Figure 3.10

is the four processor second-order parallel predictor-corrector

algorithm is actually slower than the same order two processor

54

SPRING DASHPOT EXAMPLE
Integration Algorithm Comparison

10 7q

o.
a

aa.
a<
c

u.
•*•
o

n
£

• 10 *-

10 3-

P2

P22

P42

10 -7 10 -6 10 -5 10 1 0 "3 10
Local Error

-2 10 10

ED Eultr

TP Vjriabli-Stip Trjpnoidtl

R2 2nd-flrd»r Rungi-Kutta

R4 4th-flrder Runqe-Kutti

P2 2nd-flrd«r Pridictor-Corrtetor

P4 4tlH3rdir Pndietor-Carrtetor

P22 2nd-0rdtr Pirillil Prtdictor-Corrtetor
(t»o precntor cm)

P24 2nd-flrdir Pirillil Pridietor-Cornctor
{(our proctnor cisi)

P42 4th-flrder PirjlUl Predictor-Corrector
(t»a processor cise)

B42 4th-flrdtr Pinllil Block Prtdictor-Comctor
lt»o prociiiar cm)

Figure 3.10 Effective Number of Floating Point Operations
•versus Local Error

55

algorithm. This is due to the added complexity of the four processor

algorithm combined with its slight decrease in accuracy.

Several conclusions can now be made. First, when the amount of

error is considered the integration algorithm that provides the most

parallelism is not necessarily the fastest algorithm. There appears to

be a point with most parallel algorithms where adding more processors to

the system causes a decrease in performance due to the increased amount

of error. Second, if the relative size and complexity of the system to

be simulated is small then a sequential integration algorithm may be

more efficient than a parallel algorithm. In a general purpose system,

serial algorithms should be made available for use, in addition to the

parallel ones. Finally, the optimal integration algorithm is highly

dependent on the particular system that is being simulated. No

algorithm, serial or parallel, works the best in all situations.

3.3 Combined Approach

The parallel execution of derivative function evaluations .and the

use of parallel algorithms can be combined through a computer

architecture that allows for two or more levels of parallelism. This

permits parallelism to be more easily spread out among the processing

elements. In such an architecture, the parallel algorithm is executed

at the upper level of the hierarchy, and the lower levels are devoted to

the parallel execution of derivative function evaluations. Each level

of the architecture is linked by an interconnection network that is

specifically designed to handle the type and amount of interprocessor

communication for that level.

56

Unfortunately, this combined approach inherits the problems

associated with the two individual approaches. For example, there is an

allocation problem caused by the parallel execution of the derivative

function evaluations, and the parallel integration routine must be

chosen carefully or excessive error will result. Still this approach

provides much of the criteria necessary for the development of an

improved processing environment for continuous simulation.

CHAPTER A

GENERAL CONFIGURATIONS THAT SUPPORT IMPROVED SIMULATION

4.1 Current Configurations

Today most continuous simulations are performed using computer

systems that have very traditional architectures. These systems are

usually configured to execute program code sequentially, or in a vector

processing mode using one or two processing elements. It is common for

such systems to contain a large amount of global memory and only a small

amount of on-chip cache memory in which both instructions and data are

stored.

Furthermore, most computer systems that are used for continuous

simulation have been designed to execute computationally intensive

software written in conventional high-level languages. Software written

in a continuous simulation language, such as ACSL, is often translated

into a general purpose high-level language, such as FORTRAN, before it

is compiled into machine code. This means that program code for a

continuous simulation is present on the system in three forms,

Continuous Simulation Language source code, High-Level Language source

code, and the executable object code.

The two step process of translation from continuous simulation

languages into other high-level languages before compiling to machine

57

58

code is usually a source of inefficiency. This inefficiency directly

affects the execution time of the resulting simulation. Overall

performance can be improved by eliminating one or both of the

translation/compilation steps. There are a number of possible system

configurations that allow more efficient execution of continuous

simulations. These include configurations that support the direct

compilation of continuous simulation languages to object code, direct

translation of continuous simulation languages to an intermediate

high-level language which is directly executed, and direct execution of

the continuous simulation language. Each has its advantages and

disadvantages as will be discussed in the following sections.

4.2 Direct Compilation

Direct compilation of the continuous simulation language into

object code is one method by which overall performance can be improved.

This method requires a separate compiler be written that converts the

continuous simulation language directly into the executable object code

to be run on the system. The advantage of such an approach is that a

specially designed compiler can be optimized to produce much more

efficient code than the general purpose compiler. Also, only two forms

of code would need to be present on the system at a given time, the

continuous simulation source code and the executable object code. The

primary disadvantage of this scheme is the loss of flexibility resulting

from the absence of a general purpose high-level language. It would now

be impossible to extend the capabilities of the continuous simulation

59

language simply by writing subroutines in a general purpose high-level

language. Another disadvantage of this scheme is that creating a

compiler is usually a much harder task than creating a translator.

Compiler complexity depends to a large extent on how well the

instruction set of the processing elements of a computer system relates

to the constructs of the continuous simulation language. If there is a

close match, then the creation of a compiler is simplified. If not,

then compiler creation is more complex. Current computer systems are

often designed around processing elements that have relatively complex

instruction sets (CISC), but there is also a trend to build computer

systems using reduced instruction set processors (RISC) [37]. Current

research has provided evidence that for some applications a computer

system built using very efficient reduced instruction set processors can

out perform a comparable system that uses complex instruction set

processors [38]. This is supported by the fact that often application

programs in a complex instruction set system make primary use of only a

small percentage of the instructions available. The inclusion of the

rarely used instructions in the instruction set of a complex instruction

set processor is a source of inefficiency which tends to diminish the

overall execution speed of all instructions executed. Compilers for

complex instruction set machines are moderately complex whereas

compilers for reduced instruction set machines can be very complex.

60

4.3 Direct Translation

Another implementation that improves efficiency is the creation of

a hardware environment that allows the continuous simulation language to

be translated directly into a general purpose high-level language that

is the base language of the system. This means that the continuous

simulation language is first translated into the general purpose

high-level language, which is then directly executed by the system. In

such a system the hardware would be designed to interpret and execute

each instruction of the high-level language. There is be no need for a

compiler because the particular high-level language acts as the

lowest-level language of the system. A primary advantage of this

approach is that by eliminating the compiler, efficiency is improved

without the loss of flexibility associated with having a high-level

language present. Also, the simulation process can be made more

interactive than on conventional systems. This is because on current

systems, after a change has been made to a simulation run, the

high-level language must be recompiled, and the act of compiling the

high-level language to source code is often a very time intensive

process. Another advantage to the intermediate execution approach is

that only two forms of the continuous simulation will ever need to be

present on the system at the same time, the continuous simulation

language source code, and the high-level language code.

The primary disadvantage to the direct translation approach is the

large amount of hardware required to effectively interpret and execute a

general purpose high-level language. Unfortunately, much of this

hardware is rarely used by the simulator. This is because a general

61

purpose high-level language often contains many more instructions and

features than are actually needed for continuous system simulation.

Even though there has been much worldwide research in developing direct

execution processing elements for a number of high-level languages there

are only a few that are currently available on the commercial market.

Most of these processing elements process various versions of the LISP

language [39]. For continuous system simulation there is some question

as to whether the LISP language would make an effective intermediate

language. This is because LISP is much more suited to perform symbolic

operations than numerical computations, and continuous simulation is a

very numerically intensive process.

4.4 Direct Execution

The final implementation to consider is one that improves

efficiency by creating a hardware environment that directly executes the

continuous simulation language. This means that the continuous

simulation language is interpreted and executed directly by the hardware

of the system. There are several advantages to this approach. First,

execution can be made to be very efficient, since the system

architecture is designed to directly match all the constructs of the

continuous simulation language. Also, no compiler and no translator is

present on the system, so simulation runs can be made very interactive.

A further advantage is that continuous simulation code exists in only

one form, the continuous simulation source language.

62

A primary disadvantage to this approach is that there are currently

few, if any, processing elements .commercially available for the direct

execution of continuous simulation languages. Before a system can be

constructed, the direct execution processor must be designed and

implemented. The design of the continuous simulation language direct

execution processor will undoubtedly be very complex (but probably not

as complex as the design for a general purpose high-level language

direct execution processor). Another possible disadvantage to this

approach stems from the general lack of flexibility that is present

within the system. Not only will it be impossible to make use of an

additional high-level language to extend the capabilities of the

continuous simulation language, it is very hard to use the system for

any other application.

4.5 Parallel Configurations

All three configurations for improved execution can be adapted to

incorporate any number of processing elements. In cases where the

number of processors is greater than one, the job of partitioning the

problem into a number of concurrent tasks and assigning these tasks to

the processors is an added concern. Figure 4.1 illustrates how these

environments can be adapted to support the parallel execution of

high-level continuous simulation languages.

63

.1WGE K
OF POOR QUALITY

Computer Configurations that Support the Parallel Execution of
High-Laval Continuous Simulation Languages (CSLs)

CASE: 1

CSL Compilation
&

Task Allocation

Lou-Level
Intermediate
Language

(micro-code)
Very Simple

Processing Elements
(ex. RISC PEs)

CASE: 2

High-Level

CSL *

Medium- Level
Intermediate
Language

CSL Compilation
4 *

Task Allocation

Conventional
Processing Elements

(ex. CISC PEs)

CASE: 3

CASE: •'.

General Purpose
Intermediate

High-Level Language

High-Level

CSL *
CSL Translation

& i,
Task Allocation

Task
ft

Allocation

No
Intermediate
Language

General Purpose HLL
Direct Execution
Processing Elements
(ex. LISP PEs)

CSL Direct Execution
Processing Elements

(ex. ACSL PEs)

Task Allocation complexity depends on a number of factors
including process granularity and how well endowed the CSL is with
parallel constructs.

Figure 4.1 Parallel Configurations for Improved Execution

6A

Case 1 and Case 2 of Figure A.I illustrate the direct compilation

approach within a parallel environment. In both cases the continuous

simulation language is processed by a compiler and a task allocator. In

Case 1 the compiler produces code that is very low level, containing

only a small number of simple instructions. This code retains few of

the constructs contained in the original continuous simulation language.

The code must be partitioned and assigned among a large number of finely

grained processing elements. These RISC type processing elements are

specifically designed to efficiently execute the low-level code. In

general, the compiler for this case must be very complex—producing a

large amount of object code. The hardware within the processing

elements is relatively simple, but the network interconnecting the

processors may be very complex. The problem of task allocation is also

large, since there is generally such a large number of finely grained

tasks to be allocated.

In Case 2 of the figure, the compiler produces a medium-level code

to be executed by a system composed of several more conventional type

processing elements. This medium-level code is closer in structure to

the actual continuous simulation language, somewhat simplifying compiler

construction. There is a trade-off between compiler complexity and

processing element complexity, with the processing element in this case

being more complex than before.

Case 3 of Figure A.I represents the case where the simulation is

performed on a system made up of processing elements that directly

execute one particular general purpose high-level language. The

continuous simulation language must be appropriately translated into

65

this high-level language in such a way that parallel processing can

occur. The general translation processes is usually simple because of

the similarity of constructs in both languages, but the allocation

process is highly dependent on how well the high-level language can be

made to utilize parallel processing techniques. The hardware complexity

of the individual processing elements is very large compared to the

other cases discussed, and there are a few such processing elements

commercially available that will function in a parallel environment

[39-40].

Case A of Figure A.I illustrates how continuous simulation can be

performed on a system that uses a set of direct execution continuous

simulation language processors. Each of these processors must be

designed to directly execute the continuous simulation language and to

work with other direct execution processors in a parallel environment.

In such an environment one continuous simulation processor acts as host

and allocator, providing the other processors in the system with

subsections of the source code to concurrently execute. Thus task

allocation will occur in a way that is transparent to the user, allowing

each processing element to execute portions of the problem in a

cooperative manner. The hardware complexity of such processing elements

is complex, but probably not as complex as that of a general purpose

high-level language processing element.

CHAPTER 5

INTELLIGENT PROCESSING ENVIRONMENTS

Intelligent real-time processing environments can now be developed

using many of the concepts discussed previously. A parallel direct

execution continuous simulation language type configuration provides an

excellent base for such an environment. The direct execution

environment allows for single storage of simulation source code,

transparent task allocation, and interactive simulation capability.

Such an environment can be created by adapting the architecture

developed in The University of Alabama's OPERA project to continuous

simulation.

The University of Alabama's OPERA architecture (Optimally Parallel

Environment for Real-Time Applications) is a very flexible parallel

computer architecture that can be adjusted to fit many real-time

applications. Continuous simulation is one such application. The

architecture is message based, using packet switching techniques as the

means for interprocessor communication. Each processing element

contains its own local memory, and the number of processing elements in

a system can be expanded indefinitely. Several groups of processing

elements are connected by high-speed interconnection networks to form

clusters. The clusters are then connected by an intracluster

interconnection network to form the architecture for the system. At

least one processing element within each cluster is dedicated to

66

67

intracluster communication. In this way, the architecture is built to

support two levels of parallelism.

The mix of processing elements within each cluster can be either

homogenous or heterogeneous. In a homogenous cluster, all the

processing elements, except possibly the I/O processing element, are

identical. In a heterogeneous cluster, the processing elements differ

in type and possibly in speed of execution. It is also possible for a

system to contain different types of clusters dedicated to specific

tasks such as system I/O, computation, etc. The optimal choice is

application dependent, depending on the algorithm that is being

implemented.

The following sections provide some insight into the general

hardware structures needed to implement an intelligent processing

environment using an OPERA, type architecture. In Section 5.1, a

parallel direct execution environment designed to facilitate the

parallel execution of derivative function evaluations is described. A

direct execution environment suited for simulations that utilize a

parallel integration algorithm is described in Section 5.2. Section 5.3

discusses combined direct execution environments, where parallelism is

allowed to exist both through the parallel integration algorithm and

within the derivative evaluations.

5.1 An Environment for Parallel Derivative Evaluations

One of the parallel methods discussed in Chapter 3 allows

parallelism to be introduced by partitioning the set of differential

68

equations into a number of subsets, each of which are then processed

concurrently. A direct execution environment designed to implement such

a method is shown in Figure 5.1. This figure shows a system with

several clusters connected by a central interconnection network. Each

cluster is connected to this network through one of its processing

elements, designed specifically to perform the I/O for the cluster.

There is one cluster that is designated as the Host Cluster and any

number of general purpose clusters contained within the system. Each

cluster is capable of directly executing each construct of the

continuous simulation language. The clusters themselves are made up of an

arbitrary number of processing elements; the actual number being

dependent on the desired size of the particular implementation. The

individual processors within a cluster are connected using a very fast

packet switching type network such as a fiber optic star, or a highly

parallel crossbar configuration. The network that runs between the

clusters is also a fast packet switching type network that has broadcast

capability. This allows data generated at one cluster to be

simultaneously transmitted to all the clusters in the system.

The Host Cluster is responsible for setting up the preprocessing

environment, for allocating tasks to the general purpose clusters, and

for executing the serial portions of the simulation. The amount of

parallel processing that is performed within the Host Cluster is

limited, so it does not need to contain a large number of processing

elements. In fact, it may be possible in some cases to adapt a

conventional computer system to act as the Host Cluster.

For each system to be simulated, the entire continuous simulation

language source code program is stored within the memory of the Host

69

Direct Execution Environment for the Parallel Execution
oi Derivative Function Evaluations

Host Cluster

Cluster 1

Figure 5.1 Parallel Derivative Function Environment

70

Cluster. Portions of this code are then allocated by the host to the

general purpose clusters of the system for parallel execution. This

allocation occurs statically, before run time, in accordance with the

integration algorithm and allocation scheme chosen. Allocation always

occurs in such a way that each cluster receives at least one state

variable (differential equation) to evaluate. In cases where different

sections of the derivative evaluations have widely different time

constants, a different integration formula can be manually chosen to

process these different sections.

The serial portions of the simulation occur at the beginning and

end of the simulation run. If the Host Cluster contains several

processors, then these sections of the simulation can also be executed

in parallel. Since the relative size of these sections is usually small

compared to the dynamic portion of the simulation, such parallel

execution is rarely warranted.

Before control is transferred to the general purpose clusters, all

state variables are assigned their initial values by the Host Cluster.

If an integration algorithm is chosen that is not self starting, the

Host Cluster is also responsible for calculating a number of integration

points before control is transferred to the other clusters for the

dynamic portion of the simulation. During the dynamic portion the Host

Cluster acts as the I/O point, allowing real-time communication to occur

with the outside world.

The general purpose clusters are each assigned a set of

differential equations to process in accordance with the integration

algorithm chosen. Communication usually occurs between clusters after

71

each set of derivative function evaluations. Depending on the coupling

present between the differential equations and the allocation scheme

employed, the number of state variables that must be transferred during

this time can be anywhere from zero to the total number of differential

equations in the simulation. Thus the speedup for a given system is

very application dependent and hard to predict. The number of times

data is transferred through the network during each calculation interval

depends directly on the number of times derivative function evaluations

occur. This in turn is dependent on the particular integration

algorithm that is chosen. In tightly coupled systems, integration

algorithms that result in fewer function calls may be preferred over

others, due to their decreased use of the interconnection network.

Communication between clusters must occur on a regular basis, and

each cluster must be synchronized to process the same integration step.

This synchronization can be accomplished by a regular polling scheme in

which each cluster is given a time slot to broadcast its data to the

other clusters. When all the clusters have been polled, concurrent

execution can resume within each cluster. As long as the ratio of

communication time to execution time remains small, improved execution

will result.

The processing of complex differential equations usually results in

relatively long execution times. In systems that contain only a few

complex equations, an imbalance of computational effort among the

processing clusters will result in unacceptably slow simulations. It is

for this reason that each cluster has been designed to contain a number

of processing elements, thereby providing another level of parallelism.

72

This level of parallelism can be used to better balance the

computational load.

One way to utilize this second level of parallelism is to partition

the time consuming built-in functions of the simulation language (such

as trigonometric, logarithmic, etc.) among the processing elements of

each cluster. These functions are usually the most time consuming

portions of the simulation. This partitioning is predetermined in an

optimum manner at the time the cluster is constructed, and thus is built

into the hardware of the system.

This processing environment has been designed to facilitate the use

of conventional sequential integration algorithms during continuous

simulation. It is not well suited to perform continuous simulations

under the direction of parallel integration algorithms, because the

connection network between clusters fails to take advantage of the

parallel nature of the algorithms. An alternative environment that can

make use of parallel algorithms is discussed in the next section.

5.2 An Environment for Parallel Integration Algorithms

Parallel integration algorithms result in parallelism being applied

across the algorithm rather than across the set of differential

equations. Direct execution environments can be created specifically to

execute simulations governed by parallel integration algorithms. The

configurations of such processing environments must reflect the parallel

structure associated with the chosen integration algorithm. Such an

73

approach has the advantage of greatly simplifying the allocation

processes, because the integration algorithm itself partitions the

problem into groups of concurrent tasks. The amount of coupling present

among the differential equations is also not a factor when a parallel

integration method is used.

Figure 5.2 shows an OPERA type processing cluster designed

specifically to implement the second-order four processor parallel

predictor-corrector integration algorithm described by Equation 3.9.

Only one cluster is needed to support the simulation process, since

parallel integration algorithms require only one level of parallelism.

The cluster is made up of one Host/Arbitator type processing element and

four general purpose processing elements. Two general purpose

processing elements are assigned the job of performing predictor type

evaluations, and the other two processing elements are assigned the job

of performing corrector type evaluations. Each of the predictor and

corrector processing elements receives an identical copy of the

s
derivative function at the beginning of the simulation run. During the

simulation, all four processing elements concurrently evaluate the

derivative function in the manner described by its unique integration

formula. At the end of each integration step data is transferred

between the processing elements.

Data is transferred through a number of high-speed data links as

shown in Figure 5.2. These data links are arranged in such a way as to

reflect the structure of the integration algorithm. Through each data

link, a vector of size N is passed between processors; where N again is

the number of differential equations (state variables) in the system

Direct Execution Environment for the Processing of the
2nd-Order Parallel Predictor—Corrector Algorithm

(Four Processor Case)

Figure 5.2 Parallel Integration Algorithm Environment

75

being simulated. If very large simulations are to be performed, then

the data links themselves can be designed using a number of parallel

paths. This improves communication time by allowing the large vectors

to be broken up before being passed through each path in the link.

A close examination of Figure 5.2 reveals some of the details of

the interconnection network. Two separate data links interconnect the

2i+2 and the 2i+l predictor processors with the 2i corrector processor.

Through one link the F"_. „ vector is exchanged, and through the other

link the Y _. vector is passed. There is a separate link between the

2i+l predictor processor and the 2i corrector processor. Through this

link the F ™_ . vector is transferred. The two corrector processors are

also interconnected with two separate data links. One data link is

dedicated to the transfer of the F „. vector, and the other is dedicated

*-t

to transferring the Y _._. vector. The Host/Arbitrator processing

element is also connected to the corrector clusters by two separate data

links. These links provide a means for data to be quickly exchanged
/

with the outside world.

For this environment to be effective, each processing element has

to be capable of processing, in parallel, data that passes through

several data links. Each predictor and corrector processing elements

must also contain a fairly large amount of memory, since copies of the

derivative function must be present in each of them.

The Host/Arbitrator cluster performs the sequential portions of the

simulation and acts as the central I/O point that connects the

simulation with real-world systems. In many situations it may be

76

desirable to utilize a conventional computer system for this function

instead of designing a separate processing element. The Host/Arbitrator

processing element must also provide the'first few integration points to

the predictor and corrector processing elements, since the parallel

predictor-corrector method is not self starting. It is also responsible

for assigning the initial values to the state variables before the

simulation begins.

Similar parallel environments can be designed by extending the

parallel predictor-corrector algorithm to incorporate a larger number of

processing elements. As discussed previously, this extension of

parallel processing comes at the price of slightly increased error and

decreased stability. The interconnection network required also

increases in complexity as the number of processing elements increases.

In addition, the number of precalculated data points required at the

beginning of the simulation increases. Therefore, careful consideration

should be made before the algorithm is extended to form a massively

parallel environment.

One problem with creating any environment that is so closely tied

to one particular integration algorithm is that no one algorithm has

been developed that works well for each possible application. This

means environments that are centered around the parallel

predictor-corrector method may work well only for a limited number of

continuous systems. A possible solution to this problem is to replace

the static network shown with a network that can reconfigure itself

dynamically, by the use of switching elements to direct data transfer

through a number of possible paths. A number of such network are

currently being investigated [41-42].

77

5.3 Environments for Combined Execution

It is also possible with a two-level OPERA type architecture to

design a configuration that allows for parallelism to simultaneously

exist within the integration algorithm and within the derivative

function evaluations. Two examples of direct execution environments

that utilize this combined approach will now be discussed.

Figure 5.3a illustrates a direct execution environment that has

been specifically designed around the fourth-order two processor

parallel predictor-corrector algorithm, that was described by Equation

3.8. The system is made up of three clusters, the Host Cluster,

Predictor Cluster, and Corrector Cluster. The clusters are

interconnected by three separate bidirectional high-speed data links.

Each cluster contains three dedicated I/O processors to separately

handle the data that passes through each of these links. The makeup of

each of the system clusters is described below.

The Host Cluster is composed of the three special I/O processors

and an arbitrary number of general purpose processing elements. Since

most of the processing within the Host Cluster is sequential, it may

again be possible to utilize a conventional computer system for this

task. As in Section 5.1, the Host Cluster is assigned the task of

executing the serial sections of continuous simulations that occur at

the beginning and end of the simulation run. Furthermore, the Host

Cluster must provide the first few integration points to the predictor

and corrector clusters, since this parallel predictor-corrector method

is not self starting. It is also responsible for assigning the initial

78

(a) 4th-0rdar Parallel Pradictoi—Corrector Combined Environment

Homt Cluster

Predictor

Cluster

Corrector

Cluster

o-1

(b) 4th-0rder Parallel Block Predictor—Corrector Combined Environment

Host Cluster

Figure 5.3 Parallel Combined Environments

79

values to the state variables and allocating the derivative functions

among the processing elements of both the predictor and corrector

clusters. This allocation problem differs considerably from that

described in the first section because the derivative evaluations are

spread out among the processing elements within each of the clusters,

not among the clusters themselves. Both the predictor and the corrector

clusters receive copies of the entire set of derivative evaluations,

which are allocated among the processing elements of both clusters in a

similar manner. During the dynamic portion of the simulation the Host

Cluster acts as the I/O point, allowing the simulation to interact with

real-world systems.

The predictor and the corrector portions of the integration

algorithm are executed in parallel on two separate clusters. Each

cluster executes the appropriate predictor or corrector integration

formula and performs one set of derivative evaluations at every step in

the integration process. Communication between the clusters occurs at

this time, with the state variable vectors being exchanged between the

predictor and corrector clusters. As in the previous sections, the size

of each of these vectors is equal to the number of differential

equations in the system. The predictor cluster passes one vector to the

corrector cluster, and the corrector cluster passes two vectors to the

predictor cluster. These vectors are passed concurrently through the

three high-speed data links that interconnect the clusters. Again, if

very large simulations are to be performed, the data links themselves

can contain a number of parallel paths.

80

Both the Predictor Cluster and the Corrector Cluster execute the

derivative function evaluations in a parallel manner. This parallel

execution is performed either by partitioning the function evaluations

in such a way that a certain number of differential equations are

processed by each processing element, or by some other method in which

the function evaluations are decomposed into several low-level

concurrent tasks which are then separately processed by individual

processors within the cluster. Regardless of the allocation scheme

chosen it should be completely automated, requiring no human

interaction, thus being transparent to the user. The type of connection

network between the processors within the predictor and the corrector

clusters will depend heavily on how the partitioning of the function

evaluations is performed. This in turn determines the granularity of

processing and tends to suggest an allocation scheme.

The combined processing environment shown in Figure 5.3a is

designed specifically to implement a two processor parallel

predictor-corrector algorithm. It is possible to expand this processing

environment to implement the four, eight, sixteen, or more processor

parallel predictor-corrector algorithm, simply by adding an equal number

of predictor and corrector clusters to the system. (The integration

formula executed by each cluster also has to be altered.) A major

drawback to this approach is that a much more complex interconnection

network between the clusters is required in order to realize the system.

In addition the stability and accuracy of the algorithm has been

observed to worsen as the number of processors is increased. This means

that the advantages gained by parallelism may be negated by the fact

81

that a smaller integration step size has to be used to obtain the

accuracy desired. Thus a careful evaluation of the feasibility of a

proposed multicluster system based around the parallel

predictor-corrector integration algorithm should be made before such a

system is implemented.

Figure 5.3b shows a direct execution environment that is based

around the use of the two-step parallel block predictor-corrector

algorithm, described by Equation 3.10. This configuration combines the

parallel block algorithm with parallel derivative function evaluations

in much the same way as discussed earlier. The major difference in this

case is that the system configuration has been changed somewhat to

reflect the different integration algorithm used. The system is made up

of three clusters, the Host Cluster, i+1 Cluster, and i+2 Cluster. The

clusters are interconnected by four separate bidirectional high-speed

data links. Each cluster contains four dedicated I/O processors to

separately handle the data that passes through each of these links.

The Host Cluster performs the same functions as in the previous

case. The i+1 Cluster and the i+2 Cluster combine to separately execute

the i+1 and the i+2 time steps that are contained within each block.

The clusters concurrently execute one predictor and one corrector

formula (each followed by a derivative function evaluation) during each

block of execution. Data is passed between clusters twice during each

block in the form of state vectors of size N; where N is the number of

state variable evaluations (differential equations) in the system. Two

vectors are shared between clusters in the middle of the block during

82

the predictor and corrector evaluations, and four vectors are shared at

the end of the block. This is the reason for the four high-speed data

links between the clusters. As in the previous case, both clusters

execute the derivative function evaluations in parallel, thus fully

utilizing the lower level of parallelism.

As with the parallel predictor-corrector algorithm, the parallel

block predictor-corrector approach can also be expanded to include more

than two clusters. Such expansion tends to increase the amount of

parallelism present, but also tends to decrease the stability and

accuracy of the simulation. Care must be taken to choose an optimal

number of clusters, allowing for the greatest performance in the

majority of cases.

5.4 Other Considerations

;

Regardless of which approach is chosen there are several additional

considerations that must be addressed before an intelligent processing

environment can be created. One such consideration is the granularity

of processing that will be supported. The granularity can be defined as

the amount of processing that is performed within each processing node

in the system, compared to the amount of data that is transferred

between the processing nodes. In a finely grained system, each

processing node performs simple operations resulting in a large number

of parallel processes being performed. This high degree of parallelism

is obtained at the expense of requiring that a large amount of

83

communication occur between processing elements. In coarsely grained

systems, complex processing is performed within each processing node

resulting in less parallel processing being performed and less use of

the interconnection network. It is important that the relative speeds

of the processing elements chosen be compared with the relative speed of

the interconnection network, so that an optimal balance between

computation and network traffic is achieved.

Another consideration is how the individual processing elements

that make up a cluster are designed. It is desirable that every

processor efficiently execute its portion of the problem and

communicate effectively with other processors in the system. Care

should be taken that the processing elements chosen are not only very

fast, but also are designed to handle the input and output that is

characteristic of their parallel environment. Depending on the

granularity of processing and the size of the local memory, it may also

be beneficial to utilize such conventional techniques as pipelining and

vector processing within the processing elements. The ability to

perform multiprocessing within each processing element is also important

in situations where the size of the simulation is much larger than can

be conveniently handled using the current number of processing elements.

In such situations the processing elements will process a number of

concurrent tasks sequentially, through task switching, thus allowing

very complex simulations to be performed, but at a decreased level of

performance.

The interconnection network that connects the processing elements

within each cluster, and the network that connects the individual

clusters together must be chosen with care. The type of network chosen

needs to be able to handle the communication requirements dictated by

the underlining algorithm. Such networks can be either static or

dynamic. There is a definite trade-off between having the added control

problems and delays associated with dynamic networks and the lack of

flexibility associated with static networks. The technology of the

network is another consideration. Whether the network will be

implemented using standard electrical bussing techniques, or through the

use of more advanced technology such as fiber optics [A3] must be

decided.

Fault tolerance of the environment is also an important

consideration. The environment should be able to detect when a faulty

condition occurs, isolate the faulty condition, and gracefully recover

from the effects of the condition. The proper design of fault tolerant

networks is a very broad subject that is currently under much

investigation [44-45],

A final consideration is how easily the proposed processing

environment can be adapted and expanded to take advantage of

improvements in technology. The general environment should be easily

expanded by increasing the number of processing elements. In addition,

possible changes in technology should have no major effect on the

overall structure of the environment.

These are just of few of the considerations that must be

investigated before a truly intelligent processing environment can be

created. Although the creation of such an environment is very complex,

it still appears to be the most practical approach to obtain real-time

performance from complex applications [46].

85

5.5 Summary

The development of an efficient real-time environment for general

purpose continuous simulations is a complex process. It requires a

thorough understanding of the principles and current problem areas

associated with continuous system simulation. It also requires a

general knowledge of the type, size, and scope of the simulations that

will be processed within that environment. To be efficient the

environment must make effective use of the available hardware resources

by utilizing configurations that eliminate many or all of the costly

translation and compilation steps present in current systems. A direct

execution architecture represents one such configuration. In order to

guarantee real-time execution speed, the environment must also provide

for a near optimal use of parallelism. This can be obtained by

exploiting areas of the simulation that lend themselves readily to

parallel processing and by implementing parallel algorithms. The

parallel processing of derivative function evaluations and the use of

parallel integration algorithms are two areas in which parallel

processing can be utilized within continuous simulation to provide

improved execution. These areas must be mapped to a parallel hardware

environment that will fully exploit their structure and parallelism.

The direct execution OPERA type environments discussed within this

report represent three such environments. Therefore, through the

knowledgeable use of hardware resources and parallel processing

techniques, an intelligent processing environment can be created that

will perform real-time continuous simulations of most real-world

problems.

REFERENCES

[1] F. H. Speckhart and W. L. Green, A Guide to Using CSMP,
Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1976.

[2] G. Shapiro and M. Rogers, ed., Prospects for Simulation and
Simulators of Dynamic Systems, London: Macmillanan Co., Ltd.,
1967.

[3] R. E. Stephenson, Computer Simulation for Engineers,
New York: Harcourt Brace Jovanovich, Inc., 1971.

[4] R. Bronson, "Computer Simulation: What It Is and How It's
Done", BYTE. Vol. 9, No. 3, March 1984, pp. 95-102.

[5] J. J. Lucas and J. V. Wait, "Dare P--A Portable CSSL-Type
Simulation Language," Simulation, Vol. 24, No. 1, January 1975,
pp. 17-28.

[6] C. A. Guillebeau, "Development of a New Programming Language
for Simulation of Dynamic Systems," Ph.D. dissertation,
The University of Alabama, College of Engineering, Tuscaloosa,
Alabama, 1983.

[7] E. L. Mitchell and J. S. Gauthier, "Advanced Continuous Simulation
Language (ACSL)", Simulation, Vol. 26, No. 3, March 1976,
pp. 72-78.

[8] E. L. Mitchell and J. S. Gauthier, Advanced Continuous Simulation
Language Reference Manual, Concord, Mass.: Mitchell and Gauthier
Assoc., 1986.

[9] J. C. Strauss, ed. "The SCi Continuous System Simulation Language
(CSSL)", Simulation, Vol. 9, No. 6, December 1967, pp. 281-303.

[10] S. D. Conte, and C. de Boor, Elementary Numerical Analysis: An
Algorithmic Approach, New York: McGraw Hill, Inc., 1980.

[11] P. R. Benyon, "A Review of Numerical Methods for Digital
Simulation", Simulation, Vol. 11, No. 5, November 1968,
pp. 219-238.

[12] J. 0. Hamblen, "Parallel Continuous System Simulation Using the
Transputer", Simulation. Vol. 49, No. 6, December 1987,
pp. 249-253.

86

87

[13] G. A. Korn, "Back to Parallel Computation: Proposal for a
Completely New On-Line Simulation System Using Standard
Minicomputers for Low-Cost Multiprocessing", Simulation, Vol. 19,
No. 2, August 1972, pp. 37-45.

[14] J. A. B. Fortes and B. W. Wah, "Systolic Arrays-Frora Concept to
Implementation", Computer, Vol. 20, No. 7, July 1987, pp. 12-17.

[15] H. T. Kung, "Why Systolic Architectures?", Computer, Vol. 15,
No. 1, January 1982, pp. 37-46.

[16] M. A. Franklin, "Parallel Solution of Ordinary Differential
Equations", IEEE Transaction on Computers, Vol. C-27, No. 5,
May 1978, pp. 413-420.

[17] J. B. Sinclair, "Efficient Computation of Optimal Assignments for
Distributed Tasks", Journal of Parallel and Distributed Computing,
Vol. 4, No. 4, August 1987, pp. 342-362.

[18] C. V. Stewart and C. R. Dyer, "Scheduling Algorithms for PIPE
(Pipelined Image-Processing Engine)", Journal of Parallel and
Distributed Computing, Vol. 5, No. 2, April 1988, pp. 131-153.

[19] W. Zhao, K. Ramamritham and J. A. Stankovic, "Preemptive
Scheduling Under Time and Resource Constraints", IEEE Transactions
on Computers. Vol. C-36, No. 8, August 1987, pp. 949-960.

[20] M. Granski, I. Koren, G. M. Silberman, "The Effect of Operation
Scheduling on the performance of a Data Flow Computer", IEEE
Transactions on Computers, Vol. C-36, No. 9, September 1987,
pp. 1019-1029.

[21] C. C. Carroll and K. G. Ananthram, "An Intelligent Allocation
Algorithm for Parallel Processing", Bureau of Engineering
Research, Report No. 417-17, The University of Alabama,
Tuscaloosa, Al, January 1988.

[22] C. C. Carroll, J. N. Youngblood and A. Sana, "Computer
Architecture for Efficient Algorithmic Executions in Real-Time
Systems: New Technology to Improve Industrial Products",
Bureau of Engineering Research, Report No. 409-17, The University
of Alabama, University, Alabama, Tuscaloosa, Al, December 1987.

[23] R. B. Asher and J. P. Matuszewski, "Optimal Guidance with
Maneuvering Targets", J. Spacecraft, Vol. 11, No. 3, March 1974,
pp. 204-206

[24] L. Stockum and F. C. Weimer, "Optimal and Suboptimal Guidance for
a Short Range Homing Missile", IEEE Transactions on Aerospace and
Electronic Systems, Vol. AES-12, May 1976, pp. 353-361.

[25] J. N. Youngblood, "Optimal Linear Guidance of Air-to-Air
Missiles", Bureau of Engineering Research, Report No. 253-177,
The University of Alabama, Tuscaloosa, Al, January 1980.

88

[26] U. Schendel, Introduction to Numerical Methods for Parallel
Computers, Chichester, England: Ellis Horwood Ltd., 1984.

[27] T. R. Martinez and J. J. Vidal, "Adaptive Parallel Logic
Networks", Journal of Parallel and Distributed Computing, Vol. 5,
No. 1, February 1988, pp. 26-58.

[28] Q. F. Stout, "Supporting Divide-and-Conquer Algorithms for Image
Processing", Journal of Parallel and Distributed Computing,
Vol. 4, No. 1, February 1987, pp. 95-115.

[29] C. C. Carroll, A. Homaifar and S. Barua, "Efficient Parallel
Architecture for Highly Coupled Real-Time Linear System
Applications", Bureau of Engineering Research, Report No. 418-17,
The University of Alabama, Tuscaloosa, Al, January 1988.

[30] W. L. Miranker and W. Liniger, "Parallel Methods for the Numerical
Integration of Ordinary Differential Equations", Math. Comput.,
Vol.21, pp. 303-320.

[31] L. G. Birta and 0. Abou-Rabia, "Parallel Block
Predictor-Corrector Methods for ODE's", IEEE Transaction on
Computers. Vol. C-36, No. 3, March 1987, pp. 299-311.

[32] P. B. Worland, "Parallel Methods for the Numerical Solution of
Ordinary Differential Equations", IEEE Transactions on Computers,
Vol. C-25, No. 10, October 1976, pp. 1045-1048.

[33] R. E. Buhrer, H. Brundiers, H. Benz, B. Bron, H. Friess,
W. Hals, H- J- Halin, A. Isacson, and M. Tadian, eds., "The
ETH-Multiprocessor EMPRESS: A Dynamically Configurable MIMD
System", IEEE Transactions on Computers, Vol. C-31, No. 11,
November 1982, pp. 1035-1044.

[34] H. J. Halin, R. Buhrer, W. Halg, H. Benz, B. Bron, H. Brundiers,
A. Isacson, and M. Tadian, eds., "The ETH Multiprocessor Project:
Parallel Simulation of Continuous Systems", Simulation, Vol. 35,
No. 4, October 1980, pp. 109-123.

[35] D. I. Rummer, Introduction to Analog Computer Programming,
New York: Holt, Rinehart and Winston, Inc., 1969.

[36] J. Walls, M. Greene and W. Teoh, "A Mathematical Model of the
Orbital Maneuvering Vehicle", Simulation, Vol. 48, No. 3,
March 1987, pp. 98-102.

[37] T. Marshall, "Real-World RISCs", BYTE, Vol. 13, No. 5, May 1988,
pp. 263-268.

[38] D. A. Patterson and C. H. Sequin, "RISC 1: A Reduced Instruction
Set VLSI Computer", The 8th Annual Symposium on Computer
Architecture. May 1981, pp. 443-458.

89

[39] Y. P. Chiang and M. L. Manwaring, "Direct Execution Lisp and Cell
Memory", Technical Report, Department of Electrical and Computer
Engineering, Washington State University, Pullman, WA 1987.

[40] A. R. Pleszkun and M. J. Thazhuthaveetil, "The Architecture of
Lisp Machines", Computer, Vol. 20, No. 3, March 1987, pp. 35-44.

[41] T. Feng, "A Survey of Interconnection Networks", Computer,
Vol. 14, No. 12, December 1981, pp. 12-27.

[42] G. B. Adams III, D. P. Agrawal, and H. J. Seigel, "A Survey and
Comparison of Fault-Tolerant Multistage Interconnection Networks",
Computer, Vol. 20, No. 6, June 1987, pp. 14-27.

[43] L. D. Hutcheson, P. Haugen, A. Husain, "Optical Interconnects
Replace Hardwire", IEEE Spectrum. Vol. 24, No. 3, March 1987,
pp. 30-41.

[44] D. P. Siewiorek, "Architecture of Fault-Tolerant Computers",
Computer, Vol. 17, No. 8, August 1984, pp. 9-18.

[45] 0. Serlin, "Fault-Tolerant Systems in Commercial Applications",
Computer, Vol. 17, No. 8, August 1984, pp. 19-30.

[46] P. Wiley, "A Parallel Architecture Comes of Age at Last", IEEE
Spectrum, Vol. 24, No. 6, June 1987, pp. 46-50.

APPENDIX A

TASK ALLOCATIONS AND PERFORMANCE MEASUREMENTS

10 REM RANDOM ALLOCATION PROGRAM
20 REM (Euler Algorithm)
30 REM by B. Earl Wells
40 REM
50 REM OPTIMAL CONTROL OF GUIDED MISSILE BENCHMARK
60 REM
70 REM Created February 1988 -- Last Update March 1988
80 REM
90 DIM TIME%(14),PRS%(14),BSTASG%(14),TMS%(14)
100 CLS:PRINT " RANDOM ALLOCATION PROGRAM"
110 PRINT " (Euler Algorithm)"
120 PRINT " by B. Earl Wells":PRINT
130 GOSUB 360:PRINT
140 TMIN%=32000:TMAX%=0
150 ALG%=2
160 ALGPR%=1
170 PRINT
180 INPUT "ENTER NUMBER OF PROCESSORS: ", NMPRS%
190 INPUT "ENTER NUMBER OF RANDOM ASSIGNMENTS: ", RNUM%
200 FOR J=l TO RNUM%
210 FOR 1=1 TO NMDE%:PRS%(I)=INT(NMPRS%*RND(1)+1):NEXT I
220 FOR 1=1 TO NMPRS%:TMS%(I)=0:NEXT I
230 FOR 1=1 TO NMDE%:TMS%(PRS%(I))=2+TMS%(PRS%(I))+TIME%(I):NEXT I
240 TMAX%=0:FOR 1=1 TO NMPRS%:IF TMAX%<TMS%(I) THEN TMAX%=TMS%(I)
250 NEXT I
260 IF TMAX%<TMIN% THEN FOR 1=1 TO NMDE%:BSTASG%(I)=PRS%(I):NEXT I:

TMIN%=TMAX%
270 NEXT J
280 PRINT "BEST ALLOCATION FOUND AFTER ";RNUM%;" RANDOM ASSIGNMENTS"
290 FOR 1=1 TO 14:PRINT"EQUATION //";!;" ASSIGNED TO PROCESSOR #";

BSTASGZ(I)
300 NEXT I:PRINT"MAX EXECUTION TIME: ";TMIN%+ALGPR%
310 INPUT " ",X:GOTO 100
320 REM
330 REM
340 REM
350 REM
360 PRINT " OPTIMAL CONTROL OF GUIDED ";

"MISSILE BENCHMARK"
370 NMDE%=14: REM NUMBER OF DIFFERENTIAL EQUATION (PROCESSES)
380 REM EXECUTION TIME OF EACH DE

90

91

390 TIME%(1)=3
400 TIME%(2)=3
410 TIME%(3)=5
420 TIME%(4)=5
430 TIME%(5)=4
440 TIME%(6)=6
450 TIME%(7)=6
460 TIME%(8)=7
470 TIME%(9)=8
480 TIME%(10)=7
490 TIME%(11)=5
500 TIME%(12)=5
510 TIME%(13)=7
520 TIME%(14)=7
530 RETURN

92

Optimal Control of Guided Missile Example
Set of Differential Equations

(EQ 1) PI = -G(P4)(P4) [3]

(EQ 2) P2 = PI - G(P4)(P7) [3]

(EQ 3) P3 = P2 + A(P4) - G(P4)(P9) [5]

(EQ 4) P4 = P3 + B(P4) - G(P4)(P10) [5]
•

(EQ 5) P5 = 2(P2) - G(P7)(P7) [4]

(EQ 6) P6 = P3 + P5 + A(P7) - G(P7)(P9) [6]

(EQ 7) P7 « P6 + B(P7) + P4 - G(P7)(P10) [6]

(EQ 8) P8 = 2(P6) + 2(A)(P9) - G(P9)(P9) [7]

(EQ 9) P9 = P8 + B(P9) + P7 + A(P10) - G(P9)(P10) [8]

(EQ 10) P10 = 2(P9) + 2(B)(P10) - G(P10)(P10) [7]
•

(EQ 11) Pll = -P2(QT) - G(P4)(P14) [5]

(EQ 12) P12 = P11-P5(QT)-G(P7)(P14) [5]

(EQ 13) P13 = P12 + A(P14) - P6(QT) - G(P9)(P14) [7]
•

(EQ 14) P14 = P13 + B(P14) - P7(QT) - G(P10)(P14) [7]

93

Allocations for Optimal Control of Guided Missile Example
(based on zero communication delay)

2 Processor Assignment:

Processor 1 Processor 2
EQ
EQ
EQ
EQ

1
3
4

EQ 8
EQ
EQ

9
12

EQ
EQ
EQ
EQ 10
EQ 11
EQ 13
EQ 14

Relative Execution Time: 54

3 Processor Assignment:

Processor 1 Processor 2 Processor 3
1
3
6

EQ
EQ
EQ
EQ 10
EQ 11

EQ 9
EQ 12
EQ 13
EQ 14

EQ
EQ
EQ
EQ

2
4
5
7

EQ 8

Relative Execution Time: 37

4 Processor Assignment:

Processor 1 Processor 2
EQ
EQ
EQ
EQ 10

EQ
EQ
EQ
EQ

2
4
7
11

Processor 3
EQ 8
EQ 9
EQ 12

Processor
EQ 6
EQ 13
EQ 14

Relative Execution Time: 28

5 Processor Assignment:

Processor 1
EQ 2
EQ 7
EQ 14

Processor 2
EQ 4
EQ 5
EQ 8

Processor 3
EQ 10
EQ 13

Processor 4
EQ 3
EQ 6
EQ 12

Processor 5
EQ 1
EQ 9
EQ 11

Relative Execution Time: 23

94

6 Processor Assignment:

Processor
EQ 2
EQ 3
EQ 12

Processor 2
EQ 7
EQ 14

Processor 3
EQ 5
EQ 13

Processor
EQ 8
EQ 9

Processor
EQ 6
EQ 10

Processor 6
EQ 1
EQ 4
EQ 11

Relative Execution Time: 20

7 Processor Assignment:

Processor 1
EQ 2
EQ 14

Processor 2 Processor 3 Processor
EQ 5 EQ 4 EQ 8
EQ 9 EQ 10 EQ 12

Processor 6 Processor 7
EQ 6 EQ 1
EQ 7 EQ 13

Processor
EQ 3
EQ 11

Relative Execution Time: 17

8 Processor Assignment:

Processor 1
EQ 5
EQ 7

Processor 2
EQ 4

Processor 6
EQ 3
EQ 8

Processor 3
EQ 2
EQ 14

Processor 7
EQ 11
EQ 13

Processor 4
EQ 9

Processor 8
EQ 10
EQ 12

Processor 5
EQ 1
EQ 6

Relative Execution Time: 17

95

9 Processor Assignment:

Processor 1
EQ 11

Processor 2
EQ 4
EQ 5

Processor 3
EQ 10

Processor 4
EQ 6
EQ 12

Processor 5
EQ 1
EQ 8

Processor 6
EQ 13

Processor 7
EQ 2
EQ 9

Processor 8
EQ 14

Relative Execution Time: 16

10 Processor Assignment:

Processor 1
EQ 4
EQ 12

Processor 6
EQ 3

Processor 2
EQ 1
EQ 11

Processor 7
EQ 9

Processor 3
EQ 8

Processor 8
EQ 5
EQ 7

Processor 9
EQ 3
EQ 7

Processor 4 Processor 5
EQ 6 EQ 14

Processor 9 Processor 10
EQ 13 EQ 2

EQ 10

Relative Execution Time: 15

11 Processor Assignment:

Processor 1 Processor 2 Processor 3
EQ 6 EQ 14 EQ 7

Processor 4
EQ 11

Processor 6 Processor 7 Processor 8 Processor 9
EQ 4 EQ 1 EQ 9 EQ 10

EQ 13

Processor 11
EQ 12

Processor 5
EQ 3
EQ 5

Processor 10
EQ 8
EQ 2

Relative Execution Time: 15

12 Processor Assignment:

Processor 1 Processor 2
EQ 10 EQ 11

Processor 3 Processor 4
EQ 6 EQ 9

Processor 6 Processor 7 Processor 8 Processor 9
EQ 5 EQ 13 EQ 1 EQ 14

EQ 7

Processor 11
EQ 12

Processor 12
EQ 4

Relative Execution Time: 14

96

Processor 5
EQ 2
EQ 3

Processor 10
EQ 8

13 Processor Assignment:

Processor 1
EQ 1
EQ 2

Processor 6
EQ 7

Processor 2
EQ 3

Processor 7
EQ 8

Processor 3
EQ 4

Processor 8
EQ 9

Processor 4
EQ 5

Processor 9
EQ 10

Processor 5
EQ 6

Processor 10
EQ 11

Processor 11
EQ 12

Relative Execution Time: 11

Processor 12
EQ 13

Processor 13
EQ 14

14 Processor Assignment:

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5
EQ 1 EQ 2 EQ 3 EQ 4 EQ 5

Processor 6 Processor 7 Processor 8 Processor 9 Processor 10
EQ 6 EQ 7 EQ 8 EQ 9 EQ 10

Processor 11 Processor 12 Processor 13 Processor 14
EQ 11 EQ 12 EQ 13 EQ 14

Relative Execution Time: 11

Table A Performance Measurements cd=0.0

97

Optimal Control of Guided Missile Benchmark
Euler Method of Integration

Performance Measurements
(Communication Delay = 0.0)

P

1
2-
3
4
5
6
7
8
9
10
11
12
13
14

Tp

107
54
37
28
23
20
17
17
16
15
15
14
11
11

Cp

107
108
111
112
115
120
119
136
144
150
165
168
143
154

Sp

1.00
1.98
2.89
3.82
4.65
5.35
6.29
6.29
6.69
7.13
7.13
7.64
9.73
9.73

Ep

1.00
0.99
0.96
0.96
0.93
0.89
0.90
0.79
0.74
0.71
0.65
0.64
0.75
0.69

REp

1.00
1.96
2.79
3.65
4.33
4.77
5.66
4.95
4.97
5.09
4.63
4.87
7.28
6.76

Table B Performance Measurements cd=0.5

Optimal Control of Guided Missile Benchmark
Euler Method of Integration

Performance Measurements
(Communication Delay = 0.5)

P

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Tp

107
60
43
34
30
27
24
24
23
22
22
21
18
18

Cp

107
119
129
136
150
159
168
192
207
220
237
252
234
252

Sp

1.00
1.80
2.49
3.15
3.57
4.04
4.46
4.46
4.65
4.86
4.98
5.10
5.94
5.94

Ep

1.00
0.90
0.83
0.79
0.71
0.67
0.64
0.56
0.52
0.49
0.45
0.42
0.46
0.42

REp

1.00
1.62
2.06
2.48
2.54
2.72
2.84
2.48
2.40
2.37
2.25
2.16
2.72
2.52

Table C Performance Measurements cd=l.0

98

Optimal Control of Guided Missile Benchmark
Euler Method of Integration

Performance Measurements
(Communication Delay = 1.0)

P

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Tp

107
65
49
40
37
33
31
31
30
29
28
28
25
25

Cp

107
130
147
160
185
198
217
248
270
290
308
336
325
350

Sp

1.00
1.65
2.18
2.68
2.89
3.24
3.45
3.45
3.57
3.69
3.82
3.82
4.28
4.28

Ep

1.00
0.82
0.73
0.67
0.58
0.54
0.49
0.43
0.40
0.37
0.35
0.32
0.33
0.31

REp

1.00
1.35
1.59
1.79
1.67
1.75
1.70
1.49
1.41
1.36
1.33
1.22
1.41
1.31

Table D Performance Measurements cd=3.0

Optimal Control of Guided Missile Benchmark
Euler Method of Integration

Performance Measurements
(Communication Delay = 3.0)

P

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Tp

107
87
73
64
65
59
59
59
58
57
54
56
53
53

Cp

107
174
219
256
325
354
413
472
522
570
594
672
689
742

Sp

1.00
1.23
1.47
1.67
1.65
1.81
1.81
1.81
1.84
1.88
1.98
1.91
2.02
2.02

Ep

1.00
0.61
0.49
0.42
0.33
0.30
0.26
0.23
0.20
0.19
0.18
0.16
0.16
0.14

REp

1.00
0.76
0.72
0.70
0.54
0.55
0.47
0.41
0.38
0.35
0.36
0.30
0.31
0.29

i

APPENDIX B

INTEGRATION PROGRAMS

/* ACSL Type Simulation Using the Simple Euler */
/* Method of Integration */
/* */
/* by B. Earl Wells */
/* University of Alabama */
/* */

/* Last Update: March 1988 */
/***«***/

//include <stdio.h>
// inc lude <math. h>
/* Maximum Size allowed for Internal Arrays */
/* (represents the maximum number of state */
/* variables possible in application plus one). */
//define SZ 21

/* Relative execution time for multiply and add operations */
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int t_flg,s_var,der_add,der_mul;
double max_err;

main()
{

char ch[30];

int i,cint_lmt,cint_num,int_val();
double num_calls,time_var;

double atof();
double kl[SZ],k2[SZ],k3[SZ],k4[SZ];
double f[SZ],y[SZ],t,h,cint,lst;

void initialO,derivative(),dynamic(),output();
void header(),termt(),st_var(),rel_time(),err();

printf("\n\n\n");
printf(" ACSL Type Continuous Simulation using the\n");
printf(" Simple Euler Method of Integration\n\n");
printf(" by B. Earl Wells\n\n");

99

100

headerO;
lst=0;
time_var=0;
num_calls=0;
max_err=0;
printf("Enter iteration interval: ");
gets(ch);
h=atof(ch);

printf("Enter communication interval: ");
gets(ch);
cint=atof(ch);

printf("Enter the number of communication intervals between");
printf(" outputs: ");
cint_lmt=atoi(gets(ch));
cint_num=cint_lmt;

/* Process the INITIAL Section */
initial();

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value section */

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?");
gets(ch);

if (
/* override initial conditions specified in initial value */
/* section and store these results into an array. -'•/
for (i=l; i<=s_var;-H-i) {

printf ("Enter Initial value for y[%d]: ",i);
scanf("%s",ch);
y[i]=atof(ch);

printf ("\nBeginning Run\n");

t=0;

/* Process the DYNAMIC and DERIVATIVE Sections */
for(; ;) {

num_calls+=l ; /* Increment Derivative counter */
; derivative(t,y,f) ;

time_var+=der_add*ADD -I- der_mul*MUL;

if (t>=lst-h/2) {
dynamic (t,y);
if(t_flg) break;

101

if ((cint_num+=l)>cint_lmt) {
cint_num=l;
output (t,y);

lst=lst+cint;
}
if (t_flg) break;

for(i=l;i<=s_var;-H-i) {
y[i]=y[i]+h*f[i];
t ime_var+=ADD+MUL ;

}
t=t+h;
time_var+=ADD ;

output (t,y);

printf("Run Terminated\n\n") ;

printf("Number of calls to the DERIVATIVE Section: % 1.0f\n",
num_calls) ;

printf ("Relative Execution Time: % 1 .Of \n",time_var);
if (max_err>0)

printf ("Maximum local Error is : %e\n" ,max_err) ;

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

return(num);

/* This routine sets and resets the global */
/* termination flag. */
void termt(flg)
int fig;
{

t_flg=flg;

102

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st_var(n)
int(n);

s_var=n ;

/* This routine stores the number of multiplication */
/* and division operations that are executed every */
/" time the DERIVATIVE section is called into the */
/* global variable "der_mul". */
void num_mul(t_nm)
int t_nm;
{

der_mul=t nm;

/* This routine stores the number of addition and */
/* subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". */
void num_add(t_nm)
int t_nm;
{

der_add=t_nm ;

/* This routine stores the maximum local error */
/* in the global flag "max_err" . */
void err(num)
double num;
{

double abs();

if (abs(num)>max_err)
max_err=abs(num) ;

103

/* ACSL Type Simulation Using the Serial 2nd Order Adams-Moulton */
/* Predictor-Corrector Method of Integration. */
/ is is 1

/* by B. Earl Wells */
/* University of Alabama */
/* */
/* Last Update: March 1988 */

*******̂

//include <stdio.h>

/* Maximum Size allowed for Internal Arrays */
/* (represents the maximum number of state */
/* variables in application plus one.) */
//define SZ 21

/* Relative execution time for multiply and add operations */
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int s_var,t_f lg,der_add,der_mul;
double max_err;

main()

char ch[30];
double num_calls,time_var;
int i,p,cint_lmt,cint_num;
double atof();
double yj[SZ],kl[SZ],k2[SZ];
double f [SZ] ,y[SZ] ,fn[4] [SZ] ,t,h,tj ,cint,lst;
void initial() , int_val() , derivative() , dynamic() , output() ;
void header() ,termt() ,st_var() ,rel_time() ,err();

printf ("\n\n\n");
printf(" ACSL Type Continuous Simulation using the");
printf (" serial form\n");
printf(" of the Second Order Adams -Moulton");
printf (" Predictor-CorrectorW) ;
printf (" Method of Integration\n\n") ;
printf (" by B. Earl Wells\n\n");

header() ;

tj=0;
lst=0;
time_var=0;
der_add=0 ;
der_mul=0 ;
num_calls=0;
max_err=0 ;

104

printf("Enter iteration interval: ");
h=atof(gets(ch));

printf("Enter communication interval: ");
cint=atof(gets(ch));

printf("Enter the number of communication intervals between");
printf(" outputs: ");
cint_lmt=atoi(gets(ch));
c int_num=c int_lmt;

/* Process the INITIAL Section */
initial();

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value */
for (i=l;i<=s_var;-H-i) /* and load results into an array */

yj[iJ=y[i];

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?");
gets(ch);

if (ch[0] = V]
/* override initial conditions specified in initial value */
/* section and store these results into an array. */
for (i=l;i<=s_var;-H-i) {

printf ("Enter Initial value for y[%d]: ";i);
gets(ch);
yj[i]=atof(ch);

printf ("\nBeginning Run\n");

/* Process the DYNAMIC and DERIVATIVE Sections */

/* Find initial four values using the Runge-Kutta Method */
for(p=l;p>=0;--p) {

t=t j ;
f or(i=l; i<=s_var;-H-i)

y[i]=yj[i];
t_flg=0; /* Clear Termination Flag */
num_calls+=l; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL;
derivative(t,y,f);

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

105

dynamic (t,y);
if(t_flg) break; /* exit if Termination Flag is set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l;
output(t,y);

lst=lst+cint;
}
if (t_flg) break; /* Exit DERIVATIVE/DYNAMIC loop */

/* if Termination Flag is set */

for (i=l ; i<=s_var;++i)

if (p==0) break;

/* Process First Order Runge-Kutta Equations */
for(i=l; i<=s_var;-H-i) {

kl[i]=f[i]*h;

t ime_var+=2 *MUL+ADD ;
}
t=t+tj+h/2;
t ime_var+=2*ADD+MUL ;

num_calls+=l; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
derivative(t,y,f) ;

/* Process Second Order Runge-Kutta Equations */
for(i=l;i<=s_var;-H-i) {

k2[i]=f[i]*h;

t ime_var+=ADD+MUL ;

t=tj+h;
t ime_var+=ADD ;

tj=t;

106

for (; ;) {
t=t+h;
/* Predictor Equations*/
for (i=l;i<=s_var;-H-i) {
y[i]=yj[i]+h/2*(3*fn[0][i]-fn[l][i]);
time_var+=2*ADD+3*MUL ;

t_flg=0;
num_calls+=l ; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
derivative(t,y,f) ;

/* Corrector Equations */
for (i=l;i<=s_var;++i) {

time_var+=2*ADD+2*MUL ;

num_calls+=l; /* Increment Derivative counter */
t ime_var+=der_add* ADD+der_mul*MUL ;
derivative(t,y,f) ;

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic(t,y) ;
if(t_flg) break;/* exit if Termination Flag is set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l;
output(t.y);

lst=lst+cint;
}

if(t_flg) break; /* exit if Termination Flag is set */

for (i=l;i<=s_var;-H-i) {
fn[l][i]=fn[0][i];
fn[p][i]=f[i];

output(t.y);
printf("Run Terminated\n\n");

107

printfC"Number of calls to the DERIVATIVE Section: % 1.0f\n",
num_calls);

printf("Relative Execution Time: % 1.Of\n",time_var);
if (max_err>0)

printf("Maximum local Error is : %e\n",max_err);

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

return (num);

/* This routine sets and resets the global */
/* termination flag. */
void termt(flg)
int fig;
{

t_flg=flg;

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st_var(n)
int(n);
{

s_var=n ;

/* This routine stores the number of multiplication */
/" and division operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "derjnul". . */
void num_mul(t_nm)
int t_nm ;
{

der_mul=t_nm ;

108

/* This routine stores the number of addition and */
/"' subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". */
void num_add(t_nm)
int t_nm;
{

deradd=tnm;

/* This routine stores the maximum local error */
/* in the global flag "max_err". ' */
void err(num)
double num;

double abs();

if (abs(num)>max_err)
max err=abs(num);

}

109

/* ACSL Type Simulation Using the Serial 4th Order Adams-Moulton */
/* Predictor-Corrector Method of Integration */
/* */
/* by B. Earl Wells */
/* University of Alabama */
/* */
/* Last Update: March 1988 */

//include <stdio.h>

/* Maximum Size allowed for Internal Arrays */
/* (represents the maximum number of state */
/* variables in application plus one.) */
//define SZ 21

/* Relative execution time for multiply and add operations */
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int s_var , t_f Ig , der_add , der_mul ;
double max_err;

main()

char ch[30] ;
double num_calls,time_var;
int i,p,cint_lmt,cint_num;
double atof();
double yj[SZ],kl[SZ],k2[SZ];
double f [SZ] ,y[SZ] ,fn[4] [SZ] ,t,h,tj ,cint,lst;
void initial() , int_val() ,derivative() ,dynamic() ,output() ;
void header() ,termt(),st_var() ,rel_time() ,err() ;

printf("\n\n\n");
printf(" ACSL Type Continuous Simulation using the");
printfC1 serial form\n");
printf (" of the Fourth Order Adams -Moulton");
printf (" Predictor-Corrector\n") ;
printfC1 Method of Integration\n\n") ;
printf (" by B. Earl Wells\n\n");

header () ;

tj=0;
lst=0;
t ime_var=0 ;
der_add=0 ;
der_mul=0 ;
num_calls=0 ;
max err=0;

110

printf("Enter iteration interval: ");
h=atof(gets(ch));

printf("Enter communication interval: ");
cint=atof(gets(ch));

printf("Enter the number of communication intervals between");
printf(" outputs: ");
cint_lmt=atoi(gets(ch));
c int_num=c int_lmt;

/* Process the INITIAL Section */
initiaK);

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value */
for (i=l;i<=s_var;++i) /* and load results into an array */

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?'1);
gets(ch);

if (ch[0] = 'yl!!ch[0] = 'YI) {
/* override initial conditions specified in initial value */
/* section and store these results into an array. */
for (i=l ;i<=s_var;-H-i) {

printf ("Enter Initial value for y[%d]: ",i);
gets(ch);
yj[i]=atof(ch);

printf ("\nBeginning Run\n");

/* Process the DYNAMIC and DERIVATIVE Sections */

/* Find initial four values using the Runge-Kutta Method */
for(p=3;p>=0;--p) {

t=tj;
f or(i=l ; i<=s_var ;-H-i)

t_flg=0; /* Clear Termination Flag */
num_calls-l-=l ; /* Increment Derivative counter */
t ime_var+=der_add* ADD+der_mul*MUL ;
derivative(t,y,f) ;

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

Ill

dynamic (t,y) ;
if(t_flg) break; /* exit if Termination Flag is set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l;
output(t,y);

lst=lst+cint;
}
if (t_flg) break; /* Exit DERIVATIVE/DYNAMIC loop */

/* if Termination Flag is set */

for (i=l;i<=s_var;-H-i)
fn[p][i]=f[i];

if (p==0) break;

/* Process First Order Runge-Kutta Equations */
for(i=l ; i<=s_var;-H-i) {

kl[i]=f[i]*h;

t ime_var+=2*MUL+ADD ;
}
t=t+tj+h/2;
t ime_var+=2* ADD+MUL ;

num_calls-l-=l ; /* Increment Derivative counter */
time_var+=der_add*ADD+der_mul*MUL;
derivative(t,y, f) ;

/* Process Second Order Runge-Kutta Equations */
for(i=l ; i<=s_var;-H-i) {

k2[i]=f[i]*h;

t ime_var+=ADD+MUL ;

t=tj+h;
t ime_var+=ADD ;

tj=t;

112

for (; ;) {
t=t+h;
/* Predictor Equations */
for (i=l; i<=s_var;++i) {
y[i]=yj[i]+h/24*(55*fn[0][i]-59*fn[l][i]+37*fn[2][i]

-9*fn[3][i]);
t ime_var+=4*ADD+6*MUL ;

t_flg=0;
num calls+=l; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
derivative(t,y,f) ;

/* Corrector Equations */
for (i=l;i<=s_var;-H-i) {
y[i]=yj[i]+h/24*(9*f[i]+19*fn[0][i]-5*fn[l][i]+fn[2][i]);
t ime_var+=4*ADD+5 *MUL ;

num_calls+=l ; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
derivative(t,y,f) ;

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic(t,y) ;
if(t_flg) break; /* exit if Termination Flag is set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l ;
output(t.y);

lst=lst+cint;

if(t_flg) break; /* exit if Termination Flag is set */

for (i=l ; i<=s_var ;-H-i) {
fn[3][i]=fn[2][i];

fn[0][i]=f[i];

113

output(t,y);
printf("Run Terminated\n\n");

printf("Number of calls to the DERIVATIVE Section: % 1.0f\n",
num_calls);

printf("Relative Execution Time: % 1.Of\n",time_var);
if (max_err>0)

printf("Maximum local Error is : %e\n",max_err);

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

re turn (num) ;

/* This routine sets and resets the global */
/* termination flag. */
void termt(flg)
int fig;
{

t flg=flg;

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st_var(n)
int(n);
{

s var=n;

/* This routine stores the number of multiplication */
/* and division operations that are executed every */
/- time the DERIVATIVE section is called into the */
/* global variable "der_mul". */
void num_mul(t_nm)
int t_nm;
{

der_mul=t_nm ;

114

/* This routine stores the number of addition and */
/* subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". */
void num_add(t_nm)
int t run;
{

der_add=t_nm;

/* This routine stores the maximum local error */
/* in the global flag "max_err". */
void err(num)
double num;

double abs();

if (abs(num)>max_err)
max_err=abs(num);

}

115

/***/

/* ACSL Type Simulation Using the Variable Step */
/* Trapezoidal Method of Integration */
/* */

/* by B. Earl Wells */
/* University of Alabama */
/* */

/* Last Update: March 11, 1988 */

//include <stdio.h>
//include <math.h>

/* Maximum Size allowed for Internal Arrays */.
/* (represents the maximum number of state */
/* variables possible in application plus one). */
//define SZ 21

/* Relative execution time for multiply and add operations */
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int t_flg,s_var,der_add,der_mul;
double max_err;

main()
{

char ch[30];

int i,cint_lmt,cint_num,int_val();
double num_calls,time_var;

double atof(),abs();
double hl[SZ],f[SZ],y[SZ],t,h,cint,lst,errr,err_val;

void initial(),derivative(),dynamic(),output();
void header(),termt(),st_var(),rel_time(),err();

printf("\n\n\n");
printf(" ACSL Type Continuous Simulation using the");
printf(" Variable Step\n");
printf(" Trapezoidal Method of Integration\n\n");
printf(" by B. Earl Wells\n\n");

headerO;

time_var=0;
der_add=0;
der_mul=0;
num_calls=0;
max err=0;

116

printf("Enter iteration interval: ");
gets(ch);
h=atof(ch);

printf("Enter communication interval: ");
gets(ch);
cint=atof(ch);

printf("Enter the number of communication intervals between");
printf(" outputs: ");
c int_lmt=ato i(gets(ch));

/* Process the INITIAL Section */
initiaK);

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value section */

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?");
gets(ch);

if (ch[0]=='y'i!ch[0]==1Y1) {
/* override initial conditions specified in initial value */
/* section and store these results into an array. */
for (i=l;i<=s_var;++i) {

printf ("Enter Initial value for y[%d]: ",i);
scanf("%s",ch);
y[i]=atof(ch);

printf ("Enter the maximum Estimation Error allowed: ");
/* gets(ch);

err_val=atof (ch);*/
err_val=le-8;

printf ("\nBeginning Run\n");

t=0;

num_calls+=l ; /* Increment Derivative counter */
time_var+=der_add*ADD+der_mul*MUL ;
derivative(t,y,f) ;

dynamic(t.y);

cint_num=l;
lst=cint;
output (t,y);

117

for (i=l;i<=s_var;++i) {
f[i]=h/2*f[i];
t ime_var+=ADD+ MUL ;

/* Process the DYNAMIC and DERIVATIVE Sections */
for(; ;) {

t=t+h;
time_var+=ADD ;
for (i=l; i<=s_var;++i) {

y[i]=f[i]*2+y[i];
t ime_var+=2*ADD+MUL ;

num_calls+=l ; /* Increment Derivative counter */
time_var+=der_add*ADD+der_mul*MUL;
der ivative(t , y , f) ;

if (t>=lst-h/2) {
dynamic (t,y);
if(t_flg) break;

if ((cint_num+=l)>cint_lmt) {
cint_num=l;
output(t.y);

lst=lst+cint;
}
if (t_flg) break;

do {
errr=0 ;

num_calls-f=l ; /* Increment Derivative counter */
t ime_var+=der_add"ADD+der_mul*MUL ;
derivative(t,y, f) ;

for(i=l;i<=s_var;-H-i) {
f[i]=h/2*f[i];
errr=errr-fabs(y[i]-(hl[i]+f[i]));

time_var+=5*ADD+2*MUL;
}

} while (errr>err_val) ;

118

output(t,y);
printfC'Run Terminated\n\n");

printf("Number of calls to the DERIVATIVE Section: % 1.0f\n",
num_calls);

printf("Relative Execution Time: % l.Of\n",time_var);
if (max_err>0)

printf("Maximum local Error is : %e\n",max_err);

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

return (num);

/* This routine sets and resets the global */
/* termination flag. */
void termt(flg)
int fig;
{

t_flg=flg;

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st_var(n)
int(n);
{

s_var=n ;

/* This routine stores the number of multiplication */
/* and division operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_mul". */
void num_mul(t_nm)
int t_nm ;
{

der_mul=t_nm ;

119

/* This routine stores the number of addition and */
/" subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". */
void num_add(t_nm)
int t_nm ;
{

der_add=t_nm ;

/* This routine stores the maximum local error */
/* in the global flag "max_err". */
void err(num)
double num;
{

double abs();

if (abs(num)>max_err)
max err=abs(num) ;

120

/***/
/* ACSL Type Simulation Using the Serial 2nd Order */
/* Runge-Kutta Method of Integration */
/* */

/* by B. Earl Wells */
/* University of Alabama */
/* */
/* Last Update: March, 1988 */

//include <stdio.h>

/* Maximum Size allowed for Internal Arrays */
/* (represents the maximum number of state */
/* variables in application plus one.) */
//define SZ 21

/* Relative execution time for multiply and add operations */
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int s_var,t_flg,der_add,der_mul;
double max_err;

main()

double num_calls,time_var;
char ch[30] ;
int i,cint_lmt, cint_num;
double atof();
double yj[SZ],kl[SZ],k2[SZ];
double f [SZ],y[SZ] ,t,h, tj ,tjal ,cint,lst;
void initiaK) , int_val() ,derivative(),dynamic() ,output() ;
void header () ,termt(),st_var(),rel_time() ,err();

printf ("\n\n\n");
printf(" ACSL Type Continuous Simulation using the ");
printf ("Serial form of\n");
printf (" the Second Order Runge-Kutta Method of ");
printf ("Integration. \n\n") ;
printf (" by B. Earl Wells\n\n");

header ();

tj=0;
lst=0;
der_add=0 ;
der_mul=0 ;
num_calls=0;
time_var=0;
raax_err=0 ;

121

printf("Enter iteration interval: ");
scanf("%s",ch);
h=atof(ch);

printf("Enter communication interval: ");
scanf("%s",ch);
cint=atof(ch);

printf("Enter the number of communication intervals between");
printf(" outputs: ");
scanf("%d",&cint_lmt);
cint_num=cint_lmt;

/* Process the INITIAL Section */
initialO;

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value */
for (i=l;i<=s_var;++i) /* and load results into an array */

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?");
scanf ("%s",ch);

ifi(ch[0]==
Iy'!!ch[0] = 1Y1) {

/* override initial conditions specified in initial value */
/* section and store these results into an array. */

for (i-1; i<=s_var;-H-i) {
printf ("Enter Initial value for y[%d]: ",i);
scanf ("%s",ch);
yj[i]=atof(ch);

printf ("\nBeginning Run\n");

/* Process the DYNAMIC and DERIVATIVE Sections */
for(; ;) {

t=tj;
f or(i=l; i<=s_var ;-H-i)

y[i]=yj[i];
t_flg=0; /* Clear Termination Flag */

num_calls+=l; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL;
derivative(t,y,f);

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

122

dynamic(t,y) ;
if(t_flg) break; /* exit if Termination Flag is set */

/* Produce Output every "cint_lmt'.' number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l;
output(t.y);

lst=lst+cint;
}
if (t_flg) break; /* Exit DERIVATIVE /DYNAMIC loop */

/* if Termination Flag is set */

/* Process First Order Runge-Kutta Equations */
for(i=l;i<=s_var;-H-i) {

kl[i]=f[i]*h;

t ime_var+=2*MUL+ADD ;
}
t=t+tj+h/2;
time_var+=2*ADD+MUL ;

nura_calls+=l ; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
derivative(t,y,f) ;

/* Process Second Order Runge-Kutta Equations */
for(i=l;i<=s_var;++i) {

k2[i]=f[i]*h;

t ime_var+=ADD+MUL ;

t=tj+h;
t ime_var+=ADD ;

tj-t;

output(t.y);
printf("Run Terminated\n\n");

printf("Number of calls to the DERIVATIVE Section: % 1.0f\n",
num_calls);

printfC"Relative Execution Time: % 1.Of\n",time_var);
if (max_err>0)

printf("Maximum local Error is : %e\n",max_err);

123

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

return (num) ;

/* This routine sets and resets the global */
/* termination flag. */
void termt(flg)
int fig;
{

t flg-flg;

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st_var(n)
int(n);
{

s_var=n ;

/* This routine stores the number of multiplication */
/* and division operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "derjmil". */
void num_mul(t_nm)
int t_nm;
{

der_mul=t_nm ;

/* This routine stores the number of addition and */
/* subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". */
void num_add(t_nm)
int t_nm;
{

der_add=t_nm;

124

/* This routine stores the maximum local error */
/* in the global flag "max_err". */
void err(num)
double num;
{

double abs();

if (abs(num)>max_err)
max err=abs(num);

125

/***/
/* ACSL Type Simulation Using the Serial 4th Order */
/" Runge-Kutta Method of Integration. */
/* */
/* by B. Earl Wells */
/* University of Alabama */
/* */
/* Last Update: September 25, 1987 */

//include <stdio.h>
//include <math.h>
/* Maximum Size allowed for Internal Arrays */
/* (represents the maximum number of state */
/* variables possible in application plus one). */
//define SZ 21

/* Relative execution time for multiply and add operations */
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int t_flg,s_var,der_add,der_mul;
double max_err;

main()
{

char ch[30];

int i,c int_lmt,c int_num;
double num_calls,time_var;

double atof();
double yj[SZ],kl[SZ],k2[SZ],k3[SZ],k4[SZ];
double f[SZ],y[SZ],t,h,tj,cint,lst;

void initialO,int_val(),derivative().dynamic(),output();
void header(),termt(),st_var(),rel_time(),err();

printf("\n\n\n");
printf(" ACSL Type Continuous Simulation using the");
printf(" Serial form of\n");
printf(" the Fourth Order Runge-Kutta Method of");
printf(" Integration.\n\n");
printf(" by B. Earl Wells\n\n");

header();

tj=0;
lst=0;

. time_var=0;
num_calls=0;
max err=0;

126

printf("Enter iteration interval: ");
gets(ch);
h=atof(ch);

printf("Enter communication interval: ");
gets(ch);
cint=atof(ch);

printf("Enter the number of communication intervals between");
printf(" outputs: ");
c int_lmt=ato i(gets(ch));
c int_num=c int_lmt;

/* Process the INITIAL Section */
initialQ;

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value */
for (i=l;i<=s_var;-H-i) /* and load results into an array */

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?");
gets(ch);

if (ch[0] = Iy'i!ch[0] = lY l) {
/* override initial conditions specified in initial value */
/* section and store these results into an array. */
for (i=l ; i<=s_var;-H-i) {

printf("Enter Initial value for y[%d] : ",i);
scanf("%s",ch);
yj[i]=atof(ch);

printf ("\nBeginning Run\n");

/* Process the DYNAMIC and DERIVATIVE Sections */
for(; ;) {

t=tj;
for(i=l;i<=s_var;-H-i)

y[i]=yj[i];
t_flg=0;

num_calls+=l; /* Increment Derivative counter */
derivative(t,y,f);
time_var+=der_add*ADD + der_mul*MUL;

if (t>=lst-h/2) {
dynamic(t,y);
if(t_flg) break;

127

if ((cint_num+=l)>cint_lmt) {
cint_num=l;
output (t,y);

lst=lst+cint;
}
if.(t_flg) break;

for(i=l ;i<=s_var;-H-i)
kl[i]=f[i]*h;

time var+=2*MUL+ADD ;
}
t=t+tj+h/2;
time_var+=2*ADD+MUL ;

num_calls+=l; /* Increment Derivative counter */
derivative(t,y,f) ;
time_var+=der_add*ADD 4- der_mul*MUL;

for(i=l;i<=s_var;++i) {
k2[i]=f[i]*h;

t ime_var+=2*MUL+ADD ;

num_calls+=l; /* Increment Derivative counter */
derivative(t,y,f) ;
time_var+=der_add*ADD + der_mul*MUL;

for(i=l;i<=s_var;-H-i) {
k3[i]=f[i]*h;

t ime_var+=ADD+MUL ;
}
t=tj+h;
time_var+=ADD ;

num_calls+=l; /* Increment Derivative counter */
derivative(t,y,f) ;
time_var+=der_add*ADD + der_mul*MUL;

for(i=l;i<=s_var;++i) {
k4[i]-f[i]*h;

time var+=4*ADD+4*MUL;
}
tj=t;

128

output(t,y);

printfC'Run Terminated\n\n");

printf("Number of calls to the DERIVATIVE Section: % 1.0f\n",
num_calls);

printf("Relative Execution Time: % 1.Of\n",time_var);
if (max_err>0)

printf("Maximum local Error is : %e\n",max_err);

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

re turn (num);

/* This routine sets and resets the global */
/* termination flag. */
void termt(flg)
int fig;
{

t_flg=flg;

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st̂ var(n)
int(n);
{

s_var=n ;

/* This routine stores the number of multiplication */
/* and division operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_mul". */
void num_mul(t_nm)
int t_nm;

^mu=t nm;

129

/* This routine stores the number of addition and */
/* subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". */
void num_add(t_nm) int t_nm; {

deradd=tnm ;

/* This routine stores the maximum local error */
/* in the global flag "max_err". */
void err(num)
double num;
{

double abs();

if (abs(num)>max_err)
max_er r=abs (num) ;

130

I" ACSL Type Simulation Using a Adams Parallel 2nd */
/" Order Predictor-Corrector Method of Integration */
/* (Two Processor Case) */
/* */
/* by B. Earl Wells */
/* University of Alabama */
/* */
/* Last Update: February 1, 1988 */

//include <stdio.h>

/* Maximum Size allowed for Internal Arrays */
/* (represents the maximum number of state */
/* variables in application plus one.) */
//define SZ 21

/* Relative execution time for multiply and add operations '••/
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int s_var,t_fIg,cint_lmt,cint_num,der_add,der_mul;
double cint,lst,max_err;
double num_calls,time_var;
raainO
{

char ch[30];
int i,p;
double atof(); '
double yj[SZ],kl[SZ],k2[SZ];
double f[SZ],y[SZ],f_in[4][SZ],ycn_l[SZ],fcn_l[SZ],fpn_l[SZ];
double fpn[SZ],fcn[SZ],ycn[SZ],t,h,tj;
void initial(),int_val(),derivative(),dynamic(),output();
void predictor(),corrector(),header(),termt(),rel_time(),err();

printf("\n\n\n");
printf(" ACSL Type Continuous Simulation using a");
printf(" parallel version");
printf(" of the\n");
printf(" Adam's Second Order Predictor-Corrector Method of");
printf(" Integration\n");
printf(" (Two Processor Case)\n\n");
printf(" by B. Earl Wells\n\n");

header();

tj=0;
lst=0;
time var=0;

131

der_add=0;
der_mul=0;
num_calls=0;
max_err=0;

printf("Enter iteration interval: ");
h=atof(gets(ch));

printf("Enter communication interval: ");
cint=atof(gets(ch));

printf("Enter the number of communication intervals between");
printf(" outputs: ");
c int_lmt=ato i(gets(ch));
c int_num=c int_lmt;

/* Process the INITIAL Section */
initiaK);

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value */
for (i=l;i<=s_var;-H-i) /* and load results into an array*/

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?");
gets(ch);

if
/* override initial conditions specified in initial value */
/* section and store these results into an array. */
for (i=l; i<=s_var;-H-i) {

printf("Enter Initial value for y[%d] : ",i);
gets(ch);
yj[i]=atof(ch);

printf ("\nBeginning Run\n");

/* Process the DYNAMIC and DERIVATIVE Sections */

/* Find initial four values using the Runge-Kutta Method */
for(p=2;p>=0;--p) {

t=t j;
for(i=l; i<=s_var;-H-i)

t_flg=0; /* Clear Termination Flag */

132

num_calls+=l; /* Increment Derivative counter */
time_var+=der_add*ADD+der_mul'*MUL;
derivative(t,y,f);

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic (t,y);
if(t_flg) break;/* exit if Termination Flag is set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals • */
if ((cint_num+=l)>cint_lmt) {

cint_num=l ;
output(t.y);

lst=lst+cint;
}
if (t_flg) break; /* Exit DERIVATIVE/ DYNAMIC loop */

/* if Termination Flag is set */

for (i=l;i<=s_var;++i)

if (p==D
for (i=l;i<=s_var;-H-i) {

ycn_l [i] =y [i] ;
fcn_l[i]=f[i];

if (p==0) break;

/* Process First Order Runge-Kutta Equations */
for(i=l;i<=s_var;++i) {

kl[i]=f[i]*h;

t ime_var+=2*MUL+ADD ;

t=t+tj+h/2;
t ime_var+=2*ADD+MUL ;

num_calls+=l ; /* Increment Derivative counter */
t ime_var+=der_add* ADD+der_mul*MUL ;
derivative(t,y,f) ;

133

/* Process Second Order Runge-Kutta Equations */
for(i=l;i<=s_var;++i) {

k2[i]=f[i]*h;

time_var+=ADD+MUL;

t-tj+h;
time_var+=ADD ;

tj-t;

/* Initialize Predictor and Corrector Processes */
predictor (t , ycn_l , f pn_l , f _in , 1) ;
corrector (t,ycn_l, yen, f_in,l) ;

for (i=l;i<=s_var;++i)
fpn[i]=f_in[0][ih

while (t_flg==0) {

predictor (h,ycn_l ,fpn_l ,f_in,0) ;

corrector (h,fpn, yen ,f_in,0) ;

for (i=l;i<=s_var;++i) {
fpn[i]=fpn_l[i];
ycn_l[i]=ycn[i];

printf("Run Terminated\n\n");

printf("Effective number of calls to the DERIVATIVE Section:");
printf(" % 1.0f\n",num_calls);
printf("Relative Execution Time: % 1.Of\n",time_var);
if (max_err>0)

printf("Maximum local Error is : %e\n",max_err);

134

void predictor (h,ycn_l , f pn_l , f_in, f Ig)
double h,ycn_l[] ,fpn_l[] ,f_in[4] [SZ] ;
int fig;
{

static double y[SZ] ,fpn[SZ] ,t;
int i ;
void shif t () , derivative() ;

if (flg=l) {
for (i=l;i<=s var;-H-i) {

fpn[i]=f~in[0][i];
}
t=h;-

else {

t=t+h;

for (i=l ; i<=s_var;-H-i)
y [i] =ycn_l [i]+2*h*f pn [i] ;

derivative(t,y,fpn_l) ;

for (i=l; i<=s_var;++i)
fpn[i]=fpn_l[i];

void corrector (h, f pn , yen, f_in, fig)
double h,fpn[] ,ycn[] ,f_in[4] [SZ] ;
int fig;
{

static double f cn[SZ] ,ycn_l[SZ] ,fn_l[SZ] ,t;
int i;
void shift() ,derivative() ,dynamic() ,output() ;

if (flg==l) {
for (i=l;i<=s var;-H-i) {

_
ycn_l[i]=fpn[i] ;

}
t=h;

else {
for (i=l;i<=s_var;-H-i) {

ycn[i]=ycn_l[i]+h/2*(fpn[i]+fn_l[i]);
t ime_var+=2*ADD+2 -{MUL ;

135

t_flg=0;

num_calls+=l; /* Increment Derivative Counter */
t ime_var+=der_add*ADD+der_mul -MUL ;
der ivative(t , yen , f en) ;

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic (t, yen) ;
if(t_flg=0) {

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_nunri-=l)>cint_lmt) {

cint_num=l ;
out put (t, yen) ;

lst=lst+cint;
}

if (t_flg) output (t, yen); /* Produce Final Output */

for (i=l;i<=s var;-H-i) {
fn_l[i]=fcn[i];
ycn_l[i]=ycn[i] ;

t=t+h;
time var+=ADD;

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

return(num);

/* This routine sets and resets the global */
/* termination flag. */
void termt(flg)
int fig;
{

t_flg=flg;

136

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st_var(n)
int(n);

s_var=n ;

/* This routine stores the number of multiplication */
/" and division operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "derjnul". */
void num_mul(t_nm)
int t_nm;
{

der_mul=t_nm;

/* This routine stores the number of addition and */
/* subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". */
void num_add(t_nm)
int t_nm ;
{

der_add=t_nm ;

/* This routine stores the maximum local error */
/* in the global flag "max_err". */
void err(num)
double num;
{

double abs();

if (abs(num)>max_err)
max err=abs(num) ;

137

/***/

/* ACSL Type Simulation Using a Adams Parallel 4th */
/* Order Predictor-Corrector Method of Integration */
/* (Two Processor Case) */
/* */
/* by B. Earl Wells */
/* University of Alabama */
/* */
/* Last Update: February 1, 1988 */

//include <stdio.h>

(
/* Maximum Size allowed for Internal Arrays */
/* (represents the maximum number of state */
/* variables in application plus one.) */
//define SZ 21

/* Relative execution time for multiply and add operations */
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int s_var,t_fIg,cint_lmt,cint_num,der_add,der_mul;
double cint,lst,max_err;
double num_calls,time_var;
main()
{

char ch[30];
int i,p;
double atof();
double yj[SZ],kl[SZ],k2[SZ];
double f[SZ],y[SZ],f_in[A][SZ],ycn_l[SZ],fcn_l[SZ],fpn_l[SZ];
double fpn[SZ],fcn[SZ],ycn[SZ],t,h,tj;
void initial() ,int_val() ,derivative() ,dynamic()",output() ;
void predictor(),corrector(),header(),termt(),rel_time(),err();

printf("\n\n\n");
printf(" ACSL Type Continuous Simulation using a parallel");
printf(" version");
printf(" of the\n");
printf(" Adam's Fourth Order Predictor-Corrector Method of");
printf(" IntegrationW);
printf(" (Two Processor Case)\n\n");
printf(" by B. Earl Wells\n\n");

header();

tj=0;
lst=0;
time_var=0;

138

der_add=0;
der_mul=Q;
num_calls=0;
max_err=0;

printf("Enter iteration interval: ");
h=atof(gets(ch));

printf("Enter .communication interval: ");
cint=atof(gets(ch));

printf("Enter the number of communication intervals between");
printf(" outputs: ");
cint_lmt=atoi(gets(ch));
c int_num=c int_lmt;

/* Process the INITIAL Section */
initial();

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value section */
for (i=l;i<=s_var;-H-i) /* and load results into an array. */

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?");
gets(ch);

if (ch[0]=='y1 j |ch[0]=— 'Y') {
/* override initial conditions specified in initial value */
/* section and store these results into an array. */
for (i=l ; i<=s_var;-H-i) {

printf ("Enter Initial value for y[%d]: ",i);
gets(ch);
yj[i]=atof(ch);

printf ("\nBeginning Run\n");

/* Process the DYNAMIC and DERIVATIVE Sections */

/* Find initial four values using the Runge-Kutta Method */
for(p=3;p>=0;--p) {

t=tj;
for(i=l;i<=s_var;-H-i)

y[i]=yj[i];
t_flg=0; /* Clear Termination Flag */

139

num_calls+=l; /* Increment Derivative counter */
time_var+=der_add*ADD+der_mul*MUL;
derivative(t,y,f);

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic (t,y);
if(t_flg) break; /* exit if Termination Flag is set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l ;
output(t.y);

lst=lst-i-cint;
}
if (t_flg) break; /* Exit DERIVATIVE/DYNAMIC loop */

/* if Termination Flag is set */

for (i=l; i<=s_var;-H-i)

if (p==D
for (i=l; i<=s_var;-H-i) {

ycn_l[i]=y[i];
fcn_l[i]=f[i];

if (p==0) break;

/* Process First Order Runge-Kutta Equations */
for(i=l;i<=s_var;++i) {

kl[i]=f[i]*h;

time_var+=2*MUL+ADD ;

t=t-l-tj+h/2;
t ime_var+=2*ADD+MUL ;

num_calls+=l ; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
derivative(t,y,f) ;

140

/* Process Second Order Runge-Kutta Equations */
for(i=l;i<=s_var;++i) {

k2[i]=f[i]*h;

t ime_var+=ADD+MUL ;

t=tj+h;
t ime_var+ =ADD ;

tj=t;

/* Initialize Predictor and Corrector Processes */
predictor (t , ycn_l , f cn_l , f pn_l , f _in, 1) ;
corrector (t , ycn_l , yen , f en , f _in , 1) ;

for (i=l;i<=s_var;++i)
fpn[i]=f_in[0][i];

while (t_flg=0) {

predictor (h,ycn_l ,fcn_l ,fpn_l ,f_in,0) ;

corrector (h , f pn , yen , f en , f _in , 0) ;

for (i=lji<=s_var;-H-i) {
fpn[i]=fpn_l[i];
ycn_l[i]=ycn[i];
fcn_l[i]=fcn[i];

printf("Run Terminated\n\n");

printf("Effective number of calls to the DERIVATIVE Section:");
printf(" % 1.0f\n",num_calls);
printf("Relative Execution Time: % 1.Of\n",time_var);
if (max_err>0)

printf("Maximum local Error is : %e\n",max err);

141

void predictor(h,ycn_l,fcn_l,fpn_l,f_in,flg)
double h, yen J. [] , f cn_l [] , f pn_l [] , f_in [4] [SZ] ;
int fig;
{

static double y[SZ],fpn[SZ],fn[3][SZ],t;
int i;
void shift(),derivative();

if (flg==D {
for (i*l;i<=s var;-H-i) {~

fn[0][i]=f_in[2Hih

}
t=h;

else {
shift(fcn_l,fn);

t=t+h ;

for (i=l;i<=s var;++i)
y[i]-ycn"l[i]+h/3*(8*fpn[i]-5*fn[0][i]-l-4*fn[l][i]

-fnf2][i]);

derivative(t , y , f pn_l) ;

for (i=l; i<=s_var;++i)
fpn[i]=fpn l[i];

void corrector (h , f pn , yen , fen , f _in , fig)
double h,fpn[] ,ycn[] ,fcn[] ,f_in[4] [SZ] ;
int fig;
{

static double ycn_l[SZj ,fn[3] [SZ] , t;
int i;
void shift() ,derivative(),dynamic(),output();

if (flg==l) {
for (i=l; i<=s_var;-H-i) {

fn[2][i]=f_in[3][i];
ycn_l[i]=fpn[i];

t=h;

142

else {
for (i=l;i<=s_var;-H-i) {

ycn[i]=ycn_l[i]+h/24*(9*fpn[i]+19*fn[0][i]

t ime_var+=4*ADD+5*MUL ;

t_flg=0;

num_calls+=l ; /* Increment Derivative Counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
derivative(t,ycn,fcn) ;

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic(t,ycn) ;
if(t_flg=0) {

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l ;
output (t, yen);

lst=lst+cint;
}

if (t_flg) output (t, yen); /* Produce Final Output */

shift(f cn,fn) ;

for (i=l ; i<=s_var;-H-i)
ycn_l [i] =ycn [i] ;

t=t+h;
t ime_var+=ADD ;

void shift(x.y)
double x U , y [3] [S Z] ;
{

int i;

for (i=l;i<=s_var;++i) {

143

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

return(num);

/* This routine sets and resets the global */
/* termination flag. */
void termt(flg)
int fig;
{

t_flg-flg;

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st_var(n)
int(n);
{

s_var=n ;

/* This routine stores- the number of multiplication */
/* and division operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "derjnul". */
void num_mul(t_nm)
int t nm;
{

der_mul=t_nm ;

/* This routine stores the number of addition and */
/* subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". */
void num_add(t_nm)
int t nm;
{

der_add=t_nm ;

144

/* This routine stores the maximum local error */
/* in the global flag "max_err". */
void err(num)
double num;
{

double abs();

if (abs(num)>max_err)
max_err=abs(num);

145

/* ACSL Type Simulation Using a Adams Parallel 2nd */
/* Order Predictor-Corrector Method of Integration */
/* (Four Processor Case) */
/* */

/* by B. Earl Wells */
/* University of Alabama */
/* */

/* Last Update: February 1, 1988 */

//include <stdio.h>

/* Maximum Size allowed for Internal Arrays */
/* (represents the maximum number of state */
/* variables in application plus one.) */
//define SZ 21

/* Relative execution time for multiply and add operations */
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int s_var , t_f Ig , cint_lmt , cint_num , der_add , der_mul ;
double cint,lst,max_err;
double num_calls,time_var;

main()

char ch[30];
int i,p;
double atof();
double yj[SZ],kl[SZ],k2[SZ];
double f[SZ],y[SZ],f_in[4][SZ],y_in[4][SZ];
double fp[SZ] ,fp_l[SZ] ,yc_2[SZ] ,yc_3[SZ] ,fc_2[SZ] ;
double fpa_l[SZ],fpa_2[SZ],yc_l[SZ],yc[SZ],fc[SZ];
double t,h,tj ;

void initial() , int_val(),derivative() , dynamic() ,output() ;
void predictor() ,corrector() ,header() ,termt() ,rel_time() ,err() ;
void pred_l() ,pred_2(),correct_l() ,correct_2();

printf ("\n\n\n");
printf (" ACSL Type Continuous Simulation using a parallel");
printf (" version");
printf (" of the\n");
printf (" Adam's Second Order Predictor-Corrector Method of");
printf (" Integration\n");
printf (" (Four Processor Case)\n\n");
printf (" by B. Earl Wells\n\n");

146

header();

tj=0;
lst=0;
time_var=0;
num_calls=0;
max_err=0;

printf("Enter iteration interval: ");
h=atof(gets(ch));

printf("Enter communication interval: ");
cint=atof(gets(ch));

printf("Enter the number of communication intervals between");
printf(" outputs: ");
cint_lmt=atoi(gets(ch));
cint_num=cint_lmt;

/* Process the INITIAL Section */
initial();

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value */
for (i=l;i<=s_var;-H-i) /* and load results into an array */

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?");
gets(ch);

if (ch[0]=='y' ! !ch[0]=='Y') {
/* override initial conditions specified in initial value */
/* section and store these results into an array. */
for (i=l;i<=s_var;++i) {

printf ("Enter Initial value for y[%d]: ",i);
gets(ch);
yj[i]=atof(ch);

printf ("\nBeginning Run\n");

/* Process the DYNAMIC and DERIVATIVE Sections */

/* Find initial three values using the Runge-Kutta Method */
for(p=0;p<=3;++p) {

t=t j ;
f or(i=l ; i<=s_var ;

t_flg=0; /* Clear Termination Flag */

147

num_calls+=l; /* Increment Derivative counter */
time_var+=der_add*ADD+der_mul*MUL;
derivative(t,y,f);

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic(t.y);
if(t_flg) break; /* exit if Termination Flag is set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l;
output(t,y);

lst=lst+cint;
}
if (t_flg) break; /* Exit DERIVATIVE/DYNAMIC loop */

/* if Termination Flag is set */

>for (i=l;i<=

if (p=3) break;

/* Process First Order Runge-Kutta Equations */
for(i=l;i<=s_var;++i) {

t ime_var+=2*MUL+ADD ;

t=t+tj+h/2;
t ime_var+=2*ADD+MUL ;

num_calls+=l ; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul"MUL ;
derivative(t,y,f);

/* Process Second Order Runge-Kutta Equations */
for(i=l;i<=s_var;-H-i) {

k2[i]=f[i]*h;

t ime_var+=ADD-f MUL ;

148

t=tj+h;
t ime_var+=ADD ;

tj=t;

for (i=l;i<=s_var;-H-i) {
fp[i] = f_in[3][i];
fp_l[i] = f_in[2][i];
fc_2[i] = f in[l][i];
yc_2[i] = y_in[l][i];
yc_3[i] = y_in[0][i];

}

pr ed_l (t+2*h , f p , yc_2 , f pa_2 , 0) ;
pred_2(t+h,fp_l,fp,yc_2,fpa_l,0);

correct_l (t , f p_l , f p , yc_3 , f c , yc , 0) ;
correct_2(t-h,f c_2,yc_3,yc_l ,0) ;

do {
pr ed_l (h , f p , yc_2 , f pa_2 , 1) ;
pred_2(h , f p_l , f p , yc_2 , f pa_l , 1) ;

correct_2 (h , f c_2 , yc_3 , yc_l , 1) ;
correct_l (h , f p_l , f p , yc_3 , f c , yc , 1) ;

for (i=l;i<=s_var;++i) {
fp[i] = fpa_2[i];_

yc_2[i] =
fc_2[i] =
yc_3 [i] = yc_l [i] ;

} while (t_flg==0);

printf("Run Terminated\n\n") ;

printf("Effective of calls to the DERIVATIVE Section:");
printf(" % 1.0f\n",num_calls);
printf("Relative Execution Time: % 1 . Of \n", time_var) ;
if (max_err>0)

printf ("Maximum local Error is : %e\n",max_err) ;

149

/* Predictor //I (first processor) */
void pred_l(h,fp,yc_2,fpa_2,fIg)
double h,fp[SZ],yc_2[SZ],fpa_2[SZ];
int fig;

static double t;
int i;
double ypa_2[SZ];
void derivative();

/* Initialize time */

if (fig—0)
t=h;

else {
for(i=l;i<=s_var;-H-i) {

ypa_2[i] = yc_2[i] + 4*h*fp[i];

derivative(t,ypa_2,fpa_2);

t=t+h*2;
t_flg=0;

}

/* Predictor H2 (second processor) */
void pred_2(h,fp_l,fp,yc 2,fpa_l,flg)
double h,fp_l[SZ],fp[SZ]7yc_2[SZ],fpa_l[SZ];
int fig;

static double t;
double ypa_l[SZ];
int i;
void derivative();

/* Initialize time */
if (flg=0)

t=h;
else {

for(i=l; i<=s_var;-H-i) {
ypa_l[i]=yc_2[i]+3*h*(fp[i]+fp_l[i])/2;

derivative(t,ypa_l,fpa_l);

t=t+h*2;
t_flg=0;

}

150

/* Corrector //I (third processor) */
void correct_l(h,fp_l,fp,yc_3,fc,yc,fIg)
double h,fp 1[SZ],fp[SZ],yc_3[SZ],fc[SZ],yc[SZ];
int fig;

static double t;
int i;
void derivative(),dynamic(),output();

/* Initialize time */
if (flg=0!!t_flg!=0)

t»h;
else {

for (i=l;i<=s_var;-H-i) {
yc[i]=yc_3[i]-h*(3*fp[i]-9*fp_l[i])/2;
time var+=4*MUL+2*ADD;

num_calls+=l ; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
der ivative(t , yc , f c) ;

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic (t,yc);
if(t_fig==0) { /* execute only if Termination Flag */

/* is not set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l;
output (t,yc);

}
lst=lst+cint;

if (t_flg!=0)
output(t,yc) ;

t=tH-2*h;
t ime_var+=ADD+MUL ;

151

/* Corrector //2 (fourth processor) */
void correct_2(h,fc_2,yc_3,yc_l,f Ig)
double h,fc_2[SZ],yc_3[SZ],yc_l[SZ];
int fig;
{

static double t;
int i;
double fc_l[SZ];
void derivative() , dynamic() , output() ;

/* Initialize time */
if (fig— Oj jt_flg!=0)

t=h;
else {

for (i=l; i<=s_var;-H-i) {
yc_l [i] =yc_3 [i] +2*h*f c_2 [i] ;

derivative(t , yc_l , f c_l) ;

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic (t , yc_l) ;
if(t_flg==0) { /* execute only if Termination */

/* Flag is not set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l;
output (t,yc_l);

}
lst=lst+cint;

if (t_flg!=0)
output (t , yc_l) ;

t=t+2*h;

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

return (num) ;

152

/* This routine sets and resets the global */
/* termination flag. -/
void termt(flg)
int fig;
{

t_flg=flg;

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st_var(n)
int(n);
{

s_var=n ;

/* This routine stores the number of multiplication */
/* and division operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_mul". */
void num_mul(t_nm)
int t_nm;
{

der_mul=t_nm ;

/* This routine stores the number of addition and */
/* subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". . */
vo id num_add (t_nm)
int t_nm;
{

der_add=t_nm;

/* This routine stores the maximum local error */
/* in the global flag "max_err". */
void err(num)
double num;

double abs();

if (abs(num)>max_err)
max err=abs(num);

}

153

y***********«***/
/* ACSL Type Simulation Using the Parallel 4th Order */
/" Block Predictor-Corrector Method of Integration */
/* */
/* by B. Earl Wells */
/- University of Alabama */
/* */
/* Last Update: February 1, 1988 */
/******«**/

//include <stdio.h>

/" Maximum Size allowed for Internal Arrays */
/* (represents the maximum number of state */
/* variables in application plus one.) */
//define SZ 21

/* Relative execution time for multiply and add operations */
//define MUL 1
//define ADD 1

/* Declare variables that are global to entire program */
int s_var,t_fIg,cint_lmt,cint_num,der_add,der_mul;
double cint,lst,max_err;
double num_calls,time_var;
main()
{

char ch[30];
int i,p;
double a.tof();
double yj[SZ],kl[SZ],k2[SZ];
double f[SZ],y[SZ],f_in[4][SZ],y_in[4][SZ],yc[SZ],fc[SZ];
double yc_l[SZ],fc_l[SZ],fp_l[SZ],fp_2[SZ];
double ycp_l[SZ],ycp_2[SZ],fcp_l[SZ],fcp_2[SZ],t,h,tj;

void initial(),int_val(),derivative(),dynamic(),output();
void header(),termt(),st_var(),rel_time(),err();
void pred_l(),pred_2(),correct_l(),correct_2();

printf("\n\n\n");
printf(" ACSL Type Continuous Simulation using");
printf(" a Parallel Block");
printf(" form of\n");

printf(" the Fourth Order Predictor-Corrector Method of");
printf(" IntegrationV);
printf(" (Two Processor Case)\n\n");
printf(" by B. Earl Wells\n\n");

header();

154

tj=0;
lst=0;
time_var=0;
der_add=0;
der_mul=0;
num_calls=0;
max_err=0;

printf("Enter iteration interval: ");
h=atof(gets(ch));

printf("Enter connnunication interval: ");
cint=atof(gets(ch));

printf("Enter the number of communication intervals between");
printf(" outputs: ");
cint_lmt=atoi(gets(ch));
c int_num=c int_lmt;

/* Process the INITIAL Section */
initialO;

/* Assign Initial Conditions to State Variable(s) */
int_val(y); /* process special initial value */
for (i=l ;i<=s_var;-H-i) /* and load results into an array */

printf ("Override the initial conditions of the state ");
printf ("variables (Y or N)?");
gets(ch);

if (ch[0]==ly'!ichtO]==1Y1) {
/* override initial conditions specified in initial value */
/* section and store these results into an array. */
for (i=l;i<=s_var;-H-i) {

printf ("Enter Initial value for y[%d]: ",i);
gets(ch);
yj[i]=atof(ch);

printf ("\nBeginning Run\n");

/* Process the DYNAMIC and DERIVATIVE Sections */

/* Find initial three values using the Runge-Kutta Method */
for(p=0;p<=2;-H-p) {

t=tj;
for(i=l;i<=s_var;

155

t_flg=0; /* Clear Termination Flag */

num_calls+=l; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL;
derivative(t,y,f);

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic(t.y);
if(t_flg) break; /* exit if Termination Flag is set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l ;
output(t.y);

lst=lst+cint;
}
if (t_flg) break; /* Exit DERIVATIVE/DYNAMIC loop */

/- if Termination Flag is set */

for (i=l;i<=s_var;-H-i) {
f_ in [p] [i]=f [i] ;

y_in[pHi]=y[i] ;
}

if (p==2) break;

/* Process First Order Runge-Kutta Equations */
for(i=l; i<=s_var;-H-i) {

kl[i]=f[i]*h;

time_var+=2*MUL+ADD ;
}
t=t+tj+h/2;
time_var+=2*ADD+MUL ;

num_calls-t-=l ; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
derivative(t,y,f) ;

/* Process Second Order Runge-Kutta Equations */
for(i=l;i<=s_var;-H-i) {

k2[i]=f[i]*h;

t ime_var+=ADD+MUL ;

t=tj+h;
t ime_var+=ADD ;

156

tj=t;

for (i=l;i<=s_var;++i) {
yc[i] = y_i_

fc[i]
fc l[

pred_l(t+h,yc_l,y_in[0],fc_l,f_in[OJ,fp 1,0);
pred_2(t+2*h,yc_l,y_in[0],fc_l,f_in[0],fp_2,0);

correct_l(t+h,yc,fc,fp_l,fp_2,ycp_l,fcp_l,0);
correct_2(t+2*h,yc,fc,fp_l,fp_2,ycp_2,fcp_2,0);

do {
pred_l(h,yc_l,yc,fc_l,fc,fp_l,1);
pred_2(h,yc_l,yc,fc_l,fc,fp_2,1);

correct__l (h, yc, f c, f p_l, f p_2, ycp_l, f cp_l, 1);
correct_2(h,yc,fc,fp_l,fp_2,ycp_2,fcp_2,1);

for (i-1; i<=s_var;-H-i) {
fc[i]=fcp_2[i];
yc[i]=ycp 2[i];
fc_l[i]=fcp_l[i];
yc_l[i]=ycp_l[i];

} while (t_flg==0);

printf("Run Terminated\n\n");

printf("Effective number of calls to the DERIVATIVE Section:");
printf(" % 1.0f\n",num_calls);
printf("Relative Execution Time: % 1.Of\n",time_var);
if (max_err>0)

printf("Maximum local Error is : %e\n",max_err);

/* Predictor Block i+1 (first processor) */
vo id pred_l(h,yc_l,yc,fc_l,fc,fp_l,fIg)
double h.yc 1[SZ],yc[SZ],fc_l[SZ],fc[SZ],fp_l[SZ];
int fig;
{

static double t,yc_2[SZ],fc_2[SZ],ypp_l[SZ];
int i;
void derivative();

.157

/* Initialize time */
if (fig—0)

t-h;
else {

for(i=l;i<=s_var; -H-i)
j'JJJJ X I J. J """ \ j>^"* ™ i. -~ j • .y —" — t — j - ^ — t — j / > —

+ h/6*(3*fc_2[i]-4*fc_l[i]+13*fc[i]);
time var-H=6*MUL+4*ADD;

num_calls+=l; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul *MUL ;
derivative(t,ypp_l ,fp_l) ;

t=t+h*2;
t ime_var+=ADD+MUL ;

for (i=l;i<=s_var;++i) {
yc_2[i]=yc[i];
fc_2[i]=fc[i];

}
t_flg=0;

/* Corrector Block i+1 (first processor) */
void correct_l(h,yc,fc,fp l,fp_2,ycp_l,f cp_l ,f Ig)
double h,yc[SZ],fc[SZ],fp~l[SZ],fp_2[SZ],ycp_l[SZ],fcp_l[SZ];
int fig;
{

static double t;
int i;
void derivative(),dynamic(),output();

/* Initialize time */
if (flg=0!|t_flg!=0)

t=h;
else {

for (i=l ;i<=s_var;-H-i) {
ycpj.[i]=yc[i]+h*(5*fc[i]+8*fp_l[i]-fp_2[i])/12;
time_var+=3*ADD+4*MUL ;

num_calls-t-=l ; /* Increment Derivative counter */
t ime_var+=der_add*ADD+der_mul*MUL ;
der i vat i ve (t , y cp_ 1 , f cp_l) ;

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic (t,ycp_l);
if(t_flg==0) { /* execute only if Termination */

/* Flag is not set */

158

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_nunri-=l)>cint_lmt) {

cint_num=l;
output (t,ycp_l);

}
lst=lst+cint;

if (t_flg!=0)
output (t,ycp_l) ;

t=t+2*h;
t ime_var+-ADD+MUL ;

/* Predictor Block i+2 (second processor) */
void pred_2(h , yc_l , yc , f c_l , f c , f p_2 , f Ig)
double h,yc_l[SZ],yc[SZ],fc_l[SZ],fc[SZ],fp_2[SZ];
int fig;
{

static double t,yc_2[SZ] ,f c_2[SZ] ,ypp_2[SZ] ;
int i;
void derivativeO ;

/* Initialize time */
if (flg=0)

t=h;
else {

for(i=l;i<=s_var;-H-i) {
ypp_2[i] = (yc_2[i]+yc_l[i]+yc[i])/3

+ h/ 12*(29*f c_2 [i] -72* f c_l [i] +79*f c [i]) ;

der ivat i ve (t , ypp_2 , f p_2) ;

t=t+h*2;

for (i=l ; i<=s_var;-H-i) {
yc_2 [i] =yc [i] ;
fc_2[i]=fc[i];

t_flg=0;
}

159

/* Corrector Block i+2 (second processor) */
void correct_2(h,yc,fc,fp_l,fp_2,ycp_2,fcp_2,f Ig)
double h,yc[SZ],fc[SZ],fp_l[SZ],fp_2[SZ],ycp_2[SZ],fcp_2[SZ];
int fig;
{

static double t;
int i;
void derivative() , dynamic() , output() ;

/* Initialize time */
if (flg=OJ!t_flg!=0)

t=h;
else {

for (i=l; i<=s_var;++i) {
ycp_2[i]=yc[i]+h*(fc[i]+4*fp_l[i]+fp_2[i])/3;

der i vat ive (t , ycp_2 , f cp_2) ;

/* Process DYNAMIC Section every Communication Interval */
if (t>=lst-h/2) {

dynamic (t , ycp_2) ;
if(t_flg==0) { /* execute only if Termination */

/* Flag is not set */

/* Produce Output every "cint_lmt" number of */
/* of Communication Intervals */
if ((cint_num+=l)>cint_lmt) {

cint_num=l ;
output (t , ycp_2) ;

}
lst=lst+cint;

if (t_flg!=0)
output (t , ycp_2) ;

t=t+2*h;

/* This routine takes the absolute value of */
/* a double precision argument. */
double abs(num)
double num;
{

if (num<0)
num=-num;

return (num) ;

160

/* This routine sets and resets the global 'V
/* termination flag. */
void termt(flg)
int fig;
{

t_flg»flg;

/* This routine stores the number of state variables */
/* present in the application problem into the */
/* global variable "s_var". */
void st_var(n)
int(n);
{

s_var=n;

/* This routine stores the number of multiplication */
/* and division operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "derjnul". */
void num_mul(t_nm)
int t_nm;
{

der mul=t nm;

/* This routine stores the number of addition and */
/* subtraction operations that are executed every */
/* time the DERIVATIVE section is called into the */
/* global variable "der_add". */
void num_add(t_nm)
int t_nm;
{

der add=t_nm;

/* This routine stores the maximum local error */
/* in the global flag "max_err". */
void err(num)
double num;
{

double abs();

if (abs(num)>max_err)
max_err=abs(num) ;

APPENDIX C
BENCHMARK EXAMPLES

Spring Dashpot Example

The Spring Dashpot Example represents a physical system in which a
mass is placed in damped harmonic motion. The damping is caused by the
dashpot mechanism that converts mechanical energy into heat energy.

Spring

A A A A
" W V V V"

Mass Dashpot

M

x=0

This system is described by the second order differential equation

M X + D X + K X = 0 ,

where M is the mass,
D is the Damping, and
K is the spring constant.

This can be transposed into a set of two first order relationships
modeled using the integration operator.

The governing initial conditions are

X(0) = 5, and X(0) = 0.

The equation describing the analytical solution used to compute relative
error is

x=sqrt(3.0)*10.0*exp(-2.0*t)*cos(2.0*sqrt(3.0)*t-PI/6)/3.0.

161

162

/A***/

/* APPLICATION PROGRAM AREA */
/**/

/* Spring Damping Example */

double xic,xdic,k,d,m,tstp,xdd;

/*********** HEADER INFORMATION ************/
void header()
{
printf(" **********************************\n").

printf(" ***** SPRING DASHPOT EXAMPLE *****\n");
printf (" *******-A-**************************\n\n").
}
/***/

/************* INITIAL SECTION *************/
void initialO
{
/* Define Preset variables */

xic=5.0;
xdic=0.0;
m=l;
k=16.0;
d=A.O;
tstp=10.00; } /***/

/**** INITIAL VALUES OF STATE VARIABLES ****/
void int_val(y)
double y[];

y[l]=xic;
y[2]=xdic;

/* Specify Number of State Variables */
st_var(2);

/* Specify Relative Execution Time of */
/* DERIVATIVE section */
num_mul(3);
num add(2);

/***/

163

/*********** DERIVATIVE SECTION ************/
void derivative(t,y,f)
double t,y[],f[j;

xdd=(-d*y[2]-k*y[l])/m;
f[l]=y[2];
f[2]=xdd;
termt(t>tstp);

}
/***/

/************* DYNAMIC SECTION *************/
void dynamic(t.y)
double t,y[];
{

double sqrt(),exp(),cos() ,x;
x=sqrt(3.0)*10.0*exp(-2.0*t)*cos(2.0*sqrt(3.0)

*t-3.1415926536/6)73.0;
if (x!=0)
err((y[l]-x)/x);

/*********** OUTPUT STATEMENT(S) ***********/
void output(t,y)
double t,y[];
{

double sqrt(),cos(),exp();
printf("t=% 12.8f xdd=% 12.8f xd=% 3.8f x=% 3.8f\n",

t,xdd,y[2],y[l]);
printf("x=% 12.8f\n",sqrt(3.0)*10.0-exp(-2.0*t)

*cos(2.0*sqrt(3.0)*t-3.1415926536/6)/3.0);
}
/***/

164

Table E
Spring Dashpot Example

Effective Number of Derivative Calls

SPRING DASHPOT EXAMPLE
Effective Number of Derivative Function Calls

h

0.4
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

P4 .

51
203
401
2003
4001
20003
40001
200003

P42

30
106
205
1006
2005
10006
20005
100006

B42

29
105
205
1005
2005
10003
20005
100003

SPRING DASHPOT EXAMPLE
Effective Number of Derivative Function Calls

h

0.4
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

P2

51
203
401
2003
4001
20003
40001
200003

P22

29
105
204
1005
2004
10005
20004
100005

P24

19
57
107
507
1007
5006
10007
50006

SPRING DASHPOT EXAMPLE
Effective Number of Derivative Function Calls

h

0.4
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

ER

26
102
201
1002
2001
10002
20001
100002

*
TP

1684
819
1154
3651
6484
26446
49401
223028

R2

51
203
401
2003
4001
20003
40001
200003

R4

101
405
801
4005
8001
40005
80001
400005

Error coefficient set at 1 x 10
-8

165

Table F
Spring Dashpot Example

Effective Number of Floating Point Operations

SPRING DASHPOT EXAMPLE
Effective Number of Floating Point Operations

h

0.4
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

PA

1133
4781
9533
47981
95933
479981
959933
4799981

P42

629
2453
4829
24053
48029
240053
480029
2400053

B42

629
2453
4853
24053
48053
240005
480053
2400005

SPRING. DASHPOT EXAMPLE
Effective Number of Floating Point Operations

h

0.4
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

P2

701
2829
5601
28029
56001
280029
560001
2800029

P22

389
1453
2839
14053
28039
140053
280039
1400053

P24

305
.1027
1977
9577
19077
95058
190077
950058

SPRING DASHPOT EXAMPLE
Effective Number of Floating Point Operations

h

0.4
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

ER

255
1015
2005
10015
20005
100015
200005
1000015

*
TP

31773
14844
20516
62352
109186
432457
798609
3537515

R2

605
2429
4805
24029
48005
240029
480005
2400029

R4

1405
5661
11205
56061
112005
560061
1120005
56000061

Error coefficient set at 1 x 10
-8

Table G
Spring Dashpot Example

Maximum Local Error

166

SPRING DASHPOT EXAMPLE
Maximum Local Error

h

0.4
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

PA

1.22el6
6.27e-l
3.59e-2
7.5Ae-5
6.66e-6
3.63e-8
4.37e-9
3.18e-10

PA 2

1.93e20
3.37e-l
1.89e-2
A.39e-5
A.06e-6
2.35e-8
2.87e-9
3.29e-10

BA2

1.15e21
2.35eO
2.05e-l
6.67e-A
A.07e-5
5.16e-8
A.66e-9
1.83e-10

SPRING DASHPOT EXAMPLE
Maximum Local Error

h

O.A
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

P2

1.93ell
1.21el
8.52e-l
7.55e-3
1.58e-3
5.35e-5
1.33e-5
5.33e-7

P22

1.79el9
8.93eO
5.91e-l
7.AAe-3
1.57e-3
5.35e-5
1.33e-5
5.33e-7

P2A

9.Alel7
8.73elA
7.A7eO
5.25e-2
7.66e-3
l.A3e-A
3.07e-5
1.07e-6

SPRING DASHPOT EXAMPLE
Maximum Local Error

h

O.A
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

ER

1.98el2
1.39e3
3.1Ael
l.OAel
A.SAeO
7.99e-l
3.93e-l
7.7Ae-2

*
TP

7.06e3
A.lAeO
1.06eO
A.27e-2
1.07e-2
A.28e-A
1.07e-A
A.27e-6

R2

2.0Ae2
1.21eO
3.A5e-l
l.lAe-2
2.70e-3
1.07e-A
2.67e-5
1.07e-6

RA

1.0Ae2
8.08e-2
5.16e-3
8.25e-6
5.15e-7
8.39e-10
1.26e-10
3.50e-10

Error coefficient set at 1 x 10
-8

167

Orbital Maneuvering Vehicle

The Orbital Maneuvering Vehicle (OMV) is an unmanned space vehicle
that will be deployed from the U.S. Space Shuttle. It is designed to
perform various operations by remote control on payloads in space. The
transactional equations of motion for the homogeneous case when the
vehicle is in low earth orbit are

X = -2wZ,

" 2
Y = -w Y,

" ' 2
Z = 2wX + 3w Z,

where

w = 0.00118,

If the initial conditions are

X=Y=Z=0, X=0.5, and Y=Z=0,

the analytical solution used to compare the accuracy is found to be

X=(4*sin(w*t)-3*w*t)*.05/w, and

Z=(2*(l-cos(w*t))*.05/w).

168

/* APPLICATION PROGRAM AREA */
/**/

/* Orbital Maneuvering Vehicle in Low Earth Orbit */

double w,g,me,ro,hh,tstp;

/*********** HEADER INFORMATION ************/
void header ()

pr intf ("
printf(" ***** ORBITAL MANEUVERING VEHICLE *****\n");
printf(" ***** IN LOW EARTH ORBIT *****\n»).
printf ("

/************* INITIAL SECTION *************/
void initialO
{
/* Define Preset variables */

g=6.672e-ll;
rae=5.98e24;
ro=6.37e6;
hh=200e3;

w=. 00118;
tstp=3600;

/y..i.̂ £££

/**** INITIAL VALUES OF STATE VARIABLES ****/ void int_val(y) double
y[]; (

y[l]=0;
y[2]=0;
y[3]=0;
y[A]=.05;
y[5]=0;
y[6]=0;

/* Specify Number of State Variables */
st_var(6) ;

/* Specify Relative Execution Time of */
/* DERIVATIVE section */
num_mul(8) ;
num_add(3) ;

169

/*********** DERIVATIVE SECTION ************/
void derivative(t,y,dy)
double t,y[],dy[];
{

dy[4] = -2*w*y[6];
dy[l] = y[4];
dy[5] = -w*w*y[2];
dy[2] = y[5];
dy[6] = w*(2*y[4]+3*w*y[3]);
dy[3] = y[6];

termt(t>tstp);
}
/***/

/************* DYNAMIC SECTION *************/
void dynamic(t.y)
double t,y[];
{

double sin(),cos();
double x,z;
void err();
x=(4*sin(w*t)-3*w*t)*.05/w;
z=(2*(l-cos(w*t))*.05/w);

if (x!=0)
err((x-y[l])/x);

if (z!=0)
err((z-y[3])/z);

}
/***/

OUTPUT STATEMENT(S) ***********/
void output(t,y)
double t,y[];
{

double sin(),cos();
double x,z;
printf("t=% 14.8f x=% 12.8f z=% 12.8f\n",t,y[1],y[3]);

x=(4*sin(w*t)-3*w*t)*.05/w;
z=(2--(l-cos(w*t))*.05/w);

printf(" x=% 12.8f",x);
printf(" z=% 12.8f \n" ,z) ;

I ,'» i
1
'. *Hj.'*»J* A J^ »'••!-••» •><•*•«>* •>*« *tr*>f*tr*t* t f f f fm JmJfJf f>

Table H
Orbital Maneuvering Vehicle

Maximum Local Error

170

ORBITAL MANEUVERING VEHICLE
Maximum Local Error

h

300
100
50
10
5
1
0.5
0.1

P4

2.00e-l
9.77e-3

• 1.21e-3
9.53e-6
1.19e-7
9.50e-9
1.19e-9
9.49e-12

P42

2.00e-l
9.76e-3
8.00e-4
6.35e-6
7.92e-7
6.33e-9
7.91e-10
6.33e-12

B42

1.25e-l
6.48e-3
7.82e-4
6.32e-6
7.91e-7
6.33e-9
7.91e-10
6.35e-12

ORBITAL MANEUVERING VEHICLE
Maximum Local Error

h

300
100
50
10
5
1
0.5
0.1

P2

1.19e-l
9.15e-3
2.17e-3
8.04e-5
1.98e-5
7.84e-7
1.96e-7
7.81e-9

P22

1.28e-l
9.19e-3
2.19e-3
8.04e-5
1.98e-5
7.84e-7
1.96e-7
7.81e-9

P24

4.40e-l
3.67e-2
4.45e-3
1.23e-4
3.48e-5
1.53e-6
3.86e-7
1.56e-8

ORBITAL MANEUVERING VEHICLE
Maximum Local Error

h

300
100
50
10
5
1
0.5
0.1

ER

3.39eO
1.14eO
5.65e-l
1.12e-l
5.59e-2
1.12e-2
5.58e-3
1.12e-3

*
TP

l.OOeO
1.10e-l
2.72e-2
1.08e-3
2.69e-4
1.08e-5
2.69e-6
1.08e-7

R2

2.00e-l
1.80e-2
4.21e-3
1.59e-4
3.94e-5
1.56e-6
3.91e-7
1.56e-8

R4

1.30e-3
1.27e-5
7.39e-7
l.lle-9
6.86e-ll
1.03e-13
1.07e-14
1.64e-12

* -8
Error coefficient set at 1 x 10

171

Pilot Ejection Example

This example is used to simulate the ejection of a pilot from a
high-performance aircraft to determine if he will strike the vertical
stabilizer. It is modeled using the logical and nonlinear differential
equations

X = V cos W - VA,

Y = V sin W,

V = 0, when 0 < Y < Y^

V = -D/M - G*sin W, when Y > Y^

W = 0, when 0 < Y < Y^

W = -(G*cos W)/V, when Y > Y^

D = 0.5 * p * CD * S * V
2,

where

M=7.0 slugs,

CD=1.0,

032.2 ft/sec2,

Y^A.O ft,

S=10.0 ft2 ,

V =900.0,A

ymx=30.0,

and initial conditions are set at

W(0)=15.0 degrees,

X(0)=0,

Y(0)=0,

V(0)=AO.O.ft/sec.

No analytical solution is apparent. Accuracy is determined by
periodically referencing a file containing highly accurate values found
through other numerical methods.

172

/'**/
/* APPLICATION PROGRAM AREA */
/a***/

/* PILOT EJECTION EXAMPLE */

//include <stdio.h>

double thedeg,mass,cd,g,ve,xmn,tmx,degrad,yl,s,ro,va,ymx;
double the,vx,vy,vic, thic,d,ygel;

double sin() ,cos(),atan2() ,sqrt() ;
FILE *fpl;

/*********** HEADER INFORMATION ************/
void headerO
{
printf (" **********************************\ n») ;
printf(" ***** PILOT EJECTION PROBLEM *****\n");
printf (" **********************************\n\n")
}
/***/

/**********&** INITIAL SECTION *************/
void initialO
{
/* Define all preset variables */

thedeg=15.0;
mass=7 . 0;
cd=1.0;
g=32.2;
ve=AO.O;
xmn= -60.0;
tmx=A . 0 ;
degrad=57 . 3 ;
yl=4.0;
s=10.0;
ro=0. 0023769;
va=900.0;
ymx=30.0;

/* ejection angle in radians */
the=thedeg/ degrad ;

/* seat initial velocity */
vx = va-ve*sin(the) ;
vy = ve*cos(the);
vie = sqrt(vx*vx+vy*vy) ;
thic = atan2(vy,vx) ;

/***/

173

/**** INITIAL VALUES OF STATE VARIABLES ****/
void int_val(y)
double y[];
{

y[l]=0;
y[2]=0;
y[3]=vic;
y[4]=thic;

/* Specify Number of State Variables */
st_var(4);

/* Specify Relative Execution Time of */
/* DERIVATIVE section */
num_mul(l02);
num_add(201);

/* Open compare file */
fpl=fopen("ejt.cmp","rt");

/*********** DERIVATIVE SECTION ************/
void derivative(t,y,f)
double t, y[], f[];

/* compute drag */
d=0 . 5*ro*cd*s*y [3] *y [3] ;
if (y[2]>=yl) ygel=l;
else ygel=0;

/* relative positions */
f[l]=y[3]*cos(y[4])-va;
f[2]=y[3]*sin(y[4]);

/* space velocity and flight path angle */
f[3]=ygel*(-d/mass-g*sin(y[4]));
f[4]=vgel*(-g*cos(y[4])/y[3]);

174

/************* DYNAMIC SECTION *************/
void dynamic(t,y)
double t,y[];
{

/* specify termination conditions */
termt(y[l]<=xmnj iy[2]>=ymx|jt>=tmx);

/****#****** OUTPUT STATEMENT(S) ***********/
void output(t,y)
double t,y[];
{

double w,x,yy,z,atof();
char ch[80];

w=atof(fgets(ch,80,fpl));
if (w!=0)

err((y[4]-w)/w);

x=atof(fgets(ch,80,fpl));
if (x!=0)

err((y[3]-x)/x);

yy=atof(fgets(ch,80,fpi));
if (yy!=0)

err((y[2]-yy)/yy);

z=atof(fgets(ch,80,fpl));
if (z!=0)

err((y[l]-z)/z);

printf("t=%3.8f th=%3.8f v=%3.8f\n",t,y[A],y[3])
printf("t=%3.8f th=%3.8f v=%3.8f\n",t,w,x);

printf("x=%3.8f y=%3.8f d=%3.8f\n",y[1],y[2],d);
printf("x=%3.8f y=%3.8f\n\n",z,yy);

Table I
Pilot Ejection Example

Maximum Local Error

175

PILOT EJECTION EXAMPLE
Maximum Local Error

h

0.05
0.01
0.005
0.001
0.0005
0.0001
0.00005

PA

4.72e-l
3.05e-2
2.02e-2
5.22e-4
4.42e-3
4.54e-4
4.23e-5

P42

4.72e-l
3.05e-2
2.02e-2
5.22e-4
4.42e-3
4.54e-4
4.23e-5

B42

7.34e-l
1.16e-l
1.80e-2
1.72e-3
5.80e-3
7.74e-4
2.05e-4

PILOT EJECTION EXAMPLE
Maximum Local Error

h

0.05
0.01
0.005
0.001
0.0005
0.00001
0.000005

P2

4.72e-l
2.37e-2
2.18e-2
5.85e-4
4.40e-3
4.54e-4
4.24e-5

. P22

4.72e-l
2.37e-2
2.18e-2
5.85e-4
4.40e-3
4.54e-4
4.24e-5

P24

1.84eO
4.90e-l
3.65e-2
7.75e-3
8.95e-3
1.43e-3
5.34e-4

PILOT EJECTION EXAMPLE
Maximum Local Error

h

0.05
0.01
0.005
0.001
0.0005
0.0001
0.00005

ER

7.34e-l
2.03e-l
7.43e-2
1.85e-2
1.39e-2
2.37e-3
9.17e-4

*
TP

4.72e-l
4.46e-2
1.67e-2
3.84e-4
4.46e-3
4.56e-4
4.19e-5

R2

4.72e-l
5.32e-2
2.86e-2
9.34e-3
4.92e-4
5.37e-4
4.54e-4

R4

1.05e-l
3.71e-2
1.28e-2
6.07e-3
1.12e-3
2.08e-4
2.89e-4

Error coefficient set at 1 x 10
-8

176

Optimal Control of Guided Missile Example

This example simulates an optimal guidance strategy used for
directing high speed objects such as missiles to their target.

Set of Differential Equations:
•

PI = -G(P4)(P4)

P2 = PI - G(P4)(P7)

P3 = P2 + A(P4) - G(P4)(P9)

P4 = P3 + B(P4) - G(P4)(P10)

P5 = 2(P2) - G(P7)(P7)

P6 = P3 + P5 + A(P7) - G(P7)(P9)
•

P7 = P6 + B(P7) + P4 - G(P7)(P10)

P8 = 2(P6) + 2(A)(P9) - G(P9)(P9)

P9 = P8 + B(P9) + P7 + A(P10) - G(P9)(P10)

P10 = 2(P9) + 2(B)(P10) - G(P10)(P10)

Pll = -P2(QT) - G(P4)(P14)

P12 = P11-P5(QT)-G(P7)(P14)

P13 = P12 + A(P14) - P6(QT) - G(P9)(P14)

P14 = P13 + B(P14) - P7(QT) - G(P10)(P14)

Constants:

A=-9,B=17,G=0.5,QT=3

Initial Conditions:

Pl=14.5,
P2=P3=P4=P5=P6=P7=P8=P9=P10=P11=P12=P13=P14=0

No analytical solution is apparent. Accuracy is determined by
periodically referencing a file containing highly accurate values found
through other numerical methods.

177

/**/

/* APPLICATION PROGRAM AREA */
J *

//include <stdio.h>

/* Optimal Control of Guided Missile Example */

double a,b,g,qt,ssl;
FILE *fpl;
/*********** HEADER INFORMATION ************/
void header ()

• A..C/ || ^.**£££££^£££J»^^A£^£££^£££^££J*££^.^£££J.£^£^JUJUJ££\ || \ t

printfC" ***** OPTIMAL CONTROL OF GUIDED MISSILE ****\n")|
pr intf (" *ft**\n\n») .

/************* INITIAL SECTION *************/
void initialO
{
/* Define Constants */

a= -9;
b-17;
g=-5;
qt=3;
ssl-14.5;

/**************************************

/**** INITIAL VALUES OF STATE VARIABLES ****/
void int_val(p)
double p[];
{

p[l]=ssl;
p[2]=0;
p[3]=0;
p[4]=0;
p[5]=0;
p[6]=0;
p[7]=0;
p[8]=0;
p[9]=0;
p[10]=0;
p[H3=0;
p[12]=0;
p[13]=0;
p[14]=0;

178

/* Specify Number of State Variables */
st_var(14) ;

/* Specify Relative Execution Time of */
/* DERIVATIVE section */
num_mul(47) ;
num_add(31) ;

/* Open compare file */
f pl-f open("mis . cmp" , "rt") ;

/***/

/*********** DERIVATIVE SECTION ************/
void derivative(t,p,dp)
double t, p[], dp[];
{

dp[l]= -g*p[4]*p[4]; /* 3 flops */
dp[2]=p[l]-g*P[4]*p[7]; /* 3 flops */
dp[3]=p[2]+a*p[4]-g*p[4]*p[9]; /* 5 flops */
dp[4]=p[3]+b*p[4]-g*p[4]*p[10]; /* 5 flops"*/
dp[5]-2*p[2]-g*p[7]*p[7]; /* 4 flops */
dp[6]=p[3]+p[5]+a*p[7]-g*p[7]*p[9]; /* 6 flops */
dp[7]-p[6]+b*p[7]+p[4]-g*p[7]*p[10]; /* 6 flops */
dp[8]-2*p[6]+2*a*p[9]-g*p[9]*p[9]; /* 7 flops */
dp[9]=p.[8]+b*p[9]+p[7]+a*p[10]-g*p[9]*p[10]; /* 8 flops */
dp[10]»2*p[9]+2*b*p[10]-g*p[10]*p[10]; /* 7 flops */
dp[ll]= -p[2]*qt-g*p[4]*p[14]; /* 5 flops */
dp[12]=p[ll]-p[5]*qt-g*p[7]*p[14]; /* 5 flops */
dp[13]=p[12]+a*p[14]-p[6]*qt-g*p[9]*p[14]; /* 7 flops */
dp[14]=p[13]+b*p[14]-p[7]*qt-g*p[10]*p[14]; /* 7 flops */

termt(t>l);

/************* DYNAMIC SECTION *************/
void dynamic(t,p)
double t, p[] ;

/***/

179

/*&********* OUTPUT STATEMENT(S) ***********/
void output (t,p)
double t,p[] ; .
{

double pc[14], atof();
char ch[80];

int i;
fgets(ch,80,fpl);

for (i=l;i<=14;i++) {
pc[i]=atof(fgets(ch,80,fpl));
if (pc[i]!=0)

printf("t=%g\n",t);
printf("pl=%g p2=%g p3=%g P4=%g\n",p[1] ,p[2] ,p[3] ,p[4]) ;
printf("pl=%g P2=%g P3=%g p4=%g\n\n",pc[1] ,pc[2] ,pc[3] ,pc[4]) ;
printf("p5=%g p6=%g P7=%g p8=%g\n",p[5] ,p[6] ,p[7] ,p[8]);
printf("p5=%g p6=%g p7=%g p8=%g\n\n",pc[5] ,pc[6] ,pc[7] ,pc[8]) ;
printf("p9=%g P10=%g pll=%g pl2=Zg\n",p[9],p[10],p[ll],p[12]);
Printf("p9=%g P10=%g pll=%g pl2=%g\n\n",Pc[9],Pc[10],pc[ll],

pc[12]);
printf("pl3=%g P14=%g\n",p[13],P[lA-]);
printf("pl3=%g pl4=%g\n\n\n",pc[13],pc[14]);

180

Table J
Optimal Control of Guided Missile

Maximum Local Error

1
OPTIMAL CONTROL OF GUIDED MISSILE

Maximum Local Error

h

0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

P4

9.63e7
2.02e5
9.55e2
1.21e2
l.lOeO
1.40e-l
1.15e-3

P42

3.09e7
2.53elO
1.05e3
8.97el
7.28e-l
9.34e-2
7.63e-4

B42

2.39e7
2.25e6
4.57e3
4.37e2
1.57eO
1.49e-l
8.57e-4

OPTIMAL CONTROL OF GUIDED MISSILE
Maximum Local Error

h

0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

P2

3.46e7
2.64e5
1.50e3
1.20e3
8.44el
2.24el
9.41e-l

P22

3.28e7
4.43e6
2.15e3
9.25e2
8.39el
2.24el
9.41e-l

P24

8.13e4
2.80e7
6.03e4
1.10e4
2.59e2
5.65el
1.98eO

OPTIMAL CONTROL OF GUIDED MISSILE
Maximum Local Error

h

0.1
0.05
0.01
0.005
0.001
0.0005
0.0001

ER

7.97e4
1.46e6
2.37e5
8.79e4
1.38e4
6.70e3
1.31e3

TP"

1.26e5
9.10e3
2.35e3
9.51el
2.35el
9.44e-l

R2

5.38e6
5.59e5
1.66e4
4.40e4
1.91e2
4.84el
1.96eO

R4

2.26e5
2.42e4
9.83el
7.04eO
1.26e-2
7.95e-4
4.08e-6

* -8
Error coefficient set at 1 x 10

