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ABSTRACT

Researchers at the NASA Lewis Research Center are currently developing an

"intelligent" interface to aid in the development and use of large, computational

fluid dynamics flow-solver codes for studying the internal fluid behavior of

aerospace propulsion systems. This paper discusses the requirements, design, and

implementation of an intelligent interface to Proteus, a general purpose,

3-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to

denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

INTRODUCTION

Throughout the aeropropulsion community, researchers are striving to

develop computer codes that will be able to compute the complex 3-dimensional

fluid behavior internal to aerospace propulsion systems (refs. 1-4). The availability

of such codes will enable the rapid assessment of new designs, significantly

reducing the time, cost, and risk of developing future propulsion systems.

Typically, new computational fluid dynamics (CFD) codes are written for

specific applications and evolve through many revisions and updates. Major

revisions are usually required if a code is to be used for a different class of flow

problems. Often, revising a code is extremely difficult because of poor

documentation and a lack of a modular program structure. The result is that many

CFD codes are not widely used. Thus, there is a great deal of "reinventing the

wheel".



Many of the aforementioned problems are being addressed at tfie' NASA

Lewis Research Center in the development of a general-purpose Navier-Stokes flow

solver called Proteus (ref. 5). This code incorporates a modular structure with

disciplined programming and extensive documentation. The intent is to allow easy

replacement and/or modification of Proteus modules to handle a broad class of flow

problems.

While improved programming practices can do a lot to improve the usability

and usefulness of CFD codes, even more dramatic improvements are possible

through the use of "intelligent" interfaces to the codes. Such interfaces can provide

guidance and assistance to users, automating many of the time consuming tasks

associated with setting up and running a large CFD code. The interface can

acquire and make available knowledge gained by previous users of the code. It's

possible to have a user answer a. few questions about the physics of the problem to

be solved and to have the interface take.care of setting up all of the input

variables and creating and sending jobs to the appropriate super computer,

workstation, etc.

Such an interface can be developed using artificial intelligence (AI) concepts
• ;;. I .';; i

(refs, 6-8). Artificial Intelligence is the science concerned with creating computers

and computer programs that behave (or appear to behave) intelligently. Knowledge

Based Systems (KBS) are AI programs that rely on encoded facts and heuristic

knowledge rather than coded procedures to produce their results. Expert Systems

are KBSs that perform complex tasks at the level of a human expert. These

concepts are currently being applied in the business, medical, and engineering

professions, as well as in academic and scientific research (refs. 9-11). This

includes other efforts to create Knowledge Based Systems and Expert Systems for

CFD-related applications (refs. 12-17).

Important reasons for choosing AI for the interface are: 1) the ease of



representing facts, rules, and relationships using AI data structures; 2) the ability

of AI systems to be easily expanded and modified; and 3) the abundance of

software development tools currently on the market for designing and prototyping

these systems. Combining these attributes with the productivity gains that are

possible with today's AI development systems, allows multiple approaches to

solving problems to be explored.

This paper discusses the requirements, design, and implementation of an

intelligent interface to the Proteus code. The interface is called PROTAIS to

denote the introduction of AI concepts to Proteus.

SYSTEM REQUIREMENTS AND SPECIFICATIONS

PROTAIS was initially envisioned as a way of providing inexperienced users

of Proteus (and eventually other codes) with enough help and advice to study their

problems with minimum supervision. As PROTAIS has evolved, it has acquired

features that also benefit users who are familiar with a code's operation.

Therefore, the PROTAIS design requirements have been expanded to accomodate

both expert and novice users of a code. The following is a more detailed

explanation of the current requirements and specifications for the PROTAIS

System.

Functional Requirements

The primary function of the PROTAIS system is to automate the procedures

required to set up and execute a user's problem on a given code. In the past, the

user had to first learn the method for defining problems on the code. This could

be as simple as modifying some of the input parameters, or as complex as

rewriting sections of program code. The user was also required to learn the

languages and protocols of the resident computer systems. Once these were

understood, he could then create the input and control files necessary to run the

problem.



For PROTAIS to automate this process, all of this information must be

programmed into the system. It should also contain sufficient help and advice for

its users. This allows users to quickly and easily set up and run their problems.

The system should also be able to:

• Keep track of user problems and generate reports describing them.

• Obtain relevant information from a code's output file(s).

• Suggest the code setup for a problem, based on the results of similar problems

stored in the KB.

• Predict the outcome of a test run based on previous runs and expert-provided

rules.

The PROTAIS design should allow it to be easily modified for use on other

CFD codes. This would enable the information acquired while using these codes to

be stored in a common format that can later be combined and used for other more

advanced applications. Then, as PROTAIS grows and advanced networking

capabilities are added, researchers at different geographical locations could share-

information through the system. To help promote its widespread use, the design

should also be generic enough to run with a variety of hardware.

Knowledge Base Requirements

The system's KBs are its principle means of storing and retrieving data.

They must therefore be structured to best represent the relevant information from

a flow solver's domain. This includes:

1. Detailed information about the code, its variables, and the interrelationships

that exist between them.

2. Knowledge of the system's users, the computers networked to it, and their

respective languages and protocols.

3. A history of all problems previously run on the system.

4. General facts and rules about CFD that may apply to the code or its



operation.

Item 1 specifies the requirements for defining a problem. It supplies the

default values and allowable ranges for the code's variables, and the explanations

that are displayed when a user asks the system for help. Information from item 2

controls user access to PROTAIS and the various computers used by the system.

This is used primarily for submitting user jobs, and directing their output to the

proper place.

Item 3 provides an easily accessible record of all problems that have been

run on the system. This allows a researcher to easily keep track of his work This

information can also be used by others to help set up similar problems. Item 4

provides relevant CFD rules and principles that may help a user to better

understand and define his problems.

Continued use of PROTAIS will inevitably create data storage problems in

the future. One way of temporarily resolving this is to move the KBs onto a device

with a large storage capacity like a mainframe computer. Doing this would also

provide access to the many powerful data base management tools that are available

for these systems, and facilitate multi-user access to the stored information.

Still, a strategy for limiting the size of the KBs must eventually be

developed. This may entail deleting old, unused entries after a specific time; or

perhaps, intelligently combining information from several problems in a manner

that maintains the relevant information about them. Before developing this

strategy, the relevant data to be stored for each problem must be identified. This

is best done by observing the use of this data over a period of time. For this

reason, only current KB requirements are being addressed now. The KBs will,

however, be sufficiently generic to minimize any conversions that may be required

later.



User Interface Requirements

A good user interface is essential to any system if it is to be used

productively and efficiently, because all operations must be accessed through it. A

good interface should simplify a user's tasks, and provide him with capabilities

currently unavailable to him. It should also allow the user to customize certain

aspects of its operation (eg., prompts, modes, etc.) to fit his individual preferences,

and to access more advanced features as his experience and requirements grow.

The user interface of the PROTAIS System should optimize the operations

associated with specifying and submitting user jobs, and allow a user to:

1. Easily view his work in a logical and consistent format.

2. Quickly identify and select subsequent command options.

3. Obtain help or assistance as needed at any stage in the program's execution.

The interface must accomodate users of different skill and experience levels,

and be simple enough to use that anyone can run his problems with a minimum of

training or outside help. Its display should allow a user to easily relate what he is

doing on the screen, with what actually takes place in the code. Doing so

automatically increases a new user's understanding of the code. It also makes the

system easier to use by those who are already familiar with the code's operation.

SYSTEM DESIGN

The PROTAIS design consists of three levels and two user modes (fig. 1).

The system was divided into 3 levels so that the various components could be used

and tested during the development cycle. Each level adds more knowledge and

capability to the system. Feedback obtained from the use of each level will

contribute to the design of subsequent levels. This will help ensure that the final

design meets the needs of all users.

Expert and novice modes will accomodate users based on their familiarity



with a code's operation. All users are assumed to have a knowledge of fluid

mechanics. Thus, an expert user is one who knows and understands the code and

the computing environment in which it runs. A novice, on the other hand,

generally understands his particular problem, but not how to use the code to study

it.

The following is a more detailed description of how the various features will

be introduced at each level.

Level 1

The first PROTAIS level comprises the basic system structure. It integrates

the various code operating procedures into a single high-level interface. The KBs

at this level will contain information about the system's users, the computers

networked to it, the interfaced code and its default variable assignments, and the

problems run on the system.

A highly-interactive user interface provides easy access to all system

operations. Its multi-windowed display allows a user to quickly and easily define a

problem and submit it for execution. These capabilities give the expert user the

power and flexibility he needs to be most productive at his work PROTAIS

contains minimum intelligence at this level, so it can not provide the detailed help

and advice that novice users would require. For this reason, a Level 1 Novice

Interface has not been implemented.

Level 2

Level 2 adds to the system a well-defined knowledge of the relationships

between the Proteus variables and their values. This information will be used to

check data entered by a user before the code is executed. At this level, PROTAIS

will be able to provide the user with detailed descriptions of the code's input

variables and corresponding allowable values. It will also be able to provide

examples of previously-run, similarly-structured problems to serve as models and



detailed help at any time. Because of the availability of these additional services,

both expert and novice interfaces will be implemented in level 2.

The Level 2 expert interface will be an enhanced version of Level 1, taking

into account whatever feedback is obtained from previous users. The novice

interface, on the other hand, will be totally different in appearance and form. It

will be designed to shield the user as much as possible from the specifics-of the

code and the environment under which it is operating, while still providing him

with the same capabilities of the expert user. Whereas the expert interface

presents the user with a multifaceted display of information, the novice interface

deals with much smaller blocks of information at a time.

Its interactions consist of a pseudo-dialogue between the user and the

PROTAIS system. This allows the system to ask the user questions and to provide

detailed explanations in a language and format that is familiar to him. Level 2 will

also contain a high-level language or command set that will allow the user to

describe his problems without having to think in terms of code specific variables

and computer specific languages. The novice interface will train the user toward

becoming an expert, thus allowing him to take advantage of the speed and

efficiency provided by the expert interface.

Level 3

Level 3 is where most of the system's intelligence will be added. At this

level, CFD principles applicable to the code and its use will be encoded in the

system. This will be used to prevent anyone from entering a problem description

that violates known physical laws.

The activities of the experts using the system will be studied. Then, an

attempt will be made to capture, and store as rules, any techniques they use in

their research to guide new or less experienced users. Inexperienced users will

also be studied to identify and resolve problem areas in the novice interface.



Feedback obtained from both user groups will be used to improve the overall

design.

Other features to be introduced at this level include a mechanism for

processing the output files obtained while running a code. This could be as simple

as checking a file to determine whether or not the code ran to completion or

without errors. It could also be as complex as displaying the data on a

high-resolution graphics screen or workstation, or searching the data for

interesting characteristics.

Because of the time that will be required to explore and implement these

enhancements, Level 3 is expected to evolve slowly. This, however, will enable

PROTAIS to grow and to change with new generation flow-solver codes. As these

codes emerge, they can be interfaced to PROTAIS and accessed through its main

menu. The system could then advise users of the best code for their problems.

This would not only provide users with a single common interface to these

multifarious codes, but also allow for the exchange of information between them.

IMPLEMENTATION OF LEVEL 1

The first part of the PROTAIS System to be implemented was the Level 1

Expert Interface (grayed section of fig. 1). The following sections discuss the

implementation of this level.

Development System

PROTAIS is being developed on a Symbolics 3600 series AI / Lisp (LISt

Processing) Machine (ref. 18). The computing environment of this machine consists

of a high-performance, custom-architecture, symbolic-processing-unit connected to a

high-resolution graphics monitor that uses keyboard and mouse I/O. The machine's

interactive programming environment consists of a large collection of system

development and maintenance tools that support multiple programming paradigms.

The machine is networked to other computers via an Ethernet connection using



the TCP/IP protocol. This allows the transfer of jobs and files between PROTAIS

and mainframe computers. The network also allows data to be sent to high-power

graphics workstations where it may be displayed and analyzed.

The PROTAIS software is being written using a combination of Common

LISP (refs. 19,20) and KEE (ref. 21) by IntelliCorp. LISP is a symbol manipulation

language that has long been a standard for AI applications. For this reason, many

sophisticated computing environments have been developed for writing and

debugging large, complex programs in LISP. KEE (a Knowledge Engineering

Environment) is a very powerful and dynamic software environment for developing

KBS systems, that runs concurrently with the Common LISP language. It enhances

the programming environment of the Symbolics machine, and provides the tools

necessary for defining and accessing the knowledge bases and other data

structures used by PROTAIS.

Knowledge Bases

The PROTAIS KBs use KEE data structures called units to represent objects

within its domain. This domain covers all possible configurations of a code for

defining problems. Each unit identifies a particular configuration or problem that

has been run on the system, and contains information about the code, its variables,

and the values assigned to them in that configuration. Each unit also contains an

indication of how well the configuration ran, the names of similar or related units

in the KB, the name of the user who created it, the date it was created, and any

user-provided comments that describe the unit.

The PROTAIS units are grouped into three categories: masters, problems,

and runs. Masters are used to distinguish between different versions of a code.

Each master contains the default variable assignments used for all variables that

the user does not explicitly define.

Problem units contain the information required to describe and run user
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problems. These units are usually attached to the master that represents the

desired version of the code to be used (fig. 2(a)), so that they inherit its default

variable assignments. This enables the user to define only those variables which

require specific values (fig. 2(b)).

Runs are used to produce and submit computer executable jobs for a problem.

Usually, a number of runs are generated for each problem to study the effects of

making small changes to its variables (fig. 2(c)). Because of the inheritance of

variable assignments and other characteristics that goes on between them, these

units are often referred to as parents and children of each other. For example, in

figure 2(c), the object labelled MASTER SET can be viewed as the parent of

PROBLEM.SET; which would conversely be considered its child. The same holds

true for PROBLEM.SET and its children: RUN1, RUN2, and RUN3.

User Interface

Figure 3 shows the hierarchical display of the masters, problems, and runs

generated in the system's KB Display Window. This display allows users to quickly

and easily identify related items, and to access the information stored about them.

The window can be scrolled to search through large knowledge bases, or pruned to

display only the items that the user is working on at the time.

Each unit displayed has associated with it an option menu that lists all of

the operations that can be performed on it (fig. 4). Selecting the "Display Item"

option of this menu, opens another PROTAIS window that displays information

stored about a selected unit (fig. 5). This window can be used to examine any

units stored in the KB. It can also be used to modify or to add new information to

the system.

To represent a new problem on the system, a unit must be created whose

variable settings define the problem. This can be done by creating a problem unit

as the child of some master (fig. 6(a)). This will usually entail redefining a

11



significant number of variables, since a master usually represents the most general

case. If the new problem were similar to one that had already been run on the

system, then it could be created as a. child of that problem unit instead, and thus,

inherit the changes that were made to it (fig. 6(b)). The new unit would then

already contain some of the desired characteristics. This would significantly reduce

the amount of work required to define it.

Once a problem has been defined, the code can be set up and executed. This

requires that a job control file be created that contains: 1) the commands required

for the host to obtain the code, assemble the job, and execute it; 2) the input

parameters required by the code to define the problem; and 3) any other code or

system specific information required. An example of the computer JCL file that the

system produces for a Proteus run is shown in figure 7. This file is automatically

created and executed on the appropriate computer by a single PROTAIS user

command.

PROTAIS is also capable of producing standard and customized reports that

describe the problems stored in its KBs. Figure 8 illustrates a standard report that

shows a list of all runs generated for a given problem. It also lists the variables

changed to define the problem, and their values for each of the submitted runs.

The customized report facility allows a user to select which variables and runs to

include in the report and to define new variables as functions of standard ones.

When completed, Level 1 will be used to support further Proteus code

testing. Knowledge acquired from this usage shall help further develop not only

the Proteus code, but also Levels 2 and 3 of PROTAIS as well.

12



CONCLUDING REMARKS

This paper discusses the requirements and design of an intelligent interface

to CFD codes, which novices and experts alike could use to increase their overall

productivity. This interface will help inexperienced users learn to use new codes,

and benefit from the knowledge previously acquired by others. Expert users will

also benefit from a highly-interactive interface that automates the tedious and

time consuming aspects of running a code.

Although, thus far, only the first level of the system has been implemented,

benefits have already been realized. The Proteus developers have saved time in

defining test problems, and were provided with a convenient method for visualizing

and relating their problems. These benefits will multiply as the system expands to

include more advanced capabilities.
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FIGURE 1. - IMPLEMENTATION DIA-
GRAM OF THE PROTAIS SYSTEM.
(SHADED REGION REPRESENTS
THAT PART OF THE SYSTEM CUR-
RENTLY UNDER DEVELOPMENT).
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MASTER1 PROBLEM 1 MASTER1 PROBLEM 1

MACH = 0

REYN = 0

TEMP = 0

VREF =10

VISC = 0

(Inherits all of the
master's variables
and default values)

(Default variable
values for this

master)

2A - INHERITING DEFAULT VALUES FROM
A MASTER.

MACH = 0

HEYN = 0

TEMP - 0

VREF =10

VISC = 0

(Default variable
values for this

naster)

MACH = 2.

HEYN = 5

TEMP ^57.5

VREF =16

(Changes made to
master's default

values)

2B - CHANGING A PROBLEM'S INHERITED
VALUES.

MASTER1

MACH = 0

REYN - 0

TEMP = 0

VREF =10

ViSC " O

(Default variable
values for this

master)

PROBLEM 1

MACH = 2

REYN = 5

TEMP = 57.5

VREF "16

(Changes made to
master's default

values)

RUN1
(Mo additional

changes)

RUN2

MACH - 4

(1 variable changed)

RUNS

MACH = 8

TEMP = 69

(2 variables changed)

2C - DEFINING RUNS FOR A PROBLEM.

FIGURE 2. - ILLUSTRATION OF THE INTERRELATIONSHIPS BETWEEN PROTAIS MASTERS,
PROBLEMS, AND RUNS.
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Disolav of the Proteus Knowledge Base

PROBLEM1

MASTER1

MASTER2

PROBLEMS

ROBLEM3

PROBLEM4

PROBLEMS

PROBLEMS

RUN11

RUN12

FIGURE 3. - SAMPLE DISPLAY OF UNITS IN THE PROTAIS KNOW-
LEDGE BASES. (AN ACTUAL DISPLAY CAN CONTAIN MORE RE-
LEVANT NAMES FOR THE UNITS.)

Select Desired Operation:
DISPLAY THIS PROBLEM
DELETE THIS PROBLEM
DISPLAY STANDARD REPORT
DISPLAY CUSTOMIZED REPORT
CREATE DEPENDENT PROBLEM
CREATE DEPENDENT RUN

FIGURE 4. - OPTION
MENU FOR A PROBLEM.
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Problem Name: PROBLEM1
Parent set: MASTER1

Created by: AWILLIAMS

Worked? YES

Date: 12-18-1987

MACH = 2
VREF - 16

Variables changed in this item: t 4.

REYN = 5 TEMP = 57.5

m Comments: t 4-

This is an example setup for a user's
problem on the PROTAIS System. This
problem has 3 runs attached to study the
effects of varying the MACH number and
TEMP variables.

SHOW PARENT SET VARS

SHOW ALL INHER. VARS
REPLACE OLD
CREATE NEW

CREATE JOB

**CLOSE»*

FIGURE 5. - PROTAIS WINDOW USED TO EX-
AMINE OR MODIFY SYSTEM INFORMATION.

MASTER1

PROBLEM 1

PROBLEM2

NEW.PROBLEM

6A - CREATING A NEW PROBLEM AS THE CHILD OF A MASTER.

MASTER1
PROBLEM 1

PROBLEM2 NEW.PROBLEM

6B - CREATING A NEW PROBLEM AS THE CHILD OF A SIMILAR
PROBLEM IN THE KNOWLEDGE BASE.

V

FIGURE 6. - PROCEDURES FOR ADDING NEW PROBLEMS TO THE
PROTAIS KNOWLEDGE BASES.
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JOB,JN=JOBNAME,MFL=500000,T=499.
ACCOUNT,AC=USERID,APW=USERPW.
ACCESS,DN=NPLOT,PDN=OUTPUT.DATA,ID=AWILLIAMS.
TASSIGN,DN=NPLOT,A=FTO 9.
ACCESS,DN=PROBJ,PDN=PROTEUS.CODE,ID=AWILLIAMS.
LDR,DN=PROBJ,L=0,NA.
SAVE,DN=NPLOT,PDN=OUTPUT.DATA,ID=AWILLIAMS,UQ.
DISPOSE,DN=NPLOT,DC=ST,MF=TS,DF=BB,TID=AWILLIAMS, NOWAIT.
EXIT.
DUMPJOB.
DEBUG.
SAVE, DN=NPLOT,PDN=OUTPUT.DATA,ID=AWILLIAMS,UQ.
/EOF

&RSTRT
SEND

&FLAGS
SEND

SGRID
SEND

&REF
MACH
REYN
TEMP
VREF
SEND

SBC
&END

&GMTRY
SEND

&EXTRA
&END

/EOF

FIGURE 7. - PROTAIS-GENERATED JOB CONTROL LANGUAGE
FILE REQUIRED TO RUN PROTEUS ON THE CRAY X-MP
SUPERCOMPUTER.
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Listina of RUNS for: PROBLEM!

Run Name:

RUN1
RUN2
RUNS

Worked? MACH

YES
YES
•7

4
8

REYN TEMP VREF

69

Scroll to top Scrol1 to button Print this report

FIGURE 8. - STANDARD REPORT GENERATED FOR PROTAIS
PROBLEMS.
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