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SUMMARY

Recent advances in electronics technology along with the advent of low cost
multi-channel Fast Fourier analyzers have now made it practical to use higher
order central difference formulae to measure povwer flovw in one dimensional and
two dimensional structures. The method discussed in this paper uses five point
differencing for the spatial derivatives 1n one dimensicn and a thirteen point
difference pattern for the spatial derivatives ia two dimensional plates and
shells. It is assumed that the measuring transducers are accelerometers.

An analytical study of the higher order differencing method and the conven-
tional two accelerometer method was puorfermed here as a preliminary to the appli-
cation of these mothods to actual aircraft structures. Some classical problems
wore analyzed in order to simulate and compare the performance of the two methods
under near field measurement conditions. Near field conditions analyzed in this
study include axamples of pover flows near simple sources and simple boundaries.
The estimates produced by the two methods were compared to the exact solution in
each example. This paper presents the theory and selected results of the study.
The results indicate that the bias errors of the two accelercmeter method under
near field measurement conditions may be much larger than previous studies have

suggeated

INTRODUCTION
The successful realization of a diagnostic measurement device for measuring
power flow would greatly aiddesign engineers in their efforts to reduce the air-

craft interior noise and vibration of both fixed wing and rotary wing aircraft.



For example, accurate power flow measurements vould allow des igners to deter-
mine the critical paths of the vibrational energy transmission through the var-
ious structural members, verify computer predictions produced by sophisticated
analytical models, and determine the relative level of sffactiveness of variocus
treatment methods used in reducing the vibrational pover transmisgion in a struc-
ture.

In order for a power flow measurement method to be utilized to its fullest
petential on aircraft structures it must meet the fclloving operational require-

ments:

(1) The method must be accurate when measuring in evanascent or reverberant flow

fields.

(2) The method must be applicables to a variety of aircraft suructures with
different material propertiss and aspect ratios.
{3) The method must be applicable over a vide range of frequencies.

Nearly all of the research performed in the past fifteen years on experiman-
tal msasurement methods for measuring power flow in structures has focused on the
two accelerometer method.!  In order to circumvent the diff iculties of keeping
track of themultiplicity of tarms required to measure pcwer flow, the two ac-
celerometer method utiljzes several simplifying assumptions, sometimes called
Noiseux's assumptions', which are based on the premise that the shear wave compo-
nent and the bending wave component are equal under "free field” measurement con-
ditions. (A "free field" contains no powsr sources or boundaries in the vicinity
of the transducers )

As aresult of the use of these assumptions, it was known at the outset that
the data obtained by Noiseux's method would be 1naccurate Near power soLICes
or boundar.es anc “hat only an estimate of the total power flov with no shear-

bending-twist component breakdown would be possible. The method has remained




popular, however, since it requires only two transducers for measurements in a
one dimenional structure {(four transducer= for a two dimensional structure) and
only a dual channel Fast Fourier analyzer to performthe apectral analysis of
the data. Largely due to the simplicity of the measurement system, this method
appears to have become widely accepted for measuring power flow in simple beams

and plates. The twoprincipal difficulties with the method have been identified

by researchers as inaccuracies while measuring under near-field condit:onsf,

and signal-to-noise problems associated with highly reveberant measurement
conditions 45

Recent advances in electronics techrology along with the advent of low cost
multi-channel Fast Fourier analyzers have nowmade it possible to use mers so-
phisticated methods to measure pover flow in one dimensional and two dimensional
structures. Extremely low weight (0.3 gram) miniature piszcelectri: accelerom-
eters can now be used in conjuctionwith amulti-channel Fast Fourier analyzer
to performpower flovw measurements. The method proposed in this paper {»ased in
part on Pavic's earlier work?) performs . direct finite difference approx.ma-
tion of the spatielderivativesby utilizing u 13 accelerometer computational
moleculs for the tuo dimensional problem (5 accelerometers for the one dimen-
siohal problem). The primary advantage of this method 1s that its results remain
accurate near power sources and boundaries and 1t provides a shear-bending-twist
compornent breakdown of the total power flow. (With the large number of power
sources and the hundreds of structural junctures and boundaries in an aircraft,
these improvements ara believed to be essential.)

As a first step 1n applying this new method to aircraft structures, an
analytical study of the new method and the clder two accelerometer method was
performed 1n order to simulate and compare the performance of the two methods

under near field measurement conditions. Measurement conditions analyzed in




this study include simulated measurements near line forces, line moments » point

forces, point moments, lateral quadrupoles, and near boundaries which possass

various combinations of mass . translational sti1ffness, mass moment of inertia,

and rotational stiffneas properties. The predicted results of the two methods

Yere compared to the exact solution in each case. Thie paper cutlines the theory

utilized in this study and presents the computed results for the simulated near

field measursment conditions .

SYMBOLS
amplitude vector of a right traveling wave at position s = 0
amplitude vecto. of a left traveling wave at position .« - ()
amplituds vector of a right traveling wave at position »
amplitude vector of a left traveling wave at position r
bending stiffness of the plate given by the expression ERY 0201 2y
arbitrary amplitude coefficients used in the general solution of the
governing equation
reflectionmatrix coefficient used to represeat the translational
stiffness and inertia
reflectionmatrix coefficient used to represent the rotational stiffness
and 1nert:a
base of the natural logarithms
Young’s modulus (modulus of elasticity)
frequency
propagationmatrix for aright travel ing wave
propagationmatrix for a left traveling wave
amplitude {scurce strength) of a point force input

auto spectrum of acceleration signal v (=1, 2,3 13)

cross spectrumof acceleration signals v and 4 (v, 1= 2,3...13)
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plate thickness

Oth order Hankel function of the first kind

Oth vrder Hankel function of the second kind

1st order Hankel function of the second kind

2nd order Hankel function of the second kind

area moment of inertia about the neutral axis

identity matrix

imaginary part of the quantity inside the braces

square root of -1

vavenumber

translationsl stiffness of the boundary

rotational stiffness of the boundary

dimensionless translational stiffness

dimensionless rotational sti1finess

mass per unit width for a beam, mass per unit area for a plate.
mass per unit length of the boundary

rotational tnertia per unit length of the boundary

bending moment psr unit length in the direction of wave propagation
bending moment per unit length perpendicular to the direction of
wava propagation
amplitude (source strength) of a point mement input
twisting moment per unit lengthin theplate
loading function
amplitude of the loading function
shear per unit lengthin the plate

amplitude (source ¢ rength) of a gquadrapole input

radial distance from the source



[ retlacticn matrix

lti{} real part of the quantity inside the braces |
! time

x carteaian coordinate

__ Y cartesian coordinate

=3 ", real power per unit length flowing in the x direction
w real power per unit length flowing in the y direction
bending component of the real intensity in x direction
shear component of the real intensity inx direction

- Wy twist component of the real intensity inx direction
bending component cf the real intensity iny direction

s ”'U"

~ w shear component of the real intensity inydirection

VRl

- _: oy twist component of the real intensity in y direction :
; ¢! denotes partial differentiation
. A Diracdelta function
T A transducer (fintte difference) spacing
é::' 7] transverse displacement of the beamor plate
f; H, transverss displacement at locationi on the on the beam ‘
or plate {1 =1,2,7%, ... 13)
y' solution to themodified Bessel's equaticn
1 solution to Basgel's aquation
i, slope in the direction of wave propagation
H, angle of twist
I Poi1sson’s ratio
£, translational damping ratio for the boundary
£n rotational damping ratio for the boundary
" ratio of circumference to the diamater of a circle
6
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I, time averaged complex intensity in che x direction

b azimuthal angle

w radian driving frequency
v Laplacian operator

w4 Biharmonic operator

" denotes a time average
2z approximately equal to

differentiation with respect to time

twice differentiationwith respect to time

REVIEW OF THE FREE FIELD METHOD

The time averaged intensity (power flow per unit length) of transverse waves

flowing in the » direction througha two dimensional structure is given by the

squation

M. o Qi o - My o

wvhere the individual terms in equation (1) are given by
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:: Noiseux! has shown that equation (1) can be simplified considerably when the
; power flow takes pla-e under fres field conditions. In reference 1, it 1s shown
| that if there are no power sources or discontinuities in the properties of the
;- media (boundaries) nearby, then the following relationship holds:
g Myb o v« MBy ., =~ [ﬂﬁ _*‘“:’f;“)mb oy (®)
; Further, it is shown in reference 1 that the approximation given by equation
=
:l (8) can be easily obtained frommeasurable quantities under free field measure-
=
E_': ments conditions from the following relation:
% l(-"”i’rrJr A, ' BY 2y = Bity, (M
- S )
w Substituting the approximation of equation (9) into equation (1) the re-
—

sulting equation for the total pover flow is

o Qi Bk pAy ., (10)

Sinca the total power flow 13 shared equally by the shear and bending com-
ponents under free field conditions, equation (10) can be reduce:! furthaer to the

following simple result:

. 2HES gHy, L (1)

Equation (11) has been useu by a number of researchers to obtain an estimate

of the power flowing in simple beam and plate structures! * The most popular

8
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experimental implementation of equation (11) utilizes two accelarometers and the

following finitedifference approximations:

p o= owlf2. (12)

& = /b (13)

Substituting equations (12) and (13) into equation (11) the result is

k2
I, - d *

A gy e b o< M e <o vy - < iz} el (14)

Expressing equation (14) in terms of accelexationrather than displacement and
velocity, converting to the frequency domain and taking the real part of the

result, the equation for intensity 1s

P ‘ 2BL2
e " Im{ltin Gor v G Ghalb - ‘w_xg)l’"{czl}- (15)
and gsince k&1 wiin H theresult can be written as
W fm ) .
', (w}-_&) [H?{(V'_\l}. (!(1)

Thus, equation £16) can be used as an estimate of the power flowing in & beam

or plateusing the two-accelerometer mathod.

THE DILECT FINITE DIFFERENCE APPROACH
An alternate approach to the problem of neasuring power flow in structures
18 to performdirect finite difference approximations of equations (2) through
{7) by using amore sophisticated computational molecule. Consider the compu-
¢ational molecule shown in figure 1. This computational molecula consists of

an array of 13 measurement transducers (accelerometers) arranged in a symmetric




51 g AR

[

Y

fashion on a tvwo dimensional surface {(e.g. aplate). If each transducer in the
mciacule consists of A 0.3 gramaccelerometer, the combined mass load on the sur-
face of the structure amounts to 3.9 grams. (The mass load per unit area will de-
pend on the tranducer spacing.) Other computational mclecules with fewsr trans-
ducers (e.g. 10 transducers?) can be used in the finite difference approach. The
13 transducer moclecule, however, was chosen for study since it provides estimates
¢? the pover flow in the » and y directions at the same location in a 2 dimensional
structure.

Utilizing the computational molecule of figure 1, the following central

difference approximations can be made:

[P e O (lT)

el H
8 (i . T INY s
o P (247 7 ‘
% v 1 sl
A RN (19)
ity (22
. iz , i
Q ”r.,lriv"” Coyar et e e Bl s, (2t
Y TR L TR ) | ) ] (21
: ' . ! 2 7 B - 2yt o ) ‘
h L ’”iiy-" A2 {1y iy Horh ot e NT b iR )
T T RN TR | (22)
. f - ! ] r; ! Ty A
' iy AR R A A LI B l

These central difference approximations may be rewritten in terms >f ac-
celaraticons instead of displacements and substituted into the appropriatae terms

into equation (1}. Convertingthis formof equation (1) to the frequency domain

10




and taking the real part of tl';e result, it can ba shown that the shear, bending, -

and twist components of the power flow are given respectively by

i) . , , .
R N Him{Gh + Gyr — 4G + Ggg - Ghor + 4G 7 - Ghgr — Gar}].{23)

B .
Wrb 5 A3t ® {5y - 2G3 + Gz - Gag + 26y — Gy (24)

b Gy - 2673 + Gay — Gy + 2Gry) —~ Gany)}

(l B ’} “y ' ' t 1 ] ] '
Mgy 27 H(;'&jiﬁ‘)‘ ¢ Im{lizg - Gag ~ Gros + (26 — Gag + Gag + Ghos — Gras}h,  (25)

Recalling the following properties of cross spectra

i, .} o0, (26) *

Im{d .} Im{CGa.gt, (27)

it is seen that equations (23) through (25) require a total of 21 independent
crossg channel measurement pairs in order to compute estimates of the real part of
the shear, bending. and twist components of the power flow. Thus, the experimen-
tal imp ementation of the computational molecule of figure 1 requires at laast 2
passes withmost 16 channel FFT analyzers, or 3 passes with most 8 channel FFT an-
alyzers.

Finitedifference approximations for the shear, bending, and twist compo-~
nents of the powar flow in the y direction can be obtained in a similar fashion.

The results of the derivations are given by the equations

Hiye =

I3 _ .
oAt " T Gap b Gy g v M e - Clag - Ghor - Grartl s (28)

11
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bpiGag - 20+ Ghas Gy 1 207 Ghe)}]
] ¢
Wy == !;((Bax:)])) elm] (it Gay + G - S b Gen o Gann Ghoe (i, (30

Equations (28) through (30) indicate that 13 additional independent cross
channel measurement pairs are required tu obtain the componen®s of the real power
flow in the y direction. Thus, the implementation of the computational molecule
of figure 1 raquires a total of 34 independent cross spectral measurements to
obtain the six components of power flowir o r andy directions. In practice,
this would require 3 passes withmost 12 or 16 channel FFT analyzers, or 5 passes
withmost B channel analyzers.

It should also be noted that if the geometrical characteristics of the
structure under investigation are | dimensional, thedirect finite difference
approach simplifys considerably. For example, if the structure is a simple beam,

the equation for the power flow 15 given by

I, - Qo My o, (31)

For the case of the 1 dimensiconal structure, the central finite difference
approximations for ;; and for 4, remain the same (see equations {17) and (18)). The

formulae for the shear and bending moment simplify to the expressions

1y
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Thus, it is seen that only § of the 13 transducers are required in this case.
Further analysis shows that the equations for the real parts of the shsar and

bending components of the power fiow are given by

k1l . , . , .
s == {2&3{.‘)3) L ITN{(!”’ 2(?37 + 2(:'”7 - (1]37}, (;4}
ki D e : , Ny :
oy = (';ZAE!‘“J) L] !Tn{(rg_‘] .2(17‘; 13 flng (1311 + 2(17“ —- (rl“]}, (F‘r))

Equations (34) and (35) indicate that only 5 independent cross spectral
measuremente must be performnd in crder to obtain estimrtes of the real part of
the shaar and bending componente of the power flow in a beam. This requiresa

single pass withmost multichannel FFT analyzors.

SIMULATED MEASUREMENTS

A series of analytical simulations of the two accelerometer and the direct
finite difference measurement methods were parformed in order to quantify and
compare the accuracy of the two methods under near field measurement conditions.
In the subsections that follow, selectad results of the computer simulations
of the two methods are presented for the cases of measursments in a plate near
toaline force, a linemoment, a point forcse, a point moment, and a quadrupole.
Secondly, selected results are presented for simulated measurements near to
boundaries which possess various combinations of mass, translational stiffness,
rotational inertia, and rotational stiffness properties. (The geometrical
arrangement of the input forcing function, the trancducers, and the boundary
are shown in figure 2 ) A0 32cmthick AA2024 aluminumplate was chosen as the
test vehicle for the simulations since 1t is representative of the materials and
structural aspect ratiosused inaircraft construction. The matarial properties

of the plate are presented in Table [

13
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Each data figure presented in the subsections that follow consists of parts
(a) and (b). Part (a) shows the relative srror of the two measurement methods in
dB (relative to the known exact solution) over the 0 - 1000 Hz frequency range.
part (b) shows the intensity of the pover flow in dB (relativeto 1 Watt/meter)
as ogtimated by the two measurement methods fer a forcing function which has a
uniform input over the 0 - 1000 Hz frequency range. In each case, the two figures
viewed together provide some insights into the significance of the error. The
results producediby the two accelerometer method are denoted by the words FREE
FIELD and the results produced by the diract finite difference approach are
denotaed by the word DIRECT in both the figure legends and in the discussions that
follow. The O - 1000 Hz frequency rany» was chosen for the analyeis since 1t 18 of
primary 1mportance in propeller driven aircraft.

The exact solution for the structural intensity flowing in the plata for
oach flow field under examination was obta.ned in the following manner: The ex-
act solutions for the transverse displacement, transverse velocity, angular vo-
locity, ratm of tvist, shear, bending moment, and twisting moment as a functionof
positionon the plate were derivad. (Summaries of these analytical derivations
are presented 1n Appendices [ through I11.) The results of these derivations were
incnrporated in the computer codes and were used in conjunction with equation (1)
to calculate the exact amounts of structural intensity flowing in shear, bending,
and tw1st at any locationin theplate

The two measursment methods were simulated fur each flow fi1eld under inves-
tigation as follews: The analytical resilt for the T ansversae displacement as a
function«f position on plate was uti1lized to compute the acceleration that would
ba experien ed by each individual accelercmeter in the transducer array. (The
computed transverse displacement was multipliedby .- 1nthe frequency domain

to obtain the accalaration in each casa ) The computed accelarations were then

14




Each data figure presented in the subsections that follow consists of parts

{a) and (b). Part (a) shows the relative error of the two measuroment‘ methods in
dB (relative to the known exact solution) over the O - 1000 Hz frequency range.
part (b) shows the intensity of the power flow indB (relativetol Watt/meter)
as estimated by the two measurement methods for a forcing function vhich has a
uniform input over the 0 - 1000 Hz frequency range. In each case, the two figures
viewed together provide some insights into the significance of the error. The
results produced by the tuo accelerometer method are dencted by the words FREE
FIELD and the results produced by the direct finite difference approach are
dencted by the word DIRECT in both the figure legends and in the discussions that
follow. The 0 - 1000 Hz frequency range was chosen for the analysis since it is of
primary importance in propellerdriven ayrcraft.

The exact solution for the structural intensity flowing in the plate for
each flow field under sxamination was obtained in the following manner: The ex-
act solutions for the transverse di splacement, transverse velocity, angular ve-
locity, rate of tvist, shear, bending moment, and twisting moment as a functionof
p.si1tionon the plate were derived. {Summaries of these analytical derivations
are presented in Appendices [ through III ) The resultsof these derivations were
incnrporated in the computer codes and wers used 1n conjuncticn with equatioen (1)
tocalculate the exact amounts of structural intensity flowing in shear, bending,
and twist at any locationin the plate

The two maasurement methods vere simulated for each flow field under inves-
tigation as follows. The analytical result for the transverse displiacement as a
function of positioncon plate was uti1lized to compute the acceleration that would
be experisncad by each 1nd;vidual accelerometar in the transducer array. (The

romputed transverse displacement® was multipliedby .- in thea frequency domalin

to obtain the acceleration in each case ) The computed accelerations were then
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substituted into the finite differenca approximations utilized by each measure-
ment methoed. Thus, a 4 transducer computational molscule was used in conjunction
with squations (12) and (13) to simulate the two accelerometer method wvhilea 13
transducer computational molecule was used in conjunction with equations (18)
through (23) to simulate the direct finite difference approach.

A 2 cm transducer spacing was selected for the two accelerometer method
while a 1 cm t.ansducer spacing was selected for the direct finite difference ap-
proach. It isacknowledged at the outset that these choices provide the direct
approach with a slight advantage over the tvo accelerometer appreach in the high
frequency ranges (beyond the scope of analysis of this paper) where finite dit-
ference arror is important. In the low frequency ranges where near field error
1s important, however, the larger transducer spacing for the two accelerometer
probe should, if anything, provide it with a slight advantage over the diract ap-

proach.

MEASUREMENTS NYAR A LINE FORCE

Figures 3 and 4 show typical results obtained for Simulated measurements
inaplatensar toa line force tnput . A summary of the analysis used tc generate
these results 15 given in Appendix I. The amplitude of the line force disturbance
was fixed at 10 .0 N/m.

For the case shown in figure 3, the geometric center of each measurement
probe 1s located at adistance of 10 ¢cm from the line forcs discontinuity (31.5
times the thickness of the plate). Figure 3(a) indicates that the near field ar-
ror for the FREE FIELD method 1s less than 1 dB everywhere except in the frequency
range below 50 Hz. The near field error of the DIRECT method 1s seen to be negli-
gible in ail frequency rangss. Figure 3(b) adds add:tional insight into figure
3(2) since 1t 1ndicates that the trequency range in which the FREE FIELD method

axperiences the largest errors coincides with the frequency range of maximum

15




power flow for a uniform input force. Thus, the error in the estimates produced

by the FREE FIELD method can be significant in some cases. (Note: References4,
5, and 6 present results similar to those shown in figure 3(a) for the case of a
line force input, but do not include the accompanying plot of the intensity of the
power flow.)

Figure 4 shows the results obtained when the measurement probes are located
6 ¢cm fromthe line force discontinuity (15.75 times the plate thickness). These
results indicate that the magnitude of the error in the intensity sstimates
produced by the FREE FIELD method increases in the lower frequency ranges. The
estimates produced by the DIRECT method remains very accurate, however . Also,
from comparison of figures 3 and ¢, it can be seen that the errors producad by
the free field approximations will change sign in some frequency ranges when
the probe iamoved cioser to the input. Thus, the FREE FIELD method may either
overestimate or underestimate the true intensity depending on the location of the

measurement probe.

MEASUREMENTS NEAR A LINE MOMENT

Figure 5 shows typical rasults obtained for simulated measurements in a
plate near to a lins moment input. The analysisusad to genarate these resultsis
summarized in Appendix I. The amplitude of the line moment disturbance was fixed
at 0.20Nm/m. For the case shownin figure 5, each measurement probe is located 10
cm fromthe 11ne moment discontinuity. Inthis case, the near field error in the
estimates produced by the FREE FIELD method is seen to be consistently negative
(the true intensity 15 underestimated) and the errors are larger in magnitude
than those experienced when measuring near a line force (see figure4). The
near field error of the estimates produced by the DIRECT method in figure 5 is
negligible by comparison. These results are in sharp contrast to the results of

figures 3 and 4 vhera the error curve produced by the FREE FIELD methed "hovers”

16
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about the axis of 0 error. In fairness to the FREE FIELD approach, however,

it should be noted that the frequency range in which large error occurs in its
estimates coincides with the frequency range of minimum power flow for a uniform

line moment input .

MEASUREMENTS NEAR A POINT FORCE

The two methods of power flow measurement were also simulated for the case of
measurement near a uniformpoint force input to an infinite plate. The magnitude
of the point driving force input was fixedat 10.0 N. Qualitatively, the results
cbtained for these simulations were very similar to those cbtained for a line
force input (See figures 3 and4.). This 1s to be expected since the solutions to
this type of flow field (summarized in Appendix II) musat obey the radial symmetry
of the problem. Therefore, the results obtained should exhibit similar one
dimensional type bshavicr.

The simulations for the point force did produce one notable addition to
the previcus body of Frnowlege, however. ror the case shown in figure &, each
measurement probe is located 5 cm fromthe point force discontinuity. In figure
6{a}, the error curve for the FREE FIELD method does not cross the axis of O
error, but underastimates the true intensity over the entire frequency range of
1aterest. (Inother cases where the measuremsnt probes are 10 cm or further from
the source, the error curve of the FREE FIELD method crossas the O error axis.)
Thus, unlike the results obtained for the line force, the error curve of the FREE
FIELD metho'l does not necessarily "hover' about the axis of O error. Since the
amount of power 1nput tu the plate 1s uniform over the entire freguency range in
this case (ses figure5ib)), the large near field error introduced by the FREE
FIELDmethod at 1nw frequency could significant ly degrade the accuracy of the

estimate ¢f the total power flow. Alsonnte tha* the noar f1eld arror experienced

17




by the DIRECT method of measurement is once again insignificant in comparison to

that experienced by the FREE FIELD methed.

MEASUREMENTS NEAR A POINT MOMENT

Figures 7 and 8 show typical results obtained (using the analysis summarized
in Appendix II} for simulated measurements in a plate near to 2 point moment
input. The amplitude of the point moment was fixed at 0.20 Nm. Unlike the results
presented for the previous cases, the £low field in this case possesses a strong
directional character.

For example figure 7 shows the results of the simulations when each mea-
surement probe is located 10 cm from the point moment and aligned along the dipole
axis {:h N degrees) {The flow field of a point moment can be mathematically
represented as n force couple or dipole.} Inthis case, the near field error in
the estimates produced by the FREE FIELD method is consistently nogative, but is
unacceptably large only at frequencies below 200 Hz. The DIRECT method 1s seen to
produce very accurate estimates by comparison.

As the measurement probes are moved either radially inward (closer to the
source), or moved circumferentially in the azimuthal angle «», the performance
of the FREE FIELD method 15 seriously degraded. For example, figure B shows the
results of the simulations when each measuremsnt probe 1s located at an azimutkal
angle .» of 80 degrees The measurement probes are againdirected at the point
moment source and located at a distance of 10 cmaway. Thus, the results of figure
8 are for the measurement of intensity along an axis that 1s almost 1in pure twist,
These results indicate that the estimates produced by the FREE FIELD method along
this axi1s are so tnaccurate that no useful information can be chtained from them.
In contrast, the estimates produced by the DTRECT method remain accurate across

the enti1re 0-1000 Hz frequency range
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MEASUREMENTS NEAR A QUADRUPOLE SOURCE

Figures 9 and 10 show typical results obtained {(using the analysis summa-
rized in Appendix II) for simulated measurements in a plate near to a lateral
quadrupole input. The amplitude of the quadrupole was fixed at 0.02 Km’. The
case of the lateral quadrupole is of interest since its flow field closely resen:-
bles that of a point force input located near the corner of a semi-infinite plate
which is simply supported along its tvwo edges.

Figure 9 shows the results of the simulations when each of the measurement
probes is diracted at the gquadrupole source lccated 10 cmavay. In this case, the
azimuthal angle ) was fixed at 4% degrees. This should be the best case scenerioc
for FREE FIELD measurement accuracy since the axis along the 45 degree azimuth
is the axis of minimum twist. The near field error in the estimates produced by
the FREE FIELD method 1s consistently negative and significant at trequencies
below 300 Hz. The DIRECT method is seen to produce very accurate estimatesover
the entire fraquency range.

Dnce again, as the measurement probes are moved either radially inward, or
moved circumfsrentially, the psrformance of the FREE FIELD method is seriously
degraded. Figure 10 shows the results of the simulations when each of the mea-
surement probes 15 located at an azimuthal angle v of 10 degrees. The probes are
again directed at the quadrupole source and located at a distance of 10 cm avay.
The estimates produced hy the FREE FIELD method along this axis are grossly inac-
curate. The estimatss produced by the DIRECT method, however, remain accurate

across the entire frequency range.

MEASUREMENTS NEAR A LINE BOUNDARY
WITH MASS AND TRANSLATIONAL STIFFNESS
Figures 11 and 12 show typical rasults obtained from the simulations for

measurements in a plate near to a line boundary which possessesn translational
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stiffness &, of |0+ 107 N/m/m, amass i, of 1.0 kg/m, and a viscous ~ritical damp-

irz ratio {, of 0 Of, A& summary of the analysis used to generate the results is
given in Appendix III, The analysisutilizes auniformline force input of 10.0
N/memplitude located I m avay fromthe boundary to generate incident travel-
Ing waves on the boundary (see figure 2) . The numerical values chosen to char-
actsrize the boundary and the input forcing function are somewhat arbitrary but
Tepresentative of typical values that might be encountered in existing aircraft
type structures. The large distance between the source and the boundary insures
that the boundary does not experience any near field effects associated with the
source. Thus, the boundarv "sees" only incident pPropagating waves.

For the case shown in figure 11, the measurement probes are located 10 ¢m
away from the boundary Figure 11(a) ind:cates that the near field error for
the FREE FIELD method 13 less than ! dB everywhere except in the frequency range
below 300 Hz. The DIRECT method is seen to be accurate over the entire frequency
range. Figure 11{b) indicates that the frequency ranges of largest arror and
mAximumpower flow coincide for the FREE FIELD method. Thus . the error in the
estimates produced by the FREE FIELD method can be significant. Alsonote that
very little power flows through the boundary in the vicinity of 300 Hz. This
phenomenon 1s caused by the strong impedance mismatch effects of the boundary
at this frequency. It can be shown that the exact location (in frequency) of the
impedance mismatch 18 dependent primarily on the valus cf the stiffness of the
baundary &, "

Figure 12 shows the results obtained when t 1o measurement protes are locatad
5 cm fromthe boundary . Figure 12{a) indicates that the magnitude of the error in

the intensity estimates produced by the FREE FIELD method increases as the trans-

ducers are movad ¢ laser to the boundary. The estimates produced by the DIRECT
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method remain very accurate, however. Figure 12(b) is Plot of the absolute val-

utes of the intensity estimates for the two methods. It is important to note tlat
the FREE FIELD method produces negative intensity values in the 175 - 275 Hz fre-
quency range. Thus, the FREE FIELD method indicates that the power is flowing out

of the boundary rather than through the boundary in this frequency rangs.

MEASUREMENTS NEAR A LINE BOUNDARY WITH
ROTATIONAL STIFFNESS AND INERTIA
Figures 13 and 14 show typical results obtained (using the analysis of
Appendix II1) from the simulations of measurements in a plate itear to a line

boundary which possesses a rotational stiffness Ay of 1.0 « 10? N-m/m, arotational

mass moment of 1nertia my of .00 kg-m*/m, and & viscous critical damping ratio (g

of .01 The analysis utilizes a uniform line force input of 10,0 N/m amplitude
located t m away from the boundary to generate incident traveling waves on the
boundary {see figure 2). Once again, the numerical values chosen to characterize
the boundary and the input forcing function are arbitrary but realistic values.
The large distance between the source and the beundary insures that the boundary
does not experience any near field effects associated with tha source.

For the case shown 1n figure 13, the measurement probes are located 10 cm
avay from the boundary. Figure 13{a) indicates that the near field error for
the FREE FIELD method 15 acceptable cver the entire frequency range. The DIRECT
method 15 seen to be slightly more accurate than the FREE FIELD method. Alseo
note that very little power flows through the boundary in the vicinity of 850 Hz .
Thus, the impedance mismatch phenomencn sccurs at a much higher frequency in this
case. It canbe shown that the locaticn of the 1mpedance mismatch is dependent
primarily on the value of the rctasi1nnai inertiaof the boundary m,.?

Figure 14 shows the results obtained when the measurement probes are located

Scmfromthe boundary. Figure {4(a) indicates that the magnitude of the srro:
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in the intensity estimates produced by the FREE FIELD method greatly increases

at frequencies above 500 Hz. Tho estimates produced by the DIRECT method remain
very accurate, however. Figure 14(b) is plot of the absolute values of the in-
tensity estimates for the two methods. Note that the FREE FIELD method produces
negative intensity values in the vicinity of 800 Hz indicating that the power is
flowing out of rather than through the boundary in this range. Therefore, theac-
curacy of the FREE FIELD method can not necessarily be guaranteed in the higher
frequency ranges, but may depend on the location of the transducers and the char-

acteristics of the veundary.

MEASUREMENTS NEAR A LINE BOUNDARY WITH
TRANSLATIONAL AND ROTATIONAL PROPERTIES
Figures 15 and 16 show typical results obtained (using the analysis of Ap-
pendix I11) for the simulations of messurements in a plate near to a line bound-
ary which possesses both the translational and rotational stiffness and inert ia
properties discussed 1n the two previous subsections
(k, L 107 N/m/m, iy 10 kg/m, &, - 001,
ko P 108 N-m/m, 1w 0.001 kg-m*/m, and &p A1)
The analysisutilizes auniformline force input of 10.0 N/m amplitude located1lm
away from the boundary to generate 1ncident traveling waves on the boundary {see
figure 2) .
Figure 16 shows the rasults sbtained when the measurement probes are located
10 cm away from the boundary. These resultsbeara strong resemblance to those
obtained 1n figure 11. Figure 5(a) ind1cates that the near field error for the
FREE FIELD method 15 less than 1 dB everywhere except in the frequency range of
maximumpower flow. The DIRECT method 15 seen to ke accurata over the entire

fraquency range. Figure 15(b) suggests that the added rotational properties of




the boundary cause a secondary impedance mismatch at some frequency above 1000
Hz.

Figure 16 shows the results cbtained when the measurement probes are located
5 cm from the boundary. The error curve of figure 16(a) indicates that the inten-
sity estimates produced by the FREE FIELD method are inaccurate over the entire 0-
1000 Hz frequency range. The estimates produced by the DIRECT method remain ac-
curate, however. Figure 16(b) shows that the intensity astimates produced by the
FREE FIELD method have the wrong sign near the first impedance mismatch (200-300
Hz) and deteriorate rapidly as they approach the second impedance mismatch (above
$t000 Hz) . Thus, it may be concluded that the magnitude and character of the near
field error produced by the FREE FIELD method may depend on the particular combi-
nation of the transiational and rotational properties of a boundary in the vicin-

ity of the measurement probe.

MEASUREMENTS UNDER SEVERE.
COMBINED NEAR FIELD CONDITIONS

Figures 17 shows typical results obtained (using the analysis of Appendix
b I1I) for the simulations of measurements in a plate with the measurement probes
"sandwiched'" between a line force and a line boundary. The boundary in this case
- possesses the properties discussed previcusly

(L',[ L.« 107 N/m/m, 1., [0 kg/m, £, .o,

ket O 1Y N-m/m, my 0001 kg-m/m, and & .01,
and is located 5 cm from the measurement probes. A line force input of uniform
10.0N/mmagnitude 1s positioned 10 em from the boundary. Thus, the distance
between the input and the gecmetric center of the transducers is also b cm.

Under these conditicons, the transducers are affected by the propagating

and svanescent components of both the input and the boundary. Furthermcre,

both the propagating and evanescent components of the reflections fromthe
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boundary ara altered by the presence of the near field component of the input.

This modified response of the boundary is included in the analysis as outlined
by Appendix II1. It is assumed, however, that the flow field produced by the line
force input isg not altered by the presence of the boundary. {In practice, this
would not be the case since the impedance "seen™ by the input would change due to
the close proximity of the boundary. ) This simplification canbe thought of as
an alteration of the forcing function such that the characteristics of the flow
field associated with the input remain the same.

Figure 17 shows that intensity estimates of the FREE FIELD method are nega-
tive (and thereforse unusable) below 400 Hz. Interest irgly, the accuracy of the
FREE FI' .D method actually improves in the 400-900 Hz range (compared to figure
16) dus to the close proximity of the source. Above 500 Hz, the FREE FIELD o8-
timates rapidly degenerate as they approach the secondary impedance mismatch.
In contrast, the DIRECT method 1s seen to be accurate over the entire frequency
rangs. Thus, 1t may he concluded that the magnitude and character of the near
field error associated with the FREE FIELD measurement method may also depend on
+he combined characteristics of the sources and boundaries 1n the vicinity of the

measurement probe.

CONCLUDING REMARKS

Overall, the results of the study indicate that the near field exror asso-
c1ated with the FREE FIELD (two accelerometer) measurement method 1s much more
serious than previously believed.

Simulations of FREE FIELD measurements near to simple sources show that
the error curve of this method does not necessarily "hover" about the axis of
0 error as implied by the more limited resilts presented in references 4, 5,
and 6 Furthermore, 1t was shown that the frequency range of maximum error
often coincides with the frequency range of maximum power flow when measuring
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near simple sources. It was shown that both the sign and the magnitude of the

near field error associated with the FREE FIELD method is very sensitive to the
distance between the measurement prote and the source. And it was shown that the
accuracy of the FREE FIELD method is highly dependent on the radial and azimuthal
location of the meacurement probe (with respect to the source) when measuring
near higher order sources (dipoles and quadrupoles}.

Simulations of FREE FIELD measurements near to simple boundaries show that
this method can actually indicate that the intensity is flowing in the urong
direction. Furthermore, it was shown that this type of error is not necessarily
restricted to the lovwer frequency ranges and can occur in frequency ranges where
the power flow is relatively large and stable.

The results of the simulations for the DIRECT method are in sharp contrast to
the 1esults obtained for the FREE FIELD method. In essentially all cases under
investigation {all simple sources and boundaries studied) the direct finite
difference approach produced an accurate estimate of the intensity flowing in the
plate. The estimates produced by this method were so accurate, in fact, that no
significant difference uas found between the estimutes and the exact solution for
any near field measuremant condition studied.

In fairness to the FREE FIELD approach 1t should be noted that many of the
gerious near field eTrors inherent in the method can be suppressed for a gliven
measurement condition by increasing the spa<ing betwesen the two accelerometers.
Using th1is technique. the near field effects can be "shifted" to the very low
frequency ranges {(bayond the range of interest). This solution is not a panacea,
howsver, since 1t will zlso cause the error associrated wilh the finitediff- ence
approximations to greatly increase in significance.

[t should also be noted that the FREE FIELD approachmay be quite useful for

obtaining estimates of the power flow1n situations where thare are no sources
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nearby, or in situations vhere the properties of tha structure do not change in

the vicinity of the measurement probe.

ie

Lastly, it should be pointed out that both methods are subject to other types

of measuremsnt error. Quinlini and Redman-White® have shown that the FREE FIELD

J‘ .

method has difficulty preducing an accurate estimate of the structural intensiiy
in reverberant flow fields. Furthermore, Mickol'’'s resultsf suggest that the
presence of the meas:rement probe itself can significantly alter the flow field
and thersfore degrade the accuracy of the measurements. It is expected that the

DIRECT method suffers fromsimilar adverse effacts .

TR Ry sS § % )
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APPENDFIX 1

EQUATIONS FOR THE TRANSVERSE VIBR~ATION OF AN INFINITE BEAM
General Solution for a Discrate Forcing Function

The governing differential equation for the transverse vibration of an

infinite beam is given by (see reference 7)

%]

iy
BY Yy o ” oty (A1}

If 1t assumed that the forcing function is simple harmonic in character and

cccurs at adiscrete location in space, i.e.

gl b FAATINTER =t (4.2

then the resultingmotionof the beam s also simple harmonic and the governing

equation beccmes

RN ’”j-;- i ;..W_,r-l. ! (4{)

Now for the case of an 1nfin;:te baam

U (AN

and defining ! ..’ /i thegovarning equation becemes
il I
' Py AYRE P [ 4.5
;,.I [’l
For values of » - 1), the governing equation 1s:
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This linear ordinary homogeneous differential equation is easily solved using

- operator methods and the solution is given by

L
]

for valuesof r - 0. Furthermore, from physical considerations, the value of Yy
must remain finite as r approaches infinity. Thersfore, ( 4 0 and since all
waves propagate aWay from the source, (', f) for values of + - (. Thus, the

solution becomas

for valuegsof r - 8,

AT { & |

b

Solution for a Point Force Input

..P' 'u.

- For the case of adiscrete point force of amplitude /), 1ncuted at + - () on an

= infinite beam, the following two boundary conditions apply:

e 0y N, (4.0

Y I,
(o iy 1 "u- 0 ! (4.1

o 2
Applying the boundary condition of aquation (4.9) to the solution givenb:

aqiation (A R), 1t car be shown that

r it s

Thur the solution reduces o

_—— ot [ e )¢ R (.-l.l!!

A

/T N QTR LE SN G L €'y AT 4 ('.'t“i"](-"‘", (1.7}
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Applying the boundary condition of equation (A.10) to the solutiongiven by

(A.12), 1t is found that

g
. o R R
YIS LA
and the solution for the transverse displacement for » - () as a function of time
is given by
J!:f? H kr - ‘..1 ¥
r.d o 2k . krlget Al
gl ) HHL‘)H 1 ! ( }

Differentiating with respect to time to obtain the transverse velocity for

w‘[", . )

T N S TR ALn
ity LAY J : (4.1

The angular velocity tor + - [ is found by differentiating equatiocn (A.15)

with respect to.r. Thus

iy Ju b, by . ,

o AT A
e ! I.”L:I { ')

The moment 1n the beam for » - !l as a functionof time can be obtained by

differentiating equaticn (A.14) twice with respect to /. The result is

ey tF . ) _
‘Il!:,f} [1) X : L I LJ:"r‘ |“]f}
oty TS ' '
The shear 1n thebeamfar » 0 cansimilarly be obtained fromthe third order

differentiationof (A 14) withrespect to + as follows:

L []I\('
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Solution for a Point Moment Input

For the case of a discrete point moment of amplitude }/, locatedat « - ¢ on

an infinite beam, the following two boundary cenditions apply:

plr - 0) -0, {A.1m)

»
Mylr —0) B - 0) - M2, (A.20)

Applying the boundary condition of equat ion (A.19) to the solution given by

equation (A.8), it can be shown that

Thus the solution reduces to

gl gy (e 2br ook ewt {1.22)
Applying the boundary condition of equation (A.20) to the sclution given by
(A.22), it is found that

Al
CHBAYY

{4230
and the solution for the transverse displacement for r 0 as a function of time
18 given by

M,

i PEC A2
IRy (

r’;(.r.f]

Differentiating with respect to tima to obtain the transverse velocity for
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i

"_,’f ~ O A.25
) gir, ) (1842 { }
The angular velocity forr > 0 is found by differentiating equation (4.25)

Withrespect to r. Thus

\‘h" ju.'j‘l,, A
. - , e Jhropkad Jut 2%
"),F' ("11;;“) H 7 + € (/‘1 h)

The moment in the beam for r

»

U as a function of time can be obtained by

differontiating equation (A.24) twice with Tespect tor The result is

n

2y
Myey gor M

vl gk -mr“,u-f_
thp= I

(A.27)

The shear in the beam for » . ) can simi larly be obtained from the third order

differeantiation of (A 24) Withrespect to r as fcllows:

AU L A i L B B
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APPENDIX II

EQUATIONS FOR THE TRANSVERSE VIBRATION OF AN INFINITE PLATE

Governing Differential Equation for » Puint Force
The governing differential equation for the trznsverse vibrationof an
infinite plate is givenby (see reference 7)

»
B4 b m' L e ). (A.29)

0
If it assumed that the forcing function is a simple harmonic force which

occurs perpendicular to the plate at adiscretepoint in space, i.e.

plroocty  IT&r)el=?, {A.30

then the resulting motion of the plate is also simple harmonic and the governing

eguation becomes

b

e mu.‘-" PR .
tv 51 i I (r ’ (A.31)
Defining 4! muw? 1, this becomes
P )
‘vl L.-i))’ ,g(,,)r !.."_ {‘(1‘_{2'
It
Fer values of » (I, the governing equation 1s
AN 1'\"!:1 1. (4.3

Since a point force produces a symmetric response in the variabler, there canbe

no .+ dependence in the responss ;. Therefore, the Laplacian operator in this case
reduces to

12
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Substituting this last result, the governing equation becomes

YEAEEY TATE ur Ky 0.

Selution for a Point Force

Equation (A.36) is a linear ordinary homogensous differential squation.

Using orerator methods, this equationis easily solved. The solutionis given by

D) et et (A7)

vhere ;; must satisfy

and vhere ;;* must satisfy

[ 1.49)

for values of + 1)
Equations (A 38) and (A 39) are alternate forms of the ordinary and modified
Bessel's equation of Oth order, respectively The sclutions te these two equa-

tions are well known and are given, Tespactively, by

£ H,',”lkra ‘ r'h.Hf,"'an, (A.40]
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where //{')(.) iz the Oth order Hankel function of the 1st kind and H)) (-) is the Oth
order Hankel function of the 2nd kind.
It can be shown (see reference 7) that H(‘)”(kr) corresponds to an inward trav-

elling wave and that H(‘,”

{ —jkr) corresponds to a solution that grows exponen-
tially without bound in kr. Therefore, {romphysical considerations, the coef-
ficients of thess two terms must be zero. Thus, the sclution becomes

nrt) - [CoHE (hry + CoHE (—jhryledut, (A.42)

where H",z'{kr) corresponds to an cutward travelling wave and Hém( Jhr) corre-
sponds to an exponently decaying solution in Ar.
Applying the boundary condition

ity

fing, 01, ", {443

(from symmetry considsrations) to the solutiongiven by (A.42), it is found that

(' (5. Thus, the sclution is reduced to

gty CalH ey B jhelost (A.44)

Now fromreference 7, the equation for the shear in theplate is given by the

equation

Iy
() ff,) (). {A.40)
,

1

Applying the boundary condition

’ { A6)

hm[.- -'H(l) {2?“'5'
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it is shown in reference 7 that the value of ("; is given by :

. 15 -
(Y - (Hékg) (A4.47)

Thus, the final sclution for the displacement of the point driven infinite plate

is given by

g, t) = (g.gu.; | k) B jhry|edet, {A.4%)

Equations for transverse velocity, angular velocity, bending moment, and
shear can be obtained, respsctively, by straightforvarddifferentiation of

equation (A.48) using the following formulae:

gy
'f !f’f J ” ? {“ )
{1 ihy i
. ek , .50
T e 17 0 (4.50)
1z LA
M, Bi' T Ty, (A51)
rr

. oo 9
o B vy g (@ 1oy (A.52)
Ty

drdrtor i
Carrying out the operations indicated in equations {A.49) through (A.52), the
equations for transverse velocity, angular velocity, bending moment , and shear
for the case of an infinite platedriven by a point force area givan, respactively,

by:

, . L2 o gt 53
) [‘”” IH (Ll) H7 ghriledwt {A.53)
H{ p [ . L2t e et =y
: (HH‘. IH (hry o g M0 phe)ienet, [ A.51)
FL : (4 2) (1 (2 . .
M, H—' H:, ") h,', { hr) () \H hry ST ;A‘r‘]g]rl“’, {4.00)
AI, 1 3 .

Q 7 o I ey o g pher)iest (A.56)
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Solution for a Point Moment

L}

The solution for an infinite plate driven by a simple harmonic poeint moment
can be obtained directly from the solution for a point force by simple differen-
tiationwith respect to the cartesian coordinater {sea raference 7). Thus, the

solution for the transverse displacement due to a point moment is given by

a M,

(2) (2, . - .
1 e ke o () HyTC ke (AT

and fromthe calculus it 18 known that

It a s
. BAD X ¥ I . .
dr it ro il

Since the monopole solution contains no ¢ dependence, the dipole (point moment)

solution is given by

)AL 1 (2 ()
LY ¢ Jut . [ N ) A' Il
app e e Gy e e e r)|

Performing the indicated operation, the result is

RN Capl 2 _ (2) .
A E L L I LU (A.58)

Note that this solution for the transverse displacement of the plate depands on
both the radial distance r, and the azimuthal angle n. Therefore, the power flow
field due to & point moment input 1s not radially symmetric, and the flow field
contains a component due to twist in addition to the ordinary shear and bending
components.

Equations for transverse velocity, angular velocity, rate of twist, bending
moment , shear, and tw1sting moment can be obtained, respectively, by straight-

forward differentiation of equation {A.58) using the following formulae:
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dy

Ty e
- a dy , a
B 2O Y
A T
a1y jwk 3
/= - 1
CT A0 (k) Do
LY Ly 1 3%y
M, - B[arzl F Bu[ra + 2 3&,],
3 o,0% 18y 19y
- plicryy— gy tog 107y
v B(‘)r(v ) Br"h' Or? + ror + r? o4’

1 3%y 1 an

My Bl ‘u)[r Orilp T2 aqbi '

(A.59)

{A.60)

(A.61)

(A4.62)

(A4.63)

(A.64)

Carrying out the operationy indicated in equations (A.59) through (A.64), the

equations for transverse velocity, angular velocity, rate of twist, bending

point moment are given, respectively, by:

ﬂi ¥ ) .
. U-'j I . (g - . (2) S ot
i tH!?k,CSQ')[.”II {hry v JHT = jhrHert,
: wil, (2) [2) At LI
s (RD ]i cosd et o [H T (hr) « Hy (- ghr) (kr)(H' (hr) + JH V(- jhr))],
M, ) I o
LBy e T T Rl
Jh M, ST RN I 2
M, Peose [ H Uk ('A‘-,-'}H” (kr) + (mgh’. (kr)]
; . J ), 1 (2), .
JHT0 ghey le)”” { jbr)- (I.'r')ZHI (ke
P ey Y ke et
. (hry 2 :
JkiM, . (2) IR §2) Joogtn
{ ety Tt ). ey i )L !
J x : of M)k 1L-r-JH' ihrye YO ghrd (L-:')H' i Jhkry,

dk M, b {1 )

A : -
” N [L’)

i”i::l("") 4 Hj,_“{ Jhr}eawi

moment, shear, and twisting moment for the case of an infinite plate drivenby a

{A.6h)

(A.66)

(A.67)

(A.68)

{A4.69)

t4.70)
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Solution for a Lateral Quadrupole

The solution for an infinite plate driven by a simple harmonic point lateral
quadrapole can he obtained directly from the solution for a point moment by simple
difierentiationwith respect to the cartesian coordinate y. Thus, the solution

for the transverse displacement due to a lateral quadrapole is given by

Ag > .
" w (':%ié)f-')“’w (k) (- jhr)]edt, (A7)

and fromthe calculus it 1s known that

% i? i cosg i}

. sing | | e
Ay i ro il

Thus, the quadrapole soluticn is givenby

, f 2 2 2
) e e lc'n_qgﬁ.ﬂ;rarp ,r iH:"(kr) 4 _)'th)[ Jhryl
(XL ihe ' -
. (A7
] k] AR T
TSN ST Rt B
il
Carrying out the indicated operations and simplifying, the result is
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Equations for transverse velocity, angular velocity,

rate of twist, bending
moment , shear, and twist ing moment can be obtained, respectively, by straight-
forwarddifferentiation of equation (4.73) using the formulae given by equations

(A.59) through (4.64) . Performing ths operations indicated in thess formulae on

equation (A.73), the results are given by

v (:ip)"”‘”""””’@u'”ﬁ“”vr) FHPC ke eder, (A.74)

. u,'(‘i 5 . , | 2 2 |

H, {R;;),-u.nrf)snm‘ijo fH: ’[kr)' Jﬁg')[ : JI\'I')J--(.Ir,i[H; i””,) ! H:‘f'( ] jkr)]], (A.75)
u.'}.'( p (0 .ﬁzq‘) » R l

t (8[;; (}L‘r) {[{; )(L-Jv} | Hé ’{ 'Jkr'”g]u‘f.

(A.76)
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APPENDIX I

EQUATIONS FOR THE TRANSVERSE YIBRATION

OF BEAMS NEAR TO SIMPLE BOUNDARIES
Introduction

This appendix is largely a recapitulation of the theory developed by B. R.
Mace in reference 8. For more detailed explanations of the concepts presented
here see reference §.

As shown in Appendix I, the solution for the transverse displacement in a
beam due to a simple harmonic disturbance is given by equation (A.7)} (repeated

here for the convenience of the reader)

r,g,,“f) '('l, ke, (‘2,.MJ' ; (,.‘t' br b ("4'.i~7'](1u'r' ‘_‘T}

whers the vavenumber k is given by &4 mws/H. It should be noted that the
comfficients in equation (A.7) may have complex values. Als-~note that (', and(
correspond to the prepagating and decaying portions of a right traveling wave,
respectively. Similarly, (', and(’, correspond to the propagating and decaying
portions of a lef: traveling wave, respectively.

Now define the following vecteors

('| .(f"g
ot ( ) : o ( ) (1.8
'y Ly

and also define the following matrices
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Utilizing equations (A.80) and (A.81), a vector describing the magnitude of the

transverse displacement of the beam at any location x can be sxpressed as

alr) ({f}tf* ‘Lif]']&"], (4.82)

and at the positionr () this vector is given by

VSR Y NTARE N T A { A.83)

wiere [/{ 13 the identity matrix.

Utilizing equation (4.82), define the following veciors:

attr)  fldr; () ‘Ffl*!n' . (AR

Using equation (A 84) i1t can be shown that the amplitudas of the displacement,
slope, bending moment, and shear of the beam at any location x can be computed

using the followingmatrix equation {see reference 8) :
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Wave Reflection at Point Discontinuities

Now asgume that the locationr . { coincides with the location of a point
discontinuity (boundary) which is characterized by the following dimensionless

translational and rotational stiffness parameters, respectively:

l",, { u.‘-'”l,, I Jw-'g,g,?[j‘.,',,,'?)lf"z - ,"I;).”‘ E‘[A..'!)' {‘Hb]
ha [ w et ju2Ealhgmag)lt’ kg L TEY, (A87)
Further suppnse that a set of right traveling waves represented by v’ is

incident on this boundary and gives rise to a set of reflected (left traveling)

waves represented by .+ given by the equation

o AT [ 1.8%)
whare vl is the reflactionmatrix.
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[t is shown in reference 8 that the reflection matrix |r]. for a boundary

characterized by equations (4.86) and (A.87), is givenby the equation

, o -7 -1
ir] - Cy + (g , { A.RY)
. i o1

where

Ry { A.90)

and

It (A1)

( e .
i K

Substituting equation (A.89) into equation {(A.84), the vectors for the

right traveling and left travaling components of the transverse displacement at

any locationon the incident side of the beam(r - 0) are given by

rll'(‘r‘ if"l"’ ;l]. (_.l"l '11‘1 l”'}ll". ('1“'2\

The vector equations given by (A.92) can now be substituted into the vector squa-

ti1onof (A.85). Thus, equation (A.85) can be used to calculate the transverse
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displacement, the slope, the bending moment , and the shear of the beam at any lo-

cation on the incident side of the beam(r - 0). The transverse and angular velaoc-

ities of the beam can then be obtained from the transverse digplacement and slope

of the beam, respectively, by differentiation with respect to time.
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TABLE I.- MATERIAL PROPERTIES OF THE PLATE

Material

Ymmgw‘

modulus

N/m?

Poiason’'s
ratio

Thiclkuess

AA2024

0.7309

10t




LY

"yoeoadde @duaiazjiip

37tuT] 32Aatp Y3l 10} A[nNiaTon teuorieInduony - 21n814g
AT
- - (e .,
W3 T . — >
| : "~ \\ - R . .
M ) ACH e L
| . . . )
I L . . _ ¥, 1y W _ b ﬁ u 4
_ - P ~ - ,// -
| . AN _‘ B \
m_ﬂ (I v W., h:_ | \g
i AN
L /,r| s -
7N AT T, N
r ~ 3 \ . // 1 .- /,, i . 5
> & v k_ o oo
i \ / .
e -~ el T . - o o
i v
~
Ce ) e
R —— / sz __ A,. . .
. / R K
WD T @ /fr\\ ~ ’

Ak




49

"satiepunog atdwis o)
ae : -
U sjuswlInsEAW JO UGTIIFTNWIS Ayl 1o} A13pmoan _ g @2and1g

NNNMKPD
b
/L . |

>

ﬁv_
4
_
!

ALY
RRVE=TS NIV

A.‘

ERVAUSN ”a m |
o » SN RN B T

. ) i
i

dATUM _, | S nOSUuL |

P33 1iWsuou ]

Advounog

LOUIaw 1daag RCL QW 0t L s

Kt a aes

1
vl . foel vl bl



EX e .-;—

: ‘o {a} ERROR IN THE INTENSITY ESTIMATES
0.0 /—_ e —

~‘|'0 4
—2.0 4
-3.0
—4.0

L

—-5.0
-6.0
-7.0 =

ERRCR, 4B

-8.0 -
~9.0 -
—=10.0 -
-11.0
-12.0 -
-13.0 +

4

~14.0 -+ I el S B e LS
3 0.0 0.2 0.4 Q.8 0.8 1.0
3 {(Thousands)

FREQUENCY, Hz
—— FREE FIELD

- q—————y

DIRECT

]

100

s o

3

30.9

CTERS Y, B ore

RIS

...i—
B ;
3 !
B o N
- 20 !
: |
E |
k |

S0

o 0.2 Qa4 0.5 0.8 1.0
{Thousonds)
FREQUENCY, Hz

~= FREE FELD

DIRECT

Fignre 4 - Simulated measurements 10 en from a line force.




(a) ERROR tN THE INTENSITY ESTIMATES

g ——

[
W= 0 -
O © 00 ©

ERROR, dB

| [
>y @ o os
o 0o Q O ©

S et
0.4 0.6 0.8
(Jhousonds)
FREQUENCY, Hz
FREE FIELD -—

ARSGLUTE JALLUE DF THE NTENSITY

(oY 0.4 06
{Tnousands)
FREQUE™NCT, tig
—— FREE FE1D —— DIRECT

Figure 4 - Simulaged measurements 5 om from a line force,




1.0
0.0

{a) ERROR !N THE INTENSITY ESTIMATES

—1.0 -

- 2.0
--3.0
—4.0
~3.0
—6.0
-7.0

ERROR, dB

-B.0
- 3.0
10.0

~11.0 -

-12.0

-13.0 -
--14.0 -

Fioure

- —— _—— e
|
= =1
1
|
- \
T !
]
1 i
7 1
1
-4 ‘
|
A S S - S S ""”“T"*"""T—'_‘*T_'"‘_hf‘““*'gj
0.0 0.2 Q.4 0.6 0.8 1.0
(Thousandas}
FREQUENCY, Hz
~— FREE FIELD -—- DIRECT
(b) ABSGLUTE JALUE OF THE INTENSITY
i - . : M
!
|
t
)
i
. |
|
|
i
|
|
|
1 T ! : i T T ’ B T JI‘
h! 0.2 0.4 0.5 oRB i}
{(1housands)
CREGJENCY, Hz
-— FREE FYALD DIRECT
S - Simulated measurements 10 ¢m Trom o line moment.




o {@) ERROR IN THE INTENSITY ESTIMATES
. ] o __]
- 6.0 - T —
—1.0 '
i
e
2.0 - F
|
-3.0
— T 4-0
-50
) g
. —-8.0
__3 [+
Q2 .70-
&
- ~8.0 A
-9.0 -
—-10.0 -
-11.0 4
~12.0 A
B -13.0 -
-140 £ R T e s | T T =
0.0 c.2? 0.4 0.6 0.8 1.0
_ Thousands)
FREGUENCY, Hz
—_— E.D DIRECT
(b} ABSCULTY YALUE OF THE INTEMS T
N N,
i
| e
d
| 3 i
| . i
o !
. i
o !
;00
o !
i .
LS
I
i
S0 | . . . . T 5
Q.G (S 0.4 0.6 0.8 1.6
(T~ouso~ds}
FRECUENCY, Hz
—— FREE FIELD —— DIRECT
Fipure 6 Simulated measarements » om from a point force,




(a) ERROR IN THE INTENSITY ESTIMATES

1.0 T—m e

0.0 —
—mt — -4 1
| 1.0 i
| - 2.0 - ;
X.0 i
[
—4.0 }
-5.0 !
S h ;,
F 7.0 4 T
'y I
W80 A i
9.0 A 1
100 - ;
|
-11.0 H '
—-120 4 !
-t T 0y i
|
—-14.0 - B S e ol N E el T S S ey
Q.C Q.2 0.4 0.6 0.8 1.0
(Trhousanas)
FREQUENCY, Hz
—— FREE NELD —— DIRECT
(b} ABSOLUTE VALUE CF THE INTELSITY
o0 r - e e
! 1
| ;
1.0 e
E' |
o !
o ‘
£ i
LR ‘
» |
n i
1o} '
;oS00
V-
- i
— ar o
I
:
0.0 | . : T . ' .- . ; i
[ u.2 o4 0.6 0.9 1.¢
{Tnousancs)
FREGUECY, Fis
—— FREE AOLD —-=~ DIRECT
— Faoare 7o Simulated measurements ) cm from a point moment

at an arzimuthal angle of O degrees,

. P




(a) ERROR IN THE INTENSITY ESTIMATES

1.0 S — - e
a0 - :
2
- ~1.0 4
20 -
e

L
oo ow
o<

1

o .
°
. —&.0 -4
g Q
x —7.0-
[+ 4
tal -8.0
-9.0
100 4
-11.0 A
12.0 A
-13.0 -
-14.0 4 o T TTTTTOTTT Y e e - e e EERIEE
an 0.2 .4 0.E 0.8 1.0
{ThoJdsands)
FREQUEMNCY, Hz
—— FREE FELD DIRECT
ey FALSE OF THE (NTESSTY
1oy . —— L —— —_—
! .
f X
200 |
3 .
i " —
) |
» |
m !
™
p
ui
. f— ey . — —
0c [l o4 0.6 0.a 1.0

(T!"::,sunds]
FRECLE O, Wy

——— FREE AIELD ——- WRECT

Figure 8 - Simulated measurements 10 em from a point moment
aboan asimuthal angle of /O degrees.,




(a) ERROR IH THE INTENSITY ESTIMATES

o O O

]

O
-30 -

1.

0.
—1.
-2

ERROR, o3
[ |
NI
Q G Q

i A ]

!
w
Q

;

-0 -

.
P2
O
o

- 300

Fiyure 9 -

.
|

SiEen tinneiene chanintnts Sty sl
02 0.4 0.6
Thousands)
FREQUENCY, Hz
— neon -— DIRECT
(b} ABSCLUTE VALUE OF THE INTENS T7

0.8

vVoTETEEY O Y T o o cThyTT T
0.3 0.6
(Theusanras)
FREQUENCY, Hz
—— DIRECT

Simulated measurements 10 cm from -
quadrupele at an azimuthal angle of 40 degrees.

0.8




ERROR, df

ol m

c3 re.

N3

e

I
-9 -
O O O

[ i L.
& Pk w N
© 0o 0o oD

~-7.0

! |
© o
a O

16L.Q

o0

400

50

(@) ERROR IN THE INTENSITY ESTIMATES

j |
?
i} :
1 T B TTTTTTT T [ e T T i
0.0 G.2 0.4 0.6 0.8 1.0
{Thousands)
FREQUENCY, Hz
—— FREE FIELD —— DIRECT
(b) ABSOLUTE VALUJE GF THE INTENSITY

. T L L LT T L

; -

| ”e”#_’f#,.

: —

1

i

! i

| i

! |

] i

i

; .

' f’

!lﬁr

i :

| 3

|

|

11 " M T o - M T e T, T "—"“j
0.7 a2 0.4 0.6 c.8 1.0

{("moumanas)
FREQUFNCY, Mz
— FREE QD - - DIRECT

Figure 10 - simulated measurements 10 cm from a

gquadrupole at an arzimuthal angle ot 10 degrees.

57

sl mp . sene




1.0 rv— -
0.0

(@

ERROR IN THE INTENSITY ESTIMATES

ol o -

1.0 -
—-2.0 4
—-30 4
—4.0 -
~5.0 4
-6.0 -

ERRCR, dB8
4
o

_80 =
—-9.0 4
. :o.oqi
“t1.0 -

~12.0 4

-13.0 4

—1a0 4
0.0

i}

waolt

A
6372 +

Foreoee 11 -

T - -
02

1

i

i

‘\

A A e s Sk ity HE e
1

0.4 0.6 08
Thousands)

FREQUENCY, Hz
FELD - DIRECT

(b} &BASOLUTE VALUE OF THE INTENSTY

[V e e

. . - e e i s e R

0.4 o] *.0
(Tnouscnds)
FREQUENCY, Hz

FREE FIELD -—- DIRECT

o
(]
x

Shmnlated measurements B0 cm from a line boundary
which possesses translational sciffness and

Inertia.




{a) ERROR IN THE INTENSITY ESTIMATES

4.0 7 o e e e ‘
3.0 - ir
2.0 - l
—-
1.0 -
i
_1
. 0.0 ——— -
—-1.0 :
— m —2.0-
v |
- ~30 - i
r 2 |
S 40 4 1
I 1
w w504 |
> =0 '
&
E |
.3 -10.0 5
; /'\ ]
= -=-17.0 - - L B St o L S R
: a.0 c.2 0.4 C.6 0.8 1
(Thousands)
_ FREQUENCY, Hz
e — FREE FIELD DIRECT
E;

(D) ABSCOLUTE YALUE QOF THE INTENSITY

1o - - e

m

gttt

. aB rer

: R e : -
0N c.2 o4 0.6 c.5
(Thouag-as)
FREQUENC: +z
— FREZ AELD —- DIRECT

Figure 12 - Simulated measurerments 3 om from a lloe boundary
which possesses transltational stiffness and
inertia,




‘.!!WHW.W'W" d

'mi g1 T,
|

ww!‘l’éﬂ"m LA R

ERROR, 4B

3

re !

o od

e el

[ I

o
4

o
o

—12.

<13

-4

JG

Ture

A L
L
0o oDoOCOo
H 1

Lo
o v ®
[ TR & B

o o o &
A

o e _—

va) ERROR N THE INTENSITY ESTIMATES

r

[o 3w ]
:

T ' 2t S S A

0.4 C.& 0.8 1.0
{Thousands)
FREQUENCY, Hz
newn

Q
O
D
]

DIRECT

(by ABSOLUTE VALUE OF THE NTENSITY

|
!
0 | . . - e R Sl o e e e

e DT 04 0.6 0.8 1o
{Theoaaands)
FREQUENCY, Hz
D

14 - Simulated measurements 10 cm from a Liae boundary
which possesses rotational stiffness and incrtia.




¥
Ly
]
3
£
¥
&

[

P

s

o

FE

(a) ERROR IN THE INTEMSITY ESTIMATES

4.0
3.0 o
2.0
1.0 -
oa
-1.0
@ 2.0 -
o
. -3.0
ol
g -4.0-
o
WU -so-
6.0
AN A
9.0
-10.0 -
11.0 A
C.0
120
an.0
RE
e
- ane
v
m
it
P
v)
fii
13
500
i
|
600
0o

Fagure

14

-

Saimulated

whiich

¢ - St o- L S s

0.2 0.4 0.6
(Thousanas)
FREQUENCY. Hz

—— FREE FIELD —~ DIRECT

(b] ABSCIUTE YALJE OF THE INTENSTY

. - , - v P

2.7 044 0.8
[Tmcusanas)
FREQUENCY, Hz

— FREE AIELD --— DIRECT

possesses rntational stiffoess

and

R ]

measurements 5 em from a line boundary

inertia.

o

.C




(a) ERROR IN THE INTENSITY E£STIMATLS

ERROR, dB

-11.0 ! :
12.0 [
13.0 |
|
-14.0 -4 T B T L e S e e L ER S SRR SERG sty |
a.2 0.4 0.6 0.8 1.0
Thousanda)
FREQUENCY, Hz
~— FREE FIflD —--- DIRECT '
i
o
{b) ABSOLUTC YALUE OF THE INTENSITY
100 _ . e e e - L mem = e ey
700
3 s
5
- 0.0
4]
L
m
v
PR (o T4 I !
v \
1'.\
b
’ |
S0 é ;
5 E
|
|
!
60.0 o i i i DU Sl 1 T -
o 2.2 0.4 .6 c.a t.C
{Thovaands)
FREQUENCY, Hz
-— FREE FIELD — - DIRECT
Frogure 1 - Simuoated measurements [0 em from a line boundary

whivh possesses both rotational and translational
proportics.




i

i

—_—

ERROR, aB

W LRI S W )

g. ' Aot

3

~

STENS Y,

4.0
3.0 -
2.0 -
1.0 -
0.0

-1.0
—-2.0 -
~-3.0

0.0

20.0

SO0

JisRe:

Frgire 10 - Simelated measurements 5 em from a line boundary
pussesses both
propoertics.

{a) ERROR IN THE INTENSITY ESTIMATES

|
|
!
|
i
|
i

TTTT O OTTITCTTTrT T T v T T

P

0,

] {Thousaonda)
FREQUENCY, Hz
FIELD —— DIRECT

(b) ABSOI UTE VALUE OF THE INTENSITY

(
FREQUENCY. Hz
FELD

rotational and translational



(o) ERROR IN THE INTENSITY ESTIMATES

ERROR, doB

I e e

0.4 0.6 0.8
{Thousands)

FREQUENCY, Hz

e ——— DIRECT

(b) ABSOLUTE VALUE OF THE INTENSI DY

1 T T

0.4 0.6
(Thousands)
FRECUENCY, Hz

Frsare 14 - o simnlated measurements in the combined ear {ields
af o source and a boundary .




.“‘W ~ - * :
g
{
NI\SI\ Report Documentation Page  ORIGINAT © -7 3 | :
B CE LOOR QUALITY, | :
I Regrut Na : 2. Government Accession No. 3 Reciprent's Cataloy Nu T ‘ '
r NASA TM-B9124 ‘ |
] oA Vil o) Subkethe Y Reput Dot :
g - ' SIMULATLD MEASUREMENT OF POWER FLOW IN June 1988
? STRUCTURES NEAR TO SIMPLE SQURCES AND SIMPLE
. i BUUNDAR]ES G Perfooning Onganzation Code
. \
: i} / Anthorl<) i 8. Perforeung Organuzation Repoit Mo
» M. C. McGary :

.1 i 0 Work Uit No
, 535-03~11-03

Poaforenng Urgarisgbion Nenne ingd Addeoms

NASA Langley Research Center 11 Contract ur Grant No

Hampton, VA 23665-5225

113 Type of Report and Perod Covere:d

' Y Siporvaiasp Agenn oy Name and Addess .
Technical Memorandum

Narional Aercnautics and Space Administration
Washington, DC 20546-0001

. 14 Spunsoring Aegency L:ode 7

i
15 Sappibermientary Notes
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e Recent advances in electronics technology along with the advent of low cost multi-channel Fast

. Fouricr analyzers have now made it practical to use higher order central difference formulae to measure

power flow in one dimensional and two dimensional structures. The method discussed in this paper

g - uses five point differencing for the spatial derivatives in one dimensional and a thirteen point difference
' pattern for the spatal derivatives in two dimensional plates and shells. It is assumed that the measuring
transducers are accelerometers.

An analytical study of the higher order difierencing method and the conventional two
aceeleromerer method was performed here as a preliminary to the application of these methods to actual
arrcraft structures. Some classical problems were analyzed in order to simulate and compare the
performance of the two methods under near field measurement conditions. Near field conditions
analyrzed in this study include examples of power flows near simple sources and simple boundarie«.
The estumates produced by the two methods were compared to the exact solution in each example. This
paper presents the theory and selected results of the study. The results indicate that the bias errors of the
twa accelerometer method under near field measurement conditions may be much larger than previous
studies have suggested.
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