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Symbols 
A 

I 
C 

En 

f [  I d [  I 
f i  

J 

k 

L 

Ln, 1 
C 

Mn 
m 

normalization constant, equation (A12) 

Airy function, equation (A l l )  

speed of light, fm/s 

matrix element of qij pair interaction, equation (1) 

terms in approximation to Airy function, equation (A28) 

Planck's constant, MeV-s 

total meson spin 

strength of potential, equations (2) and (7) 

orbital meson momentum 

associated Laguerre polynomial 

orbital quantum number 

mass of the eigenstate, equation (1) 

magnetic quantum number 

mass of quark or antiquark (q may be b, c, or t )  

transformation variables, equations (B22) 

radial quantum number 

radial node number, equation (4) 

associated Legendre polynomial 

radial component of wave function, fm-3/2 

zeros of Airy function 

radial distance, fm 

intrinsic meson spin 

reduced radial component of wave function, fm-'I2 

constant additive potential, equation (I) 

potential function, equations (2) and (7) 

spherical harmonics 

arbitrary function 

gamma function 

zenith component of wave function 

transformation variables, equations (A6) and (A8) 

reduced mass 

azimuthal component of wave function 

complete wave function 

angular frequency 



Introduction mass as 
Mnc2 = 2mqc2 + VD + En (1) 

With the present interest in understanding quark 
confinement, a large amount of theoretical work 
based on nonrelativistic models (ref. I) ,  relativistic 
models (ref. 2), and field theoretic models (ref. 3) 
has been done to obtain particle mass spectra of 
mesons as bound states of quarks. According to 
the quark model, mesons are composed of a tightly 
bound quark-antiquark pair (qg) which interacts 
with an external probe like a single collective ob- 
ject. Of particular interest are the nonrelativistic 
quark models, which have proven to be very suc- 
cessful for describing the spectroscopy, decay am- 
plitudes, static properties, and binding forces of 
mesons and baryons (refs. 4 through 11). These non- 
relativistic models are most successful when they are 
applied to systems where the energy level spacings 
are much smaller than the energy equivalent of the 
constituent masses (i.e., for systems which are, in 
fact, nonrelativistic) such as mesons consisting of the 
heavy charm, bottom, and top quarks. Through 
the use of nonrelativistic models, several indepen- 
dent lines of arguments suggest that the confinement 
of quarks may be based on an interaction which in- 
creases for large quark separation in proportion to 
the separation itself. This argument is assumed to be 
the dominating mechanism which explains the energy 
eigenvalues in the qij pair system for mesons. 

In this paper, the picture that charm, bottom, 
and top q and ij are interacting with each other 
through a linear potential is used to analyze the 
particle spectrum of observed (charm, bottom) and 
predicted (top) mesons. Based on this picture, the 
quarks in the qij pair initially freely recede from each 
other in accordance with the ideas of asymptotic free- 
dom; however, as the separation distance increases, a 
linear potential emerges and a bound state is formed. 
It is then assumed that, as long as the quarks are in 
an energy eigenstate, their lifetime is reasonably long 
and their eigenstates can be completely characterized 
by a linear potential. 

Through the use of experimentally observed res- 
onances at 3096 and 3686 M ~ V / C ~  for the charmed 
meson, the two parameters of the linear potential k 
and Vo (the strength of the interaction potential and 
an additive constant) are determined. Then, in the 
center-of-mass system of the bound qij pair, the non- 
relativistic Schrijdinger equation is exactly ( l  = 0) 
and asymptotically (e # 0) solved for a linear po- 
tential to obtain the remaining energy eigenvalues 
for charm and all eigenvalues of the bottom and top 
mesons. One then adds twice the quark mass plus a 
constant to these energy levels to obtain the meson 

where M,c2 is the meson mass, mqc2 is the con- 
stituent quark mass, Vo is a constant additive 
term, and En is the matrix element of the qq pair 
interaction. 

The quark confinement potential has been treated 
for many years as a harmonic potential mainly be- 
cause of its closed-form solution in both the non- 
relativistic and relativistic regimes (refs. 12 through 
16). Here the exact nonrelativistic solutions for the 
eigenvalues and eigenfunctions of the harmonic po- 
tential are presented and the resulting energy levels 
are compared with those of the linear potential to 
validate the use of these two potential forms. 

Potential Models 

Linear Potential 

The three-dimensional linear potential is defined 
as 

where k is the constant describing the strength of the 
interaction potential and r is the qg pair separation. 
With A in units of MeV-s and c in units of fm/s, 
the energy eigenvalues for an S state (C = 0) are ob- 
tained from the exact solution of the nonrelativistic 
Schrodinger equation as 

where 

and R, represents the zeros of the Airy function 
along the negative abscissa. Appendix A describes 
the detailed derivation of equation (3) and its corre- 
sponding wave function. For !# 0, an exact solution 
does not exist; however, asymptotic solutions have 
been obtained to predict the energy levels. Among 
these, for arbitrary n and !, is the Cornwall equation 
(ref. 17) 



and the Sheehy and Von Baeyer equation (ref. 18) 

Note that in equation (5), En! depends only on 
one combination of n and e. Therefore, there is a de- 
generacy between the states (n, e) and (n - 1, e + 2). 
In equation (6) ,  Enre with n, defined in equation (4) 
is derived from a modification to the Bohr quantiza- 
tion of circular orbit with the added radial excitation 
being treated as a harmonic approximation and by 
the use of half-integer angular momentum quantum 
number which, when applied to the confined heavy 
mesons, yields a reasonably accurate spectrum. 

Harmonic Potential 
The three-dimensional harmonic potential is de- 

fined as 

where k and r are defined in equation (2). The energy 
eigenvalues for arbitrary n and 1 are given by 

Appendix B describes the detailed derivation of equa- 
tion (8) and its corresponding wave function. 

Spin Consideration 

Since quarks have intrinsic spin of 1 2 the fol- 1 7 3  3 lowing states are possible: 1 ~ o , 3 ~ o , 1 ~ l ,  Po, PI, P2, 
1 ~ 2 , 3 ~ 1 , 3 ~ 2 , 3 ~ 3 ,  etc., where the notation is 
( 2 S + 1 ) ~ J ,  with S as the intrinsic spin of the me- 
son, L as the orbital momentum, and J as the total 
meson spin. The notation S, P, and D correspond 
to the L values of 0, 1, and 2, respectively. Note that 
all these states are observed; however, in this work 
the concentration is on S and P states as shown in 
figures 1 and 2, with the corresponding masses of 
states obtained from reference 19. Note that spin 
effects are.neglected, and average values for the 3~ 
states shown in the last column (figs. 1 and 2) are 
included. This column is actually not the average 
but rather the average of the mass of the 3 ~ 2  state 
plus error and 3 ~ o  state minus error, with the error 
quoted for the average 3~ state being just made to 
extend up to the mass of the 3 ~ 2  state plus error and 
down to the 3 ~ o  state minus error. Thus the mass 
and the error assigned to the average 3~ state simply 
represent the range of the possible values of 3 ~ o ,  3 ~ 1 ,  
and 3 ~ 2  states. 

Results 

The usual procedure in quarkonium research is to 
treat the charm or bottom mass mcc2 and mbc2 as 
free parameters, and based on the particular poten- 
tial model in the nonrelativistic Schrodinger equa- 
tion, fit En in equation (I) to two arbitrary experi- 
mentally observed levels to determine k and Vo. This 
means that there is a variety of possible fitting pro- 
cedures that one could try. Here the charm quark 
mass, at a typically accepted value of 1500 M ~ V / C ~  
(ref. 4), and the first two 3 ~ 1  state levels of char- 
monium at 3096 and 3686 M ~ V / C ~  are used in equa- 
tion (1) to obtain values of k and Vo. With the first 
two levels fitted to the experimentally observed lev- 
els, k and Vo are then used to predict other levels. 
With the linear potential model of equation (2), the 
calculated values for k and Vo are k = 1211 MeV/fm 
and Vo = 690 MeV. 

The results of this iterative procedure are shown 
in figures 3 and 4 and are compared with experi- 
mentally observed levels. Also included in figures 3 
and 4 are the results of the harmonic potential model 
(eq. (7)), which were calculated by the authors in an 
earlier paper (ref. 16). In these figures, levels ob- 
tained by the linear potential model are labeled with 
an L, whereas levels obtained from the harmonic po- 
tential model are labeled with an H. Note that, for 
the linear potential model, good agreement is found 
in both the charmonium and bottomonium spectra 
for S and P levels. In almost all cases, the linear po- 
tential model produces a much more accurate spec- 
trum than the harmonic potential model. The main 
advantage of the harmonic potential, however, is that 
the solution of the nonrelativistic Schrodinger equa- 
tion is much more easily obtained than for either the 
linear or more exotic potential models. Therefore, 
the harmonic potential model has traditionally been 
used to obtain initial estimates for energy levels as a 
first try. 

Recently, claims have been made that the sixth 
quark flavor, called top, has been found (refs. 20 
and 21) with a mass in the range of 30000 to 
50000 Mev/c2. Choosing the top mass to be 
40000 Mev/c2, calculations for toponium levels 
based on the linear potential model are presented 
in figure 5 along with predictions from the harmonic 
potential model. - 

As stated earlier, for l # 0, the nonrelativistic 
Schrodinger equation, with a linear potential, can- 
not be solved exactly. Thus asymptotic solutions of 
equations (5) and (6) were presented as good approx- 
imations for calculation of energy levels for arbitrary 
e values. Table 1 presents the experimental results, 
exact results of equation (3), and approximate results 



of equations (5) and (6) for charm, bottom, and top 
mesons, for the reader to draw conclusions on the 
applicability of equations (5) and (6). As is apparent 
from the table, in almost all cases, the Cornwall equa- 
tion (eq. (5)) produces a more accurate spectrum 
than the Sheehy and Von Baeyer equation (eq. (6)). 
This is partially because equation (6) was derived 
based on the modification to the classic Bohr quan- 
tization of circular orbit, with the added radial ex- 
citation being treated in a harmonic approximation 
(perturbation), and equation (5) was derived based 
on purely asymptotic arguments without any added 
perturbative term and produces accurate energy lev- 
els even for toponium which is a highly debated topic 
in the present physics community. 

Figures 6 through 11 present the linear and 
the harmonic potential wave function Unre[r] for 
charm, bottom, and top, in units of fm-1/2 for 
n, = 0, 1, 2, and 3, and t = 0 and 1, where 
the radial node nl. was defined by equation (4). 
For the linear case with = 0, the wave func- 
tion was derived from the exact solution of the non- 
relativistic Schrodinger equation (eq. (A32)). For 
t # 0, a fourth-order Runge-Kutta scheme was used 
to numerically solve the nonrelativistic Schrodinger 
equation and obtain the energy levels ( 3 ~ )  and wave 
function. For the harmonic case with arbitrary t ,  
the wave function was derived from the exact so- 
lution of the nonrelativistic Schrodinger equation 
(eq. (B30)). In all figures, UnTe[r] is plotted for the 
range 0.01 5 r 5 4 fm. As is apparent, the wave func- 
tion is mass dependent and becomes larger in ampli- 
tude and narrower in width with increasing mass. 

Finally, note that even though this and other 
works (refs. 10 and 22) yield agreement between the- 
ory and experiment with a linear potential model, 
there are other potential forms (such as the logarith- 
mic form of Richardson (ref. 23)), which also give 
reasonable descriptions. This is because the main re- 
quirement is that the potential be confined. Good 
fits are also obtained by considering the form of the 
potential at intermediate distances (refs. 24 and 25), 
which represents a correction to the linear confine- 
ment form. 

Concluding Remarks 
Linear and harmonic potential models in conjunc- 

tion with the nonrelativistic Schrodinger equation 
were used to obtain particle mass spectra of mesons 
as bound states of quarks. The main emphasis was 
on the linear potential where an exact solution of the 
S-state ( t  = 0) eigenvalues and eigenfunctions and 
an asymptotic solution for the higher order partial 
waves (l > 0) were obtained. Cornwall's asymptotic 
solution very accurately predicted all the energy lev- 
els including recently claimed toponium. Exact so- 
lutions of eigenvalue and eigenfunction for harmonic 
potential with arbitrary partial wave states were also 
obtained and were compared with linear potential re- 
sults. For quark confinement, the linear potential is a 
much superior model, even though the solution of the 
nonrelativistic Schrodinger equation is more difficult 
to obtain. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
May 31, 1988 



Appendix A 

Derivation of Linear Potential Energy Levels and Wave Function 
In this appendix, a detailed derivation of equation (3) and its corresponding wave 

function is presented. 
The three-dimensional linear potential is given by 

v(r) = kr (All 

where k is the strength of potential and equation (Al) is subject to the limiting conditions 

Because of the spherical harmonic nature of this potential, the angular dependence of the 
wave function can be given by the spherical harmonics; therefore, 

where $ is the complete wave function, and only the radial component R[r] must be 
calculated, which satisfies the nonrelativistic Schrodinger equation according to 

An analytical solution of equation (A4) for l # 0 does not exist. However, for C = 0, 
equation (A4) becomes 

By defining new variables 6 and q 

equation (A5) becomes 

The term qr - 6 can be written as 

qr - 5 = PA (A81 

where p is a constant. Using equation (A8), after some algebra, equation (A7) becomes 

Equation (AS) with the condition that p3 = q2 becomes 



The solution to equation (AIO) is the Airy function which is closely related to the Bessel 
function of fraction order and, in integral form, is expressed as 

Ai[A] = T-' Lrn cos ($ + A q )  dq 

and 

where A, the normalization constant, is calculated later. With the boundary condition at 
r = 0, 

we find 

or 

and at boundary T = 0, 

we find 

Using the condition p3 = r)2 with r )  = % gives 
ti 

Therefore, eigenvalues of E are proportional to the roots of Airy function, and thus at 
r = 0, 

Equation (A21) gives the energy levels in terms of nr and Rn (zeros of Airy function). We 
can rewrite this result in t,erms of our units as 



Now, since 

which means Rnr[r] can be expressed as 

where the normalization constant A is 

Therefore the wave function Rnr [r] is 

In order to evaluate equation (A27) numerically, use reference 26 and the identity 

where 

Equation (A27) can be written as 



Defining the reduced wave function U[r]  as 

Equation (A29) becomes 

(A311 

With F, in units of MeV-s and c in units of fm/s, equation (A31) becomes 

Equation (A32) in units of frn1I2 along with equation (A22) describes the wave function 
and energy levels of linear potential with l! = 0 completely. 



Appendix B 

Derviation of Harmonic Potential Energy Levels and Wave Function 
In thisappendix, a detailed derivation of equation (8) and its corresponding wave function 

is presented. 
The three-dimensional harmonic potential is given by 

where 

k = pw 2 

with 

being the qi'j pair reduced mass and 

being the angular frequency of the oscillation with k as the spring constant. In appendix A, 
it was shown that the complete wave function II, can be written as the product of a radial 
component R[r]  and a spherical harmonics Yem(8, 4) as 

and only the radial component R[r]  must be calculated which satisfies the nonrelativistic 
Schrodinger equation according to 

By defining new variables [ and r] 

r ]  = t - l r  

equation (B4) becomes 

A solution for R[r]] in equation (B6) must be found subject to the following limiting conditions: 

A reasonable choice for R[q] can then be 



therefore, 

(B9) 

Replacing R[q] in equation (B6) with the one in equation (B9), equation (B6) becomes 

By defining a new variable f as f = r)2 and after some algebra, equation (B10) becomes 

Then equation (B12) becomes 

which is the standard confluent hypergeometric equation, and 

Equation (B15) indicates that in equation (B9) when q - m and R[q] + exp (-iq2), 
equation (B15) can be expanded in a finite number of terms. This is true when y in 
equation (B13b) is zero or a negative integer; therefore, 

Enre = (2n, + e + :) hw 

and with equation (B2), Enrl becomes 

which is simply the energy levels in terms of n, and l and expressed in units of MeV. Now, 
equation (B9) can be written as 



where A,  the normalization constant, is calculated later. 
In equation (BlS) ,  P [-nr, e+ #; q2] is related to the associated Laguerre polynomials by 

Therefore, equation (B18) becomes 

1 
Rnrc = AVe" exp ( -5q2)  (B20) 

where ~ k T ' / ~ [ q ~ ]  is defined as 

From a computational point of view, the sum in equation (B21) is cumbersome to calculate. It 
however can be recast by defining two new variables N and M as 

Therefore, nr = N - !, m = M - t, nr - m = ( N  - !) - ( M  - e)  = N - M, and equation (B21) 
in terms of !, M, and N can be written as 

M E N  
~ ; ; ' / ~ [ q 2 ]  = C ( N  + ))! (-$)M-C 

M=C ( N - M ) !  ( M + ) ) !  ( M - e ) !  

Now, by using the identity 

Equation (B23) becomes 

M=N [(SN + I ) ! / ( ~ ~ ~ + ' N ! ) ]  (-$)M-e 
e+'/2[q2] = C 

Lnr [ (N  - M ) ! ]  [(2M + 1 ) ! / ( 2 2 M + 1 ~ ! ) ]  ( M  - t)! 0325) 
M=C 

which simplifies to 

M=N [(2N + I ) ! ]  ( 2 2 M + 1 ~ ! )  ( - q 2 ) ~ - e  

L ~ T ~ ~ ~ [ ~ ~ ]  = c [(N - M)!]  [(2M + I ) ! ]  ( 2 2 N ' - 1 ~ ! )  ( M  - l)! (B26) 
M=C 

Therefore, by using the results of equations (B22) and (B26), equation (B20) becomes 



where A can be calculated according to 

03 S, 1'1 dr = 1 (B28) 

and by using equations (B5), (B22), (B27), and (B28), the radial wave function %,e[~] becomes 

In equation (B29), RWe is in units of and, finally by using equation (A30) with h in 
units of MeV-s and c in units of fm/s, equation (B29) becomes 

Equation (B30) in units of fm-'I2 along with equation (B17b) describes the wave function and 
energy levels of harmonic potential completely. 
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Table 1. Experimental and Theoretical Resonances for Linear Potential 

n 

Calculated resonances, Mev/iL 

n~ 

Linear 
potential 
(es. (3)) 

Charrnonium 

t 

Sheehy and 
Von Baeyer 

(eq. (6)) 

1 
2 
3 
4 
1 
2 
3 
4 

Experimental 
resonances, 

Mev/c2 
Cornwall 
(eq. (5)) 

3 096 
3 686 
4 030 
4 415 
3 485 

0 
1 
2 
3 
0 
1 
2 
3 

Bottomonium 

0 
0 
0 
0 
1 
1 
1 
1 

3 095 
3 684 
4 166 
4 592 
3 441 
3 953 
4 399 
4 802 

1 
2 
3 
4 
1 
2 
3 
4 

3 172 
4 098 
5 023 
5 948 
3 463 
4 105 
4 747 
5 388 

9 633 
10 030 
10 355 
10 643 
9 868 

10 213 
10 514 
10 785 

3 091 
3 684 
4 167 
4 594 
3 408 
3 935 
4 386 
4 792 

0 
1 
2 
3 
0 
1 
2 
3 

Toponium 

9 687 
10 311 
10 934 
11 558 
9 883 

10 316 
10 748 
11 181 

1 
2 
3 
4 
1 
2 
3 
4 

9 632 
10 032 
10 358 
10 645 
9 846 

10 201 
10 505 
10 779 

0 
0 
0 
0 
1 
1 
1 
1 

9 460 
10 023 
10 355 
10 573 
9 892 

10 250 

0 
1 
2 
3 
0 
1 
2 
3 

0 
0 
0 
0 
1 
1 
1 
1 

79 533 
79 738 
79 902 
80 047 
79 685 
79 855 
80 002 
80 137 

79 598 
79 908 
80 218 
80 527 
79 696 
79 910 
80 125 
80 340 

79 571 
79 770 
79 931 
80 074 
79 677 
79 854 
80 005 
80 141 



Mass, 4030+5 

Charmonium 

Figure 1. Experimental energy level spectra of charmonium. Numbers on each level are exact values in h4ev/c2. 
Values are taken from reference 19. 

11000 
T Bottomonium 

10573+4 
-- ---- 

10355,5+_0,5 
10232,8+5,810253~7&3~4 1027100t2*4 10250t24 

Mass, 10023m4t0,3 
2 10000 - 

MeV/c 9872,9+5,8 9894 .5~3 .5  9914 16*2 9892+25 - Eza 

Figure 2. Experimental energy level spectra of bottomonium. Numbers on each level are exact values in 
M ~ v / c ~ .  Values are taken from reference 19. 
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Figure 3. Calculations of linear and harmonic potential model levels versus experimental levels for charrnonium 
spectrum. 
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Figure 4. Calculations of linear and harmonic potential model levels versus experimental levels for bottomonium 
spectrum. 
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Figure 5. Calculated toponium spectrum. 
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J?igbre 6. Charm radial wave function U,,.u(r) for n, = 0, 1, 2, and 3 and t = 0. 
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Figure 7. Charm radial wave function U,,((r) for n, = 0, 1, 2, and 3 and l =  1. 
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Figure 8. Bottom radial wave'function Unre(r) for nr = 0, 1, 2, and 3 and t = 0. 
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Figure 9. Bottom radial wave function Unre(r)  for nr = 0, 1, 2, and 3 and t =  1. 
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Figure 10. Top radial wave 'function Unre(r)  for nr = 0, 1, 2, and 3 and l = 0. 
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Figure 11. Top radial wave function Unre(r) for n, = 0, 1, 2, and 3 and ! = 1. 
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