SUMMARY

Aviation technology can play a significant role in the development of the countries of the Caribbean Basin. This report focuses on a variety of applications of rotorcraft in the region and the benefits, both economic and political which can result from utilization of rotorcraft in both a public service and commercial role. A computer simulation of rotorcraft used as emergency medical vehicles is applied to compare and evaluate the advantages of using rotorcraft technology such as civil derivatives of the new tiltrotor. We conclude that by using a civil derivative of the tiltrotor significant improvements can be obtained in the level of health service in the region. We are currently engaged in an investigation of the potential for cargo and passenger transport applications for rotorcraft in the region and are developing a second computer simulation to be used to evaluate the potential benefits to be derived from such applications.
INTRODUCTION

This study will concentrate on the islands and countries comprising an expanded definition of the Caribbean Basin (see figure 1); in addition to the islands of the Caribbean we will consider Central America, Mexico and the northern portion of South America. This area includes 25 independent states and four groups of dependent territories. This is the same region considered in a study of aviation in the Caribbean Basin carried out recently by the Center for Strategic and International Studies (CSIS) (1). The population of this region is approximately 175 million with a total GNP of about 325 billion dollars and an average per capita income of approximately 1800 dollars (see figure 2). As mentioned in the CSIS study this region is important from both an economic and geopolitical perspective. This importance stems in part from the fact that 45% of all U.S. imports/exports pass through the Caribbean Sea and Gulf of Mexico as do 60% of NATO re-supplies and 55% of U.S. crude oil imports. (see figure 3) It is clearly important to the U.S. that this region improve its level of economic development and consequent political stability. We belong to a growing community who believe that an important impetus to growth in the region can be found in new developments in aviation technology. It is our contention that new developments in STOL and VTOL technology can play an important role in the economic development of the region. Rotorcraft, both conventional helicopters and new hybrid technologies now being developed such as variants of the U.S. Department of Defense V-22 Osprey tiltrotor can play a significant part in the development of an improved transportation infrastructure for the region. This report will concentrate on a review of promising applications of rotorcraft in the region with particular consideration of possible applications of the derivatives of the tiltrotor technology.

Before considering specific applications of rotorcraft in the region it is instructive to consider the general categories of Civil helicopter applications in the U.S. (see figure 2). While public service applications enjoy a relatively high profile due to publicity and media interest in rescue operations, it is interesting to note that approximately 65% of Civil Helicopters in the U.S. are engaged in commercial applications. Careful analysis of potential commercial applications is clearly required. This fact is underscored further by the fact that whereas public service applications benefit and should be paid for by general segments of
the population, commercial applications are more closely tied to concerns of immediate return on investment. While this report will consider general considerations and guidelines for commercial applications, the necessary more detailed analysis of cargo and passenger transport is an ongoing research project.

Figure 5 shows the geographic distribution and density of helicopters compared to population densities in the United States in 1980, (NASA contractor report NAS2-10411)(3). At that time the majority of the states had between 1 and 4 helicopters per million people. However these states were the most populous and industrially developed with the best system of roads. The more sparsely populated and mountainous states of the Rocky Mountains had between 11 and 32 helicopters per million people. Alaska is in a category of its own with over 200 helicopters per million people. The helicopter has many applications in such areas including medical evacuation, resource development and search and rescue operations. While no conclusion can be drawn from such a rough comparison, it is encouraging from the standpoint of potential rotorcraft applications that many of the distinguishing features of these high helicopter application regions are shared by the countries of the Caribbean Basin.

The geographical characteristics of the Caribbean Basin; numerous small islands, inaccessible areas, underdeveloped sea transportation and mountainous terrain with poor roads are all factors which make the region well suited to rotorcraft applications. Yet until recently the region has been slow to acquire helicopters in appreciable numbers. Though there have been considerable acquisitions in the last few years the region only operates approximately 1.5% of the world’s helicopter fleet(1) (CSIS 1986). The apparent discrepancy between actual and potential use suggests the possibility of rapid growth of the rotorcraft fleet in the region.

In addition to basic commuter transport and air freight operations there are numerous applications for which rotorcraft technology is particularly well suited in the region. These applications include:

1) Search and rescue operations
2) Emergency medical services (EMS)
3) Border patrol and customs services
4) Drug interdiction
5) Disaster Relief
6) Rural electrification programs
7) Natural resource development (servicing oil platforms)
8) Tourist transport to remote islands
9) Heavy construction projects in remote regions

Additional public service missions are listed in figure 6 from a NASA study carried out by Bell Helicopter Textron Inc. (4). These applications are distinguished from other commercial applications by the fact that the general public is the benefactor and the cost is assumed by the government agencies involved. Therefore in order to evaluate the cost benefit of these operations it is appropriate to consider the benefits and costs to society in as broad a sense as possible. Many of these applications are particularly pertinent for the Caribbean Basin region and underscore the strong market potential for a vertical takeoff and landing vehicle in the region.

The major hurdle of expanded utilization of rotorcraft in the region is operating cost. If an application can be carried out equally well by traditional fixed wing operations the rotorcraft will not be a viable head-to-head competitor in terms of operating cost. There are however a significant number of situations in which the vertical lift ability of rotorcraft provides the needed advantage and assures a place for rotorcraft.

Passenger Services

In order for rotorcraft to be a viable alternative to traditional fixed wing air transport there must be a significant advantage provided by vertical take off and landing ability on at least one end of the trip. Island hopping and the ferrying of tourists to remote locations are obvious situations in which the VTOL ability of rotorcraft can provide the extra advantage. In high density congested areas the time advantage provided by using rotorcraft for inter-city rapid transit can provide the added advantage.
a current NASA report on civil tiltrotor applications (CR 177452), prepared by Boeing Commercial Aircraft Corporation, Bell Textron and Boeing Vertol, it is concluded that for travel distances between approximately 200 and 600 miles the Tiltrotor with its speed advantage over conventional helicopters and its VTOL advantage over conventional fixed wing aircraft will be able to capture a portion of the passenger service market. A significant number of passenger routes within the Caribbean Basin fall within this distance (see figures 7,8) (2). The above mentioned study concludes that approximately 25 commercial tiltrotors is a viable estimate for the passenger service market in the region by 1995. This estimate is based on a five percent penetration of a passenger service market which has grown at a 5% rate.

Air Freight

Efficient economical transport of cargo to from and between the countries of the region is a necessity for economic growth in the region. Because of the vast number of islands and other natural geographic considerations air transport is well suited to serve this transportation need and to stimulate economic development. As concluded in the CSIS study(1) "...air transport, by furnishing the region with a low-cost, flexible and rapid method of transporting cargo, can play a crucial role in surmounting one of the most persistent obstacles to investment and growth in the Caribbean Basin - high transportation costs." The costs of air cargo in the region have been estimated at 17% of the value of the goods shipped. The region currently has a significant level of trade with the U.S., a large percentage of which is transported by air. See figures 9 and 10 for trade data(14).

The region has a significant number of secondary airports which, while not able to accommodate large aircraft, could service many newer aircraft which incorporate advances in airframe, engine and wing technology to provide relatively large cargo capacity and STOL (short takeoff and landing) ability. The remote areas of the region could be opened up to light manufacturing and agricultural production by the development of a transportation network incorporating local feeder networks using STOL or VTOL technology. The key economic questions hinge on a cost benefit analysis of the possible configurations and technologies involved. Some possible
approaches include:

(1) Current turboprop aircraft servicing improved airport facilities coupled with ground transport connections.

(2) A feeder network based on the newer generation of high cargo capacity STOL aircraft.

(3) A system based on advanced technology such as the civil tiltrotor providing point to point delivery between production facilities and major airports or other manufacturing facilities in the region.

In the tiltrotor applications study by Boeing Commercial Aircraft Corporation, Bell Textron and Boeing Vertol(2) it was concluded that based on projections of cargo transport requirements in the region (excluding Mexico) and probable percentage of penetration by versions of the tiltrotor into the high value cargo transport market it is unlikely that a significant number of tiltrotors will be required to service this market. Further analysis is needed in this area, particularly into the feasibility and probable market penetration of configurations based on the concept of using the tiltrotor to transport passengers by day and freight by night. A key question which must be considered is the cost benefit to air transport customers and subsequent increase in market penetration provided by the ability to forgo the time, expense, inconvenience and added probability of damage involved in ground transport to local airport facilities.

Natural Resource Development

There are numerous applications of rotorcraft in natural resource development including mining and logging operations, the fisheries industry, agricultural uses and servicing of offshore oil installations. The increased range and cargo capacity of the tiltrotor insures that it will play a key role in such applications. In a NASA report on civil tiltrotor applications, prepared by Boeing Commercial Aircraft Corporation, Bell Textron and Boeing Vertol(2), it is estimated that the 221 offshore oil platforms in the Gulf of Mexico and Caribbean may eventually require up to 170 til-
trotors. While this may be the major application in this category the advantages of the tiltrotor will also insure its place in other areas of resource development.

Public Service

We will now narrow our discussion of applications of aviation technology in the Caribbean region to the public service sector with emphasis on rotorcraft applications. The relative inaccessibility of much of the region again is a key factor supporting rotorcraft applications in this area. As stated previously most applications in the public service area tend to benefit broad segments of the population and should therefore be supported by the governments or agencies involved where possible. It seems reasonable therefore to assume as global a view as possible when analyzing the costs and benefits of a given application. One of the current issues facing Emergency Medical rotorcraft operations in the United States is the question of payment for what is unquestionably an expensive service. According to an ASHBEAMS survey in Rotor and Wing International, Nov. 1982 the average direct cost of an Emergency Medical Helicopter is $630,000 per year compared to net Revenues from patient charges of $162,000, or 25.7% of the direct operating cost. There is an added benefit to the hospital of increased utilization which may or may not make up the difference. In this as well as other public service applications it is necessary to arrive at some consensus concerning who should pay and who benefits from the given application. This is critical in a less affluent region such as the Caribbean Basin.

In the NASA report on civil tiltrotor applications, prepared by Boeing Commercial Aircraft Corporation, Bell Textron and Boeing Vertol(2), the following operational benefits and requirements were noted for public service applications:

(1) Law Enforcement: For general law enforcement a 6-10 passenger tiltrotor is needed, for drug interdiction a larger 12-16 passenger tiltrotor would be optional. Law enforcement applications would benefit from the greater speed, range and operational flexibility of the tiltrotor.

(2) Coast Guard search and rescue: For search and rescue operations a 6-10 passenger tiltrotor configuration would be generally most suitable. The tiltrotors advantages over conventional helicopters in this application include longer range, greater speed, a more stable platform, and milder
(3) Medical transport: For medical transport operations a 6-10 passenger tiltrotor configuration is needed. Medical transport operations would benefit from time savings and reduced transfers.

Law Enforcement Operations

There are many advantages to the use of rotorcraft in law enforcement operations. In the last few years the number of helicopters used by law enforcement agencies and particularly drug enforcement units has grown markedly. A new drug enforcement unit in Puerto Rico has recently acquired several helicopters. For general law enforcement operations in the region the tiltrotor would be advantageous for long-range prisoner transfer, high-priority personnel movements and other applications where the speed and range would prove most beneficial. The versatility of the tiltrotor would be important because of the diverse applications required by law enforcement agencies. While the tiltrotor may not replace the helicopter in many applications such as intra-city patrols and ground unit support it could play a major role where its larger capacity, speed and range could be utilized. Perhaps the most important area of law enforcement in which the tiltrotor should prove effective is drug interdiction. The larger size, greater speed, range and endurance of the tiltrotor would be sufficiently important in this type of operation to make the tiltrotor the ideal vehicle for drug enforcement agencies of the region.

Search and Rescue

The United States Coast Guard operates bases located on the Northwestern coast of Puerto Rico and in Florida. The primary missions are providing protection for vessels operating within the 200 mile offshore coastal region surrounding the U.S. and drug interdiction operations. Currently the missions are accomplished using a combination of HU-25 Falcon jets for long range reconnaissance and HH-65 and HH-3 Helicopters and Coast Guard Cutters for rescue operations and interdiction.

The tiltrotor with its longer range and greater speed is an ideal vehicle for sea rescue operations. In addition the tiltrotor offers a more stable platform and milder downwash than the helicopters currently in use. Currently the 300 nmi radius limitation
of the HH-3 helicopter results in only 73% of the incidents being within range. The longer range missions must be reached by cutters and other long-range craft. The longer range tiltrotor could significantly increase the number of incidents which can be reached quickly and could consolidate some multiple aircraft requirements into a single unit, thus resulting in possible cost savings.

Disaster Relief

Disaster relief includes most of the applications involved in search and rescue, emergency medical services and law enforcement operations. In the advent of a natural or man-made disaster, people and relief supplies must be transported into and from the affected area. The tiltrotor with its speed, range and versatility is ideally suited to a major role in relief operations. In a major disaster tiltrotors could be drawn from police, military and even commercial applications for service during the relief operations.

Emergency Medical Services

Hospital based Emergency rotorcraft can play a significant role in improving the level of health care available to the population. An efficient system of HEMS centers can reduce response time and provide more effective health care to the region. The obvious benefits include the reduction of the number of deaths, permanent disabilities, and length of hospital stays.

In the US the accident death rate in rural areas where quick access to large trauma centers is not available is four times the urban death rate. The number of persons killed per year in the U.S. by trauma is approximately 115,000. Traditionally a large percentage of EMS missions involve trauma cases. Trauma affects primarily young productive persons. The cost to society in the US is estimated at $41 billion annually. For most trauma cases the probability that death will occur within the first 25 minutes is 67%. It is estimated that the average response time can be reduced by between 30% to 80% by helicopter rescue services, and that mortality can be reduced by approximately 50% if patients are rapidly transported to a trauma center. These facts underscore the importance of a well developed system of emergency medical transfer of critically ill and trauma patients.
The countries of the region have varying levels of health services but there is a universal need to improve the level of health care. In the least developed countries such as Haiti, the most urgent need is for elementary health care facilities and the corresponding infrastructure to provide basic health care to the population. Other countries including parts of Central America, Venezuela, Jamaica, and the Dominican Republic have a more developed system of health care, at least in the more populous regions. These larger countries have the population and economic base to support a system of helicopter based emergency medical centers within their borders. We feel that once economic and political barriers are overcome, a rapid growth of such centers will parallel the growth of such centers in the United States. The first successful center will serve as an example of the feasibility of the concept and should act as a catalyst for further development in the region. An attractive location for such a center is the Lesser Antilles.

NEED FOR EMERGENCY SERVICES

In the United States trauma is the major cause of death for persons under 40 years of age. In addition to accidental death caused by motor vehicle accidents, drownings, falls, burns, poisonings and firearms, many thousands die prematurely from critical medical illnesses that did not receive urgently needed medical attention. The two most critical factors determining a trauma victim’s chance of survival are rapid transport to a medical facility and the ability of the medical facility to provide a high level of expert emergency health care. "Survival is directly proportional to the ability of the trauma system to respond to the accident with adequate and appropriate care, and is inversely proportional to the severity of the initial injury and to the square of the time lapse between the injury and stabilization of the unstable patient"(5). Small emergency rooms in community hospitals are seldom well equipped and unless the attending physicians have the experience born of a relatively high volume of trauma cases they will not be able to provide optimal care. It is estimated that 40 cases per month are required to keep the necessary skills.

There has recently been much improvement in emergency health care in the United States. The number of states served by HEMS has nearly doubled in the last five years. This rapid growth has been due to the recognition of the inadequacy of the trauma care provided by small emergency rooms in which the staff have neither the experience nor the facilities to provide adequate service. The
countries of the Caribbean Basin are characterized by inadequate transportation of trauma victims and small ill-equipped emergency facilities.

The existing level of services on the majority of the islands in the region indicates a need for improvement. However, in order to optimize resource allocation and insure fiscal integrity, it is important to analyze the potential demand for HEMS in the region. A common concern of all new HEMS centers is the prediction of the number of patients who will require helicopter transfer. This is important from both an economic as well as professional viewpoint. A high volume of patients is necessary to maintain the required level of experience and expertise of the attending staff. Several methods of predicting usage have been utilized. The most common methods range from simple guidelines based on population served, to detailed analysis of emergency room data. No method has proved completely satisfactory since estimates based solely on population ignore many important factors and complete emergency room data is a rarity even in the United States. A separate analysis will be carried out for the island of Puerto Rico since more data is available for Puerto Rico and the island is demographically more similar to the United States than the rest of the region.

The simplest method of estimating helicopter utilization mentioned in the literature is based solely on the size of the population served. The average number of helicopter transports per 100,000 population is approximately 31 per year in the United States. See table 11 for an average HEMS profile. There has traditionally been a learning period during which the population is educated as to the availability of HEMS service and the primary responders to emergencies are trained to recognize how and when to request helicopter transfer. Consequently, during the first year of operation the call rate is often as much as 50% less than the rate of a more mature center. Table 12 indicates the diversity of experience of several HEMS centers during their first year of operation and underscores the approximate nature of any estimate based solely on size of population served.

It is generally true that a center located in an isolated area will experience a greater demand rate for helicopter transfer than a center located in a densely populated metropolitan area. The apparent reason being that in a metropolitan area in which much of the population is located relatively close to an emergency center, rapid transport can usually be provided by ground vehicles. In the more isolated regions ground transport is often not a viable option if speed and smooth ride are important factors, as they are in most trauma situations. This observation is clearly pertinent.
when considering the numerous small islands of the Caribbean Basin and would tend to suggest that a higher percentage of trauma patients would benefit from helicopter transfer in this region than in most areas of the United States. Another important factor which would tend to differentiate the Caribbean Islands from the United States is the fact that a high percentage of HEMS requests in the United States arise from motor vehicle accidents. In the estimate of helicopter transfer requests by Rhee et al. (6), approximately 50% of the requests were related to traffic accidents. While the motor vehicle accident rate in Puerto Rico is similar to the United States (7), this may not be the case for the rest of the countries. In an attempt to counteract this difference, we will base motor vehicle accident estimates for the Lesser Antilles on the number of motor vehicles rather than population size.

Benefits of HEMS Centers

The obvious benefit provided by HEMS centers to the region will be the reduction of loss of life and injuries due to trauma and major medical emergencies. While it is difficult to place a dollar value on a human life it is important to estimate the savings to society in order to put the considerable cost of establishing such a system in perspective. It is necessary to consider the savings from the point of view of society as a whole and not just the profit or loss of the individual operator involved.

In the US the National Health and Traffic Safety Administration estimates the value to society of a human life to be over $200,000. This estimate was for 1980 when the per capita GNP of the United States was approximately $12,000. Using the average per capita GNP of the Caribbean of approximately $1,800 to scale the National Health and Traffic Safety administration's estimate to the region yields an estimate of $30,000 per life saved. While clearly a crude estimate, the indication is that even in this relatively poor region an emergency medical rotorcraft with an operating cost of $630,000 would have to save 21 lives per year in order for its operating cost to be offset by its benefit to society. In the United States it is estimated that an EMS rotorcraft saves approximately 9 lives per 100,000 population served. So for a service region containing as little as 1 million people an EMS rotorcraft would save the society as a whole more than four times as much as its operating cost. This would vary according to the relative wealth of the country but on the average there is clear economic justification from the viewpoint of savings to the
economy of the region.

HEMS Utilization Estimate for Puerto Rico

In order to estimate the potential utilization of HEMS for Puerto Rico, we rely on motor vehicle accident data for Puerto Rico provided by the U.S. Department of Transportation(7). We assume other causes of trauma are similar to the United States. As in the United States and the majority of the Caribbean islands, heart disease is the major cause of death(8). In the United States a major source of emergencies after traffic accidents is myocardial infarction with a very high deaths-per-incident rate on the order of 40%(9). We will estimate the number of myocardial infarctions by applying the U.S. average of .0075 heart attacks per person per year(10). The following analysis is for the first year of operation, consequently after an HEMS center has matured it would be reasonable to expect the rate of utilization to double. In our analysis we follow the method of estimation and apply some of the frequency and utilization rates presented by Rhee et al.(6) in which an analysis of HEMS demand was developed for southern Michigan. The corresponding utilization rate may be different for Puerto Rico but the resulting estimate should serve as a first approximation.

In the United States motor vehicle accident (MVA) trauma is one of the major causes of accidental death. While between 30% and 50% of MVA deaths occur almost instantaneously(11), approximately 20% of the victims are potentially salvageable if transported quickly to an adequate medical facility(12). Approximately 50% of those victims who eventually die are taken to an emergency facility(6). This information along with records of the number of motor vehicle accident deaths in Puerto Rico can be used to estimate the number of patients who would benefit from HEMS transfer. The number of traffic fatalities in Puerto Rico for the period between 1978 and 1983 has averaged 516 per year(7). We estimate that 70% of the population of Puerto Rico is served by basic or less than basic emergency services and the remaining 30% are located in areas served by a major medical facility. Following the analysis presented by Rhee et al.(6), we estimate that 50% of the fatal accident victims located in areas with basic or less than basic emergency services needed HEMS and 5% of those located in the major service area would have benefitted from HEMS. This analysis indicates that 516*0.70*0.50=180.6 of those accident victims in areas with basic or less than basic medical service needed helicopter transfer. Similarly 7.74 victims in the major service areas
needed HEMS.

Continuing the analysis presented by Rhee et al. (6) in a system in which patients are taken to the nearest hospital and then transferred, actual transfer might occur in 25% of the cases. This leads to an estimate of 47.09 HEMS requests for those motor vehicle accident victims who would otherwise die. A similar analysis is carried out for HEMS calls for an estimate of the number of traffic accident victims who are not likely to die as well as for victims of falls, spinal cord injuries, burns, myocardial infarction, cerebrovascular accidents and pediatric and other emergencies. The results are summarized in table 13 in which we estimate approximately 442 HEMS calls for the first year of operation of a HEMS center located in Puerto Rico. This compares favorably with the national average of 370 calls per year for the first year of operation of centers within the U.S. mainland. However, this is not our final estimate for such a center since we have not yet included several sources of HEMS calls. The above analysis is based on a service area comprising only the island of Puerto Rico. If a vehicle with an effective range of 300 miles is used, the population served is approximately three times that considered in the above analysis. Our initial estimates clearly indicate that there will be sufficient demand to support a HEMS center on the island of Puerto Rico.

HEMS Utilization Estimate for the Lesser Antilles

In order to estimate HEMS utilization for the islands of the Lesser Antilles, the islands between Puerto Rico and Venezuela, we will use much the same techniques as for Puerto Rico. However, for these islands we do not have such complete motor vehicle accident data and will have to estimate the number of fatal traffic accidents as well as the number of motor vehicle accident survivors. We do this by interpolating from the number of motor vehicles on the islands rather than from the population. Once again, this will only provide a rough estimate but we feel any error is on the conservative side given the congestion and poor road conditions found in most of these islands. Another difference is that since we envision the establishment of only one HEMS center in the southernmost islands, approximately 98% of the total population of the Lesser Antilles will be considered to be located in an area with basic or less than basic emergency service. The 98% estimate is derived by assuming that the HEMS center will be located on the island of Grenada and approximately 50% of the population of Grenada is sufficiently remote from the capital to be
considered in a basic or less than basic medical service area. After making these assumptions and applying an analysis parallel to that for Puerto Rico, we estimate that during the first year of operation there will be 342 calls for HEMS from the islands of the Lesser Antilles. See table 14 for a summary of these calculations. As stated previously, the number of HEMS calls will increase as the center becomes better known and the communication system improves.

The above estimates of demand are sufficient to support a second HEMS center located in one of the southern islands. That our estimates of HEMS demand are probably somewhat conservative can be seen by considering that use of the rule of thumb estimate of 31 calls per 100,000 population served would lead to an estimate of 600 calls per year for a center located in Grenada with an operating range of 150 miles. Note from table 15 that there are approximately 2 million people within a 150 mile radius of Grenada.

HEMS Utilization Estimates for the larger islands and countries of the Caribbean Basin

For the remaining countries of the Caribbean Basin a similar analysis was carried out using estimates based on population size and the density of urban populations. Table 16 gives a summary of the results of these estimates. As in the previous cases these estimates are based on percentages derived from experience in the United States and therefore to be taken as only rough approximations. As in the case of the estimate for the Lower Antilles the errors are most likely on the conservative side. It is rather clear that most of the countries would have sufficient demand to support one or more HEMS center. The real issue is the affordability of establishing such centers. We feel however that as the benefits of such centers become better appreciated the necessary economic and political pressure will result in the eventual establishment of a system of HEMS centers throughout the region. We will now consider the relative advantages that new technology such as the Tilt-Rotor could contribute to such a system.

The Tilt Rotor as an Emergency Medical Vehicle

Bell Helicopter Textron has developed a new aircraft which we feel is destined to constitute a milestone in emergency medical rescue technology. The Tilt Rotor is an aircraft which can be flown either as a helicopter or as a fixed wing, combining the versatil-
ity of one with the speed and range of the other. The transition from one mode to the other is done smoothly in a matter of twelve seconds. The implications for medical rescue operations are obvious.

Since its use in the Korean War, the helicopter has shown the importance of quick response time in emergency rescue operations. But the helicopter has neither the speed nor the range of a fixed wing aircraft. The Tilt Rotor combines the speed and range of a fixed wing aircraft with the ability to fly directly to the scene of an accident and back to the medical facility. This new technology is not just in the initial planning stages; two XV-15 Tilt Rotor prototypes have been flying since 1977 and a commercial version of the Tilt Rotor should be on the market in less than ten years.

The advantages of the XV-15 are illustrated with a speed envelope comparison. In figure 11 we see that the XV-15 is capable of flying 300 MPH, fully twice the speed of current emergency medical helicopters. The range of the XV-15 is equally impressive with an effective range of approximately 700 miles. (See figure 17). The cabin dimensions of the XV-15 are roughly 1.5 * 1.5 * 4 meters. This spacious cabin can be fitted for a multi-patient, casualty evacuation role or it can be tailored to serve as a fully equipped flying emergency medical facility. (See figure 18).

The initial cost of the Tilt Rotor will be higher than either a helicopter or fixed wing aircraft; the current cost projections are approximately 10% more than a helicopter of the same passenger size. There will be many situations where the Tilt Rotor will be very cost effective. This is due mainly to the fact that the Tilt Rotor can go twice as far and twice as fast as a helicopter on the same amount of fuel (13). The Tilt Rotor will be exceptionally useful and cost effective in situations where it is necessary to cover large sparsely populated areas. The higher initial cost must then be measured against the benefit of serving a large region with a single medical facility. This situation is found in the Caribbean Basin as well as in many sparsely populated areas of the world.

Computer Simulation of HEMS

In an attempt to analyze the results of locating HEMS centers in the Caribbean Basin, a finite event Monte Carlo simulation of HEMS
centers was developed and run for various configurations of locations and helicopter types. The program generates accidents in a given region according to criteria input by the user and then calculates the time required to provide assistance to each accident using the closest available aircraft. The availability of an aircraft depends on its location, range, speed, and whether or not it is currently being used for a previous rescue or is out of service due to repairs or bad weather. The program accepts as input the locations and categories of hospitals, the number and capacity of helicopters at each hospital, the region in which a given percentage of accidents will occur, and other data relating to rescue time, response time, etc. The program was initially developed on a Macintosh micro-computer and makes extensive use of graphics for both input of data and illustration of the simulation. The output of the program includes the average wait time before an accident victim is reached, the average rescue time before the victim is taken to the nearest appropriate hospital, the number of accident victims which were not rescued due to the lack of an available helicopter, and the number of hours per week that each helicopter spends flying. Figures 19, 20 and 21 illustrate the results of three simulations.

In one case, the trauma centers were located on the islands of Puerto Rico and Grenada. A helicopter was located at each of these trauma centers and an additional helicopter was located on the island of Guadeloupe to provide transport from the middle islands to either of the two trauma centers. The helicopters were assumed to have a speed of 150 MPH and an effective range of 150 miles. This speed and range correspond to the limitations of the HEMS helicopters currently available. The third helicopter located in the middle islands was necessary in order to cover the entire region. We did not assume a third trauma center in the middle islands, however, since the population of the region would not currently support a full trauma center; at this site we located a level two center and assumed that transfer to one of the full trauma centers would be necessary for the majority of the rescue operations.

In the second case we simulated two trauma centers, one located in Puerto Rico and the other in Grenada. In this case we assigned one helicopter to each center with a speed of 300 MPH and an effective range of 300 miles. This speed and range correspond to the capacity of a proposed version of the new XV-15 Tilt Rotor. In this case a third helicopter is not necessary since the increased range of the Tilt Rotor enables two vehicles to cover the entire region.
A comparison of the results of the two simulations underscores the advantage of using the two Tilt Rotors rather than three helicopters. In the simulation using two Tilt Rotors the average rescue time was 100 minutes versus 125 minutes for the system of three standard helicopters. The average time before arrival of the rescue vehicle was 34 minutes using Tilt Rotors and 32 minutes using helicopters. The percentage of out of range calls was also reduced by using the Tilt Rotors. While these results are tentative and no firm conclusions should be inferred from this initial comparison, it does point out some of the potential advantages to be derived from the new Tilt Rotor technology.

In figure 21 we show the results of running a simulation for the entire region. In this case we located tiltrotors in the same locations as the previous simulation and located conventional helicopters in major population centers of the remaining countries of the Caribbean Basin. According to this simulation good coverage of the entire region is possible using twenty HEMS centers. While the average rescue times and percentage of missed calls is not as good as for the previous simulation, with a relatively small number of centers the majority of the population could be in range of helicopter rescue service.

CONCLUSION

It is clear that there is a need for the level of medical service which could be provided by strategically located HEMS centers in the Caribbean Basin. In addition to improving the quality of health care available for residents and tourists in the area, a system of helicopter based medical centers would foster a sense of cooperation between the islands of the region as well as with the United States. Such a system will also serve as an example and training site for other countries in the region which have both the resources and the need for such medical services. If appropriate sources of funding and guidance are provided by the United States a lasting and highly visible source of goodwill will have been set in motion. We feel that the benefits of such a system warrant further serious consideration.
REFERENCES

FIGURE 1. COUNTRIES COMPRISING THE CARIBBEAN BASIN
FIGURE 2. SUMMARY DATA FOR COUNTRIES OF THE CARIBBEAN BASIN

<table>
<thead>
<tr>
<th>Country</th>
<th>Population</th>
<th>GDP/GNP (Billions)</th>
<th>Per Capita (Billions)</th>
<th>Exports (Billions)</th>
<th>Imports (Billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigua/Barbuda</td>
<td>82,000</td>
<td>$0.171</td>
<td>$2,085.990</td>
<td>$0.044</td>
<td>$0.159</td>
</tr>
<tr>
<td>Bahamas</td>
<td>235,000</td>
<td>1.949</td>
<td>8,292.275</td>
<td>2.490</td>
<td>3.248</td>
</tr>
<tr>
<td>Barbados</td>
<td>253,000</td>
<td>1.247</td>
<td>4,929.479</td>
<td>0.422</td>
<td>0.710</td>
</tr>
<tr>
<td>Belize</td>
<td>168,000</td>
<td>0.201</td>
<td>1,199.300</td>
<td>0.101</td>
<td>0.136</td>
</tr>
<tr>
<td>British Virgin Islands</td>
<td>12,000</td>
<td>0.087</td>
<td>7,210.548</td>
<td>0.003</td>
<td>0.074</td>
</tr>
<tr>
<td>Cayman Islands</td>
<td>22,000</td>
<td>0.087</td>
<td>3,933.026</td>
<td>0.027</td>
<td>0.157</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>2,714,000</td>
<td>3.681</td>
<td>1,356.245</td>
<td>1.035</td>
<td>1.192</td>
</tr>
<tr>
<td>Dominica</td>
<td>74,000</td>
<td>0.092</td>
<td>1,249.382</td>
<td>0.028</td>
<td>0.061</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>6,785,000</td>
<td>11.909</td>
<td>1,755.141</td>
<td>0.938</td>
<td>1.516</td>
</tr>
<tr>
<td>El Salvador</td>
<td>5,105,000</td>
<td>4.552</td>
<td>891.601</td>
<td>0.824</td>
<td>1.002</td>
</tr>
<tr>
<td>Grenada</td>
<td>86,000</td>
<td>0.094</td>
<td>1,095.191</td>
<td>0.021</td>
<td>0.063</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>334,000</td>
<td>1.626</td>
<td>4,868.983</td>
<td>0.112</td>
<td>0.702</td>
</tr>
<tr>
<td>Guatemala</td>
<td>8,600,000</td>
<td>9.604</td>
<td>1,116.784</td>
<td>1.236</td>
<td>1.407</td>
</tr>
<tr>
<td>Guyana</td>
<td>771,000</td>
<td>0.432</td>
<td>560.257</td>
<td>0.230</td>
<td>0.240</td>
</tr>
<tr>
<td>Haiti</td>
<td>5,870,000</td>
<td>1.949</td>
<td>331.974</td>
<td>0.189</td>
<td>0.332</td>
</tr>
<tr>
<td>Honduras</td>
<td>4,648,000</td>
<td>3.464</td>
<td>745.337</td>
<td>0.759</td>
<td>0.792</td>
</tr>
<tr>
<td>Jamaica</td>
<td>2,288,000</td>
<td>2.165</td>
<td>946.331</td>
<td>0.764</td>
<td>1.191</td>
</tr>
<tr>
<td>Martinique</td>
<td>329,000</td>
<td>1.902</td>
<td>5,798.397</td>
<td>0.154</td>
<td>0.881</td>
</tr>
<tr>
<td>Montserrat</td>
<td>12,000</td>
<td>0.036</td>
<td>2,996.591</td>
<td>0.002</td>
<td>0.022</td>
</tr>
<tr>
<td>Netherlands Antilles</td>
<td>236,000</td>
<td>1.517</td>
<td>6,428.069</td>
<td>4.944</td>
<td>5.057</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>3,342,000</td>
<td>3.027</td>
<td>905.881</td>
<td>0.334</td>
<td>0.887</td>
</tr>
<tr>
<td>Panama</td>
<td>2,227,000</td>
<td>4.763</td>
<td>2,138.954</td>
<td>0.454</td>
<td>1.451</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>3,300,000</td>
<td>14.462</td>
<td>4,382.515</td>
<td>10.226</td>
<td>10.675</td>
</tr>
<tr>
<td>St. Christopher, Nevis</td>
<td>40,000</td>
<td>0.070</td>
<td>1,741.769</td>
<td>0.035</td>
<td>0.053</td>
</tr>
<tr>
<td>St. Lucia</td>
<td>123,000</td>
<td>0.160</td>
<td>1,302.644</td>
<td>0.056</td>
<td>0.120</td>
</tr>
<tr>
<td>St. Vincent & the Grenadines</td>
<td>103,000</td>
<td>0.100</td>
<td>970.983</td>
<td>0.047</td>
<td>0.080</td>
</tr>
<tr>
<td>Suriname</td>
<td>381,000</td>
<td>1.191</td>
<td>3,125.624</td>
<td>0.385</td>
<td>0.375</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>1,204,000</td>
<td>9.310</td>
<td>7,732.876</td>
<td>2.382</td>
<td>2.057</td>
</tr>
<tr>
<td>Turks & Caicos Island</td>
<td>7,000</td>
<td>0.021</td>
<td>2,953.221</td>
<td>0.004</td>
<td>0.025</td>
</tr>
<tr>
<td>US Virgin Islands</td>
<td>102,000</td>
<td>0.773</td>
<td>7,579.934</td>
<td>4.045</td>
<td>5.281</td>
</tr>
<tr>
<td>Total</td>
<td>49,452,000</td>
<td>$80.643</td>
<td>$1,627.093</td>
<td>$32.289</td>
<td>$39.946</td>
</tr>
</tbody>
</table>

(US)
65% of ships transiting Panama Canal carry goods to/from United States
Distribution of Civil Helicopters (No. of Aircraft) by Primary Mission

 Distribution of Civil Helicopter Operators by Primary Mission

FIGURE 4. HELICOPTER DISTRIBUTION BY PRIMARY MISSION.
FIGURE 6. PUBLIC SERVICE HELICOPTER MISSIONS

PUBLIC SAFETY

SEARCH AND RESCUE
1. Mountain Remote Site Rescue
2. Ocean/River Rescue
3. Missing or Late Vessels
4. Ship Collisions and Groundings
5. Missing Persons
6. Aircraft Accident
7. Endangered Fire Fighting Equipment

LAW ENFORCEMENT
1. Drug Enforcement & Detection
2. Security (Building & VIPS)
3. Surveillance (General & Covert)
4. Search (Fugitives & Vehicles)
5. Patrol
6. Observation Post
7. High Speed Pursuit
8. Command Post
9. Crowd Control (Traffic & Alors)
10. Pollution Control
11. Transport (VIPS & Crime Specialists)
12. Stolen Property Recovery
13. Ambulance Escort
14. Disaster Warning & Relief
15. Emergency Cargo Transport
16. Fire Detection
17. Rescue
18. Search (People Lost)
19. Traffic (Emergency)
20. Water Area Patrol
21. Aerial Photography

EMERGENCY MEDICAL SERVICES
1. At the Scene Accident Pick-Ups
 A. Traffic
 B. Occupational
 C. Residential
 D. Recreational
2. Intermontigner Transfers
 A. Critical Patient Transfer
 B. Neonatal Transfer
 C. Burn Patient Transfer
 D. Organ/Blood Transport
 E. Medical Supply Transport
 F. Medical Equipment Transport
3. Interhospital Transfers
 A. Critical Patient Transfer
 B. Neonatal Transfer
 C. Burn Patient Transfer
 D. Organ/Blood Transport
 E. Medical Supply Transport
 F. Medical Equipment Transport

FIRE FIGHTING
1. Transport Personnel
 A. Fire Crews
 B. Command Post
 C. Fighting Tools, Hardware & Supplies
 D. Suspended Maneuvering System
2. Retardant Applications
3. Reconnaissance
 A. Mapping
 B. IR Sensing
 C. Dry Season Surveillance
 D. Backfiring
4. Fighting

DISASTER RELIEF
1. Lifesaving People Transport
2. Life Sustaining Supply Transport
3. Evacuations
4. Early Warning & Response
5. Command Post
6. Post-Disaster Clean-Up

QUALITY OF LIFE

WILDLIFE MANAGEMENT
1. Herding Animals
2. Tagging Animals
3. Relocating Animals
4. Damage Control
5. Fish Stocking
6. Fish Management

SURVEYS
1. Animal & Fish Population
2. Inspect Oil Platforms
3. Inspect Strip Mines
4. Inspect Powerlines
5. Inspect Dams & Reservoirs
6. Aerial Photography
7. Factroy Pollution Monitoring
8. Wetland Inspection

EXTERNAL LOADS
1. Tower & Pole Setting
2. Wire Stringing
3. Pipeline Laying
4. Uiming Lakes
5. Seeding Forests
6. Remote Site Construction
7. Remote Site Supply
8. Snooding

LAND MANAGEMENT
1. Fire Control
2. Bureau of Land Management
3. U.S. Forest Service
4. Bureau of Indian Affairs
5. Geological Studies
 A. Exploration
 B. Earthquake Research
 C. Volcano Research
 D. Channel Monitoring
6. Cadastral Surveys
7. Electronic Surveys
8. Resource Management

TRANSPORTATION
1. Inspection
2. Work Crews
3. Survey Equipment
4. Survey Personnel
5. Resupply
6. Search & Rescue

Ref: Morrison, 1982

Public service helicopter missions.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Passengers /Year</th>
<th>Distance (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. John</td>
<td>St. Martin</td>
<td>79,475</td>
<td>108</td>
</tr>
<tr>
<td>St. Martin</td>
<td>St. John</td>
<td>79,475</td>
<td>108</td>
</tr>
<tr>
<td>Port of Spain</td>
<td>Bridgetown, Barbados</td>
<td>77,143</td>
<td>208</td>
</tr>
<tr>
<td>Bridgetown, Barbados</td>
<td>Port of Spain</td>
<td>77,143</td>
<td>208</td>
</tr>
<tr>
<td>Santo Domingo, Dom. Rep.</td>
<td>San Juan, Puerto Rico</td>
<td>64,536</td>
<td>234</td>
</tr>
<tr>
<td>San Juan, Puerto Rico</td>
<td>Santo Domingo</td>
<td>64,536</td>
<td>234</td>
</tr>
<tr>
<td>St. Lucia</td>
<td>Bridgetown, Barbados</td>
<td>44,676</td>
<td>120</td>
</tr>
<tr>
<td>Bridgetown, Barbados</td>
<td>St. Lucia</td>
<td>42,132</td>
<td>120</td>
</tr>
<tr>
<td>Bridgetown, Barbados</td>
<td>St. Vincent</td>
<td>36,599</td>
<td>120</td>
</tr>
<tr>
<td>Panama</td>
<td>San Jose, Costa Rica</td>
<td>34,658</td>
<td>350</td>
</tr>
<tr>
<td>St. Vincent</td>
<td>Bridgetown, Barbados</td>
<td>31,938</td>
<td>120</td>
</tr>
<tr>
<td>San Jose, Costa Rica</td>
<td>Panama</td>
<td>31,126</td>
<td>350</td>
</tr>
<tr>
<td>Port Au Prince</td>
<td>Santo Domingo</td>
<td>31,730</td>
<td>170</td>
</tr>
<tr>
<td>San Salvador, El Salvador</td>
<td>San Jose, Costa Rica</td>
<td>30,939</td>
<td>440</td>
</tr>
<tr>
<td>San Jose, Costa Rica</td>
<td>San Salvador, El Salvador</td>
<td>29,546</td>
<td>440</td>
</tr>
</tbody>
</table>

Source: Summary Final Report (Civil Tiltrotor Missions and Applications: A Research Study), Boeing Commercial Airplane Co.; Bell Textron, Boeing Vertol, NASA ARC; July 1987 (NASA CR 177452)
Figure 9: 1985 US-Caribbean Trade ($ in Millions)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Value Transported By Air*</th>
<th>Air Transport Cost (17%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Foods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coffee</td>
<td>$641</td>
<td>$641</td>
<td>$109</td>
</tr>
<tr>
<td>Bananas</td>
<td>423</td>
<td>423</td>
<td>72</td>
</tr>
<tr>
<td>Sugars</td>
<td>263</td>
<td>263</td>
<td>45</td>
</tr>
<tr>
<td>Shellfish</td>
<td>207</td>
<td>207</td>
<td>35</td>
</tr>
<tr>
<td>Beef/Veal</td>
<td>106</td>
<td>106</td>
<td>18</td>
</tr>
<tr>
<td>Electronic Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated circuits</td>
<td>$170</td>
<td>$170</td>
<td>$29</td>
</tr>
<tr>
<td>Switches</td>
<td>66</td>
<td>66</td>
<td>11</td>
</tr>
<tr>
<td>Capacitors</td>
<td>28</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>Sewn Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lace Garments</td>
<td>$82</td>
<td>$62</td>
<td>$11</td>
</tr>
<tr>
<td>Women's Apparel</td>
<td>76</td>
<td>57</td>
<td>10</td>
</tr>
<tr>
<td>Men's Apparel</td>
<td>67</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>Body Supporting</td>
<td>38</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>Garments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$2,167</td>
<td>$2,102</td>
<td>$359</td>
</tr>
</tbody>
</table>

*100% for agricultural foods and electronic components; 75% for sewn products.
FIGURE 10.

INTERNATIONAL TRADE BY AIR BETWEEN THE REGION AND THE UNITED STATES

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>IMPORTS (%)</th>
<th>EXPORTS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARIBBEAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahamas</td>
<td>14</td>
<td>4 (50)</td>
</tr>
<tr>
<td>Barbados</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Bermuda</td>
<td>26</td>
<td>40</td>
</tr>
<tr>
<td>Cayman Islands</td>
<td>12</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Cuba</td>
<td>80</td>
<td>--</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>French Antilles</td>
<td>24</td>
<td>63 (64)</td>
</tr>
<tr>
<td>Haiti</td>
<td>31</td>
<td>49</td>
</tr>
<tr>
<td>Jamaica</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Leeward and Winward Islands</td>
<td>25</td>
<td>41 (52)</td>
</tr>
<tr>
<td>Netherlands Antilles</td>
<td>21</td>
<td>0 (14)</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>14</td>
<td>0 (6)</td>
</tr>
<tr>
<td>Turks & Caicos Islands</td>
<td>16</td>
<td>98</td>
</tr>
<tr>
<td>SUB-TOTAL</td>
<td>31</td>
<td>6 (25)</td>
</tr>
</tbody>
</table>
FIGURE 11. SUMMARY DATA FOR HELICOPTER BASED EMERGENCY MEDICAL CENTERS IN THE UNITED STATES. (DATA PROVIDED BY ROCKY MOUNTAIN HELICOPTERS, INC.)

<table>
<thead>
<tr>
<th>Data Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population with 50 miles of sponsoring hospital</td>
<td>1,177,850</td>
</tr>
<tr>
<td>Number of beds of sponsoring hospital</td>
<td>675</td>
</tr>
<tr>
<td>Annual transports:</td>
<td></td>
</tr>
<tr>
<td>first year</td>
<td>370</td>
</tr>
<tr>
<td>second year</td>
<td>462</td>
</tr>
<tr>
<td>Annual transports per 100,000</td>
<td>31</td>
</tr>
<tr>
<td>Percentage of transports to sponsor hospital</td>
<td>60%</td>
</tr>
<tr>
<td>Length of stay for helicopter transported patient</td>
<td>16 days</td>
</tr>
<tr>
<td>Percentage of transports within 50 mile radius</td>
<td>75%</td>
</tr>
<tr>
<td>Type of helicopter response:</td>
<td></td>
</tr>
<tr>
<td>Hospital transfers</td>
<td>75%</td>
</tr>
<tr>
<td>Scene pickups</td>
<td>25%</td>
</tr>
<tr>
<td>Patient diagnosis:</td>
<td></td>
</tr>
<tr>
<td>Trauma/Surgical</td>
<td>45%</td>
</tr>
<tr>
<td>Cardiac</td>
<td>15%</td>
</tr>
<tr>
<td>Other medical</td>
<td>25%</td>
</tr>
<tr>
<td>High risk mother/infant</td>
<td>10%</td>
</tr>
<tr>
<td>Burns</td>
<td>5%</td>
</tr>
<tr>
<td>Helicopter response to requests:</td>
<td></td>
</tr>
<tr>
<td>Completed</td>
<td>90%</td>
</tr>
<tr>
<td>Not completed:</td>
<td></td>
</tr>
<tr>
<td>Bad weather</td>
<td>5%</td>
</tr>
<tr>
<td>Other</td>
<td>5%</td>
</tr>
</tbody>
</table>
TABLE 12. COMPARATIVE ANALYSIS OF THE FIRST YEAR OF OPERATION OF EIGHT HOSPITAL-BASED REMS SYSTEMS

<table>
<thead>
<tr>
<th>Hospital/location</th>
<th>Flights per 100,000 population</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Lincoln/Phoenix, AZ</td>
<td>41</td>
</tr>
<tr>
<td>Emanuel/Portland, Oregon or Maine?</td>
<td>8</td>
</tr>
<tr>
<td>University/San Diego, CA</td>
<td>24</td>
</tr>
<tr>
<td>Hermann/Houston, TX</td>
<td>12</td>
</tr>
<tr>
<td>St. Vincent/Toledo, OH</td>
<td>25</td>
</tr>
<tr>
<td>Baptist/Pensacola, FL</td>
<td>71</td>
</tr>
<tr>
<td>Latter Day Saints/Salt Lake City, UT</td>
<td>63</td>
</tr>
<tr>
<td>St. Anthony's/Denver, CO</td>
<td>48</td>
</tr>
<tr>
<td>Mean</td>
<td>36.5</td>
</tr>
<tr>
<td></td>
<td>Total cases</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MVA trauma, death likely</td>
<td>516</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>MVA accident survivors</td>
<td>38000</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Falls and spinal cord inj.</td>
<td>280</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Burn victims</td>
<td>1088</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>5984</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular accid.</td>
<td>5542</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Pediatric and other emer.</td>
<td>10200</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>TOTAL REQUESTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total cases</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MVA trauma, death likely</td>
<td>127</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>MVA accident survivors</td>
<td>10088</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Falls and spinal cord inj.</td>
<td>249</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Burn victims</td>
<td>960</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>5280</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular accid.</td>
<td>4890</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>Pediatric and other emer.</td>
<td>9000</td>
</tr>
<tr>
<td>Basic service area</td>
<td></td>
</tr>
<tr>
<td>Major service area</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
</tr>
<tr>
<td>TOTAL REQUESTS</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Antigua and Barbuda</td>
<td>77000</td>
</tr>
<tr>
<td>Barbados</td>
<td>260000</td>
</tr>
<tr>
<td>Br. Virgin Islands</td>
<td>11000</td>
</tr>
<tr>
<td>Dominica</td>
<td>75000</td>
</tr>
<tr>
<td>Dominica Republic</td>
<td>5660000</td>
</tr>
<tr>
<td>Grenada</td>
<td>112000</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>320000</td>
</tr>
<tr>
<td>Haiti</td>
<td>5145000</td>
</tr>
<tr>
<td>Jamaica</td>
<td>2235000</td>
</tr>
<tr>
<td>Martinique</td>
<td>300000</td>
</tr>
<tr>
<td>Montserrat</td>
<td>12000</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>3270000</td>
</tr>
<tr>
<td>St. Kitts, Nevis, Angila</td>
<td>41000</td>
</tr>
<tr>
<td>St. Lucia</td>
<td>124000</td>
</tr>
<tr>
<td>St. Vincent, Grenadines</td>
<td>128000</td>
</tr>
<tr>
<td>Trinidad, Tobago</td>
<td>1165000</td>
</tr>
<tr>
<td>U. S. Virgin Islands</td>
<td>116000</td>
</tr>
<tr>
<td>Country</td>
<td>Estimate of HEMS Calls/year</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Bahamas</td>
<td>20.6</td>
</tr>
<tr>
<td>Colombia</td>
<td>2858</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>249</td>
</tr>
<tr>
<td>Cuba</td>
<td>825</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>577.5</td>
</tr>
<tr>
<td>El Salvador</td>
<td>488.6</td>
</tr>
<tr>
<td>Guatemala</td>
<td>826.9</td>
</tr>
<tr>
<td>Grenada</td>
<td>342.6</td>
</tr>
<tr>
<td>Haiti</td>
<td>613.4</td>
</tr>
<tr>
<td>Honduras</td>
<td>443.7</td>
</tr>
<tr>
<td>Jamaica</td>
<td>216.95</td>
</tr>
<tr>
<td>Mexico</td>
<td>7776.3</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>275.5</td>
</tr>
<tr>
<td>Panama</td>
<td>191.2</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>442.4</td>
</tr>
<tr>
<td>Venezuela</td>
<td>1797.9</td>
</tr>
<tr>
<td>Total</td>
<td>17945.55</td>
</tr>
</tbody>
</table>
Figure 17.- Seat/mile costs of XV-15 Tilt Rotor.
Figure 18.- Dimensions of XV-15 Tilt Rotor in meters.
FIGURE 19. RESULTS OF SIMULATION: THREE STANDARD HELICOPTERS

<table>
<thead>
<tr>
<th>8 Week Simulation Time</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Rotorcraft Flights</td>
<td>166</td>
<td>Missed (out of Range)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg Distance to Scene</td>
<td>54</td>
<td>Missed (Unavailable)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg Wait for Rotorcraft arrival</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg Total Transfer Time</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

San Juan: Status = 3 Flights Received = 50
- Craft Range N-Fits Av Pos. Av wait. Flt Hrs Av Dist (min.) (min.) /Week
 - 1 150 51 118 39 6 73

Guadeloupe: Status = 2 Flights Received = 1
- Craft Range N-Fits Av Pos. Av wait. Flt Hrs Av Dist (min.) (min.) /Week
 - 1 150 71 130 20 25 25

Granada: Status = 3 Flights Received = 105
- Craft Range N-Fits Av Pos. Av wait. Flt Hrs Av Dist (min.) (min.) /Week
 - 1 150 44 125 42 6 73

<table>
<thead>
<tr>
<th>Flt Stat</th>
<th>Craft N</th>
<th>Dist total</th>
<th>Frq, res.</th>
<th>Av. wait</th>
<th>Flt Hrs</th>
<th>Av. Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>117.3</td>
<td>39.3</td>
<td>6.2</td>
<td>73.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>150</td>
<td>117.3</td>
<td>39.3</td>
<td>6.2</td>
<td>73.2</td>
</tr>
<tr>
<td>3</td>
<td>105</td>
<td>150</td>
<td>130.5</td>
<td>20.0</td>
<td>25.3</td>
<td>24.9</td>
</tr>
</tbody>
</table>

There were 12 "out of range" calls and 15 non-responses due to in-service or in-repair.

ORIGINAL PAGE IS OF POOR QUALITY
FIGURE 20. RESULTS OF SIMULATION: TWO TILTROTORS

<table>
<thead>
<tr>
<th>9 Week Simulation Time</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Rotorcraft Flights</td>
<td>165</td>
</tr>
<tr>
<td>Avg Distance to Scene</td>
<td>120</td>
</tr>
<tr>
<td>Avg Wait for Rotorcraft arrival</td>
<td>34</td>
</tr>
<tr>
<td>Avg Total Transfer Time</td>
<td>100</td>
</tr>
</tbody>
</table>

San Juan Status = 3 Flights Received = 92
Craft Range N-Flts AV Res AV Wait AV Dist
(min.) (min.) /Week
1 300 96 101 34 10 122
96 161 34

Guadelou Status = 2 Flights Received = 6
Craft Range N-Flts AV Res AV Wait AV Dist
(min.) (min.) /Week
1 300 69 98 33 7 117
69 98 33

Cent Stat Recd Bird Range total Flts AV Resc AV Wait AV Hrs AV Dist
(min.) (min.) /Week
1 3 92 1 300 96 100.9 34.4 10.1 121.9
2 2 66 1 300 69 98.1 33.3 6.9 116.5
3 3 67 1 300 69 98.1 33.3 6.9 116.5
165 99.8 33.9

There were 2 "out of range" calls and 2 non-responses due to "in-service" or "in-repair".
FIGURE 21. RESULTS OF SIMULATION: ENTIRE REGION

Number of Rotorcraft Flights	269	Missed (out of Range)	34
Avg Distance to Scene	104	Missed (Unavailable)	3
Avg Wait for Rotorcraft arrival	45	Re-Simulate	
Avg Total Transfer Time	134	PRINT	OK

4 Week Simulation Time

<table>
<thead>
<tr>
<th>Status</th>
<th>Flights Received</th>
<th>Craft Range</th>
<th>N-flts</th>
<th>Avg Av wait</th>
<th>Flt Hrs</th>
<th>Av Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>3</td>
<td>300</td>
<td>17</td>
<td>120</td>
<td>43</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>120</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>150</td>
<td>18</td>
<td>98</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>98</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haiti</td>
<td>3</td>
<td>150</td>
<td>7</td>
<td>106</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>106</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORIGINAL PAGE IS OF POOR QUALITY.
BIRDS

A program to simulate rotorcraft rescue operations

Robert W. Smith
University of Puerto Rico
Mayaguez, Puerto Rico
Problem/Function Definition

In order to evaluate rotorcraft rescue operations and compare the effectiveness of different aircraft and center locations there are several key questions which must be considered. For a given configuration of rotorcraft and center locations what percentage of the incidents are within range? What is the average rescue time? How long must the victims wait before arrival of the rotorcraft? What is the average distance of the rescue flight? How many calls are missed due to downtime caused by repair or weather conditions? How important is speed in making a significant reduction in response time? What is the optimal location of the rotorcraft bases to reach the most calls in the least time? This simulation attempts to answer some of these questions in order to help to make a comparison between different aircraft and center locations.

Method of Solution

This program is a finite event Monte Carlo simulation of aircraft operations. After accepting information relating to aircraft capacities, center locations and regions in which a user supplied percentage of accidents occurs the program generates accidents and simulates rescue operations in order to collect pertinent data for comparison of different configurations of center locations and aircraft capacity.

While the initial application was for rotorcraft rescue operations the simulation can be used for any operation in which incidents occur in specified regions which must be responded to by aircraft located at fixed centers. The program can generate a map of any region of the world or maps previously created by other programs may be imported for use by the simulation. The program generates accidents in a given region according to criteria input by the
user and then calculates the time required for an aircraft to reach the location at which the accident occurred. The availability of an aircraft depends on its location, range, speed, and whether or not it is currently being used for a previous call or is out of service due to repairs or bad weather. The program accepts as input the locations and categories of centers, the number and capacity of aircraft at each center, the region in which a given percentage of accidents will occur, and other data relating to rescue time, response time, etc.

The program was developed on a Macintosh micro-computer using the Turbo Pascal language and makes extensive use of graphics for both input of data and illustration of the simulation. The output of the program includes the average wait time before an accident is reached by an aircraft, the average rescue time before the victim is taken to the nearest appropriate hospital, the number of accident victims which were not rescued due to the lack of an available helicopter, and the number of hours per week that each aircraft spends flying. Figure 1 illustrates the results of a simulation.

Implementation Instructions

The program was compiled using Turbo Pascal. The only files necessary in order to run the program are the compiled program called 'BIRDS' and a map file 'World.dat' which contains a data representation of a map of the world. The program can be run on any Macintosh computer with as little as 512K memory for the small map data file version. To run the program simply click on the file 'BIRDS'.

User Instructions

The program follows the guidelines for a standard Macintosh application with few exceptions and is therefore quite self explanatory. After the initial 'about' display the user is presented with the option of selecting between several pull down menus. A description of each item follows:

FILE:

NEW: This selection will import the picture currently in the scrap area to be used as a map for a simulation. You must have used the copy command to place a map on the 'scrap' before using this command.

OPEN: This selection will produce a standard file dialog and ask the user to select a previously saved file to re-run a simulation.
SAVE: This selection is used to save a file in order to re-run a simulation.

QUIT: This selection will terminate the program and return the user to the desktop.

EDIT:

COPY: This selection will place the current map on the 'scrap' so that it may be altered using a drawing program such as MacPaint.

SIM:

RUN: This selection will begin the simulation once a map has been selected.

MAP:

NewMap: This selection will cause a map of the entire world to be displayed on the screen and direct the user to select a sub-region by using the mouse to enclose it with a rectangle. The sub-region will then be re-displayed in greater detail in order to be used for the simulation.

OpenMap: This selection is used to select a previously saved map file to be used for the current simulation.

FromScrap: This selection will import the picture currently in the scrap area to be used as a map for a simulation. You must have used the copy command to place a map on the 'scrap' before using this command.

SaveMap: This selection is used in order to save the current map file for later use.

After a map has been created or loaded from disk the user should select the RUN command. At this point the map will be re-drawn and the user will be asked to supply information for the simulation. The following information is required:

(1) The user will be asked to use the mouse to indicate a distance of one hundred miles. This distance will be used to calculate the range and speed of aircraft in the simulation.
(2) The user will then be asked to indicate the locations of the hospitals by clicking with the mouse. After all hospitals have been located the user must click the mouse in the 'OK' rectangle.

(3) For each hospital the user will be asked to indicate the number and capacity of all aircraft located at this center. In addition the user is asked to indicate the 'status' of this center. A status of three is used to indicate a full trauma center which can handle all accidents. A level two center is a secondary level center which can not service the most serious emergencies.

(4) After all hospitals have been located and information supplied about the aircraft located at each center the user is asked to indicate the 'high accident regions'. These regions are indicated by using the mouse to enclose a series of rectangles. After these regions have been created the user must click the mouse in the 'OK' box. At this point the program will ask for the percentage of accidents which will occur in the 'high accident region'.

(5) After the user has indicated what percentage of accidents are to occur in the 'high accident region' the program will present a dialog box with nine questions along with default answers about the current simulation: The user can use the default values to change any or all of the values. An item can be selected either by using the mouse to move to another item or by using the 'TAB' key to move on to the next item. Pressing the 'ENTER' key signals the program to accept the current values and continue with the simulation. The information to be supplied is as follows:

(a) Number of accidents/year requiring Rotorcraft.

(b) Percentage of accidents which must be taken to a level 3 Trauma Center.

(c) Percentage of ground transport ambulance accidents which will later need air transfer. This is used to estimate the number of air transfers from centers without aircraft to another center.

(d) Percentage of transfer which must go to a level 3 trauma center.

(e) Hours/week that aircraft are out of service due to maintenance.

(f) Average duration of Maintenance (in minutes).

(g) Average duration of weather downtime (in minutes).

(h) Average time on ground to pick up a patient.

(i) Average time to respond to call.
(6) After the user has pressed 'ENTER' or used the mouse to click in the 'OK' button to indicate his acceptance of the displayed values to the above questions the program will ask if he wants to save the file with the current information for future use.

(7) Finally the program will ask for the simulation time in weeks.

At this point the simulation will begin and the rescue operations will be indicated on the screen as the simulation progresses. After the simulation is finished the user will be asked to press the 'ENTER' key in order to see the data for the completed simulation. Before pressing the 'ENTER' key the user might want to press the key combination ('Shift'/ 'Command'/ '3') in order to save the current display on disk or ('Shift'/ 'Command'/ '4') in order to send the display to the printer. After the user presses the 'ENTER' key the data indicating the results of the simulation is displayed on the screen. An example of this data follows:

<table>
<thead>
<tr>
<th>8 Week Simulation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Rotorcraft Flights</td>
</tr>
<tr>
<td>Avg Distance to Scene</td>
</tr>
<tr>
<td>Avg Wait for Rotorcraft arrival</td>
</tr>
<tr>
<td>Avg Total Transfer Time</td>
</tr>
</tbody>
</table>

San Juan Status = 3 Flights Received = 65
craft Rnge N-FIts Av Rsc Av wait Flt Hrs Av Dst
(min.) (min.) /week
1 300 64 119 40 8 150
64 119 40

Grenada Status = 3 Flights Received = 60

craft Rnge N-FIts Av Rsc Av wait Flt Hrs Av Dst
(min.) (min.) /week
1 300 61 107 37 7 131
61 107 37
The top section includes global information for all of the centers in the simulation. The bottom section includes information for one center. The user can cause information for the next center to be displayed by pressing the 'ENTER' key or by clicking in the 'NEXT CENTER' button with the mouse.

For each center the information displayed includes the center name, the status of the center and the number of flights received by the center.

For each aircraft located at a center the following information is displayed:

(a) The number of the aircraft.
(b) The range of the aircraft.
(c) The number of flights by this aircraft during the simulation.
(d) The average total rescue time for this aircraft. This includes response time, flight time and pickup at time.
(e) The average time spent waiting for this aircraft.
(f) The average number of flight hours per week.
(g) The average distance to the scene of the accident.
(h) A histogram of flight distances.

The user may select the 'PRINT' button with the mouse in order to print out a summary of this information. Selecting the 'Re-Simulate' button causes another simulation to be run using a different time frame if desired. By selecting the 'OK' button the user can return to the original initial level in which the pull down menus are again activated.
FIGURE 1. GRAPHICAL DISPLAY OF SIMULATION
The following pages contain a listing of the entire program.
Program Birds;

uses
{S } Memtypes, QuickDraw, OSIntf, ToolIntf, PackIntf, sane,
MacExtras, BirdGlobals, Dialogunit, MacPrint,
{S Sim } BirdSim, MapMer;

const
WindowID = 1000;
WindowID2 = 1001;
FileID = 2;
SimID = 1000;
MapID = 1003;
Newcmd = 1;
CloseCmd = 2;
OpenCmd = 3;
SaveCmd = 4;
QuitCmd = 5;
copyCmd = 3;
pasteCmd = 4;
RunCmd = 1;
NewMap = 1;
OpenMap = 2;
FromScrap = 3;
SaveMap = 4;

var
spt, ppl : ptr;
RefN : Integer;
pp : picptr;
phl : PicHandle;
Hndl : Handle;
Lnth, Offset : Longint;
SimMenu : MenuHandle;
MapMenu : MenuHandle;
done, ok : Boolean;
quitRequested : Boolean;
windowOpen : Boolean;

Procedure dokeypress(ch : char);
{ do something with incoming char }
begin
procedure domouseclick(whichwindow : windowptr);
{process mouse clicks inside windows }
Begin;
end; { domouseclick }

Procedure SetupWindow;
begin;
If not windowOpen then
begin
wPtr := GetNewWindow(WindowID, @Wrec, Pointer(-1));
windowOpen := wPtr <> NIL;
If windowOpen Then
begin
SetPort(wPtr);
SelectWindow(wPtr);
{ ClipRect(wPtr^.portRect); }
MapFrame := wPtr^.portRect ;
InsetRect(MapFrame,3,13);
offsetRect(MapFrame,0,12);
SetRect(TxtFrame, 3,10,509,25);
ClipRect(MapFrame);
end
end
end;

Procedure DoNew; { get Picture from the scrap }
begin
SetupWindow;
readdat := false;
if (length(Data.MapName)=0) then KillPicture(ph) else ReleaseResource(Hndl);
{ Kill old Pic, if MapName='' then it came from scrap or NewMap else a resource file }
Hndl := NewHandle(0);
Inth := GetScrap(Hndl,'PICT',offset); { Get Handle from scrap }
if (Inth = NOTypeErr) then
begin
ClipRect(wPtr^.portRect);
gotoxy(1,1);cleareol;
writeln('No Map on scrap, You must "copy" one from the ScrapBook (Press retu
readln; gotoxy(1,1);cleareol;
ClipRect(MapFrame);
end
else
begin
ph := picHandle(Hndl); { convert it to Pic Handle }
DrawPicture(ph, MapFrame);
{ SetWindowPic(wPtr, ph); ??? }
EnableItem(fileMenu, CloseCmd);
DisableItem(filemenu, Newcmd);
EnableItem(SimMenu, RunCmd) ;
end;
end; { doNew }

procedure closeprogramwindow;
{ close the global wptr window }
begin
if windowopen then
begin
closewindow(wptr);
windowopen := false;
EnableItem(filemenu, newcmd);
end;
procedure doclose;
{ respond to file menu close command }
begin
readdat := false;
if (length(Data.MapName) = 0) then KillPicture(ph)
 else ReleaseResource(Hndl);

Data.MapName := '1';
if frontwindow = wptr
 then closeprogramwindow
 else closedawindow;
end; { doclose }

Procedure GetMap(ResName : string255);
var
 name : string255;
begin
 SetupWindow;
 if (length(Data.MapName) = 0) then KillPicture(ph)
 else ReleaseResource(Hndl);

 name := 'thepic';
 Refn := OpenResFile(Resname);
 Hndl := NewHandle(0);
 Hndl := GetNamedResource('PICT', name);
 DetachResource(Hndl);
 ph := PicHandle(Hndl);

 { save it to the scrap also , this may not be a good idea }
 { Lnth := zeroscrap; }
 { Lnth := ph^.picsize; }
 { Lnth := putscrap(Inth,'PICT',Hndl*); }

 CloseResFile(Refn);
 DrawPicture(ph ,MapFrame);
 { SetWindowPic(wPtr, ph); }
end; { of GetMap }

Procedure MapOpen;
var
 okayflag : boolean;
 ResName : string255;
 id : integer;
 reply : SFReply;
 where : Point;
 typelist : SFTypeList;
 fileKind : OSType;
begin
readdat := false;
fileKind := 'MAPA'; { ignored if -1 in 4th parm }
typelist[0] := fileKind;
where.h := 60; where.v := 50;
SFGetFile(where,'',NIL,l,typeList,NIL,reply);
Resname := reply.fname;
GetMap(ResName);
data.MapName := ResName;
 EnableItem(fileMenu, Closecmd);
 DisableItem(fileMenu, Newcmd);
EnableItem(SimMenu, RunCmd);
EnableItem(EditMenu, copycmd);
end;

Procedure mapSave;
var
 okayflag : boolean;
 name, Resname : String255;
 id, err1,err : integer;
 where : point;
 reply : SFReply;
 vRefNum : integer;
 fnDrInfo : Flnfo;
 volName : StringPtr;
 OSerror : OSErr;
 Hndll : Handle;

begin
 SetupWindow;
 where.h := 60; where.v := 50;
 SFPutFile(Where, 'Save File as :','',NIL,reply);
 Resname := reply.fname;

 name := 'thepic';
 CreateResFile(Resname);
 err1 := ResError;
 if (err1 <> 0) then begin
 gotoxy(1,1);cleareol;
 write(' creat ERROR # ',err1, ' Hit Return to continue ');
 readln;gotoxy(1,1);cleareol;
 end;

 RefN := OpenResFile(Resname);
 err := ResError;
 if (err <> 0) then begin
 gotoxy (1,1); cleared;
 write(' creat ERROR # ',err, ' Hit Return to continue ');
 readln;gotoxy(1,1);cleareol;
 end;

 if (err1 = -48) then { file already exists, so replace contents }
 begin
 Hndll := NewHandle(0);
 Hndll := GetNamedResource('PICT', name);
 RmveResource(Hndll);
 DisposHandle(Hndll);
 end;

 id := UniqueID('PICT');
 Hndl := NewHandle(ph^.picsize);
 Hndl := Handle(ph);

 DrawPicture(Pichandle(Hndl),MapFrame); { lets see it again }
 HNoPurge(Hndl);
 AddResource(Hndl, 'PICT', id , name);
 err := ResError;
 if (err <> 0) then begin
 gotoxy(1,1);cleareol; write(' ADD ERROR # ',err); readln;
 end;
 HPurge(Hndl);
 CloseResFile(RefN);

 OSErr := GetVol(volName, vRefNum);
 OSErr := GetFInfo(Resname, vRefNum,fnDrInfo);
}
fndrlnfo.fdType := 'MAPA'; { make it a MAPA file Type }
OSError := SetFInfo(Resname, vRefNum,fndrlnfo);
data.MapName := ResName;{ Map Name stored in 'data' so can call it back }
end;

Function getdatfile(VAR done : Boolean) : Boolean;
var
 okayflag : boolean;
 folder, Filename : String[64];
 reply : SFReply;
begin
okayflag := false;
inName := '';
if GetFileName(reply,'DATA') then inName := reply.fname;
done := length(inName) = 0;
If not done Then
begin
{$i-} Reset(datafile, inName);
 read(datafile, Data);
 close(datafile) ;
{$i+}
If IoResult <> 0
then begin
 gotoxy(1,1); cleared; Write(' ERROR: cannot find/read ', inName)
end
else
 okayflag := (IoResult = 0);
end;
getdatfile := okayflag;
end;

procedure dofilemenucommands(cmdnumber :integer);
{ execute command in the file menu }
begin
 case cmdnumber of
 newcmd : donew;
 OpenCmd : begin
 readdat := GetDatFile(ok); { readdat true tells sim we have a file }
 GetMap(data.MapName);
 EnableItem(SimMenu, RunCmd);
 EnableItem(EditMenu, copycmd);
 end;
 SaveCmd : begin end; { nothing hear now }
 closecmd : doclose;
 quitcmd : quitrequested := true
 end {of case }
end; { dofilemenucommands }

procedure doeditmenucommands(cmdnumber : integer);
{ execute command in the edit menu }
begin
 if not systemedit(cmdnumber -1) then
 begin
 case cmdnumber of
 copyCmd : begin { save it to the scrap }
 Hndl := NewHandle(Sizeof(ph));
 Hndl := Handle(ph);
 Lnth := zeroscrap;
 end;
end; { doeditmenucommands }
Lnth := ph^.picsize;
Lnth := putsrap(lnth,'PICT',Hndl^);
end;
pasteCmd : begin { get it from the scrap }
doNew;
 . Data.MapName := '';{ empty Mapname => can't save datfile}
end;
end; { of case }
end {if }
end; {doeditmenucommands }

procedure doMapMenucommands(cmdnumber :integer);
{ execute command in the Map menu }
begin
 EraseRect(MapFrame);
 Framerect(MapFrame);
 case cmdnumber of
 NewMap : begin
 SetupWindow;
 readdat := false;
 Data.MapName := ''; { empty Mapname => can't save datfile}
 GetMap('WORLD');
 MakeMap; UnloadSeg(@MakeMap);
{ SetWindowPic(wPtr, ph); }
 { save it to the scrap also , this may not be a good idea }
{ Hndl := NewHandle(Sizeof(ph)); }
{ Hndl := Handle(ph); }
{ Lnths := zeroscrap; }
{ Lnths := ph^.picsize; }
{ Lnths := putsrap(Lnths,'PICT',Hndl^); }
 Enableltem(SimMenu, RunCmd);
 Enableltem(FileMenu, CloseCmd);
 Enableltem(EditMenu, CopyCmd);
 end;

 OpenMap : begin
 MapOpen;
 Enableltem(EditMenu, CopyCmd);
 end;

 FromScrap : Begin
 doNew;
 Data.MapName := '';{ empty Mapname => can't save datfile}
 end;

 SaveMap : mapSave;
end { of case }
end; { doMapmenucommands }

Procedure ActivateEvents;
Begin
 with theEvent Do
 Begin
 whichWindow := WindowPtr(message);
 SetPort(whichWindow);
 If BitAnd(modifiers, activeFlag) <> 0
 then FixEditMenu(False)
 else FixEditMenu(True)
 end
end;
Procedure SetupMenuBar;
Begin
 appleMenu := GetMenu(AppleID); { read menu resources }
 fileMenu := GetMenu(FileID);
 editMenu := GetMenu(EditID);
 SimMenu := GetMenu(SimID);
 MapMenu := GetMenu(MapID);

 InsertMenu(appleMenu, 0);
 InsertMenu(fileMenu, 0);
 InsertMenu(editMenu, 0);
 InsertMenu(SimMenu, 0);
 InsertMenu(MapMenu, 0);
 AddressMenu(appleMenu,'DRVR'); { add desk accessory names }
 DrawMenuBar
end;

Function QuitConfirmed : Boolean;
{ shut the sucker down }
begin
 if quitRequested then
 if windowopen then CloseProgramWindow;
 QuitConfirmed := quitRequested;
end; { quit }

Procedure DoSystemTasks;
Begin
 SystemTask;
 If FrontWindow = NIL Then
 begin
 FixEditMenu(False);
 EnableItem(MapMenu, NewMap);
 EnableItem(MapMenu, OpenMap);
 EnableItem(MapMenu, FromScrap);
 EnableItem(MapMenu, SaveMap);
 EnableItem(EditMenu, PasteCmd);
 DisableItem(fileMenu, CloseCmd);
 end Else
 If FrontWindow <> wPtr Then
 begin
 FixEditMenu(True);
 EnableItem(fileMenu, CloseCmd)
 end { else / if }
end; { dosystemtasks }

Procedure DoCommand(command :longint);
{ execute a menu command }
var
 whichmenu : integer;
 whichitem : integer;
begin
 whichmenu := hiword(command);
 whichitem := loword(command);
 case whichmenu of
 appleid : doapplemenucommands(whichitem);
 fileid : dofilemenucommands(whichitem);
 editid : doeditmenucommands(whichitem);
 simid : begin
 SetupWindow;
 end;
EraseRect(wp->portRect);
simulate; UnloadSeg(@simulate)
end;

Mapid : doMapMenucommands(whichitem);

{ add other program menus here }
end; { case }
hilitemenu(0) { unhighlight menu title }
end; { docommand }

procedure MouseDownEvents;
{ check location and respond to mouse button }
var
 partCode : Integer; { what item was clicked }
begin
 with theEvent do
 begin
 partCode := FindWindow(where, whichWindow);
case partCode of
 inMenuBar : docommand(menuselect(where));
in.syswindow : systemclick(theEvent, whichwindow);
in.content : if whichwindow <> frontwindow
 then selectwindow(whichwindow)
 else doMouseClick(whichwindow);
in.drag : Dragthewindow(whichwindow, where);
in.grow : if whichwindow <> frontwindow
 then selectwindow(whichwindow)
 else resizeWindow(whichwindow, theevent.where);
in.goaway : if trackgoaway(whichwindow, where)
 then doclose;
in.zoomin, in.zoomout :
 if trackbox(whichwindow, where, partcode)
 then zoominout(whichwindow, partcode)

 end { case }
end { with }
end; { mousedownevents }

procedure keydownevents;
{ a key was pressed, do something with char }
var
 ch : char;
begin
 with theEvent do
 begin
 ch := chr(BitAnd(message, charCodeMask)); { get character }
 if BitAnd(modifiers, CmdKey) <> 0 { in command key pressed }
 then doCommand(MenuKey(ch)) { then execute command }
 else doKeypress(ch) { else use character }
 end { with }
end; { keydownevents }

{ MAIN Program }

Begin
 Data.MapName := '';
 ph := PicHandle(NewHandle(0));
Hndl := NewHandle(0);
ppl := Newptr(0);
SetUpMenuBar;
quitRequested := False;
windowOpen := False;
DisplayAboutBox;
Repeat
 DosystemTasks;
 If GetNextEvent(everyEvent, theEvent) then
 case theEvent.what of
 MouseDown : mouseDownEvents;
 KeyDown : keyDownEvents;
 AutoKey : { ignored } ;
 ActivateEvt : ActivateEvents
 end { of Case }
 until QuitConfirmed
end.
UNIT BirdSim(130);

{$O Bird:Units.F: Sim.Lib }
{$U Bird:Units.F: Sim.Lib }

INTERFACE

USES

Memtypes, QuickDraw, OSIntf, ToolIntf, PackIntf, sane, MacPrint,
BirdGlobals,MacExtras, Dialogunit ;

type
tcall = record
 location : point;
 destination : point;
 priority : integer; { 0= can wait .. 2=>go to 2-cntr, 3=> to 3-cntr }
 time : extended;
 jobtyp : integer; { 3 = transfer, 4 = accident }
end;

Procedure Paintcircle(pt:point; r:real);
Procedure Printresult;
Function Findist(pi, p2 : point) : extended ;
Procedure addq (x : tcall);
Procedure Delq;
Function Expo (x : extended) : extended;
Function Norm (u, v :extended) : extended;
Procedure Nextevent;
Procedure Choosbird (pl, p2 : point;
 var distance,wtime, rtime, ftime : extended;
 var avail : integer);
Procedure Genaccident;
Procedure Choosdest (var dest, loc : point;
 priority : integer; var distance : extended);
Procedure Gentransf;
Procedure Fly;
Procedure Simulate;
procedure initialize;

IMPLEMENTATION

Const one = 1;
keyReturn = 36;
keyEnter = 76;

QuestId =1010;
WindowID2 =1001;
AskId =1000; { resource ID for ask Dialog }
RplId =1020; { resource ID for report Dialog}
HospQId =1030;
BirdQId =1040;

IstEditItemAsk = 3;
IstEditItemRpl = 5;
IstEditItemHpQ = 2;
IstEditItemBdQ = 2;
MaxFieldAsk = 10;
MaxFieldRpl = 6;
MaxFieldHpQ = 3;
MaxFieldBdQ = 2;
NMaccidItem = 1;
PerachiItem = 2;
PerctrmItem = 3;
PertranItem = 4;
PercrprItem = 5;
DurrprItem = 6;
percbwthItem = 7;
durwthItem = 8;
PickuptItem = 9;
RespondtItem = 10;

Var

wRec2 : windowRecord;
wPtr2 : WindowPtr;

ItemHandles : ARRAY[1..MaxFieldAsk] of Handle;
Pnt : Point;
dPtr : DialogPtr;
itemNo : integer;

hirgn, tmprgn : rgnhandle;
ansrct, tmpRect : rect;
i, jj, tcount, birdnum, eventyp : integer;
died, destcnt, toofar : integer;
xlim1, xlen, ylim1, ylen : extended;
simtime, clock, min, rtime, ftime : extended;
inref, outref, nextweather : extended;
percint : extended;

refuse : array[1..nbds, 1..4] of integer;
 { 1-repair, 2-weather, 3-trans, 4-accid }
nextrepair : array[1..nbds] of extended;
nextaccident, nexttransfer : tcall;
transferq : array[1..100] of tcall;

DefStatus, DefNum, DefSpeed, DefRange : longint; { default variables }
DefName : String255;

Procedure MakeHist(M, N : Integer; Hst: Ivect; F : Rect);
{ Make a histogram of the values in Hst }
{ each N values to be grouped together }
{ M is the Max Index of Hst to be considered. (N should div M+1) }

Var

P1, P2, P3, P4, P5 : Point;
Bar : Rect;
I, J, Num, tmp : Integer;
Ht, Wth, dl, Max : Integer;
Count : Ivect;
Hmult : real;
Pat : Array[1..5] of Pattern;

Begin
PenPat(Black);
Pat[1]:=White; Pat[2]:=LtGray;
Pat[3]:=Gray; Pat[4]:=DkGray; Pat[5]:=Black;
PI := F.TopLeft;
P2 := F.BotRight;
P3.h := P1.h; P3.v:=P2.v;
Ht := P2.v - P1.v;
Wth := P2.h - P1.h;
Num := (M+1) div N;
dl := Wth div Num;
Max := 0;
For I := 0 to Num-1 do
 begin { partition Hst into Num subgroups of size N, then sum }
 tmp := 0;
 for J := 0 to N-1 do tmp := tmp+Hst[(I*N)+J];
 Count[I] := tmp;
 if (tmp > Max) then Max := tmp;
 end;
 Hmult := Ht / Max; { ******** error if Max = 0 ***** }
P5.v := P2.v;
For I := 0 to (Num-1) do
 begin
 P4.h := P1.h + I*dl;
P4.v := p2.v - round(Count[I]*Hmult);
P5.h := p4.h + dl;
moveto(p5.h,p5.v); Lineto(p5.h,p5.v-1);
Pt2Rect(p4,p5,Bar);
FillRect(Bar,Pat[((I mod 5) +1)]);
FrameRect(Bar) ;
 end;
moveto(p1.h,p2.v); Lineto(p2.h,p2.v);
FOR I:= 0 TO MAX DO
 begin
 dl := round(i*Hmult);
moveto(p1.h,p2.v-dl); lineto(p1.h+1,p2.v-dl);
 end;
end; { of MakeHist }
idurrpr := trunc(durrpr);
ipercbwthr := round(percbwthr*720.0);
idurwthr := trunc(durwthr);
ippleukt := trunc(pickupt);
iresponse := trunc/respondt);

Selitext(DPtr, IstEditItemAsk, 0, 0);
NumToString(iNMaccid,s);
NumToString(iPerachi,s);
NumToString(iperctrma,s);
NumToString(ipertranhi,s);
NumToString(iPercrpr,s);
NumToString(idurrpr,s);
NumToString(idurwthr,s);
NumToString(ipickupt,s);
NumToString(irespondt,s);

Procedure DialogToAsk;
var
 s : Str255;
 inmaccid,iperachi,iperctrma,ipertranhi,ipercrpr, idurrpr : longint;
ipercbwthr,idurwthr,ipickupt, irespondt : longint;
begin
 with Data do
 begin
 DialogtoVar(s, 6,NMaccidItem);
 DialogtoVar(s, 6,PerachiItem);
 DialogtoVar(s, 6,perctrmaItem);
 DialogtoVar(s, 6,pertranhiItem);
 DialogtoVar(s, 6,PercrprItem);
 DialogtoVar(s, 6,durrprItem);
 DialogtoVar(s, 6,percbwthrItem);
 DialogtoVar(s, 6,durwthrItem);
 DialogtoVar(s, 6,pickuptItem);
 DialogtoVar(s, 6,respondtItem);

 nmaccid := inmaccid;
 Perachi := iperachi * 0.01;
 perctrma := iperctrma * 0.01;
 pertranhi := ipertranhi * 0.01;
 percrpr := ipercrpr/168.0;
 durrpr := idurrpr;
 percbwthr := ipercbwthr/720.0;
 durwthr := idurwthr;
 pickupt := ipickupt;
 respondt := irespondt;
 end;
end;

Procedure Question(query : str255; var answer : str255);
{ sets up dialog to ask 'query' and get answer 'answer' }
var
 itemRect : Rect;
 itemType, itemNo : integer;
 item : Handle;
begin
 Flushevents(Everyevent, 0);
dPtr := GetNewDialog(QuestID, NIL, Pointer(-1));
ParamText(query,'','','');
itemNo := 4;
GetDItem(dPtr, itemNo, itemType, item, itemRect);
 SelIText(dPtr, itemNo, 0, 0);
 Repeat
 ModalDialog(NIL, itemNo);
 Until (itemNo = ok);
 GetIText(item, answer);
 DisposeDialog(dPtr);
end;

Procedure SetUpDialog(ID, MaxField, IstEditltem: integer);
var
 itemType, itemNo :
 item : Handle;
 editArea, ButtonArea, itemRect : Rect;
begin
 Flushevents(Everyevent, 0);
 dPtr := GetNewDialog(ID, NIL, Pointer(-1));
 if dPtr = NIL then ExitToShell;
 for itemNo := 0 to MaxField - 1 do
 begin
 GetDItem(dPtr, itemNo + IstEditltem, itemType, item, itemRect);
 if item = NIL then ExitToShell;
 itemHandles[itemNo + 1] := item;
 end; { for }
 editArea := dPtr^.portRect; { modify this }
 buttonArea := editArea;
 GetDItem(dPtr, 1, itemType, item, itemRect); { 1'st button }
 with itemRect do
 begin
 top := top - 4;
 editArea.bottom := top;
 buttonArea.top := top;
 end;
end; { setupdialog }

Procedure DoAsk;
Var
 itemType : integer;
 item : Handle;
 editArea, ButtonArea, itemRect : Rect;
begin
 SetUpDialog(AskID, MaxFieldAsk, IstEditltemAsk);
 OutlineOK(dPtr);
 AsktoDialog;
 Repeat
 ModalDialog(NIL, itemNo);
 Until (itemNo = ok) or (itemNo = Cancel);
 if itemNo = ok then Dialogtoask;
 DisposeDialog(dPtr);
 end; { DoAsk }

Procedure RpltoDialog;
var
s : string255;
i : integer;
Dat : array[1..6] of longint;
tmp2,tmp3,tmp4 : real;
itmp : longint;

Begin
for i:=1 to MaxFieldRpl do dat[i]:=0;
{ dat contains the edit items, index i corresponds to item i }
tmp2 := 0; tmp3 := 0; tmp4 := 0;
With Data do
begin
 itmp:= round(Simtime*52/Minyear);
 NumToString(itmp,s);
 s := Concat(s,' Week Simulation Time ');
 ParamText(s,' ',",");
 for i:=1 to Nbds do
 with Bird[i] do
 begin
 dat[1] := dat[1] + nflts; { total flights }
 tmp2 := tmp2 + CallDist/convert; { total distance }
 tmp3 := tmp3 + waitt; { wait time }
 tmp4 := tmp4 + Waitt + reset; { total time }
 end;
 Dat[2] := round(tmp2/dat[1]); { find averages per flight }
 Dat[5] := Num2LongInt(outref); { out of range refused }
 Dat[6] := Num2LongInt(inref); { in range refused }
SeliText(dPtr, IstEditItemRpl, 0, 0);
 for i:=1 to MaxFieldRpl do
 begin
 NumToString(dat[i], s) ;
 vartoDialog(s,i);
 end;
end;
end;

Procedure HospReport(Num: integer); {what happened at Num hospital }
var
 i, j, k, d2 : integer;
 await, aresc : integer;
 Dat : array[1..7] of longint;
 Ds : array[1..7] of string255;
 s,s2,s3 : string255;
 x,y,del : integer;
 k1,k2,k3 : longint;

begin
 x:=1;y:=40;del:=24;
 EraseRect(wptr2^.portRect);
 with Data do
 begin
 k := 0; await := 0; aresc := 0;
 gotoxy(1,2);
 writeln(name:10, ' Status =',status:3, ' Flights Received =',rcvd:6);
 end;
end;

Procedure MyNumtoString(k:longint; n:integer;var s:string255);
begin
 NumToString(k, s) ;
 while(length(s) < n) do Insert(' ',s,l);
end;
if (Numinest > 0) then
begin
 Moveto(x,y);
 Drawstring(' craft Rnge N-Flts Av Rsc Av wait Flt Hrs Av Dst');
y:=y+11;
 Moveto(x,y);
 Drawstring(' (min.) (min.) /week ');
 for i := 1 to numinest do
 begin
 y:=y+del;
 Moveto(x,y);
 with bird[fleet[i]] do
 if (nflts > 0) then
 begin
 dat[1]:= i;
 dat[2]:= round(range/convert);
 dat[3]:= nflts;
 dat[4]:= round((resct + waitt)/nflts);
 dat[5]:= round(waitt/nflts);
 dat[6]:= round(168.0*fltime/simtime);
 dat[7]:= round((calldist/convert)/nflts) ;
 k := k + nflts;
 wait := wait + round(waitt);
 aresc := aresc + round(resct + waitt);
 for j:=1 to 7 do MyNumToString(dat[j],9,ds[j]);
 s := concat(ds[1],ds[2],ds[3],ds[4],ds[5],ds[6],ds[7]);
 DrawString(s);
 d2 := trunc(del/2)-3;
 { draw an arrow pointing at the average in the Histogram }
pnt.v:= y-d2;
 pnt := round(350+(float(dat[7])/500.0)*150.0);
 { 500 mile range of the histogram, 150 = length of histogram }
 { things will need to be changed if craft have range >500 mi}
 pnt.w:= pnt.v-4;
 Lineto(pnt.w,pnt.v-4); Lineto(pnt.w,pnt.v);
 moveto(pnt.w-2,pnt.v-3);
 Lineto(pnt.w,pnt.v+2,pnt.v-3);
 SetRect(tmpRect, 350,y-d2,500,y+d2);
 PenPat(Black);
 MakeHist(49,2 ,dHist , tmpRect);{ the 49 => 50 int => 500 mi}
 end;
 end;
 y:=y+12;
 Moveto(x,y);
 DrawString('');
y:=y+12;
 Moveto(x,y);
if (k > 0) then
begin
 kl:=k; k2:=round(aresc/k); k3:= round((await/k) ;
 MyNumtoString(k1,9,s); MyNumtoString(k2,9,s2); MyNumtoString(k3,9,s3);
 s := Concat(' ',s,s2,s3);
 DrawString(s);
end;
end;

Procedure DoReport;
Var
 itemType,cnum : integer;
begin { of DoReport }
 wPtr2 := GetNewWindow(WindowID2, @Wrec2, Pointer(-1));
 SetPort(wPtr2); { new window to put hosp reports in }
 ClipRect(wPtr2^.portRect);
 cnum := 1;

 SetupDialog(RplID,MaxFieldRpl,IstEditItemRpl)
 OutlineOK(dPtr);
 RpltoDialog;
 HospReport(cnum);

 Repeat
 SetPort (wPtr2);
 ModalDialog(NIL, itemNo);
 if (itemNo = 1) then { display next hosp report } begin
 cnum := cnum + 1; if (cnum > Data.numhsp) then cnum := 1;
 HospReport(cnum);
 SysBeep(5);
 end;
 if (itemNo = 3) then { Send Hosp reports to printer } begin
 PrOpen; { lets try printing it }
 hPrint := THPrint(NewHandle(sizeof(TPrint)));
 PrintDefault(hPrint);
 if PrJobDialog(hPrint) then begin
 thePPort := PrOpenDoc(hPrint,NIL,NIL);
 PrOpenPage(thePPort,NIL);
 printresult;
 PrClosePage(thePPort);
 PrCloseDoc(thePPort);
 PrPicFile(hPrint,NIL,NIL,NIL,prStatus)
 end;
 DisposHandle(Handle(hPrint));
 PrClose;
 end;

 Until ((itemNo = 2) or (itemNo = 4)) ;{ 2=ok button, 4=Another sim }
 DisposDialog(dPtr);
 closewindow(wptr2);
 SetPort(wPtr)
 end; { DoReport }

Procedure DoHospDiag(var Name: string255; var Status, Number : integer);
Var
 s : String255;
 tmp : Longint;
begin
 SetupDialog(HospQId,MaxFieldHpQ, IstEditItemHpQ) ;
 OutlineOK(dPtr);
 tmp := DefStatus;
 NumToString(tmp,s);
 varToDialog(s,2);
 tmp := DefNum;
 NumToString(tmp,s);
 varToDialog(s,3);
SeliText(dPtr,IstEditItemHpQ,0,0);
Repeat
 ModalDialog(NIL, itemNo);
 Until (itemNo = ok) ;
DialogtoVar(Name,8,1);
DialogtoVar(s,6,2); StringToNum(s,tmp); Status := tmp;
DialogtoVar(s,6,3); StringToNum(s,tmp); Number := tmp;
DisposDialog(dPtr);
DefStatus := Status;
DefNum := Number;
end; { DoHospDiag }

Procedure DoBirdDiag(Name :string255; Num:integer; var Speed,Range:extended);
Var
 s : String255;
 tmp : Longint;
begin
 SetupDialog(BirdQId,MaxFieldBdQ, IstEditItemBdQ) ;
 OutlineOK(dPtr);
 tmp:= Num;
 NumToString(tmp,s);
 s := Concat('Rotorcraft: #',s); { identify which bird }
 ParamText(s,'','');
 tmp := DefSpeed; NumToString(tmp,s); vartoDialog(s,1);{ put def val}
 tmp := DefRange; NumToString(tmp,s); vartoDialog(s,2);
 SeliText(dPtr,IstEditItemBdQ,0,MaxInt);
 Repeat
 ModalDialog(NIL, itemNo);
 Until (itemNo = ok) ;
 DialogtoVar(s,6,1); StringToNum(s,tmp); Speed := tmp;
 DialogtoVar(s,6,2); StringToNum(s,tmp); Range := tmp;
 DisposDialog(dPtr);
 DefSpeed := trunc(Speed);
 Defrange := trunc(Range);
end; { DoBirdDiag }

Procedure Paintcircle;
var box : rect;
i : integer;
begin
 i := round(r);
 Setrect(box, pt.h - i, pt.v - i, pt.h + i, pt.v + i);
 FrameOval(box);
end;

Function Findist ;
var distl,tpl,tp2 : extended;
begin
 { gotoxy(2,1);clear;write(' FINDIST '); }
 tpl:=pl.v - p2.v;
 tp2:=pl.h - p2.h;
\[\text{distl} := \text{tpl}^2 + \text{tp2}^2; \]

\[\text{if (\text{distl} < 0.001) then distl := 0.0; } \]

\[\text{findist} := \sqrt{\text{distl}}; \]

\[\text{end;} \]

procedure clickpoint (var pt : point);
var
 h, v : integer;
begin
 repeat
 until button;
 repeat
 getmouse(pt);
 until not (button);
 end;
end;

procedure loccenters; {proc to locate and initialize hospitals}
var
 done : boolean;
 pt, pl, p2, p3 : point;
 i, j, h, v : integer;
 itemp : longint;
 s : string255;
begin
 gotoxy(1,1);
 write(' Use mouse to indicate a distance of 100 miles ');
 repeat
 until button;
 getmouse(pl);
 p2 := pl;
 penpat(Gray);
 penmode(patXor);
 repeat
 moveto(pi.h,pi.v);
 lineto(p2.h, p2.v);
 repeat
 Getmouse(p3);
 until not Equalpt(p2, p3);
 moveto(pi.h, pi.v);
 lineto(p2.h, p2.v);
 p2 := p3;
 until not Button;
 Penpat(black);
 Penmode(Patcopy);
 moveto(pi.h, pi.v);
 lineto(p2.h, p2.v);
 with Data do
 begin
 numbird:= 0;
 convert := findist(pl,p2)/100.0;
 done := false;
 i := 1;
 gotoxy(1,1);
 write('locate hospitals by clicking with mouse ');
 gotoxy(1,2);
 writeln(' click in "OK" box after all hospitals have been located ');
 while (done = false) do
 begin
 clickpoint(pt);
if ptinrect(pt, ansrc) then
 done := true
else
 begin
 paintcircle(pt, 2);
 with hosp[i] do
 begin
 location.h := pt.h;
 location.v := pt.v;
 DoHospDiag(Name, Status, numinest);
 if (numinest > 0) then
 begin
 paintcircle(pt, 4);
 for j := 1 to numinest do
 begin
 numbird := numbird + 1;
 with bird[numbird] do
 begin
 DoBirdDiag(Name, j, speed, range);
 speed := speed * convert / 60.0;
 range := (range * convert);
 base := location;
 jobtyp := 0;
 timer := -1.0;
 busy := false;
 nflts := 0;
 fltime := 0.0;
 rptime := 0.0;
 waitt := 0.0;
 rest := 0.0;
 cumtot := 0;
 end;
 fleet[j] := numbird;
 end; { of for }
 end;
 if (status < 3) then
 begin
 Question('No. of ground transport emergencies this center treats per year?', s);
 stringToNum(s, itemp);
 totemerg := totemerg + itemp;
 cumtot := totemerg;
 end;
 rcvd := 0;
 emrgperday := 0;
 end;
 i := i + 1;
 moveto(ansrc.topleft.h + 3, ansrc.botright.v - 1);
 Drawstring('OK');
 Framerect(ansrc);
 { DrawPicture(ph ,MapFrame); }
 Framerect(MapFrame);
end
end;

numhsp := i - 1
end
end;

procedure Rinput;

var i, j, itmp : Integer;
tmp : extended;
strl : string255;
procedure iwrtrd(strl : string255; var itmp : integer);
begin
 gotoxy(1,2); cleared;
 write(strl,itmp:5,' ');
 readln(strl);
 if (length(strl) > 0) then itmp := round(Str2Num(strl));
end;

procedure wrtrd(strl : string255; var tmp : extended);
begin
 gotoxy(1,2); cleared;
 write(strl,tmp:8:2,' ');
 readln(strl) ;
 if (length(strl) > 0) then tmp := Str2Num(strl);
end;

begin
 with Data do
 begin
 totemrg := 0;
 for i:=1 to numhsp do
 begin
 with hosp[i] do
 begin
 gotoxy(1,1); cleared; write (' Hospital Number : ',' ,i);
 iwrtrd(' status = ',status);
 if (numinest > 0) then
 for j:=1 to numinest do
 begin
 with bird[fleet[j]] do
 begin
 speed := speed*60.0/convert;
 range := range/convert;
 gotoxy(1,1); cleared; write (' Rotorcraft Number : ',' ,j);
 itmp:=round(speed) ;
 iwrtrd(' speed = ',' ,itmp);
 speed:=itmp;
 itmp:=round(range);
 iwrtrd(' range = ',' ,itmp);
 range:=itmp;
 speed := speed * convert / 60.0; { convert back for screen }
 range := (range * convert);
 end;
 if (status < 3) then
 begin
 if (i=1) then itmp := cumtot
 else itmp := (cumtot - hosp[i-1].cumtot);
 gotoxy(1,1); cleared; write(' Hospital Number : ',' ,i);
 iwrtrd(' No. of ground transport emergencies per year : ',' ,itmp);
 totemrg := totemrg + itmp;
 cumtot := totemrg + itmp;
 end;
 gotoxy(1,1); cleared;
 gotoxy(1,2); cleared;
 rcvd:=0; emrgperday:=0;
 end
 end
 end
end;

Procedure Drawranges;
var i, irange : integer;
 rl : rect;
begin
 with Data do
begin
for i := 1 to numbird do
with bird[i] do
begin
 irange := trunc(range);
 setrect(rl, base.h - irange, base.v - irange, base.h + irange, base.v + irange);
 FrameOval(rl);
end
end;

procedure locrect;
var
 i, h1, h2, v1, v2 : integer;
 rl, r2 : rect;
 done : boolean;
 pl, p2, p3 : point;
 s : str255;
 itemp : longint;
 x1, x2, y1, y2 : integer;
begin
 with Data do
 begin
 gotoxy(1,2); cleareol; gotoxy(1,1); cleareol;
 writeln(' Use mouse to enclose high accident regions ');
 done := false;
 i := 1;
 rgncnt := 0; { count of # of points used to def region }
 repeat { until done = true }
 repeat
 until button;
 getmouse(pl);
 p2 := pl;
 rgnpts[i] := pl; { this is to keep a record of the region defining points }
 PenPat(Gray);
 Penmode(PatXor);
 repeat
 Pt2Rect(pl, p2, rl);
 FrameRect(rl);
 repeat
 GetMouse(p3);
 until not EqualPt(p2, p3);
 FrameRect(rl);
 p2 := p3;
 until not Button;
 rgnpts[i+1] := p3; { 2nd coord of region defining rect }
 i := i + 2;
 Penpat(Black);
 PenMode(PatCopy);
 if ptinrect(pl, ansrct) then
 done := true
 else
 begin
 FrameRect(rl);
 tmprgn := Newrgn;
 rectrgn(tmprgn, rl);
 Unionrgn(hirgn, tmprgn, hirgn);
 DisposeRgn(tmprgn);
 rgncnt := rgncnt + 2; { count of # of points used so far }
 end;
 until (done = true); { finished defining region }
 pl := rgnpts[i];
end;
\begin{verbatim}
x1:=p1.h; y1:=p1.v; x2:=x1; y2:= y1; { looking for smallest and largest }
for i:=2 to rgncnt do
 begin
 p3:=rgnpts[i];
 if (p3.h < x1) then x1 := p3.h;
 if (p3.h > x2) then x2 := p3.h;
 if (p3.v < y1) then y1 := p3.v;
 if (p3.v > y2) then y2 := p3.v;
 end;
 xlim2 := x1; { smallest x-val of hirgn }
 xlen2 := (x2-xl)/32767.0; { scaled dist to highest x val }
 ylim2 := y1; { smallest y val }
 ylen2 := (y2-yl)/32767.0; { scaled dist to highest y val }
end;
Drawranges;
end

procedure Redraw;
var r : rect;
i,irange : integer;
ans : char;
pt : point;
begin
 EraseRect(theport^.portRect);
 moveto(ansrct.topleft.h+3,ansrct.botright.v-1);
 Drawstring('OK');
 Framerect(ansrct);
 DrawPicture(ph ,MapFrame);
 Framerect(MapFrame);
 with Data do
 begin
 for i:=1 to numhsp do
 with hosp[i] do
 paintcircle(location, status);
 PenPat(Gray);
 Penmode(PatXor);
 framRgn(hirgn);
 Penpat(Black);
 PenMode(PatCopy);
 end;
 Drawranges;
end;

Procedure randomize; { start new random sequence }
var time : longint;
begin
 GetDateTime(time);
 RandSeed := time;
end;

Function getdatfile(VAR done : Boolean) : Boolean; { Now in Bird4.pas }
var okayflag : boolean;
folder, Filename : String[64];
reply : SFReply;
begin
 okayflag := false;
\end{verbatim}
inName := ''; if GetFileName(reply,'DATA') then inName := reply.fName;
done := length(inName) = 0;
If not done Then begin
 {$i-} Reset(datafile,inName);
 read(datafile,Data);
 close(datafile);
 {$i+}
 If IoResult <> 0 then begin
 gotoxy(1,1); cleareol; Write(' ERROR: cannot find/read ', inName)
 end
 else
 okayflag := (IoResult = 0);
end;
getdatfile := okayflag;
end;

Function putdatfile(VAR done : Boolean) : Boolean;
var
 okayflag : boolean;
 folder, Filename : String[64];
 reply : SFReply;
begin
 okayflag := false;
 outName := ''; if makeFileName(reply,'Save file as ', outName) then outName := reply.fName;
done := length(outName) = 0;
If not done Then begin
 {$i-} FileType := 'DATA';
 Rewrite(datafile, outName) ;
 write(datafile, Data);
 close(datafile);
 FileType := 'BINA';
 {$i+}
 If IoResult <> 0 then begin
 gotoxy(1,1); cleareol;
 Write(' ERROR: cannot create ', outName, ' press "return" '); readln;
 end
 else
 okayflag := (IoResult = 0);
end;
putdatfile := okayflag;
end;

procedure Initvars;
var i,j : integer;
begin;
with Data do begin
 DefStatus :=3;
 DefNum :=1;
 DefSpeed :=150;
 DefRange :=150;
 birdnum:=0; tcount:=0; totemerg := 0;
 clock := 0.0; avwait := 0.0; avresc := 0.0;
inref := 0.0; outref := 0.0;
died:=0; toofar:=0;
xliml := MapFrame.topleft.h; xlen := (MapFrame.botRight.h - xliml)/32767;
yliml := MapFrame.topleft.v; ylen := (MapFrame.botRight.v - yliml)/32767;
for i := 1 to nbds do
 with Bird[i] do
begin
 for j:=0 to 50 do dHist[j]:=0;
 busy := false; timer := 0; nflts := 0; fltime := 0; rptime := 0;
 wait := 0; resct := 0; calldist := 0;
end;
for i:=l to numhsp do
 with hosp[i] do
begin
 rcvd:=0;
 emrgperday:=0
end;
end;

procedure initialize;
var
 i : integer;
 itemp : longint;
 r,rl : rect;
 s : str255;
 rt,ok : Boolean;
 pt,ptl : point;
begin
randomize;
Initvars;
ClipRect(MapFrame);
DrawPicture(ph ,MapFrame);
Framerect(MapFrame);
ClipRect(theport^.portRect);
pt :=MapFrame.botRight;
ptl :=MapFrame.topleft;
SetRect(ansrct,pt.h-25,ptl.v-15, pt.h,ptl.v);
moveto(ansrct.topleft.h+3,ansrct.botright.v-1);
Drawstring('OK');
Framerect(ansrct);
with Data do
begin
 if (readdat = true) then
 begin
 hirgn := Newrgn;
 i:=l;
 repeat
 pt2rect(rgnpts[i],rgnpts[i+l],rl);
 tmprgn := Newrgn;
 rectrgn(tmprgn, rl);
 Unionrgn(hirgn, tmprgn, hirgn);
 DisposeRgn(tmprgn);
 i:=i+2;
 until (i > rgncnt);
 end
 else
 begin
 hirgn := Newrgn;
 moveto(ansrct.topleft.h+3,ansrct.botright.v-1);
 Drawstring('OK');Framerect(ansrct);
 end
 loccenters; { procedure to locate centers }
locrect: { procedure to locate high accid regions }
end; { of data definition section }

Redraw;
if (readdat = true) then
begin
 Question('Do you want to enter new rotor craft data ? (Y/N) ',s);
 if (s = 'Y') or (s = 'y') then Rinput;
end;

Question('What % of the accidents occur in the high accident region? ',s);
stringToNum(s,itemp);
percin := 0.01 *itemp;
percinl := percin * 65535.0 - 32768.0;
DoAsk;

rt:=false;
If (length(MapName) > 0) then
begin
 Question('Do you want to Save the Data in a file ? (Y/N) ',s);
 if (s = 'Y') or (s = 'Y') then rt := putdatFile(ok);
end;

Question('Enter simulation time (in weeks): ',s);
stringToNum(s,itemp);

ClipRect(MapFrame);
Redraw;
ClipRect(theport^.portRect);

gotoxy(1,1); cleareol;
write(' ',itemp:5,' Week Simulation Time');

launchdist := (10 * convert);
simtime := itemp * minyear / 52;
nmwhtr := percbwthr * minyear/ durwthr;
nmrpr := percrpr * minyear / durrpr;

end

Procedure Printresult; {what happened }
var
 i, j, k : integer;
 tmp : real;
begin
 with Data do
 begin
 Gotoxy(l,l); cleareol;
 writeln(' ',round(simtime*52/minyear):4,' Week Simulation Time: ');

 writeln('Cntr Stat Rcvd Bird Rnge total Av. resc. Av. wait Flt Hrs. Av. Dist');
 writeln('------------- num. ----- flts (min.) (min.) /week');
 for j := 1 to numhsp do
 begin
 writeln(j:4, hosp[j].status :3, hosp[j].rcvd : 6);
 if hosp[j].numinest > 0 then
 begin
 for i := 1 to hosp[j].numinest do
 begin
 writeln(' ',hosp[j].numinest :3,' Flights (min.): ');
 writeln(' ',hosp[j].avresc :4,' Av. resc. Flights: ');
 writeln(' ',hosp[j].avwait :4,' Av. wait Flights: ');
 writeln(' ',hosp[j].flthrs :4,' Flt Hrs. Flights: ');
 writeln(' ',hosp[j].avdist :4,' Av. Dist Flights: ');
 end;
 end;
 end;
 end;
end;
with bird[hosp[j].fleet[i]] do
if (nflts > 0) then
begin
 tmp := (calldist/convert)/nflts;
 write(' ');
 write(i :4, round(range / convert) :8, nflts :6);
 writeln((resct+waitt)/nflts :10:1, waitt/nflts :9:1, (168.0 * fltime / simtime) :

 k := k + nflts;
 avwait := avwait + waitt;
 avresc := avresc + (resct+waitt);
end
end;
end;
writeln (' ');
write(k : 17, ' ');
if (k > 0) then
write(avresc / k :7 : 1, avwait / k : 10: 1);
writeln(' ');
write('There were ', Num2lnteger(outref) : 5, ' " out of range " calls and ');
writeln(Num2lnteger(inref) : 3, ' non-responses due to ');
writeln('"in-service" or "in-repair" ');
end
end;

Procedure addq;
var
 i, j : integer;
begin
 with Data do
 begin
 x.time := clock;
 paintcircle(x.location,1);
 if (tcount = 0) then
 transferq[1] := x
 else
 begin
 j := tcount + 1;
 for i := tcount + 1 downto 2 do
 if (transferq[i - 1].priority < x.priority) then
 begin
 transferq[i] := transferq[i - 1];
 j := i - 1;
 end;
 transferq[j] := x;
 end;
 tcount := tcount + 1;
 procedure Delq;
 var
 i : integer;
 begin
 with Data do
 begin
 tcount := tcount - 1;
 for i := 1 to tcount do
 transferq[i] := transferq[i + 1]
Function Expo;

{ x is the average number of events per year }
{ the result is the exponential waiting time until next event }

var
 r : longint;
y : extended;

begin
 { gotoxy(2,1);cleareol;write(' EXPO '); }
 r := ABS(random) + one;
y := -ln(r / 32768);
expo := (y * minyear)/ x;
end;

Function Norm;

{ produces normal variate with mean u and st dev=v }

var
 ul, u2 : extended;

begin
 ul := abs(random / (32767));
u2 := abs(random / (32767));
norm := u + v * sqrt(-2 * ln(ul)) * cos(2 * pie * u2);
end;

Procedure Nextevent;
{ proc to choose next event, update clock, timers }
{ eventype 0->free,1->repair,2->weather,3->transfer,4->accid }

var
 i : integer;
 min : extended;

begin
 { gotoxy(2,1);cleareol;write(' NEXTEVENT '); }
 with Data do
 begin
 min := 1E+20;
 if min > nextaccident.time then
 begin
 min := nextaccident.time;
 eventyp := 4;
 end;
 if min > nexttransfer.time then
 begin
 min := nexttransfer.time;
 eventyp := 3;
 end;
 for i := 1 to numbird do
 begin
 if ((bird[i].busy = true) and (min > bird[i].timer)) then
 begin
 min := bird[i].timer;
 eventyp := 0;
 birdnum := i;
 end;
 if (min > nextrepair[i]) then
 begin
 min := nextrepair[i];
 eventyp := 1;
 birdnum := i;
 end;
 end;
 if min > nextweather then
 begin
 min := nextweather;
 eventyp := 2;
 end;
 end;
end;
end;
nextaccident.time := nextaccident.time - min;
nexttransfer.time := nexttransfer.time - min;
for i := 1 to numbird do
 begin
 bird[i].timer := bird[i].timer - min;
 nextrepair[i] := nextrepair[i] - min;
 end;
nextweather := nextweather - min;
clock := clock + min;
end
end;

Procedure choosbird:
{ wtime=time to arrive at scene, rtime=total rescue time (after start) }
{ ftime=flight time, avail 0-> found bird,1->in range but busy,2-> none in range }
{ pl= loc of call, p2= loc of destination of call }
{ distance = dist from call to his destination }

var
 i : integer;
 min, distl, dist3 : extended;
 dst : array[1..nbds] of extended;
begin
 gotoxy(2,1);cleareol;write(' CHOOSBIRD ');
 with Data do
 begin
 avail := 2;
 min := 1E+20; { min dist to avail bird so far }
 for i := 1 to numbird do
 with bird[i] do
 begin
 dist1 := findist(pl, base);
 dst[i] := dist1;
 if ((distl < range) and (avail = 2)) then avail := 1;
 if ((min > distl) and (busy = false)
 and ((distl + distance) < (range + range)))
 then
 begin
 avail := 0;
 birdnum := i;
 min := dist1;
 end;
 end;
 if (avail = 2) then
 outref := outref + 1;
 if (avail = 1) then
 begin
 inref := inref + 1;
 for i := 1 to numbird do
 begin
 if dst[i] < min then
 begin
 if ((bird[i].busy = true) and (bird[i].range > dst[i])) then
 case bird[i].jobtyp of
 1 : refuse[i, 1] := refuse[i, 1] + 1;
 2 : refuse[i, 2] := refuse[i, 2] + 1;
 3 : refuse[i, 3] := refuse[i, 3] + 1;
 end;
 end;
 end;
 end;
end;
end;
if (avail = 0) then
begin
 dist3 := findist(p2, bird[birdnum].base);
 ftime := (min + distance + dist3) / bird[birdnum].speed;
 wttime := respondt + min / bird[birdnum].speed;
 rtime := wttime + pickupt + distance / bird[birdnum].speed;
 bird[birdnum].timer := ftime + respondt + pickupt;
 bird[birdnum].loc := p1;
 bird[birdnum].des := p2;
 i := trunc((min/convert)/10.0); if (i > 50) then i:=50;
 ** if range is > than 500 this must change ! **
 ** dHist[l] = # fits wth dst in [10,20) **
 bird[birdnum].CallDist := bird[birdnum].CallDist + min;
end { of avail= 0 loop }
end; { of with data }
end; { of choosbird }

Procedure Genaccident;
var
temp : extended;
begin
 gotoxy(2,1);cleareol;write(' GENACCIDENT ');
with Data do
begin
 with nextaccident do
 begin
 jobtyp := 4;
 time := expo(nmaccid);
 temp := random;
 if temp < percinl then
 repeat
 location.h := trunc(abs(random) * xlen2 + xlim2);
 location.v := trunc(abs(random) * ylen2 + ylim2);
 until (ptinrgn(location, hirgn))
 else
 begin
 location.h := trunc(abs(random) * xlen + xlim1);
 location.v := trunc(abs(random) * ylen + ylim1);
 end;
 { clean this up. }
 temp := abs(random) / 32768;
 if (temp < perachi) then
 priority := 3
 else
 priority := 2;
 end
end;
end;

Procedure Choosdest;
var
 i : integer;
 dist, dist1 : extended;
begin
 gotoxy(2,1);cleareol;write(' CHOOSDEST ');
with Data do
begin
 dist := 1.0E30;
 for i := 1 to numhsp do
 begin

distl := findist(loc, hosp[i].location);
if (distl < dist) then
 if (hosp[i].status >= priority) then
 begin
 dist := distl;
 dest := hosp[i].location;
 destcntr := i;
 end
 end;
distance := dist;
end
end;

Procedure Gentransf;
var
 i, temp2 : integer;
 templ : extended;
 found : boolean;
begin
 { gotoxy(2,1); cleared; write(' GENTRANSF '); }
 { perctrma is the % of emerg which need transfer }
 { totemerg will be the total # of emerg at centers with priority < 3 }
 with Data do
 begin
 if (totemerg = 0) then
 nexttransfer.time := simtime
 else
 begin
 templ := perctrma * totemerg;
 temp2 := abs(random) mod (totemerg) + 1;
 nexttransfer.time := expo(templ);
 nexttransfer.jobtyp := 3;
 i := 0;
 found := false;
 repeat
 i := i + 1;
 if ((hosp[i].status < 3) and (hosp[i].cumtot >= temp2)) then
 found := true;
 until (found = true);
 nexttransfer.location := hosp[i].location;
 templ := abs(random) / 32768.0; { assume 25% are high priority }
 if (templ < pertranhi) then
 nexttransfer.priority := 3
 else
 nexttransfer.priority := 2;
 end
 end
end;

Procedure Fly;
var
 distance, wtime, ftime : extended;
 avail, priority : integer;
 locc, destt : point;
 worthit : boolean;
begin
 { gotoxy(2,1); cleared; write(' FLY '); }
 with Data do
 begin
 worthit := true;
 locc := transferq[l].location;

priority := transferq[l].priority;
if (transferq[l].jobtyp=3) then priority := 3;
{ kludge to insure that dest for a transfe
choosdest(destt, locc, priority, distance);
if
(distance < launchdist)
then begin
 worthit := false; penpat(white);
paintcircle(locc,1); { ********** }
penpat(black);
 delq;
end;
if (worthit = true) then
begin
choosbird(locc, destt, distance, wtime, rtime, ftime, avail);
if (avail = 0) then { birdnum is global var identifying which bird }
begin
 with bird[birdnum] do
 begin
 hosp[destcntr].rcvd := hosp[destcntr].rcvd + 1;
nflts := nflts + 1;
ftime := ftime + ftime;
waitt := waitt + wtime + (clock - transferq[l].time);
rect := rect + rtime + (clock - transferq[l].time);
jobtyp := transferq[l].jobtyp;

 moveto(base.h,base.v);
 lineto(loc.h, loc.v);
 lineto(des.h, des.v);
 lineto(base.h, base.v);
 end; { of with }
 delq;
end} of if (avail = 0)
ELSE
begin
if (transferq[l].priority = 3) or (avail = 2) then
begin
if (priority = 3) then
begin
 died := died + 1;
moveto(locc.h-2,locc.v-2);
lineto(locc.h+2,locc.v+2);
end;
if (avail = 2) then
begin
 toofar := toofar + 1;
moveto(locc.h-2,locc.v+2);
lineto(locc.h+2,locc.v-2);
end;
 delq;
end; { priority=3 or avail=2 }

{ ****** }
{ gotoxy(1,2);cleareol; write(' tfar= ', toofar:4,' inque= ',tcount,' dist = ',di
{ ****** }

end} of ELSE }
end} of worthit = true }
end
end;

Procedure Simulate;
begin
with Data do
begin
NMaccid := 1000;
Perachi := 0.90;
Perctrma := 0.50;
Pertransh := 0.90;
Percrpr := 6.0/168.0;
Durrpr := 60;
percbwthr := 4.0/720.0;
durwthr := 30;
Pickupt := 10;
Respondt := 10;

repeat
initialize;
genaccident;
gentransf;
nextweather := expo(nmwthr);
for ii := 1 to numbird do
 nextrepair[ii] := expo(nmrpr);
while clock < simtime do
 begin
 nextevent;
case eventyp of
 0 : { bird is free }
 begin
 bird[birdnum].busy := false;
 case bird[birdnum].jobtyp of
 1 : begin end; { end of repair }
 2 : { end of bad weather }
 begin
 for jj := 1 to numbird do
 bird[jj].busy := false; { this isn't quite right }
 end;
 3 : { end of accident }
 4 : { end of transfer }
 end;
 if (tcount > 0) then
 fly;
 end;
 1 : { repair time }
 begin
 nextrepair[birdnum] := expo(nmrpr) + durrpr;
 with bird[birdnum] do
 begin
 busy := true;
 jobtyp := 1;
 rptime := rptime + durrpr;
 timer := durrpr;
 end;
 end;
 2 : { bad weather }
 begin
 nextweather := expo(nmwthr) + durwthr;
 for jj := 1 to numbird do
 with bird[jj] do
 begin
 jobtyp := 2;
 timer := durwthr;
 busy := true;
 end;
 end;
 3 : { transfer }
 begin
 addq(nexttransfer);
 gentransf;
 end;
fly;
end;
4 : { accident }
begin
 addq(nextaccident);
 genaccident;
 fly;
end;
end;
end;

DisposeRgn(hirgn);
gotoxy(1,2); cleareol; write(' Press return to see printout '); readln;
DoReport;
until (itemNo <> 4) ;
{ Kludge, from DoReport, itemNo = 4 means he wants another simulation }
end;
end;

begin

END. { OF UNIT }
Unit MacExtras(128);

{$O Birds:Units.F: Sim.Lib }
{$U-}

Interface
Uses
 memtypes, QuickDraw, OSIntf, ToolIntf, PackIntf;

CONST
 AppleID = 1;
 AboutCmd = 1;
 EditID = 3;
 UndoCmd = 1;
{--------}
 CutCmd = 3;
 CopyCmd = 4;
 PasteCmd = 5;
 ClearCmd = 6;
 ScBarWidth = 15;
 MenuBarWidth = 18;
 MaxMenuCmds = 31;

TYPE
 MenuCmdSet = SET Of 1..MaxMenuCmds;
 string64 = string[64];
 string255 = string[255];

Var
 appleMenu : MenuHandle;
 fileMenu : MenuHandle;
 EditMenu : MenuHandle;
 theEvent : EventRecord;
 whichWindow : WindowPtr;

Function InRange(n, min, max : Integer) : Boolean;
Procedure Pause;
Procedure EnableMenu(mh : MenuHandle; Commands : MenuCmdSet);
Procedure DisableMenu(mh : MenuHandle; Commands : MenuCmdSet);
Procedure FixEditMenu(enableCommands : Boolean);
Procedure DragTheWindow(whichWindow : WindowPtr; startPoint : Point);
Procedure ResizeWindow(whichWindow : WindowPtr; startPoint : Point);
Procedure zoomInOut(whichWindow : WindowPtr; partCode : Integer);
Procedure CloseDAWindow;
Procedure GetPortSize(VAR width, height : integer);
Procedure CalcControlRects(whichWindow : WindowPtr;
 VAR hbarRect, vbarRect, gbRect : Rect);
Function TextHeight(wptr : WindowPtr) : Integer;
Procedure CenterString(h,v,w : Integer; s : Str255);
Procedure DisplayAboutBox;
Procedure DoAppleMenuCommands(cmdNumber : Integer);

IMPLEMENTATION

Function InRange;
{ true if min <= n <= max }
begin
InRange := (min <= n) and (n <= max)
end;

Procedure Pause;
begin
while button do systemtask;
while not button do systemtask;
flushEvents(KeyDownMask + autoKeyMask, 0)
end;

Procedure EnableMenu;
var
 theCommand : 1 .. maxMenuCmds;
Begin
 for thecommand := 1 to MaxMenuCmds Do
 If theCommand In commands
 then EnableItem(mh, theCommand)
end;

Procedure DisableMenu;
Var
 theCommand : 1 .. MaxMenuCmds;
begin
 for theCommand := 1 to MaxMenuCmds Do
 If theCommand In commands
 then DisableItem(mh, theCommand)
end;

Procedure FixEditMenu;
Var
 editSet : MenuCmdSet;
Begin
 editSet := [UndoCmd, CutCmd, CopyCmd, PasteCmd, ClearCmd];
 If enableCommands
 Then EnableMenu(editMenu, editSet)
 Else DisableMenu(editMenu, editSet)
end;

Procedure DragTheWindow;
Var
 LimitRect : Rect;
Begin
 With screenBits.Bounds Do
 SetRect(limitRect, left + 4, top + 24, right - 4, Bottom - 4);
 DragWindow(whichWindow, startPoint, LimitRect)
end;

Procedure ResizeWindow;
var
 size : longint;
 width, height : longint;
 limitRect : Rect;
begin
 with screenBits.Bounds Do
setRect(limitRect, 100,75,right,bottom-24);
size := GrowWindow(whichWindow, Startpoint, limitrect);
if size <> 0 then
 with whichWindow^ DO
 begin
 EraseRect(PortRect);
 width := LoWord(size);
 height := HiWord(size);
 SizeWindow(whichWindow, width, height, True);
 InvalRect(portRect)
 end
end; { resizeWindow }

Procedure ZoomInOut;
var
 oldPort : GrafPtr;
begin
 GetPort(oldPort);
 SetPort(whichWindow);
 EraseRect(whichWindow^.PortRect);
 zoomWindow(whichWindow, partCode, True);
 SetPort(oldPort)
end;

Procedure CloseDAWindow;
Var
 DANumber : Integer;
 DAWindow : WindowPeek;
Begin
 DAWindow := WindowPeek(FrontWindow);
 DANumber := DAWindow^.windowKind;
 CloseDeskAcc(DANumber)
End;

Procedure GetPortSize;
Begin
 with theport^.PortRect DO
 begin
 width := right - left;
 height := bottom - top
 end
end;

Procedure CalcControlRects;
Begin
 with whichWindow^.PortRect DO
 begin
 gbRect.top := bottom - scBarWidth;
 gbRect.left := right - ScBarWidth;
 gbRect.bottom := Bottom;
 gbRect.right := right;
 hBarRect := gbRect;
 hBarRect.left := left;
 hBarRect.right := gbRect.left;
 vBarRect := gbRect;
 vBarRect.top := top;
 vBarRect.bottom := gbRect.top
 end
end;

Function TextHeight;
var
flnfo : FontInfo;
oldPort : GrafPtr;

Begin
 GetPort(OldPort);
 SetPort(wPtr);
 GetFontlnfo(fInfo);
 with fInfo DO
 TextHeight := ascent + descent + leading;
 SetPort(oldPort)
end;

Procedure CenterString;
begin
 w := w - StringWidth(s);
 if w < 0
 then w := 0;
 moveTo(h + (w DIV 2), v);
 Drawstring (s)
end;

Procedure DisplayAboutBox;
{ requires 6-string STR# resource with IF = 1 containing strings
 to display in window as follows:
 STR#1 = Program name
 STR#2 = Author
 STR#3 = Version
 STR#4 = Copyright
 STR#5 = Address
 STR#6 = Phone Number
}

Const
 strListID = 1; { resource ID of Str# resource }

var
 oldPort : GrafPtr;
 wp : WindowPtr;
 wRec : WindowRecord;
 wr : Rect;
 i : integer;

messages : ARRAY[1..6] of Str255;

begin
 for i := 1 to 6 DO
 GetlndString(messages[i], strListID, i);
 wr := screenBits.bounds;
 InsetRect(wr, 100, 75);
 wp := NewWindow(@wRec, wr, '"', TRUE, altDBoxProc, Pointer(-1), FALSE, 0);
 if wp <> NIL then with wp^.portRect DO
 BEGIN
 GetPort(oldPort);
 SetPort(wp);
 TextFont(systemFont);
 TextSize(12);
 CenterString(0,30,right,messages[1]);
 TextFont(geneva);
 TextSize(9);
 Centerstring(0, 60, right, messages[2]);
 Centerstring(0, 90, right, messages[3]);
 Centerstring(0, bottom-60, right, messages[4]);
 Centerstring(0, bottom-40, right, messages[5]);
 Centerstring(0, bottom-20, right, messages[6]);
 Pause;
 CloseWindow(wp);
 SetPort(oldPort)
 end;
nend;
Procedure DoAppleMenuCommands;
Var
 daName : Str255;
 result : integer;
begin
 if cmdNumber = AboutCmd
 then DisplayAboutBox
 else begin
 if FrontWindow = NIL
 then FixEditMenu(TRUE);
 Getltem(appleMenu, cmdNumber, daName)
 result := OpenDeskAcc(daName)
 end
end;

BEGIN
 { init toolbox managers }
 InitGraf(@thePort);
 InitFonts;
 InitWindows;
 InitMenus;
 TEInit;
 InitDialogs(NIL);
 InitCursor;
 FlushEvents(everyEvent, 0)
END.
UNIT BirdGlobals(135);

{$O Birds:Units.F: Sim.Lib }

INTERFACE

USES
 Memtypes, QuickDraw, OSIntf, ToolIntf;

CONST
 ok = 1;
 cancel = 2;
 pie = 3.141593;
 nbds = 20;
 minyear = 525600;
 hsp = 20;

type
 string64 = string[64];
 string255 = string[255];
 Ivect = array[0..50] of integer;

helic = record
 base, loc, des : point;
 busy : boolean;
 jobtyp : integer; { 1=repair, 2=weather, 3=transfer, 4=accid }
 timer : extended;
 speed : extended;
 range : extended;
 nflts : integer; { total number of flights }
 fltime : extended; { total flight time }
 rptime : extended; { total repair time }
 waitt : extended; { total time spent waiting for bird }
 resct : extended; { total time with patient on board }
 dHist : Ivect; { histogram of distances to calls }
 Calldist : extended;
end;

center = record
 status : integer;
 emgperday : integer; { for assigning prob of transfer }
 cumtot : integer; { number of helicopters at this center }
 numinest : integer;
 location : point;
 fleet : array[1..nbds] of integer;
 rcvd : integer;
 name : string255;
end;

Info = record
 MapName : String255;
 numbird, rgncnt : integer;
 totemerger, numhsp : integer;
 percwthr, durwthr, durrpr, perachi, pertranshi
 scale, await, avresc, convert, perctica, percin, percrpr
 nwmwthr, nmrpr
 launchdist, nmaccid, respondt, pickupt
 xlim2,xlen2,ylim2,ylen2 : extended;
 bird : array[1..nbds] of helic;
hosp : array[1..hsp] of center;
Rgnpts : array[1..40] of point;

var

Data : Info; { this is record with all global variables }
datafile : file of info;

wRec
wPtr
ph
Hndl
MapFrame, TxtFrame
ans
inName, outName
readdat

IMPLEMENTATION
begin

END. { OF UNIT }
(SaveMap

--

Type WIND
 ,1000 (32)
Map Window
20 2 340 510
Visible GoAway
4
0

--

Type WIND
 ,1001 (32)
Rpt2
133 2 340 510
Visible GoAway
2
0

--

Type DLOG
 ,1000
ask
20 10 330 500
Visible NoGoAway
1
0
1000

Type DITL
 ,1000 (32) ;; Item list
22

BtnItem Enabled
280 350 305 450
OK

BtnItem Enabled
280 150 305 250
Cancel

EditText Enabled ;; 3-12 Field entry areas
30 445 48 485

EditText Enabled
50 445 68 485

EditText Enabled
70 445 88 485
EditText Enabled
90 445 108 485
EditText Enabled
110 445 128 485
EditText Enabled
130 445 148 485
EditText Enabled
150 445 168 485
EditText Enabled
170 445 188 485
EditText Enabled
190 445 208 485
EditText Enabled
210 445 228 485
StatText Disabled ;; 13-22 Field Name areas
30 10 50 440
Number of Accidents/Year requiring Rotorcraft
StatText Disabled
50 10 70 440
% of Accidents to Level 3 Trauma Center
StatText Disabled
70 10 90 440
% of Ambulance Accidents later needing air Transfer
StatText Disabled
90 10 110 440
% of Transfers Which must go to Level 3 Trauma Center
StatText Disabled
110 10 130 440
Hours/Week out of service due to maintenance
StatText Disabled
130 10 150 440
Average Duration of Maintenance [min]
StatText Disabled
150 10 170 440
Hours/Month out of service due to Weather
StatText Disabled
170 10 190 440
Average Duration of Weather Downtime [min]
StatText Disabled
190 10 210 440
Average time on ground to pick up patient [min]
StatText Disabled
210 10 230 440
Average time to respond to call [min]
Type DLOG
,1010
Question?
22 10 45 490
Visible NoGoAway
1
0
1010

Type DITL
,1010 (32) ;; Item list
4

BtnItem Enabled
280 350 310 450
OK

BtnItem Enabled
280 150 310 250
Cancel

StatText Enabled
4 10 20 435
^0

EditText Enabled
4 445 20 475

Type DLOG
,1020
Rpl
26 10 130 500
Visible NoGoAway
1
0
1020

Type DITL
,1020 (32) ;; Item list
17

BtnItem Enabled ;; #1 Next center
85 272 100 360
Next Center

BtnItem Enabled ;; #2 Ok button
85 440 100 480
OK
BtnItem Enabled
85 370 100 425
PRINT

BtnItem Enabled
65 370 80 460
Re-Simulate

EditText Enabled
25 222 40 250

EditText Enabled
45 222 60 250

EditText Enabled
65 222 80 250

EditText Enabled
85 222 100 250

EditText Enabled
25 450 40 478

EditText Enabled
45 450 60 478

StatText Enabled
1 2 20 218
^0

StatText Disabled
25 2 40 218
Number of Rotorcraft Flights

StatText Disabled
5 60 218
Avg Distance to Scene

StatText Disabled
25 80 218
Avg Wait for Rotorcraft arrival

StatText Disabled
85 2 100 218
Avg Total Transfer Time

StatText Disabled
25 275 40 440
Missed (out of Range)

StatText Disabled
45 275 60 440
Missed (Unavailable)
Type DLOG, 1030
HospQ
22 10 45 500
Visible NoGoAway
1
0
1030

Type DITL, 1030 (32) ;; Item list
7
BtnItem Enabled ;; #1 ok
280 350 310 450
OK

EditText Enabled ;; #2 NAME 2-4 Field entry areas
3 55 18 125

EditText Enabled ;; #3 status
3 295 18 325

EditText Enabled ;; #4 Num of Birds
3 460 18 485

StatText Disabled ;; #5
3 2 18 50
Name:

StatText Disabled ;; #6
3 140 18 290
Status (1,2,3)

StatText Disabled ;; #7
3 345 18 455
of Rtrcraft

Type DLOG, 1040
BirdQ
22 10 45 500
Visible NoGoAway
1
0
1040

Type DITL, 1040 (32) ;; Item list
6

BtnItem Enabled ;; #1 ok
280 350 310 450
OK
EditText Enabled
3 80 18 110

:: #2 speed 2-3 field entry areas

EditText Enabled
3 203 18 233

:: #3 range

StatText Enabled
3 300 18 450
^0

:: #4 rotorcraft number

StatText Disabled
3 2 18 77
Speed:

StatText Disabled
3 125 18 200
Range:

* End
THE ROLE OF AVIATION TECHNOLOGY IN THE CARIBBEAN BASIN:

NASA- Ames Cooperative Agreement No. NCC 2-496

Robert W. Smith
University of Puerto Rico
Mayaguez, Puerto Rico 00709