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AN INITIAL INVESTIGATION INTO METHODS OF COMPUTING

TRANSONIC AERODYNAMIC SENSITIVITY COEFFICIENTS

I. Introduction

This report covers the period from January 1, 1988 thru June 30,
1988. The primary tasks during this were were to complete and formaliy
repcrt on the methode developed for computing aerodynamic sensitivity

coefficients using the quasi-analytical approach,

I11. Percsonnel

The staff ascociated with this project during the present reporting
period were Dr. Leland A. Carlson, Principal Investigator, and Hecham El

Banna, Graduate Research Assistant.

111. Research Progress

As previously reported <Ref. 1), this inttial effort has
concentrated on developing the quast-analytical approach for
two-dimensional transonic flow. To Keep the problem computationally
efficient and cstraightforward, this initial study has only considered
two-dimensional flow and has modeled the problem using the transonic
small perturbation equation equation. During this reporting period,
this 1nittial development has been essentially completed and formally
reported 1n the Master of Science thesis of Hesham El Banna. Mr. EI
Banna received his M.S. degree i1n May 1988, and 1s continuing his

studies at Texas AYM towarde a Ph.D.



Since Mr., El Banna‘s thesis ts an excellent summary of much of the
work to date, 1t 1s included as an appendix of this report. In
addition, a shortened version of this thesis has been submitted for
possible presentation at the 1989 AIAA Aerospace Sciences Meeting under

applied zerodynamice.

1V, Future Efforts

As you are aware, the present project has been granted a no-cost
extension until 31 December 1988. Currently ctudies are underway to
compute aerodynamic sensitivity coefficients over a a series of
transonic freestream Mach numbers I1n order to determine how rapidly the
coeffictents vary with Mach number and whether or not the present method
detecte or predicts these wvariations properly. In addition, new
solution schemes for the quast-analytical equation are in progress of
being developed and tested., The objective, of course, 15 to decrease
the computational time required to solve the quasi-analytical equation.
Particular attention 1s currently being devoted to tri-diagonal
tterative schemes which may carry over to three dimensions. These

efforts will be reported 1n the next progress report,.

Finally, 1t 1s anticipated that a proposal will be submjgitted to
continue thies work and to extend 1t to three dimensional transonic flows

about wings.
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ABSTRACT

Numerical Computation of Aerodynamic Sensitivity
Coefficients in the Transonic and Supersonic
Regimes. (May 1988)

Hesham M. Elbanna, B.S., Cairo University, Egypt

Chair of Advisory Committee: Dr. Leland Carlson

The quasi-analytical approach is developed to compute

the aerodynamic sensitivity coefficients in the transonic

and supersonic flight regimes. Initial investigation

verifies the feasibility of this approach as applied to

the transonic small perturbation residual expression.
Results are compared to those obtained by the direct

(finite difference) approach and both methods are

evaluated to determine their computational efficiencies
A Gauss-Seidel procedure is used to solve the large set

equations associated with the quasi-analytical approach

On a medium grid, the quasi-analytical method is more

efficient than the finite difference approach. However,

a fine grid, time comparisons are not as competitive.
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INTRODUCTION

Over the past few years, computational fluid dynamics
has evolved rapidly as a result of the immense
advancements in the computational field and the impact of
the use of computers on obtaining numerical solutions to
complex problems. Accordingly, researchers are now capable
of calculating aerodynamic forces on wing-body-nacelle-
empennage configurations subject to subsonic or transonic
flows. A next logical step would be to compute the
sensitivity of these forces to configuration geometry

In the transonic regime, one of the main difficulties
facing the aircraft designer is the prediction of the
aerodynamic loads. The difficulty is caused by the fact
that Iin this regime even the most primitive representation
of the aerodynamics must be described by a nonlinear
equation or a set of equations. In addition, aerodynamic
prediction in the transonic regime is extremely important
since it is in this speed range that most civil aircraft
maneuver. Consequently, the transonic regime is probably

the most critical flow regime for present day aircraft

Format in accordance with AJAA Journal.



In order to improve the design of transonic vehicles,
design codes are being developed which use optimization
techniques, and, in order to be successful, these codes
require aerodynamic sensitivity coefficients, which are
defined as the derivatives of the aerodynamic functions
with respect to the design variables. Obviously, it 1is
desirable that such sensitivity coefficients be easily
obtained.

Consequently, the primary objective of this effort is
to investigate the feasibility of using the quasi-
analytical methodl-3 for calculating the aerodynamic
sensitivity derivatives in the transonic and supersonic
flight regimes. As part of this work, the resulting
sensitivity coefficients are compared to those obtained
from the finite difference approach. Finally, both methods
are evaluated to determine their computational
efficiencies.

As mentioned earlier, knowledge of the sensitivity
coefficients is essential information in any design
optimization process. Obviously these calculations cannot
be performed without the availability of solutions for the
problem under consideration.

In the transonic regime, a variety of methods for

computing solutions to the flow field do exist. These



range from full Navier-Stokes solvers to transonic small
perturbation equation solvers. The complexity of the
equations that need to be solved depends upon the flow
phenomena in question and the objective of the analysuis
Since it is not the objective of this work to develop
flowfield algorithms, the present research uses the
transonic small perturbation equation to determine and, as
mentioned earlier, verify the existence of efficient
methods for calculating the aerodynamic sensitivity
derivatives.

This research 1is original in that it aims to include
sensitivity analysis procedures as part of aerodynamic
analyses. Thus, it will provide a reference point for
aeronautical engineers1 who need sensitivity information
when conducting aerodynamic optimization as part of the

aircraft design process.



BACKGROUND

Most recently, sensitivity methodology has been
successfully used in structural design2 and optimization
programs3 primarily to assess the effects of the variation
of various fundamental properties relative to the
important physical design variables. Moreover, researchers
have developed and applied sensitivity analysis for
analytical model improvement and assessment of design
trends In most cases, a predominant contributor to the
cost and time in the optimization procedures is the
calculation of derivatives. For this reason it is
desirable in aerodynamic optimization to have efficient
methods of determining the aerodynamic sensitivity
coefficients and, wherever possible, to develop
appropriate numerical methods for such computations

Currently, most methods for calculating transonic
aerodynamic sensitivity coefficients are based upon the
finite difference approximation to the derivatives. In
this approach, a design variable is perturbed from its
previous value, a new complete solution is obtained, and
the differences between the new and the old solutions are
used to obtain the sensitivity coefficients.

This direct, or brute force, technique has the

disadvantage of being potentially very computer intensive,



especially if the governing equations are expensive to
solve. Accordingly, the need to eliminate these costly and
repetitive analyses is the primary motivation for the
development of alternative efficient computational methods
to determine the aerodynamic sensitivity coefficients

In steady-state transonic flow problems, implicit
approximate-factorization (AF) algorithm56 have been used
successfully and efficiently to solve the nonlinear two-
dimensional transonic small-disturbance equation. This
governing equation permits capturing of important physical
phenomena while being easy to handle from a coding
standpoint. For this reason it would seem desirable to
initiate the study of the quasi-analytical method in the
transonic regime using the transonic small perturbation

equation as a practical object of this investigation



PROBLEM STATEMENT

Based on the foregoing discussion, the current problem
is formulated starting from the generic quasi-analytical
approach and manipulated according to the rules given in
Appendix A of Ref 1 which is reproduced in this thesz:is
because of its direct significance to the derivation of
the general sensitivity equation

In this study, the general sensitivity equation 1s
applied to the residual expression (R) of the transonic
small perturbation equation. As mentioned earlier, this
expression is chosen because of its simplicity as well as
its adequate description of the nonlinear phenomena
occurring in the transonic regime Although this
expression is nonlinear in the perturbation potential (¢),
the general sensitivity equation, Eq (1), is linear with
respect to the unknown sensitivity (d¢/dXDj), (see
Appendix A).

It is to be noticed that the practical implementation
of the above step is not achieved until the residual
expression is approximated on a finite domain and the
mathematical form of the problem rendered to that of one
in linear algebra. This discretization process will be

explained in a later section.



Following the previous formulation, the .sensitivity
equation as applied to the residual expression of the

transonic small perturbation equation is given by,
ar do dR
- —— - - ———— (1)
do dXDy dXDj;

R = (B1+Bowyx) exx + Pyy = 0 (2)

where

B1 - 1 - M,,,2
By = — (y+1) Mg’
for air ¥ = const. = 1.4
® = o (x,y,XD) (3)
XD = set of design variables

XDy = ith design variable

subject to,

Airfoil Boundary Condition

dy
<py(xb.0) - [ - J - F(x,XD) (4)
dx |b

Infinity Boundary Condition

subsonic ! QYo = I'8/(2x), 6 = nx/2, n=0,1,2,3,4
supersonic : ¢9o = 0 , § = nx/2, n=1,2,3
ex = 0 , § = nx/2, n=0,4 (5)

Kutta Condition

AP = 0 (T = Ap const.), XTE < X < = (6)



DESIGN VARIABLES AND AIRFOIL DEFINITION

Equation (1) is discretized into a system of linear
equations to be solved for the unknown sensitivity vector
The solution of this system is obtained, as explained in
the following section, by using a Gauss-Seidel iterative
procedure which utilizes the sparsity pattern
characterizing the coefficient matrix (3R/3¢). An
advantage of using this scheme is that several unknown
vectors can be obtained simultaneously, each vector
representing the sensitivity of the potential (¢) with
respect to some design variable XDj.

At this stage, it Is convenient to define the vector
of design variables

' XD = { XDj, XDg9, . . . , XD ) (7)
and to exactly determine which variables influence the
solution of Eq.(2). In doing so, the relation between the
sensitivity coefficients corresponding to these wvariables
and the form of the optimization algorithm that utilizes
this informsztion needs to be considered.

For the transonic flow problem, an appropriate choice
of the first design variable is the free stream Mach
Number (M,). This variable appears in the governing Eq. (2)
and has an important influence on the character of the

equation via its influence on local Mach number ( for M<1,



the equation is elliptic, for M>1, the equation is
hyperbolic ) and thus on the nature of the solution For
this reason, it is desirable to have M, as one of the
design variables.

Next, it is appropriate to examine the boundary
condition given by Eq.(5). In the transonic small
perturbation formulation, the angle of attack («) enters

the problem through the boundary condition and thus,
dy
Fy = - - Yu' -« (8)
1 dx |b 1

For simplicity, the function (F) should be easily
differentiable with respect to the design variables
defining the airfoil geometry. This desirable feature is
explained later on and has to do with the computation of
the right hand side term of the sensitivity equation.
Therefore, it would seem plausible to have a simple
analytical expression for modeling the upper and lower
surfaces of the airfoil.

For the present studies, it was decided to 1limit
consideration to two basic airfoil sections, namely
parabolic-arc sections, and the NACA four-digit sections
These families of wing sections are obtained by combining

7

a mean line and a thickness distribution’/. The resultant

expressions possess the necessary features that suit the
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problem, mainly the concise description of the airfoil
surfaces in terms of several geometric design variables
The expressions are as follows

For parabolic-arc sections

I+

c(2Lx-x") /L’ 2Tx(l-x), x < L
y1 ) { C[(1-2L)+2Lx-x"]/(1-L)* + 2Tx(l-x), x > L
(9)
For NACA four-digit sections
[ c(2Lx-x7)/L?
*+ 5T(O 2969/x-0.126x-0.3516x2+0.2843x3-0.1015x‘)

Yu = 1 x < L

C[(1-2L)+2Lx-x>]/(1-L)>

[ £ 5T(0.2969/x-0 126x-0.3516x +0.2843x°=0 1015x‘)
x > L
(10)
where
C = Maximum ordinate of mean line (camber)

LL m Chordwise location of maximum ordinate of camber

T w Maximum thickness

Each of the quantaties C, L, and T is expressed as a
fraction of the chord (e.g. if T is 6% chord then
T = 0.06)., Differentiating Eqs.(9) and (10) with respect

to x and substituting the results into Eq.(8) yields



For parabolic-arc sections
Fy,1 = 2C(L-x)/LL - «
t 2T(1-2x) (11)

For NACA four-digit sections

Fu,l 2C(L-x)/LL - «
* 5T(0.14845//%x-0.126-0.7032%+0 8529x2-0 a06x3)
(12)

where

{ L2 forward of maximum ordinate of camber, x =< L
LL =

(l—L)2 aft of maximum ordinate of camber, x > L
(13)
Eqs (11) and (12) are simple analytical expressions in
terms of the four variables T, L, C, and «. Thus,

XD = ( T, Mo, «, L, C ) (14)
represents the complete set of design variables that
define the present two-dimensional airfoil sensitivity
problem. Notice that these variables are completely
uncoupled and, thus the sensitivity equation can be solved

independently with respect to each variabled.

11
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MATHEMATICAL TREATMENT AND SOLUTION PROCEDURE

Problem Discretization

Equation (1) resembles the general sensitivity
equation (see Appendix A) applied to the residual R
instead of the function F, ¢ instead of y, and XDj instead
of x. Now, in order to solve the problem numerically,
Eq (2) is formulated computationally on a finite domain
This transformation is achieved by using a stretched
Cartesian grid that maps the infinite physical domain onto
a finite computational grid, Fig.(l). In this study, the
grid used is based upon a hyperbolic tangent
transformation that places the outer boundaries at
infinity. Accordingly, the computationel variables used

are given by,

¢ = tanh Ajx (15)

n = tanh A3y (16)
or,

x = { 1n[(1+€)/(1=€)] ) / (2A3) (17)

y = { In[(1+n)/(1=n)] ) / (241) (18)

In terms of the grid nodes (i,j), we have,
€ = — 1 + (i-1)a¢ (19)
n = -1+ (j=1)an (20)
Equations (15)-(20) are the equations that govern the

hyperbolic tangent transformation.
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In addition, the stretching functions are defined as,

£ = (dé/dx) = Ap(l-€7) (21)

g = (dn/dy) = A1(l-n’) (22)
so that,

ex = fog (23)

Py = 8¥p (24)

pxx = £ (fog)e (25)

Pyy = 8 (8en)yg (26)

Solution about a Fixed Design Point

Substituting from Eqs.(23)-(26) into Eq.(2), yields
the transformed residual expression,

R = [B1+Bofog] £(fog)e + glgpyly = O (27)
This equation is solved numerically by an approximate
factorization scheme® in which the objective is to force
the residual to zero at each point of the computational
domain. In finite difference form, Eq (27) can be written

as,

Ri,j = [B1 + Ba(ei+1,3-9i-1,;)/(248)] £1/06°

(vi,1fi+u(Pisl,j-P1,j) - (2vy §-1)fi_y

(pi,§=0i-1,j) — (1-vi )fi_3/2(ei-1,j-9i-2,;)]

2
+ [Bj+u(ei, j+1-91,j) — gj-u(ei, j=ei,3j-1)] g3/8n
(28)

14
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where
vi,j = 1 1f point (i,]) 1is subsonic
vi,; - 0 if point (i,3) is supersonic

Eq.(28) is the discretized form of the residual at a
general point (i,j) in terms of ¢ values at surrounding
points. Consequently, R at i,3] can be viewed as a function
of the ¢ values at neirghboring points, and, therefore, the
differentiation of the residual expression is straight

forward.

Differentiation of the Residual
Rearranging Eq. (28) yields
Ri,j = c1vi,j + c204i+1,39i-1,j + C3Pi+1,j%P1L,]
+ C49i-1,jPi,j t ©590i+1,39i-2,] t* C6Pi-1,j%i-2,]
+ <=7<Pi-1,j2 + °8<Pi+1,j2 + C99i+l,j *t C10¥9i-1,]
+ c1194,j+1 + ©€12¢i,j-1 + ©139i-2 j (29)
where the coefficients ¢j, ¢2, .. , c13 are given by
c1 = (- gj(8j+8+8j-k)/6ﬂ2
- £1By(vy, jE1ant(2vg, -1 Eion]/0E" )
ey = ( - nj, §Bofs £144/(286°)
+ £17Bol (2w 3=1)Eion-(1-vy ) Ei1-3/21/(28€%) )
c3 = (= £17Bylvy, jEient(2vy, -1)E1_5]1/(286°) )
cq = ( + £5°Bolvy jE1an+(2vg, j-1)E1_1]/(286°) )

cs = { + (l—vi,j)Bzfi2f1_3/2/(2A£3) )



cg = { - (l-vi’j)Bzfi2fi_3/2/(2A£3) )

c7 = { - fi232[(2Vi'j-l)fi_5-(l—ui’J)fi_3/2]/(2A§3) )

cg = ( + Vi,jBZfizfi+5/(2A§3) )

cg = ( + vy (BIfifiaun/AE” )

c10 = ( + £5B1((2vy j=L)Ej_y—(l-vi j)£5_3,2]1/86" )

c11 = ( + gjBy+n/bn )

c12 = { + ngj-a/An2 )

c13 = ( + <1-VL,j>Blfifi-3/z/A€2 }

(30)

For a fixed computational grid, the coefficients given
by Eq.(30) are functions only of By and By which in turn
are functions of Mg,. This fact is used later when
differentiating Eq.(29) with respect to My in order to
obtain the right hand side (dR/9Ms).

At this stage, it 1s necessary to consider the
treatment of various types of grid points and examine the
effect on the general residual expression. As can been
seen from the distribution of points on the computational
domain, Fig.2, several groups of points need special
treatment as a result of applying various types of
boundary conditions. Accordingly, it is necessary to
revise the residual expression at these boundary points to

include the boundary conditions.

16
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In the following, each group of boundary points (see
Fig 2) is denoted by a number and their corresponding
revision is specified. It is to be noticed that applying
the infinity boundary condition, Eq.(5), gives rise to two
sets of updates for groups [5] thru [15]. The first
corresponds to a subsonic free stream (i.e. if M, <1l),
whereas the second set corresponds to a supersonic free

stream (i.e. if Mg>l).

Points Replace By

(1] ILE<i<ITE, j=JB-1 Pi,4+1 i, * An(y'1-%)/8y+x
(2] ILE<i<ITE, j=JB i, §-1 91,5 = A1(y'u==)/g -4
[3] ITE=<i<IM-2, j=JB-1 Pi,j+1 i, j+1 - T

[4] ITEsSi<IM-2, j=JB 01, j-1  ®i,j-1 + T

For a subsonic free-stream,

(5] i=IM-1, JB<j=<JIM-2 Pi+l, j 0

[6] 3<i<IM-2, j=JM-1 ©1,§+1 - Tr/6
[7] i=2, 3<jsIM-2 ®i-1, ] - Tr/2
(8] 3si=<IM-2, j=2 e1,j-1 - 3r/s
[9] i=IM-1, 3sj<JB-1 Pi+l, ] - T
[10] i=IM-1, j=JM-1 ©i+1, 0

Pi,j+1 - r/4



(11] i=2, j=JM-1

[12] i=2, j=2

(13] i=IM-1,

(14] 1i=-IM-1,

(15] i=IM-1,

j=2

J=JB

j=JB-1

Pi,j+1
®i-1,]
Pi-1,j
®i,j-1
?i,j=-1
Pi+l,j
Pi+l, j
Pi,j~1
Pi+l,

Pi,j+1

For a supersonic free-stream,

(5] i=IM-1, JB<j=JM-2

[6] 3=<i<IM-2, j=JM-1
[7] i=2, 3=<jsJIM=2
(8] 3<isIM-2, j=2

[9] i=-IM-1, 3<j=<JB-1

[10] i=IM-1,

j=dM-1

[11] i=2, j=JM-1

[12] i=2, j=2

Pi+1,]
Pi,j+1
Pi-1,)
?i,j-1
Pi+l,)
Pi+l,j
Pi,j+1
Pi,j+1
Pi-1,j
®i-1,j

1,j-1

- T/4
- T/2
- T/2
- 3r/4

- 3T/4

Pi,j-1 + T

ei,j+1 - T



[13] i=IM-1, j=2 01, 7-1 0

Pi+l, 3 ?i,]
[14] i=IM-1, 3=JB Pi+l, ) 1,3

ei, -1 ei,j=1 *+ T
(15) i=IM-1, j=JB-1 Pi+l, j Pi,j

e, §+1 ¢i,j+1 - T

The above updates are used to modify the residual
equation, Eq.(29), and yield a set of expressions, each
being valid for a group of boundary points. The details of
these operations are shown in Appendix B

In setting up the complete quasi-analytical problem
the circulation and its dependence upon trailing edge
potentials must be carefully included. Since the
circulation 1s determined by the difference in potentials

at the trailing edge,

' = @uTE - ®1TE (31)
or, by interpolating the trailing edge values
r =Ty [ 1.5 (e1TE-1,JB — ®ITE-1,JB-1)
- 0.5 (¢1TE-1,JB+1 — ®ITE-1,JB-2) |
+ T2 [ 1.5 (e1TE,JB - YITE,JB-1 )
- 0.5 (¢1TE,JB+1 — ®ITE,JB-2 ) | (32)
where
Ty = [ €§€(x=0 5) - £(ITE-1) ] / &¢ (33)

T1 = [ 1 - Ty 1 (34)



and since a branch cut extends from the trailing edge to
downstream infinity, the trailing edge potentials appear
in the residual expressions at points adjacent to the
outer boundaries. Consequently, the resultant matrix
(8R/3¢), while banded, also contains many nonzero elements
far from the central band. Notice that the presence of
these elements greatly complicates the rapid and efficient
solution of the sensitivity equation, Eq.(l), which will

be explained later.

Assembling (dR/dp) and (3R/3XDjy)

The residual expressions obtained from the previous
step are differentiated analytically with respect to the
potential (¢). To be more specific, each equation 1is
differentiated with respect to the potential at
neighboring points and trailing edge points (the later
enters as a result of the implicit nature of the
circulation effects). These points are denoted by the
counters (ii,jj) and are given by,

(L,5-1), (1,3), (i,3+1), (i-2,3), (i-1,3), (i+l,3),

(ITE-1,JB-2), (ITE-1,JB-1), (ITE-1,JB), (ITE-1,JB+1),

(ITE,JB-2), (ITE,JB-1), (ITE,JB), (ITE,JB+1).

The end result is that the coefficient matrix

(aRi,j/6¢ii,jj) is of size (IM=2)*(JM=-2)x(IM=2)*(JIM=-2)
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Again, the details and results of this step are shown 1in
Appendix B. Once these relations are obtained, the actual
coefficients are assembled by evaluating the appropriate
analytical expresssions using a flowfield solution
obtained from Eq.(2) for a given set of conditions (i e
about a fixed design point).

Similarly, the right hand side is evaluated by
differentiating the analytical expressions for the
residual (see Appendix B) with respect to each design

variable.

Solution by Gauss-Seidel

For a general (IM*JM) grid, the system given by Eq. (1)

is of size (IM=2)*(IM-2)x(IM-2)*(JM-2). This system is
large, of block structure, and sparse, and, as mentioned
earlier while banded, also contains many nonzero elements
far from the central band As a result of this size and
structure, and since the primary objective of this study
is to establish the feasibility of the quasi-analytical
method, it was obvious that a reasonably efficient scheme
for solving Eq.(l) was needed and that an elimination
technique, while straightforward, would be too time
consuming. Consequently, the results presented in this

thesis have been obtained using a Gauss-Seidel iterative
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scheme?. This scheme has not been optimized for speed
(through the choice of optimum acceleration parameters)
but uses sparse matrix technology in processing only the
nonzero elements; and, therefore, it is considerably
faster and more efficient (with regard to storage
requirements) than elimination methods.

In handling the sparsity pattern, the symbolic
assembly of the coefficient matrix is performed only once
for a given grid size and given free-stream (subsonic
versus supersonic). The resultant structure is then stored
on a diskfile. Before the numerical part is executed, the
symbolic information is read into the code and used
directly to assemble the new matrix. This procedure 1is
followed in order to reduce the time consumed in
assembling the coefficient matrix.

Once the sensitivities of the potentials, and thus the
Cp distribution, to the design variables are known, the
sensitivity of the lift coefficients to the design
variables can be easily computed. To minimize errors,
these coefficients are computed using

CL = 2T = 2 (¢uTE-?1TE) (35)
and hence,

3C1L/3XD = 2 (3¢yTE/3XDij-d¢1TE/3XDi) (36)
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TEST CASES

In this study, the quasi-analytical method has been
used to determine the aerodynamic sensitivity coefficients
at three freestream Mach numbers ( 2, .8, and 1 2) for two
arbitrarily selected airfoils, each at one degree angle of
attack. The first is a cambered parabolic arc section
having 1% camber at 40% chord, a maximum thickness of 6%
at 50% chord, and which is designated P1406; and the
second is a NACA 1406 airfoil. Lift coefficients computed
for these cases are shown in Table 1.

In the following, two types of results will be
presented. The first will be plots of Cp versus chord for
the three chosen Mach numbers and two airfoil sections,
The second will be the corresponding plots of (8Cp/3T),
(3Cp/dMy), (8Cp/dx), (8Cp/3C), and (8Cp/3L) obtained by
the quasi-analytical method. In addition, all of the
figures will also contain results obtained using the
direct (finite difference) approach in which each design
variable was individually perturbed by a small amount,
typically 0.001, and a new flowfield solution obtained.
Then the sensitivities were computed using ACp/AXD.

Finally, tables containing l1ift coefficients, 1lift
coefficient sensitivity coefficients, and time comparisons

are presented for all cases.



Table 1

Lift Coefficients

Ma P1406 NACA 1406
0.2 0.2066 0.2065
0.8 0.3827 0.3736
1.2 0.1024 0.0920
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In all subsonic cases (Mgp = 0 2, 0 8), an 81*20
stretched Cartesian grid was utilized. For the supersonic
case (Mgy = 1.2), a 41*%20 grid was used. In addition, for
these studies, the flowfield was normally computed using
double precision arithmetic and the maximum residual
reduced eight orders of magnitude. It was felt that this
level of convergence was necessary in order to accurately
evaluate sensitivity coefficients using a finite
difference approach, although such convergence may not be
required in the flowfield slover for the quasi-analytical
method.

Notice also that in all cases the error tolerances
used in the Gauss-Seidel solver for the coefficients
involving maximum thickness, free stream Mach number, and
location of maximum camber were 1.E~06 while those on

angle of attack and maximum camber were 1.E-04.
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RESULTS AND DISCUSSION

Accuracy of the Quasi-Analytical Method

In order to verify the accuracy of the quasi-
analytical method, design sensitivity coekficients for Cp
and C;, were obtained using the finite difference
approach. In this procedure, a single design variable was
perturbed by typically 0.001, while all others remained
constant, and a new flowfield solution obtained using the
approximate factorization solver. Then values of the
various sensitivity coefficients were obtained by finite
differences. The results obtained in this manner for the
pressure distributions have been shown on all figures by
dashed lines, and in many cases the dashed lines are
coincident with the quasi-analytical results (solid
lines). In addition, Table 2 compares results obtained by
the two methods at Mach numbers 0.2, 0.8, and 1.2. In most

cases the agreement is within significantly less than 1%

Subsonic Cases (Mg, = 0.2)

P1406 Airfoil: Initial studies concentrated on subsonic
cases since such cases should rum quickly and since at
least approximate results would be known from thin airfoil
theory. Figure 3 shows the pressure distribution for the

P1406 airfoil while Figs.4a and 4b show the sensitivity of



Table 2
Accuracy of Quasi-Analytical Method for Computing

Lift Coefficient Sensitivity Coefficients

P1406 Airfoxrl, Grid 81x20

Ma = 0.2 Me = 0.8 Me = 1.2 =
XDy
QA FD QA FD QA FD
T 0.0050 0.0053| 1.1208 1.1177|-0.2505 =0.2476

Ma 0.0472 0.0476] 1.4536 1.4690(1-0.1259 =0.1252

a 6.1073 6.1383(10.6667 10.7742| 5.0899 5.0920
Cc 9.9140 ?.9434{20.5295 20.4958| 1.3152 1.3279
L 0.0692 0.04697] 0.1647 0.1663|-0.1121 -0.1114

NACA 1406 Arrfoil, Grid B1x%20

Mae = 0.2 Me = 0.8 Me = 1.2 *
XDy

QA FD QA FD GA FD
T 0.0044 0.0044| 0.35433 0.5231}-0.3322 -0.330S

Mo 0.0466 0.0471; 0.9891 0.9708(-0.0803 -0.0802

a 6.1077 6.13B6(10.3861 10.5227| 4.5982 4.5983
c 9.3086 9.93B0{18.4786 19.5767} 1.3495 1.3769
L 0.06%0 0.0696( 0.1482 0.1499j-0.0304 -0.0301

X Executed on Graid 41%20
GA Quasi-Analytical

FD Finite Differece
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the pressure to thickness for the same airfoil. As
expected from thin airfoil theory, the upper and lower
surface values are essentially identical and the
difference is very small everywhere. Also shown on the
same figure (and on subsequent figures) by the dashed line
is the result obtained by using the finite difference
approach; and as can be seen, the agreement betweeen the
two approaches is excellent.

The sensitivity of pressure to freestream Mach number
is plotted on Figs.5a and 5b. It is noticed that while the
profiles for the upper and lower surfaces are similar,
they are not equal in magnitude, indicating a nonlinear
variation with Mach number as predicted by simple Prandtl-
Glauret Theory. However, as indicated by the results on
Fig.5b, the magnitudes for this subsonic Mach number are
very low.

The sensitivity of the pressure coefficients to angle
of attack are shown for this case on Figs.6a and 6b. As
expected from linear thin airfoil theory, the upper and
lower surface curves are essentially equal in magnitude
but of opposite sign. Not surprisingly, the sensitivity of
the delta Cp variation, Fig.6b, has the shape of the

pressure difference curve for a flat plate at angle of

31



01

— Quasi—Analytical

lll'lIYII'I’_IIIlllllllllIIIIII"IIT‘II'I

—— Fumite Difference

0% IlllLlllLllllllIlllllllllllllllll_LlllllllllAlllllo X
0 0.2 .

0.4 0.6 0.8 1

(a)

0.2 [
aACp:
OM. [
ot f
-0.0F
L
-0.1f
s — Quasi—Analytical
E —— Funite Difference
- Cisoaag e e b st b aas sl aag s it aansqiay
0.8.9 0.2 0.4 0.8 08 to X

(b)
Fig.5 Sensitivity of Pressure to Mach Number,

P1406 Airfoil, My = 0.2, @ =1 °



-20.0

aCp
do
-10.0

0.0

10.0

— Quasi—-Analytical

~= Fimte Difference

l'lllllll]"llllllI]lllrlllll]ll!llllll

20% sdad gt et a byl iaasa il titlaiily

0.2 0.4 0.6 0.8 1.0 X

h
o

(a)

20.0

dAcp
B
10.0

0.0

-10.0

— Quams—Analyticat
—— Fimite Difference

TrrTrTrTrTvVyrrprrrryrrrrrrporreyrrrerrgrorTeey

_208 iq A1 a1t st ax a1 attiaszarsy
'

0.4 0.8 0.8 1.0 X
(b)

Fig.6 Sensitivity of Pressure to Angle of Attack

P1406 Airfoil, My = 0.2, «@ = 1 °¢



34

attack; and its magnitude, particularly near the leading
edge is quite large

On Figs 7a and 7b is plotted the sensitivity of the
pressure coefficient to the amount of maximum camber
Since camber contributes to lift, it is expected from thin
airfoil theory that these values should be "equal but
opposite in sign" for the upper and lower surfaces In
addition, the pressure difference curve has the correct
shape for that associated with a 14 mean line with the
peak occuring at 30% chord’ and has magnitude comparable
to those for the (3Cp/dx) curves.

Finally, the sensitivity of pressure to the location
of the maximum camber point is portrayed on Figs.8a and
8b, and to say the least the results are Iinteresting.
Since maximum camber location affects the camber profile
and hence 1lift, the equal and opposite behavior of the
upper and lower surface coefficients is expected. Imn
addition, the pressure difference sensitivity is primarily
negative forward of the point of maximum camber and
positive aft of it. This result indicates that if the
location of maximum camber were moved rearward slightly
(i.e. a positive AL) that lift would be decreased on the
forward portion of the airfoll and increased on the aft
portion of the airfoil, which is in agreement with the

results presented in Ref.7.
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NACA 1406 Airfoil: Figure 9 shows the pressure
distribution for the NACAl406 airfoil at My, = 0 2, and it
should be noted that it is different than that obtained
for the P1406 airfoil. This difference is basically due to
the different thickness distributions describing each
profile. Figs.1l0 to 14 show for the NACA 1406 airfoil the
sensitivicty of ACp with position for each of the five
design variables. Since the NACA 1406 and the parabolic
P1406 both have the same camber line and since for this
low Mach number and thin airfoils the solutions should
essentially be linear, the sensitivity to maximum camber
and location of maximum camber should be essentially
identical for the two airfoils. As can be seen by
comparing Figs.7 with 13 and 8 with 14, the present quasi-
analytiacl method does indeed yield this result. Likewise,
the sensitivity to angle of attack, Figs.6 and 12, are
also identical for the two airfoils.

However, the pressure sensitivity to thickness, Fig.
10, and freestream Mach number, Fig.1ll, while very small
in magnitude compared to the other coefficients, have a
different chordwise variation than that for the P1406
airfoil. The first, of course, is expected since the two
airfoils have different thickness distributions; and the

second is due to the fact that the two airfoils have
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entirely different pressure distributions and, thus,
sensitivity to Mach number.

The sensitivity of the li1ft coefficients to the design
variables were shown in Table 2. It should be noticed that
for the subsonic case that the 1lift sensitivities for the
two airfoils are essentially identical. Since these
airfoils are thin and since they have the same camber

line, such agreement should exist.

Transonic Cases (Mgy = 0.8)

P1406 Airfoil: For this case, the cambered parabolic
airfoil is slightly supercritical with a weak shock on the
upper surface at about 55% chord, Fig.1l5; and the lower
surface is entirely subcritical with the minimum pressure
point ocurring at 60% chord. As a consequence, the
variation with chord of the sensitivity coefficients is
considerably different than in the subsonic case.

Figs.l6a and 16b show the sensitivity of pressure to
the maximum thickness; and while the lower surface profile
is similar to that obtained at subsonic conditions, the
upper surface curve and the pressure difference
coefficient plot show the effect of the upper surface
shock wave. The large peak on the curves corresponds to

the location of the shock wave and indicates that the
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shock wave location is very sensitive to maximum

thickness Notice on Figs l6a and 16b the excellent
agreement of the quasi-analytical results indicated by the
solid lines with those obtained using the finite-differece
approach (dashed lines)

The results for (3Cp/dMs), which are shown on Figs 1l7a
and 17b, are similar The lower surface curve is typical
of a subsonic flow, while the upper surface and the
pressure difference coefficients reflect the presence
of the upper surface shock wave Similar comments can be
made for the remaining design variable coeficients, which
are plotted on Figs 18, 19, and 20.

Examination of the curves in the vicinity of the shock
wave location indicates that the pressure sensitivity and
indirectly the shock wave location is about equally
influenced by the maximum thickness, freestream Mach
number, and angle of attack,.

However, in comparison it is relatively insensitive to
location of maximum camber; but, perhaps surprisingly so,
the pressure is twice as sensitive to the amount of

maximum camber as it is to the other design variables,

NACA 1406: At Mgy = 0 8, the flow about the NACA 1406

airfoil has a strong shock at 40% chord, Fig.2l. As a
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result, the pressure design sensitivity coefficients,
which are shown on Figs.22-26, have large peaks at the
shock location. In addition, while the curves are similar
to those obtained for the P1406 airfoil, they differ in
details and some cases in magnitude. In particular, the
peak value at the shock in the dCp/dx curve for the NACA
1406 is significantly higher than that for the P1l406
airfoil Further, for the subsonic "linear" flow situation
the sensitivity coefficients for angle of attack, maximum
camber and location of maximum camber were identical for
the two airfoils. However, at transonic conditions, the
flow is highly nonlinear and the corresponding curves for
the two airfoills are significantly different. Again the
reasonable agreement between the quasi-analytical results
(solid lines) and the finite difference results (dashed
lines) is evident on the figures.

The sensitivity of 1ift to the design variables was
also shown in Table 2 for both airfoils. While the values
for the various design variables are similar in magnitude
for the two airfoils, there are some significant
differences. For example, the coefficients for maximum
thickness differ by a factor of two between the two
airfoils and those for Mach number differ by about fifty

percent. Also, 1t should be noticed that for both airfoils
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the 1lift is most sensitive to angle of attack and to
maximum camber. In addition, Fig.25 shows a discrepancy
between the results obtained by the direct approach and
those obtained thru the quasi-analytical method This
discrepancy could be due to either the magnitude of the
perturbation used to compute the sensitivities by the
direct approach, or the tolerance values used in the

stopping criteria of the Gauss-Seidel procedure.

C. Supersonic Cases (Mg = 1.2)

In order to investigate the applicablility of the
quasi-analytical method at supersonic freestream Mach
numbers, solutions were obtained for the P1l406 and the
NACA 1406 airfoils at Mach 1.2. At this condition, the
flow is transonic in that the bow shock is detached, and
there is a region of subsonic flow extending to

approximately the quarter chord, Figs.27 and 33. Figures

28-32 and 34-38 show the pressure sensitivities for these

cases, and Table 2 listed the lift sensitivities.

As mentioned earlier, notice that for these cases the

solutions presented are for the 41*20 medium grid.
Examination of the plots shows that the pressure

sensitivity coefficients have different trends and

magnitudes from those computed for subsonic freestream
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supercritical conditions, Figs.16-20 and 22-26, and that
they are approaching the form expected from supersonic
linear theory. These changes are particularly evident 1in
the 1lift derivatives presented in Table 2. Notice that the
derivatives with respect to the design variables maximum
thickness, Mach number, and location of maximum camber
have switched sign. In addition, as expected from linear
theory, the influence of camber on 1ift has decreased
significantly; and at Mgy = 1.2 is only about 25% of the
angle of attack effect as compared to a factor of about

two at Mg = 0.8.

Time Comparisons

Obviously, in the development of the quasi-analytical
method it was hoped that not only would this approach
yield accurate values for the aerodynamic sensitivity
coefficients but also that it would be more efficient than
the brute force finite difference approach. Tables 3 and 4
present some comparisons concerning the amount of
computational effort required to obtain solutiens by the
two approaches.

In comparing the values, several items should be kept
in mind. First, it has been assumed that the finite

difference approach will require six independent
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Table 3

Time Comparisons for Obtaining Sensitivity Coefficients

for Five Design Variables, Grid 41x20
P1406 airfoal
Method Me = 0.2 |Ma = 0.8 |Ma = 1.2
Flowfield Solver 1.00 2.95 2.30
Finite Difference Approch 6.00 17.70 13.80
(6 Flowfield Solutions)
GQuasi-Analytical Approach 4,34 7.45 5.52
(1 Flowfield Solution plus
Sensitivity Coefficient
Solution via Gauss-Seidel)
Ratio —— QA / FD 0.76 0.42 0.40
NACA1406 airfoil
Method Me = 0.2 [Ma = 0.8 |Ma = 1.2
Flowfield Solver 1.00 2.66 2.81
Finite Difference Approch 6.00 15.96 16.86
(6 Flowfield Sclutions)
Quasi-Analytical Approach 4,63 10.75 5.60
(1 Flowfield Solution plus
Sensitivity Coefficient
Solution via Gauss—-Seidel)
Ratio —— QA / FD 0.77 0.61 0.33
Note: All times are normalized by the flowfield sclver

at Mach 0.2.
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Table 4
Time Comparisons for Obtaining Sensitivity Coefficients
for Five Design Variables, Grid 81%20

P1406 airfoil

Method Ma = 0.2 |Ma = 0.8
Flowfield Solver 1.00 1,93
Finite Difference Approch 6.00 11.58

(6 Flowfield Solutions)

Quasi-Analytical Approach 5.56 14,65
(1 Flowfield Solution plus
Sensitivity Coefficient
Solution via Gauss-Seidel)

Ratio — GA / FD 0.93 1.27

NACA1406 airfoil

- Me thod Ma = 0.2 |Ma = 0.8
Flowfield Solver 1.00 2.46
Finite Difference Approch 6.00 14,76

(6 Flowfield Solutions)

. Quasi-Analytical Approach 7.3%9 26.29

(1 Flowfield Solution plus
Sensitivity Coefficient

~ Solution via Gauss-Seidel)

Ratio — GA / FD 1.23 1.78

Note: All times are normalized by the flowfield

- solver at Mach 0.2.



solutions. In practice it might be possible to start each
finite difference solution from a previous solution and,
thus, decrease the time to convergence. However, to be
accurate, the finite difference approach will probably
require double precision and will have to be extremely
well converged (i.e.l1.E-08) Nevertheless, the values for
the finite difference approach probably should be viewed
as maximum values.

Second, the Gauss-Seidel method for obtaining the
sensitivity coefficients has not been optimized and may
not even be an efficient method; and the flowfield
solution required for the quasi-analytical approach may
not need double precision and may not have to be as
tightly converged. Thus the values shown for the quasi-
analytical approach should also be viewed as maximum
values.

In spite of these limitations, the results do
indicate, for the 41%*20 grid, that the quasi-analytical
method is at transonic conditions potentially more
computationally efficient than the brute force finite
difference approach.

As for the fine grid (81%20), it is seen that the
finite differece method is generally more efficient than

the quasi-analytical method. This result implies the need
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to improve the efficiency of the sensitivity coefficient
solver, which could be achieved thru the use of an optimum
acceleration procedure Another alternative explanation
could be that the Gauss-Seidel solver might not be an
efficient algorithm in the case of fine grids. This

possibility will be discussed in the following section.
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the

(1)

(2)

(3)

(4)

CONCLUSIONS AND RECOMMENDATIONS
Based upon the investigations and results described :n
previous sections, it is concluded that
The Quasi-Analytical Method is feasible as applied to
the transonic small perturbation residual expression
The results obtained from the quasi-analytical method
are almost identical to those obtained by the brute
force technique (finite difference).
The Gauss-Seidel iterative procedure used in solving
the sensitivity equation is potentially more
computationally efficient than the brute force direct
approach for the 41*%20 medium grid.
Fpr fine grids (81*20), the Gauss-Seidel solver is not

as competitive.

It is recommended to

(1)

(2)

(3)

(4)

Conduct more studies using refined grids at a variety
of free stream Mach numbers.

Consider new solution schemes for the quasi-
analytical equation, Eq. (1)

Examine the concept of only including part of the
flowfield in attempt to reduce the size of system (1)
Extend the calculation of the lift coefficient
sensitivity derivates to that of the moment

coefficient sensitivity derivates.
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It is also recommended that further studies be carried
out to examine the structure and properties of the
coefficient matrix for special cases, as for example, that
of the non-lifting problem (x = 0, C = 0), and accordingly
determine the feasibilty and efficiency of new fast
solvers that exploit this structure. In addition, other

iterative tridiagonal solvers need to be investigated
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APPENDIX A
GENERAL EQUATION FOR SENSITIVITY

This Appendix1 is a self-contained tutorial on
sensitivity analysis arising in a generic problem whose
governing equations are given. Let

F(y,x) = 0 (Al)
represent governing equations of a problem in which y 1is
unknown to be obtained by solving Eq.(Al), and x are given
constants. The quantities y and x may be vectors, and F
may be a vector of functions If y is a vector, Eq (Al)
implies a set of equations whose number is equal to the
length of vector y; however, the x vector may be shorter
than y. Existence of the solution of Eq (Al) makes,
implicitly, y = £(x). The functions F may be anything
computable : linear algebraical equations, partial
differential equations, integral equations, or integral-
differential equations, transcendental functions, etc It
may be nonlinear, and may require an iterative method for
solution of Eq.(Al).

If Eq.(Al) governs a physical system being designed,
then the designer wants to know not only the y for a given
X, but also the sensitivity of y to those x-quantities
that he controls as design variables. For instance, F(y,x)

might be the Euler equations from which to compute y - the
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pressure distribution on a body in airflow, and x might be
the body geometry variables The designer of the body
shape needs to know 3dy/dx

One way to obtain dy/dx 1s by finite differences Thuis
requires solving Eq (Al) for a given x to obtain y Then
assume, for one element of x, a perturbation, x = x + Ax,
and repeat solution of Eq (Al) to get y + Ay. Then, an
approximation to dy/dx is

dy/dx = Ay/Ax (A2)
This operation must be repeated for all x-quantities of
interest and may be prohibitively computer-intensive, if
Eq. (Al) is expensive to solve. In addition, the accuracy
of dy/dx will depend on the proper choice of Ax.

An alternative is the quasi-analytical approach. It is
called "quasi-" because the y(x) is known only
numerically. However, for Ax, it must be true that

F(y+Ay, x+4x) = 0 (A3)

In other words, increase of x must be compensated for by a
change in y to preserve the zero value of F. Hence,
recognizing that the total derivative of f with respect to
X is according to the textbook rules of differentiation
for implicit functions

dF/dx = 3F/3x + (3F/3y) (3y/ax) (AL)
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Eq (A2) will be satisfied if

(dF/dx) ax = 0 (AS)
Substituting Eq.(A4) into (AS5), and rearranging, yields

(8F/8y) (3y/dx) = - (dF/a8x) (A6)
Eq.(A6) is a general sensitivity equation in which the
desired sensitivity appears directly as the unknown
(3y/3x). For a vector y of length n, the term (4F/dy) is a
matrix n*n whose each column is a vector of gradients with
respect to y (a Jacobian matrix), the term (dy/dx) is a
vector of unknown derivatives of y with respect to one
particular x variable, and the term (dF/3x) is a vector of
derivatives with respect to the same particular variable
X. Computation of the derivatives of y with respect to
several variables x requires solutions of Eq.(A6) with
many right hand sides, one per each variable x. Since the
Jacobian matrix remains the same for all variables x, a
solution algorithm arranged so as to factor the matrix
only once will be preferred for computational econony,.

It is important that Eq.(A6) is simply a set of
linear, algebraical equations even though Eq.(Al) may be
far more complicated than that. The terms (3F/dy) and
(dF/3x) may still not be obtainable analytically. If so,
they can be computed by finite difference, i.e , assuming

perturbation x = x + Ax and y = y + Ay for each element of



x and each element of y separately, and substituting 1into
Eq (Al), one obtains the respective AF values (upon
substitution of x + Ax, or y + Ay, F in Eq (Al) is no
longer equal to zero, it becomes AF) from which the terms
(6F/8y) and (3F/dx) can be computed as 1in Eq (A2)
Computation of the terms (4dF/dy) and (46F/8x) by finite
difference 1s accomplished by repetitive evaluations of
F(y,x) for known y and x, as opposed to repetitive
solutions of Eq (Al) for unknown y required by Eq (A2)
Hence, the quasi-analytical approach is 1nherently less
computer intensitive than the finite difference procedure

based on Eq.(A2).
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APPENDIX B

RESIDUAL EXPRESSIONS AND DERIVATIVES

The residual expression at a general point (i,j) 1s

given by,

For

(1]

(2]

(3]

(4]

Ry, jy =
+
+
+
points
Ri,j -
+

+

C1¥i,j + ©€29i+1,jPi-1,j * C3Pi+1,j®i, j
C4vi-1,39i,j t C59i+l,jPi-2,j * C6Pi-1,39i-2,j
C7<Pi-1,j2 + ca¢i+1,32 + c9Pi+l,; * c10¥i-1,;
C119i,j+1 + €129i,j-1 + €139i-2,;

designated [1]-[{4], we have,

(e1+c11)ei,j * C29i+l,j¥i-1,] * ©3Pi+l,j®i,]
C4¥i-1,3%Pi, 3 + C5Pi+l,§JPi-2,j * C6¥i-1,jPi-2,]
C7¢i—1,j2 + cs¢i+1,j2 + c9pi+l,j * c10¥i-1,]
€12¥1i,3-1 + €139i-2,§ + c118nF1/85+4
(c1+c12)ei,§ + €201+1,§91-1,] + C39i+1,j®Pi,j
CaPi-1,jPi,j * ©5¢0i+1,3%i-2,j * C6¥i-1,3¥i-2,]
C7¢>i—1,j2 + °8¢i+1,j2 + C9vi+l,j * C109i-1,;
C11¥i,j+1 + €13¥i-2,j — c124nFy/gj-4

c€1¥i,j * c29i+1,jPi-1,j t ©39i+1,j?i,]
C4Pi-1,3Pi,3 * €59i+l,j¥i-2,j t C6Pi-1,3Pi-2,j
<=7<Pi-1,j2 + cs¢i+1,j2 + c9vi+l,j * €10¥i-1,j
€11®i,j+1 + €1291,j-1 + c13¥9i-2,j — ¢11T
C1ei,j *+ €29i+l,jPi-1,j * C3Pi+1,j¥i,]
C4Pi-1,jPi,j * ©59i+l,jPi-2,j * C6¥i-1,jPi-2,)
°7¢i—1,j2 + c8¢i+l,j2 + c9Pi+l,j * C10¥i-1,)

C119i,j+1 + ©129i,j-1 *+ c13¥i-2,j + c12T

85



For a subsonic free stream,
[3] Ri,j = c19i,j *+ c4@i-1,3Pi,] * C6¥Pi-1,jPi-2,)
+ C7¢i-1,32 + c10Pi-1,3 * ©11¥i,3+1
+ ¢120i,3-1 + C13¥i-2,,
(6] Ri,j3 = c191,j * c201i+1,39i-1,] *+ €3Pi+1,j%¥1i,;
+ C4pi-1,3%1,3 t C5Pi+l,jPi-2,] * C6Pi-1,jPi-2,;
+ <=7<pi-1,j2 + <=8<h+1,j2 + c9Pi+l,j *t €10¥1-1,)
+ ¢11(=T/4) + c129i,j-1 + €13¥i-2,
[7) Ri,3 = c1ei,j * c20i+1,3(-T/2) + c30141,j91,;
+ c4(=T/2)pi § + c50i+1,39i-2,] + c6(~-T/2)pi_2 ;
* c7(-T/2)% + cgpis1,y + <99i+l,j + c10(-T/2)
+ c119i,j+1 + c129i,j-1 + c139i-2,j
(8] Ri,j = c1ei,j + €20i+l,jPi-1,j + ©€39i+1,39i,]
t c4pi-1,jPi,j t c5Pi+1,jPi-2,j * C6¥i-1,3jPi-2,;
+ 07901—1,32 + °8¢i+1,j2 + c9¥i+l,j * €10¥i-1,j
+ ¢1190i,3+1 * c12(=3T/4) + c130i-2, ]
(9] Ri,j = c1ei,j + CZ(-P)¢i—l,j + C3(-F)wi’J
+ c4pi-1,391i,3 t e5(-T)eji_2, 3 + cgvi-1,39i-2,]
+ °7¢i—l,j2 + cg(—I‘)2 + cg(-T) + ciovi-1,;
+ ¢11®i,j+1 + ¢€12@i,j-1 + C13¥i-2,j
(10] Rj j = c194,j + c4Pi-1,jPi,; + Cc6Pi-1,j%i-2,)
+ C7¢i—1,j2 + c109i-1,j * c11(-T/4)

+ c129i,j-1 * ©€139i-2,]
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[(11] Ry, j

(12] Ri, j

[13) Ry, j

[14] Ri,j

(15] Rj 3

c19i,j * c29i+1,j(=T/2) + c39i+1,3%i,]
c4(=T/2)¢i 3 * ©59i+1,3¥i=2,]
cg(-T/2)pi-2,j + ¢7(-T/2)" + cgpis1,j
cgpi+l,j + c10(-T/2) + c11(-T/4)
C12¥i,j-1 * €13¥i-2,]

c1ei,j + c29i+1,3(-T/2) + c30i+1,391,;
c4(-T/2)pi 5 + C59i+1,j%i-2,]
c6(-T/2)pi-2,§ + c7(-T/2)" + cgPivl, ]
cgpi+l,j * c10(-T/2) + c11¢i,j+1

c12(=3r'/4) + c139i-2,;

c1ei,j * c2(-Dlei-1,35 + c3(-T)ei, j
c4pi-1,jei,j + cs(-Tei-2,3 + c6vi-1,3%i-2,;
°7¢i—1,j2 + cg(-I‘)2 + cg(-T) + c10¥i-1,j
c11ei,j+1 + c12(=3T/4) + c139i-2,]

c1ei,j * c4¥i-1,jPi,j t C6¥i-1,j%i-2,;
°7¢1—1,J2 + c10Pi-1,j3 t ©119i,j+1

c129i,j-1 + c13vi-2,3j + c12T

c1ei,j + c2(=T)ej-1,j * C3(-F)¢i,j
c4pi-1,jei,j + ¢s5(-Tlei-2,j * c6¥i-1,39i~2,]

2
c7<Pi—1.j2 + cg(-T) + cg(-T) + c10vi-1,;

€119i,j+1 + ©129i,j-1 * €139i-2,j — c11T
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For a supersonic free stream,

(5] Ri j

(7] Ri j

(10] Ry, j

-+

+

+

2
ClPi,j * c29i,j®i-1,3 * ©€39i,;

C4Pi-1,3%i,; * ©5¥i,jPi-2,3 * c6¥i-1,3¥i-2,;
<=7<Pi-1,32 + °8<Pi,j2 * c9vi,j * c10¥i-1,;
€11¥i,j+1 * c129i,j-1 * €13¥i-2,;

Clei,j * c29i+l,j¥i-1,3 * ©€3¥i+l,39i,;
C49i-1,3%i,j * ©€59i+1,39i-2,] * ©€6¥1-1,39i-2, ]
07%-1,32 + cs¢i+1,32 + C9¥i+l,j * €10¥i-1,;
€1294i,j-1 * €13¥i-2,j

ClPi,j * C€39i+1,3%i,3 * €5¢i+l,39i-2,]
°8¢i+1,j2 + c9pi+l,j t*t €119i,j+1

€12¥i,j-1 * ©139i-2,]

C1Pi,j * ©€29i+1,j9i-1,j * ©39i+1,j%i,]
C4Pi-1,3%i, 3 * €59i+1,j9i-2,j * c6¥i-1,3¥i-2,;
°7<Pi—1,j2 + cs¢i+1,32 + C9vi+l,j * C€10¥i-1,]
€11¥i,j+1 +* ¢13¥i-2 j

Clei,; * c29i,3Pi-1,3 * C3¢i,32

C4Pi-1,jPi,j * €504, §9i-2,j * CPi-1,j¥i-2,]
<=7<Pi-1,J2 + °8¢1,j2 + c9pi,j * c10¥i-1,]

Cl1¥i,j+1 * c129i,j-1 + €13¥i-2,;

2
= c19i,j * €291, ,jPi-1,j * ©€3%¥i,j
j

+ C4®i-1,jPi,j * ©50i,jPi-2,j t C6¥i-1,3Pi-2,]

2 2
+ c7pi-1,j + c8®i,j * €9Pi, j * €10¥i-1,j

+ ¢129i,j-1 * ©13¢i-2,j
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[11] Ri,j = c1pi,j + €3@i+1,jPi,j * €50i+l,j%9i-2,)

+ C8¢i+1,32 + Cc9Pi+l,j * €120i,3-1 * C139i-2
(12]) Ri,j = c1ei,j + C3@i+l,jPi,j * €5¢0i+1,39i-2,]

+ °8¢i+1,j2 + c9®i+l,3 *t C11%i,j+1 * €139i-2,;
[(13] Ri,j = c1ei,j * c29i,jPi-1,; t C3¢1,j2

t C4Pi-1,jPi,j *t ©59i,3¥i-2,j * c6¥i-1,3¥i-2,;

+ C7<Pi-1,j2 + cs¢i,J2 + c9pi, 3 * c10¥i-1,j

+ C11Pi,3+1 * €13¥i-2,;
(4] Ry j = c1ei,j + c20i,jPi-1,j * <=3<Pi,j2

+ C4pi-1,jPi,3 * ©5¢i,jPi-2,] * C6Pi-1,jPi-2,]

+ C7<Pi-1,j2 + ca¢1,j2 + c9pi,j * c109i-1,]

+ €119i,j+1 + c12¢i,j-1 +* c13¢i-2,3 + c12T
[15) Ri,j = c194i,j + c20i,jPi-1,j * 63¢1,12

+ C4Pi-1,3Pi,j * ©5¥1i,jPi-2,j * CePi-1,jPi-2,;

2 2
+ c794-1,5 *+ cgei,j * c9ei, 3 t cl0¥i-1,;

+ €1191,j+1 * €129i,j-1 *+ ©€139i-2,j — c11T
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Now, the previous expressions are differentiated with
respect to ¢jj, jj to give the elements of the jacobian
matrix (aRi,j/a¢ii,jJ) This is achieved as follows

For a general point (i,j),

ii i3 Derivative of Rj j

i 3-1 c12

i ] €l * c39i+1,j t C49i-1, ]

1 J+1 c11

i-2 J csPi+l,j t c6¥i-1,j * c13
i-1 J C29i+l,) t cuvi,j * c6Pi-2,;

+ 2c7¢i—l,j + ci0
i+l ] C29i-1,j + €3¢i,j t ¢c5¢0i-2 ]

+ 2cgpi+l,j + <9

ITE-1 JB=-2 0
ITE-1 JB-1 0
ITE-1 JB 0
ITE-1 JB+1 0
ITE JB~-2 0
ITE JB-1 0
ITE JB 0

ITE JB+1 0



For points [1],

ii

i+l

ITE-1
ITE-1
ITE-1
ITE~-1
ITE
ITE
ITE

ITE

JB
JB+1
JB-2
JB-1
JB

JB+1

Derivative of Ri,j

€12

€1 * ¢391+41,3 * c4Pi-1,3 * <11
0

csPi+l,j * cePi-1,j * c13
e29i+l,j ¥ c4®i,j t* c6vi-2,j

+ 2¢791-1,§ * c10

€2%9i-1,3 ¥ €39i,j * C5Pi-2

+ 2cgei+l,; + ©9

0

0
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For points [2],

ii

i+l

ITE-1
ITE-1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

JB=-2
JB-1
JB

JB+1
JB-2
JB-1
JB

JB+1

Derivative of Ri,j

0

C1 +* C3®i+l,j * c4vi-1,5 * c12
€11

csPi+l,j + C6Pi-1,3 * €13
C2@i+l,j t* C4¥i,j * CePi-2, ]

+ 2¢c79i-1,3 t €10

Coei-1,3 + €39i,j + €50i-2,]

+ 2cgpi+l,§ + ©9

0

0
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For points [3],

ii jj Derivative of Ri,j

i -1 €12

i J €1 + c3¥i+1,j * C4Pi-1,;

i j+1 €11

1-2 j C5¥i+l,j * C6Pi-1,j * c13
i-1 3 C2Pi+l,j * C4Pi,j * c6vi-2,;

+ 2c7¢1_1’j + c10
i+l ] C29i-1,j * €394, * c59¢i-2,

+ 2¢89i+1,j * €9

ITE-1 JB=-2 - ¢11(+0.5T1)
ITE-1 JB-1 - ¢c11(-1.5Ty1)
ITE-1 JB - e11(+1.5T7)
ITE-1 JB+1 - ¢11(-0.5T1)
ITE JB-2 - ¢11(+0 5T»2)
ITE JB-1 - ¢c11(-1.5T3)
ITE JB - ¢c11(+1.5T7)

ITE JB+1 - ¢11(-0 5T9)



For points [4],

ii jj Derivative of Ri,j

i 1-1 €12

i J Cl + ¢3¢i+l,j * C49i-1,;

i i+l €11

i-2 j ¢s¥Pi+l,j * ce¥i-1,j * c13
i-1 J C2%i+1,j * C4®i,) * C6¥i-2,;

+ 2C7¢i_l'J + c10
i+l J C2¥9i-1,j * ¢€39i,j * ¢59i-2,j

+ 2¢g8Pi+1,3 * <9

ITE-1 JB-2 + ¢12(+0.5T7)
ITE-1 JB-1 + ¢c12(=-1.5T7)
ITE-1 JB + c19(+1.5Ty)
ITE-1 JB+1 + ¢12(=0.5T1)
ITE JB-2 + ¢c12(+0 5T9)
ITE JB-1 + ¢c12(~1.5T5)
ITE JB + ¢12(+1.5T7)

ITE JB+1 + ¢12(-0 5Ty)



For a subsonic free streanmn

For points

ii

i+l
ITE-1
ITE-1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

(51,

33

JB
JB+1
JB=-2
JB-1
JB

JB+1

Derivative of Ri,j

€12

cl * c4vi-1,)

€11

ce¥i-1,j * ©13

C4pi,j t* C6Pi-2,3 * 2¢791-1,;
+ 10

0

0
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For points [6],

ii jj Derivative of Rj, j

i j-1 €12

i J €l * c3vi+l,j *t c4vi-1,)

i J+1 0

i-2 ] csei+l,] * ce¥i-1,j * c13
i-1 j C2Pi+l,j * c4vi,j * C6Pi-2,;

+ 2c7¢i—l,j + ¢190
1+1 J coei-1,j * €3¥i,j * ©5¢i-2,]

+ 2cgoi+l,j * €9

ITE-1 JB-2 - ¢11(+0.5T1)/4
ITE-1 JB-1 - c11(-1.5T1) /4
ITE-1 JB - ¢c11(+1.5T1)/4
ITE-1 JB+1 - ¢c11(-0.5T1)/4
ITE JB-2 - ¢c11(+0.5T9) /4
ITE JB-1 - c11(-1.5T2)/4
ITE JB - ¢c11(+1.5T2) /4

ITE JB+1 - ¢11(~-0.5T2) /4



For points
ii

i

i+l

ITE-1

ITE-1

ITE-1

ITE-1

ITE

ITE

ITE

ITE

(71,

JB

JB+1

JB-2

JB-1

JB

JB+1

Derivative of Ri,j

€12

cl + c39i+l,j = c4T/2

c11

C5®i+l,j ~ cgl/2 + c13

0

- col'/2 + €39i,j * €50i-2,;

+ 2cg®i+l,j * €9
(-c20i+1,j/2=c4wi, j/2-ceri-2,5/2
+cyl/2-cq10/2) (+0.5T7)
(-c2¢1+1,j/2-c4pi, j/2-cevi_2, 5/2
+cyl/2-¢c10/2) (-1 5T3)
(-c20i+1,§/2=c4vi, 3/2-cepi-2,;/2
+c¢7l/2-¢c10/2) (+1 5T7)
(-c20i+1,5/2-c4pi,j/2-cgei-2,;/2
+c7T/2-c10/2) (=0 5T7p)
(-c20i+1,j/2-c49i,3/2=cep1-2,;/2
+c70/2-c10/2) (+0.5T9)
(-c20i+1,j/2-c4vi, j/2-cepi_2, 1/2
+c7l'/2-c10/2) (-1.5T7)
(-c20i+1,j/2-copi, j/2-cevi-2, 5/2
+c3l/2-c10/2) (+1.5T9)
(-e20i+1,j/2-c4ei,j/2-cevi-2,5/2
+c7l/2-¢c10/2) (-0.5T))



For points {[8],

ii jij Derivative of Ri,j

i 1-1 0

i J c1 + ¢c39i+l,j * CaP1-1,;

i Jj+1 c11

i-2 j cspi+l,j + c6¥i-1,j * c13
i-1 J C2ei+l,) * C4¥i,j t C6¥i-2,)

+ 2¢791-1,§ * ©10
i+l ] caei-1,j * ¢€3¥i,3 * ¢50i-2,;

+ 2cgoi+l,j * ©9

ITE-1 JB=2 - 3 c12 (+0.5T1) / &
ITE-1 JB-1 - 3 c19 (-1.5T1) / &
ITE~-1 JB - 3 c12 (+#1.5T1) / &
ITE-1 JB+1 - 3 c19 (-0.5T1) / 4
ITE JB-2 - 3 cyp (+#0.5T3) / &
ITE JB-1 - 3 ¢cy19 (-1.5T3) / &
ITE JB - 3 ¢cyg (+#1.5T2) / 4
ITE JB+1 - 3 cyp (-0.5T3) / &



For points [9],

ii

i

i+l

ITE-1

ITE-1

ITE-1

ITE-1

ITE

ITE

ITE

ITE

JB=-2

JB-1

JB

JB+1

JB=-2

JB-1

JB

JB+1

99

Derivative of Rji,j

€12

c1 —e3l + cupj-1 3

c11

- csT + gvi-1,j5 + c13

- el + 401,35 + c9i-2,;
+ 2¢c79i-1,j * €10

0
(=c20i-1,3-C301,j=C591-2,
+2cgl=-cg) (+0.5T71)
(-c29i-1,j=C391,§—C5¢0i-2,;
+2cgl-=cg) (-1.5Ty1)
(-c2¢i-1,j-C3¥i,j=C59i-2, ]
+2cgl=-cg) (+1.5T71)
(=c29ji-1,j-C3Pi,j=C5¢i-2,;
+2cgl-cg) (-0 5T3)
(=c2¢i-1,37¢3¢i,§=C¢59i-2
+2cgl-cg) (+0.5T3)
(=c20i-1,5-C3P1,j—C5¢i-2,]
+2cgl=cg) (-1.5T>p)
(-e2¢i-1,j=C3¢1i,j=C5Pi-2,;
+2cgl-cg) (+1.5T9)
(=c2@i-1,j=C3¥i,j—C5¢i-2,]

+2cgl=cg) (-0.5T3)



For points [10],

ii

i+l
ITE-1
ITE~1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

JB-2

JB-1

JB

JB+1

Derivative of Rj 3
»J

c12

cl + c4Pi-1,;

0

C6Pi-1,

Cuapi,j + c6¥9i-2,5 * 2¢795-1,

+

0

€10

11
€11
11
€11
11
€11
€11

€11

(+0.

(+1.

+ €13

5T1)

.5T1)

5T1)

.5T1)

5T7)

.5T9)
.5T9)

.5T2)

NOONN NN NN N
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For points [1l1],

ii

i

i+l

ITE-1

ITE-1

ITE-1

ITE

ITE

ITE

ITE

JB-2

JB-1

JB

JB+1

JB-2

JB-1

JB

JB+1

101

Derivative of Ri,j

€12

c1 + c39i+l,3 ~ cqlT/2

0

cs@i+l,j — c6/2 + c13

0

- ¢l + c394 3 + €50i-2, 3

+ 2cgpi+l,j * <9
(-c201+1,3/2-caei, j/2-cevi-2,5/2
+cy/2-c10/2-c11/4) (+0 5T1)
(-co2pi+l,j/2-c4wi,j/2-c6pi-2,3/2
+c7/2-c10/2-c11/4) (=1.5T1)
(-c201+1,1/2-c4@i,3/2-c6vi-2,3/2
+c7/2=c10/2-c11/4) (+1 ST1)
(-c20i+1,j/2-c4w9i,j/2-cepi-2,3/2
+c7/2-c10/2-¢c11/4) (=0 5T1)
(-co0i+1,j/2-c4?i,3/2-c6vi-2,3/2
+c7/2-c10/2-c11/4) (+0 3T2)
(-c20i+1,j/2-c49i,j/2-c6¥i-2,7/2
+cy/2-c10/2-c11/4) (-1.5T2)
(-c20i+1,j/2-c4Pi,j/2-c6vi-2,3/2
+c7/2-c19/2-c11/4) (+1.5T3)
(-c20i+1,j/2-capi,j/2-c69i-2,3/2

+c7/2-c10/2-c11/4) (-0.5T2)



For points [12],

ii

1

ITE-1

ITE-1

ITE-1

ITE-1

ITE

ITE

ITE

ITE

JB=2

JB-1

JB

JB+1

JB=-2

JB-1

JB

JB+1
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Derivative of Ri,j

0

c] + c3pi+l,j — c4l/2

€11

csei+l,; - c<6T/2 + c13

0

- caT/2 + c39f j * €5¢i-2,]

+ 2cgpi+l,j * ©9
(=c20i+1,3/2-c4wpi, j/2-c6vi-2,3/2
+c70/2-c10/2-3¢c12/4) (+0.5T1)
(-c2pi+1,j/2-c4ei, j/2-c6vi-2,5/2
+c7T/2-c10/2-3¢c12/4) (-1.5T1)
(mc2pi+1,j/2-c4@i,j/2-c6vi-2,/2
+cy0/2-c10/2=3c12/4) (+1.5T1)
(-c20i+1,j/2-cawi, j/2-c6pi-2,3/2
+c7F/2—c10/2—3C12/a) (-0 5T71)
(mc20i+1,§/2-cawi, j/2-cevi-2,5/2
+c70/2-c10/2=3c12/4) (+0.5T2)
(-c201+1,j/2-c4wy,j/2-c6pi-2,3/2
+c9l/2=-c10/2=-3c12/4) (-1.5T2)
(-c20i+1,§/2-capi,j/2-c69i-2,5/2
+c7T/2~c10/2=3¢c12/4) (+1.5T2)
(-c2@i+1,j/2-capi,j/2-c69i-2,j/2

+c7T/2-c10/2-3¢c12/4) (-0.5T9)



For points [13],

ii i3 Derivative of Rj j

i 3-1 0

1 J c1 - c3l + c4ei-1,,

i j+1 11

i-2 j - csT + cgpi-1,§ + c13
i-1 j = col + cqpi,j * C69i-2,;

+ 2¢794-1,3 * €10
i+1 j 0
ITE-1 JB-2 (-c2@i-1,3-C39i,j=C¢5¢1-2,;
+2cgl-cg~3cy9/4) (+0 5T71)
ITE-1 JB-1 (-c2pi-1,j=C3®Pi,j=Cc5%i-2,;
+2cgl-cg-3cy2/4) (-1 5T1)
ITE-1 JB (-c20i-1,j~C3¥1i,j=¢5¥i-2,)
+2cgl-cg=3c12/4) (+1.5Ty1)
ITE-1 JB+1 (-€29i-1,37C3Pi,j=Cc5%i-2,;
+2cgl-cg-3c12/4) (-1.5T71)
ITE JB-2 (-c29i-1,§=C391,3-C5¥i-2,j
+2cgl=-cg-3c12/4) (+0.5T3)
ITE JB-1 (-c2pi-1,j=C3Pi,j—c5Pi-2,]
+2cgl-cg=3cy2/4) (-1.5T3)
ITE JB (-c29j-1,37C3Pi,j~C5%i-2,]
+2cgl-cg=3c12/4) (+1.5T2)
ITE JB+1 (-c29i-1,j=C391i,j"C59i-2, ]

+2cgl=cg=-3c12/4) (=0.5T3)



For points [1l4]},

ii

i

i+l

ITE-1

ITE-1

ITE-1

ITE-1

ITE

ITE

ITE

ITE

JB=-2

JB-1

JB

JB+1

JB=2

JB=-1

JB

JB+1

Derivative of Rj
€12

c1 + c4e1-1, ]

c1l1

cgpi-1,j + €13
c4pi,j * cePi-2,] * 2¢79i-1,;
+ ¢10

0

cy1p (+0.5T7)

c12 (-1.5T1)

c12 (+1 5T71)

c12 (=0.5T1)

c12 (+0.5T2)

c12 (-1.5T2)

c1g (+1 5T)

c12 (=0.5T3)
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For points [15],

ii

i

i+l

ITE-1

ITE-1

ITE-1

ITE-1

ITE

ITE

ITE

ITE

JB-2

JB-1

JB

JB+1

JB-2

JB-1

JB

JB+1

Derivative of Ri.j

€12

c1 — c3l + C4Pi-1,)

€11

- cs5l + cgpj-1,j + c13

- el + c404,j + cePi-2,;
+ 2¢79i-1,§ * €10

0
(-c20i-1,j-C3¢i,j=C50i-2,
+2cgl-cg=c131) (+0.5T7)
(=c29i-1,j=C3¢i,j—C59i-2,
+2cgl=-cg=-c11) (-1.5T71)
(-c29i-1,j—¢39i,3-C59i-2,)
+2cgl-cg=-c11) (+#1.5T1)
(=c2¢i-1,j-C39i,j=C5¥i-2, ]
+2cgl-cg=-c11) (-0.5T7y)
(-C2¢i_1’j‘c3¢i,j—c5¢i-2,3
+2cgl=-cg—-cy11) (+0.5T9y)
(-c20i-1,j-¢391,j-C501-2,j
+2cgl=cg=-c11) (-1.5T))
(-c2ei-1,j7C3¥i,j=C5¢i-2,]j
+2cgl=-cg=c11) (+1.5T92)
(=c2pi-1,j"C3P1,3§C5Pi-2,]

+2cgl=-cg—c11) (-0.5T3)
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For a supersonic free stream

For points

ii

i+l
ITE-1
ITE-1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

(51,
i
3-1

J

1+1

JB-2
JB-1
JB

JB+1
JB-2
JB~-1
JB

JB+1

Derivative of Ri,j

c12

¢l + c2pi-1,j + 2¢30i

+ c4pi-1,3 + €5901-2,] * 2cgey
+ cg

c11

¢sei,j * ce¥i-1,j * c13
(ega+cbd)oi ;3 + cev1-2,;

+ 2¢79i-1,j5 * ©10

0

0
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For points [6],

ii

i+l

ITE-1

ITE-1

ITE-1

ITE-1

ITE

ITE

ITE

ITE

JB-2

JB-1

JB

JB+1

JB-2

JB~-1

JB

JB+1

Derivative of Ri,j

c12

€1 + C3¥1+1,j * cuPi-1,;

0

csvi+l,; * c6vi-1,j + c13
C2Pi+l,3 * c4vi,y t CcgPi-2,;
+ 2¢704-1,3 * c10

c20i-1,j * ¢3¥i,j + €50i-2, 4
+ 2cgeisl,j t ¢9

0

0
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For points

ii

ITE-1
ITE-1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

[7]'

JB=2
JB-1
JB

JB+1

JB+1

Derivative of Rj  j

€12

€1 * c3%i+l,

€11

c5¢i+l,3 * €13

0

c3@y,j * ©59i-2,j * 2¢8¥i+l,)
+ cg

0



For points

ii

1+1

ITE-1
ITE-1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

(81,

JB
JB+1
JB-2
JB-1
JB

JB+1

Derivative of Ri,j

0

€1 * c3¥i+1,3 * c4vi-1,;

c11

¢5¥i+l,3 * c6¥i-1,j * c13
C2Pi+l,3 t* c4vi,j t c6vi-2,;
+ 2c790i-1,j t €10

C2Pi-1,j ¥ ©39¥i,; * ¢59i-2 ;
+ 2cgeisl,3 * €9

0

0



For points

ii

ITE-1
ITE-1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

(91,

]+1

JB
JB+1

JB=-2

|
.—-I

JB

JB

JB+1

Derivative of Ri,j

c12

1 + c29i-1,y + 2c304

+ c4pi-1,j + Cs590i-2,j * 2¢g@; |
+ cg

€11

c5¥0i,j * cg¥i-1,; t c13
(cz+c&)wi’j * CgPi-2,j

+ 2¢79i-1,5 + €10

0

0
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For points

ii

i+1
ITE-1
ITE-1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

(10},

J+1

JB-2
JB-1
JB

JB+1
JB=2
JB-1
JB

JB+1

Derivative of Ri,j

12

c1 + c29i-1,j * 2¢3¢i,;

+ c4pi-1,j * C50i-2,3 * 2¢8%i,;
+C9

0

cs59i+1l,3 * c6¥i-1,j * c13
C2Pi+l,3 * C4¥i,j * C6Pi-2,]

+ 2c79i-1,5 * c10

0

0
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For points [1l1],

ii

ITE-1

ITE-1

ITE-1

ITE-1

ITE

ITE

ITE

ITE

JB-2

JB-1

JB

JB+1

JB-2

JB-1

JB

JB+1

Derivative of Ri,j

c12

c] + C39i+l,]

0

cs5e1+1,j + €13

0

c39y,3 + €59i-2,§ * 2c89i+l,;
+ C9

0

(%]



For points

ii

i+l

ITE-1
ITE-1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

(12],

JB-2

JB-1

JB

JB+1

JB=-2

JB-1

JB

JB+1
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Derivative of Rj j

0

€l + C3%i+l,3

cl1

cs5ei+1,j * €13

0

c3pi,3 * ©5¢0i-2,j + 2¢89i+l,;
+ cg

0



For points

ii

i+l
ITE-1
ITE-1
ITE-1
ITE-1
ITE
ITE
ITE

ITE

(131,

j+1

JB-2
JB-1
JB

JB+1
JB-2
JB-1
JB

JB+1

Derivative of Ri,j

0

cl + c29i-1,3 * 2c30i,;

+ C40i-1,j + C50i-2,3 * 2¢89;
+ cg

€11

c59i+1,; * C€6®i-1,3 * ¢13
€20141,3 * C4vi,) * c69i-2,

+ 2e79i-1,3 + €10

0

0
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For points [1l4],

ii jj Derivative of Ri,j
1 -1 €12
1 ] c] + c29i-1,; + 2c3¢l,J

t c4pi-1,3 t C59i-2,5 * 2cg9;

+C9
i 1+l c11
1-2 ] €59i+l,3 ¥ cePi-1,3 * <13
i-1 J C29i+l,) * c4Pi,j * Cvi-2,;

+ 2¢70i-1,5 + €10

i+l h| 0

ITE-1 JB~2 c19 (+#0.5T7)
ITE-1 JB-1 ci2 (-1 5T7)
ITE-1 JB c19 (+1.5T7p)
ITE-1 JB+1 c1p (=0.5T7)
ITE JB-2 c1p (+0.5T7)
ITE JB-1 c12 (=1.5Tj)
ITE JB c1p (+1.5Tj)

ITE JB+1 c12 (-0 5T7)

o
w



For points [15],

ii i3

i 31-1
i J

i j+1
1-2 J
i-1 3
i+l i
ITE-1 JB-2
ITE-1 JB-1
ITE-1 JB
ITE~1 JB+1
ITE JB-2
ITE JB-1
ITE JB
ITE JB+1

Derivative of Rj  j

€12

¢l + c2ei-1,3 t 2¢30i

t C4pi-1,j t €50i-2,5 + 2cgei j

+

€9

€11

¢5®Pi+l,j * c6¥i-1,;3 * c13
C2Pi+l,3 * c4¥i,j *t cePi-2,;

+ 2c7¢i-1,5 * €10

0

€11
€11
€11
€11
€11
€11
€11

€11

(+0.
(-1.

(+1.

5Tq1)
5Ty1)

5T1)

.5T1)
.5T9)
.5T9p)
.5T9)

.3T9)
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The derivates of the residual with respect to the

design variables (i e

given by,

XDy Points
T [1]
(2)

Ma General
x [1]
o 12)
c [1]
(2]
L [1]
(2]

right hand sides of Eq (1)) are

Derivates

(+c118n/85+%) F'

(=c128n/83-%) F'y

c1'ei,j * c2'Pi+l, jPi-1,;

+ ¢3'0i+1,391,3 +* C4'Pi-1, 391,

+ c5'9i41,3Pi-2,j * C6 Pi-1,3%Pi-2,;
+ °7'¢1-1,32 + Cs'wi+1,j2 + c9'eitl,
+ c10'9i-1,j * c13'Pi-2,;
(=c114n/834+%)

(+c128n/g5-3)

(+c118n/g54%) F'1

(mc128n/83-3%) F'u

(+c118n/gy+%) F'1

(-Cleﬂ/EJ—E) F'y

Note that the primes (') denote the partial derivative

with respect to the design variable (XDji).
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