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ABSTRAcr 

'Ibis report continues the study of an Advanced-Technology Space 

station which would utilize the capabilities of subsystems projected for 

the tilne frame of the years 2000 to 2025. '!he particular studies include 

trade-offs of nuclear versus solar dynamic poINer systems that produce 

poINer outputs of 2.5 megawatts and analyses of the dynamics of the 

spacecraft of which portions are rotated for artificial gravity. The 

design considerations for the support of a manned Mars mission from low 

Earth omit are addressed. '!he studies extend to on-board 

manufacturiIxJ, internal gas corrposi tion effects, and locomotion and 

material transfer uroer artificial gravity forces. '!he report concludes 

with an assessment of technology requirements for the Advanced-Technology 

Space station. 
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1.0 INI'ROIlJCrION 

One of the goals of the United states Space Program is the 

establishment of pennanent space stations. '!he design of the first "IOC 

Space station" is still evolving, but will probably have the general 

appearance of the configuration shown in Figure 1.0-1. References 1-1 

am 1-2 present some details for that configuration. '!he IOC Space 

station is nadir-pointing, am causes a rotation about its transverse 

axis at the rate of one revolution per omit. current plans are to have 

such a space station in low Earth omit by about the year 1994. 

studies of space stations are lll'rler way for the more distant 

future, utilizing advanced technology and perfonning functions in support 

of future space missions. One series of studies is concented with 

examining various aspects of a space station for the time period arolll'rl 

the year 2025. Two reports have been published in this series of 

studies (References 1-3 and 1-4). '!he first study (Reference 1-3) led to 

the conceptual configuration shown in Figure 1.0-2, which is basically a 

rotating space station with an inertially oriented central section. '!he 

secorrl study (Reference 1-4) used that configuration as a starting point 

to examine the configuration and its functions in some detail and to 

identify pacing technology areas. 

'!he rotating Advanced-Tedmology Space station (ATSS) provides an 

artificial gravity field, which reduces medical and physiological 

problems associated with weightless long-duration space flight (see 

References 1-4 and 1-5). 

'!he present study uses the rotating ATSS configuration described in 

References 1-3 and 1-4 (and summarized in Section 2 of this report) for 

more in-depth analyses with ezrphasis on the following tasks: 

1-1 
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NON-ROTATING 
CENTRAL TUBE AND PLATFORM. ~~ 
MICROGRAVITY, SOLAR r.~T'\ ~~ ~ -.% 
HORTICULTURE LABS. 
TUBE; 15m DIA. 10 
PLATFORM; 5m 
158m DIAMETER 

RADIATOR 

ROTATING 

OBSERVATION TUBE. 
EARTH/SPACE INSTRUMENTS 
290m LONG, (MAINTAINED 
PERPENDICULAR TO 

~:HE EGLIPTIC PLANE) 

SOLAR FACING ORBIT WITH 
SOLAR DYNAMIC POWER AS 
6 UNITS AT 425kW EACH 

NON-ROTATING 

ROTATING 
TORUS. 
HABITAT AND 
LABORATORY. 
TORUS; 229m DIA. 
RING; 15.3m DIA. 

DOCKING AND ERECTION BAY 
AS 67m CUBE (ATTACHED TO 
CENTRAL TUBE). 

Figure 1. 0-2 Advanceci..JI'echnology Space station Concept, Principal Features of 
Reference Configuration 



1. Perfom c:x:mprrative system analyses of baseline concepts, sum as 

power generation am storage (reported in Section 3). 

2. Examine operational aspects, sum as omital lifetime am control 

requirements (reported in Section 4). 

3. Assess the effects of artificial gravity (generated by rotation) on 

subjects am on material transfer (reported in Section 5). 

4. Examine the rigid body dynamics of the rotating A'ISS (reported.in 

Section 6). 

5. Assess the feasibility of on-board manufacturing of spacecraft 

ca:nponents for planetary missions (reported in section 7). 

6. Assess effects of reduced pressure on ATSS operations (reported in 

Section 8). 

7. Consider the role(s) of the A'ISS in support of Mars missions, using 

three Mars mission scenarios provided from studies by the langley 

Research Center, Massamusetts Institute of Tedlnology, and Texas 

A&M at Austin (reported in Section 9). 

8. Identify am assess pacing technologies (reported in Section 10). 
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2.0 ROI'ATING AIJVANCED-'l'EOiNOIOGY SPACE STATION <X>NFIGURATION 

'!he configuration used as a starting point is described in some 

detail in Reference 1-4, am the major features are repeated for 

convenience am reference. Relevant weights arrl dimensions for elements 

of the Space Station are given in Figures 2.0-1 am 2.0-2, respectively. 

'!he ATSS has a large rotating torus which provides artificial 

gravity (centrifugal force) am is the primary habitat am work area for 

the crew am also provides gas (~ am H2) storage. An artificial 

gravity of one Earth g, 9.8 nVsec2 (32.2 ft/sec2), can be obtained at 2.8 

revolutions per minute. 'lWo solar dynamic units on the torus provide 

electrical power for use in the torus. 

'!he other components of the ATSS are attached to a central tube 

which remains SUn-pointing am does not rotate with the torus. 'lhese 

units include a celestial observatory, an Earth obsenTatory, a platfonn 

with horticultural dames am four solar dynamic units, am a section for 

bert:hi.rxJ, loading, am unloading spacecraft. The entire ATSS is SUn

pointing, am therefore, precesses at the rate of one revolution per 

year. 

The baseline configuration had two alternatives. It was examined 

briefly with am without storage tanks that rotated counter to the torus. 

Reasons for considering use of counterrotating tanks are discussed in 

Section 5 of Reference 1-4. Tanks could be used for fluid (water) 

storage arrl also to reduce the net angular momentum of the Space station. 

In reference to the baseline configuration, the studies described 

in this report provide additional information regarding "some operational 

aspects" am pacing tedmologies pertinent to a rotating Advanced

Technolc:qy Space station for the year 2025. 
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HORTICULTURAL DOMES 
(4 REQ) 

RADIATORS (100 REQ) 
1.8 x 104 kg 

SOLAR DYNAMIC UNITS 
(2 REQ) 425 kW 
9.1 x 104 kg 

RADIATORS (150 REQ) 
8.5 x 103 kg 

CELESTIAL OBSERVATORY 
(2 MODULES PLUS BOOMS) 

~ 9.1 x ]04 k~ 
N 

TORUS MASSES 
INTERNAL 1.04 x 106 kg 

CONTINGENCY 2.27 x 105 kg 
GAS STORAGE 1.36 x 105 kg 
TORUS SHELL 8.62 x 105 kg 
WITH CONTINGENCY -_._._---

TOTAL TORUS MASS 2.27 x 106 kg 

SOLAR OBSERVATORY (I REQ) - 4.5 , IO~ kg 
1(4 REQ) 425 kW - 1.8 x lOS kg r SOLAR DYNAMIC UNITS ,. ) ,!' (2 REQ 25" - '.5 , 103 '" 

PLATFORM MW ATTACHMENTS - 1.8 x 105 kg 

SPOKES (4 REQ) - 3.1 x 105 kg 

SAFE HAVEN (2 CYLINDERS) 
TOTAL MASS - 9.1 x 104 kg 

TORUS (24 SECTIONS) 
TOTAL MASS - 2.27 x 106 kg 

BERTHING AND ERECTION.BAY - 4.53 x 104 kg 

Figure 2.0-1 Space station SUbassembly Masses 



N 
I 

W 

HORTICULTURAL DOMES (4 REO) - 5 m H x 25 m Dia 

RADIATORS (100 REO) 
5 I~ X 10 m 

SOLAR DYNAMIC UNITS 
(2 REO) 425 kWe - 38.7 m Dia 

RADIATORS ~ 
(150 REO) - 3.1 m x 5.1 m 

r-- 67.1 m 1 _I 

SOLAR OBSERVATORY (I REQ) - 15.2 m Dia x 9.2 m 

SOLAR DYNAMIC UNITS 
(4 REO) 425 kW - 39 m Dia 

(2 REO) 25 kW - 10 m Dia 

PLATFORM - 5 m x 158.5 ,11 Dia 

SPOKES (4 REO) - 9.1 m Dia x 89.9 m 

TORUS CYLINDER (24 REO) -.7.62 m Radius 
EACH CYLINDER - 15.24 m Dla x 29.9 m 

9.1 m Di a 

I: 128.6 m -, 
,...·-1---------167.6 m _I 

Figure 2.0-2 Space station Dimensions 
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3.0 ON-OOARD FaVER GEN"ERATION - A a::f.iPARISON OF SOIAR DYNAMIC .AND 
NUCIEAR FISSION HFAT SCXJRCES 

Operating the subsystems within the rotating Advanced-Technology 

Space station (ATSS) arrl perfonning some of the different, unique tasks, 

such as on-board generation of oxygen arrl hydrogen for atmospheric 

replenishnelt arrl additional propellant fuel, will place large demands on 

the electrical power system. '!he ATSS ex>ncept utilizes about 2550 kW of 

electric power supplied by a solar dynamic system ex>nsidered 

furrlamentally nore efficient than a photovoltaic system. '!he solar 

dynamic system ex>nsists of six identical units, of 425 kW output each, 

as the baseline electric power system. Solar dynamic systems experience 

long shadow tbtes during each omit, arrl their structures are still 

relatively large c::atpared to other ex>ntinuous heat sources. A c:o.npu-ison 

and evaluation of alternative heat sources for power generators appears 

prudent. 

Alternative types of heat sources are radioisotope decay, nuclear 

fission, arrl potentially, nuclear fusion. Both radioisotope decay and 

nuclear fission sources have e>q;>erienced space flight (References 3-1 

through 3-3) but not at the power levels or in the ex>nfigurations 

required by the ATSS. '!herefore, a careful c:o.npu-ison is required of the 

parameters governing the design of each alternative. Nuclear fission 

represents the principal heat alternative; ex>nsequently, this effort 

compares the nuclear fission alternative to the solar dynamic baseline 

system. 
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3.1 Comparison Evaluation Approam and General Results 

3.1.1 Approam 

'nle comparison first generates a baseline configuration for the 

ATSS solar dynamic units as the reference for comparison evaluations of 

the alten1ates in tenns of mass, control requirements, and configuration

related elements. 

'nle evaluation proceeds in a sequence of four steps with each step 

making contributions to those whim follow: 

A. Define a 'nlennal cycle for Energy Conversion 

'nle initial step defines the operating thennodynamic parameters for a 

closed-cycle gas tumine as the input to an electrical generator. 'nle 

selection of a closed-cycle gas tumine was influenced by its 

indepenjence from local gravity effects. 'nle Space station has four 

platfonn-nnmted units operating in microgravity and two torus-mounted 

units operating in a rotation-irrluced field whim can range up to a one 

Earth gravity equivalent. 'nle operating parameters for the cycle are 

drawn from previous definitions (Reference 3-4) and include a 320 K 

radiator temperature and a 40 percent energy throughput conversion 

efficiency. 

B. Define the B:lseline Solar Dynamic unit 

'nle definition for the baseline solar dynamic unit includes 

conceptual configurations for the concentrator, collector, converter, and 

radiator, plus the mounting am the pointing control elements. 'nle 

detail of definition extends to a level whim allows an estimate of mass, 

an estimate of control requirements, and an assessment of specific 

constraints or operational considerations. 
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c. Define a Nuclear Fission Heat Source 

A concept whidl enploys nuclear fission reactors as the heat source 

for six converter-radiator units is generated and compared with the 

baseline solar dynamic system. '!he ~ison includes a range of 

reactor shield material options in addition to the control requirements 

and configuration-related considerations. '!he ~ison of shield 

weights am shield options provides a degree of insight for the 

corrlitions which would detennine a minilnum power threshold for 

application of fission reactors to space power systems. 

D. System Ccltparisons and Evaluations 

'!he mass estimates provide the first and most objective comparisons 

for the system. '!he comparison of control requirements assesses the 

rn.nnber of parameters, required acx::uracy, range, and operating frequencies 

to make a general ~ison of relative corcplexity or difficulty. '!he 

comparison of particular features makes a generalized assessment of 

relative difficulty in responding to entirely different sets of 

requirements • 

3.1.2 General Results 

Section 3.5 contains the comparisons and assessments which lead to 

the followinq specific conclusions and results relative to each of the 

pertinent features. 

A. Energy Comersion Efficiency 

A 40 percent energy comers ion efficiency appears achievable through 

perfonnance inprovements in rotating machinery and heat recovery 

tedmiques (regenerators for Brayton cycles or co-generation for Rankine 

cycles). '!he cycle calculations show that for any combination of 
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rotating components, the performance of the heat exchanging elements 

defines the practical operating efficiency. High efficiency tw:bines or 

compressors cannot carcpensate for perfonnance losses within heat 

exc.::hargers . 

B. Solar Dynamic Power Systems 

The concentrators for 425 kW power systems were recognized as large 

area structures am. priority carxiidates for both materials development 

am. configuration developnent for reduced mass. '!he 40 percent 

throughput efficiency results in a near equal area for radiators am. 

urxlerscores the need for their low mass configurations. The size of the 

elements leads to a system configuration which effectively becomes a non

interruptable continuous power generator. Modulation of the solar input 

appears to require movement (or maskiDJ) for portions of the concentrator 

area am. thereby introduces corrq;>lexities to the control functions. 

Energy storage in phase c.::harge material adds a significant thennal 

inertia to the collection am. conversion sequence. The masses associated 

with a 425 kW power unit am. the thennal inertia of the system combine in 

a manner that only permits slCM changes; an emergency or uncontrolled 

shutdown could damage portions of the system. 

c. Nuclear Fission Reactors 

'!he evaluation confinned shield weight as the dominating element for 

the system. '!he evaluation of candidate materials for a shield revealed 

a factor of five in the range of shield weights and indicated an overall 

mass advantage by using shield materials of high density. The comparison 

of shield mass as a function of core size and output power indicates a 

decreasing mass-to-power ratio with increased output and suggests that a 
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thennal output of 3 MW is a practical lower limit for an iIrlividual 

reactor in this type of an application. 

D. Con'parison of Systems 

The c::onparisons revealed similar system masses, system controls, and 

specific operational conditions. The estimate of masses showed one 

shield option (lead) for a nuclear system at a lower value than the 

baseline solar dynamic system. The control requirements showed near 

equal complexities in addressing the functions with different parameters 

(converter controls are the same for both systems). The particular 

considerations traded complexities in assembly and start-up for the solar 

dynamics with recovery of radioactive corcponents after reactor operation 

and did not show a decisive difference. '!his comparison indicates that 

the selection of a heat source for power generation should be decided by 

mission requirements rather than power system features or complexities. 

3.1.3 COntinuing Evaluations 

The results from comparing solar dynamic and nuclear fission heat 

sources irrlicate the need for extending the comparison to include 

radioisotope decay and estimating nuclear fusion potentials. In 

addition, the comparisons will benefit from including the option for 

advanced photovol taics coupled with advanced energy storage elements, 

such as batteries, fuel cells, or flywheels. 

3.2 Definition of the Thennodynamic Cycle for Energy conversion 

The thennodynamic cycle defined for converting heat energy into an 

electrical output draws upon the previously established values of 320 K 

(576~) for the radiator teIrperature and a 40 percent throughput 
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efficiency for energy conversion (Reference 3-4). The cycle selected 

utilizes GN2 as the working fluid arrl produces 450 kW. The added 

increment of power recognizes the system need for inteJ:na1 fluid pumping 

arrl the operation of system controls without diminishing the energy 

delivered for Space station functions. Table 3.2-1 summarizes the 

thennal cycle for tenperatures, pressures, arrl energies using GN2 at a 

flow rate of 4.08 kgfsec (9 lb/sec). The specific features of the cycle 

include or reflect the following considerations: 

3.2.1 Oompressor COnditions 

within the carnot equation for maxiJnum theoretical efficiency, the 

con:pressor inlet represents the low tenperature limit for a closed cycle 

gas tt.u:bine application. Here, the inlet temperature is fixed by a 320 K 

(576~) radiator surface tenperature. A working margin of 2.5 K (5~) 

above the metal tenperature plus a 27.5 K (50~) temperature difference 

from the inlet GN2 yields the 350 K (631~) value for the compressor 

inlet. '!he establishment of the inlet pressure arrl con:pression ratio 

must recognize that an optimum compression ratio will exist for any 

combination of corrponent efficiencies arrl turt>ine inlet temperature 

(Reference 3-5). Here, the optinrum compression ratio must fall between 

2.7 an:i 2.8 to yield a cycle efficiency above 42 percent. '!his 

con:pression ratio and a con:pression efficiency of 0.93 can be achieved by 

a single stage centrifugal design. The selection of pressure levels 

relates to the creep-stress limits for high temperature materials in the 

heat exdlangers. This cycle has the potential for increasing the energy 

throughput by increasing the pressure levels. Operation at a maximum 

pressure of 13.788 MPa (2000 psi), with increased velocities in the heat 
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T.?.BIE 3.2-1 ST..JMM1l.RY OF '!HE ~ 'IHERMJDYNAMIC CYClE 

FlCM GN2 at 4.08 kg/sec (9.0 lb/sec) 

1. Cc1IpreSSOr 

Tenperature, K (~) 

Pressure, MPa (psia) 

Energy in, kW (Btujsec) 

Efficiency 

Inlet 

350 (631) 

2.07 (300) 

514 (490) 

0.93 

outlet 

471 (849) 

5.52 (800) 

2. :RaJe.OOrator - High Pressure 

Tenperature, K (~) 

Pressure, MPa (psia) 

Energy exdlange, kW (Btujsec) 

471 (849) 

5.52 (800) 

783 (1410) 

5.45 (790) 

1326 (1263) 

3. Salrce Heat Exdlarger (NaK ca.mterflow) 

NaK Tenperature, K (~) 1048 (1887) 1076 (1937) 

NaK Flow, kg/sec (lb/sec) 39.41 (86.90) 

GN2 Tenperature, K ("R) 783 (1410) 1047 (1886) 

GN2 Pressure, MPa (psia) 5.45 (790) 5.42 (785) 

Energy Exdlange, kW (Btujsec) 1124 (1069) 

4. '.l\I:rbine - Alternator 

Temperature, K (~) 1047 (1886) 815 (1468) 

Pressure, MPa (psia) 5.42 (785) 2.14 (310) 

Energy out, kW (Btujsec) 987 (940) 

Efficiency 0.95 

Alternator: 

Energy In, kW (Btujsec) 472.5 (450) 

Electrical Energy <X1t, kW 450 

Efficiency 0.95 
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TABlE 3.2-1 SUMMARY OF 'IHE CDNVERI'ER 'l'HERIDDYNAMIC CYCIE (conel.) 

5. Regenerator IaN 
Pressure 

Terl'perature, K (~) 

Pressure, MPa (psia) 

Energy Exchange, kW (Btu/sec) 

Inlet 

815 (1468) 

2.14 (310) 

outlet 

502 (906) 

2.10 (305) 

1326 (1263) 

6. P.recxx>ler Heat EKdlanJer, water ca.mt.erflOii 

Temperature, K (~) 

Pressure, MPa (psia) 

Energy Exchanged, kW (Btu/sec) 

WaterjRadiator: 

Temperature, K (~) 

Flow, kg/sec (lb/sec) 

Radiator Surface, K (~) 
Temperature 

502 (906) 350 (631) 

2.10 (305) 2.07 (300) 

350 (631) 

3-8 

650 (619) 

322 (581) 

5.58 (12.3) 

322 (581) 

Compressor 
Inlet 
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exc::::l1arY;Jers could double the enen:w throughput (at some sacrifice in cycle 

efficiency) . 

3.2.2 Regenerator Considerations 

OVerall cycle efficiency of 40 percent involves the recovery of waste 

heat (Reference 3-6) either as rec:reneration or cogeneration. '!he 

perfo:nnance of the rec:renerator in gas tumines effectively establishes 

the source heat input requirement and the heat rejection requirement for 

the radiator. Rec:reneration with a 32.2 K (58"R) temperature difference 

and a minimum pressure loss requires a perfomance inprovement from 

cont.en'porary practices. 

3.2.3 Turbine Conditions 

'!he energy required to drive the generator combined with the energy 

required to drive the compressor and overcome the tumine losses 

establish the required tumine inlet temperature. '!he defini.rq equation 

has the fonn (from Reference 3-6): 

Turbine Total Work ( y - 1) 
Mass FlaY (Specific Heat) = Turbine Inlet Te.rrp. \" - (Expansion Ratio) Y 

Y = Ratio of Specific Heats I 1.4 for Diatomic Gasses 

'Ibe tumine inlet temperature at 1047 K (1886"R) falls within the 

capability of existing materials, but represents a practical upper limit 

for heat obtained from a liquid metal combination that remains a liquid 

at ordinary te.rrperatures. '!his application uses a 60 Na-40 K mix which 

melts at 292 K (527"R) and boils at 1080 K (1960"R). '!he tumine at an 

efficiency of 0.95 represents a small increment of inprovement from 

present radial in-flaY configurations. 
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3.2.4 Heat Ex~ers 

The two heat exchangers show the least requirement for additional 

developrent. 'Ibe high terrperature heat exchanger would require 

developnent of a coating or alloy which would provide a ten-year life 

against erosion by liquid metal. Any increase in the operating pressure 

would add creep stability to the development requirement. 'Ibe low 

pressure heat ex~er appears conventional, and water provides the 

coolant for the terrperature ran;Je described. water offers the synergy 

for sharing with other subsystems (it can operate with reclaimed water) 

and the use of the hot water as a supplemental ATSS heat source. 'lhe 

inherent flexibility of a water-cooled heat ex~er, where the energy 

transfer is a function of the local velocity, allows a flow versus 

terrperature trade evaluation for any outlet terrperature below boiling 

conditions. 'Ibis comparison assumes one atmosphere pressure with 

boiling at 370 K (672~). 

3.2.5 other Considerations 

Alternate thenna.l cycles could be defined using other gases and other 

flows. An initial evaluation usi..'19' 002 as the other "on-board" gas 

option revealed a need for either an increased flow (regenerator size) or 

a higher turbine inlet terrperature (liquid metal limits). 'lhe difference 

stems fram the ratio of specific heats at 1.4 for diatomic GN2 against 

1. 28 for triatomic 002. 'Ibe noble monatomic gases with specific heat 

ratios of 5/3 (1. 666) offer significant thermodynamic advantages and most 

of the current experimental systems utilize a heavy noble gas (A, Kr, Xe) 

(References 3-2 and 3-3). since these gasses would not occur or be 
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utilized otherwise in the ATSS operations, they were not selected for the 

comparison. 

The selection of GN2 urrlerscores the basic physical constraints 

associated with any cycle that generates electrical energy from a heat 

source. '!he low temperature limit for the cycle defines a radiator area. 

The high temperature requirement must address material l.inri.ts in both 

structure arrl heat transfer media. Waste heat must be recovered without 

an urrlue COIIpromise of the flow parameters. Thennal cycle efficiency 

starrls as the effective countermeasure to overall system weight, and a 40 

percent throughput efficiency presents a technical challenge for space 

power systems. 

3.3 Solar Dynamic Baseline Configuration 

A solar reflecting surface configured as a full paraboloid of 

revolution characterizes the six identical solar dynamic units selected 

as the baseline. The principal features and dimensions of the system 

appear in Figure 3.3-1 which illustrates one of four units mounted on the 

platfonn. The system configuration places the concentrator focus at the 

collector aperture. The collector and converter are mounted as an 

assembly supported on a tripod. A central pedestal-type mounting with 

actuators allows local pointing and tracking. The descriptions and 

discussions which follow address the concentrator and its mounting, the 

collector, the converter, and the radiator. These descriptions lead into 

a SlUl'Ill\Cll'Y of masses, control c:onplexities, and an assessment of other 

pertinent considerations. 
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TRIPOD SUPPORT MEMBER TUBES 
0.3 m Dia. TUBES 

29.25 m Long 

CONCENTRATOR 
l' CIRCULAR PARABOLOID 
~ 42 m Dia. 

CONCENTRATOR 
SUPPORT STRUCTURE 
GRIDWORK OF BEAMS 

COLLECTOR/CONVERTER 
ASSEMBLY 

FOCUS 
AT APERTURE 

t-.IMI~-=-"""'--:--- COOLANT LIN ES 
~--'--'-!-.....-J...,......-r TO RADIATOR 

RADIATOR FLUID 
LINES 

4--- RADIATOR PANELS 

Figure 3.3-1 Solar Dynamic Power system, Platform Installation 



3.3. 1 '!be Solar Concentrator and. Mount 

'!he paraboloid of revolution provides a surface area and reflecting 

efficiency sufficient to provide a continuous output of 450 kW. An 

earlier study (Reference 3-4) required a 39 rn (128 ft) diameter 

concentrator; however, the present baseline for evaluation uses a 

diameter of 42 rn (137 ft) with a 3 rn (10 ft) diameter opening at the 

center for the mounting cone. A solar input of 1.35 kW/rn2 and. a 0.9 

reflecting efficiency provides 1684 kW at the focus as the thennal input 

energy requirement for a 90 minute orbit period with 0.66 period 

illumination. An analytic expression for a parabola which generates such 

a reflector surface has the fo:rm: 

y = 0.Olx2 (x, y in meters with origin at the vertex) 

Const.ru.ction of the reflecting surface will use a mosaic of 

elements. 'Ibe surface is divided into concentric rings or zones, and. 

each zone is further divided into a number of segments. Each segment 

within a zone would be identical. 'Ibe mounting structure becomes a 

correspoming array of rings and radials that support and. align the 

Wi vidual reflective elements. Requirements for surface accuracy and. 

structural support stem from the dispersion limit of a 0.3 degree 

footprint envelope for the solar beam at the focus. Angular deviations 

of a reflected beam are double the angular error at the reflecting 

surface: therefore, the requirement on contour relates to an angular 

limit of 0.15 degree. In effect, a smooth curved surface must not 

deviate from the parabolic rno:iel by more than 2.5 parts per thousarrl (sin 

O. 15 degrees) in any direction along the reflecting surface. 

Specifically, if 2 points, 20 an (8 in) apart, are defined as "on" the 
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parabola, then a smooth curve which joins them carmot deviate from the 

parabola by ll'Ore than 0.5 mm (0.02 in) at the center, either as a bump or 

dimple. 'Ihese limits appear stringent, but are developmentally 

achievable. 

In operation, the collector-converter housing masks the center of 

the concentrator; A IOCJUI1ting installation makes use of the masked area. 

Figure 3.3-2 illustrates the concept. A cylindrical pedestal 2 m (6.6 

ft) in diameter, with a hemispherical cap provides a ll'Ount and a pivot 

for pointing. A cone faired from the 3 m (10 ft) inner ring of the 

concentrator to a confonning hemisphere carries the concentrator, tripod, 

and collector-converter assembly. R>inting is acx::::orrplished by a pair of 

orthogonally placed actuators. R>inting range and accuracy define the 

stroke and position resolution requirements for the actuators. A one 

degree pointing range equates to approximately one day's change (or 

error) in a solar facing one-per-year revolution. At the inner ring of 

the concentrator, a one-degree range equates to a total actuator stroke 

capability of 15 an (6 in) with instantaneous positions kept within a 2.5 

an (1 in) tolerance barrl. 'Ihese requirements are not severe. Actuator 

force levels are specific to the installation. Platfo:rm mounted units 

would require forces sufficient to overcome low speed friction and static 

friction effects. Actuators for units on the torus would have to operate 

cyclically in synchronization with rotation, and these considerations are 

discussed as part. of the particular considerations. (See paragraph 

3.3.8.) 
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r 
4.4 m 

PLATFORM 
OR SPOKE 

MOUNTING PEDESTAL 
2 m Dia. 

'\\\4 HEMISPHERE 

.... 

2 m Dia. 

CONCENTRATOR 
SUPPORT CONE 

POINTING AND CONTROL 
ACTUATORS (2) 

1.0 0 DEGREE CONTROL RANGE 
0.3 0 POINTING ACCURACY 

Figure 3.3-2 Concept for the Pointing Control arrl Mount 



3.3.2 The collector COncept 

nrrin;J each 90-minute o:rbit, the collector accepts a thennal solar 

flux of 1684 kW (1604 Btujsec) for 60 minutes and converts the energy 

into a fusion phase change of which 558.3 kW (532 Btujsec) is stored in 

the fusion phase change in order to provide a 1124 kW (1069 Btujsec) 

continuous output. The concept for the collector employs a eutectic 

mixture consistin;J of 0.774 soditnn fluoride plus 0.226 magnesitnn fluoride 

which melts at 1103 K (1985~) with a latent heat of 656 kJjkg (281 

Btujlb). The flow of energy through the collector utilizes two liquid 

metal loops. A primary loop accepts the solar input and melts phase 

change material. A second loop supplies heat energy to the converter by 

solidifyin;J phase change material. Figure 3.3-3 shows the principal 

features for the collector-converter assembly, and Figure 3.3-4 shows the 

principal details of the collector. 'Ihese are described below in tenns 

of the aperture and cavity, the phase change material, insulation 

requirements, and the liquid metal pumps. 

A. The Aperture, cavity, and Aperture Doors 

The focal point for the concentrator is at the midpoint of the 

aperture both radially and axially. A perfect surface and perfect 

aligrnnent would present the solar energy as an 89-degree cone on either 

side of the focal point. At the focal distance, a 0.3-degree tolerance 

for collector contour results in an energy footprint with an 11.5-cm 

(4.5 in) radius. The pointin;J accuracy limit of 0.3 degree doubles the 

footprint radius to 23 em (9 in). This aperture doubles that radius for 

margin to prevent any portion of the solar beam from contactin;J either 

the aperture liner or insulator, thus generatin;J an aperture with a 

nominal diametrical opening of 1 m (40 in). 
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Heat flux through the walls and the required volume of phase change 

material established the cavity size and shape. A heat flux of 128 

kW/m2 (11 BtU/ft2 sec) yielded the 1.82 m (6 ft) diameter for the 

hemisphere, cylirrler, to:rus-quadrant shaped cavity (cylinder L = 1.5 D) 

and acco.nuoodated the phase change material in a layer 15.2 an (6 in) 

thick. 

within the cavity, liquid metal first <XlOls the hemisphere and then 

flows alo~ the cylinder toward the aperture. Liquid metal then returns 

through passages within the phase change material. Liquid metal flow 

conditions have an inlet terrperature of 1157 K (2086~) which is 55 K 

(100~) above the melting terrperature of the phase change material and a 

terrperature rise of 41. 6 K (75~) at the aperture. A cavity wall of 3 

rom (0.125 in) nickel based alloy (79 Ni, 13 cr, 7 Fe) results in a 

maximum cavity liner terrperature of 1225 K (2205~) near the aperture. 

These temperatures are in the "orange" color range. To conserve energy, 

the aperture must close at sunset and reopen during sunrise. '!he three 

aperture doors are elements of a right circular cylinder with edges 

contoured to make a closure at full extension. In a closed position, the 

doors must reflect any incident sunlight away from the A'lSS. A limiting 

condition oc:curs for rays from the periphery of the concentrator. A 

twenty-two degree half-cone for the doors results in a reflection just 

above the aperture plane. 

B. Heat Transfer Materials, Exchange of Heat 

The thermal storage requirement amounts to a phase change for 3115 

kg (6869 lb) of 0.774 NaF-0.226 M:JF salt. A margin of 15 percent 

results in a total phase change ilwentory of 3600 kg (8000 lb). '!he 

phase cha.n:Je material is carriErl in three layers separated by heat 
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transfer passages containing liquid metal; Figure 3.3-5 illustrates the 

concept. From the inlet, the liquid metal collector ccx>lant flows along 

the liner wall within a ribbed passage that transfers heat into the 

phase change material. Liquid metal flow in a return passage corrpletes 

the heat transfer into the mel ted phase change material. '!he Nal( liquid 

metal from the converter heat exchanger enters in a ribbed passage along 

the outer shell of the collector. '!he NaK inlet temperature is 55 K 

(100~) below phase change am increases by 27.5 K (50~) as it flows 

through the inlet am return passages. In operation, the converter 

extracts heat through a phase change interface which continuously moves 

in an orbit-related cycle. '!he NaK passages always have a rime of solid 

phase change material. Collector liquid metal ccx>lant passages maintain 

a layer of mol ten phase change material. '!he thickness of phase change 

material between passages does not exceed 2.5 c::m (1 in) am thereby 

minimizes any differences in the output heat transfer. 

c. '!hennal Insulation 

'!he outer surface of the collector operates "full red" and 

therefore requires an insulation blanket that combines low conductivity 

with high temperature compatibilities. Ceramics such as ~, Al2031 and 

zr02 are the carrlidates; Reference 7 lists their melting temperatures and 

thermal conductivities. Zirconium oxide offers the best combination, it 

melts at 2973 K (5350 ~) and has the lowest thennal conductivity at 

1.672 W/m2K/m (0.97 Btujhr ft2OWft); in addition cao stabilized Zr02 

has an established compatibility with high temperature nickel and iron 

based alloys. '!he collector has an insulation layer 12 c::m (4.75 in) 

thick of 50 percent density Zr02. External ccx>ling is required to 

maintain the thermal gradient, an:i that heat becomes part of the load for 
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a secorrlary radiator formed into the cylindrical walls of the collector

converter housing structure. 

D. Liquid Metal Pumps 

Liquid metal in both loops will be driven by electromagnetic pumps; 

Figure 3.3-6 illustrates the concept. '!he pmnp utilizes the electrical 

corrlucti vity of the metal stream to produce a force by passing a current 

through a magnetic field. CUrrent through the liquid metal is 

perperrlicular to the field am thereby generates a ptm!ping force within 

the liquid metal. 'Ibere are no moving elements. 'Ibe application 

indicates a flow passage 12 by 25 em (4.75 by 9.5 in) operating with a 

10,000-gauss field am up to 1,000 amperes. A 5 kW power con5tm!ption has 

been allotted for coils am leads. 

3.3.3 '!he Converter Section 

'Ibe converter concept inplements the closed gas turt:>ine thermal 

cycle described above (Section 3.2); Figure 3.3-7 shows the overall 

layout am follows the same general approach described for units 

presently in development (Reference 3-3). 

Rotating elements consist of a centrifugal compressor am a 400-Hz 

alternator driven by a radial in-flow turt:>ine, all on a common shaft. 

Heat exchangers am a regenerator surround the rotating section. 

Control-related elements am the lines to the radiator are carried by 

surrounding support structure. Pertinent details are surmnarized for the 

turbine-alternator, the heat exchangers, am the control elements. 

A. 'Ibe TLu:bine-Alternator Section 

'Ibe 400-Hz alternator establishes rotational characteristics. 'Ibe 

selected alternator follows established practice am consists of a four-
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pole magnet rotating at 12; 000 rpm to deliver 400 Hz, 440 V, three phase 

al tel:nating current from stationary annature coils. Electrical 

conditions dictate a single rotating speed and a constant annature 

excitation current to provide a rotating magnetic field. A compression 

ratio of 2.666 at a thennal efficiency of 0.93 requires a rotating 

peripheral velocity of 365.8 rnjsec (1200 ft/sec) and results in an 

impeller diameter of 58.4 em (23 in). 'Ibis dimension effectively 

establishes an outer diameter for the support casing. A radial in-flow 

tw:bine drives the unit. '!he configuration requires two sets of 

bearings, electrical slip rings for annature current, and some fonn of 

heat extraction. Figure 3.3-7 shows a pressure shell which provides 

bearing supports, electrical access, a magnetic flux return through 

generator coils, and a cooling jacket. Bearing supports indicate ball 

types, although gas film bearings (air bearings) are preferred. '!he 

alternator is a candidate application for low loss (superconducting) 

electrical leads for rotating magnet coils and for stationary generating 

coils. 

B. '!he Heat Exchangers and Regenerator 

Heat exchangers and the regenerator are configured as a ten turn 

helical coil consisting of a 29 tube bundle inside an elliptical casing; 

Figure 3.3-8 illustrates the cross section. In operation, high pressure 

GN2 leaves the compressor housing in 29 tubes of 1.27 em (0.5 in) 

diameter an::l enters an elliptical casing to fonn a counterflow 

regenerator. 'Ihese tubes continue through the NaK high temperature heat 

exchanger an::l become tw:bine inlet passages. A low pressure discharge 

from the center of the tw:bine flows as a single duct to become a return 

flow arourrl the tubes inside the regenerator housing. Return flow 
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continues into the precooler and passes over a water cooled tube bundle 

and then into the corepressor inlet. Heat transfer predictions were baseCl. 

on the established dimensionless ratio equations using Dittus-Boelter 

for gases and Lyon for liquid metals (Reference 3-7): 

For gasses flowing in tubes: 

Nu = 0.023 (Re)0.8 (Pr)0.4 

hOf DfVp Cp)J 
( )

0.8 ( ) 0.4 
k = 0.023 P k 

For liquid metal flowing 
in tubes: 

hOf 

k 

Nu = 7 + 0.025 (Pe)0.8 

f pCp (D V 
)

0.8 

= 7 + 0.25 k 

Df = Hydraulic diameter 
Cp = Specific heat at constant 

pressure 
h = Film transfer coefficient 
k = '!hennal conductivity 
V = Velocity 
P = Density 
jl = Viscosity 

The film transfer coefficient for water employs an empirical equation 

that includes effects of temperature and has the general fonn: 

h ~ A f(t) (D:~:n 
'!he constant A and the coefficients in the temperature function have 

dimensional dependence (Reference 3-7). '!he relationship that detennined 

the lengths for the exchangers and regenerator involved the film transfer 

coefficient, area as a function of length, and the wall-to-gas 

temperature balanced againSt flow, specific heat, and temperature rise in 

the gas stream. Within each heat exchanger, the length was constnlcted 

as a sum of two or more elements representing inlet, mid, and exit flow 

conditions. 

Lengths for each of the three individual heat exchanging sections 

appeared as multiples of 3.5 m (11.5 ft) and thereby established a center 

line diameter of 1.1 m (44 in) for the helical wraps. since heat 
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conservation is a primary consideration, all ten loops are imbedded in a 

zr02 insulation matrix. 

c. Control and Auxiliaries 

Control requirements are derived from a continuous heat input that 

generates a 400 Hz alternating current at 440 V. Solar energy delivered 

to the collector must be converted into electrical energy. '!herefore, an 

altel:nator must operate into a closely matched, near-constant load. 

Small changes in energy throughput are accomplished by corresporrling 

small changes of compressor inlet pressure. An inherent lag in response 

for closed cycle gas turbines dictates slow changes over a narrow range 

of power output. A control system, therefore, requires some reserve gas 

supply and purrps for managing reserves. '!he control system will also 

need to perform "housekeeping" functions that provide coolant flows to 

the insulation blankets, the alternator, and the bearings. In addition, 

the control must provide signals for opening and closing aperture doors 

and signals to pointing-tracking elements. ('!he obvious location for the 

SUn sensor is at the apex of the collector-converter housing.) 

3.3.4 The Radiator 

Radiating area and radiator operating terrperatures combine to 

determine an overall heat rejection capability. A 320 K (576"R) radiator 

metal temperature and water with a 27.5 K (50"R) terrperature rise sets 

the flow rate at 5.62 kg/sec (12.4 lb/sec). Dissipation of 650 kW (619 

Btu/sec) results in 1102 m2 (11,864 ft2) of radiator area. '!he actual 

radiating surface consists of individual panels; Figure 3.3-9 shows the 

principal features for a panel. Panel installations on the platfonn 

consist of two complete rings with each converter connected to a quadrant 

3-28 

" < 



(SNI>lS NO S0'101 31:1nSS31:1d 1'1N1:I31NI 
31:13HdS01J\l1'1 3NO NI'1131:1 S013M-10dS) 

W~ ~E"O 3~'1SS'1d M01:1 
S1:I31N3:J W~ O~ NO 013M-IOdS ON'1 31dll\ll0 

W~ ~"O SNI>lS 

30lS ~NI1'110'1I:1NON NO NOI1'11nSNI 

1:131'1M 

3:J'1:1l:1nS ~NI1'110'11:1 

1d3:JNO:J '131:1'1 ~NI1'110'11:1 

03013M 
W'13S ON'1 
03WI:IO:l 

NI>lS 

lJed'1 W~ S·~ 
saloH "e!o W~ S~" ~ 

W92:'v 

SNI>lS ON'1 S1:I30'13H 
01013M 

DUOl w 9~"t7 x 
W~ E9"0 x W~ O~ 

1:13N3:1:11lS 
3~03 

11'1M W~ ~E"O 
"e!o W~ O~ 

!:J30'13H 131NI 

WnNllJ\lnl'1 SI 3!:Jn1:JnI:l1S 11'1 



containing 51 panels in eadl row for a total of 102. Radiator panels on 

the torus are set in a single row and extend around two-thirds of the 

periphery. '!he 102 panels total 1061 m2 and require a radiation rate of 

0.613 kW/m2. An equivalent radiation temperature is 323.67 K (582~), 

whidl is acceptable considerinJ a 27.5 K (50~) actual temperature 

difference between the two headers on eadl panel. Flow in eadl panel 

amounts to 0.055 kgjsec (0.12 lb/sec) and represents 0.16 percent of the 

total radiator flow volume. '!he flow equates to aOOut a 10.4 minute 

transit time through a panel and, thereby, shows some margin in the 

radiator area. For example, operation at the median temperature of 334 K 

(601~) would require a radiator area of 933.2 m2 (10045 ft2) I or 12 

percent less than the value stated. On the other hand, eadl radiator 

panel will spend up to 40 percent of an orbit with the Earth in view and 

operate with a reduced radiant heat transfer. '!he margin will be 

retained and include cross-feed between radiator sections on the 

platfonn. 

3.3.5 SUmmary of Masses for the Solar Dynamic units 

'!he summary of estimated masses for the principal elements of a 

solar dynamic power unit is given in Table 3.3-1. '!he summary is divided 

into elements subj ect to pointing and tracking movements and elements 

whidl are fixed. to the ATSS. Considerations and bases for masses are as 

follows. 

A. Concentrator 

'!he concentrator structure masses represent 2024 alloy aluminum as 

plates, beams, and tubes. '!he concentrator surface, as a mosaic of 

reflectors, has 3 nun (0.125 in) plates in segments nominally 3 m (10 ft) 
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T/>.RTF. 303-1 SOT AR DYNAMIC SYSTEM MASS SUMMARY 

IDVEABIE ElEMENTS (SUbject to Solar Pointing and Tracking 
Motio:ns) 

kg (lb) 
Concentrator Elements: 
Reflectirg surface 9115 (20098) 

" , Supporting Structure 7679 (16932) 
Support Tripods 2214 (4881) 
Electrical Leads and 1834 (4043) 
Coolant Lines 
Total Each Concentrator 20842 (45954) 

Collector Elements: 
Lines, Heat Transfer Passages 4469 (9854) 
:Rlase Change Material 3268 (7205) 
Liquid Metal 544 (1119) 
Liquid Metal Pumps 453 (999) 
Aperture Imrs, Drives 1088 (2399) 
Insulations (Z:r02) 4438 (9786) 
Internal Structure 704 (1552) 
Secorrlary Radiator 682 (1503) 

Total Each Collector I Assy. 15646 (34417) 

Converter Elements: 
Turbine Alternator unit 846 (1865) 
Heat Excl1an:]ers 1663 (3667) 
Insulation 1059 (2335) 
Controls arrl Auxiliaries 268 (591) 

Total Each Converter, Assy. 3836 (8458) 
Mass SUbject to I<btion 40324 (88914) 

FIXED EI:..ENENTS 

Radiator Elements: 
Radiator Panels (102) 10549 (23260) 
Radiator Fluid Lines 2200 (4851) 

Total Radiator Structure 12749 (28111) 

Panel Coolant Fill (102) 8033 (17712) 
Fluid Line Fill 6474 (14275) 

Total Coolant Fill 14507 (31987) 

Concentrator Mount and 1663 (3667) 
Actuators 
Total Fixed Mass 28919 (63766) 

Total Eadl Unit 69243 (1526801 

'IU.mL SPACE smTICN (6 Units) 415458 (916084) 
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squares or equivalent. SUpporting stnlcture consists of rectangular box 

beams 0.2 m by 0.4 m (8 in x 16 in) fonned from 2 nun (0.08 in) plate~, 

Supports consist of seven rings joined by radials along the edge of each 

reflecting panel. TriIXrl legs are tubular 0.3 m (12 in) in diameter with 

10 nun (0.40 in) walls and 29.25 m (96 ft) long. 

Electrical leads are copper transmission lines sized for 3 phase 

440 V and 450 kW. water lines are 10 em (4 in) diameter tubes with 3 rrnn 

walls (0.125 in) which extend from the collector-COlWerter assembly dawn 

to a flexible joint at the mounting pedestal. 

B. '!he Collector Assembly 

Flow passages and the collector structure utilize 89 Ni, 13 Cr, 7 Fe 

alloy throughout. '!he cavity liner and shell utilize 3 nun (0.125 in) 

thickness; flow passages within phase c.hange material utilize 1.5 nun 

(0.06 in) thickness. Fhase change material has a 15-percent margin above 

that quantity which changes phase during each cycle. Liquid metal fills 

the flow inlet and flow return passages for both the collector and the 

NaK loops. The mass represents a 0.56 Na - 0.44 K mix in both loops plus 

a small margin; however, the collector loop operates above the 

tenperature limit for NaK, and would probably utilize a Na-Li mix. 

Masses for the pumps are estimates for iron required in the magnet 

plus a 25-percent allowance for windings and electrical conductors. 

Aperture doors utilize a reflecting surface based upon a series 310 or 

equivalent stainless steel stnlcture plus a 40-percent addition for the 

actuation mechanism. Insulation utilizes stabilized Zr02 at a density of 

50 percent of theoretical maximum (porous sintered zr02)' SUpporting 

structure consists of three longitudinal I-beams with two 

circurnferentials plus an auxiliary circumferential ring at the triIXrl 
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jOi.l1ts. 'Ihe cyl hyirical hOl..1S i ng ;:mn he.l1'Iispheric.al cap are assumed to :be 

1.5 rom (0.06 in) thick alumimnn. An auxiliary 1 rom (0.040 in) skin 

covers the cylindrical section and has dimples and welds to fonn the flOW' 

passages in the same manner as the main radiator panels. 

c. '!he Converter Assembly 

A mass estimate for the turl:x>-generator represents extrapolation 

from published studies and a comparison with present masses for aircraft 

on-board power units. '!he major element of mass results from the heat 

exchanger configuration which consists of 89 Ni, 13 Cr, 7 Fe alloy 

throughout. Insulation masses are based upon 50 percent porous Zr02' 

Auxiliaries consist of a pressure control unit plus storage tanks for GN2 

used to adjust system operating pressures. 

D. Concentrator Mount and Actuators 

'!he mounting pedestal is assumed to be an aluminum cylinder fonned 

from 3 rom (0.125 in) plate with stiffeners of equal thickness. Actuators 

and reaction members allOW' for either a hydraulic unit or an electrically 

driven ball screw (e.g., like flap actuators for transport aircraft) . 

E. '!he Radiators 

Radiator mass estimate considers individual panels as structural 

elements and adds the length of lines. lengths for fluid lines assume a 

distributor feed line with a length of 102 panel widths plus an identical 

collector line. Both the feed and collector lines will require 

supplemental lengths to reach connections at the mounting pedestal. All 

lines are considered as 0.1 m (4 in) diameter aluminum with 3 rom (0.125 

in) walls. Filled mass assumes water throughout the entire system of 

lines, headers, panels, and returns. 
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3.3.6 Control Parameters 

'!he control-related features for a solar dynamic tmit are in Table 

3.3-2. Control will utilize a dedicated computer with five SlID 

algorithms working in concert. 

features for each are as follows: 

A. Solar Pointing 

Pertinent conditions or governing 

Solar pointing has to be maintained throughout an orbit to assure an 

energy input and to prevent damage. A zr02 insulation layer cannot 

withstand prolonged exposure to the concentrated (6000 K) solar input. 

Presently available SUn sensors have the required acquisition and sensing 

capability and pointing actuators with the required force range presently 

exist. Cycling requirements for units on the platfonn appear modest and 

could typically be accommodated by a SUn sensor with an expanded (e.g., 3 

degree) field of view. Signals for the aperture doors can be derived 

from the SUn sensor supplemented by ~ture monitors in the liquid 

metal streams of the collector. 

B. Liquid Metal loops 

'!he liquid metal loops perfonn the energy transfers and require 

precise controls. '!he control system will mcdulate relatively large 

currents in the electromagnetic pumps. Such controls and precisions have 

been developed for the nuclear power industry and could be adapted for 

these applications. Controlled liquid metal flows must continue during 

the dark portion of an orbit. '!he collector liquid metal flow will need 

to be maintained but ~tures must not drop below the solidification 

point at 1103 K (1985~) for the phase change material. '!he NaK loop 

must operate at near-constant ~ture and flow; and stored solar 

input energy must be removed from phase change material before reheating. 
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TABIE 3.3-2 SlHo1ARY OF (X)NI'R)L ~ FOR A SOIAR DYNAMIC IQolER SYSI'EM 

a.rt:p.rt: or Rate/ 
Control Function or Element Action BmJgg Precision Fregu~ 

Solar fuint.in:J Algorithm 

SUn Sensor Error Signal to 10 Half Cone 0.150 steady or 
Actuator, 2 axes Ci.rcular 0.5 Hz 

Concentrator PointinJ 2 Axis Position 10 Half Cone 0.30 Ci.rcular steady 

Solar Tra~ 2 Axis Cyclic 10 Half Cone Cyclic 0.30 Ci.rcular 0.05 Hz 
(Torus Unit only) Positioninq 

• Aperture D:x>r Actuator lbor Movement l)Jrin:} 3.5 m stroke 0.2 em Limits Close-Open 
Close, Open SUnset/SUnrise (11.5 ft) (1 in) an:! omit 

Liq.rid Metal I.oq:s Algorithm 

w Collector Coolant PlIn'p PlIn'p CUrrent 300-1000A 0.5A Cyclic with I 
w Flow Modulation Orbit 
V1 

• Collector Coolant ~ture Signal for PlIn'p 320 to 1222 K 30 K Cyclic with 
Control (560 to 2200~) (9~) Orbit 

• NaK Coolant PlIn'p, Flow PlIn'p CUrrent Modulator 300-100CA 0.5A steady 

• NaK TeJ:nperature Signal for PlIn'p 320 to 1083 K 2 K steady 
Modulator (560 to 1950~) (3~) 

Heat Rejection Radiator Algorithm 

• water Flow PlIn'p PlIn'pin:} Volmre an:! o to 10 kg/sec 0.1 kg/sec steady 
Pressure (0 to 22 lb/sec) (0.25 lb/sec) 

• Water TeJ:nperature Signal to PlIn'p Control 273 to 373 K 2 K steady 
an:! Valve Control (520 to 680~) (3~) 

• Radiator TeJ:nperature Signal to PllIrp Control 273 to 373 K 2 K steady 
(520 to 680~) (3~) 

• Cross-over Valves, Operation Signal from water Open Close 1 Percent of Cycle [:A.lrJ.n:j 
Temperature Position Part of Orbi.t 



TABlE 3.3-2 SUMMARY OF Wfi'ROL ~ FOR A SOIAR DYNAMIC R:m:R SYST.FN (continued) 

outplt or Rate/ 
Control F\.1nction or Element Action Precision Freauenc..v 

0::I1verter 0peratin::J Algorithm 

· Rotation Speed Error Signal to Inp.rt 0-12200 rpn 0.1 rpn steady 
Valves am Electric 
load Balance 

• Magnet CUrrent Error Signal to 0-500A 0.1A steady 
Electric load 

• Electrical load am Signal to Valves 0-500A 0.1A steady 
Fhase Balance Volts, SWitching Signals to 
AIrperes for Each Ihase Internal load Leveling 

Elements 

w • Corrq:>ressor Inlet Q)ntrol Feed or Bleed to apen-Close Profile 0.01 of Profile steady 
I 

W am Resevoir Valves Maintain Speed 
(J\ 

• Regenerator Terrperature Signal to Valves 320-1083 K 2 K steady 
(multiple) (560-1950~) (3~) 

• Liquid Metal Heat Exchanger Signal to Valves 320-1083 K 2 K steady 
Temperatures (Multiple) (560-1950~) (3~) 

Precooler Heat Exchanger Signal to Valves 273 to 555 K 2 K steady 
Temperatures (560 to 1000~) (3~) 

• Gas stream 'I'elTq;>eratures Signal to Valves 320 to 1083 K 2 K steady 
(Corrq:>ressor, Regenerator (560 to 1950~) (3~) 
'l\.u:bine) 

• Gas stream Pressures Signal to Valves o to 6894 mPa 34.5 kPa steady 
(Corrq:>ressor Regnerator (0 to 1000 psia) (5 psi) 
'l\.u:bine) 

• Bearing, I1lbe or Gas Signal to Control Configuration 0.01 steady 
SUpply Tenperature Valves Particular Each 
Pressure FlCM case 



TABlE 3.3-2 SUMMARY OF CON.rnOL ~ FOR A SOlAR DYNAMIC ~ SYSTEM (concluded) 

<XIt.p..rt: or Rate/ 
Control F\.mction or Element Action ~ Precision ~.m£'l 

Qillector Ccnverter lblsekeepirq Algorithm 

CCrrp:lnent arrl structure Signal to Coolant 320-555 K 2 K steady 
Tenperatures, M.ll tiple PI.ntp arrl Flow ( 57 6-1000"R) (3"R) 
(Heat Transfer t.hrc:uJh Control Valve 
Insulation, etc.) 

• carponent arrl Structure Signals to Coolant 273 to 473 K 2 K Orbit 
Coolant Telrpe.ratures, PI.ntp arrl Flow Control (520 to 850"R) (3"R) Cycle 
M.lltiple Valves 

Secorrlary Radiator Signals to Coolant 273 to 473 K 2 K Orbit 

w Tenperatures, M.lltiple PlIIlpS arrlFlow Control (520 to 850"R) (3"R) Cycle 
I Valves 

w 
'-l Secorrlary Radiator Signal to Flow Control o to 10 kg/sec 0.1 kg/sec Orbit 

Coolant Flow Rates, , Valves (0 to 25 lb/sec (0.25 lb/sec) Cycle 
Multiple 

• Secorrlary Coolant Flow Position in Response Close to Open 0.01 Stroke Orbit 
Control Valves, to Signal Cycle 
Actuators 

Secorrlary Coolant output in Response o to 10 kg/sec 0.01 Flow Orbit 
PI.ntp Flows to Signal (0 to 25 lb/sec) Cycle 



As a control measure, the NaK velocity could be increased to offset 

effects of a thickening layer of phase change material. An increased 

velocity in the converter heat exchanger would iIrprove heat transfer from 

the NaK metal am retain the turbine inlet at the desired temperature. 

C. Heat Rejection Radiators 

Heat rejection radiators provide a near-constant heat sink for the 

system. '1l1e radiator area has some inherent nm:gin, am the rotating 

radiators on the torus will use that nm:gin to offset reduced radiation 

when the Earth is in the field of view. A cross-linking of the radiator 

panels on the platform will provide a cammon radiator for all four units 

and thereby offset any reduced effectivity for that portion which sees 

the Earth. 

D. Converter Operation 

Converter control has critical requirements. Tolerances on 

frequency (rotation) and output voltages (magnet current) are small: 

load-leveling becomes a significant requirement. In this context, 

electrolytic deoamposition of water plays the major load-leveling role. 

Half of the available power can be fed into electrolysis should the need 

arise. More significantly, currents and allocated power can be varied 

continuously and smoothly over the entire range. Electrolytic cells 

provide the energy buffer necessary for operation of a solar dynamic 

system based upon large area concentrators. 

E. Housekeeping 

Housekeeping functions perform an envirornnental control within the 

confines of the collector-converter assembly. '1l1e heat rejection 

capabilities of the structural surface will vary with position around the 

orbit am require a control algorithm which accornrncxjates the variables 
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due to orbit position while maintaining an acceptable operat~Jg 

envirornrent. In effect, iInproved heat rejection in the cold shadow of 

the Earth nulSt offset temperature rise from direct sunlight. House.keepirKj 

controls must provide the means for accomplishment. 

3.3.7 Particular Considerations 

Installation and operation of a 450 kW solar dynamic power unit 

identify two areas of particular iInpact. '!he first consideration 

relates to the assembly, seJ:Vicing, and eventual dismantling of the 

units, and a second consideration relates to operation on the torus in a 

rotationally induced gravity field. 

A. Considerations for Assembly, Servicing, and Dismantling 

Concepts for transport and on-orbit assembly of the solar dynamic 

units have been addressed in previous studies (Reference 3-8). Assembly 

of the concentrator and placing of the collector require long-reach 

booms and manipulators. A complicating detail appears in the start-up 

sequence for a unit. Each reflecting element of the concentrator will 

require a final adjusbnent-to-focus as part of the on-orbit assembly. 

lAlring this phase, each element will need a radiation-rejecting cover 

that does not compromise the reflecting surface by either contamination 

or transfer of heat. In addition, exterior surfaces of protective covers 

must not focus incoming solar energy. After all concentrator reflective 

elements have received final al igrnrent , removal of the covers must 

proceed in an orderly manner. '!he collector will be cold and the 

collector liquid metal (if in place) will be solid. A gradual wanning 

start will build up to full operation. Some kind of auxiliary power will 

be required to spin the turbine-alternator to a point where the cycle can 
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maintain itself. Once operational, the system has no easy means for 

shutdown. Radiation input has to be inten:upted such as reapplying the 

covers during a transit of the Earth shadow. Shutdown for servicing, 

replacenent, or dismantling becomes a preplanned event. Emergency 

shutdown implies a technique for flipping mirror segments into an edge-on 

solar alignment am acceptirg sane potential for hann to elements in the 

collector-converter assembly or ice fonning in radiator panels. 

B. Operation on the Rotating 'lbrus 

Operation on the rotating torus introduces two particular dynamic 

effects which are a steady-state moment reaction am a low frequency 

oscillation. '!be masses of the concentrator am the collector-converter 

assembly introduce substantial torque moments relative to the mounting 

plane am they must be reacted against equilibrators aligned with the 

tripod legs. '!be mass of the collector assembly in an Earth-equivalent 

gravity field will result in a tension force of 199646N (44,564 lb) 

parallel to a tripod leg oriented radially am a compression force of 

99823N (22,282 lb) in each of the two other legs. ('!be tripod tubes, as 

defined, will accept this load without buckling.) Rotational effects for 

the concentrator may be reacted at the mounting point am could involve 

an equilibrator force of 204414 N (45956 lb) if applied radially in the 

plane of the center ring (Figure 3.3-2). 

'!he oscillatory forces relate to solar tracking as the torus 

rotates in a plane 1 degree off-SUn. For a unit on the torus rotating 

3 :rpm (11/10 rad/sec) the maxllnum oscillatory motion can be expressed as: 

s = R Sin 1° (Sin 1T /10 t) s = displacenent distance rn 
R = radius of rotation, 20.5 m 

s = 0.3485(Sin 0.31416 t) t = time 
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'!he maximum angular acceleration then becomes: 

s = 0.3485 (0.31416)2 = 0.0344 rad/sec2 

'!he maximum torque required becomes: 

T = Is 

I = I T r2 

T = Torque 
I = moment of inertia 
T = mass of an element 
r = element distance from 

center of rotation 

An approximation for the total moment of inertia would be the collector 

mass t:iInes the square of its distance from the point of rotation plus 

the inertia for a disc of mass equal to the concentrator. 

I total = 1.0629 (107) kg-m2 

T = 0.0344 (1.0629)107 = 3.66 x 105 N-m 

If this force is applied at the inner ring of the collector, 4.41 m from 

the point of rotation, then: 

Force = 3.66 x 105 
4.41 = 8.302 x 104 N (18531 lb) 

In operation, the torus-mounted units will require application of this 

force from a pair of orthogonally mounted actuators that have a 15 em 

(6 in) stroke position controllable within 2 em (1 in) at all times. 

3.4 Nuclear Fission Heat Source 

A nuclear fission reactor represents a controllable heat source with 

a te.n"perature capability sufficient to supply the heated NaK required for 

the converter thennal cycle. Description and comparisons for a nuclear 

fission based system begin with an assessment of requirements, proceeds 

through a description of system elements, and leads to an assessment of 
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masses. The mass assessroonts provide an estilnate for a lower power limit 

as the threshold for application of nuclear reactors to the ATSS. 

3.4.1 Assessment of Reactor Requirements 

An application of nuclear fission reactors will provide a 10 year 

uninterrupted power supply for the ATSS. A reactor system also must have 

redundancy to assure continuity of power. Therefore, the configuration 

will need two indepen:ient reactor cores, with eadl core capable of 

supplying the heat requirement for three convertors of 450 kW eadl. The 

configuration can share shielciin] for weight benefit; however, the system 

arrangement must pennit either core to supply heat to any three 

converters. The ATSS can aa:ept a single, centralized location for 

generation of power. 

A reactor design for the ATSS has to include adequate fuel, 

moderator material, a capability for high te.rrperature operation, a means 

for extracting heat, and a control system. Fissionable material sudl as 

uranium of mass mnnber 235 is a consumable fuel that produces about 200 

MeV per fission or 7.94 x 1010 ¥D/kg. The heat input requirements for 

three converters of 450 kW eadl will consume 13 kg of U235 over a ten

year period. This is nore than an order of magnitude above the minimum 

required to sustain a fission reaction. The fuel requirement, 

therefore, must be defined in tenns of an allowable burn fraction of the 

initial inventory. PcMer reactors can consume up to 10 percent of their 

total inventory. For this COIl'parison, the fuel inventory will be 

established at 130 kg of U235 in combination with a supplemental quantity 

of U238; the core will require U235 enrichment. since this core will 

operate at elevated terrperatures and contain a quantity of metal that 
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terrls to abso:rb neutrons, the enrichment selected will be 92 percent 

(near rnaxirrn..Im). '!he total uranium inventory within each core becomes 141 

kg provided as 161 kg of 002 in a volume of 14.66 liters. The fission 

reaction produces neutrons at average energies of 2 MeV; for power 

generation reactors, these neutrons must be slowed (moderated) by elastic 

collisions down to energies of 0.2 eV (thennal) range. Light elements 

are required am beryllium oxide (BeO) represents the practical campou.m. 

The reactor needs moderator atoms at a ratio of 100 or more per atom of 

fuel; therefore, each core will use 1461 kg of BeO in a volume of 566.5 

liters. '!he neutrons prcxluced during fission are abs01::bed to some degree 

by all materials present within the core including the prilnary coolant. 

Consequently, power reactors have separate loops for the core coolant and 

the heat transfer fluid. For this configuration, liquid sodium (Na) 

operates at 55.5 K (100~) above the tenperature of the converter NaK 

stream, and flCMS through heat exchangers which are outside the core and 

neutron environment, but inside the main radiation shield. (The NaK does 

not see neutrons, and radioactive Na stays within the shield.) Neutrons 

are generated at the rate of 2.5 per fission with about 0.7 percent 

having a delayed release from fission fragments. They appear over a 

period ranging from seconds to hours. '!he suStaining of a fission 

reaction at any power level requires that just one neutron from the 

fission release be abso:rbed to cause another fission and involve the 

delayed neutrons. '!he control system must maintain that balance, 

particularly during changes in power levels. The divergence from 

equilibrium must continue to require participation by the delayed 

neutrons (bombs "go critical" on prorrpt neutrons, power stations do 

not) . Finally, the system must have a capability for shutdown and hold-
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down which brplies an absorber which effectively dries up any neutron 

population created within the core. '!he emergency or "scram" portion of 

the control system must provide that capability. 

3.4.2 Reactor System Concept and Core Features 

'!he reactor system concept uses two identical cores with a thermal 

output of 3367 kW each am two sets of three heat exchangers all 

contained within a CX1llIlIDn radiation shield. Figure 3.4-1 shows the 

overall concept. '!he fueled portion of the core is a right circular 

cylirrler 1 m in diameter am 1 m lorq. Each core has a BeO neutron 

reflector 10 em thick. A Z~ thennal insulation layer 10 em thick 

surrourrls the core am reflector am is backed by a neutron barrier of 

either borated steel or borated aluminum. '!he high energy gamma. 

radiation shield considers four options: lead, steel, concrete, or 

water. '!he pertinent features of the core are described further as core 

construction, control considerations, am coolant-heat transfer. 

A. Core Construction 

'!he concept for core construction is shown in cross section as 

Figure 3.4-2. '!he U02 fueled heat-generatirq section is provided as 282 

hexagonal elements with a center hole for the heat transfer passage. 

Figure 3.4-3 shows the nestirq of the hexagons am the accommodation of 

the control rods together with the detail for accommodatirq the reflector 

over the ems of the core. Fuel assemblies nrust contain fission 

fragments; therefore, the hexagons have a 1 nun claddirq of an alloy 

compatible with liquid Na, (79 Ni, 13 Cr, 7 Fe). Because the local 

neutron flux (or population) density within a core detennines the local 

heat generation rate, a near-unifonn neutron distribution becomes 
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desirable; therefore, a BeO reflector surrounds the core (Figure 3.4-2). 

Figure 3.4-4 illustrates the effect of a reflector on the neutron 

distribution. Extraction of heat from the core uses liquid Na. Liquid 

metal enters in a manifold near one em. of the assembly and flChJS to the 

other em. through tubes in contact with the reflector. '!he Na flow 

absorbs heat fran the reflector before entering a plenmn that feeds the 

main heat transfer passages through the fuel elements. '!he Na leaves 

the core through an exit plenmn into distribution manifolds that feed an 

array of heat exchangers (Figure 3.4-1). 

'!he flow passages, plenums, and tube sheet headers that retain the 

fuel elements provide structural support. '!he Z:r02 is fonned as fitted 

segments which in turn are backed by the neutron absomer as a confontal 

metal structure. Nickel-based high te'I't'perature alloys as cladding and 

structure intrcxiuce a quantity of material which has significant neutron 

absorption characteristics; therefore, critical mass lilnits must be 

considered. '!he critical mass limits for a core have a geometrical shape 

deper:dency defined as "Buckling" (S2) , with dimensions of cm-2• '!he bare 

core critical mass lilnits for typical m::xlerator materials are shown in 

Figure 3.4-5 in tenns of the geometric buckling and the ratio of 

moderator atoms to U235 atoms. Values for S2 are defined from a 

relationship particular to a shape; the equation for a right circular 

cylirrler is shown. A core using Be as a m::xlerator at a ratio near 100 

requires S2 = 0.008 cm-2 or less, to achieve criticality. A right 

circular cylirrler of 50-cm radius by 100-cm long has S2 = 0.0032 cm-2 and 

thereby indicates a criticality margin for the concept. 
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B. Control Considerations 

'!he arrves in Figure 3.4-5 also suggest that a shape with B2 = 0.016 

cm-2 as two times the limit for Be would not go critical even as a sub

element of a core. A value of B2 = 0.016 cm-2 yields a radius of 19 em 

for aIm 1er¥Jth arrl suggests control rod spacirgs equivalent to three or 

four fuel elements. A synnnetric pattern on this basis yields 58 

locations divided between control arrl safety rod configurations. Figure 

3.4-3 also shows the concept for construction of the rods. In operation 

the active portion is within the core, arrl movement of a rod replaces 

active material with a Iroderator such that the core voltnne am flow 

passages do not c.l1a.nJe. '!he active portions of the rods contain an 80-20 

mix of neutron absorber am BeO; the remainder of the rod contains just 

BeO. 

'!he safety rods need to contain a strong absorber; in this case, 

CdSi03 was selected on the basis of t.enperature compatibility. Operating 

control rods contain an appropriate absorber selected from a range of 

materials of which U238 is a carxlidate arrl used here as the oxide for 

weight estimates. In operation, safety rods make a full-Ier¥Jth travel 

arrl leave the active control rods to regulate neutron population by means 

of selective adjustments in position. Although other techniques for 

control exist arrl would be considered in an actual design, control by 

moving rods is a well established technique. 

C. Core Coolant arrl Heat Transfer 

Liquid sodium functions as the coolant for the core arrl represents a 

best-available option. '!he Na liquifies at 370 K (670~) arrl remains 

liquid to 1156 K (2082~). '!he Na has low absorption characteristics for 

neutrons; however, it does interact to generate MeV-range gamma 
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radiation. 'lherefore; the Na stream must be kept isolated fram the Nal< 

which powers the turbine. '!he Na coolant extracts heat fram the core 

with a 27.5 K (50~) temperature rise and delivers heat to NaK while 

maintaining a 55 K (100~) temperature above the NaK flO'iN; Na operates 

fram 1103 K to 1131 K (19870 to 2037~). '!he total flO'iN rate is 97 

kg/sec (213.88 lb/sec) and results in a maxinrum wall temperature of 

1137 K (2049~) and a maxinrum U02-BeO temperature of 1163 K (2096DJt). 

Internal power generation is considered mid-range at 5.8 watts/em3 as 

conpared to 4 watts/em3 for 10'iN power units and 7 watts/em3 or more for 

higher power installations (Reference 3-9) • The heat transfer 

characteristics for liquid metals pennit use of small-volume heat 

exchan:Jers. Figure 3.4-6 shows a concept for a counterflO'iN unit using Na 

and NaK. Heat transfer requires 1.76 m2 (19 ft2) of area configured as 

10 plates with a counterflO'iN on each side. Spacing of the plates and 

the selection of velocities were tailored to match the heat transfer 

characteristics of the individual fluids. Table 3.4-1 Sl.lI1U'llarizes the 

principal heat transfer-related parameters for the reactor system. 

3.4.3 Shielding Considerations 

A radiation shield for a fission reactor must attenuate high energy 

ganuna rays and neutrons generated by the fission process. '!he degree of 

attenuation required to provide a man-rated shield is a function of the 

power density within the core as the underlying source for radiation from 

the surface of the core itself. '!he reactions are diagrannned in Figure 

3.4-7 and shO'iN the results from fission within the core and the 

attenuating interactions within the shield material. The Corrpton effect 

is an elastic scattering that reduces the energy of an incident gamma 
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TABIE 3.4-1 SUMMARY OF RFACIOR PARAMEI'ERS 

Energy, FUel, :r-t:rlerator Requi.remants 

Total Energy 1.067 x 1015~ (1.016 x 1015 Btu) 

(10 yrs, 3375 kW) 

U235 CoI1Sl.llred 13 kg 

Fuel Inventory (130 kg U235) 141 kg 

Fuel Weight U02 161 kg 

BeO Mcxierator Weight 1461 kg 

Power Control Rods 26 

EmeI:gency Rods (Scram)' 32 

Reflector, BeO (10 em thick) 1315 kg 

Core 'Dlennal ParaDEters 

Energy Delivered 

Energy Density 

Heat Transfer Rate 

Maximum Wall TeJrperature 

Maximum Fuel Temperature 

Core Coolant Na In 

Core Coolant Na out 

Core Coolant Na Flow 

Heat Exdlanjers 

Heat Exc.h.arqed 

Heat Transfer Area 

Na Velocity 

NaK Velocity 

3375 kW 

5797 kW/m 

251 kW/m2 

1137 K 

1163 K 

1102 K 

1130 K 

97 kg/sec 

1123 kW 

1. 76 m2 

0.95 mjsec 

2.44 mjsec 
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(29 lb) 

(312 lb) 

(354 lb) 

(3287 lb) 

(2899 lb) 

(3208 Btujsec) 

(156 Btujsec-ft3 ) 

(22 Btujsec-ft2 ) 

. (2049 ~) 

(2096 ~) 

(1987 ~) 

(2037 ~) 

(215 lb/sec) 

(1069 Btujsec) 

(19.0 ft2) 

(3 ft/sec) 

(8 ft/sec) 
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ray by an e.x(""hrl~e of e..11Prgy wit.h rln elect-JOn. 'Ihe photoelectric effect 

excl'lan;Jes a ganuna. ray for an electron of the same energy. Pair 

production has an energy threshold equal to the rest mass of an electron

positron pair (1.05 MeV). Rlotoneutrons are absorbed into the nuclei of 

other atoms. All the effects are mass deperrlent; and the limiting 

parameter appears as attenuation of 4 MeV gamma. radiation for an 

application to the ATSS. 

A. Shield 1hickness Predictions 

'!he attenuation model considers gannna. radiation energy per unit area 

(em2) at a distance fram an emitting surface also defined in tenus of 

energy per unit area. A conservative model assigns 20 MeV of gamma 

energy to each fission; therefore, the gamma. energy generation rate is 20 

MeV times the fissions/em3 • 1he gamma energy released from the surface 

will represent the generation rate modified by a factor which accounts 

for the internal absorption of gannna. energies within the rna.terials of the 

core. The physical property which can be measured is an absorption 

coefficient with the dimensions of em-I. An inverse of the absorption 

coefficient is defined as a relaxation length, and is the thickness 

required for attenuation by a factor of "e" (2.71828). The relaxation 

length also becames the multiplying factor which accounts for radiation 

released from subsurface atoms. For the cores in this comparison study I 

the gamma shield begins at the outer surface of the insulation layer. 

The reflector, the structure, and the Zr02 provide some attenuation, and 

the source tenns become: 

Ganuna energy from fissions = 2.68 x 1011 Mev/em3sec (core internal) 

Core surface activity emission = 3.14 x 1013 MeV/em2sec 

Ganuna energy into shield = 4.04 x 1012 Mev/em2sec 
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A conservative approximation for shield thickness (Reference 3-7) 

equates the input energy to the output energy in terns of shield 

thickness, relaxation lengths, and the area of the source. '!he equation 

takes the fonn: 

Energy Out (MeV/emz-see) O.S[Input Energy (MeV/emZ-see) 
0.5 + Z rRelaxation Length (em)] 

[Source Diameter (em) J 2 

(
ThiCkness (em) ) 

e Relaxat10n Length (em) 

( Thickness (em) + 1) 
Relaxat10n Length (em) 

'!he allCMable energy asscx::iated with a man-rated shield is subject 

to continuous review. '!he early data allowed 4000 Mev/cm2sec for a 40 

hour exposure. '!he calculations for this example used 2000 as an upper 

limit arx:I considered thicknesses which were integer multiples of 

relaxation lengths. 

B. Shield Configuration Model 

'!he gannna radiation shield surrourxls both cores arx:I has a constant 

thickness in all directions perpendicular to the surface of the 

insulation layer. Figure 3.4-8 shows the geometric concept for the 

shield as a combination of six specific shapes defined in tenns of the 

diameter of the cylinder (D) and the thickness of the shield (T). '!he 

volume of the shield becomes the sum of geometrical volumes which combine 

to generate the expression: 

v = 11.112 02T + 13.103 or2 + 4.158~ (0 arx:I T in meters) 

For the purposes of the shield calculations, the cores have a diameter 

"0" of 1.4 meters. 
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Figure 3.4-8 Shield Element Model 
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c. Shield Material Options 

'!he t.ranscerrlental equation to define thickness was solved for lead! 

steel, dense concrete, and water shields using published relaxation 

lengths (Reference 3-7), the calculated input energy, and the dimensions 

of the core. '!hese results appear in Table 3.4-2. '!hickness predictions 

and core diameter were then applied to the volume equation and weights 

were based upon density values. '!he results shOW'the mass dependency for 

a radiation shield. More dense material with a corresponding shorter 

relaxation length enjoys a total shield mass advantage. '!hese values 

provide the basis for sununing the masses of a nuclear reactor based parler 

system. 

3.4.4 SUmmary of System Masses 

'!he summary of masses for a nuclear reactor system considers the 

cores and the radiation shield together with the same converters and 

radiator sections as used in the solar dynamic system. In an overall 

mass assessment, the cores, oonverters, and radiator elements are 

independent of the shield mass. Table 3.4-3 sunnnarizes the masses for 

each and shOlNS the effect of the shield option on the total. 

'!he core and heat excl1argers present the smallest contribution to 

the total system mass. '!he core elements include fuel (160 kg each) and 

moderator, 1416 kg, plus BeO in the reflectors, 1314 kg, to account for 

more than 70 percent of the core mass. '!he balance of the mass is Ni 

alloy structure. Approximately 80 percent of the control and rod 

assessment is in the seal am actuation-related items. '!he Z1:02 

insulation at 50-percent open is used throughout. '!he heat transfer 
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TABIE 3.4~2 SCM·1ARY OF REAcTJR RADIATION SR I F:I n OP1'IONS 

Dense 
lead Steel Concrete Water 

Relaxation 2.5 3.7 10 30 
Le.r¥Jth,cm 

Number 21 21 21 20 
of~ 

'lhickness 52.5 77.7 210 600 

Volume, m3 17.1 29.9 165.4 1695 

Density, kg/m3 11300 7800 3400 1000 

Weights, kg 193163 233693 562333 1695028 
(lbs) (425925) (515293) (1239944) (3737537) 

TABlE 3.4-3 SUMMARY OF RFACIOR SYSTEM MASSES 

Reactor Elements 
Core, Reflector and SUpport 
Control Rcx:Is and Actuators 
'lhennal Insulation (zr02) 
Heat Exc.harqers (3) 
Pl.Inps, Lines , Valves 
Liquid Metal 
Total Each Core 

Total Installation 

Shield ~oos (fran IIDdel) 
lead 
Steel 
Concrete 
Water 

CXmocn Items 
Converters (6 at 3863 each) 
Radiator Structure 612 Panels 

and Lines 

kg 

3957 
1134 
2384 

360 
907 
453 

9195 

193163 
233693 
562333 

1695028 

18390 

23016 
76494 

Lines and Radiator Fill (water) 87042 

Syst:an Mass Totals 
With a lead Shield 
With a Steel Shield 
With a Concrete Shield 
With a Water Shield 

398105 
438638 
767275 

1899970 

3-59 

(lb) 

(8725) 
(2500) 
(5256) 

(794) 
(2000) 
(1000) 

(20275) 

(425925) 
(515293) 

(1239944) 
(3737537) 

(40550) 

(50750) 
(168669) 

(191927) 

(877623) 
(967197) 

(1691841) 
(4189433) 



elements as Ni alloy plate, together with pulli)S and lines, show a modest 

mass, and the liquid metal inventory corresporrls to about 0.5 m3. 

'!he combined mass for the two reactors, the six converters, and the 

radiator panels (considered as three tiers of panels around the periphery 

of the platfonn) are combined with the shield masses for each of the 

alternates. A c:onparison of totals shows more than a factor of four in 

mass rarqe from a lead shield to a water shield. 

3.4.5 SUnuna:ry of System Control Requirements 

'!he nuclear reactor control c::c:mplex consists of the previously 

described converter-radiator elements, adapted to work with the control 

elements particular to a nuclear reactor installation. '!he configuration 

requires locating all six converters adjacent to the reactors in order to 

limit heat losses in the liquid metal (NaK) loops. Reactor systems can 

adjust power to demand and thereby ease the response requirements 

associated with electrical load leveling. '!he control requirements 

pertinent to the nuclear reactors are summarized in Table 3.4-4. Power 

control and housekeeping functions follow conventional Earth power plant 

approaches; the difference is in the c::c:mplexity of the overall system. 

Urrler ordinary operations, nuclear power plants make slow changes in 

power settings and are effectively steady state systems (the control 

response relates to the 0.7 percent of delayed neutrons) • Response to an 

emergency, however, would be rapid. Earth operation uses stored energy 

(springs, hydraulic aca.nnulators, etc.) to IOOVe the emergency (scram) 

rods, and reactions are measured in tenths of seconds. Shut-down of a 

reactor does not ~ly shut-down for all the system. Flow of coolant and 
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TABlE 3.4-4 SUMMARY OF RFAcroR CONI'ROL ~ 

CXJTIUl' OR 
<X>NTROL EUMENl' OR FUNCrION ACrION RANGE PRECISION ~CY 

.Reactor l\:Jw'er O:XILtol 
Algorithm (Eacb Core) 

• Energency Rod Position Rod Position in Motion 1mm stroke in 0.1 sec 
Response to operate 102m (0.04 in) Shut D:lwn 
am safety Signals (4 ft) 

• Control Rod Position Rod Position in 102m 1mm stroke in 0.1 sec 
Response to Signal (4 ft) (0.04 in) rocxiulate at 

10 ctVsec 

• Neutron Flux Inp.It. to Rod o to 1015/sec an2 1% steady w 
Position and Power I 

(J\ 

DemaIxl >--' 

• Coolant Temperatures Inp.It. Signal 300 K-1200 K 2 K steady 
(500"R-2160"R) (3"R) 

• Coolant Flow Input Signal o to 150 kg/sec 0.1 kg steady 
(0 to 333 lb/sec) (0.25 lb) 

• Flow Control Valve Positions Response to Open-Close 1% position steady 
DemaIxl 

• Coolant Pump Operation CUrrent Modulated o to 1000 A 2 A steady 
in Response to Power 
Demand 



TABIE 3.4-4 SUMMARY OF REAcroR OONI'ROL ~ (concluded) 

curror OR 
OJNIROL EI.EMFNI' OR FUNCTION ACTION mECISION ~CY 

System. Ope.t:atinJ M:ni.tor am 
Safety FUrctioos, Mbltiple 

· structure Temperatures l:I'lp.lt Signals to 270-1380 K 2 K steady 
am Profiles Safety ( 460-2450~) (3~) 

• Neutron Profiles Input Signals to o to 1015/sec cm2 1% Steady 
Safety 

• Radiation Profiles Input Signals to o to 1015/sec cm2 1% steady 
Safety 

• Shield Coolant FlCM· Input Signals to o to 100 kg 0.1 kg steady 
Safety (0 to 220 lb/sec) (0.25 lb) 

w 
I 

0'- · Shield Coolant Tellpe.rature Input Signals to 220-500 K 2 K steady N 
Safety (460-100~) (3~) 

• Shield Coolant FlCM Enable Signals to Open-Close 1% steady 
O:mtrol Valves Safety 

• Radiation Safety Monitors Input to Safety o to lOx man 1% steady 
limit each type 
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monitoring of terrperatures must continue for indefinite periods after a 

core s..hut-down. 

3.4.6 Special Considerations 

'!he special considerations relate to radioactivity effects. lUi 

nuclear systems require a thorough radiation monitor capability to assure 

continuous man-safety. '!his capability is included in all power plants. 

Operation of nuclear-powered submarines provides a major source for 

infonnation pertinent to reactor operations in a confined erwirornnent. A 

further consideration is the change-out of spent (or damaged) ruel 

eleIOOllts, control rods, or exchange of other materials from within the 

radiation field of the core. Nuclear reactors must have a configuration 

which all~ change-out by a remote operation technique plus the 

availability of equipment which can perform that change-out without 

violating radiation limits. '!he requirement involves both handling 

equipment and shielded casks for contairnnent of radiation. The storage 

location for such items has not been addressed. Equipment masses will be 

significant, am the degree of on-board storage or capability for change

out represents an uncertain increment in a mass c::onp:rrison. 

3.4.7 lcM-Power Limit 'lhreshold for Space Nuclear Reactor Systems 

'!he shielding model shCMIl in Figure 3.4-8 offers a means to compare 

shield volumes am masses with reactor power in a manner which indicates 

a practical low-power limit for a reactor system. If the reactor IX'Wer 

generation per unit volume is kept constant, then the thennal output of 

the reactor becomes a function of the core volume. For this evaluation, 

the reflector thickness arrl thennal layers remain the same (Figure 
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3.4-2), am the thennal power can be calculated for various fueled cores 

as ratios to the "ex.anple" fueled core which was a right circuJ.ar 

cylirrler 1 m in diameter am 1-rn long. '!hese thennal output values are 

shown as a function of the radiation input source diameter in Figure 

3.4-9. '!he shield volumes and masses were calculated using the 

thicknesses and densities listed in Table 3.4-3, am these values also 

appear in Figure 3.4-9. '!he effect of size (radiation input source 

diameter) in the shield equation, (see paragraph 3.4.3A.) could intrcduce 

as much as two relaxation length differences for water; however, tl1e 

effect does not cl1an;Je the general trend which shows that reactor pcMer 

increases at a higher rate than does the mass of the shield. Increasing 

the size of the core increases the thennal pcMer output am requires less 

shield mass for each kW prexiuced by the reactor. A plot of electrical 

power delivered versus the specific mass (shield mass per kW delivered) 

is shown in Figure 3.4-10. '!he electrical power delivered follows the 

same profile as the thennal pa;ver (assumes the same conversion 

efficiency). '!he reduction in the specific mass of the shield shows an 

initial rapid fall-off which becomes more gradual. For this study, each 

of the 1.4-rn cores delivers 1275 kW of electrical power from a thennal 

output of 3667 kW, am this pa;ver level brings the specific mass for some 

shield options below 100 kg/kW. '!his level is c:ozrparable to mass ratios 

for other pcMer systems and suggests a threshold for nuclear power 

systems at or about that general level. Increasing the pa;ver density iI1 

a reactor core will increase the pcMer delivered; a factor of 2 increase 

is practical. On the other hand, the inputs to the shield (surface 

activity) follow directly and thereby adds a relaxation length to the 

shield thickness. '!he specific mass would not necessarily improve by the 
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same ratio as the power density. '!he study shows no sharp limit similar 

to that for a nuclear critical mass or Euler buckling of a column. On 

the other hand, at or near a thermal power output level of 3 MW for a 

reactor core, the shielding mass requirement begins to appear reasonable 

and potentially c:x:mpetitive with other power source options. 

3.5 Comparisons and Conclusions 

'!he comparisons between the solar dynamic and nuclear fission 

systems address mass, control, and the pertinent considerations as the 

basis for the assessments and conclusions included in the following 

discussions. 

3. 5. 1 CorrqJarison of System Masses 

A smmnary and comparison of masses for the two systems appears in 

Table 3.5-1 and shows the total contribution from .the conunon elements, 

the solar dynamic elements, and the reactor elements together with each 

of the shielding options. '!he values also include a specific mass 

assessment for electrical power delivered in tenus of kg/kW. Specific 

masses are then compared with similar results from previous studies. It 

is recognized that no direct comparison exists either in power generated 

(previous studies addressed lower output powers) or in details of t.'1e 

configuration. In particular, many of the previous studies into reactor 

applications utilized shielding configurations which were man-rated or~y 

in the direction of the inhabited portion of the spacecraft: therefore,. 

the comparisons reflect partial shields relative to total shields. 
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TABlE 3.5-1 a:MPARISON OF SYSTEM WEIGHIS 

~ 

aM«:lN ITEMS kg (lb) 

CDNVERl.'ERS (6) 23016 (50750) 

RADIA'roRS (6) 76494 (168669) 

RADIA'roR FIIL (6) 87042 (191927) 

SOIAR DYNAMIC EUMENTS 

roNCENl'RA'roRS (6) 135030 (297741) 

mLIBCroRS (6) 93876 (206996) 

RFAcroR EI.EMENTS 

RFAcroRS (2) 18390 (40550) 

SHIEIffi- I.FAD 193163 (425925) 

STEEL 233693 (515293) 

CDNCREI'E 562333 (1239944) 

WATER 1695028 (3737537) 

'IDl'AL SYSTEMS 

SOIAR DYNAMIC 415458 (916084) 

NUCLFJ\R- I.FAD 398105 (877623) 

STEEL 438638 (967197) 

roNCREI'E 767275 (1691841) 

WATER 1899970 (4189433) 
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kg,IkW kgfkW 
(FRaol 

DELIVERED REFERENCES 
3-1 THROUGH 3-4) 

9.025 11.3 

29.997 18, 65.7 

34.134 

52.952 39.81 

36.814 59.14 

7.211 3-10 

75.750 80 

91.644 

220.522 

664.717 

162.924 60-185: 186 

156.119 120-160 

172.015 

300.892 

745.086 
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A. co.nuron Elements; COnverter and Radiator 

Radiator requireme..nts dominate the mass for these items. The need 

for radiati.rg area is dictated by the radiator operating t.errperature. A 

higher operating temperature coupled with a coolant which operates with 

a wider te.rrperature range can reduce the area by a modest margin; 

hCMeVer, a flat surface radiator will carry a mass penalty as compared 

with same of the advanced technology units such as the liquid droplet 

types. '!he masses of alumim.nn and water show the need for development of 

mass-efficient radiator configurations. 

B. Solar Dynamic Elements 

'!he solar concentrators become large, complex stnlctures with 

stringent aa::uracy and stability requirements. The need for large areas 

of reflectors and the need for lcx:al pointing translate into the 

developnental goals for the surface accuracy. Mass efficiency coupled 

with improved stiffness and stability appear as the critical parameters 

for development of materials. The mass of the collector appears driven 

by the quantity of phase change material required and the particular 

insulating materials utilized for temperature retention and the:nnal 

control. Materials for structure and the materials in contact with the 

coolants can benefit by development of a lower density alternative. 

within the configuration evaluated, the mass of phase change material 

anDUIlts to 8 kg/kW for electrical power delivered and leaves about 25 

kg/kW subject to reduction by materials-related developments. 

C. Reactor Elements 

The reactor core and core-related elements make a small 

contribution to the overall mass and offer only a limited potential for 

improvement. '!he composition of fuels, moderators, and reflectors have 
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limited alternatives. Clad<iirg, ~rt structure, am auxiliary 

elements offer the only real potential for inprovements. '!he mass 

associated with shieldirg daninates the nuclear reactor system. A detail 

design for an actual shield would utilize J'lDre than one material am show 

some overall inprovement. within the context of this study, mass values 

show the efficiency of dense material for shieldirg, am at the same time 

irxlicate the deperxience upon mass to attenuate radiation . Innovative 

utilization of materials can reduce the total shield mass but not to the 

point where shield mass will not continue to daninate the nuclear reactor 

portion of the system. 

D. system CoIrparison 

'!he mass requirements to man-rate a reactor shield were anticipated, 

however, the c::anparison result which shows a cross-over between solar 

dynamic am reactors in tenns of a shield option was not anticipated. A 

concerted effort to reduce the mass of solar dynamic items would 

probably match the minirrum mass corrlition for a reactor shield. In such 

a context, selection of the heat source would not be decided upon mass 

criteria alone. other mission effects or mission requirements will make 

the detennination. In the context of "other corrlitions, " mass 

comparisons becane even J'lDre C011plex. '!he estimates shaw that concrete 

or water ilrpose a severe mass penalty when used as a shield. If the ATSS 

were part of a lunar base support such that the raw materials for the 

concrete aggregate originated from lunar sources, then the mass would not 

have the same transport penalty as a J'lDre dense material of terrestrial 

origin. In the same context, a shield based upon a combination of steel, 

concrete, am water, would pennit use of the water as a storage or 

recyclable item within the Space station. Finally, the massive unit 
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represented by the reactor plus the shield and the converte:rs v-lould 

become al1 effective center of gravity "anchor" for the system. 1\ 

substantial amount of mass could be moved elsewhere in b'1e ATSS witt'lout. 

shifting the center of gravity outside the envelope of the reactor-

shield-converter package. 

The location for the nuclear reactor installation within the ATSS 

will need a trade study. IDeation at the center of gravity has inertial 

benefits but would disrupt the present concept for transfer of materials 

into the torus. A convenient location would be in aligrnnent with t..'1e 

platform which would ease connections to the radiator. SUch a location 

would require water ballast retention in the berthing bay members or in 

portions of the voltnne presently reserved for the safe haven habitat. 

Ballast stored in, or adjacent to, the berthing bay would shift up the 

central tube to compensate for spacecraft dockings. A reactor location 

within the central tube would have some impact on the operational 

capabilities of the microgravity facility with the minimum effect being a 

reduction in volume available for processing. 

3.5.2 Control Comparisons 

The control <::XJlTIPCITisons show a significant requirement related to 

the operation of the converters with supplementary requirements for 

either the solar dynamic or reactor power sources. 

A. Conunon Item Controls (Converters and Radiators) 

The requirements for frequency and voltage dictate a precise 

control unit at each of the converters. 'Ihese two effects then reflect 

into the requirement for terrperature, pressure, and flow controls .. 

Neither option for input heat relieves the requirement for external 
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electrical load leveling. '!he reactor system does have the capability to 

JOOdulate the output power level as ~ with the near-constant 

requirenent for the solar dynamic unit; however, the changes must be 

gradual. In effect, the converter-radiator control requirements are 

effectively the same for both the solar dynamic am nuclear power inputs. 

B. carparisons Between Solar Dynamics am Nuclear Power Systems 

'!he solar dynamic related controls must assure the cyclic 

t:hroughI:xlt of the collected energy; system operation is continuous with 

little margin for corrpranise. '!he reactor operation can lOOdulate in 

power outp.rt am does not have a cyclic energy input; however, once 

started, a reactor system cannot be brought to a zero heat generation 

comition. '!he two systems, while different in detail operation, show no 

difference in their operating implications. Control requirements show 

offsetting c::oIl'plexities am represent near equality in CClIlparison. 

3.5.3 other Considerations 

The pertinent comparisons between the systems relate to 

installation operations, the start up sequence, am the shutdown 

requireroonts of the solar dynamic unit conprred with haOOling high level 

radioactive materials. '!he large scale solar dynamic units have an 

identified corrplexity associatai with on-omit assembly am aligrnnent 

processes. '!he long-reach, precisely controlled haOOling booms am 

rnanipllators that install the solar dynamic units move to the berthing 

bay am continue to support the ATSS. In such a context, solar dynamic 

units show an advantage by synergistic usage of major equipment items. 

'!he aligrnnent of the concentrator reflecting elements am the start-up 

process will consume time as some fonn of FNA, am these operations are 
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more than offset by assembly an:i start-up of the reactor system whitt" 

would proceed indoors. '!he shutdown am dismantling of a reactor does 

involve major equipment items which would be esselltially single plli];lOse 

(e.g., radiation shielded casks an:i containers). '!he dismantling and 

recxNery technology exists for Earth-based reactors an:i could be adapted 

to space applications. A concern for inadvertent ~ to radioactive 

materials is real an:i cannot be discounted. Handling an:i control of 

radioactive materials in a space erwirornnent together with requirements 

for special purpose equipment became the principal negative 

considerations relative to the use of nuclear fission power sources in 

manned space stations. 

3.5.4 Technology Implications 

'!he canparisons an:i assessments discussed above identify technology 

areas pertinent to attairnnent of the ATSS. Most areas have active 

development projects u:ndeI:way which could lead to a configuration for the 

A'ISS. '!he following conunents serve to focus, enphasize, or further 

justify such present activities in their role as precursor steps to the 

A'ISS. 

A. Corwerter Elements 

While rotating machinery itself makes the smallest contribution to 

the system mass, the thennal efficiency has a significant in"pact, an:i AC 

generation does make a major contribution to the control requirements. A 

set of alternators operating at 400 Hz an:i delivering 440 V imposes very 

stringent requirements on rotation speeds an:i magnetic fields. 

Fortunately, AC systems tern to hold themselves in-phase. However, the 

requirement for load control by pressure regulation involves the 
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transfer of heat through the walls of pressure vessels, which is an 

inherently slow prcx::ess. 

'!he thennal perfonnance of closed-cycle gas tumines stems from the 

efficiencies of the heat transfer elements ani justifies a continuing 

effort to improve the perfonnance of heat exchangers. '!he needs for 

improvements place a particular eJttilasis upon the cycle-critical 

regenerator. within arrj cycle defined by tenperature loots and a 

pressure ran;Je, the heat transfer ani pressure losses in the regenerator 

will dictate the achievable thenral efficiency. For any heat cycle, high 

thennal efficiency dernanjs recovery of waste heat, ani for space 

operations, thennal efficiency represents the effective countenneasure to 

system mass. '!he heat rejection radiator makes a major contribution to 

the mass of the converter syst:eJn, arrl the surface operating temperature 

becomes the defining parameter. '!he fourth-power relationship for 

radiation heat transfer implies a multiplied reduction in surface area 

for each incremental increase in operating tenperature. For example, an 

increase in radiator tenperature from 320 to 380 K (576 to 684~) would 

double the heat rejection ani reduce radiator area (ani mass) by a factor 

of 2. On the other harrl, a 60 K (108~) increase in the low tenperature 

for the cycle requires a 120 K (216~) increase in the high tenperature 

in order to retain the same cycle efficiency. 'lherefore, the physics of 

high-efficiency thennal cycles justify (arrl al.Irost dictate) a continuing 

developnent effort to aoconunodate higher operating tenperatures for heat 

transfer media, for heat transfer surfaces, ani for rotating machinery n 

B. Solar Dynamic Elements 

'!he technology requirements for large area solar concentrators have 

been addressed in present development efforts as mass efficient 
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materials, rigidized structures, am improved reflecting surfaces. 'These 

efforts need to continue. '!he considerations for solar collectors have 

also received significant attention, 'tJ.'1erefore, a nU111ber of 

configurations have been proposed, constructured, am evaluated 

(References 3-2 am 3-3). Size intrcx:luces a feature which appears unique 

to the A'lSS. Motion to track the Sun for pointing represents a universal 

requireIoont for all solar concentrators. HCMever, the ability to 

inten:upt power by I1¥JVing off-Sun may not exist for a 450 kW unit. For 

example, the concentrator for a 75 kW unit would have a diameter of about 

20 m (65 ft) am permit a l1DUJlting that could be rotated completely off

Sun (e.g., a trunnion located 10 m (33 ft) above a platform). on the 

other harrl, a concentrator of twice that diameter may not permit trunnion 

mounting or offer that much clearance for I1¥JVement. Consequently, 425 kW 

solar dynamic units become continuous operations in the same context as 

oil refineries, paper mills, fiber spinning lines, etc. Techniques for 

assuring continuous operations exist, am development for space station 

applications appears prudent. 

C. Reactor Elements 

'!he comparison study anticipated radiation shielding as 90 percent 

of the total reactor system mass. Reactor systems am solar dynamic 

systems of essentially equal mass were not anticipated. 'Ibis result 

leaves selection of the heat source for electric IXJWer dependent upon 

mission content am mission operating requirements, since masses am 

complexities shCM no singular preference. 'Ibe critical reactor 

technology requirements appear as the development of materials compatible 

with the operating teItp=ratures for the operating life. Long-life 

nuclear systems are well established for ship-board. propulsion and 
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central-station power generation. In both cases they are presently based 

upon high-pressure water configurations. Long-life liquid-metal systems 

have been addressed but not brought to full developnent. 
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4.0 ENVIRONMENTAL FORCE'S AND 'IOIQJES ACI'lliG ON THE ATSS 

'!he attitude control and pointing requirements for the Advanced.

Technology Space station (A'ISS) are derived from the angular deviation 

limits for the solar dynamic power units. The individual unit mountings 

am pointirq elements can accept up to 1 degree off-Sun. (see paragraph 

3.3. ) These tolerances are superllrposed upon the solar-facing one 

revolution per year orbit constraints in analyses to predict attitude 

control am pointing forces, orbital decay forces, am reboost 

requirements. This section examines the disturbing forces and torques on 

the station, mentions some means of counteracting these disturbances, 

and discusses orbital decay am reboost requirements. 

4.1 Computational Methods 

The computational methods used in the analyses are those of the 

I-DFAS2 (I-DFAS Squared) programs of Reference 4-1. The integrated 

capability of I -DFAS2 is indicated in Figure 4.1-1, and some background. 

information on the I-DFAS2 programs is given in References 4-2 through 

4-4. 

The computational process begins with the specification for the 

dimensions, weight, and position of each c:orrponent of the spacecraft. 

The Geometric Modeling (GEX:M:>D) program uses that information to produce 

corrputer-generated drawings of the spacecraft and to compute moments of 

inertia, total weight, center of mass, and center of pressure locations. 

The lOOClel generator (IDrx;EN) program converts the data into a form 

usable by other programs. This information, along with specified orbit 

paraneters, becomes part of the data base which can be USEd as required 

in other programs, such as Articulated Rigid-body Control Dynamics 
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(ARCD) , Attitude Prediction (A'I'I'ffiEI) , and Orbital Lifetime (OL) " 

References 4=5 t,.'"'.rough 4=9 a...""'e exa.'TIples of uses of I -DFAS2 • 

4.2 Math Model of the ATSS 

'Ihe dimensions am canponent weights of the ATSS were generated in 

the studies of References 4-10 and 4-11, and are repeated herein as 

Figures 2.0-1 am 2.0-2, respectively. 'Ihe geometry and dimensions were 

used in the I -DFAS GEX:M:>D program to prcxiuce a corrputer-generated 

geometrical representation of the conceptual model (Figure 4.2-1). 'Ibis 

type of representation is useful in that it provides a visual check of 

the configuration that has been modeled. 'Ihe dimensions and weights of 

the various ATSS components were then used in the GEX:M:>D and IDLGEN 

programs of I -DFAS2 to detenni.ne total mass, moments of inertia, center 

of mass, am center of pressure locations for the ATSS. 'Ibe axis system 

selected for the computation has the origin at the center of mass which 

is 0.856 m (2.81 ft) above the plane of the torus. 'Ihe axes are oriented 

as shown in Figure 4.2-2. 

Results from the GEX:M:>D calculations are shown in Table 4.2-1. 

'Ihese values are directed tbrough mo.:;m and put into a form that makes 

them applicable as part of the data base for other IDFAS2 programs. 

TABIE 4.2-1 ADVANCED-'I'ECENOI.!XiY SPACE STATION 
MASS AND INERl'IA PARAMEI'ERS 

Total Mass (kg) 

8.2865 x 106 

Moments of Inertia (kg-m2) 

!xx = 2.5422 x 1010 
Iyy = 2.2452 x 1010 
Izz = 4.4142 x 1010 
Ixy = -4.6256 x 106 
Ixz = 28.706 
Iyz = -15.960 
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Figure 4-.2-1 Conplter-Generated Drawing of the Advanced.J1'echnology Space Station 
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4.3 Exte.n1al Forc:es arrl 'Ibrques Acting on the ATSS 

'!he external forc:es am torques depend on the specifiErl 

orientation of the ATSS as it omits the Earth arrl the desired orbit. 

characteristics. As mentioned previously, it is asstnned that the ATSS 

will be kept SUn-pointing; therefore, for the time required for a single 

omit, it can be considered to be fixed inertially. Forc:es arrl torques 

acting on the ATSS are those associated with gravity, aerodynamics, and 

solar radiation pressure. '!hese forc:es arrl torques were computed and 

used in detennining attitude control requirements. 

'!he nominal orbit para11'eters are: 

Attitude (kIn) 500.0 

Orbit Inclination (deg) 28.5 

Orbit ascerrling IOOde (deg) 0 

Day of year 80.0 

calculations pertinent to attitude control analysis were made by use 

of the ARm program of IDFAS2. 

4.3.1 Aerodynamic Drag arrl 'Ibrque 

'!he atnospheric drag is deperxient on the Space station orientation 

relative to its velocity vector, its velocity, arrl the density of the 

atmosphere. In this study, the omit velocity is 7.613 kIn per secom. 

'!he spacecraft projected area in a plane peJ:pendicular to the flight 

direction is detennined by the ARCD program. '!he variation of 

atmospheric density with position in omit is shown in Figure 4.3-1 arxi 

is based on the atmospheric IOOdels discussed in References 4-12 through 

4-14. 
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'!he variation of aerodynamic force with orbital position is shown in 

Figure 4.3-2. As expected, the forces are very small, primarily because 

of the extremely low atnDspheric density. '!he resultin] aerodynamic 

torques are also very small (Figure 4.3-3). 

4.3.2 Solar Radiation Force, 'Ibrque am Momentum 

'!he solar radiation force is shown in Figure 4.3-4 as a function of 

orbit angle. Because the ATSS has its z-axis pointed at the SUn, the 

solar radiation force is alorg the ATSS z-axis. '!he force is small when 

the ATSS is in sunlight am drops to zero when the ATSS is out of the 

sunlight. '!here is no torque because of the synunetry of the ATSS about 

the z-axis. 

4.3.3 Gravity Gradient 'Ibrque 

'!he variation of gravity gradient torque actin] on the ATSS, as a 

function of orbit angle, is shown in Figure 4.3-5. '!he variation is 

cyclical, with a frequency of two cycles per orbit. '!he gravitational 

torque is quite high, peaking at about ± 35000 N-m (25,863 lb-ft). 

Because of the orientation of the ATSS, the gravity gradient torque is 

about the ATSS y-axis. 

4.3.4 Control Require.nents 

As mentioned. previously, the ATSS is to remain pointed toward the 

Sun. since there are enviromental torques (aerodynamic am gravity 

gradient) actin] on the Space Station, these must be nulled by a oontrol 

system. '!he capability requirements of the control system, therefore, 
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deperrl on the maximum values and the variation with time of D'1e 

environmental torques. 

4.3.4.1 Attitude Oontrol 

Integration of environmental torques versus time is a measure of the 

required control system capability. In the present case, the gravity 

gradient torque (Figure 4.3-5) far exceeds that caused by aerodynamic 

forces and is the only one that needs to be considered in a preliminary 

study. various classes of controllers are available for attitude 

control, including reaction jets, control-nanent gyros (crrq), dual 

counterrotating wheels, or combinations of these. Selection of a system 

deperrls on many factors such as weight, power required, and maintenance. 

'!his area is suitable for future study. 

4.3.4.2 OrlJi tkeeping Requirements 

'!he aerodynamic force acting on the A'ISS reduces its velocity and 

causes it to lose altitude. For the ATSS the atmospheric drag iInparts a 

linear irrpllse of 2945 N-m alorq the velocity vector per o:rbit. If the 

orbitkeeping jets thrust at a level and direction to counter the drag, 

about 6.8 kg (15 lb) of H2~ fuel will be used per orbit. 
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5.0 EFFECI'S ON HUMAN SUBJECI'S AND MATERIAIS IN THE ARl'IFICIAL GRAVITY OF 
'mE ROl'kl'ING ADVANCEi)-ll'ECHNOICX;Y SPACE S'"'.LATION 

5.1 Human Factors Considerations in Artificial Gravity 

Artificial gravity has one specific purpose: to ma.intain a 

satisfactory physiological corrlition of the cre!W members. This is 

elucidated in Reference 5-1, which also identifies effects associated 

with the rotation necessary for artificial gravity to which cre!W members 

must adapt. other examinations of hmnan perfonnance in a rotating or a 

simulated artificial gravity environment are included in References 5-2 

to 5-19. 

This section discusses the effects of artificial gravity on 

materials as well as human subjects. It begins by delineating the 

artificial gravity environment at various locations in the rotating 

Advanced-Technology Space station (ATSS) and describes both static and 

dynamic corrlitions. These corrlitions are listed in Table 5.1-1. Figure 

5.1-1 depicts the areas of the ATSS within the spokes and torus where 

crew members will live and work. These range from the smallest radius 

of rotation, 16.76 m (55 ft), to the outer deck with a radius of 119.63 m 

(392.5 ft). For these areas, angular motions and material handling 

effects within the rotating environment are described. Finally, 

cognitive and psychomotor testing within the rotating environment, 

observations of astronaut perfonnance, and physiological aspects of the 

ATSS are discussed. 

5.2 Same static Characteristics of Artificial Gravity for the ATSS 

Table 5.1-1 (Reference 5-2) lists the various characteristics that 

exist in artificial gravity when people or objects are stationary 
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'I7\BIE 5.1-1 EXPRESSICNS OF '!HE ClIARACI'ERISTICS OF ARl'IFICIAL GRAVI'IY 

STATIC CHARACTERISTICS 

9 LEVEL, a = r wv2 

9 GRADIENT, da/dr = Wv2 

9 RATIOS, a1/a2 = r1/r2 

ARTIFICIAL WEIGHT CHANGE, AWIW = {r1 - r2}/r2 

HYDROSTATIC PRESSURE VARIATIONS, 6PHs = p/2 (r22 - r12)wv2 

DYNAMIC CHARACTERISTICS 

RADIAL CORIOLIS ACCELERATION 

x = r - r (WV2 + 2iJJVW'W + WW2) 

TANGENTIAL CORIOLIS ACCELERATON 

Y = 2r(wv + WW) + rww 
DISTANCE OBJECTS FALL FROM EXPECTED POSITION 

(
."J rF2 - r1 2 ."J rF2 - r1 2 ) 

d = rF - tan-1 ---
r1 r1 

ANGULAR CROSS COUPLING 

WhX = ciJh~ • Wv (Whesm9 + 4Ihfos9sinlJl) 

Why = Whe - Wv (W~Os9cos7f. g Wh~sin9) 

.WhZ = Whl/l + uJv {WhaCos9cosVt + WhOCos9sinl/l> 
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relative to the spacecraft frame of reference. '!hese include variation 

in the artificial gravity level, its gradient as change in the artificial 

weight of objects, gravity variation along the body, am hydrostatic 

pressure variations in fluid syst:emc3. 

Table 5.1-1 also shows the various characteristics that exist L"'1 

artificial gravity when people or objects are in notion relative to the 

vehicle frame of reference. 'Ihese include the tangential am radial 

Coriolis acx:el.erations that exist when radial and tangential notions 

occur, respectively, within the vehicle. Included are the angular cross 

couplings that exist when people or objects are rotated within the 

vehicle and the phenomenon of dropped or thrown objects not fallin:J into 

expected positions. 

5.2.1 Variations of Artificial Gravity Level 

'!he variation of artificial gravity level with radius is shown in 

Figure 5.2-1. '!he concept of having 1 g at the main deck floor, 

(Reference 5-1) requires a torus rotation of 0.291 rps (2.776 :rpn). '!he 

value of 1 g in the main occupied area has been selected for 

physiological reasons where one artificial g should most adequately 

replace one Earth g to maintain the crew's well-being. 

No data exist on the effects of partial gravity levels on human 

physiology, arrl the rather serious effects of long-tenn weightlessness 

are evident (Reference 5-1). In the torus area, the outer deck has about 

3 percent larger g level arrl at the inner deck about 3 percent lesser g 

level than the 1 g at the main deck. '!his difference is not expected to 

have any significant influence on htnnan physiology and perfonnance. 
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'!he spokes of the ATSS are 9.14 m (30 ft) in diameter and provide 

adequate space for liviD:] facilities and work stations with any g level 

from about 0.14 g at the smallest radius of rotation to the 1 g of the 

main deck. '!he ATSS therefore, provides a considerable opportunity to 

study man and his perfonnance, other biological systems, and special 

manufacturiD:] processes through a range of g levels. 

'!he gravity gradient along the radius is a constant and equal to i12 

because the rate of rotation is constant and the g ratios are equal to 

the ratio of the radii involved. 

5.2.2 Weight of Objects 

'!he artificial weight of an object or person, of course, varies with 

radius in accordance with the distance the object is raised or lowered. 

'lllese variations for heights of 0.91 m (3 ft) and 1.83 m (6 ft) are 

shown in Figure 5.2-2. '!he weight variations are less than 1. 5 percent 

at the main deck and nearly 12 percent at the smallest radius of 

rotation. '!he reduction of weight when liftiD:] an object and the 

increase in weight when lowering an object may have some influence on 

materials han::lling. Materials handling will be discussed in a later 

section. 

5.2.3 Hydrostatic Pressure 

'!he hydrostatic pressure of a colmnn of fluid at a given height 

will vary markedly with radius in artificial gravity. The hydrostatic 

pressure has a very special effect on the cardiovascular system of man as 

was discussed in Reference 5-1. '!he reduction of the hydrostatic 

pressure of the blood system to zero, as in weightlessness causes a 
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significant degeneration of the cardiovascular process with dramatic 

effects on returning to Earth. It is not known if there is a level of 

hydrostatic pressure above which no hannful effects occur. The A:TSS 

provides the nost reasonable proc:ess for studying this phenomenon. The 

variation of the hydrostatic pressure along the total spoke 1e.n:Jtll TIlCly 

have significant effects on the operation of hydraulic systems and must 

be considered in their design. '!he variations of hydrostatic pressure 

with coltnnn height and radial position are shown in Figure 5.2-3. From 

this figure, the hydrostatic pressure at the main deck is equivalent to 

that in Earth's gravity, and the cardiovascular system probably will 

resporrl as it does on Earth. 

5.3 Some Dynamic <l1aracteristics of Artificial Gravity on the ATSS 

Table 5.1-1 lists the various characteristics that exis·t in 

artificial gravity when people are moving or objects are moved in the 

vehicle frama of reference. Figure 5.3-1 also depicts some of these 

characteristics. The effects of tangential, radial, and axial :motion are 

shown. 

Tangential motions, either in a pro-spin or anti-spin direction, 

cause radial Coriolis forces to increase or decrease the artificial 

weight of man or objects. The magnitude of these Coriolis forces are 

shown in Figure 5.3-2 for wa~ speeds of 0.914 nVsec (3 ft/sec) and 

1.829 nVsec (6 ft/sec) in both directions. 'Ihe acceleration 

experienced, i.e., the change in weight, varies only a little with radius 

being near 0.125 g at the larger walking speed. At the smallest radius, 

16.76 m (55 ft), the gravity level decreases to 0.095 and 0.056 g while 

walking at 0.914 nVsec (3 ft/sec) and 1.829 mjsec (6 ft/sec) at which 
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values traction would be reduced arrl ~ probably would not be 

possible as noted by the traction limits shown in Reference 5-2. 

Reasonable walking, however, seems quite feasible in all other areas of 

the station. A walk.irg speed of 0.914 ny'sec (3 ft/sec) is nonnal from 

measurements of walking in working areas, although walking at twice this 

speed would be readily possible in many areas of the A'ISS. Walking and 

running speeds arrl step rates as measured in Earth! s gravity are shown in 

-Figure 5.3-3 (References 5-10 and 5-19). 

leg heaviness as noted in Reference 5-2 arrl reported in Reference 

5-20 is a phenomenon that occurs because of the nature of walking. 'nle 

speed of the leg while ~ is cyclic arrl varies from no relative 

speed while the foot is on the floor, to about twice the walking speed as 

the leg is moved forward. '!he Coriolis accelerations acting on the legs 

arrl feet are, therefore, different than those on the body arrl are quite 

variable. Early simulations (References 5-8 arrl 5-20) indicated that leg 

heaviness caused. by this factor was readily recognized arrl was sometimes 

objectionable. The level of artificial gravity arrl relative artificial 

leg weight probably have a significant effect. 'nle studies of this 

reported phenomenon had maximum radii of 6.1 m (20 ft) and artificial 

gravity levels of 0.05 to 0.75 g. It is not expected that the phenomenon 

will be objectionable on the ATSS with radii of 16.76 m (55 ft) to 

119.63 m (392.5 ft). The phenomenon is shown in Figure 5.3-4, indicating 

the leg weight to be about 0.1 9 heavier or lighter at the main deck when 

walking 1.829 m (6 ft/sec), whereas the leg at the smallest radius of 

rotation would be about 0.3 9 heavier or 0.125 9 lighter at 1.829 m (6 

ft/sec) • 
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Whe.l"l !'!¥JVLl"lg radially I Coriolis forces actLl"lg ta.l"lge.l"ltially a:t"e 

experienced (Figure 5.3-1). '!his is shown more dramatically in Fig'Jre 

5.3-5, where clirnbinl a ladder, which is a straight path in the A'ISS 

frame of reference, is (in inertial space) a curved path from whence the 

tangential Coriolis forces occur. 'Ibe magnitude of the tangential 

Coriolis accelerations in the ATSS are plotted in Figure 5.3-6. Radial 

speeds up to 3.048 m (10 ft/sec) are shown. 'Ibe tangential acceleration 

of somewhat less than 0.2 g would be experienced. Forces required to 

restrain the body in a radial path would act in an anti -spin direction 

when ascerrling (IOCIVinl to smaller radii) and in a pro-spin direction when 

descerrling. 'Ibis phenomenon is described in References 5-11, 5-12, 5-14 I 

5-15, and 5-16. 'Ibese references reconunerrl.ed that restraints should be 

used in elevators if the tangential Coriolis accelerations exceed 3 

nvsec2 (19.84 ft/sec2) on the ATSS. A radial velocity of 5.15 nvsec 

(16.896 ft/sec) or greater would be required to exceed this 

recornmerrlation. At 3.048 nvsec (10 ft/sec) the tilne required to go from 

the main deck to the smallest radius of rotation would be 32.6 seconds 

which may be adequate. At the radial speed of 5.15 nvsec (16.896 

ft/sec), for which restraints would be required, a person could move from 

the main deck to the smallest radius in about 20 seconds. 

In Reference 5-1, stail:ways are proposed for the torus deck areas. 

stair cliInbinl can involve both tangential and radial motions resulting 

in a combination of the phenomenon previously discussed. 'Iberefore, 

changes in tangential and radial accelerations will be experienced, 

Assuming a stair riser of 20.3 em (8 in) and a tread of 30.5 em (12 in) I 

the radial speed would be 0.66 the tangential speed. 'Ibe radial and 

tangential accelerations have been calculated for radial speeds up to 
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1.52 nVsec (5 ft/sec) while climbing in the direction of rotation, Figure 

5.3-7, am against the direction of rotation, Figure 5.3-8. 'lhe 

combination of these forces inplies that one nrust learn to cope with the 

1:cIDJential Coriolis force, either by leaning or by holding harrlrails. 

When climbing in the direction of rotation, one would have to lean 

backwards while ascerrling the stairs, a potentially dangerous and 

fright:.enin:J situation. When desoerrling in the direction of rotation 1 

one would have to lean fol:WarCi aver the desoerrling stairs, also not 

desirable. When climbirg against the direction of rotation, one would 

lean forward aver the ascerrling stairs, probably the better situation. 

When descendirg against the direction of rotation, one would lean 

backward aver the stair, perhaps the better desoerrling situation. 'lhe 

lean argles for these combined accelerations are shown in Figure 5.3-9 

for climbirg in the direction of rotation, am in Figure 5.3-10, for 

climbirg against the direction of rotation. For the main deck, these 

angles are 5 degrees or less. At the halfway position, lean argles of 10 

degrees or less are possible. For the smallest radius, angles in excess 

of 20 degrees are possible. For a likely climbirg speed of 0.61 to 0.91 

nVsec (2 to 3 ft/sec) the angles are significantly less. It is probable 

that crew members will adapt to these corrlitions. 

Another alternative is that of climbirg stairs axially where only 

the 1:cIDJential Coriolis acceleration oocurs am where one leans sideways 

on the stairs. Lean argles for axial stair-climbing are shown on Figure 

5.3-11. 'lhese results show that one leans away from the direction of 

rotation when ascerrling am into the direction of rotation when 

desoerrling. '1hese angles are sanewhat less than 5 degrees at the main 

deck am are 30 degrees at the smallest radius of rotation. Leaning 
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sideways on the stairs seems lOOre desirable than leanirxJ down the stairs 

and maybe even up the stairs. 

Another phenomenon that may have sane annoyance is that objects 

dropped in artificial gravity will not fall where expected. Unless given 

a radial or tarKjential velocity relative to the vehicle frame of 

reference, cbjects will always strike the floor opposed to the direction 

of rotation fran the spot over wch it was dropped. '!he circurnferencial 

displacement of such cbjects are shown on Figures 5.3-12 and 5.3-13. On 

the main deck, sanething dropped fran 1.83 m (6 ft) will strike the floor 

less than 0.75 ft (0.23 m) fran the expected position, whereas at the 

smallest radius, this distance will exceed 0.61 m (2 ft), Figure 5.3-12. 

Fluids may be poured fran shorter distances (Figure 5.3-13). since 

fluids will fall within fractions of an inch fran where planned, coffee 

can be poured into a cup. 

5.4 Solie Effects of Angular Motions within the Rotating Envirornnent of 
the Advanced-Technology Space station 

Table 5.1-1 lists angular cross couplings that will exist and lead 

to sensory responses that can be disorienting and even cause motion 

sickness (Referenc.e 5-1). Figure 5.4-1 is a vectorial representation of 

head orientation and angular lOOtion in the rotating envirornnent. Here 

the orientation angles of the head relative to the rotating Space Station 

are zero when facing axially. Reference 5-4 gives a CCIlTplete development 

of the equations relating head orientation and motion and Space station 

rotation to the experienced sensory responses of cp3W members in the 

spacecraft. '!hese angular cross-coupled equations also relate to l1'KJII'Iel1ts 

required to rotate objects within the artificial gravity envirornnent. 
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are: 

'!he an:JUlar accelerations experienced as developed in Reference 5-4 

Whx = wh~ - wv(whesinee + wh~coseesin~e) 

wh = wh - wy(wh case COS'l' - Cilh si n0 ) 
ye 'I' e e e e 

(1) 

(2) 

Wh = wh + wy(wh case COS~ + wh case si n~ ) (3) z 'I' e e 0 e ~ 

where the sec:arrl t.enrs of these equations are the cross-coupled angular 

accelerations, which are sensed by the semicircular canals, am are the 

cause of the disquieting effects experienced in rotating vehicles, 

especially when vision is lilnited to the interior of the vehicle. 

Consider a situation where a crew nenber is seated in an axial 

direction where: 

te = 0e = Cil~ = wh0 = wht = whe = 0 

am the head is moved fran about 450 to the left to a1x:>ut 450 to the 

right am back with whlf am whlf not zero. Equations (1), (2), am (3) 

then become: 

Whx = -wy(wh'l'sin'l'e) 

Why = '-wy(wh'l'cOSIf e) 

whz·= Why 

(4) 

(5) 

(6) 

'!he expressions (4) am (5) are the cross coupled motions am (6) is 

the expected motion. Figure 5.4-2 shows a turning motion measured in a 

rotating Space station sinrulator representing the corxti.tions expressed. 

above. Also shown is an apparent nodding motion as expressed by 

equation (5). Although not shown, there exists an apparent head rolling 

IOOt.ion expressed by equation (4). 
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Consider also the same orientation noted previouSly where 

. • a te = ve = wh = wh = wh = wh = 
t V t V 

am the head is IOOVed in a noddirq motion looking up then down and up 

again with whe am whe havirq finite val.ues. Equations (1), (2), 

am (3) then become: 

wh = -wy(wh sinee) 
x e 

wh = wh y V 

whz = wy(whecOS0e) 

(7) 

(8) 

(9) 

Equation (8) represents the expected motion am equation (7) and (9) are 

the cross-coupled motions. Figure 5.4-3 represents a measured noddirq 

motion as expressed previously and a calculated turnirq motion expressed 

by equation (9). A head rollirq motion (equation 7) although not shown 

will also exist. 

'!he apparent motions shown in Figures 5.4-2 and 5.4-3 are for a 

rotation of 3 :rpn (0.314 rad/sec) , the :maximum cross coupled 

accelerations are about 100 deg/sec2 (1. 745 rad/sec2) for the apparent 

tw::nin;J motion and about 85 deg/sec2 (1.484 rad/sec2) for the apparent 

nodding motion. As noted in Reference 5-1 and reported in References 

5-4, 5-12, am 5-13, 3 :rpn is a rotational velocity to which nan can 

adapt, whereas values of 6 :rpn and 10 :rpn can cause serious problems and 

adaptation becomes problematic. A value somewhat less than 3 rpm has 

been selected for the ATSS with an artificial gravity of 1 g at the main 

deck. '!he major stimulant is, of course, the cross-coupled 

accelerations, am the inplications are that 100 deg/sec2 (1.745 

rad/sec2) are cuoonable. Values of 170 degjsec2 (2.967 rad/sec2) and 

greater may not be. other head orientations and head motions in the 
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ATSS will cause different cross-couplings than those specifically 

diSCUSSErl; the conclusions, havever, remain. 

'!he orientations within the rotating envirornnent that are most 

comfortable arrl favor perfonnance of both fine and gross motor tasks are 

pure tangential or axial directions, (Reference 5-16). Facing axially or 

tangentially against the direction of rotation seemed more comfortable 

arrl efficient than facin] tangentially in the direction of rotation, 

(Reference 5-16). Arrangin] controls, displays arrl work areas to 

minimize the requirement for excessive head and limb movements is 

desirable, (References 5-21 and 5-22). 

5.5 Materials Handling within the Rotatin] Envirornnent of the 
Advanced -Technology Space station 

A part of the research reported in References 5-11, 5-14, 5-15 I and 

5-16 was devoted to the handling and manipulation of material in the 

rotatin] environment. '!here are major problems that may effect material 

handlin]. '!he first is the mere ability to carry objects in the 

tangential direction where the artificial weight of objects will increase 

or decrease deperrlirq on the t.argential direction one moves. '!he second 

is the cl'lan3in] artificial weight previously mentioned, as things are 

raised am lowered and the ensuing tangential Coriolis accelerations 

occur which are associated with radial motions. '!he last problem is 

associated with angular cross-couplin] where rotatin] an object in the 

rotatin] environment of the Space station requires moments to be supplied 

to maintain the object in its desired orientation. '!his relates 

directly to the Iilenomanon that happens to the vestibular organs during 

head notions. 
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As described in Refere.rx:::e 5-14, a 0.028 m3 (1 ft3) object weighing 

14.52 kg (32 lb) was l1DVed in both tangential directions. '!he Earth 

weight was slim-supported and the artificial weight, due to simulator 

rotation, was supported by the experiment subjects. Various radii up to 

21.3 m (70 ft) with rates of rotation of 3, 4, and 5 :rpn were studied. 

'!he artificial weight of the object varied from about 0.91 kg (2 lb) to 

about 8.16 kg (18 lb). '!he results in Figure 5.5-1 for walking with and 

without cargo show little effect of the cargo. '!he walkin;J distance for 

these tests was 4.57 m (15 ft) on flat floors. startim and stopping, 

caused by the lean angles of the flat floors, strongly affected the 

walkin;J speed perfonnance, reaching only a maximum of about 0.91 nVsec (3 

ft/sec). Heavier artificial weights may have some effect on perfonnance. 

'!he results of References 5-11, 5-14, and 5-16 indicate no apparent 

effect of radial motion on cargo harrllim. Handlim cargo with specific 

linear and rotary motions was included in these studies. '!he cargo 

consisted of 0.3 m (1 ft) cubes weighing 2.27 kg (5 lb). '!he cross

coupled angular accelerations were readily felt. '!he effects were of 

little concern for cargo of this size and were used by some to help in 

the task perfonnance. Heavier e<rrgoes or those with larger moments of 

inertia, havever, may present harrlling problems. '!he results from these 

studies irrlicated an adaptation to the phenomenon since perfonnance 

irrproved with experience. 

5.6 Cognitive and Psychomotor Testim within the Rotatim 
Envirornnent of the Advanced-Technology Space station 

Reference 5-16 presents a number of experiments perfonned in a 

rotatim envirornnent to test cognitive and psychomotor performance. 

Mental functions and short-tenn mem:n:y are affected primarily with 
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increasL~ rate of rotation at t..."1.e oT'£et of testi..11g bt~t significa..'1tly 

decreased or disappeared through adaptation or accommodation with 

increasirq experience. Task performance requirirq extensive ann and head 

motions were degraded by 8 to 11 percent with increasing rotational rates 

up to 6 rpn. '!he greatest degradation occurs while facing tangentially 

in the pro-spin direction, suggesting again that these tasks be perfornro 

facirq axially or in the anti-spin direction. Head motion lCMered 

psycharrotor performance at the onset of rotational experience but nearly 

disappeared in two days. Programmed head motions hasten the adaptation 

process. 

5. 7 Some Further Observations of Astronaut Performance on the Advanced
Technology Space Station 

'!he A'ISS has a relatively large radius, 116.13 m (381 ft) at the 

:main deck, and a relatively low angular velocity, 0.291 rad/sec (2.776 

rpm). '!hese factors result in an artificial gravity of 1 g at the main 

deck. As noted in Reference 5-1, 1 g is expected to maintain acceptable 

physiological comitions, in regard to the cardiovascular system, the 

musculoskeletal systems, and space sickness caused by weightlessness. 

As noted, artificial gravity does have its side effects. 'Ihese 

effects have been reviewed herewith and cited in numerous documents. '!he 

specific tests of References 5-11 through 5-16 examined areas where 

these side effects could be critical to human performance in a rotating 

envirornnent as would :be experienced on the ATSS. For these experiments, 

radii of 8.4 TIl (27.5 ft), 15.2 TIl (50 ft), and 21.3 TIl (70 ft) and rates of 

rotation of 0.314 rad/sec (3 rpm) 1 0.419 rad/sec (4 rpm), and 0.524 

rad/sec (5 rpm) were generally used. '!he problems reported in these 

various references occurred primarily at the 8.38 TIl (27.5 ft) and 15.24 m 
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(50 ft) radii am 0.524 rad/sec (5 rpm) am sometimes 0.419 rad/sec (4 

rpm). '!he proposed A'ISS, with a primary radius over five times that of 

the max.i.mtnn experilnental radius and with a rotational rate somewhat less 

than the min.i.mtnn rate 0.314 rad/sec (3 rpn) of the experiments, will 

probably avoid nost of the perfonnance problems of the experiments. It 

is probable that groun:i-based experiments, silnilar to those in References 

5-11 am 5-16, will be performed for cases mere the radii and rate of 

rotation are equal to the proposed ATSS. 
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6.0 RIGID-OODY DYNAMICS OONSIDERATIONS REIATIVE 'ill THE AD'i/lU'lCE:r, 
TEaiNOux;y SPACE STA..'PION 

'!Wo possible configurations for fu'1 Advance::i-'l'echnology Space stcrt; )}. 

(ATSS) were considered briefly in References 6-1 and 6-2. '!he differenc'..s 

between the two was that one had counterrota.tin;j elements to cotll'lte:Cl.ct;, 

the an;;JUlar momentum of the large rotating torus, which is the pri..'na:ry 

feature of the station. It was pointed out in Reference 6-2 that the use 

of counterrotators was beneficial in roo.ucing the torquing requirements 

to precess the ATSS to maintain SUn-orientation. Basically, the 

counterrotators reduce or eliminate the gyroscopic properties of the 

rotatin;J torus and make tunling the ATSS easier. At the same time, tl'le 

loss of inertial stability from the gyroscopic effect nakes the A'ISS 

respom more readily to gravitational and aerodynamic torques, which is 

undesirable. 

Because of the conflicting benefits and possible detrimental effects 

of the counterrotators, it was deemed. advisable to examine some space 

station dynamics related. to rotation. since the configuration of the 

ATSS is O'.:>nceptual and still evolving, it is premature to make a detailai 

analytical motion study. Instead, an initial examination of its rigid-

body dynamics \¥as made by reviewing some of the results from published 

studies which were judged to apply qualitatively to the rotating ATSS 

without counterrotators. Specific results discussed in this section are 

the effects of short-duration torques applied to a space station, and 

effects of asymmetric mass transfer within an initially synnnetric space 

station. 
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6.1 Brief Review of Sane Studies of Rotating Space stations 

Olring the 1960's, much attention was given to space stations as the 

next possible space program following Project Apollo. Space stations 

were considered to be longtime habitats for crews. since it was 

recognized that the long-tenn effects of zero-gravity envirornnent were 

not well-known, am that there were some undesirable effects (References 

1-4 am 1-5, for exanple) , several of the Space station configurations 

studied were rotating, rigid bodies. '!he rotation created an artificial 

gravity field through centrifugal force. References 6-3 through 6-15 are 

irxiicative of studies made in the 1960-1968 time pericx:l. 

'!he reports of particular interest are those concerned with the 

dynamic behavior of rotating space stations following the application of 

extezna1. to:rques, iIrpacts, am transfer of weight within the space 

station. References 6-4, 6-11, and 6-13 treat such disturlJances, and 

also examine methcx:ls of damping disturbances. '!here are some differences 

in the approaches am approxilnations made in each of the three papers, 

arrl it is informative to review the differences. 

Reference 6-11 begins with general linearized equations of motion, 

including time-variable nanents and products of inertia, and re:nains 

general throughout the analyses. '!he three nnment equations were coupled 

arrl solved using a digital conputer. Reference 6-13 starts with the 

same equations as Reference 6-11, then makes certain siITplifying 

assunptions which pennit reducing the equations to the point where 

closed-fonn, approximate solutions can be obtained. 

Reference 6-4 begins with slinpler linearized equations of motion, in 

which nnnents am products of inertia are all assumed to be constant. 
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However, t..'t1is refere..7lCe ; l1CILldes i-Prn:lS to account for rotating machinery; 

such as turbines, within the space station. 

It shOl.ud be noted that References 6-4, 6-11, and 6-13 treat space 

stations that are totally rotating: i.e., there are no inertially-fixed 

sections, or any counterrotating elements. Reference 6-14 briefly 

discusses the stability of a rotating space station with a nonrotating 

hub. It also discusses qualitatively the effects of friction between the 

rotating am nonrotating elements, and some effects of flexibility in the 

rotor. 

References 6-4, 6-11, and 6-13 present motion studies for their 

particular (xmfiguration following a disturt:>ance or a m:rlification from 

an axially symmetric configuration. '!he starting configuration of 

Reference 6-4 is a circular cylinder spinning about a transverse axis. 

The results of these motion studies are not readily applicable to the 

configuration of the ATSS (Fig..rre 1. 0-2) . '!he configuration used in 

References 6-11 and 6-13 (Figure 6.1-1) has the human habitat as a 

rotating torus. HOW'ever, the configuration of References 6-11 and 6-13 

does not have a non-rotating central section or counterrotating elements. 

6.2 Qualitative Effects of Some Disturbances and Asymmetries on Space 
Station Motions 

The equilibrium condition for the ATSS is a rotation about the axis 

of symmetJ:y, which in this case is also the axis having the largest 

moment of inertia. 'fue basic station is symmetric in weight distribution 

as well as in geometry. In examining the dynamic response of the space 

station to various disturbances, several items should be kept in mind 

relative to the ATSS and its C>pe-ration: 
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1. '!he ATSS is SU.'1-orie.'1ted. Its axis of sy:mmet-ry (t.he z-a.xis) 

points tcMard the SUn. 

2. '!he ATSS precesses at the rate of once per year to remain Sun

oriented. 

3. In examining the dynamic response over short periods of time, 

only the argular motion needs to be studied. 

'!he distuJ::Dances to be discussed have been examined in several 

previous studies of rotating space stations. Some of the general 

observations apply qualitatively to the current configuration without 

cx:JUl1terrotating tanks, and are reviewed below. 

6.2.1 Effects of Applying Short-Duration Torques 

Short-duration torques could be the result of the docking of a 

spacecraft with the ATSS, the ejection of mass from the station, or the 

deliberate application of control thrusts. '!he results of a moment. 

applied along an axis perpendicular to the spin axis were studied in 

Reference 6-11 for the configuration of Figure 6.1-1, having the relevant 

characteristics given in Table 6.2-1. '!he resulting motions show 

distw:bances which start on application of the moment and cause residual 

oscillation in body angular rates (except for IJJ Z ) and space orientation 

after the disturbance is removed (Figure 6.2-1). The spin axis is 

displaced fram its original orientation and precesses around a tilted 

axis. '!he resulting motion appears as a wobbling of the Space station 

that the crew would interpret as a rolling motion. SUch a motion, 

coupled with the basic ATSS spin, could lead to disorientation and nausea 

of the crew (Reference 6-11) 0 Of COUTSe I the magnitude of the effects 
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depe."Kls on t..'1e rnagnib...lde a."'1d d .... L..-ration of the appliM !OCJ!!IPTlti the :ro;=I!'::s, 

inertia, ani initial angular momentum of the ATSS. 

TABlE 6.2-1 MASS AND INERI'IA PARAMEI'ERS OF '!HE 
OONFIGURATION OF FIGURE 6.1-1 

Mass = 3,670 kg 

Ix = 10,200 kg-mf 

Iy = 10,200 kg-mf 

I z = 13,600 kg-m2 

Diameter = 9.14 m 

Spin Rate = 0.5 radians/sec 

(8,100 lb) 

(7,500 slug-ft2 ) 

(7,500 slug-ft2 ) 

(10,000 slug-ft2 ) 

(30 ft) 

Reference 6-11 examined the application of a gyroscopic stability 

system, (Figure 6.2-2) and a jet stability system (Figure 6.2-3) for 

damping out the residual oscillations shown in Figure 6.2-1, and fO\.ll'rl 

that the body angular rates could be removed, and that the precessing 

could also be reduced to zero. However I the spin axis remained til ted to 

about the average value which would have existed with no damping (Figures 

6.2-4 and 6.2-5). '!he damping of the motions might alleviate the 

potential crew disorientation or nausea, but leaves a residual problem if 

inertial orientation is required. In such a case, sensors and a control 

system are necessary to return the station to its required orientation. 

6.2.2 Effects of Asymmetric Mass Transfer 

An unsymmetrical mass transfer within an initially symmetric 

rotating bcdy can result in a dynamic unbalance. '!his could be caused by 

shifting cargo or by crew movements. Analytically, this effect 

manifests itself through the appearance of nonzero products of inertia in 
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the equations of notion. '!his particular effect was studied in sane 

detail in References 6-4 arrl 6-11. '!he study of Reference 6-11 is by 

far the nore exhaustive arrl, as stated previously, its configuration is 

a spi.nrtin:J torus arrl, therefore, has S01'Ie semblance to the ATSS. '!he 

variations in mass transfer effects examined in Reference 6-11 were the 

follaiil'XJ: 

1. Instantaneous inclusion of product of inertia tenn Ixz which is 

maintained for approximately 400 secorrls. '!he notions were studied for a 

wide raJ'X3e of the ratios I~Iz' Iy/Iz' arrl IxzlIz , arrl are presented as 

maximum inclination of the body axis relative to an inertial reference. 

2. 'I'er!p>rary product-of-inertia distu!.Dances. One case was 

examined in which a product of inertia was maintained for about 40 

secorrls arrl reduced to zero. 

3. Instantaneous inclusion of equal products of inertia Ixy' I xz , 

Iyz , which are maintained over approxbnately 400 seconds. 

4. Transient radial product of inertia disttu:i::xmce, in which a mass 

with an initial velocity experiences deceleration to arrive at a final 

position with zero velocity. 'lhree velocities were used in this phase of 

the study. 

5. Transient tangential product of inertia disttu:i::xmce, in which a 

mass is m;,ved tangentially (at a constant radius). Here again, three 

velocities were used, as for the radial case. 

6. Transient cambinatj.on of tangential notion arrl notion parallel 

to the spin axis. In this case the mass was essentially moved one time 

arourxi the inside of the torus while beiI'XJ displaced (like goiI'XJ down a 

spiral staircase). 
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'!he eff~\..S of a 9"iroscopic druip.L~ S'istem ru"'rl of a jet druiping s'jste."'U 

were studied for l'lDSt of the above situations. 

Results of the study for the six variations listed above are given 

in Reference 6-11. '!he results awly specifically to the configurations 

studied, am generally do not apply directly to the A'ISS. Hov.rever, the 

trerxis are of interest, therefore, the conclusions reached in Reference 

6-11 are repeated herein for infonnation am convenience. 

a. Docking nanents am mass transfer di.stw:bances resulted in 

urrlamped station wobblin:], which to the crew would appear as a rollin:] 

notion of the station floor. '!his rollin:] nDtion, when coupled with the 

station rotation, could possibly lead to nausea am disorientation of the 

crew. 

b. Transient, mass transfer from the center of the station to the 

rim of the station or parallel to the spin axis of the station produced 

smaller woli:>le angles than those produced by instantaneous nass transfer. 

c. Transient mass transfer arourrl the rim of the station in the 

direction of rotation resulted in maximum wobble angles five to seven 

tines as large as those for the static mass transfer. Motion in a 

direction opposite to the direction of rotation, hov.rever, did not produce 

any amplification of the static results. 

d. A gyroscopic danpin:] system was capable of transfonning the 

station woli:>le produced by docking nanents am telTporcuy nass unbalances 

into a spin about the final CIDJUlar-nanentum vector of the station. 

since SOIte of these danped di.stw:bances resulted in attitude errors, the 

station must be provided with an additional system capable of maintaining 

the orientation in space, if such orientation is required by the 

mission. For a continuously applied dynamic nass unbalance, the 
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gyroscopic system reduced the resultant wobbling motion to a smaller 

wobble or a spin about the maximum principal axis of inertia. 

e. A proportional jet d.aITping system reduced the station wobble 

for all disturbances to a steady spinning motion about an axis defined by 

the principal inertial axes of the station. For terrporary disturlJances, 

the spin vector for this motion coincided with the station symmetry axis, 

while for continuously applied disturbances, this vector was aligned with 

the principal axis of inertia. '!he effects of the continuously applied 

disturbances arrl the resultant wobble were thus reduced to a rotation of 

gravity vector or a small apparent tilt of the station floor. 

f. '!he gyroscopic darrping system produced faster darrping than the 

proportional jet system for small wobble angles, but the jet system 

produced faster darrping than the gyroscopic system at the lcu:ger wobble 

angles. 

6.3 overview of Space Station Dynamics 

As noted previously, the A'ISS configuration is conceptual arrl still 

evolving at this stage. It is premature to make detailed calculations 

relative to dynamic behavior following disturbances. However, this 

review of past studies does point out areas of research for this 

configuration or other rotating configurations, should they appear 

feasible arrl desirable for the future. 

It was noted that past studies of rotating stations did not involve 

counterrotating elements to reduce or eliminate the gyroscopic stability 

of the space station. It would be infonnative to use the A'ISS 

configuration to study motion following disturbances, control 
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7.0 FE'ASIBILITY OF MANUFAClURING SPACECRAFT cnn:oNENTS ON-OOARD THE 
ADVAN<:::ED-JI'ECHNOr.o:;y SPACE STATION 

'!he Advanced-Technology Space station (ATSS) proposed for the year 

2025 will have provisions for on-board manufacture and processing of 

rraterials for fabrication and assembly of spacecraft components. 'Ihe 

feasibility of on-board manufacture of components must be evaluated 

against the feasibility of both terrestrial and extraterrestrial manufac-

ture of spacecraft components. '!he spa~;>ased manufacture of spacecraft 

components is divided into four categories based on the manufacturing 

sites as shown in Figure 7.0-1. '!he four categories are: the manufac-

turirg on Earth of ATSS structures and subassemblies, manufacturing 

aboard the ATSS, manufacturirg at a lunar base and manufacturing from 

materials supplied from the Martian moons and asteroids. All of these 

will be reviewed briefly in sections 7.2 through 7.5. 

7.1 launch Concept for the ATSS 

'!he ATSS components and subsystems will be designed, developed, 

rnanufacture:i, and assembled on Earth from Earth-supplied materials. Each 

subsystem would be thoroughly tested prior to disassembly and launch 

into space for reassembly in low Earth omit (rID). '!be following 

assuIrptions relate to the projected space transportation architecture for 

the 2025 time frame and the rotating ATSS structural configuration 

(Reference 7-1) : 

o '!he ATSS will be manufactured on Earth comprised of structural 

elements and subassemblies c:onpatible with the size and weight 

limitation of the space transportation architecture available in the 

2025 time frame. 
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o The ATSS would be disassernble:i Lito structw..-al eleme..~ts, cara.pone.l1ts 

and subassemblies and manifested for launch to I.OO to :maximize the 

space transportation system's capabilities. 

o '!he space transportation system architecture will require heavy lift 

launch vehicles (HLLV) capable of lifting greater than 2.72 x 105 kg 

(6 x 105 lb) per launch to LID (250 - 270 nautical miles altitude at 

an inclination of 28.5 degrees) . 

o '!he assembly am checkout of the ATSS would occur on o:rbit in an 

essentially weightless corxlition. 

Several HLLV concepts have been proposed over recent years ranging 

from 2.27 x 105 kg (5 x 105 lb) to 9.07 x 105 kg (2 x 106 lb) payload 

launch capability to lID. Payload diameters are limited in size from 

15.24 m (50 ft) up to 25.9 m (85 ft) for the larger of the proposed 

vehicles as shown in Figure 7.1-1 (Reference 7-2) and Figure 7.1-2, 

(Reference 7-3) . 

7.2 On Earth Manufacture of ATSS Structure Elements and SUbassemblies 

SUccessful assembly on orbit of the ATSS structure and subassemblies 

deperrls heavily on practical packaging for transport and the assembly and 

use of exparrlable and modular structures. Expandable and IOOdular 

structures provide a means of achieving high density payload packaging at 

a minimum volume. Much work was done on expandable structures in the 

early to mid 1960's because of limitations of payload weight and volume 

of the launch systems then available. On Earth manufactured expandable 

and modular structures will be reviewed in the functional categories of 

nonrigid, semirigid and rigid structures as referred to in Figure 7.2-1. 
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Figure 7.1-1 Heavy Lift launch Vehicle Concepts (2.27 x 105 kg or 
5 x 105 lb payload class) (Reference 7-2) 
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7.2.1 Norxigid ~~~ble str~cbJres 

Examples of nonrigid expandable str.lctures would include ful.ly 

assembled components such as an umbrella construction which could be 

folded for payload packaginJ am opened remotely upon achievinJ IID. The 

combination of a flexible membrane am semirigid structural elements \I7aS 

investigated for structure such as antenna dishes. 

Another exanple of nonrigid expandable structure consisted of a 

flexible foam core sandwich encased between flexible skins. structures 

fabricated of flexible sandwiches could be compression-packaged in a 

small volUl'le for payload installation, am upon release, the sandwich 

structure would assume its prepackaged shape due to the release of 

residual stress confined within the sandwich's core of flexible foam. 

The concept am exanples of elastic recovery structures are shown in 

Figures 7.2.1-1 am 7.2.1-2 (References 7-4 and 7-5). 

Passive communication satellites, Echo I, II, and Pageos I were 

fabricated as spherical-shaped balloons using thin gage polyester film as 

a gas tight membrane. '!he Pageos Satellite is shown as inflated in 

Figure 7.2.1-3. '!he membrane construction of Echo I and Pageos consisted 

of polyester film vacuum metalized with altnninum. Echo· II used a 

composite ll¥?lUbrane laminate of aluminum foil and polyester film. '!he 

inflatable satellites were evacuated, folded, and compactly enveloped 

within a payload canister. '!he balloon's inflation gas was provided by 

sublimable solids to inflate am maintain shape of·the spheres in omit 

(Reference 7-6). 

Inflatable structures have been developed whereby _ the altnninum foil 

of the membrane composite hardens due to strain when inflated by an 

internal gas pressure sufficient to exceed the elastic limit of the foil. 
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Figure 7.2.1-2 Existin:J Technology of Elastic Reoove:y 
CcJrIXlsite structures (RefereIDe 7-5) 
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Figure 7.2.1-3 Pageos static Inflation (Reference 7-6) 



'!he Bt-rain ~rde..ned <X.l!l!f-<JSit.e l~llli""'t.e is free of fold lines am wrinkles 

am will retain its inflated shape in the weightless rarefied gas 

environment of lID. '!be polyester film has a percent elongation to 

failure greater than that of the aluminum foil, thus assuring the gas 

tight integrity of the composite nenbrane. '!be passive camrnuni.cation 

satellite Echo A-12 used this strain hardening cxmcept for shape control 

(Reference 7-7) • 

Flexible fabric reinforced synthetic resin can be rigidized in space 

on camnan:l. '!bese structural concepts may be used for spacecraft 

construction using bidirectionally woven fabrics preimpregnated on Earth 

with an uncured synthetic resin. '!be tacky matrix resin laminate is clad 

on both sides with a thin plastic fil.J:n to assure a gas tight nenbrane am 

prevent the tacky impregnated fabric layers fram adhering to one another 

when compacted as a payload. An internal inflation gas can erect the 

structure on-omit. '!be selection of pressurant gas am the degree of 

gas permeability of the plastic films can provide matrix hardening by 

mechanisms such as loss of water fram a gelatin matrix, vapor catalysis 

of the matrix resin by the pressurant gas, or by laminate exposure to 

ultraviolet or infrared solar radiation. Examples of rigidized in-space 

stnlctures are shown in Figure 7.2.1-4 (Reference 7-8) am Figure 7.2.1-5 

(Reference 7-9) . 

Pre-sewn fabric sarrlwich reinforcements can be preimpregnated with 

an uncured synthetic matrix resin on Earth. Examples of presewn struc

tures are shown in Figure 7.2.1-6 (Reference 7-10). Plastic film can be 

applied to both sides of the uncured sarrlwich laminates to prevent 

blocking or adherence of the tacky layers in their compacted state when 

enveloped in the payload canister. On-omit gas inflation of the 
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Switzerland's Contraves has developed an inflatable space-rigidizing structure con
cept for use in large antennas, thermal shields. space enclosures, truss structures, 
solar sails and thermal propulsion systems. After being inflated in space, the structure 
would become rigid when cured by its exposure to solar radiation. Contraves has 
manufactured three models of a 3.2-meter-dia. (10.5 ft.) offset reflector (shown here) 
weighing less than 3 kg. (6.6 lb.) under contract to the European Space Agency. 
Company officials said ground-based vacuum tests of the reflector cured under 
infrared radiation have shown promising results in terms of its geometrical accuracy 
and electrical performance. 

Figure 7.2.1-5 Contraves Developed Space-Rigidizin;J an::ept 
(Reference 7-9) 
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Figure 7.2.1-6 Flexible Wall Concepts (Reference 7-10) 
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sarrlwidl structure am the injection of a liquid foam-in-place resin 

between the sarrlwich skins to fo:rm a lOW' density core will provide a 

strong rigid lightweight structure. Solar radiation will cause the 

sarrlwich skins matrix resin to harden after the core foam has cured 

(Figure 7.2.1-7) (Reference 7-11) . 

7.2.2 Semirigid Expandable Structures 

Semirigid expaOOable structures can utilize cylinders, panels, 

struts, sheets, am other rigid configurations that pennit high density 

payload packaging an:! can be deployed mechanically on o:rbit to fonn a 

lru:ger size assembly or structure than as delivered to omit. '!he 

follOW'ing exanples of semirigid structure are briefly described. 

A hexagonal rotating space station design was evaluated whereby six 

cylirrlers would be assembled to fonn a hexagon with three spokes attached 

from the hexagon to a central hub. '!he assembly was to have retracted 

mechanically to fit within the payload weight an:! voll.lI1e constraints of a 

satw:n V booster payload shroud. '!he Space station was designed to self 

deploy on c::onunarrl in space as shown in Figures 7.:2 . 2-1 am 7.2.2-2 

(Reference 7-12). '!he flexible joints interconnecting the rigid station 

elements were designed to be gas tight thus pe:rmitting space station 

atmospheric pressurization immediately after assembly. 

Solar panels that can be furled pennit storage of a lru:ge solar 

panel boom assembly in a small volmne for launch configuration. '!he boom 

panels are mechanically unfurled on omit to their functional configura

tion (Figure 7.2.2-3) (Reference 7-13). 

A parabolic-shaped dish solar concentrator has been designed 

consisting of rigid petals that are nested for launch configuration am 
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Figure 7.2.2-2 SOOS Deployment Concept (Reference 7-12) 
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mechanically deployed to interlock at the proper circular configuration 

and contour (Figure 7.2.2-4) (Reference 7-7). Also rigid parabolic dish 

shaped petals have been designed for assembly and interlock by inflating 

a flexible gastight anrrulus used as a backup deployment structure for 

the dish. 

A helical wrapped barrl tube assembly is a method of rolling a sheet 

metal strip into a cylirrler whereby the strip is wourrl in a helical path. 

'!he wourrl cylirrler can be telescoped by restraining one errl of the helix 

while wirrling the C>pIX>Site em of the metal strip into a smaller radius 

and telescoping the cylirrlrical column to the height of the metal strip's 

width. '!he telescoped cylirrler can be secured and transported to omit 

where the cylirrler can be released to resume its as-rolled length, due to 

residual stress confined within the sheet metal. '!he edges of the metal 

strip could be prepared on Earth for a suitable space joining method such 

as mechanical cold welding, pipe lock seam with elastomeric seal or 

electron beam fusion welding to provide a gastight structural cylinder 

(Figure 7.2.2-5). 

'!he ATSS may utilize counterrotating tori filled with water to 

nullify the ~ic effects of the rotating habitat torus. Each 

counterrotator torus could be attached to the central hub bearing 

assembly using cables placed in tension and arrayed like spokes of a 

bicycle wheel. '!he cables could be tension-tuned for unifonn load 

distribution and translation. '!he coiled cables provide high density 

payload packaging and sinplified assembly of the counterrotator tori in 

IID. 

'!he present design concept for the spokes of the ATSS torus are to 

be fabricated as telescopic cylirrlers. '!he spoke length in its exterrled 
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foun would be awroximately 89.9 m (295 ft). By making each spoke of 

three telescopin;} cyli.rxiers, the packaged spoke would be to 30 m (100 ft) 

in lergt:h, pennittirg two spokes to be manifested for each launch of a 

HUN. Upon delivery to orbit, each spoke could be exterrled to its full 

lergt:h arxi structural flarqes would seI:Ve as extension stops to provide a 

metal-to-metal load bearirg contact complete with elastomeric seals to 

provide a gastight spoke assembly. An exanple telescopic cylirrler design 

fram the early 1960's is shown in Figure 7.2.2-6 (Reference 7-14). 

'!he ATSS is presently plarmed to be inertially oriented am 

precessed to provide SUn-pointirg, thus,. providirg near continuous 

sunlight for operation of the solar dynamic electric po;.ver units. 

Another possible source of electrical power for the ATSS would be to 

employ a nuclear powered generator system. If this concept is used, then 

the ATSS could be gravity gradient stabilized since sun-orientation would 

not be required. 

Tethers fram a gravity gradient stabilized station could be employed 

to position fuel depots or maintenance facilities for reful:bishirg 

orbital transfer vehicle (ON) spacecraft. '!he tethers would be prefabr

icated of high specific st.rerxfth fibers am small enough in diameter so 

that the tether could be coiled for stavage aboard the launch vehicle. 

'!he tether would be released in space fram a drum or coil from the 

station to the length required (Figure 7.2.2-7) (Reference 7-15). 

A variable geometry stnlcture offers the advantage of fully as

sembled structural elements which are hirged am compactly folded for 

launch. '!he structure can be self-assembled on oroit, such as a truss 

stnlcture boan. An exanple of the variable geometry stnlcture is shown 
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Figure 7.2.2-6 Telescopic Design Concept utilizing Belleville Spring and Bellows 
(adapted from Reference 7-14) 
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in Figure 7.2.2-8, am is presently urrler study at the NASA Langley 

Research Center (Reference 7-16). 

7.2.3 Rigid Expanjable am Modular structures 

A nodular ooncept is presently planned for the roc Space station and 

is oonsidered· a logical awroach for assembly of the torus of the ATSS. 

'!he torus IOCldules offer the advantage of being sized for transport to Im 

on-board a HLLV. '!he lOOdules would be ccmpletely outfitted with all 

electrical, plumbing, ventilation, am electronic hardware, as required. 

'!he nodules may be fabricated gastight am operate as independent modules 

until joined with their oontiguous spacecraft structure during assembly. 

'!he modular oonstruction offers the oonvenience of Earth manufacture, 

assembly, am checkout, prior to disassembly and insertion in Im, 

thereby, minimizing extravehicular activity (EVA) and intra vehicular 

activity (IVA) required to place the modules in service as shown during 

the assembly phase in Figure 7.2.3-1. 

Spacecraft docking nodes can be linked to modules and IVA tubes to 

offer the advantage of an air lock am serve as pressure chambers for 

depressurization purposes during EVA. 

An erectable truss structure offers the advantage of corrpactly 

stowing· imividual truss tubular elements in the launch vehicle. Upon 

delivery' to lID, the truss elements am associated oonnector nodes may be 

assembled into an orthogonal tetrahedral truss structure to oonstruct 

the obse:t:vatory boom, solar dynamic platfonn and the berthing and 

assembly bay truss structure of the A'ISS (Figure 7.2.3-2) (Reference 

7-16) • Experiments can be attached to these truss structures, and with 
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the use of IVA tubing, the astronauts can move about the truss structure 

in a shirtsleeve work environment. 

Mobile cranes will be utilized to aid the astronauts for the 

reassembly of the ATSS on orbit. These cranes are mobile :remote 

manipulator systems that can be stowed for latmch configuration and 

exterxied for service use on orbit. The cranes will be used for the 

asseI1lbly of the solar dynamic units, positioning and joining torus 

cylin1rical sections to fonn the habitat torus, positioning of spokes to 

connect the central hub with the torus, and positioning the solar and 

celestial obse:rvatories (Figure 7.2.3-3). 

Research scientific instruments ideally will be supplied to the 

A'ISS as modules to be used inside the ATSS at prepared locations or in 

some instances, attadled to the exterior of the ATSS. The ncxies of the 

truss structure are convenient points for attachment of research 

instn.nnents and experiments on the ATSS exterior (Figure 7.2.3-4) 

(Reference 7-16). 

The orbital manetNering vehicles (Cl1V) may be sized so that they can 

be transported within the cargo bay of either Shuttle I or II. 

The aIVs will utilize large dianeter aerobraking heat shields and 

thus may have to be delivered in sections to the ATSS and asseI1lbled in 

the berthing and asseI1lbly bay using the mobile :remote manipulator 

systems. The aIV shown in Figure 7.2.3-5 is indicative of the size of 

the ceramic heat shield as compared to the six propellant tanks and the 

cylin1rical module containing several astronauts (Reference 7-15). 

Expen:led National. Space Transportation System (NS'IS) external tanks 

appear attractive for use as cryogenic fuel storage vessels. The 

weights and volumes of an external tank is shown in Figure 7.2.3-6 
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Figure 7.2.3-3 Four Solar Dynamic Units am Solar ObservatOl:Y 
Installed Usirq Mobile Relrote Manipulator System 
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LENGTH 
OIA 
WT 

L02 TANK 

LENGTH = 16.6 m (54.6 tt) 
MAX OIA = 8.4 m (27.5 tt) 
WT = 5.6 x 103 kg (12,400 Ib) 
VOL = 552 m3 (19,500 cu tt) 

INTERTANK 

= 6.9 m (22.5 tt) 
= 8.4 m (27.5 tt) 
= 5.5 X 103 kg (12,100 Ib) 

LH2 TANK 

LENGTH = 29.5 m (96.7 tt) 
OIA = 8.4 m (27.5 tt) 
WT = 1.3 x 104 kg (28,900 Ib) 
VOL = 1515 m 3 (53,500 cu tt) 

Figure 7.2.3-6 External. Tank Structure (adapted from 
Reference 7-17) 

7-34 



(Reference 7-17). studies have been made for use of the Shuttle 

external tank in lEX). One of the Mars reference missions will use about 

106 kg (2.2 x 106 lb) of H2 and 02 as fuel/oxidizer for a round-trip to 

Mars as discussed in Section 9 of this report. One NS'lS external tank 

is capable of containing 6.8 x 105 kg (1.5 x 106 lb) of fuel. '!he 

external tank is coated with a spray-on foam insulation of polyurethane 

resin. 'Ihis material is known to outgas in space and is an undesirable 

crycqenic insulation for use in the vicinity of the A'lSS. '!he tanks may 

well sez:ve as efficient fuel storage depots if a low outgas insulation 

were substituted for the polyurethane foam and additional multilayer 

polyester film crycqenic insulation blankets were added to the tank's 

exterior on orbit. 

'Ihe NSI'S Shuttle has a cargo bay size of 4.57 m (15 ft) diameter by 

18.29 m (60 ft) in length, thus limiting the size of payload that can be 

transported to lEX). 'Ihe Shuttle maximum cargo weight per launch is 

limited to 2.95 x 104 kg (65,000 lb) ascent to lEX) and 1.45 x 104 (32,000 

lb) for descent to the Earth's surface. 'Ihe Shuttle payload volume is 

normally the launch constraint rather than payload weight, thereby 

pennitting the NS'lS to have resez:ve payload lift capability along with 

contingency fuel for orbital insertion of the external tank attached to 

the Shuttle. 

An add-on module has been evaluated that could be attached to the 

existing external tank design. 'Ihe module has been named aft cargo 

carrier (ACC) and has a cargo size capacity of 8.38 m (27.5 ft) in 

diameter by 6.1 m (20 ft) in length. Several uses of the ACC are shown 

in Figure 7.2.3-7 (Reference 7-17). 'Ihe ACC could be used to transport 

crycqenic tankage nrultilayer insulati ve blankets which could be placed 
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about the external tank on-orbit using EVA to reduce cryogenic fuel 

boiloff. '!he boiloff rates of oxygen am hydrogen are Wicated in 

Figure 7.2.3-8 (Reference 7-17). An effective conservation concept of 

liquid oxygen am hydrogen would utilize cryopuIl'ping to recX>nvert the 

cryogenic fuel vapors back to liquid fo:rm. 

7.3 Manufacturing Aboard the ATSS 

'!be ATSS will provide laboratory am pilot plant materials 

processing capabilities within the station's central tube. '!be effects 

of gravity can be studied in an envirornnent ranging from weightlessness 

in the central tube to a pseudogravity equivalent of one Earth gravity in 

the torus. Experiment te.nt:>eratures may range from cryogenic to high 

te.nt:>erature and ambient pressure may range from hard vacuum to multiple 

a'bnostileres. Manufacturing and repair facilities will also be provided 

at two diametrically opposite locations within the torus. '!bese 

rnanufacturirg locations will have facilities and equipment to permit 

experiment IOCXiifications, checkout, am installation as well as on-l:x:>ard 

facilities for limited spacecraft repair. '!be life support system of the 

ATSS can provide propulsion fuel for use by the CJIN, aN, lJJnar, am Mars 

mission spacecraft (Figure 7.3-1). 

7.3.1 Materials Processing (Microgravity) 

'!be central tube of the ATSS will have a microgravity materials 

processing facility located at the center of gravity of the Space 

station. Experiments may be corrlucted within a canister which will 

free-float within the central tube during the critical experimental 

procedures. station keeping, control dynamics, and crew motion should 
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not influence the microgravity envirornnent of the experiment within the 

canister. '!he experiment I S control parameters will be monitored am 

recorded for interaction by the principal investigator. '!he materials 

processin] facility should serve as a pilot plant for detennining 

experiment parameters. SUcx::essful experiment results would encourage 

scalin] up the materials processes for installin] aboard a free-flying 

platfonn to achieve the highest product proc:essin] efficiency resulting 

from the pilot plant studies. 

7.3.2 Manufacturing Facilities 

'!he ATSS torus will have two manufacturing locations. One location 

will provide a plastics am camposites fabrication facility adjacent to 

torus Spoke 2. A metals fabrication facility will be located 

dianetrically opposite at Spoke 4. '!hese two facilities will be provided 

to perfonn several functions aboard the ATSS (Figures 7.3.2-1, 7.3.2-2 

am 7.3.2-3). 

Typical functions are as follows: 

o Preparation of experiments for positioning in the interior or 

onto the exterior of the ATSS. 

o Repair of disabled experiIrents where simple functions such as 

solder repair or electronic circuit card change out may be 

accornpl ished. 

o Basic maintenance of the Space station conp:ments am hardware. 

o Basic manufacturin] am fabrication capabilities such as weldin], 

flanging, riveting, am shaping of metals am nomnetals. 

o CoIrp:>sites fabrication using autoclaves am ovens for thermal 

proc:essing of fiber reinforced synthetic resins. 
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o Adhesive bonding of metals and nornnetals. 

o Material shaping using such equipment as a drill press, shaper, 

milling machine and other metal removal methods. 

'!he ATSS crew is sized for sixty people of which designated 

personnel are essential for e:ontinuous operation of the station and for 

J'lK)nitoring its electrical power generation capabilities and distribution. 

'!he remaining personnel would consist of scientists, engineers and 

technicians with a skill mix to meet the needs of the current ATSS 

research and development activities. Nonnally, a limited nmnber of 

manufacturing technicians may be aboard the A'ISS at any particular time. 

'!herefore, large manufacturing and fabrication undertakings may not be 

practical aboard the ATSS. station equipment repair, maintenance, 

research experiment preparation, and experiment modification appear to be 

the logical uses of these facilities. Both of the torus manufacturing 

locations have redundant life support equipment for processing water into 

oxygen and hydrogen by electrolysis for generation of the cabin oxygen 

at:InosJ;;here and for hydrogen and oxygen fuel manufacture. 

7.3.3 Experiment Modifications 

It is anticipated that experiments will be supplied from Earth to 

the ATSS complete with spare parts to maintain a reliable functioning 

experiment. 'Ihe principal investigator for the experiment and trained 

experiment technicians will be available to service the experiment module 

as required, utilizing the manufacturing facilities aboard the torus. It 

is plarmed that the torus will have a pseudogravity equivalent to 

approximately one Earth gravity; therefore, the J'lK)re conventional 
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manufacturirg processes may be corrlucted in this envirornnent without 

rrooific.ation. 

7.3.4 Spacecraft Assembly am Maintenance 

'!he utility of the ATSS will be greatly enhanced by the 

transportation architecture asscx:iated with transporting materials, 

persormel, am structures fran Earth to Im. Shuttles I am II, the 

aerospace plane, am HLLVs are cont:e.nplated for those pw:poses. 

(HJ will be transported fran Earth to Im aboard Shuttle I or II 

with the size restriction :inp::>sed by the diameter am lEmJth of the 

shuttle's cargo bays. Another option would be to transport the a!N in an 

ACJ::. attached to an external tank as discllssed in paragraph 7.2.3, whereby 

a structure up to 8.38 m (27.5 ft) in diameter by 6.1 m (20 ft) in length 

may be a<XXl1lU'!Odated. '!he (HJ (space tug) would be used during the 

collection am assembly of the various Space Station COI'lp)nents in rm 

am also used for a variety of applications in regards to maintenance am 

inspection activities during the life of the Space Station. 

An arv will have the capability to transport spacecraft fran Im to 

geosynchronous equatorial orbit (GFD) am return. '!he aN will utilize 

aerobrakirg tedmiques when returning fran higher orbits to Im to 

minimize fuel usage. '!he aerobraking concept will utilize heat resistant 

ceramic heat shields which are large in diameter am may require on-orbit 

construction am refurbishIrent. '!he aN will require refueling with 

hydrogen arx:l oxygen at the ATSS. Persormel am spacecraft can be 

transferred fran Im to GFD am returned as required, thereby pennitting 

retrieval of spacecraft for repair am IOOdification at the ATSS for later 

return to GEn. 
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I1mar bases are anticipated as sites for manufacture of oxygen to 

support missions sudl as the Mars mission. '!he transport of personnel, 

equipnent, am supplies from lID to the surface of the Moon will be 

discussed in nore detail in paragraph 7.4. '!he assembly of Earth 

supplied CCl1T{X>l'lents of the lunar mission spacecraft will take place in 

the berthing arxi assembly bay of the A'lSS utilizing renote manipulator 

systems as required. '!he manufacture of hydrogen am oxygen fuel for the 

lunar mission could be acx:x:mplished aboard the ATSS. Spacecraft 

returnin:J from the Moon would employ aerobraking to conserve fuel. 

'!he manned Mars mission will require construction of a large 

spacecraft in r.m using the berthing am assembly bay of the ATSS for the 

erection site 0 Conplete functional checkout of the Mars spacecraft would 

cx::cur while captive with the ATSS utilizing both on-board electronic 

dleckout equipnent as well as Earth based support capabilities. FUeling 

of the spacecraft could cx::cur from on-board manufactured hydrogen am 

oxygen stored in a fuel storage depot for the Mars mission. 

7.3.5 FUel Manufacture 

'lhe ATSS will errploy on-board fuel manufacturing capability, 

whereby, water transported from Earth to the A'lSS will be electrolyzed to 

fonn hydrogen am oxygen. '!hese gases will be liquified am stored as 

cryogenic fuel. For mission support, sudl as CfN flights or a Mars 

mission, the fuel will be manufactured in the torus of the spacecraft 

utilizing the life support madlinery, pumps, am C01Ipressors to 

manufacture am liquify the gases. storage of the liquified gases may 

utilize a fuel storage depot whidl will co-ort:>it with the ATSS or be 

tethered to it, as discussed in paragraph 7.2.2. '!he A'lSS is capable of 
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manufacturing 4535 kg (10,000 lb) of fuel per 24 hour day, using 1.25 MW 

of electrical energy. '!he total power generation capability planned for 

the ATSS is 2.5 MW am there should be adequate reserve energy for ATSS 

operation, fuel manufacture, as well as the cx:>muction of experiments in 

the central tube arrl torus. '!he fuel storage depot tankage would be 

insulated to minimize the boiloff of the cryogenic gases. A free-flying, 

co-orbiting fuel depot would require station keeping to maintain an 

orbital path similar to that of the ATSS. A direct fluid cx:>rmection from 

the tank. fann to the ATSS may be aa::::anplished if the tank. fann is 

tethered to the station, thereby, pennitting reliquification of the 

hydrogen ard oxygen boiloff gases. 

7.4 Manufacturing at a Illnar Base site 

Illnar surface material samples were retw:ned to Earth during the 

Apollo program arrl were representative of six Apollo lunar larrling sites. 

'!he results of the laboratoIY analyses of these samples indicated that 

several elenents could be separated from the lunar regolith. Oxygen, 

iron, aluminum, silicx:>n, magnesium, titanium, arrl calcium are the seven 

IroSt a1:JuOOant lunar elements, arrl they vary in percentage deperxling on 

the sample retrieval sites. Nitrogen, water, arrl carl:x>n sources were not 

identified. Researchers have hypothesized that pe:nnafrost several meters 

in depth may exist at the north arrl south poles of the Moon in deep, 

pennanently shadowed craters alorg with clathrates of water that cx:>ntain 

carbon dioxide, methane, azgon, arrl other substances. It is anticipated 

that water ice at a surface temperature of 120 K (-244 Df') or belCM would 

be stable over the probable age of the Moon. A lunar polar orbiting 

prospector satellite equipped with a gamma-ray spectrometer arrl 
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electromagnetic sourxier could determine if water ice exists in the crater 

depths of the lunar poles (Reference 7-18). lllnar ice would provide a 

valuable resource for 02-H2 rocket fuel, life support, and for dlemical 

processing applications. 

7.4.1 Transportation Energy Corrparisons 

'!here is interest in the use of materials available on the Moon I s 

surface for the manufacture of liquid dlemical propulsion fuels, lunar 

concrete for structures, glasses for structural composites, ionizing 

radiation shielding, and metals beneficiated from the lunar regolith as 

listed in Figure 7.4.1-1. '!he utilization of these materials will depend 

on the ability to efficiently process them at a lunar site or at a space 

manufacturin;J facility and to transport them to their end use location. 

'!he ATSS will be placed in lID and the question must be addressed: Is it 

more efficient to manufacture products on Earth and transport them to 

lID, or to manufacture products on the Moon and transport them to lID? 

One study iOOicates that it takes seven times more energy to transport 1 

kg (2.2 lb) from the Earth's surface to lID than it does to transport 1 

kg (2.2 lb) from the lunar surface to rID (assmning that aero braking is 

used to slow down the spacecraft returning from the Moon) (Reference 

7-19) • 

'!he lunar regolith is c:orrprised of over 40 percent of oxygen by 

mass. It appears logical that oxygen could be manufactured on the 

surface of the Moon at a suitable processing plant. '!he oxygen in 

liquified fom could be placed in cryogenic canisters, eadl having a 

capacity of approximately 500 kg (1100 lb) of 102. A mass driver located 

on the Moon I s surface could use electranagnetic acceleration to launch 
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the canisters into space as shown in Figure 7.4.1-2. An omiting 

spacecraft would capture and collect the canisters for transfer of 102 to 

a Earth-Moon transport tanker (Figure 7.4.1-3). 'Ihe tanker would utilize 

aerobraking to deliver the 102 to roo for use as the oxidizer of a 

hydrogen-oxygen fuel system (Figure 7.4.1-4). 'Ihe hyd.ro;Jen fuel required 

would comprise approximately 18 percent of the propellent mass and be 

supplied from Earth or manufactured aboard the ATSS (Reference 7-21). 

'!he economics of manufacturing anj transporting oxygen from the Moon to 

LEO, versus oxygen and hydrogen electrolyzed from water transported from 

Earth to roo requires further study. 

7.4.2 Applications for Lunar Regolith Beneficiated Materials 

A lunar base will require a shelter for use by persormel assigned 

for assembly of the mass driver and. the robotic facilities to automate 

the manufacture of oxygen, the loading of canisters, and placing of 

canisters on the launcher. '!he astronaut's shelter could be made of 

concrete, since 95 percent of the mass of constituents required to 

fonnulate Portlarrl cement are in plentiful supply on the Moon's surface. 

A 3-percent to 5-percent mass of cement additive (hydrated caso4) must be 

supplied from Earth to control the setting properties of the concrete. 

Solar wind hyd.ro;Jen that has been deposited in the lunar fines could be 

extracted and reacted with oxygen derived from the regolith to yield 

water. 'Ihe Portland cement combined with aggregate and water would 

harden in place due to hydration reactions for the contained cement 

corrpourrls (Reference 7-22). Another structural material "I1lnarcrete", 

would require the regolith fines be compacted and fused using 

concentrated solar energy (Reference 7-23). 
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Oxygen can be obtained from the lunar regolith using vapor phase 

pyrolysis at 2000 to 50000c (3632 to 90320f'), hydrogen reduction, or by 

wet chemical processing as ex.anple processes. Iron meteorite fragments 

may be magnetically separated from the lunar regolith. Since manganese 

arrl carlJon are not available on the Moon's surface, the iron cannot be 

made into a heat treatable, hardenable alloy. cartx:>n and manganese nrust 

be providoo from sources other than the Moon (Reference 7-19). 

'!he lunar regolith contains fiber producing feldspar and basalt and 

enriched blerrls of these materials could provide an equivalent of Earth's 

high st:.reJ:¥Jth S-glass fiber. A low fusing glass ,matrix could also be 

fonnulated so that glass fiber reinforced glass matrix composite 

laminates could be manufactured from lunar materials. '!he all glass 

structural composite offers a material of high strength, vacuum tight 

structure with a minilnal offgas rate for much less ~ ~ture 

than required for beneficiating, refining, and processing metals 

(Reference 7-24). 

7.4.3 Mass Driver lunar launcher 

'!he mass driver lunar launcher (MOLL) will be used to propel the 

canisters containing 500 kg (1100 lb) of liquid oxygen into space. '!he 

MDLL will be assembloo on Earth, tested arrl. then dismantloo for transport 

to the Moon's surface for reassembly. '!he electrical ~ to operate 

the MDLL will be derivoo from photovol taic sources which receive direct 

sunlight for half of the Moon's rotation pericx:l of 28 days (Reference 

7-21). Orbiting lunar mirrors have been proposed to provide reflected 

sunlight for continuous electrical power generation at the mass driVer 

site. locating the photovoltaic arrays at the lunar poles would provide 
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continuous sunlight for pcMer generation. An alternate power source for 

a lunar base would use nuclear reactors. 

7.4.4 500 kg Liquid Oxygen canisters 

canisters containirg 500 kg (1100 lb) of liquified oxygen would be 

transported from the lunar surface to an orbitirg ID2 transfer station 

spacecraft by the MOIL. '!he smart canisters would be guided by the 

orbitirg spacecraft am the canister's path auto-corrected to allow beirg 

caught am stowed out of direct sunlight to minimize oxygen boiloff 

(Reference 7-21) • 

7.5 Manufacturing from Resources Obtained from Asteroids and Martian 
Moons 

Earth-crossirg asteroids am the Moons of Mars, !bobos am Deimos, 

are believed to contain various combinations of compounds of iron, 

carbon, water, nitrogen, nickel, cobalt, am precious metals as iden-

tified usirg reflectance spectroscopy. '!he reflectance spectra of the 

Martian JOC)Qns am well over 100 asteroids have been measured (Figure 

7.5-1) (Reference 7-25). 

7.5.1 Asteroids in Earth Orbit about the SUn 

Scientists have hypothesized that asteroids might revolve about the 

Sun in the Earth's orbital path but none have been detected to date. It 

has been proposed that a remote sensirg satellite be placed in a smaller 

diameter orbit than the Earth's orbit about the SUn. '!he satellite's 

sensors would look away from the SUn am survey the entire orbital path 

of the Earth for detection of asteroids. '!he retrieval of asteroids in 

the Earth's orbital path could be acx::omplished at a mininn.nn of energy 
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experxiiture and would be a very attractive source for carbon, water, and 

ot..l'ler elemel'1ts t..l-}at might be available (Reference 7-15). 

7.5.2 Earth-crossing Asteroids 

A mnnber of asteroids have been detected whose orbital paths corne 

near the Earth. Several of these asteroids have been selected based on 

their reflectance spectra as can:iidate sources of materials to be placed 

in high Earth orbit. '!he method proposed to capture a substantial mass 

of material from an asteroid in the Earth's gravitational field would be 

ac:corrplisherl by divertinJ the material's orbital path usinJ a propulsive 

method. Several orbits may be necessary for the asteroid material to be 

diverted to swinJ arourrl Mars or Venus, the Earth-Moon system, and 

eventually orbit about the Earth (Reference 7-26). Robotic mining of 

asteroidal material in high Earth orbit could provide materials for in

space manufacture that are unavailable or impractical to process on the 

Moon. 

7.5.3 Martian Moons 

'!he moons of Mars, !hobos and Deimos, are believed to be rich in 

carbon compounds, nitrogen and water. since water can be electrolyzed to 

form hydrogen and oxygen, and carbon can be combined with hydrogen to 

form a family of hydrocarbon products, many useful materials could be 

synthesized. A rourxi-trip travel time from lID to the moons of Mars may 

take up to two years but the energy experxied to accomplish the mission is 

less than a lunar mission. !hobos orbits Mars at approximately 9.7 x 103 

kIn (6,000 miles) altitude. !hobos could sel:Ve as a refueling depot for 
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Mars missions for topping off the spacecraft I s fuel resaves for the 

return to lID (Reference 7-27) . 

Initially, lamed automated prospecting spacecraft could detennme 

the availability of c::orrpoun;:ls of interest. later, automated mining and 

processing facilities could be landed am utilized to manufacture 

propulsion fuels am beneficiate the ores of Fhobos. 

7.5.4 Processing Materials Predicted to Exist on Asteroids am 
the Martian Moons 

Reflectance spectroscopic analysis has been employed to detennine 

that carbon, nitrogen,water, nickel, cobalt, precious metals, am other 

materials may exist on Earth-crossing asteroids and Martian moons. 'Ihe 

lunar surface samples returned by the Apollo astronauts provided us the 

opportunity to analyze the elements that existed on the Moon. Although 

we did not discover elerrents that were new to us, we have not developed 

Earth manufacturing processes to efficiently separate the elements from 

the COlTIJ?OllIrl fonns discovered. More likely, this will be the case for 

materials to be processed from the asteroids am Martian moons. 

Therefore, new processing technologies will be required to efficiently 

provide a yield from these sources. 
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8.0 SCHE EFFECI'S OF INI'ERNAL PRESSURE AND OXYGEN-NI'I'.R(X;EN RATIO 

Scie..'1tists r..ave expressed a desire t....'1at tr.'1e atmosphere of the roc 

Space Station be a staOOard Earth atmosphere of 101.3 kPa (14.7 psia) to 

allow c:::orrparison of results of space conducted scientific experiments 

with results of experiments conducted on Earth. A starrlard Earth 

atmospheric pressure is being considered for the habitable areas of the 

Advanced.JI'echnology Space Station (ATSS). '!he internal at:mJspheric 

pressure within the torus habitats, spokes, am central tube of the ATSS 

is being studied for effects on personnel, prebreathing requirements for 

EVA, ignition am flanunability characteristics of materials, am the 

influence of internal pressure on the weight of the pressure confining 

shell structure. A report indicatinJ the results of the study to dcite is 

presented below. 

8. 1 Physiological Effects caused by Varying the Partial Pressure of 
Oxygen 

A nonral Earth atmospheric COII'pOSition at sea level consists of 78 

percent nitrogen, 21 percent oxygen am approximately 1 percent of other 

gases. '!he partial pressure of oxygen at sea level is 21.2 kPa (3.1 

psia). When atmospheric air enters the lungs, it saturates with water 

vapor and exchanges some of its oxygen for carbon dioxide before 

expiration. '!herefore, the partial pressure ro2 of oxygen within the 

lung is rerluced to 13.7 kPa (1.9 psia). '!he difference in the partial 

pressure of oxygen in the air am in the lung are shown in Figure 8.1-1 

(Reference 8-1) . 

'!he National Space Transportation System (NSI'S) Shuttle ort>iter 

space suit is designed to operate with an internal atJnosphere of pure 

oxygen. '!be suit pressure is maintained at 29.6 kPa (4.3 psia) during 
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INA. 'Ibis pressure assures that the sum of the partial pressures of 

oxygen, water vapor i aTXi cartx:>n dioxide L'1 t.."'1e ast...">'"Qnaut' s lungs are 

balanced by the suit's abrosphere ani exceed the minimLnn pressure of 

oxygen for sea level air equivalent, as irrlicated in Figure 8.1-2 

(Reference 8-2) . 

'!he total pressure of pure oxygen in the space suit can be 

correlated with an equivalent Earth altitude as shown in Figure 8.1-1. 

The curve represents the addition of the partial pressures of water vapor 

and cartx:>n dioxide to the partial pressure of oxygen in the lung. The 

astronaut will experience the effects of working at altitude when the 

suit oxygen pressure is reduced to less than 25.3 kPa (3.7 psia) 

(Reference 8-2) . 

If the Orbiter cabin pressure is reduced, the partial pressure of 

oxygen will also be proportionately reduced causing the astronaut to 

tire more easily when perfonning tasks. 'An example of reduced cabin 

pressure would be flying aboard a jet liner whereby the ambient pressure 

is reduced to the equivalent of an 8,000 ft altitude and the partial 

pressure of oxygen in the lung would be reduced from 13.7 to 9.2 kPa (1.9 

to 1.3 psia). 'Ibis reduction in the partial pressure of oxygen would 

effect the astronaut in the same manner as if he were perfonning tasks 

atop an 8,000 ft nountain. Ideally, the astronaut should not be 

subjected to a partial pressure of oxygen in the lung less than 11.4 kPa 

(1. 7 psia) which is an Earth altitude equivalent of 4,000 ft. 

In preparation for FNA from the Shuttle Orbiter, the prebreathing 

protocols maintain or exceed the minimum 'partial pressure of oxygen 

within the lungs of the astronaut. D..lring the initial depressurization 

period to 70.3 kPa (10.2 psi) in the cabin of the Orbiter, the entire 
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crew experiences an oxygen enriched atmosphere with the Oxyge.l1 partial 

pressure equivale.'1t to a 4,000 ft Earth altitude. 'Ihese conditions have 

been determined adequate for normal heal thy people to perfonn their 

duties quite efficiently. 

'!he urrlerlying concepts for protecting astronauts from altitude 

decorrpression sickness when varying the total ambient pressure in the 

spacecraft or space suit is achieved by the follCMing methods (Reference 

8-3): 

o '!he partial pressure of oxygen in the lungs would ideally be 

maintained in the raDJe of pressures from sea level air equivalent 

to a 4,000 ft altitude. 

o '!he nitrogen pressure in the tissue/ambient pressure ratio would not 

exceed 1.65 during denitrogenation procedures for planned ort:>iter 

operations arrl existing space suit working pressures. 

8.2 Spacecraft Abnospheric Composition arrl Pre.breathe Protocols for EVA 

Early manned space flight used an approximate one-third Earth 

atmosphere pressure of 34.5 kPa (5 psia) pure oxygen as the internal 

atmosphere within the space capsules of projects Mercury, Gemini, arrl 

Apollo. Note in Figure 8.1-2 that the mininn.nn pressure for sea level air 

equivalent for 100 percent oxygen is 25.3 kPa (3.7 psia) or about one

fourth Earth abnosphere. '!he Skylab workshop also contained an internal 

pressure of one-third of an Earth abnosphere but with a composition of 70 

percent oxygen and 30 percent nitrogen. 'Ihe Skylab atmospheric pressure 

of 0.33 stan:Iard abnosphere is indicated for reference purposes. Voice 

communications aboard Skylab were very difficult since atmospheric sound 

transmission was limited to approximately 5 m (16 it) (Reference 8-2). 
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'!he NSIS Shuttle Orbiter has used a stanjard atmosphere of 101. 3 kPa 

(14.7 psia) within the cabin for atmospheric flight and o:rbital 

operations. The EVA space suits developed for Gemini, Apollo, Skylab and 

the Shuttle Orbiter have all utilized pure oxygen as the breathing 

atmosphere within the suit. The Shuttle Orbiter space suit is operated 

at an internal pressure of 29.6 kPa (4.3 psia). Before EVA, the 

astronaut must prebreathe pure oxygen using one of the sequences shown in 

the Figures 8.2-2 through 8.2-4 which represent standard, mcx:lified, and 

rapid prebreathing requirements. Each of these prebreathing proc:edural 

requirements are designed to minilnize the possibility of the astronaut 

having altitude decompression sicJmess or the "bends" (Reference 8-3). 

Figures 8.2-2 and 8.2-3 indicate that a staged depressurization occurs 

prior to EVA to assure adequate denitrogenation of the crew and EVA 

astronaut. In the standard and mcx:lified prebreathing requirements, the 

entire crew urrle:rgoes a depressurization from 101.3 kPa (14.7 psia) to 

70.3 kPa (10.2 psia) by breathing pure oxygen during a one hour cabin 

depressurization. The reduced pressure cabin atmosphere is enriched to 

27 percent oxygen nominal content such that the partial pressure of 

oxygen would be equivalent to that fourrl on Earth at a 4, 000 ft altitude. 

'!he stanjard prebreathing requirement cond.itions the Orbiter crew 

and FNA astronaut in the reduced pressure cabin atmosphere for 24 hours 

prior to conunencing EVA. The EVA astronaut would then don his space 

suit, enter the air lock and breathe pure oxygen for 40 minutes in the 

space suit follOW'ed by a depressurization to 29.6 kPa (4.3 psia) in 20 

minutes. At this point, the astronaut would exit the air lock and 

perfonn EVA for a lilnited titre period of 6 to 8 hours before reentering 
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the air lock for repressurization to 70.3 kPa (10.2 psia) and reentry 

into the Orbiter cabin (Figure 8.2-2). 

'!he IOCrlified prebreathing procedure requires a reduced dwell time 

of 12 hours at 70.3 kPa (10.2 psia) in a 27 percent oxygen enriched cabin 

atmosphere. '!he astronaut would then don his space suit, enter the air 

lock and prebreathe ~ oxygen for 75 minutes follCMed by 

depressurization in 20 minutes to reach 29.6 kPa (4.3 psia) prior to EVA 

(Figure 8.2-3). 

A rapid prebreathing requirement has been developed for the EVA 

astronaut that permits the crew to renain at the cabin standard 

atmosphere of 101. 3 kPa (14.7 psia). '!he EVA astronaut dons his suit and 

breathes ~ oxygen for a period of 4 hours at the equivalent pressure 

of the cabin atmosphere followed by a depressurization to 29.6 kPa (4.3 

psia) in 20 minutes prior to air lock exit. Upon reentering the air 

lock he is repressurized back to 101.3 kPa (14.7 psia), thereby, the 

crew is not subj ected to the cabin depressurization cycle and the 

astronaut is prepared for EVA in the shortest possible time (Figure 

8.2-4). 

Russian cosmonauts using the upgraded suits have a much reduced 

prebreathing pericxi prior to EVA as shown in Figure 8.2-5. Note that the 

cosmonaut would don his upgraded suit, enter the air lock, and while 

breathing pure oxygen, urrlergo a depressurization to 51.7 kPa (7.5 psia). 

He could then exit the air lock for EVA after a total prebreathing pericxi 

of one hour. He has the ability to adjust his own suit pressure dCMI'lWard 

to 22 kPa (3.2 psia) to achieve :irrproved dexterity and tactility for 

deman:iing manual tasks. He can renain at 22 kPa (3.2 psia) for a maximum 

of 20 minutes before repressurizing back to 51. 7 kPa (7.5 psia) in order 
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to minimize the possibility of deconpression sickness and excessive 

fatigue. 'lbe INA period has limits ranging from 4 to 5 hours before the 

astronaut has to reenter the air lock for repressurization to 101. 3 kPa 

(14.7 psia) (Reference 8-4). 

The united states IOC Space station has requirements for a high 

pressure suit to minimize the astronauts' INA prebreathing requirements 

and eliminate the need for the crew to undergo a decompression cycle, as 

shown in the Figure 8.2-6 sequence. The astronaut would don his space 

suit, enter the air lock, and undergo a depressurization to 57 kPa (8.3 

psia) during which the partial pressure of oxygen in the ambient 

atmosphere is maintained at approximately 21 kPa (3 psia). The space 

suit total pressure would be maintained at 57 kPa (8.3 psia) by oxygen 

replenishment as required to COl1:'(peI'lSate for oxygen and nitrogen 

atmospheric leakage. In the worst-case suit leakage condition, the 

partial pressure of oxygen could climb to 57 kPa (8.3 psia). The INA 

period is limited to 6 hours nominal and 8 hours in an emergency. At the 

end of the INA the astronaut would reenter the air lock. and repressurize 

back to 101.3 kPa (14.7 psia) (Reference 8-5). 

A high pressure space suit should be perfected and available for use 

in assembly and operation of the A'ISS for the year 2025. This asst.nrpt.ion 

is based on the technological advances to date in development of a high 

pressure suit to be operated at 57 kPa (8.3 psia) for the IOC Space 

station. There are two high pressure space suit versions currently under 

development, identified as the AX-5 suit and the ZPS Mk.3 suit. These 

suits will begin their underwater testing during 1988. Three astronauts 

have corro:nented that each of these two high pressure $\lits provide the 

8-12 

, , 



CX! 
I 

...... 
w 

TOTAL PRESSURE 

kPa psia rrrnHg 

120 17.4 900 [ ENTER AIR LOCK 

\101.3 14.7 760 ~ . __ '_'_'/ 

100 14.5 750 :~%;{iq W..&:~_,4.0: ... _/ .. \ 

80 11.6 

60 8.7 

157.2 8.3 

40 5.8 

20 2.9 

\ (30 MINUTES ASSUMED) 
\ f DEPRESSURIZATION 

600 t- r- EXIT AIR LOCK 

450 

429 1 

300 

150 

, 
\ , 

EVA PERIOD 
6 HOURS STANDARD 
8 HOURS EMERGENCY 

~ 

0~;::;::::;~;;;:1 CABIN ATMOSPHERE (STANDARD) 
,<:::z,~::·;;:~~:·::~:J 

- - - _. MAJNT AIN PO 2 - 3 psia 

~ =: PO 2 2.9 psia NOMINAL ._-----
P02 8.3 psia (MAX N 2 LEAKAGE) 

1·'l7·7,:>7.>;>::~//7-0~ 
./;"-;;;:/';':1.;:;%:~i"/.% ...... _----_. 

!'-EXIT AIR LOCK 
I 

:'~ REPRESSURIZATION 
I 

REENTER AIR LOCK 

o o o L-------l

O
L...-..--'-------l2L...--.(( 2 ( 

TIME, HOURS 

Figure 8.2-6 Prebreathing Requirements for EVA (Extravehicular Mobility unit 
for Permanently Manned Space station Activities) (Reference 8-5) 



user with manual dexterity am tactility near equal to that provided by 

the Shuttle Orbiter FNA space suits operated at 29.6 kPa (4.3 psia). 

8.3 Ignition am Flammability Characteristics 

As noted in Figures 8.2-2 through 8.2-4 the Shuttle Orbiter 

astronauts are subjected to varying ambient atmospheric c:orrp:>Sitions 

during the pre-FNA protection protocols. Extensive testing has been 

perfonned on a variety of materials that would be utilized within the 

habitable area of the Shuttle Orbiter am the materials of construction 

of the FNA space suits; Figure 8.3-1 sununarizes the overall results. '!he 

percentage of oxygen for the total ambient atmospheric c:orrp:>Sition will 

determine the flammability characteristics of materials. Note that all 

of the materials tested will burn in a 100 percent oxygen atmosphere. 

Extensive data are available on the flammability of materials at 

approximately 20-percent to 30-percent oxygen and lOa-percent oxygen 

atmospheric content. An upper limit of 30 percent oxygen content in the 

Shuttle Orbiter cabin atmosphere has been established as a result of the 

extensive test data (Reference 8-6) . 

The likelihood. of fire within the habitable areas of the Shuttle 

Orbiter are greatly increased if the cabin atmospheric oxygen content 

exceeds 30 percent. Materials considered acceptable for standard 

atmosphere spacecraft construction may become a significant fire hazard 

in a cabin atmosphere of lOOre than 30 percent oxygen. Examples of 

material hazards include: 

o The Halon fire extinguisher gas becomes significantly less effective 

at 30 to 33 percent atIrospheric oxygen content am requires a much 
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larger quantity than nonnal to extinguish a fire. At a 40 percent 

oxygen content, it fails to extinguish fire. 

'!he outer layer of the FNA space suit will burn in a 33 percent 

aboospheric oxygen content. 

A starrlard fire barrier confonnal coating will burn in a 31 percent 

aboospheric oxygen content. 

8.4 Interna.l Pressure Versus Pressure Vessel weight 

'!he A'ISS torus, spokes, and central tube will be comprised of 

cylinders joined at their ends to serve as pressure vessels. '!he torus 

is composed of 24 cylinders with mitered ends for assembly. '!he 

thickness of a cylirrlrical stressed skin pressure vessel shell can be 

determined by the fonnula (Reference 8-7): 

Par 
tm 

Ow 

tm = 'Ihickness of the wall 
Po = Interna.l pressure 

r = Radius of the pressure vessel 
a w = Working stress for the wall 

material 

'!he mass of an aluminum shell with 10 nun (0.375 in) average 

thickness for a torus totals 8.62 x 105 kg (1.9 x 106 lb) for 

construction of a pressure vessel to contain one Earth atmosphere of 

pressure at 101.3 kPa (14.7 psia). If the torus interna.l pressure was 

reduced to one third of an Earth abOC>sphere, the weight of the torus 

pressure shell structure would be reduced prop:>rtionately, as indicated 

in Figure 8.4-1. Significant weight savings could be accomplished by 

reducing the interna.l pressure within the Space Station. 
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8.5 Nitrogen Resupply Requirements for Reduced AtnDspheric Pressure in 
the Space station 

'!he pressure am COl.lp)Sition of the cabin atnDsphere for the ATSS 

are worthy of further evaluations of mass trade-offs related to the 

resupply benefits of atnDSpheric nitrogen lost through leakage. 'Ibe 

abrosphere of the Earth contains 78 percent by volume of nitrogen am 21 

percent by volume of oxygen with 1 percent other gases, excll.ldinJ water 

vapor. For resupply evaluation purposes, a two ca:nponent atnDsphere of 

nitrogen am oxygen may be assumed. 

'!he oxygen constituent of the atnDsphere can be generated in the 

enviromnental control-life support system through the electrolysis of 

water or conversion of carbon dioxide. Electrolysis of water is part of 

the ATSS operational mode; however, atnDspheric nitrogen is essentially 

inert and not the principal output of any operational system on the Space 

station. 'Iberefore, any nitrogen losses would have to be satisfied by 

specific resupply in sane forn of molecular nitrogen. 'Ibe use of 

supercritical wet air oxidation as a waste recovery system will produce a 

small quantity of GN2 but not in quantities sufficient for resupply needs 

(Reference 8-10). '!he fonn of the resupply of nitrogen, therefore, must 

consider the liquid, gas, or solid state. Nitrogen can be provided as a 

cryogenic liquid given sufficient insulation am tankage. Provision as a 

gas could require large-volume, high-pressure, storage vessels and could 

prove to be an umesirable hazard. Nitrogen in chemical combination with 

other elements offers a resupply source which has greater density than 

gaseous nitrogen and is rnore easily stored am transported. Liquid 

ammonia arrl solid ammonitml nitrate are prospective compourrls which could 

be transported to the ATSS am thennally decanposed to yield nitrogen gas 

for atIt'K:>sfi1eric resupply demands. '!he synergy for combining ammonitml 
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nitrate with emergency propulsion has also been addressed in Reference 8-

10. within a breat:hirg at:m:>sphere, nitrogen is a diluent, and tl1e 

reduction of bot.~ cabi..'1 pressure and nitrogen proportion becomes 

potentially advantageous to the ATSS design from a mass standpoint. 'Ihe 

U.S. space program has corrlucted a long-tenn project of evaluating 

nonstarxiard breathing atmospheres for flight crews. 'Ibis has included 

both reduced pressure ani reduced ni"tro;Jen (increased oxygen) options. 

Two distirct limits have been detennined. One relates to the minimum 

acceptable partial pressure of oxygen which is present in the respiratory 

air for the crew. 'Ibis limit is approximately 21.3 KPa (0.21 am) for 

sea level Earth atmosphere equivalency, ani this lower limit will be used 

for the nitrogen resupply ani related leakage evaluation. 'Ihe other 

limit is less specific ani is derived from materials flammability test 

and evaluation. Ni"tro;Jen as a diluent in the atmosphere suppresses 

ignition arrl flane spread. At oxygen IOC>le fractions greater than 0.30, 

within the range of pressures of interest for crew operations, the list 

of acceptable materials becomes quite limited. At oxygen fractions above 

about 0.30, such common items as the crew unifoI1ll fabric ani even the 

fire suppressant (Halon) become fire haZaIDs. 'Iherefore, the upper limit 

on oxygen concentration is taken as a 0.30-IOC>le fraction. Using the 

above limits on the cabin c:::orrposition, it is possible to define the 

coincident range of cc.atp:>Sition for ni"tro;Jen and proceed to the 

evaluation of the ni"tro;Jen leakage and resupply problem. 

For the purposes of this evaluation, the cabin atmosphere is assmned 

to have: a) an ideal gas mixture, b) a c::o.rrposition of nitrogen and 

oxygen only, and c) have constant specific heat properties. 'Ihese 

assumptions apply within 1 percent in the range of the values that are 

8-19 



under evaluation. '!he assumptions pennit simple analytical solutions and 

parametric trerxi analysis. '!he above assumptions pennit the total 

pressure to be expressed as follows: 

P(total) = P(oxygen) + P(nitrogen) 

Br = Po + IN 

where Br = total pressure (ann) 
Po = oxygen partial 

pressure (ann) 
IN = nitrogen partial 

pressure (ann) 

The ratio of nitrogen pressure to total pressure is the mole fraction of 

nitrogen. '!his must exceed or equal 0.70 to meet the flammability limit. 

The partial pressure of oxygen must equal or exceed 0.21 ann to meet the 

craN breathing requirement. us:ing the above relationship, the following 

Table 8.5-1 was computed to determine the acceptable range of cabin 

annosphere mixtures. 

Table 8.5-1 cabin Atmosphere Nitrogen Prevalence at 
Constant oxygen Partial Pressure 

Br Pw'Br Po PoIBr 

1.0 0.79 0.21 0.21 
0.9 0.76 0.21 0.24 
0.8 0.74 0.21 0.26 
0.7 0.70 0.21 0.30 
0.6 0.65 0.21 0.35 

Examination of Table 8.5-1 reveals that the limit of 0.30 for oxygen 

mole fraction occurs at an atmospheric pressure of 0.7 ann or 72.5 KPa 

(10.3 psia). (see also Figure 8 . 5-1. ) '!herefore, the range of 

evaluation of nitrogen resupply/leakage will be limited to 0.7 to 1. 0 

annosphere total pressure, and nitrogen fraction from 0.7 to 0.79. 

AI though this appears to be a small range, the partial pressure and, the 

mass of nitrogen vary more significantly, namely from partial pressure of 

0.79 ann to partial pressure of 0.49 ann. '!his represents a potential 

reduction in the mass of nitrogen in the cabin abnosphere by 38 percent. 
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'!here are two distinct pathways for nitrogen loss from the cabin 

atmosphere. One is through leakage from joints, seals, and other minor 

defects in the pressure shell. '!he secorrl results from air lock venting. 

Some residual air is lost fran the air lock when it is finally vented to 

space. '!hese two paths influence the nitrogen loss differently. 

Consider the air lock venting loss first. 'Ihe initial corrlition is 

an air lock cavity at cabin pressure. 'Ihe air lock is pumped down to 

soroo low pressure and the air retained in a reservoir tank. 'Ihe 

composition of the residual is unchanged. 'Iherefore, the mass of gas 

loss can be detennined by use of the ideal gas relationship: 

.[ 
MPV 
R1' 

where T = mass of nitrogen gas (grams) 
M = molecular weight of nitrogen (grams/mol) 
P = partial pressure of nitrogen (atro) 
V = volume of the air lock (liters) 
T = absolute temperature (K) 
R = ideal gas constant 0.0821 atro (liters) 

g mol (K) 

'!he partial pressure of nitrogen is given as the mole fraction 

multiplied by the final ptmIp down pressure PO-

p 
P N 

Po P1' 

All of the parameters are constant and indeperrlent of the abnospheric 

mixture except for T and P. '!he total gas loss will be the total of all 

of the air lock operations over a given time. 'Iherefore, to determine 

the ratio of the mass of nitrogen loss in air lock operations at a 

specified nitrogen mixture to the mass of nitrogen loss at the standard 

mixture, i. e., Earth ambient proportion is given as: 

T 

TO 

( 
PN 1 
P T 0.79 

'\ 
! 

where T = mass loss at reduced pressure 
TO = mass loss for standard 

abnosphere 
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Where 0.79 is the starrlard IOOle fraction of nitrogen used in the 

analysis. 

'Ibe mass of nitrogen lost at reduced pressure conditions as a ratio 

to that lost for the staroard mixture condition is given in Table 8.5-2 

for these assurrptions. Figure 8.5-2 illustrates the trend at various 

total atJoospheric pressure conditions. 

Table 8.5-2 Resupply Ratio for Air lDck Operations 

P 'lUI'AL (atm) Pw'Br T/lo 

1.0 0.79 1.0 
0.9 0.76 0.96 
0.8 0.74 0.94 
0.7 0.70 0.89 

At the limiting condition of 0.7 atm pressure and 0.7 nitrogen fraction, 

the nitrogen resupply is 89 percent when compared to the 1 atm condition 

or a savings in resupply of 11 percent of the nitrogen compared to a 

standard one atmosphere mission condition. 'Ibese results indicate that 

the 30 percent reduction in ambient pressure only reduces the nitrogen 

resupply by 11 percent for the air lock operations. 'Ibis my not be a 

significant savings in the resupply when compared with the potential 

requirement for qualifying equipment to operate in a 30 percent oxygen, 

70 percent nitrogen mixture at 0.7 atmosphere pressure. 

'Ibe operation at 0.7 atmosphere and 70 percent nitrogen does 

require flanunability qualification of mterials and will limit the 

options available when compared with the standard Earth ambient 

atmosphere. At this reduced pressure, convective heat transfer from the 

electronic equipment will be reduced and require design accommodation 

fram the standard configuration. For example, fans my be required to 

convect heat from specific sources. Also, the transmission of voice 
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SOl.lI'rls is diminished at this pressure. Previous flight crews operating 

at approxllnately this pressure have noted this vcx::al LYlCOnve.'1ie.I1Ce. 'Ihe 

(7lJJin cammunicatior.s would have to rely more heavily on electronic 

arrplification for transmission of speech. 'Iherefore, the minor 

advantages in resupply do not appear to warrant the reduced pressure 

operation when considering routine number of air lock operations. For 

example, if the stardard pressure air lock operations result in a 5 

percent loss of total atmosphere in a month of operations, then the total 

mass saved by the reduced pressure operation is 0.05 x 0.11 or about 0.5 

percent of the ambient atmosphere in the same period of time. 

'!he other loss is leakage from joints, seals and holes. 'Ibis occurs 

continuously as opposed to t.~e discrete evel"lts of air lock operations. 

In leakage, the flow from a small orifice or seal will be in the 

critical, or sonic flow regime because the downstream end is at the 

space vacuum. For an ideal gas, the sonic velocity at the exit orifice 

is given as: 

(' = -\ ;~~ 
M 

where c = sonic speed (nVsec) 
Y = ratio of specific heats £1.4 for N2) 
R = ideal gas constant (kg In /sec2 o:K) 
T = absolute temperature (K) 
M = molecular weight (kg/mol) 

The specific heat ratio is a constant 1.4 for both nitrogen and for 

oxygen. '!he absolute temperature at the sonic point is given from the 

energy conservation relationship as: 

T 
To 

+ l 
2 
- ] 
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where To is the stagnation or ambient temperature which is a constant for 

all of the gas mixtures considered. The mass outflow is given as the 

product: 

I (outflow) 
PMA ~T 
RT-\.' M-

where 1 (outflow) is the composite mass loss (kg/sec) and where A (m2) is 

the cumulative area of leakage orifices over the Space station. 

In critical, or sonic flow, an ideal gas such as air, which is 

composed of diatomic constituents, has a sonic pressure P which is 0.528 

I\r. Substituting the preceding into the leakage relation yields the 

following: 

T 

~.=- -,------,r- _ 1. 
/l MA 1 + Y 

0.528 P T \JRT 

In this relationship all of the terns are fixed for the various mixtures 

except for M and I\r. Therefore, it is possible to ratio the mass flow 

from orifices with a given pressure and mixture to the flow at standard 

Earth ambient conditions to result in: 

I() 

1M I _ 

P T -V Mo 

where M is the mixture molecular weight and Me is the standard mixture 

molecular weight. Within the range of interest, namely with the nitrogen 

fraction varying from 0.7 to 0.79, the average molecular weight variation 

is from 29.2 to 28.8. The variation of the ratio of the square root of 

the molecular weight for the range is 0.993. 'Iherefore, for the purpose 

of the present analysis, the effect of molecular weight variation is 
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negligible. Only the total pressure effect is significant. '!he 

combined loss of oxyge.'1 a'1d ni t...roge..'1 is proportional to t."'1e cabin total 

pressure. The orifice leakage loss ratio becomes: 

liTO P T 

where FT is in abnospheres. '!he fraction of the total mass flow which is 

nitrogen may be computed from this relation and the ideal gas mixture 

relation: 

TN Mass of nitrogen 
T Total mass of mixture 

TN (PN/PT)28 
T (PO/PT)32 + (P N/P T )28 

Substituting into the prior relationship: 

[NO 
PT 

TN 
(PN/PT)28 

CPO 7 P T ) Tz-:F- ( PN7 P T) 28 
(0.79)28 

(0.21)32 + (0.79)28 

Table 8.5-3 has been computed for the conditions of interest for the 

Space station. 

Table 8.5-3 Nitrogen Leakage lDss Ratio at Various 
Cabin Pressure Conditions 

FT[ N/[ NO 

1.0 1.0 

0.9 0.86 

0.8 0.74 

0.7 0.61 

where TNirNo is the mass of nitrogen lost at cabin conditions ratioed to 

the mass of nitrogen lost at 1 abnosphere cabin pressure. 
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The results of Table 8.5-3 appear in Figure 8.5-2 arrl illustrate 

that the orifice leakage of nitrogen has a greater effect than does the 

air lock operation at the same pressure. There is a c::onpourrling effect; 

as pressure is reduced, the overall loss rate also reduces. Also, while 

pressure is reduced, the nitrogen prevalence is also reduced in fraction 

from 0.79 to 0.70. Therefore, the resupply of nitrogen due to leakage 

can be reduced by 39 percent for station operation at 0.7 atmosphere. 

The total mass of nitrogen saved will depend upon the leakage rate. It 

has been previously estimated (Reference 8-10) that the total daily 

nitrogen leakage was of the order of 26 kg (57 lbs) ~ day. A savings 

of 39 percent represents a 10 kg (22 lbs) per day reduction in resupply 

requirement for nitrogen. This savings includes the 30 percent overall 

reduction in leakage due to operation at reduced pressure (since the 

oxygen partial pressure remains constant,) the oxygen resupply rate is 

essentially unchanged for low pressure operation. 

In summary, the criteria for material flammability arrl crew oxygen 

requirements limits the potential reduction to pressures of 0.7 

atmosphere arrl oxygen concentration less than 30 percent. Within this 

permissible range, the effect of pressure on nitrogen resupply was shown 

to have as nnlch as an II-percent reduction for air lock type operation 

and a 39-percent reduction for orifice leakage type loss. For both the 

air lock and leakage instances, the resupply of oxygen is essentially 

unchanged. Therefore, only the nitrogen resupply is affected by the 

option to reduce cabin pressure. The proportion of losses due to air 

lcx:::k operations as cx::lItpCITed with los..c::es due to orifice leakage will 

deperrl the operational sequence arrl design approach for leakage control. 
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9.0 MANNED lfiSSION m MARS SUPIDRl' BY '!HE SPACE STlL.'1'!ON 

9.1 Reference Manned Mars Missions 

'!he Advanced-Technology Space station (ATSS) is interrled to support 

the orgoirg planetary explorations urrlertaken by the united states and 

other participating nations. '!he discussions which follOW' address the 

inpact on the ATSS design due to the requirement to support specific 

manned missions to Mars. 'lhree mission studies were identified by NASA to 

be used as i.rp.rts. '!hese Mars missions were the output of studies 

conducted by: (1) '!he Space Station Office at langley Research Center, 

(2) An MIT Advanced Space Systems Design Course, and (3) A summer intern 

team fran University of TeXas at Austin (UTA) and Texas A & M University 

(TAM[]) (References 9-1 to 9-3). A 1985 workshop at Marshall Space Flight 

Center (Reference 9-4) is an additional source of infonnation on trade

offs for Mars mission requirements. A mnnber of the concepts for the 

three reference missions were covered during this workshop. 

After reviewing the different approaches of these studies, it was 

fOl.ll"rl that the required support functions for the Space Station were 

quite similar for all three of the missions and the ATSS was capable of 

providing the support. '!he major differences as viewed from the Space 

station were the number of HLLV's required fran Earth to Space Station, 

the number am type of vehicles to be assembled at the Space station, 

fuel requirements for these vehicles, and the number of aN support 

missions needed. Each of the referenced Mars missions are briefly 

described as follows am the requirements are compared in Table 9.1-1. 
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9.1.1 Htnnans to Mars: A Space Leadership Program, Space station 
office, LaRC. 

An on-going LaRC study provided the inputs used here. 'Ibe final 

version of this I.aRC study (Reference 9-1) will differ in some details 

from the values used in this report. '!he study requires space station 

based research related to effects of long duration space flight on 

humans, robotic missions to Mars, manned roundtrips to Mars, and 

eventually, pennanent manned Martian outposts. The manned roundtrips 

included a number of options for types of trajectories, mnnber of 

vehicles, and method of propulsion. A mission utilizing a cargo vehicle 

and a manned vehicle was designated for the purpose of comparing Space 

station support requirezrents iInpose:l by a Mars mission. 

9.1.2 Mars: A Program for its Exploration and Development. 
MIT Advanced Space Systems Design Course. 

'Ibis mission concept uses an Interplanetary Vehicle (IPV) assembled 

in r.ro and transferred to Hm in an urnnanned condition. 'Ibe crew of ten 

would board the IPV from an arv for an eight month cruise to Mars in an 

artificial 1-g envirornnent (Reference 9-2). Propulsion power is nuclear 

electric for an ion engine using mercury (Hg) as the propellant. Reverse 

thrusting is utilized both for Mars approach and for Earth return to Hm. 

From Mars orbit, an urnnanned cargo lander is first sent to the surface, 

then followed by a manned landing and return vehicle. The fuel 

combination for both of these vehicles is specified as monomethyl-

hydrazine (MMH) and nitrogen tetroxide (N204). A Martian moon excursion 

vehicle is also included for exploration of Rlobos and Deimos using the 

same fuel combination. 
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On return to HID, an aN is again utilized for rapid return of the 

crew to the Space station while the IPV is slowly decelerated to rm for 

refurbishment. 

9.1.3 A Manned Mission to Mars. 1986 SUnuner Intern Team, urA and TAMU. 

This mission uses an unmanned IPV to HID which is then boarded by a 

crew fram a manned taxi, probably an aN. At Mars, three cargo landers 

and two ascent-descent vehicles are used for exploration (Reference 9-3). 

The IPV provides 1 g artificial gravity and propulsion power is 

also nuclear electric with mercury (Hg). '!he ascent-descent vehicle uses 

nethane and ID2 plus strap-on solid or liquid motors. After a return by 

the IPV to HID, the taxi vehicle is used for rapid return to the rm 

Space station. 

9.2 Requirements and Design considerations for Mars Mission SUpport 

9.2.1 Delivery to rm 

The total masses to be delivered to the ATSS for the speCified 

missions vary from 1.1 to 1.5 x 106 kg (2.4 to 3.3 x 106 lb). '!he 

variation is not significant, and a growth factor, larger than the 

variation, could be added. 

In Section 7.0 of this study, a payload lift capability of 2.7 x 105 

kg (6 x 105 lb) is assumed for HUN's to be used in ATSS component 

delivery to IID. Using the same type HLLV I S for Mars mission spacecraft 

component delivery to IID, it might require seven flights for a growth 

mass of 1.8 x 106 kg (4 x 106 lb). Volume and packing efficiency may be 

controlling factors which would increase the number of HLLV flights. 
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In addition to the spacecraft and equipment delivered to lID by 

HILV IS, there will be a number of s.huttle or ae..."l"'Q-space plane support 

flights to rotate work crews, provide logistic support, and to deliver 

flight crews for simulations, checkout, and the actual mission. Post 

mission flights related to quarantine, storage of Mars spacecraft, and 

refurbishment will also be required. 

9.2.2 Nuclear Engines 

'!he MIT and TAMUjUI'A missions both call for nuclear propulsion 

systems. 'Ibis could require careful planning in delivery and assembly in 

the vicinity of the manned Space station. Both of these missions require 

the interplanetary vehicle to be boosted by ion thrusters from lID to REO 

in an unmanned condition. '!his study assumes that techniques will exist 

for final loading of nuclear fuel at lID under conditions which do not 

inpact the ATSS operation. 

9.2.3 Assembly at LEO 

Each of the specified study missions calls for a variety of vehicles 

to be assembled into either one or two cruise spacecraft for the Mars 

transit. 'Ihe TAMUjUI'A mission requires the largest assembly area and 

calls for a 200 by 172 m (656 by 564 ft) structure with tension cables. 

'!he Langley SSO proposed spacecraft includes two large aeroshields as 

part of the assembly. 

'!he ATSS was designed with a 61 m (200 ft) per side cube berthing 

and assembly bay. '!his assembly area contains six (or more) cranes that 

will support assembly of the spacecraft. '!he Langley and MIT vehicles 

could be assembled with portions inside the cube, but the TAMUjUI'A 
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vehicle would have to be assembled outside, perhaps attached to one cube 

face am exterrling beyond the ATSS in an axial direction with the nuclear 

unit end of the Mars IPV at the greatest distance. Figures 9.2-1 through 

9.2-3 show possible assembly locations and also serve to illustrate the 

relative sizes of the Mars spacecraft in comparison to the ATSS. 

COnsiderations during the spacecraft assemblies are docking 

accessibility for shuttle or other vehicles; air lock to air lock 

transitions to allow shirtsleeve access between Space station am Mars 

spacecraft; assernbl y of component parts of the Mars spacecraft; te.IrpJrary 

storage of subassemblies on the docking bay; and station keeping after 

separation during the final checkout. 

9.2.4 Space station Controllability Effects 

Assembly of a structure with a mass of perhaps 1.8 x 106 kg (4 x 106 

lb) at one end of the ATSS with a mass of 8.2 x 106 kg (1.8 x 107 lb) 

will shift the moments of inertia and the structural resonances. In 

addition these masses will have an effect on the orbital decay rate and 

re-boost requirements. These factors have not been included in the 

present dynamic analyses. The results of the langley SSO mission study 

indicate the effects will be relatively small. The langley sse study 

addressed a 1.1 x 106 kg (2.4 x 106 lb) mass attached to the IOC Space 

station which has a mass of approximately 3 x 105 kg (6.6 x 105 lb) and 

operates in aligrnnent with the gravity gradient. The langley SSO study 

concluded that the impacts would be: 

o Slight adverse impact on attitude secular momentum 

accumulation and orbit-keeping propellant requirements. 

o Slight positive impact on orbit lifetime. 
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o Insignificant impact on microg:ravity accommodation, (M; sizing 

am passive attitude stability. 

9.2.5 Fuel Requirement Effects 

'!he reference missions specify a variety of propulsion systems. '!he 

propulsion nethods listed in Table 9.1-1 include: Nuclear fuel with 

mercury propellant, H2-02' 014-02' MMH-N204' and strap-on solid rockets. 

'!he handling techniques am safety precautions associated with some 

of these systems for receiving, storing, and loading could significantly 

increase the complexity, manpower or robotic requirements, and auxiliary 

equipnent required at the Space Station. 

'!he ATSS is designed to derive the maximum synergy from an all H2-D:2 

system. It is expected that this concept could be extended to a Mars 

mission based at the A'ISS. '!he Langley sse study has all H2-02 

propulsion systems for its three different vehicles. It is reconunended 

that as designs for a Mars mission mature, the overall impact of exotic 

fuels versus a common base fueled H2-02 fuel system be reviewed. '!he 

availability of large HLLV's and the H2-02 fuel production capability of 

the ATSS may tip the balance in favor of H2-D2 over the higher specific 

irrpulse fuels. 'Ihese considerations are based on today' s technology and 

it is likely that in the 2025 time frane, new technologies, such as 

fusion power or super-conducting energy storage, could make them 

obsolete. 

9.2.6 On-board Fuel Production 

For H2-02 based propulsion systems, the cryogenic fuel could be 

delivered from Earth to Im. An alternate nethod would be to deliver 
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water to the ATSS arrl convert it to fuel using some of the 2.5 MW energy 

capability and the on-board elecLrolysis conve...""Sion all,d storage systems. 

A rrore detailed trade would be needed to ascertain the best choice, 

however, overview calculations can shCM the scope for the trade. 

Assume that 106 kg (2.2 x 106 lb) fuel is needed arrl that one-half 

the ATSS available energy is devoted to fuel conversion. Also, asSt.nne 

that radiators are available for cooling the gasses to liquid arrl 20 

percent rrore energy is needed for pLm1ping, control, etc. 

If the energy is 4 kW-hr per kg of water converted, 160 days would 

be requirErl. '!he fuel production would most likely serve as an energy 

use leveler arrl would be progranuned to ccxrplement other on-board high 

energy applications such that the actual rate of production arrl time 

required might be different. 

A rough idea of water transport versus cryogen transport costs can 

be gained by using the masses arrl volumes of the individual tanks within 

the Shuttle Orbiter external tank arrl assuming that the mass of the water 

transport tank is the same as the ID2 tank using Figure 7.2.3-6 from 

Section 7 as a reference. '!he calculations show: 

Tank mass Tank volume Content mass 
kg 4 liters 

x 105 kg 5 
(lb) x 10 (ft3) (lb) x 10 

IH2 tank ani 1.9 15 1.06 
intertank (4.1) (0.54) (2.3) 

ID2 tank 0.57 5.5 6.3 
(1.2) (0.2) (14) 

Tankage for 2.4 21 7.4 
IH2-ID2 (5.3) (0.73) (16) 

Water tank 0.57 5.7 5.7 
(1.2) (0.2) (12) 
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cryogen tank Mass 
Cryogen Mass 

LP2 tank Mass 
Water Mass 

2.4 x 104 
7 ~-,ix105 

= ~.7 x 103 
5~7-x-io5 

= 3.3% 

= 1% 

Using these same percentages to determine tank masses for 106 kg (2.2 x 

106 lb) of water versus cryogen payload, the mass decrease would be 2.3 x 

104 kg (5.1 x 104 lb). If the cost were $1000 per kg to IID, the savings 

would be $23 million plus the simplifications inherent in a water 

payload. 'lhese savings are to be compared with the use of on-board 

resources to electrolyze water for 160 days. 

9.2.7 OTV Support 

'!Wo of the three reference missions depart for Mars from a HID arrl 

require the use of OTV' s to transport the crews rapidly through the Van 

Allen radiation belt. OTV flights would also be needed for checkout or 

last minute updates to the Mars spacecraft while in HID although 

possibly the Mars spacecraft could be completely prepared at the ATSS 

before the slcM unmanned spiral to HID; in such a case only the flights 

necessary for crew transport an:l return at end of mission would be 

needed. In any event, the ATSS is capable of berthing arrl fueling the 

OTV's for the Mars mission support required. A Mars mission using H2~2 

propulsion has the advantage of departing directly from IID and avoiding 

the use of OTV' s. On return from Mars, there might be an advantage in 

leaving a Mars IPV at HID for refurbishment by OTVis although any 

extensive rework would most easily be accomplished by return to the 

ATSS. 'lhe ATSS was designed to_provide the space for hangers and the 

capability to fuel OTVIS. Reference 9-5 discusses the impact on the IOC 

Space station that would be produced by the extensive use of OTVIS to 

support lunar am planetary missions. 
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10.0 lDENI'IFlCATION AND ASSESSMENT OF TEClfNOr.cx:;y OEVEIDFMENT REQUIRED 
FOR 'THE ADVANCED-'I'EaINOLCX;Y SPACE STATIOlil 

'!he Mvanced-Technology Space station (ATSS) , as its name inplies, 

is based on the assumption that new and emerging teclmologies will have 

advanced to the point of being viable for use in the A'ISS. '!he purpose 

of this section is to identify these pacing technologies and to assess 

their need or criticality relative to the ATSS. 

10.1 ATSS Configuration and FUnctions 

'Ibe conceptual configuration of the ATSS was based largely on three 

major premises: 

1) 'Th.e human habitat would rotate to provide artificial gravity. 

2) 'Ihe Space station would support 17 functions identified in 

Reference 10-1 and repeated herein as Table 10.1-1. 

3) Technology trends would be reviewed, and· new technology deemed 

available arourrl the year 2025 would be used where feasible. 

10.2 Ranking Criteria for Technical Need or Criticality 

A ranking criteria was developed for indicating the technical need 

or criticality of technology areas felt necessary to make the A'ISS 

feasible by 2025. 'Ibis criteria assigns a number from one to ten to each 

technology area, with the higher numbers indicating the greater need. 

'!he ranking criteria are listed in Table 10.2-1. '!he criteria and 

ranki.r"g are somewhat arbitrary, but are felt to be reasonably valid based 

on state of the art and the requirements for the ATSS. 
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TABLE 10.1-1 rorENTIAL FUNCI'IONS 'TO BE SUPFORI'ED 
BY THE ADVANCEIrTEaINOLCX;Y SPACE STATION 

1. A pennanent observatory to look dawn upon the Earth and out into the 
universe. 

2. An orbiting science, medical, materials, and new teclmologies 
la1::>oratory . 

3. A service and repair facility for payloads, spacecraft, and 
platfonns. 

4. An assembly facility where large structures or spacecraft!=XJIUPOnents 
are manufactured and/or assembled and tested for operation.· 

5. A transportation node where payloads and vehicles are· collected, 
stationed, processed, and launched and where fuel is manufactured. 

6. A safe habitat for space crews. 

7. A CXJll1I11UJ1ications and/or relay station for manned or urnnanned 
spacecraft. 

8. An adaptation area (in variable "gil) in preparation for long space 
flights. 

9. A storage node for food, fuel, spare parts, etc. 

10. A variable "gil research facility. 

11. A commercial manufacturing facility (drugs, crystals, etc.) 

12. An energy collection and relay station. 

13 . A diagnostic, medical, and convalescent facility. 

14. A tourism attraction. 

15. A horticultural research and food grcMth facility. 

16. A technology demonstration facility. 

17. A control center for manned and urnnanned spacecraft. 
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TABLE 10.2-1 RANKING CRITERIA FOR TECliNICAL NEED OR 
CRillCALIT{ REIATrv~ 10 TrlE AfjvFJ.~( ·;::1 )-TEan~I.OG'i 

SPACE STATION 

CRITICALITY ASSESSMENT 
CRITICALITY 

RANKING 

'!he technical advance will enhance the perfo:rmance 1 
'of the subsystem or element. Alternate means for 
accomplishment exist and could be incorporated with 2 
a IOOdest compromise in weight, perfo:rmance, operating 
CXJlI1Plexity, etc. 

'!he degree of technical advance will define the 3 
performance of the subsystem. Alternate means would 
limit the subsystem performance and compromise other 4 
subsystem operations. 

'!he technical advance is required for subsystem 5 
operation. Reduced performances would CXJlI1Promise 
other subsystems and impact the functioning 6 
capability of the A'ISS. 

'!he technical advance has no al ternati ve for 7 
accomplishing the subsystem perfo:rmance and 8 
identified synergies. 9 

'!he ATSS cannot be configured without this 10 
technology capability. 
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10.3 Identification am Ranking of Pacing Technologies 

A review of the state of the art technology am technology forecast 

for the NASA Space Systems Technology Model (Reference 10-2) has helped 

identify technology trems to the year 2000. Literature reviews provided 

indications of developments am projected developments in many areas of 

technology. OVerall, 23 paCllg technology items were identified and 

ranked. 'Ihese are listed in Table 10.3-1 in the order of increasllg 

criticality. 'Ihe table is follo;ved by supplementary material in 

corresporxling order for each technology, organized as: 

Technology Title 

A. SUbsystem am synergies 

B. Function performed am particular features 

c. Development status am actions 

D. Criticality Ranking 

10.3.1 Inproved Structural Design, Analysis am Assembly Methods 

A. SUbsystem am Potential Synergies 

Structure am mechanism: Synergy throughout the ATSS in that the 

improved design methods will provide minimum mass structure and 

mechanisms . 

B. Functions Performed and Particular Features 

'Ihe improved structural design analysis would provide the means for 

optimizing structural details to minimize mass. 'Ihe analysis would 

address filament placement in wourrl structures in a manner which best 

aCCOItllOOdates predicted loads. '!he analysis would address detailed 

features such as bosses, cutouts, am local reinforcements in a manner 

that optimizes stress profiles to achieve minimum mass. '!he improved 
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TABIE 10.3-1 SUMMARY OF 1HE TECliNOI.OOlCAL ~ FOR 1HE 
ADVANc::ED-TEa1NOr.cx:;y SPACE STATION 

Tedmology Criticality 
Tedmology Item Area Ranking 

1. Inproved stI:uctural Design, Analysis and Assembly structjMechanisms 4 
Methcx:ls 

2. Aft cargo carrier for the Shuttle I External Tank Transportation 4 

3. Use of Shuttle I External Tanks for Cryogenic FUel Propulsion 4 
Storage 

4. Filament Reinforced Structural Composites StructjMechanisrns 4 

5. Spent External Tankage as Structural Buildi..r¥j StructjMechanisms 4 
f-' 

Elements of Spacecraft 
0 
1 6. Magnetic Torquing with SUperconductivity GN+C 4 V1 

7. Ambient Atmosphere Selection Less '!han 1 Atm Operations 5 

8. Improved'Ihennal Control ~ices am Radiators 'Ihental 6 

9. Lightweight Industrial Equipnent Operations 6 

10. High Pressure Space SUit FNA 6 

11. Expardable and Modular structural Concepts Struct;r.1echanisms 6 

12. SUpercritical Wet Air OXidation ECI.SS 7 

13. ConcentratinJ SOlar Dynamic PcMer Generators Electrical Power 7 



TAmE 10.3-1 SUMMARY OF '!HE TECliNQr.c:x;ICAL ~ FUR '!HE 
ADVANCEI>-TECliNOLCX;Y SPACE STATION (conclooed) 

Technolc:qy Criticality 
Technolg:w Item Area Ran1dm 

14. Atti tuje COntrol and Rebcx::st 'lhruster System Prcpllsion 7 
Based on Usin; H2~ fuel 

15. Gas Separation by Semipenneable Membranes ECISS 7 

16. Predictions of Dynamics arxi Control of large Space GN+C 8 
Vehicles with Flexible, Rotating, arxi Articulating 
Components 

17. Articulated Air Lock IXxJrs arxi Seals StructjMechanisrns 9 

18. Heavy Lift launch Vehicle Transportation! 9 
0 Operations/ 
I 
0' lDgistics 

19. large Diameter Rotating Joints and Servo Controlled StructjMechanisrns 10 
Drives 

20. large Diameter Gas Seals for Rotating or Otherwise StructjMechanisrns 10 
Moving Joints 

2l. Telerobotic Assembly Machines arxi Orbital StructjMechanisrns 10 
Maneuvering Vehicles 

22. Artificial Gravity by Rotation, system Operation, Guid/Navigation 10 
arxi Control 

23. Artificial Gravity Tedmolc:qy Human Factors 10 



design analysis would reside in computer aided engineering and design 

(CAE-cAD--ClIM) soft:w<L.---e a."'Xi became a fu,")jamental pa...""t of the effort to 

produce hardware. '!he analysis coupled with materials selection and 

careful attention to joining techniques c:oI1pltible with space assembly 

would adlieve the 20 to 50 percent in mass reduction predicted for the 

advanced design concepts. 

C. Developnent status and Actions 

'!he st!:uctural design and analysis for advanced stru.ctures should 

parallel the development of the data base of advanced materials including 

structural composites of graphite fiber reinforced resins, ceramics, 

glasses, an::l metals. 

D. Criticality Ranking: 4 

10.3.2 Aft Cargo carrier for the Shuttle I External Tank 

A. SUbsystem and Ibtential Synergies 

launch support and omit assembly: synergy with system operation, 

the Shuttle I external fuel tank is capable of being inserted in 10;,., 

Earth orbit (lID) but is usually jettisoned just before orbit insertion. 

The external tank burns up during atmospheric reentry. The addition of 

an aft cargo carrier (ACC) to the external tank and the use of adequate 

fuel to acx:::orrplish lID insertion would permit carrying larger 

experiments and cargo into orbit than can be accommodated in the Shuttle 

cargo bay_ 

B. F\mctions Perfonned and Particular Features 

'!he addition of an ACC permits transport of a variety of additional 

experiments and equipment to lID. '!he size of the ACC module is 8.4 m 

(27.5 ft) in diameter by 6.1 m (20 ft) in length. '!here are conceptual 
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designs iOOicating a habitat module of these proportions could be 

supplied to rm by using the ACC concept. '!he external tank, in its 

present design, contains 2.4 x 104 kg (5.3 x 104 lb) of alumimnn alloy 

assembled liquid tight and pressure tested to 248 kPa (36 PSI) 

differential pressure. The value of the external tank delivered to lEO, 

based on $4,400 per kilogram ($2,000 per pound), equates to $106 M. 

C. Deve10pr00nt status and Actions 

Studies have been made to achieve maximum utilization of the 

external tank that is presently jettisoned during each Shuttle launch. 

Proposed designs indicate that the existing external tank could be used 

as a habitat, a fuel storage depot, and could extend the Space 

Transportation System's (S'IS) payload launch capabilities by adding an 

ACC. '!he ACC may well be utilized for additional transport capability of 

a Shuttle to rm for assembly of the A'ISS for the year 2025. 

D. Criticality Ranking: 4 

10.3.3 Use of Shuttle I External Tanks for cryogenic Fuel Storage 

A. SUbsystem and Potential Synergies 

launch support and orbit assembly: Synergy with system operations 

'!he Shuttle I external tankage has sufficient contingency fuel for 

insertion into rm along with the Shuttle vehicle. The external tank 

could be utilized for storing hydrogen and oxygen in cryogenic liquid 

form for fueling orbital transfer vehicles and Mars mission and lunar 

lander spacecraft. . Normally, the spent external tank with residual fuel 

aboard is jettisoned just prior to orbit insertion and is destroyed 

durinJ at:nospheric reentry. 

10-8 

< , 



~ '> 

B. Functions perfonned and particular features 

Spacecraft could be fueled wit...~ hydr:t.qen curl oxyge...'1 manufactured 

aboard the A'ISS. A fuel storage depot may best be provided by free 

flyi..nq external tankage co-ort>iting with the Space station. '!he Shuttle 

I external tankage could provide the volume necessary to store 6.8 x 105 

kg (1.5 x 106 lb) of fuel per unit. '!he Mars mission may require 1 x 106 

kg (2.2 x 10 6 lb) of fuel depending on the mission design. 

'!he present configured external tank is coated with a cryogenic 

insulation consisting of polyurethane foam sprayed on the exterior of the 

tank. '!here is concern that the foam insulation will outgas in lID and 

contaminate the Space Station's critical surfaces such as optics and 

thennal cx:mtrol coati..nqs. 

C. ~elopment, status and Actions 

Suggested modifications to the Shuttle I exterrlal tankage would be 

as follows: 

1. Develop a flight-worthy cryogenic insulation which does not 

outgas in the space envirornnent. 

2. Mcrlify the tank. constnlction as required for utilization as a 

storage tank for receiving and delivery of fuel for supported missions. 

3. Develop a flexible cryogenic insulation suitable for use in lID 

which can be carried aboard Shuttle I or Shuttle II for application on 

orbit to the exterior of the external tank. '!he purpose of this 

insulation is to augment the previously applied insulation so that long 

term fuel storage can be achieved with minimum fuel bailoff. 
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4. ~ign a station keeping propulsion system to maintain the 

orbital path of the external tankage so that it may co-orbit with the 

ATSS. 

D. Criticality Ranking: 4 

10.3.4 Filament Reinforced Structural Conposites 

A. SUbsystem am Potential Synergies 

Structures am mechanisms subsystem: Synergy with all structure 

elements whim can use stnlctural composites of graphite fiber reinforced 

metals, glasses, am synthetic resins. 

B. Functions Performed am Particular Features 

Structural composites offer mass savings of 10 to 30 percent over 

conventional light metals. Pressure vessels can be wound from continuous 

filament reinforced synthetic resin corrplete with end dome closures and 

localized reinforceIOOJ1t. Axially collimated fiber reinforced tubes can 

be JOC)lded to yield high strength truss stnlcture elements with near zero 

thennal expansion maracteristics. 

C. Developrent status and Actions 

Extensive work has been ac:corrplished using carbon or graphite 

filament reinforced synthetic resins. Graphite epoxy composites require 

metallic cladding to protect them from solar radiation or atomic oxygen, 

am to minimize outgassing of the organic resin matrix. Limited 

laboratory development has indicated the feasibility of producing metal 

matrix am glass matrix composites whim possess near-zero thermal 

expansivity am minimal outgassing. '!he ATSS would benefit by 

manufacture of the following stnlctures from structural corrposites: 
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1. Cylirrlrical sections of the torus; each section 16.4 m (50 ft) 

L. dia.T.eter by 30.5 m (100 ft) L. lerifJl. 

2. Mirror support structures. 

3. Truss structure. 

4. Pressure vessels. 

D. Criticality Ranking: 4 

10.3.5 Spent External Tankage for Structural Building Elements of 
Spacecraft 

A. SUbsystem and Potential Synergies 

Structures and mechanisms: Synergy with systems operations. 

'!he NSI'S design of the propulsion system could be configured so 

that the external tank could be inserted in LED and utilized as a 

pressurizable, structural building module for space station construction. 

B. FUnctions Performed. and Particular Features 

'!he propulsion system tankage for the NSTS could be designed to 

serve as habitat modules. The tankage would have features such as entry 

ports, which could be later outfitted with air locks. The internal 

structure could be scarred to receive fibnents, equipment, and controls 

to serve as a habitation module. The structural ends of the tank could 

be designed for attaclunent to other tanks to serve as structural building 

blcx:::ks. 

c. D:!veloprnent, status, and Actions 

1. COnsideration of a dual purpose tank for the NSTS propulsion 

system would be beneficial using the tankage as building blocks for 

future space station applications. The tankage design for personnel 

access and air lock fibnents could be incorporated in the design. 
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2. '!hennal insulation systems that do not outgas in lCM Earth omit 

and could be removed or incorporated into the thermal control of the 

habitat :rocx:lule would be desirable. 

3. Design internal structural attachment locations which are 

scarred to receive internal fitments. 

4. Design the pressure vessel for use at one Earth atmosphere 

internal pressure. 

5. Incorporate within the design of the propulsion system 

sufficient fuel volUIOO to assure lID insertion. 

D. criticality Ranking: 4 

10.3.6 Magnetic Torquing with SUpercorrluctivity 

A. SUbsystem and Potential Synergies 

Guidance and control subsystem: '!here will be a pervasive synergy 

throughout all subsystems if predicted "high" temperature 

supercorrluctivity performance is achieved in addition to the synergy 

with propulsion and power subsystems for torquing applications. 

B. Functions Perfo:rmed and Particular Features 

If "high" t.erYperature practical superconductivity applications are 

available, they will appear in every future Space station application 

where magnetic fields are used including motors, solar dynamic 

generators, radio transmitters, scientific instruments, and computers. 

High current supercorrluctions would provide precession torques with 

torus-circumferential windings or torus rotational torques with ring

circumferential windings. 'Ihe laY losses associated with supercorrluctors 

would conserve significant energy by reducing the propulsion subsystem 

fuel usage required to provide the torque or by reducing the power 
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subsystem energy usage needed to provide r2R losses in non

supe....rconducti vi ty ma.gnetic coils. 

c. Development status and Actions 

'!he field of "high" temperature supercorrluctivity is moving rapidly. 

Supercorrluctivity measurements at liquid nitrogen temperatures are 

reported, and hints of room temperature operation are noted. '!he extent 

to which high fields and currents can be produced in practical 

engineerinJ configurations will detennine hOW' rapidly supercorrluctivity 

can be applied for the A'ISS. 

D. Criticality Ranking: 4 

10.3.7 Ambient Abnosphere selection less 'Ihan 1 Abn 

A. SUbsystem and Potential Synergies 

Envirornnental control and life support subsystems: 

structure and life support. 

Synergy with 

'!he selection of less than a standard Earth abnosphere interacts 

with several other functional elements and design features of the ATSS. 

Reduced internal pressure will proportionally reduce the pressure shell 

mass and the internal gas atmosphere mass. Leakage and make-up would 

also be influenced in a positive sense. Reducing the pressure 

difference between the EVA space suit and the cabin would result in a 

reduction of the time required for the prebreathing protocol. 

B. FUnctions Performed and Particular Features 

'!he abnosphere provides the shirtsleeve environment in the station 

for effective crew operations and the environment for life sciences and 

other experiments. 'Ihere are two primary regions of historical 
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operations that relate to the atmospheric corrlitions. 'Ihose on Earth 

with ambient air operating at pressure altitudes up to about 3 kIn (10,000 

ft), am prior u.s. space activity at 25 to 35 kPa (3.6 to 5 psia) 

pressure in pure or high oxygen concentration atmosphere. 'Ihe trades 

irrlicate significant structural mass savings for the pressure shell in 

proportion to selected pressure. Reducing the torus internal pressure to 

0.8 of one Earth atmosphere would reduce the pressure shell weight by 20 

percent (section 8.4) . 

IDwer pressures require higher proportions of oxygen am are 

intrinsic hazards of ignition and combustion for conventional materials. 

'!he potential interest lies in the range of 50.7 to 81 kPa (0.5 to 0.8 

abn) pressure at first estbnate with oxygen levels at 50 percent or less. 

Detail selection will be dependent upon the hmnan limits am the 

cambustion hazards. 

C. Develop:nent status and Actions 

Some INA suit work is ongoing in the range of pressure cited above. 

However, the conditions are not common to any other large data base of 

results. 'Ihe selection other than an Earth atmosphere air mixture would 

require a verification program on humans as well as other life science 

subjects aboard the station. 

1. Limits for pressure and oxygen would have to be developed or 

researched for many rnaterials and processes relative to an ignition or 

cambustion hazard. 

2. .H\..mlan tolerance am influences of various combinations within 

the safe range would have to be developed. 
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3. Life science verification studies and projections would have to 

be researched to detennine if separate isolated "Earth atmosphere" zones 

would be required. 

D. criticality Ranking: 5 

10.3.8 Irrproved Thermal Control Devices and. Radiators 

A. SUbsystem and. Potential Synergies 

'!hennal control: Synergy with electrical power and. life support and. 

system operation. 

'!he thennal control subsystem would use waste heat from the 

electrical power subsystem to maintain thennal control of such areas as 

the cabin environments, truss moU11ted experiments, and horticultural 

domes. 

B. FUnctions Performed and Particular Features 

'!hennal control systems are currently available to transport heat 

by pumped fluids or heat pipes that operate on fluid phase change, two 

phase heat pipe radiators to reject unwanted heat, and capillary ptnnped 

loop technolcqy. These systems will perfonn functions such as 

environmental thennal control, removal of unwanted heat from 

manufacturing processes and experiments, and maintaining an internal 

thennal balance. The ATSS has an identified radiator requirement 

associated with the generation of 2550 kW electrical power. Much of 

this power can eventually appear as heat dissipated into the on-board 

abnosphere from on-board operations such as ventilation, illmninatioTI, 

food preparation, manufacturing, and processing of water. Each area or 

locale where heat must be extracted will need an appropriate thennal 

control element. The eventual load applied to the exterior radiators due 
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to on-board power generation then equates to the 3900 kW (3714 Btujsec) 

rejection from the converters plus the 2550 kW from the internal power 

deliverErl (Table 3.2-1). There will be an additional increment resulting 

from the crew consumption of food and the residuals from solar thennal 

balance. 

c. Development status and Actions 

The physical size of the ATSS dictates high efficiency heat pipes, 

thennal busses, radiators, and capillary ptIITpE?d loops to transport heat 

over greater distances with less weight than provided by today's 

technology . 

D. Criticality Ranking: 6 

10.3.9 Lightweight Industrial Equipment 

A. SUbsystem and Synergies 

Life support subsystem: synergy with system operations. 

B. Functions Perfonned and Particular Features 

Industrial equipment items perform the detail steps in all of the 

life support, fabrication, and system operating functions. '!he listing 

below identifies the generic types of equipment in descending order of 

criticality for the ATSS: 

Listing of Lightweight Industrial Items 

1. Electric motors 
2. Electric power conditioning 
3. Electrolytic cells for H2-o2 
4. Fluid pumps 
5. Gas compressors 
6. Air circulating fans 
7. Pressure vessels, 

both liquid and gas 

8. Bonding and joining 
tools 

9. Metal-working machine 
tools 

10. Composites fonning 
tools 

Within the listing, the items from one through seven are used within the 
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life support system. 'The other items provide the required on-roard 

fabrication a11d spclcecraft Sllpport fu .... '1Ctions. 

C. Development status and Actions 

Eadl type of equipment has been well developed for ground operation. 

Items one through seven have been addressed for space flight 

applications involving modest power levels and microgravity 

envirornrents. A recent development in electric motors has resulted in 

lightweight, high-relative-speed units in the 10 to 20 kW range. '!he 

ATSS will require motors in the 50 to 100 kW range. Most of the 

developnents will address the reduction in weight in tenns of materials 

substitutions; the electrical items will be constrained by the 

requirements for iron in magnetic elements, such as pole pieces, 

armatures, cores, etc. 'The developments generalize as: 

1. Develop a series of minimum weight equipment items to perfonn 

the life support functions (items one through seven). 

2. Develop lightweight tool and equipment configurations which can 

perform the bonding-joining, metal-working, and composite fabrication 

functions defined for the ATSS. 

D. Criticality Ranking: 6 

10.3.10 High Pressure Space Suit 

A. SUbsystems and Potential Synergies 

INA subsystem: Synergy with life support and system operation. 

B. F\mCt.ions Perfonned and Particular Features 

High pressure space suit with associated life support will be 

required for INA to assemble the ATSS structure on-orbit, to install 

experiment modules on the spacecraft I s exterior, to inspect and repair 
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the spacecraft exterior when damaged by debris or other causes, and to 

perfOlJll emergency repairs. 

'Ihe NSTS Orbiter astronaut currently wears a low pressure space suit 

( 30 ){Fa or 4.3 psia) for performing EVA. '!he astronaut must undergo a 

len:;Jthy prebreathe protocol ranging from four to 26 hours to avoid 

decompression sickness. 

'lWo high pressure space suits (57 ){Fa or 8.3 psia) are currently 

under development by NASA (Ref~ 10-4). One of the two 

configurations will be selected for use with the IOC Space station when 

permanently manned in approximately 1996. '!he high pressure space suit 

will provide the following capabilities: 

1. '!he suit will eliminate the need for prebreathing. 

2. 'Ihe suit will be non-venting. 

3. 'Ihe suit I s abnosphere will be recycled by the portable life 

support system. 

4. '!he manual dexterity and tactile sensing of the astronaut's 

glove will be uwrade:i through an evolutionary process. Recently 

developed high pressure gloves have comparable dexterity and tactile 

sensing to the NSTS Orbiter low pressure gloves. 

5. '!he high pressure suit will eliminate the decompression 

sickness (berrls) problems associate:i with the low pressure space suito 

6. 'Ihe atmosphere of the high pressure suit will not pose an 

oxygen toxicity problem even in a worst-case suit leakage condition when 

the suit I s atmosphere approaches 100 percent oxygen. 

7. 'Ihe high pressure suit will be rechargeable and maintainable 

on orbit for repeated use. 
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c. Development status and Actions 

An advanced high pressure space suit for the year 2000 and beyond 

should encarrpass the following features: 

1. High pressure gloves would have iJrproved dexterity and 

tactility with cut and puncture protection qualities. 

2. 'Ihe high pressure suit would be constructed more like a 

hard~ whereby the EVA astronaut could withdraw his hands from the 

gloves and suit anus to eat lunch or relax, pennitting longer EVA 

excursions. '!he suit could be self-propelled to minimize the physical 

effort of self positioning. 

3. '!he operational features of the suit would allow relatively 

untrained personnel to perform EVA, suggesting civilian visitors could 

participate in the EVA excursions. 

4. On-scene robotics with end effectors could anplify the 

astronauts manual strength and abilities to perform demanding tasks 

during FNA. 

'!he ATSS cabin environmental pressure can be selected between 57 kPa 

(8.3 psia) to 101 kPa (14.7 psia) , based on engineering requirements, 

instead of a prebreathe protocol. 

D. Criticality Ranking: 6 

10.3.11 Expandable and Modular Structural Concepts 

A. SUbsystem and Synergies 

structures and mechanisms: Synergy with most other subsystem 

developrrents. 'Ihe use of modular pressure vessels I erectable antennas I 

solar concentrators and radiators are all potential beneficiaries of this 
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tedmology. Each of the subsystems would show weight efficiency benefits 

or ease of deployment in space. 

B. Functions Performed and Particular Features 

'!he function is to provide large size vehicle components which 

originate in the delivery system as collapsed or otherwise condensed 

eleroorrts. Examples include solar collectors, arrays such as focusing 

mirrors, anterma forms, and deployable or furlable equipment. '!here are 

at least three classes of these concepts: a) nonrigid, which is either 

flexible or rigidized in space; b) semirigid panels, sections, or modules 

which change shape or volume in space; and c) rigid modularized 

components for assembly in space with total weight and volume fixed. 

C. Development status and Actions 

1. Nonrigid: '!hese include current sma.ller scale demonstration 

efforts such as core foam on COImPaI1d and resin impregnated fabrics 

rigidized by various environmental modes (ultraviolet, water vapor, or 

other catalyst). 'Ihere are also a variety of composite wall structure 

concepts to be evaluated to generate rigid structures. 

2. Semirigid: Furlable and telescoping structures which can be 

packaged in a condensed state and later extended in space to generate an 

expandable volume. '!hese include parabolic antenna shapes with rigid but 

nested petals or gores which deploy to a full shape. Helical bands which 

uncoil to fonn tubes are also included in this category. 

3. Rigid: These elements include truss assemblies and modules. In 

general the technology of remote manipulators and assemblers will· 

aa::ompany these developments. 
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'!he actions required include the generation of expandable structural 

concepts a..'1d tJle development of compressed storage geometries for rigid 

components • 

O. Criticality Ranking: 6 

10.3.12 SUpercritical Wet Air Oxidation 

A. SUbsystem and Potential synergies 

Life Support Subsystem: Synergy with propulsion for on-board 

generation of H2' 02' and anyon-board processes involving aqueous 

organic solutions. 

B. FUnctions Perfonned and Particular Features 

Supercritical wet air oxidation will provide the means for a 

combustion disposal of htnnan wastes tClCJether with reclamation of waste 

water from food processing, bathing, laundry, and housekeeping. 'Ihe 

process will oxidize any solution or fine-particle suspension of organic 

carbonaceous or organic ni trClCJenous material. A cycle that includes 

temperatures and pressure above the critical point for water will oxidize 

carbon to ffi2 and hydrogen to H20 plus liberating GN2 and precipitating 

inorganic corrpounds as salts (e.g. Nat K, ca.). 'Ihe process has the 

capacity to reclaim water for further utilization, extract 002 for 

further reduction, and recover N2 for atmospheric balance. In addition, 

the oxidation reactions generate heat energy at conditions which allow 

further utilization (e.g. in turbo-pumps). 

c. Development status and Actions 

SUpercritical wet air oxidation has been demonstrated at laboratory 

scale. SUbcritical wet air oxidation is an established industrial 
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proc:ess. '!be developments required for Space Station applications appear 

as: 

1. Development of an operating sequence for the A'ISS which will 

aCXXJll'llTOdate the throughput volumes and waste stream contents. 'Ihe 

c::oIt'plexity appears in the control of a rapid heat-producing reaction 

durirq transitions into and out of the supercritical regime. 

2. Development of flight grade pressure vessels, flow passages, and 

control items. '!be supercritical regime require operation at pressures 

above 27.6 MPa (4000 psi) and temperatures above 673 K (1210 ~). '!he 

orqoirq chemical reactions require an internal lining which is inert to 

oxygen urrler such conditions. 

D. criticality Ranking: 7 

10.3.13 concentrating Solar Dynamic Power Generators 

A. Subsystem and Potential Synergies 

Electrical Power Subsystem: Synergy with the thennal control 

subsystem to provide a source of high level heat and synergy with life 

support in the use of electrolysis cells as load levelers and energy 

storage. 

B. FUnctions Performed and Particular Features 

COncentrating solar dynamic power generators will provide electrical 

power to the A'ISS. Solar-pointed focusing collectors will beam 

concentrated solar energy on a receiver which serves as the input to a 

thenrodynamic power cycle. Related equipment includes the thennal

rnecbanical conversion equipment producing electrical energy and the 

radiator assembly for providing the condensing or cooling function. 

Subsidiary to these are heat conducting flow loops to transfer the 
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workirY:J fluids. 'll1e A'ISS concept uses six identical tmits delivering 425 

kW eadl to supply the electrical power. 

C. Developnent status arrl Actions 

Component parts of 10W'er power systems have been demonstrated. 

Develcpnents needed are: 

1. Highly reflective full-spectnnn fcx:m;ing concentrators with 

irrproved surface dimensional accuracy. Energy into the aperture is 0.9 

of the total solar intercept for concentrators up to 40 m (135 ft) in 

diameter. 

2. Weight and power efficient long life dynamic converter 

components. 'll1e converters deliver 40 percent of the solar input energy 

as electrical power to the A'ISS. 

3. Improved radiator emissivity and working fluid transport such 

that the radiator areas and concentrator area are the same. 

D. Criticality Ranking: 7 

10.3.14 Attitude Control and Reboost Thruster System, in the Range 400 
to 5500 N (100 to 1200 lb) I using H2-Q2 On-board Generated Fuel 

A. SUbsystems and Potential Synergy 

Propulsion: Synergy with life support subsystem in the on-board 

generation of H2-Q2 and synergy with logistic resupply as relief from the 

transport of cryogenic fuels. 

B. Functions Perfo:nned and Particular Features 

Attitude control and reboost thrust from H2-Q2 fuels at a specific 

inpllse of 4315 N-sec/kg (440 sec) provides the combination of energy 

efficiency and the clean exhaust necessary for continuous operation of 

the A'ISS in orbit. 'Ihe utilization of excess electrical power to 

produce H2 and 02 from water will provide the life support needs with a 
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surplus sufficient for all station-keeping propulsion fuel requirements 

and in addition, provide fuel for the OOV and aIV. Resupply for the ATSS 

then becoIres potable water which eventually enters electrolysis after 

reclama.tion from crew wastewater. 

c. Developroont status and Actions 

'!he main engines for the shuttle are large H2-02 engines with lift

off specific impulse values in the 3400 to 3500 N-sec/kg (350 to 380 

sec) range and operate with chamber pressures at 20 MPa (3000 psi). 

Small H2-02 engines in the 450 to 5500 N (100 to 1200 lb) thrust range do 

not presently exist. 'lhe development actions are: 

1. Develop a series of combustors and nozzles covering the thrust 

rar¥3'e from 450 to 5500 N (100 to 1200 lb) capable of operating with 

chamber pressures in the 20 to 35 MPa (3000 to 5000 psi) range. 'lhe 

minimum operating life would be 1000 burns of 20 sec each. 

2. Develop the tankage, supply lines, flow control valves and 

control techniques to support the thrusters. 

3. Develop the compressors and fuel transfer techniques to support 

the system. 

D. Criticality Ranking: 7 

10.3.15 Gas Separation by Semipermeable Membranes 

A. Subsystem and Potential Synergies 

Life support: Synergy with propulsion in the on-board storage of 

02-H2 fuels and synergy with anyon-board process that generates 

volatiles which must be removed from a gas stream. 
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B. Functions Performed and Particular Features 

Seroipe..rrt'I""rtble :membra..."1""....5 for gas sepa.ratioPE will provide t.l}e rneal"lS 

for scrubbing or selective separation of gaseous constituents. 

Merobranes-in-series, each with a controlled porosity, have the potential 

for separating CO2 from N2 and the removal of large molecule trace 

contaminants from the cabin atmosphere. The membranes would offer 

particular advantages in scrubbing the residuals from galleys I on board 

laboratories, and same fabrication operations. The rnicrogravity 

environment has been recognized as a means for producing fillns and 

polymeric materials with uniform controlled porosities tailorable to the 

passage of specific molecules. 

c. Development status and Actions 

Semipermeable membranes are well established cornmercial items with 

applications that include renal dialysis filters, reverse osmosis 

separators, and gas purification. Present research involving 

microgravity is addressing ultra-thin fillns and optical quality polymers 

which will transmit molecular oxygen as a material for long wear contact 

lenses. '!he developments would extend. the techniques to provide a high

flow separation capability for: 

1. Extracting CO2 directly from the cabin air streams. 

2. Separating CO2 from N2 at the exit of the wet air oxidizers. 

3. Separating 02 and N2 from other gasses evolved from on-board 

operations. 

4. Separating trace quantities of H2 from the ullage gases used 

during on-board storage of gaseous fuels. 

The principal development focus will become improved flow at lower 

driving pressures. Microgravity processing may be a requirement, and the 
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developrent of a micrcxJravity facility could pace the availability of 

these materials. 

D. Criticality Ranking: 7 

10.3.16 Predictions of Dynamics and Control of Large Space Vehicles with 
Flexible, Rotating, and Articulating Components 

A. SUbsystem and Potential Synergies 

Guidance, navigation, and control subsystem: Synergies exist with 

nost other subsystems. 

B. FUnctions Performed and Particular Features 

'!he analytical tools will perform structural dynamic evaluations as 

well as engineering mechanics evaluations to obtain the effects of 

flexible l:xrly dynamics. Features will include a rotating disc for 

sinrulating gravity and articulations. '!he predictions must address mass 

motions fram within and from outside the rotating vehicle as personnel, 

fluids, and equipment are transferred about the vehicle. 

c. Developrent status and Actions 

CUrrent design tools will have to be expanded in capability to 

accept large rotating components and very large flexible components. 

Precession torquing and angular momentum management of the large 

rotational components will have to be modeled. Response to various 

irrpulse comitions, such as berthing of large vehicles and relative 

movement within the vehicle of substantial masses, i.e. I personnel, 

worJeinJ fluids, and general materials transfer, will have to be 

incorporated. 

D. Criticality Ranking: 8 
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10.3.17 Articulated Air Lock Doors and Seals 

A. SUbsystem a..rrl syne..-rgies 

Structure: Synergy with system operations 

B. Functions Perfo:rrned and Particular Features 

'Ihe articulated air lock doors seal the berthing and assembly bay 

errl of the central tube and provide the internal pressure bulkheads 

needed to divide the central tube into working segments. 'Ihese become 

air locks in support of station resupply or in support of assembly and 

repair of other spacecraft. Effective utilization of the central tube 

requires an air lock door system which can accommodate near full-tube 

diameter dimensions for equipment serviced. Articulated doors with 

seals appear as the candidate for the application. The smae concept used 

for the central tube would also apply to pressure doors in the smaller 

diameter tubular sections such as the docking bay, observation tube, the 

spokes and in the torus. 

c. Development status and Actions 

One-piece movable pressure doors for air lock and autoclaves are 

well established items for both spaceflight and industry. 'Ihe A'ISS 

represents an expansion in size plus the need for segmentation which 

complicates the sealing technique. The axial load linposed upon a 

central tube air lock approaches 1.8 x 107 N (4 x 106 lb) for a one 

aboclsphere pressure difference. The development activities indicated 

appear as: 

1. Develop a minimum weight configuration for a segmented air lock 

door which will accommodate equipment packages or spacecraft elements up 

to diameters approxiIDa.tel y equal to the central tube. 
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2. Develop a seal configuration and sealing technique for 

segmented air lock doors. 

D. Criticality Ranking: 9 

10.3.18 Heavy Lift Launch Vehicle 

A. SUbsystem and Potential Synergies 

Launch vehicle: Synergy with all large structural elements. 

B. Functions Performed and Particular Features 

'!he launch vehicle delivers the station component parts to LED for 

assembly. 'Ibe current baseline design concept requires a capability of 

net payload of 2.7 x 105 kg (6 x 105 lb) to LED, with a shroud envelope 

diameter of 33.5 m (110 ft) and length of 60.9 m (200 ft). 'This capacity 

is currently driven by the plan to deliver the rotating hub assembly as a 

one piece payload. 'Ibis assembly contains the rotating bearings and 

seals for the to:rus and spokes. 

C. Development status and Actions 

'!he ongoing NASA HLLV studies and evaluations for future launch 

vehicle remain somewhat parametric for multiple missions. 'The A'ISS 

planning must be incorporated into the NASA-wide planning. Specific 

areas include the following: 

1. Evaluations of large volume shroud envelopes of the capacity 

presented above. 'This includes the entire design evaluation of the 

various loads and configurations which are generic to the delivery of 

the large scale station components. 
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2. Shroud deployment methods to allow acx::ess to the payload by 

" " +-h "'ty f th rh' am{1.d.CL.""y equlpme..'1t for L.---ansport to ...... e V1CL'11,- 0 e on-o It ATSS 

assernbl y area. 

D. Criticality Ranking: 9 

10.3.19 I.arg'e Diameter Rotating Joints and Servo Controlled Drives 

A. SUbsystem and Synergies 

Structure: Synergy with systems operations 

B. F\1nctions Performed and Particular Features 

'!he rotating joints provide the relative movement capabilities 

between sections of the ATSS. A continuous rotating joint at 16 m (52 

ft) diameter operates at speeds up to 3 rpm and controls the relative 

motion between the nonrotating central tube and the rotating torus. '!his 

joint must accept up to 0.15 m (6 in) center offset between the central 

tube and torus and include a sensing technique for that offset which 

becomes an input to the torus trim-balance system. '!he drive system will 

provide sufficient torque to eliminate the drag reactions into the 

central tube. Similar joints at diameters of 25 m (82 ft) operate under 

the OJUnterrotators; these joints will maintain relative motion between 

the counterrotators and the torus, in addition they transmit the torques 

that null the angular momentum of the system. The concentric joints 

within the end sections of the observation tube move to follow a 

tracking, communication, or Earth viewing operation. Motions can be 

either continuous or intermittent and can include reversals of direction. 

Those reversals must be accomplished without loss of tracking or beam 

lock during a communication sequence. 
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C. Development status and Actions 

These joints are generically related to camera mounts and gun 

turrets. The concepts for tracking motions and sensi11<J of position have 

been developed for other applications. The developments for the ATSS are 

adaptations to the particular size and mission functions. The specific 

requirements appear as: 

1. configure a rotati11<J joint which incorporates the requirements 

for the central tube to hub joints and the hub to counter:rotator joints. 

2. Configure a general rotating joint which incorporates 

requirements associated with the end elements of the observation tube. 

D. Criticality Ranking: 10 

10.3.20 large Diameter Gas Seals for Rotating or otherwise Moving Joints 

A. Subsystem and Synergies 

structure: Synergy with systems operation. 

B. Functions Perfonned and Particular Features 

The large diameter, 16 m (52 ft), rotating seals operate between the 

central tube and the torus under continuous rotation up to 3 rpm with 

some center offset and a one atmosphere pressure differential. The 

friction drag will be countered by a servo drive. The seals must be 

capable of indefinite continuous operation which implies a means for 

replacement of any wearing surfaces while running. The seals at other 

locations, 9 m (30 ft) diameter, must accormnodate motions in both 

directions, including chan<:Jes in the direction-of-motion without 

disturbing a tracking function (e. g., burnpless) and accept extended 

periods of no relative motion. For the smaller seals, the chan<:Je out of 

wearing surfaces must be perfonned without violation of the pressure 
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integrity; however, the change out could occur under conditions of no 

relative motion. 

C. Developnent status and Actions 

Pressure sealing of joints with intennittent motion has been 

addressed in the development of the "8 psia Astronaut SUit" arrl shOVJs 

leakage rates compatible with the roc Space station requirements for less 

than 4.5 kg/day (10 lb/day). Leakage establishes the major portion of 

the nitrogen resupply requirement. A projected leakage rate for the ATSS 

at ten times the roc space station levels would require an annual GN2 

resupply of 10,000 kg (22,000 lb), which appears excessive. As a 

developroont goal, the total leakage from the 12 seals on the ATSS should 

be less than 10 percent of that projected value arrl be equal to the 

present roc space station cabin leakage prediction of 2.3 kg (5 lb) per 

day. Rotating joints on the scale required do not exist and are not 

included in any of the presently defined missions. '!he development 

actions become: 

1. Develop and configure pressure seals for the two continuous 

rotating joints qt the central tube-hub interface. '!he estimates of the 

requirements for each joint seal are: 

a) Diameter, 16 m (52.5 ft) with up to 0.15 m (6 in) offset 

between rotating and nonrotating centers. 

b) Rotation up to 3 rpm. 

c) Pressure of one atmosphere. 

d) leakage less than 0.22 kg/day (0.5 lb/day). 

e) Life 5 years minimum with change outer repair while 

running. 
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2. Develop and configure pressure seals for the ten joints and 

interfaces in the observation tube. '!he estimates of requirements for 

each joint seal appear as: 

a) Diameters of 9 m (30 ft) up to 10 mm (0.5 in) center 

offsets. 

b) Rotations up to 2 :rpm either direction with a smooth 

reversal of direction. 

c) Pressure of one atmosphere. 

d) Leakage of 0.2 kg/day (0.5 lb/day) maximum. 

e) Life five years mLl1imum with change out or repair without 

loss of pressure integrity. 

D. Criticality Ranking: 10 

10.3.21 Telerobotic Assembly Machines and Orbital Maneuvering Vehicles 

A. Subsystems am Potential Synergies 

structures and mechanisms: Synergy with system operation. 

B. FUnctions Performed and Particular Features 

'!he telerobotic assernbl y machines will perform the maj or operations 

throughout the on-orbit assembly of the ATSS. The machines will include 

mobile rerrote manipulation systems and truss assembly machines. Orbital 

maneuvering vehicles will provide the transport of the large components 

into the near-mating position. 'These elements :will become part of the 

remote assembly and docking support manipulators within the assembly and 

dock.irg bay. 

'!he class of equipment including teleoperators, robotic assembly 

machines, am orbital maneuvering vehicles all perform amplification of 
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the crew capability in assembly of the ATSS. '!he specific features of 

t..l)e equipme.'1t will include the folla...,ing capabilities: 

1. Orbit maneuvering vehicles capable of taking the large mass 

components from the launch vehicle shroud and transferring them to the 

joining position on the ATSS. 

2. Telerobotic machines that would perform the assembly of the 

torus and spoke segments once brought to proximity for assembly. 

3. Truss assembly machines capable of joining the truss elements at 

the joints to perform the junction assemblies required in the ATSS. 

c. Development status and Actions 

'!he entire technology of teleoperators and robotics is in active 

developnent. '!he several types of equipment required. have industrial 

counterparts in concept. '!he principal new features will be the size of 

the large assembly teleoperators and the uniqueness of the omit 

maneuvering vehicle. '!he assembly machines will work on an equipment 

scale of tens of meters and therefore will require booms and anns of 

commensurate size. '!his introduces the requirement for accurate 

placelTeI1t controls over a large span of action. 

D. Criticality Ranking: 10 

10.3.22 Artificial Gravity by Rotation, System Operation, and Control 

A. SUbsystem and Synergy 

Guidance, navigation, and control: Synergy with structural 

dynamics, life support, and. system operation. 

B. FUnctions Performed and Particular Features 

'!he system operating control for the rotating fX)rtions of a space 

station has to provide a continuous monitor with corrective action over: 
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1. Center of rotation (out of round tolerance) 

2. Plane of rotation (wobble tolerance) 

3. Center of gravity 

4. Rotating velocity and rroment of inertia 

'Ihese parameters include a sensing follawed by a trimming ballast. 'file 

tr:imrn.in3 will cx:xxrr while the rotating section accommodates: e' 

a. Movement of equipment and personnel circumferential 1 y 

b. Movement of equipment and personnel radially 

c. Movement of equipment and personnel between the rotating and 

nonrotating portions of the A'ISS. 

'Ihese functions will involve the controlled transfer of ballast as a 

continuing motion. 'file function will occur while the control system 

recognizes structural dynamic effects, disturbances from rotating 

machinery, or structural coupling. water will be the principal ballast 

meditnn and in addition provide for crew related functions as well as the 

input to fuel generation. All rotating systems will require the 

continuous control. The level of artificial gravity will determine the 

magnitude of the forces required and quantities of ballast transferred. 

C. Develop.!Tle1"1t status and Actions 

The control system would be developed in conjunction with elements 

of structure, structural analysis, and predictive techniques. 'file 

principal effort will continue the predictive efforts and include: 

1. Development of a control algorithm which can actively predict 

am accommodate the conditions listed above 

2. Validate the control algorithm in a series of experiments and 

simulations of a rotating system. The initial validations will require 
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scale IOCXiels operating on Earth follQV.led by some degree of validation Ln 

space (e. g ., a ce.'1trifuge or a platform ill space) . 

D. criticality Ranking: 10 

10.3.23 Artificial Gravity Technology 

A. Subsystem am Potential Synergies 

Life support, crew operations: 

operations. 

Synergy with all man tended 

'!he rotating system, the torus and spokes, provide "weight" to the 

human nrusculoskeletal system in the space envirornnent. Reduction of the 

artificial ''weightll will synergistically irrpact the structural load and 

mass of the vehicle, the counterrotation system, the rotating seal 

technology, and the control of the ATSS as <::XJITPlicated by the rotational 

elements. There will be a direct influence on human perfonnance in the 

rotating areas. 

B. Functions Perfonned and Particular Features 

Reference 10-4 discusses the influences of weightlessness on human 

physiology and performance. The evidence of space flight experience 

iIrlicates serious physiological problems and a degradation of the 

musculoskeletal system of humans. With the expectation of extended space 

missions, artificial gravity becomes a primary countermeasure for the 

degrading effects of weightlessness. Section 5 of this report and 

Reference 10-4 discuss the effects of artificial gravity and its 

atten::1ant rotation on the human and his perfonnance. 

Spacecraft rotation is a complex problem regarciing energy use, 

precession, general control, and center of mass location maintenance as 

well as rotating seals, and the movement of materials, fluids, and humans 
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between rotating and nonrotating erwiromnents. '!he least amount of 

rotation and the least amount of artificial gravity, or "weight", for the 

adequate maintenance of human physiology needs to be established. 

c. Development status and Actions 

As the human is the critical element involved in the need for 

artificial gravity, reduced gravity studies with humans seem essential. 

Ideally, such experiments should be done in space. Experiments perfonned 

in the ATSS could attain 1 9 at 2.8 rpm, 0.5 9 at 2 rpm, and 0.25 9 at 

1.4 rpm. However, it seems essential to attain ground based knowledge of 

the effects of partial gravity at the earliest opportunity. A minimum of 

two levels of partial gravity seems necessary to attain information 

between the -kn<:hm 1-g condition and the partly-known weightless 

condition. 

studies of the response to partial gravity in the Earth's 

gravitational field seems an improbability. However, the 20 year-old 

studies of weightlessness in bed rest and water immersion attained great 

success and are still being held today. 'Ihese experiments predicted 

man's perfomance in the moon I s gravity by using sling supports at angles 

such that only one-sixth 9 was felt on the feet. Similarly, perfonnance 

in artificial gravity was studied on rotating devices with slings 

supporting Earth's weight while the artificial gravity due to rotation 

was weighted on the feet (Reference 10-5). 

Special studies could be perfonned with inclined platfonns and 

slings where the long body axis is exposed only to partial 9 much as 

weightlessness is studied on Earth in bed rest. '!he test regime should 

encompass work stations, exercise and mobility stations, rest and 

recreation stations and sleep stations in a normal flat bed. With 
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sufficient subjects and an appropriate duration of testing, the loss of 

bone rninarals, muscle mass, etc., may be stabilized for each partial 

gravity level while under a space simulted regime, including work, 

exercise, rest, and sleep. 

D. Criticality Ranking: 10 

10.4 Conclusions 

Advancements in teclmology are required to make the ATSS feasible. 

'Ihese teclmologies have been reviewed and a criticality number from one 

to ten assigned for each technology. 'lhe criticality factor of ten 

irrlicates a technology vital to the station and may require extensive 

development. 
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