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NOMENCLATURE

AE

ALPHA

ALPI

AN

AR

AT

B

BASRU

BC

BETA

C

CD

CLL

CLLMC

CLLR

CLLRMC

CLM

CLMMC

CLMR

CLMRMC

Reference area (orbiter model planform),
60.525 in.2

Nominal RCS jet exit area, 0.014698 in.2

Angle of attack in body axes, deg

Indicated sector pitch angle, deg

Venturi flow meter throat area, 0.0486 in.2

RCS reference area, 0.0225 in.2

Nominal RCS jet throat area, 0.0011763 in.2

Orbiter wing span, 11.709 in.

Jet-off run used in calculating incremental
coefficients

Moment center of balance, in.

Side-slip angle in body axes, deg

Mean aerodynamic chord, 5.935 in.

Venturi flow meter discharge coefficient

Rolling-moment coefficient, including thrust,
body axes, [MX/(Q - A • L)]

Rolling-moment coefficient, including thrust,
reduced about the mated coast reference center

Rolling-moment coefficient, without thrust,
body axes, [MXR/(Q • A • L)]

Rolling-moment coefficient, without thrust,
reduced about the mated coast reference center

Pitching-moment coefficient, including thrust,
body axes. [MY/(Q • A . L)]

Pitching-moment coefficient, including thrust,
reduced about the mated coast reference center

Pitching-moment coefficient, without thrust,
body axes, [MYR/(Q '• A • L) ]

Pitching-moment coefficient, without thrust,
reduced about the mated coast reference center



CLN

CLNMC

CLNR

CLNRMC

CN

CNR

CODE

CONFIG

CY

CYR

DE

DELMDOT

ON

DPV2

DT

EZER01

FN

FN11

FNR

Yawing-moment coefficient, including .thrust,
body axes, [MZ/(Q • A • L) ]

Yawing-moment coefficient, including thrust,
reduced about the mated coast reference center

Yawing-moment coefficient, without thrust,
body axes. [MZR/(Q - A • L) ]

Yawing-moment coefficient, without thrust,
reduced about the mated coast reference center

Normal-force coefficient, including thrust,
body axes. [FM/(Q -A)]

Normal-force coefficient, without thrust,
body axes. [FMR/(Q • A)]

Model configuration code
1 - Isolated orbiter umbilical doors closed
2 - Isolated orbiter umbilical doors open
4 - Isolated orbiter body only
5 - Mated orbiter and external tank

RCS jet configuration code

Side-force coefficient, including thrust, body
axes. [FY/(Q -A)]

Side-force coefficient, without thrust, body axes,
[FYR/(Q • A)]

RCS thruster exit diameter, 0.1368 in.

Delta between the measured venturi RCS mass flow
rate and the theoretical RCS mass flow rate,
[MDOT-WG], 1 bra/sec

Venturi flow meter throat diameter, 0.2497 in.

Venturi system differential pressure, psid

RCS thruster throat diameter, 0.0387 in.

Voltage reading of hot film mass flow system with
zero flow, volts

Total normal-force on the model, thrust
included, Ibs

Total normal-force on the balance, thrust
included, Ibs

Normal-force on the model, without thrust, Ibs.



FY

FY11

FYR

G .

ICLLR

ICLMR

ICLNR

ICNR

ICYR

Kl

K2

KM1

KM2

KTHALD

KTHALS

KTHALU

KTHARD

KTHARS

KTHARU

KTHFLD

Total side-force on the model, thrust
included, Ibs

Total side-force on the balance, thrust
included, Ibs

Side-force on the balance, without thrust, Ibs.

Nominal gravitational acceleration constant,
32.174 ft/sec2

Incremental rolling-moment coefficient
[Jet on Run - BASRU] (typ.)

Incremental pitching-moment coefficient

Incremental yawing-moment coefficient

Incremental normal-force coefficient

Incremental side-force coefficient

Calibration constant for model chamber pressure PCI

Calibration constant for model chamber pressure PC2

Rockwell-supplied mass flow calibration factor for
forward RCS jets, Ibm V °R_

sec psia

Rockwell-supplied mass flow calibration factor for
aft RCS jets, Ibm V °R

sec psia

Rockwell-supplied RCS group thrust calibration
factor for aft left side, down-firing, Ibf/psia

Rockwell-supplied RCS group thrust calibration
factor for aft left side, side-firing, Ibf/psia

Rockwell-supplied RCS group thrust calibration
factor for aft left side, up-firing, Ibf/psia

Rockwell-supplied RCS group thrust calibration
factor for aft right side, down-firing, Ibf/psia

Rockwell-supplied RCS group thrust calibration
factor for aft right side, side-firing, Ibf/psia

Rockwell-supplied RCS group thrust calibration
factor for aft right side, up-firing, Ibf/psia

Rockwell-supplied RCS group thrust calibration
factor for forward left side, down-firing, Ibf/psia



KTHFLS

KTHFRD

KTHFRS

LH2

LOX

M

MOOT

MOOTP

MPREV

MRC

MRXXXA/T

MSYS

MU

MX

MX11- .

MXR

MY

MY11

MYR

Rockwell-supplied RCS group thrust calibration
factor for forward left side, side-firing, Ibf/psia

Rockwel,!-supplied RCS group thrust calibration
factor for forward right side, down-firing,
Ibf/psia

Rockwell-supplied RCS group thrust calibration
factor for forward right side, side-firing,
Ibf/psia

Abbreviation for liquid hydrogen

Abbreviation for liquid oxygen

Free-stream Mach number

Auxiliary air flow rate, Ibm/sec

Intermediate venturi mass flow calculation
parameter

Previous mass flow rate measured for a particular
RCS configuration and RCS chamber pressure, Ibm/sec

Moment reference center of orbiter

Actual or theoretical momentum ratio for the
nominal nozzle geometry, XXX

Denoted mass flow system used; 1 - Hotfilm,
2 - Venturi

Free-stream flow viscosity, Ibf-sec/ft2

Total rolling-moment on the model, thrust included,
body axes, in.-lb

Total rolling-moment on the balance, thrust
included, in.-lb

Roll ing-moment on the model, without thrust
body axes, in.-lb

Total pitching-moment on the model, thrust
included, body axes, in.-lb

Total pitching-moment on the balance, thrust
included, in-lb

Pitching-moment on the model, without thrust,
body axes, in.-lb



MZ Total yawing-moment on the model, thrust included,
body axes, in.-lb

MZ11 , Total yawing-moment on the balance, thrust
included, in.-lb

MZR Yawing-moment on the model, without thrust,
body axes, in.-lb

NALD Number of RCS jets for aft left group, down firing

NALS Number of RCS jets for aft left group, side firing

NALU Number of RCS jets for aft left group, up firing

NARD Number of RCS jets for aft right group, down firing

NARS Number of RCS jets for aft right group, side firing

NARU Number of RCS jets for aft right group, up firing

NFLD Number of RCS jets for forward left group, down
firing

NFLS Number of RCS jets for forward left group, side
firing

NFRD Number of RCS jets for forward right group, down
firing

NFRS Number of RCS jets for forward right group, side
firing

NXXX Number of RCS jets for nozzle geometry, XXX

P Free-stream static pressure, psia

PB01 Model base pressure, psia

PB02 Model base pressure, psia

PC Average calculated model chamber pressure, psia

PCI Calculated model forward chamber pressure, psia

PC1A Measured model forward chamber pressure, psia

PC2 Calculated model aft chamber pressure, psia

PC2A Measured model aft chamber pressure, psia

PHII Indicated sector roll angle, deg



PHIM Intermediate venturi mass flow calculation
parameter

PN

PREF

PS1

PSWB

PSWT

PT

PTANK1

PTANK2

PTS

PTV2

Q

RE

RED

REF LENGTHS, L

RHO

RUN

S

T

TALDA/T

TALSA/T

TALUA/T

Data .point number

Transducer reference pressure, psia

Sting air supply line static pressure, psia

Tunnel test section bottom sidewall
pressure, psia

Tunnel test section top sidewall pressure, psia

Free-stream total pressure, psia

Tunnel injection tank static pressure, psia

Tunnel injection tank static pressure, psia

Sting air supply line total pressure, psia

Auxiliary air total pressure upstream of venturi
flow meter, psia

Free-stream dynamic pressure, psia

Free-stream unit Reynolds-number, ft-1

Intermediate venturi mass flow calculation
parameter

Reference lengths used to calculate the pitching-,
yawing-, and rolling-moment coefficient, 16.129 in.

Free-stream air density, Ibm/ft3

Data run number

Model reference area (used for data reduction on
isolated and mated configurations), 60.525 in.2

Free-stream static temperature, °R

Actual.or theoretical thrust, aft left down
RCS jets, Ib

Actual or theoretical thrust, aft left side
RCS jets, Ib

Actual or theoretical thrust, aft left up
RCS jets, Ib



TARDA/T

TARSA/T

TARUA/T

TBA

T8F

TC

TOP

TFLDA/T

TFLSA/T

TFRDA/T

TFRSA/T

TGFLOW

TMODEL

TOLER

1STING

TT

TTV2

TXXXA/T

WG

Actual or theoretical thrust, aft right down
RCS jets, Ib

Actual or theoretical thrust, aft right side
RCS jets, Ib

Actual or theoretical thrust, aft right up
RCS jets, Ib

Measured balance aft temperature, °F

Measured balance forward temperature, °F

Measured temperature in model air supply
chambers, °R

Tunnel free-stream dew point temperature, °F

Actual or theoretical thrust, forward left down
RCS jets, Ib

Actual or theoretical thrust forward left side
RCS jets, Ib

Actual or theoretical thrust forward right down
RCS jets, Ib

Actual or theoretical thrust forward right side
RCS jets, Ib

Target flow meter mass flow rate, Ibm/sec

Measured temperature on sting at base of
model, °F

Allowed tolerance in mass flow setting, Ibm/sec

Measured temperature of mass flow at a point
inside the tank, °F

Tunnel stilling chamber temperature, °R

Total temperature of mass flow measured upstream
of venturi flow meter, °R

Actual or theoretical thrust for the nominal nozzle
geometry, XXX

Auxiliary air flow rate calculated using Rockwell-
supplied discharge coefficients, Ibm/sec
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1.0 INTRODUCTION

The work reported herein was performed by the Arnold Engineering
Development Center (AEDC), Air Force Systems Command (AFSC) under
Program Element 921E01, Control Number 9E01, at the request of NASA
Johnson Space Center, Houston, Texas. The NASA project manager was
Mr. 0. B. Kanipe, and the Rockwell International representative was Mr.
A. C. Mansfield. The DOFA project manager was Mr. J. H. McComb. The
results were obtained by Calspan Corporation, operating contractor of
the Aerospace Flight Dynamics testing effort at the AEDC, AFSC, Arnold
Air Force Base, Tennessee. The test was performed in the von Karman
Gas Dynamics Facility (VKF), Hypersonic Wind Tunnel B, during the
period of November 16 through December 12, 1987, under AEDC Project
Number CI85VB (Calspan Number V41B-38).

The primary test objective was to obtain an updated Space Shuttle
aerodynamic data base for two phases of the Glide Return to Launch Site
(GRTLS) abort trajectory to support the digital autopilot command
matrix. Existing models of the orbiter and external tank were used to
measure the effects of various combinations of RCS thrusters and
thruster momentum ratios at Mach number 6. The angle of attack for
the isolated orbiter ranged from -10 to 15 deg at sideslip angles from
-5 to 10 deg. A separate installation was used to achieve a -5 to 15
deg angle of attack range and sideslip angles from -2 to 5 deg for the
mated orbiter and external tank configuration. The test was conducted
at a unit Reynolds number of 0.75 million per foot.

Inquiries to obtain copies of the test data should be directed'to
NASA/JSC, ED 3, Houston, TX 77058. A microfiche record of the final
data has been retained at AEDC.

2.0 APPARATUS

2.1 TEST FACILITY

Tunnel B (Fig. 1) is a closed-circuit hypersonic wind tunnel with
a 50 in. diameter test section. Two axisymmetric contoured nozzles are
available to provide Mach numbers of 6 and 8. The tunnel may be
operated continuously over a range of pressures from 20 to 300 psia at
Mach number 6, and 50 to 900 psia at Mach number 8, with air supplied
by the VKF main compressor plant. Stagnation temperatures sufficient
to avoid air liquefaction in the test section (up to 1350°R) are
obtained through the use of a natural gas fired combustion heater. The
entire tunnel (throat, nozzle, test section, and diffuser) is cooled by
integral, external water jackets. The tunnel is equipped with a model
injection system which allows removal of the model from the test
section while the tunnel remains in operation. A description of the
tunnel may be found in Ref. 1.



2.2 TEST ARTICLE

The Space Shuttle Vehicle 102 Orbiter and LigTit Weight External
Tank (ET), designated Model 70-OT (Fig. 2), were supplied by Rockwell
International. Both the tank and orbiter were 1.25 percent scale
models primarily constructed of Armco 17-4 steel.

The orbiter model was a blended wing body with a double delta wing
planform and full span elevens with an interpanel gap between the
inboard and outboard panels. A single centerline vertical tail with
rudder and/or speedbrake capability was mounted between the two QMS
pods, and a single body flap was fitted on the lower trailing edge of
the fuselage. All control surfaces were maintained at zero deflection
during the test. Nozzle recesses and all other significant
protuberances and penetrations were simulated on the model. Model
reference dimensions are denoted in Table 1. (

The orbiter model had the capability of simulating the firing of
the RCS jet thrusters by directing high pressure gas through pre-
calibrated flow-through nozzles. The model RCS system consisted of
three removable RCS nozzle "blocks", one located in the nose and one
located in each of the two QMS pods. Each block within the QMS pods
contained nine nozzles which simulated the thrusters. The nose block
contained eight nozzles. Of the thirty-four RCS thrusters simulated on
the model, eight were inactive. The RCS nozzle locations are shown in
Fig. 3, and the RCS thruster coordinates are included in Table 2.

All thrusters in a nozzle block were fed from a common chamber.
The chamber for each block was connected to the auxiliary mass flow
System through the model support sting and load balance. Chamber
pressures in both the aft and forward blocks were correlated with the
static and pitot pressure in the sting air supply line. A single
thruster could be operated separately or in combination with any of the
other thrusters by removing plugs from specific holes in the nozzle
blocks. The combinations of RCS thrusters are shown in Table 3.
Schematics of the RCS configurations are given in Table 4.

The External Tank model includes the protuberances of the light
weight ET configuration. The ET model incorporated the biconic nose
spike. (Ref. 3)

The isolated orbiter was tested with the umbilical doors open
(Fig. 4) and closed to simulate the two phases of the GRTLS abort
trajectory. The orbiter is connected to the ET through the umbilical
doors; therefore, the isolated configuration with the umbilical doors
open simulates the portion of the GRTLS maneuver immediately following
the orbiter and ET separation. The isolated orbiter with umbilical
doors closed simulates the post-separation orbiter recovery. In
addition, the mated orbiter and ET configuration were tested. The
isolated orbiter and the mated orbiter and ET installation are shown in
Figs. 5 and 6;respectively.
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2.3 TEST INSTRUMENTATION

The instrumentation, recording devices, and calibration methods
used for all measured parameters are listed in Table 5. In Tunnel 8,
stilling chamber pressure is measured with a 200 or 1000 psid
transducer referenced to a near vacuum; the stilling chamber
temperature is measured with Chrome!-Alumel® thermocouples.

2.3.1 Pressure and Mass Flow Instrumentation

Pressures in the sting air supply line were measured with two
2000 psi Bell and Howell pressure transducers calibrated for the range
of 200 to 1200 psia. During the jet calibration phase of the test,
pressures in the model air supply chambers were measured with two
additional 2000 psi Bell and Howell transducers calibrated for the same
range. The Tunnel B Standard Pressure System .(SPS) was used to measure
the ambient pressure on the model during the jet calibrations. The SPS
uses 15 psid transducers with ranges of 0.15, 1.5, and 15 psia and is
referenced to a near vacuum.

The auxiliary mass flow system was used to supply air to the model
during jet calibrations and tests. A hot-film anemometer package was
used for flow rates lower than 0.05 lbm/-sec and supply pressures less
than 900 psia during the calibration procedures and for a few runs. A
long-radius venturi package was used for higher flow rates and
pressures.

A 2 micron filter and a 10 micron filter were placed in series in
the mass flow line leading directly to the orbiter model (Fig. 7). The
mass flow system was cleaned, and the air was sampled. The amount of
solids in the flow was not enough to obstruct the flow through the
nozzles.

2.3.2 Model Force Instrumentation

Model forces and moments were measured with a five-component,
flow-through, strain-gage balance (designated SS05) which was supplied
by NASA Langley Research Center and was calibrated by AEDC. The balance
was temperature compensated from 80 to 180°F by NASA Langley Research
Center.

2.3.3 Optical

Model flow field shadowgraph/Schlieren photographs were obtained
during the test on all configurations at selected model attitudes. The
photographs were obtained with a single-pass optical flow visualization
system through two 17.25 in. diameter test section windows.
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3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS

The nominal test condition for the test is given below:

M PT. psia TT. °R Q. psia P. psia RE. lQ6/ft V. ft/sec T. °R

5.96 40.3 850.7 0.662 0.027 0.75 2994 105

A test run summary showing all configurations is presented in
Table 7b.

3.2 TEST PROCEDURES

3.2.1 General

In the continuous-flow Wind Tunnel B, the model is mounted on a
sting support mechanism in an installation tank directly underneath the
tunnel test section. When closed, the fairing doors cover the opening
to the tank, except for a slot around the pitch sector, and a safety
door seals the tunnel from the tank area. After the model is prepared
for a data run, the personnel access door to the installation tank is
closed, the tank is vented to the tunnel flow, the safety and fairing
doors are opened, the model is injected into the airstream, and the
fairing doors are closed. After the data are obtained, the sequence is
reversed; the model is retracted into the tank, and the tank is vented
to atmosphere to allow access to the model in preparation for the' next
run. The sequence is repeated for each configuration change.

3.2.2 Data Acquisition

Model attitude positioning and data recording were accomplished
with the point-pause and continuous sweep modes of operation, using the
VKF Model Attitude Control System (MACS). Model pitch and roll
requirements were entered into the controlling computer prior to the
test. Model positioning and data recording operations were performed
automatically during the test by selecting the list of desired model
attitudes and initiating the system.

Point-pause data were obtained for selected values of ALPHA and
BETA after a 1.0 sec delay for stabilization. Continuous sweep data
were obtained with a pitch rate of 1.0 deg/sec. A data sample was
recorded every 0.0208 sec, and a sliding Kaiser-Bessel digital filter
was applied to 16 samples to produce a data point every 0.33 deg in
pitch and 1.00 deg in roll. The filtered data were then interpolated
to obtain data at the requested model attitudes.

Prior to the force testing phase, a calibration was made to
correlate PC1A and PC2A (the model air supply chamber pressures) with
PTS (the pitot pressure in the sting air supply line) for several RCS
jet configurations. These data were extrapolated to obtain
correlations for the remaining jet configurations. The PC1A 'and PC2A
pressure tubes were then disconnected from the model to eliminate

12



interference with the force balance. A run summary of the pressure
chamber calibrations is included in Table 7a.

Thrust calibrations were performed by reducing the pressure in the
model installation tank to approximately 0.5 psia and obtaining force
data at several mass flow rates. The reduced tank pressure was
required to ensure that the flow from each RCS jet was fully expanded.
To eliminate jet impingement, a sting-mounted shield was placed at the
aft end of the model, and the model wing and bodyflap were removed.
The calibrations provided a correlation between PTS and the thrust
measured by the five balance components. A thrust calibration was
performed for eighteen elemental thrust build-ups (Table 6). Each RCS
configuration was comprised of various combinations of the build-ups.

During the actual air-on testing phase, the model configuration,
RCS nozzle configuration, and mass flow rate were set in the tank
before the model was injected into the tunnel flow. Following the run,
the model remained in the tunnel test section, a new mass flow rate-was
set, and data were obtained. For some configurations an initial run
was made at a zero mass flow rate. Jet-off runs demonstrated the
repeatability of the force and moment balance and also was used to
compute the difference between jet-on and jet-off force data to examine
interference effects.

3.3 DATA REDUCTION

3.3.1 Forces and Moments

Static force data were reduced to coefficient form using the
digitally filtered data points. The data were corrected for first and
second order balance interactions and for the effects of RCS air supply
pressure on the balance. The aerodynamic coefficients were corrected
for model tare weight and balance sting deflections. Model attitude
and tunnel stilling chamber pressure were also calculated from
digitally filtered values.

Model aerodynamic force and moment coefficients were presented in
the body axis system. The reference area was the model planform of
60.525 in.2. Moment coefficients were referenced to a point
corresponding to 66 percent of the orbiter body length and also to a
point corresponding to the Mated Coast reference center located at 65
percent of the orbiter body length (Fig. 8). The model orbiter length
of 16.129 in. was used to normalize pitching, yawing and rolling
moments.

The body axes coefficients were corrected for thrust effects using
the following equations:

CNR =CN-KT1-PTS/(Q-S)

CLMR = CLM • KT2 PTS /TQ̂ S LI)
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CYR =CY-KT3-PTS/(Q-S)

CLNR = CLN- KT4• PTS/(Q-S-L2)

CLLR = CLL • KT5-PTSI(Q• S• L3)

where KT1-5 were determined during the thrust calibration described in
section 3.2.2 and are listed in Table 8.

The interference effect coefficients were calculated using the
equations:

ICNR =CNR jet_onrun-CNRBASRU

ICLMR =CLMRJet.onrun-CLMRBASRU

ICYR = CYRjet^n run - CYRBASRU

ICLNR = CLNRjet.onrun - CLNRBASRU

ICLLR = CLLRjet^n run • CLLRsASRU.

3.3.2 Pressures

The sting pressures, PTS and PS1, were measured parameters. The
model chamber pressures, PC1A and PC2A, also were measured during the
calibration phase. For the remainder of the test, the model chamber
pressures were calculated using the calibration constants, i.e.:

PCI = Kl. PTS

PC2 = K2 . PTS

where K1=K2 = 1- 2.176-10-5 (z nozzles)2.

3.3.3 Temperatures

TC and TTV2 were measured temperatures of the air supplied by
the auxiliary mass flow system.

3.3.4 Flow Rates

The equations used for the venturi flow rate data reduction are:

P2PA = 1.0-DPV2/PTV2

PHIM =
(P2PA1'42857/ 0.28571 V (l.O -P2PA

f 1.0 - 0.000397 • P2PA1-42857]0'5

0-28571

14



1.09822- PHIM- PTV2- AN
MDOTP =

(7TV2)0-5

W=2.89- 10~9- T7V20-7778

MDOTP- 48

MU- n- DN- G

CD=l.Q-2.39/RED0 '4 '

MOOT = CD- MDOTP.

The theoretical flow rate calculation was made using discharge
coefficients provided by Rockwell, which resulted in the equation:

WG = (KM1 • PCI + KM2 • PC2) I TCO-5.

The values of KM1 and KM2 were derived by summing the mass flow
calibration factors for each thruster in the RCS configuration
(Table 9). KM1 represented the forward thrusters while KM2 represented
the aft thrusters.

In addition to the venturl flow meter, a target flow meter was
installed in the mass flow line inside the tunnel installation tank.
The target flow meter was primarily used to identify leaks in the mass
flow system by highlighting inconsistencies in the venturi readings.
Mass flow impinging on a "target" in the instrument stresses a strain-
gage which is calibrated to accurately determine the mass flow rate.

3.3.5 Thrust and Momentum Ratios

Four groups of jets were designated for the RCS system: FLS,
forward left side; FRS, forward right side; ALS, aft left side; and
ARS, aft right side. For each group, theoretical and "actual" thrusts
and momentum ratios were calculated. The theoretical thrusts were
calculated using the nominal RCS jet geometry which resulted in the
equation:

TxxxT = Nxxx • (0.0019554 • PCx • 0.0147 • P)

where xxx designates the jet group, and PCx was PCI for the forward
groups and PC2 for the aft groups. P represents the average of two
measurements of the tunnel injection tank static pressure (PTANK1 and
PTANK2).
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The "actual" thrusts were computed using discharge coefficients
provided by Rockwell. The resulting equation was:

TxxxA = KTHxxx• PCx • Nxxx-P-AE

with xxx, PCx and P representing the same convention as above. The
KTHxxx values were derived by summing the RCS nozzle thrust calibration
factors for each jet group (Table 9).

Similiarly, the theoretical momentum ratios were determined using
the nominal jet geometry. The resulting equation was:

MRxxxT = (0.0022345 PCx) IQ.

The "actual" momentum ratio for each group was then determined
using the equation:

MRxxxA = (TxxxA • MRxxxT) I TxxxT.

3.4 MEASUREMENT UNCERTAINTIES

In general, instrumentation calibration and data uncertainty
measurements were made using methods presented in Ref. 2. Measurement
uncertainty (U) is a combination of bias and precision errors defined
as:

U = ± (B + t95S)

where 8 is the bias limit, S is the standard deviation, and tgs is the
95th percentile point for the two-tailed Student's "t" Distribution
(95-percent confidence interval), which equals 2 for degrees of freedom
greater than 30.

Estimates of measured data uncertainties for this test are given
in Table 5a. With the exception of the force and moment balances,
data uncertainties are determined from in-place calibrations through
the data recording system and the data reduction program. Prior to the
test, static loads in each plane and combined loads were applied to the
balance to simulate the range of loads and center-of-pressure locations
anticipated during the test. This simulated loading was performed with
and without an internal balance pressure of 1000 psia. In addition a
posttest balance loading (which correlated with the pretest loading)
was performed to ensure the posttest integrity of the balance.
Measurement errors are based on differences between applied loads and
corresponding values calculated from the balance equations used in the
data reduction. Additional precautions taken to protect data quality
included not removing the model from the balance during the test and
acquiring frequent repeat runs. Repeatability remained within the
measurement errors.

Propagation of the bias and precision errors of measured data
through the calculated data was made in accordance with Ref. 2 and the
results are given in Table 5b. Uncertainties for the calculated data
are presented for the maximum value of each parameter measured.
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4.0 DATA PACKAGE PRESENTATION

Force and moment data, mass flow data, and test conditions were
reduced to tabular form for presentation as a Data Package. Examples
of the basic tabulations are shown in the Sample Data.

Missing run numbers or deleted data points indicated bad data or
nonexistent runs. For runs during which the balance design loads were
exceeded, the affected data point(s) are denoted by an * in the left
margin of the tabulated data.

All photographic data, including model installation and
shadowgraph/schlieren photographs, were sent to the user under separate
cover.
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TABLE 1. MODEL REFERENCE DIMENSIONS

Symbol

AE

AT

AR

B

BC

C

DE

DT

LB

MRC

S

XCG(66%)

XCG(65%)

Full Scale

78.057ft.

1290.3 in.

xo = 1089.6 in.
yo = 0 in.

zo = 375.0 in

2690 ft2

854.59 in.

841. 70 in.

Model

0. 14698 in2

0.001 1763 in2

0.0225 in2

11. 709 in.

xo = 13.459in.
yo = 0 in.

zo = 4.75 in.

5.935 in.

0.1368 in.

0.0387 in.

16.129 in.

xo = 13.620 in.
yo = 0 in.

zo=4.688 in.

0.4203 ft2

10.645 in.

10.484 in.

Orbiter nose is at xo = 235 full-scale equivalent to xo = 2.9375 model scale.
XCG is measured from model nose.
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TABLE 2. RCS THRUSTER COORDINATES

THRUSTER
NO.

113
116
123
126
133
136
143
146

215
223
225
226
233
236
243
245
246

315
324
325
326
334
336
344
345
346

MODEL

Xn

4.535
4.200
4.560
4.375
4.535
4.200
4.560
4.375

19.275
19.113
19.113
19.144
19.275
19.307
18.950
18.950
18.982

19.275
19.113
19.113
19.144
19.275
19.307
18.950
18.950
18.982

SCALE (1n.)

y

-0.869
-0.793
-0.894
-0.845
0.869
0.793
0.894
0.845

-1.650
-1.869
-1.650
-1.441
-1.869
-1.430
-1.869
-1.650
-1.449

1.650
1.869
1.650
1.441
1.869
1.430
1.869
1.650
1.449

ZQ

4.670
4.458
4.494
.4.469
4.670
4.458
4.494
4.469

6.232
5.738
6.232
5.352
5.738
5.384
5.738
6.232
5.319

6.232
5.738
6.232
5.352
5.738
5.384
5.738
6.232
5.319

Notes Thruster reference point is the intersection of the thruster axis

and the model surface*
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TABLE 4. RCS THRUSTER CONFIGURATION SCHEMATICS
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NO.

|

2

3
4
5
6

%\
6
9

10
I I

12
13
14
15
16
17
18

NOZ.

2V?

2TT

2^6
116
246
M 6
246
f / 6
246
1 1 6

1 16

ill

) > 6

246
1 ) 6
346
1 ) 6
346
123
346
123
346
123
246
)23
244
»23
2H6

RCS
JET DIAGRAMS

L

4 4 T *

777 ' 77""

T77 T 777

77 4 ' 7 7 7
-.iili.±-
4 4 4 T t t

4 4 1 4 4
4 4 T *

_ i l l l l_

- 4 4 1 4 4
7 =s

— ; i i 4 4
4 4 4 7 1 4 4 s

— 4 4 J_ 4 4
4 4 4 1 ' » * -

""7 7 T7 =s
- 4 4 1 4 4

t 7 4 | S
— 4 4 1 4 4

t « 7 4 4 4 =£

"777777=

---+---=
77777 =*

777 T 77""=s

7 7 7 T 7 7 7-

CONF.
NO.

19
20
21
22
23
24
25
26
27
60
61
140

MR
NOZ.

^6

2^6

246

246

246
116
246
116

246
116
344

246

/ I fe

113

air

RCS
JET D I A G R A M S

777"" 7775

. . . =

. . .
i

= 4 4 4 >
4 4 1 4 4

= 4 4 4 - 7
4 4 1 4 4

4 4 4 T

4 4 1 4 4
4 4 4 T S

4 4 1 4 4
7 5

4 4 1 4 4
4 4 4 7 4 4 4 =

77T7 4, 77

-»
1

* 4 I 4 4 FWO
4 4 T t t »"

LOOKING FORWARD

33



TABLE 4. (CONCLUDED)
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TABLE 5. (CONTINUED)

b. Calculated Parameters

Parameter
Designation

CN

CLM

CY

CLN

01

CN

CLfl

CY

ON

CLL

ALPHA, deg

BETA, deg

Steady-State Estimated Measurement*

Precision Index
(S)

Percent
of

Reading
Unit of

Measurement

0.003

0.0008

0.0025

0.0003

0.0002

0.002

0.0004

0.002

0.0001

0.0002

0.025

0.014

Bias
(8)

Percent
of

Reading
Unit of

Measurement

0.004

0.0004

0.0007

0.0002

0.0001

0.004

0.00008

0.0

0.00009

0.0001

'

0.0003

0.0001

Uncertainty
+(B + t95S)

Percent
of

Reading
Unit of

Measurement

0.01

0.002

0.006

0.001

.0.0006

0.008

0.0009

0.004

0.0003

0.0005

0.05

0.05

Nominal
Value

0.596

0.169

-0.292

0.079

-0.025

SEE NOTE 1

SEE NOTE 1

SEE NOTE 1

SEE NOTE 1

SEE NOTE 1

18.0

10.29

1. Calculation made without Q uncertainty.

Reference: Abernethy, R.B. et al and Thompson, J.W. "Handbook Uncertainty in Gas Turbine Measurements," ftEDC-TR-73-5, February 1973.
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TABLE 5. (CONCLUDED)

Calculated Parameters (concluded)

Parameter
Designation

.1

RE, ft"1*

Q, psia

P, psia

T, R

V, ft/sec

Steady-State Estimated Measurement*

Precision Index
(S)

Percent
of

Reading

0.08

0.37

0.43

0.57

0.19

0.06

Unit of
ileasureaent

Bias
(B)

Percent
0*

Reading

0.0

0.43

0.25

0.25

0.24

0.12

Unit of
Measurement

Uncertainty
t<B + t95S)

Percent
Or

Reading

0.17

1.13

1.11

1.40

0.61

0.24

Unit of
Measurement

Nominal
Value

5.96

0.75 E+6

0.66

0.27

r 105

2994

•Reference: Abernethy, R.B. et al and Thompson, J.U. "Handbook Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5, February 1973.
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TABLE 7rTEST RUN SUMMARY

a. Calibration runs
ORIGINAL PAGE IS
OF POOR QUALITY.

RCS
Config.

Chamber Pressure
Calibrations Thrust Calibrations

4-

A3
50

101

834,3

loS
^Sfc.2. S ̂ 4= 4-

167 834/ . 93^4,
1 \

\ \7L

4- -)-
ia 17

32.

137

40



TABLE 7. (CONTINUED)

tfc Test Matrix Runs

UMBILICAL
DOORS

CLOSED

^
f

RCS
CONFIG

N/A

\ r

BETA

O

,

-5
1

+ 5
1

+ 10

1

PC (psia)

0

1-^, .^4-
s

S4,5^, ̂ o

1o^ - *o5

199 ^22

2.^2,2.47
•

2.50, Z5/j
2u%. ^y?

507, ftOR

^ 35 y<D<k^ —
J2_52.^ S^4-

7, =?£,. /o7

^153^ 505

A. /Of l 2.^4-' /
^/^^

41



TABLE 7. (CONTINUED)

hi Test Matrix Runs (continued)

UMBILICAL
DOORS

OPEN

i r

RCS
CONFIG

N/A

r

BETA

0

1

1

- Z

•*- 2.

+ 5

PC (psia)

0

54S 1 549

*T^5 j5S5

4Rk

^50. 5^6,

K^),<r^7

552, S4?3

MATED

UMBILICAL
DOORS

OPEN

1 f

RCS
CONFIG

N/A

r

BETA

0

J,

-2.
1

*2.

*.T

PC (psia)

0

^3r^ <?^s
PiS5

^/9 }S2^)

83K932.
j

333

&*+?>

42



TABLE 7. (CONTINUED)

b. Test Matrix Runs (continued)

UMBILICAL
DOORS

CLOSED

Hr

RCS
CONFIG

1

• i •

2

ip

3

\ i

*

if

BETA

0

-5

+ 5
+ /0

o
-5

+ £

•* lo

o

- 5
+ 5
+ 10

O
I

-5
t

+ ,5"
|

+-/0

|

PC (PSIA)

515

3or
304,

307

3o8

3/S

3/9
3Zo

32!

22

23

24

25-

/09
^^V-
I /o

-f^fT

/ / /

4¥4
/ / 2
4^7

770

3o?

3 lo

ill"

3I2.

32Z

323

.^24

.^25-

2/o

27

Z£>

2s?

II3
44^'

1(4
4*4-9

IIS

45s

1 lt»

HSI

1030

3/3

3I4

3»5

3 It*

?^2^

327

32-S>

327

BO

3)

J32.

35

in
H52

l i f t

4S3

U9

454

I 2.0

4<5

BASRU

^
^To4
^6-

XOia

*r
.̂ oM-

.5"o5"

5~o U

.r

^
107

109,

5~

jT
4 -

5o±
1 07

SOS'
ion

JTOk

43



TABLE 7. (CONTINUED)
i.

b. Test Matrix Runs (continued)

UMBILICAL
DOORS

RCS
CONFIG BETA

PC (PSIA)

515 770 1030
BASRU

CLOSED M-oo HoM-
Hoi Ho5

•HO Ho?

HOP, M-IX

- 5" HIT

HI4 Hlft
M-ll 4I9

Zf

497. H9C 5"oo
2.Z

2/7 107

t /D I32.
H99 503

5*
^59

t S' 107
' r .^57

44



TABLE 7. (CONTINUED)

* Test Matrix Runs-(continued)

UMBILICAL
DOORS

RCS
CONFIG BETA

PC (PSIA)

515 770 1030
BASRU

CLOSED 0

-5" II

25Z
IZ
re 07

/3 /7

/oa
fos

o 77-i /T/3 517

-/T 73 77

I
5*2 Z

252.
2~2

45



TABLE 7. (CONTINUED)

b. Test Matrix Runs (continued)

UMBILICAL
DOORS

RCS
CONFIG BETA

PC (PSIA)

515 770 1030
BASRU

CLOSED f 0 72 IS 107

i/ .SI 9

10 DSi
o

A7 / 07

C27
10 AH- flfi /oa

t
-5i ^7.5" 2SZ

"46



TABLE 7. (CONTINUED)

b. Test Matrix Runs (continued}

UMBILICAL
DOORS

RCS
CONFIG

BETA
PC(PSIA)

515 770 1030
BASRU

CLOSED tz loo
.^72 101

/O IQI

177

O

373

Z.5Z.

290 252
2.01 1
292.

IS 297 3o/

t 2.9T Z99 107

-I-/0 lofi

47



TABLE 7. (CONTINUED)

b. Test Matrix Runs (continued)

UMBILICAL
DOORS

RCS
CONFIG BETA

PC (PSIA)

515 770 1030
BASRU

CLOSED 2.2.3

-/T ZZQ 2.5*2.

Io7
10

17 o

Z37 2:4 / 107
10 235

/e 2.73 277

Z70 27+ Z73

2.75- 2.79 \07
10 InB

UMBILICAL
DOORS

CLOSED

i

RCS
CONFIG

19

4 >

BETA

0

-5"

>T

•f /O

PC (PSIA)

515

£00

2.0 1
2^Z

2^3

662

£-08

Zo9
2 / 0

2 / /

770

2o4

So5

204

z&r

BASRU

/r
^5^,

£"o/r
^•^^

48



TABLE 7. (CONTINUED)

b. Test Matrix Runs (continued)

UMBILICAL
DOORS

RCS
CONFIG BETA

PC (PSIA)

515 770 1030
BASRU

CLOSED 2.IZ 2.1(0 .3
33 S

Z/3 252
335- 339

33^ 340

2/5-
337

47

22 5

.5o 4

-h/0

o / 5 3

144, 5-0

429 50 4

49



TABLE 7. (CONTINUED)

b.i Test Matrix Runs (continued)

UMBILICAL
DOORS

RCS
CONFIG BETA

PC (PSIA)

515 770 1030
BASRU

CLOSED 147

5 'of
4ZZ

S'Z
I5T7

42 ?>

37

44o
14

44-)
143 107
44Z

H-43

2.5 59

25Z
14=5" 137

46,7. 107

t ± no /OS

50



TABLE 7. (CONTINUED)

. b. Test Matrix Runs (continued)

UMBILICAL
DOORS

CLOSED

RCS
CONFIG

i.

BETA

-5

+10

PC (PSIA)

515

1 71
J75-

7Z

431

173

770

176

ITT

7R

/79

1030

Ifto

I X I

j as.

BASRU

107

107
\ O 7

108

Ion

FAIRING
DOOR

CLOSED

*
M

RCS
CONFIG

27

I i

BETA

O

I
_CL

|

+ s
1

+ 10
1

PC (PSIA)

515

I ft7

IBS

4US

\ f t 9
Hlo
1 9o

ULH I

662

/q^r

19^

1^7

1 qs

770

I Q \

Hnr^
\°i7_
H-13.
\ S ^
M-14
\^4
Il»iC

1030

H-'lt

M-11

^Ift

U.n Q

BASRU

.s

.5"
252.

2.5Z
505
107
fTok
\ ^ 0

51



TABLE 7. (CONTINUED)

Ix Test Matrix Runs (conthued)

UMBILICAL
DOORS

OPEN

> r

RCS
CONFIG

Zft

i r

' Z9

\ r

BETA

0

- 2.

+ 2

tJT

0

-2.

•*-2.
t r*

PC (PSIA)

515

7Z3

72.4

72. 5"
12.L

307

£oa
i=to9

fi/0

770

7£7

7Zft

72.9

r?o

#//

^/Z

&IZ

#t+

1030

731

732.

73^

7? 4

fl/^-

«5/6

$311

ft/8

BASRU

^T

jT^

.6^7

^4S

.r
.'S'̂ o

S&l
5*^2.

UMBILICAL
DOORS

OPEN

i t

RCS
CONFIG

3o

1
r

BETA

O

--Z-

+ -2.
1-5-

PC (PSIA)

400

^^7

510

577

T72

555

.-T73

^"74

*7f

5*7^

690

577

^73

.•T/9
.TRO

770

.5*8 /

.5"SZ

^<?3

Ss4-

BASRU

.-s-
JT5*n

.4T3-/

5"5 .̂

UMBILICAL
DOORS

OPEN

RCS
CONFIG BETA

-z
2.

-2

PC (PSIA)

515 770 1030

T97

BASRU

fT

52



TABLE 7. (CONTINUED)

b. Test Matrix Runs (continued)

UMBILICAL
DOORS

OPEN

i »

RCS
CONFIG

33

« t

BETA

<O

-z
+ Z

+ 5-

PC (PSIA)

400

.598

5*99

fcao

k&l

555

4=02.

Lo*
Lb±

kQo

670

(*0<*

b'67

£oa
k&9

770

&/0

Lll

^/z
C*I3

BASRU

.>r
^5"^

-^•T/
^5*2.

UMBILICAL
DOORS

OPEN

\ r

RCS
CONFIG

34-

r

BETA

0

-2.

+ TL

+ 5

PC (PSIA)

515

111

77Z

773

77^

770

77f

77t*

777

77#

850

T79

7,??d)

781

7&Z.

BASRU

.6"

-5^0

^•^•/

"̂5*2-

UMBILICAL
DOORS

OPEN

i f

RCS
CONFIG

3/T

i r

BETA

n
-2.

*Z

•*-5"

PC (PSIA)

515

&2.C,

£2.7

,̂2S

^29

770

^^0

Cs3l

^2.

&33

1030

^^^f

^35-

/«3^
437

BASRU

JT
.5"j5b
3ffl
^^2.

UMBILICAL
DOORS

OPEN

RCS
CONFIG BETA

-z

PC (PSIA)

515 770 850
BASRU

53



TABLE 7. (CONTINUED)

b. Test Matrix Runs (continued)

UMBILICAL
DOORS

OPEN

i p

RCS
CONFIG

37

\ r

BETA

<O

- z.
+ 2.
+ 5-

PC (PSIA)

400

7E3

7RV-

7£?S*

7Qfo

515

7£7

788

729

790

650

r<?/
79Z

793

79*t

BASRU

jT

j£5£

5^/

£T^2.

UMBILICAL
DOORS

OPEN

^
t

RCS
CONFIG

3R

i f

BETA

O

-2.

+ 2.

f.5"

PC (PSIA)

515

<^42.

^»43

^A4

^A.-T

770

4^da

^&7

^4^

A49

900

<^7n

A7/

L7Z

&73

BASRU

^S"

^5-̂

551

^*52-

UMBILICAL
DOORS

OPEN

• r

RCS
CONFIG

^?9

i r

BETA

O

-2.

+ 2.

*5"

PC (PSIA)

400

735-

73L

737

r^«

515

739

740

74-1

74Z.

650

743

74-4-

745T

746,

BASRU

^T

^5!5o

^^/

5:52.

UMBILICAL
DOORS

OPEN

1

RCS
CONFIG

±G

, r

BETA

O

-2.

+ 2.

+ X

PC (PSIA)

400

-7^7

7^ft

7^-?

7<0

515

7.5V

7^2.

73^

7^^

770

TL«"

75"̂

7.5*7

7^8

BASRU

^~

J515"o

^5*7

^5*2.
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TABLE 7. (CONTINUED)

b. Test Matrix Rims (continued)

UMBILICAL
DOORS

RCS
CONFIG BETA

PC (PSIA)

515 770 1030
BASRU

OPEN

-z 47? ^,83

f'Z.
677

o 437

-z 659

I 6,89

UMBILICAL
DOORS

OPEN

I >

RCS
CONFIG

H-3

>

BETA

Q

-2.

+2.

>.̂ r

PC (PSIA)

515

•759

7^0

7^/

742

770

74^

7A4

7^^

7^4

850

747

76 ̂

7^9
770

BASRU

5

/=^£>

5SI

.^5^

UMBILICAL
DOORS

OPEN

7X;'

,̂ »;.<..
j.:#;»-

*
r

RCS
CONFIG

H-H-

i r

^S

i p

BETA

O

-z
-t-2.

.f 5"

<T)
-2.
fSL
-»-5T

PC (PSIA)

515

*7II

7I2_

7/5

7/4-

<^99

700

~7a/

7oZ

770

7/5

7/k

7/7

7/a

703

7o<^

70S

"7/0 fe

1030

7I9

7ZO

72)'

7ZZ

707

70&

703

7/0

BASRU

^
£&&

%7

54&

^
544

X^7

*&ft

55



TABLE 7. (CONTINUED)

tx Test Matrix Runs (continued)

UMBILICAL
DOORS

OPEN

RCS
CONFIG

4-9

So

SI

to

u

BETA

-2.

-2.

-z

PC (PSIA)

515

797

798

770

799

455

4S-7

1030
BASRU

557

UMBILICAL
DOORS

RCS
CONFIG BETA

PC (PSIA)

99 250 500
BASRU

900

OPEN

HI 5"
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TABLE.7. .(CONCLUDED)

b. Test Matrix Runs (concluded)

UMBILICAL
DOORS

RCS
CONFIG BETA

PC(PSIA)

515 770 1030
BASRU

OPEN

82.0

851

So 5^3

8Z7

82.Z

ass

859

NOTE: MATED CONFIGURATION
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âs
c

o
o

<\
r-
(fl

^
C

r^
CN

O
i

rOin
o
"I

1

00

1
cs
i

^

ir

OC

Q

VI

C

C

c\
IT
C
c

1

~r

61



TABLE 9. RCS THRUSTER PARAMETERS

Thruster No.

113
116
123
126
133
136
143
146

215
223
225
226
233
236
243
245
246

315
324
325
326
334
336
344
345
346

Kth. X 103

1.8023
1.7398
J.7731
1.7596
1.7504
1.7217
1.9428

. 1.7952

1.7106
1.7278
1.7237
1.7539
1.7610
1.7529
1.7912
1.7298
1.7418

1.7177
1.7348
1.7298
1.7066

.7398

.7398

.7459
.7801
.7569

KBi * 103

0.6085
0.5691
0.5976
0.5936
0.6091
0.5858
0.6493
0.6094

0.5735
0.5835
0.5866
0.5988
0.5974
0.5985

• 0.6052
0.5866
0.5972

0.5811
0.5635
0.5863
0.5781
0.5900
0.5923

. 0.5860
0.6029
0.5954
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