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ABSTRACT

The radar cross section patterns of lossy dihedral corner

reflectors are calculated using a uniform geometrical theory of

diffraction for impedance surfaces. All terms of up to third order

reflections and diffractions are considered for patterns in the

principle plane. The surface waves are included whenever they exist for

reactive surface impedances. The dihedral corner reflectors examined

have right, obtuse, and acute interior angles, and patterns over the

entire 360° azimuthal plane are calculated. The surface impedances can

be different on the four faces of the dihedral corner reflector; however

the surface impedance must be uniform over each face. Computed cross

sections are compared with a moment method technique for a

dielectric/ferrite absorber coating on a metallic corner reflector. The

analysis of the dihedral corner reflector is important because it

demonstrates many of the important scattering contributors of complex

targets including both interior and exterior wedge diffraction,

half-plane diffraction, and dominant multiple reflections and

diffractions.
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I. INTRODUCTION

For many years, engineers have investigated how the shape and

•aterial properties of conplex objects affect their backscattering

patterns. The interest in this area is primarily aimed toward using

appropriate shaping along with lossy or coated materials to reduce the

radar cross section of complex targets, such as aircraft. A large

majority of the published research in this area concerns mainly the

perfectly conducting surfaces for which extensive analytical techniques

exist. Only recently has published work been available on complex

targets constructed of lossy or composite materials.

In this paper, backscattering from one of the most fundamental

complex targets, the dihedral corner reflector, is considered using the

recently available uniform geometrical theory of diffraction (UTD) for

interior impedance wedges [1]. Uniform asymptotic theories for exterior

impedance wedges have also been considered in [2] and [3]. The dihedral

corner reflector is formed by attaching two rectangular plates along a

common edge and separating the plates by a specified interior angle.

The impedance surface boundary condition is assumed, and the plates are

permitted to have different impedances on the four faces although the

impedances must be uniform over each face. The impedance surface

boundary condition is one of the most common approximations to the exact

boundary conditions on lossy surfaces, and its validity has been

discussed by several authors [4]-[6]. It is a useful approximate

boundary condition because it allows mathematically tractable results

while giving accurate answers.
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The dihedral corner reflector with impedance surfaces demonstrates

many of the scattering mechanisms which exist on more complex lossy

structures. It includes three types of diffracting wedges; the half

plane, the exterior wedge and the interior wedge. In addition, the

dihedral corner reflector has very dominant higher order reflections and

diffractions, and it is these higher order terms which are often the

important scattering mechanisms of complex structures. Of particular

interest is the 90° dihedral corner reflector because 90° corners often

exist on many complex targets. This corner reflector has a very strong

double reflection which dominates the backscatter pattern in the forward

region. For the impedance surface case considered, the lossy reflection

reduces the magnitude of the backscattered field, and, in a double

reflection, that loss is encountered once at each reflection. The

dihedral corner reflector then is a very important target for studying

the effectiveness of surface coatings and composite materials as well as

for examining the properties of various interior and exterior angles and

plate sizes.

The perfectly conducting dihedral corner reflector has been

examined previously using both physical and geometrical theories. Knott

[7] used a physical optics analysis for single and double reflections to

determine the backscattering reduction achieved by varying the interior

angle of the corner reflector. Anderson [8] added higher order

reflections to this physical optics method and further investigated the

effects of the dihedral angle. Griesser and Balanis [9] used physical

optics and the physical theory of diffraction to examine the corner

reflector in the full azimuthal plane and to demonstrate tradeoffs in
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accuracy and complexity of physical optics and physical diffraction

techniques. Michael! [10] presented a refined analysis of the

scattering from a 90° dihedral corner reflector illuminated near grazing

incidence. The dihedral corner reflector was first studied using the

uniform theory of diffraction (UTD) by Yu and Huang [11] in the forward

region. Griesser and Balanis [12] improved the UTD model by adding all

possible multiple reflection and diffraction terms of up to third order

for the entire azlmuthal plane. The dihedral corner reflector for the

lossy surface impedance case has recently been studied by Corona,

Ferrara and Gennarelli [13]. In [13], only backscattering from a 90°

dihedral corner reflector for ±45 on each side of the forward direction

was considered using physical optics refined by a UTD technique. The

UTD was added to the geometrical optics field for the double reflection

only. The method cannot be extended to corner reflectors of other

interior angles because no physical diffraction coefficient is available

for the interior wedge of arbitrary angle.

In this work, the lossy dihedral corner reflector is examined using

geometrical optics refined by the uniform geometrical theory of

diffraction for Impedance surfaces. An imposed edge is added near

normal incidence to the reflecting plates in the forward region to

achieve continuity near the major lobes [12]. Different surface

impedances are allowed on each of the four dihedral corner reflector

faces, and the cross section patterns are the same as for the perfectly

conducting case [12] when the surface impedance approaches zero. The

method is based upon the newly derived diffraction coefficients for the

interior impedance wedge [1] which have the same form as the perfectly
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conducting UTD with suitable Maliuzhinet's functions as multiplying

factors. Also, using [1], the surface waves are readily added to the

diffraction terms. Both vertical and horizontal polarizations are

considered for backscatter patterns of dihedral corner reflectors

computed in the principle plane. The entire 360° azimuthal plane is

investigated using this technique to distinguish the effects of both

interior and exterior reflections and diffractions. Surface waves are

included in the analysis. In general, surface waves exist only for

certain reactive surface impedances whose range of values is a function

of polarization.

II. ANALYTICAL METHOD

The dihedral corner reflector with lossy surfaces is illustrated in

Fig. 1. It is formed by connecting two flat rectangular plates at a

common edge, and the plate sizes and orientations are specified in the

figure. The radar cross section is computed in the principle azimuthal

plane; that is, the x-y plane, in the angular direction 0 measured from

the x axis. Following common practice, the range of observation R

should be larger than 2D*A where D is the largest dimension of the

corner reflector and where A is the free space wavelength. The vertical

and horizontal polarizations are considered. For the vertical

polarization the electric field vector is parallel to the z-axis while

for the horizontal polarization it is perpendicular to the z-axis. An

eJwt tiBe convention is assumed and suppressed. The complexity of the

backscatter analysis is reduced by considering the dihedral corner
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reflector to be a short segment of a longer two-dimensional object

extending toward infinity along the z-axis [12].

It is first desirable to tabulate the possible backscattering terms

necessary for computing the radar cross section of the dihedral corner

reflector in the azimuthal plane. As shown in Fig. 1, there are four

diffracting edges and four reflecting surfaces in the dihedral corner

reflector geometry. The diffracting edges are numbered 1, 3, 5, and 7

while the reflecting surfaces are numbered 2, 4, 6, and 8. The

normalized surface impedances on each face are defined as n , r\ , n and

n . Each surface impedance is normalized to the free space value, and
8

the impedances are required to be uniform over each individual face.

The T\=O case corresponds to the perfect electric conductor while n.=°°

represents a (non-physical) perfect magnetic conductor. These eight

reflecting and diffracting elements yield eight first-order scattering

terms.

It is obvious that a first-order analysis is insufficient for the

complex geometry of the dihedral corner reflector. It is well known

that the dominant scattering terms are the higher-order reflections and

diffractions; hence it is necessary to add higher order terms. In

total, there are sixteen second-order mechanisms and forty third-order

mechanisms to consider. For smaller interior dihedral corner reflectors

it is necessary to progress even to fourth-order terms. To lend some

organization to the analysis, a special naming convention is used to

identify particular scattering components; each component will be

preceded by a capital letter C, and each will include digits

corresponding to the order of the associated reflections and
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diffractions, as defined by the numbering convention of Fig. 1. For

example, C142 corresponds to a ray which is initially incident on and

diffracted by edge 1, then is reflected by surface 4, and finally

reflected by surface 2 toward the observation point. CIS is a ray which

is initially incident upon and diffracted by edge 1, and then diffracted

by edge 5 back to the observation point. The complete listing of all

necessary terms is as follows:

First-order terms

Cl C2 C3 C4 C5 C6 C7 C8

Second-order terms

CIS C14 CIS C17 C24 C25 C31 CSS

C41 C42 C51 C52 CSS C57 C71 C75

Third-order terms

C142 C151 C152 C153 C157

C242 C251 C252 C253 C313

C352 C353 C413 C414 C415

C514 C515 C517 C524 C525

C575 C715 C717 C751 C757

In addition the imposed edges of [12] are included at the geometrical

optics shadow boundaries of surfaces 2 and 4. The lists could be

reduced if some symmetry is introduced to the problem; that is, if both

plates are of identical sizes and impedances. Each term exists only

over a finite angular range which is determined by the geometry of the

problem [12], [14]. In addition, for a particular reflector at a given

orientation some terms will be very dominant while others may be

negligible. However in some other direction or for a different interior

C131

C171

C314

C424

C531

C135

C175

C315

C425

C535

C141

C241

C351

C513

C571
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angle, the negligible terms may become the dominant terms, hence it is

best to include as many terms as practical. In fact for small interior

angles it may be necessary to progress to fourth order terms.

Each of the backscattering terms for the two-dimensional dihedral

corner reflector can be written as a product of the incident field and

the appropriate reflection coefficients, diffraction coefficients,

spreading factors and phase factors. To simplify the geometrical

considerations, the reflections of rays are accounted for by utilizing

the method of images. All images of the source and the diffracting

edges are located through the reflecting surfaces. In this manner, the

problem reduces to terms which involve only the rays from the source or

its image diffracting off edges or their images. For a particular

component, the reflections, if any, are numbered 1 through p, and the

diffractions, if any, are numbered 1 through q. Each of the

backscattered terms can then be written as

u"-u

(i)

The first term corresponds to the incident field, the second term

corresponds to the product of the reflection coefficients, and the third

term corresponds to the product of diffraction coefficients, spreading

factors and phase factors. For vertical polarization US=ES and U=E

while for horizontal polarization US=HS and U =H . The distance from

the source (or its image) to the first diffracting edge is p . The

distance pi is the distance from the 1
th diffracting edge to the next
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diffracting edge or the observation point. Alternatively, the distance

PJ_I is the distance from the i diffracting edge to the previous

diffracting edge or the source point. The angles 0! and 0. are measured

from the 0 face of the ith diffracting edge in the direction of

incidence and diffraction, respectively. The edge wedge parameter n.

and the impedance angles 01 and 0* similarly correspond to the i

wedge. The lossy wedge diffraction coefficient D(0',0,p,n,0 ,0n) is

defined in [1]. This recently derived coefficient is valid for both

interior and exterior impedance wedges, and it is similar in form to the

perfectly conducting case with suitable multiplying factors based on the

Maliuzhinets function. It provides the proper discontinuities to

compensate for discontinuities at shadow boundaries for all lossy

multiple reflections of any order for any surface impedance. For the

vertical polarization, 0 ̂sin"1 1/ri and ©n=sin~
1 l/nn>

 anc* f°r

horizontal polarization, 0 =sin n an(* 9n=sin nn- The angles 0 and

0 represent the Brewster angles for which there is no reflection from

the corresponding face for the given polarization. The reflection

coefficient 1̂ (9 .1,0.1) corresponds to reflection from the j surface and

is a function of both the grazing angle of incidence <P^ and the Brewster

angle 0^. For the lossy surface reflection the reflection coefficient

is given by

sin<p. - sin0 .



-10-

To include the surface wave terms in the cross section analysis, it

is necessary to modify the third term in (1) which includes the product

of diffraction coefficients, spreading factors and phase factors. For

plane wave incidence, the surface wave term and the associated surface

wave transition function have been given in [1] as U (0',0,p,n,9 ,&n) +

USUTR(0',0,p,n,fl ,0n) with associated bounds on their regions of

existence being implied. For a given polarization, each term exists

only .for a certain range of surface impedances. Unfortunately, there is

no solution to the impedance wedge problem for cylindrical wave

incidence from which surface waves can be derived. Hence it is only

possible to utilize the surface wave terms derived for plane wave

incidence as approximations to the cylindrical wave case. For the first

diffracting edge this is a justifiable approximation because the source

is at a far distance. For multiply diffracted terms it may be a less

accurate approximation. To include the surface wave and its associated

transition field, (1) becomes

r.j(<PH .0.s)

, -
i ' 0 l '

1 o pq-ipq n eq flq> e jkpqV P~^ • WV ^-

The surface wave is added for the multiple diffractions between edges,

because it is for these terms that a surface wave would be expected to
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propagate along the face from one diffracting edge to the next.

III. ANALYTICAL RESULTS

In all of the cases considered in this paper, the dihedral corner

reflector is assumed to be constructed of two square plates measuring

5.6088X on each side, and a frequency of 9.4 GHz was considered. The

calculations are made in the principle plane and the radar cross section

area is presented in decibels relative to a square meter (dBsm). The

region near the bisector (0=0) of the included angle of the dihedral is

referred to as the forward region. The typical dihedral corner

reflector backscatter pattern is characterized by large specular lobes

at normal incidence to any of the flat plate surfaces. In addition, the

right angled corner has a strong specular double reflection which gives

a large cross section in the forward region. However these expected

specular lobes can be signicantly altered by appropriate choices of the

surface impedances.

The first computed cross section patterns considered compare the

UTD theory for lossy surfaces developed in this work with a moment

method (MM) technique [15] for verification of the accuracy of the UTD

solution. The moment method technique is based on a surface-patch model

of a dipole sinusoidal surface current mode [15]-[16]. The impedance

boundary condition utilized in the moment method solution is appropriate

for perfectly conducting sheets coated with lossy materials [17]-[18].

The lossy coating material selected is a narrow band dielectric/ferrite

absorber with c =7.8-jl.6 and ji=1.5-j0.7 with coating thickness of



-12-

t=0.065 A [18]. This material coating corresponds to a normalized

surface impedance of n=°-453-JO-053.

In Fig. 2, the 90° dihedral corner reflector is examined in the

full azimuthal plane for both coated and uncoated conducting plates for

the vertical polarization. The uniform geometrical theory of

diffraction developed in this work is compared to the moment method

technique of [15] in this figure. The 90° corner reflector is

characterized by a dominant double reflected field in the forward region

and large specular lobes at the four observation directions which are

normal to each of the four surfaces. The lossy surface coating reduces

the cross section of the corner reflector substantially. The specular

single reflections are reduced by about 8.6 dB while the double

reflection is reduced by 12 dB due to the fact that the loss is incurred

at each reflection. The loss is not doubled because the incidence angle

is different for the double reflection than for the single reflection.

In Pig. 3, corresponding patterns for the 98° corner reflector are

examined. Again UTD and MM are compared for both coated and uncoated

corner reflectors. The cross section pattern is consistently lowered

by 8 to 10 dB in most regions by application of the surface coating.

It is also evident that by utilizing an angle other than 90° the

dominant double reflection term is removed. Hence it is important to

consider both the geometry and the material composition for optimum

cross section reduction.

In Fig. 4, the 77° corner reflector is considered. The acute

angle also removes the strong specular double reflection although not
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as effectively as the obtuse angled corner. For this reflector the

higher order scattering components play a more significant role in

determining the total cross section. The acute angled reflector also

shows the largest differences between the UTD and MM techniques in the

forward region due to the many higher order mechanisms occurring.

Of particular interest in reducing the specular lobes are those

surface Impedances for which the surface is matched to the free space

value. At a particular angle of incidence <P, measured from the face of

the wedge, the normalized surface impedance r\ can be selected to appear

as a match to the incident wave by choosing

r\ = s\n<n for the soft (vertical) polarization (4a)

r\ = sinf for the hard (horizontal) polarization (4b)

These surface impedances provide a match for a plane wave on a planar

boundary, but only approximate a match for the finite plates of the

corner reflector. It is recognized that these surface impedance are

often very difficult to achieve using physical materials; however they

are interesting because they provide an upper limit on the cross section

reduction using uniform surface impedances. Better reductions may be

achieved using tapered surface impedances.

The cross section patterns displayed in Fig. 5 are for a 90°

dihedral corner reflector illuminated by a vertically polarized wave.

In this figure, the pattern of the perfectly conducting reflector is

compared with patterns of a variety of lossy surface impedances. The

perfectly conducting cross section has large specular lobes at 0= ±45°

and the large double reflection in the forward region. Introducing a

.0
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small loss, corresponding to n.=0.2, reduces the cross section pattern

nearly everywhere and effectively lowers the double reflection

contribution more than the single reflection because the loss is

encountered once at each reflection. To achieve maximum reduction of

the specular single reflection, the surface impedance must match the

free space value; hence a normalized surface Impedance of T\=1.0 must be

selected. It is noted that this choice of normalized surface impedance

effectively annihilates the single specular reflection but cannot remove

the double reflection term for which the incident wave makes an angle of

approximately 45° with the reflecting plates. Selecting ti=l/sin(45°)=

1.414 effectively eliminates the large double reflected field but cannot

remove the single reflections. To achieve better results, it may be

profitable to attempt tapered surface impedances.

The horizontal polarization patterns for the same dihedral corner

reflector are displayed in Fig. 6. The patterns for the perfectly

conducting (n.=0) and the lossy (r\=0.2) surfaces show a similar lobe

structure as noted for the vertical polarization, and the cross section

reduction with increasing loss is considered. The perfectly matched

single reflection case, r|=1.0, is mathematically identical to the

vertical polarization, and it is not shown. They are identical because

the symmetries of Maxwell's equations and the impedance boundary

condition stipulate that a change in polarization is equivalent to using

the reciprocal of the normalized surface impedance. Similarly the

q=0.707 pattern displayed in Fig. 6 for the horizontal polarization is

identical to the one for n.=1.414 displayed in Fig. 5 for the vertical

polarization. These surface impedances are selected because they
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provide the maximum reduction of the double reflected field for the

associated polarization. However it is also of interest to investigate

the cross section pattern when a target is designed for one polarization

yet illuminated by the other polarization. In Pig. 6 the case n,=1.414,

which successfully reduced the vertically polarized double reflection in

Fig. 5, does not perform well under horizontal illumination. By

symmetry, this pattern also corresponds to q=0.707 for the vertical

polarization, and therefore also illustrates the degradation for a

reflector designed for horizontal polarization but illuminated by

vertical polarized waves.

To achieve a useful reduction in the cross section over the entire

azlmuthal plane, it is often necessary to utilize different impedances

over different surfaces. In Fig. 7, patterns in both the forward and

back regions of 90° corner reflector with various surface impedances are

displayed for horizontal polarization. As expected, the perfectly

conducting case has the strongest response. The small loss, n,=0.2,

effectively reduces the cross section pattern in most regions. To

achieve maximum reduction of the back lobes, surfaces 6 and 8 must both

be loaded with normalized impedances of ^=1.0. In the forward region,

r|=1.0 would reduce the single reflection at the expense of the double

reflection, while n,=0.707 would reduce the double reflection at the

expense of the single reflection. By iterative methods it was

determined that an intermediate value of r)=0.92 for surfaces 2 and 4

yielded the lowest maximum of the radar cross section pattern in the

forward region. The cross section pattern of this lossy corner

reflector, with a different impedance on the front than on the back, is
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as shown in Pig. 7. The maximum lobe was reduced from 15.6 dBsm to

-16.8 dBsm, an effective reduction of 32.4 dB.

IV. CONCLUSIONS

The corner reflector is a very important geometry to study because

it demonstrates many of the scattering properties of more complex

targets. Hence it is possible to infer the scattering characteristics

of other geometries from the characteristics of the corner reflector.

The UTD is especially useful for this purpose because it isolates

individual scattering mechanisms, and, in contrast to the moment method,

it allows the dominant terms to be identified. In this work it was

shown that the UTD is also accurate in that it compares well with moment

method techniques for coated corner reflectors which may have right,

acute, or obtuse interior angles.

To achieve good cross section reduction, it was demonstrated that

one must select an appropriate wedge angle as well as a good surface

coating material. For more complicated geometries, this implies that

the specular reflections should be eliminated when possible, especially

by avoiding right angled corners. Obtuse angles are preferred because

they divert the strong double reflected wave away from the backscatter

direction without inducing more multiple reflections. Acute corners

develop larger multiple reflections and diffractions which tend to make

the cross section reduction more difficult to achieve. By choosing an

appropriate wedge angle it is often possible to achieve a null in the

forward region rather than a maximum as was illustrated for the 98°
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corner reflector considered here.

To effectively use surface impedance coatings requires that the

dominant scattering terms be identified, and the UTD is well suited for

this purpose. Surface impedances should be selected which match the

dominant terms as closely as possible in regard to their individual

incidence angles. In practice however, it may not always be possible to

fabricate layered coatings to meet the optimum requirements especially

with practical thickness or weight constraints. It was demonstrated in

this work that lossy coatings should be utilized differently for

interior corners than for exterior corners because for the interior

faces the higher order reflections and diffractions are often the

dominant terms, and each may have a different angle of incidence. It

was also established that a design for one polarization may not be

effective for another polarization. As illustrated for the corner

reflector, if the double reflection is eliminated for one polarization,

it may still prevail for the other polarization. Practically, one might

propose using polarization-sensitive material compositions which present

different impedances to the two primary polarizations. In addition, it

was shown that reduction in one scattering component can usually be

achieved only at the expense of some other component, as was

demonstrated for the single and double reflected terms in the corner

reflector analysis. Tradeoffs in the selected impedance values must

often be considered to achieve optimum results. The use of tapered

impedances can help to alleviate this situation; however the UTD method

utilized here cannot consider tapered impedances due to the exact

solution upon which it is based.
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V. PUBLICATIONS

During this reporting period two papers have been submitted for

publication in IEEE refereed papers and three papers were presented in

international symposia. The work reported in all of these papers was

supported by this NASA Grant. These are as follows:

a. T. Griesser, C. A. Balanis and K. Liu, "Analysis and reduction for

lossy dihedral corner reflectors," submitted for publication in

Proc. IEEE.

b. T. Griesser and C. A. Balanis, "Reflections, diffractions, and

surface waves for an interior impedance wedge of arbitrary angle,"

submitted for publication in IEEE Trans. Antennas Propagation.

c. L. A. Polka, C. A. Balanis and K. Liu, "Comparison of higher-order

diffractions in scattering by a strip," 1988 IEEE AP-S International

Symposium, June 6-10, 1988, Syracuse, NY.

d. T. Griesser and C. A. Balanis, "Reflections, diffractions, and

surface waves for an interior wedge with impedance surfaces," 1988

IEEE AP-S International Symposium, June 6-10, 1988, Syracuse, NY.

e. T. Griesser and C. A. Balanis, "Calculation of the Fresnel

transition function of complex argument for the method of steepest

descents," 1988 URSI Radio Science Meeting, June 6-10, 1988,

Syracuse, NY.
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VI. FUTURE WORK

Future work on this project will concentrate on applying

reflection, diffraction and surface waves from wedges (interior and

exterior) with impedance surface to predict the patterns from lossy

surfaces. This is to include surfaces with discontinuities as well as

other complex targets. In addition equivalent concepts will be

examined to predict the scattering patterns of perfectly conducting and

lossy surfaces along principal and nonprincipal planes.
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Fig 1. The dihedral corner reflector geometry and numbering convention.
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