
--
I , 

--
i 
I 

,~ 

I 

-
i 

- , 

.-
! 
, 

-, 
, 

r-
-

I 

1#<, 

- ;-- -~ 

) 
Institute for Computational and 
Applied Mechanics (I CAM) 

NASA-CR-183 119 

19880017234 

A STUDY OF FLOW SEPARATION IN 
TRANSONIC FLOW USING INVISCID 
AND VISCOUS CFD SCHEMES 

By 

J .A. Rhodes, S.N. Tiwari, and E. von Lavante 

. , -

jj OCT ~, F5 

I J ...,J!;: ~ ~ -! S-I 
, " , . 

1 ~ ~ , , 

ODU/ICAM Report 88-102 
Apri11988 

Old Dominion University 
Norfolk, Virginia 23508-8546 

., 

llllllllllill 1111 111111111111111111111111111 
NFOO245 

r 
• 



.-
OLD DOMINION UNIVERSITY 

( oil,'!!:' of En~IO"erlO~ 
nq)drtment of Mechanical En~lOeenng and \1," hal1lcs 
"orfoll, V Ir~lOla 21529·0247 
804·683·3720 

August 8, 1988 

Dr. Samuel E. Massenberg 
University Affairs Officer 
Mail Stop 105 A 
NASA Langley Research Center 
Hampton, VA 23665-5225 

Dear Dr. Massenberg: 

Reference NASA Grant NAG-1-363, Institute for 
Computational and Applied Mechanics (ICAM) 

Enclosed is a report entitled, "A Study of Flow Separatlon in 
Transonic Flow Using Inviscid and Viscous CFD Schemes" for the 
research work performed during the period June 1983 to December 1987 
under the ICAM program. 

Copies of this report are belng forwarded to appropriate NASA and ODU 
advisors. If you have any questions concerning this report, please 
contact me. Thank you. 

Slncerely yours, 

~~~ If Pa:v' 
Surendra N. Tiwari 
Eminent Professor and ICAM Director 

SNT/rbp 

Distr. 
NASA Sci & Tech Info Facility, 2 coples. 

Old DomInion UnIversIty IS an aH,rmallve actIOn, equal opportunoty onstltutlOn 



3 117601327 6655 

. 

Institute for Computational and 
Applied Mechanics (I CAM) 

A STUDY OF FLOW SEPARATION IN 
TRANSONIC FLOW USING INVISCID 
AND VISCOUS CFD SCHEMES 

By 

J.A. Rhodes, S.N. Tiwari, and E. von Lavante 

ODU /ICAM Report 88-102 
April 1988 

Old Dominion University 
Norfolk, Virginia 23508-8546 

Co 



A STUDY OF FLOW SEPAR!TION IN TRANSONIC FLOW 
USING INVISCID AND VISCOUS CFD SCHEMES 

By 

J. A. Rhodes1, S. N. Tiwari 2 and E. von Lavante3 
Old Dominion University, Norfolk, Virginia 23529-0247 

SUMMARY 

A comparison of flow separation in transonic flows is made using various 
computational schemes which solve the Euler and the Navier-Stokes equations of 
fluid mechanics. The flows examined are computed using several simple two­
dimensional configurations including a backward facing step and a bump in a 
channel. Comparison of the results obtained using shock fitting and flux 
vector splitting methods are presented and the results obtained using the 
Euler codes are compared to results on the same configurations using a code 
which solves the Navier-Stokes equations. 

1Graduate Research Assi stant (ICAM Fell ow), Dept. of Mechani cal Engi neeri ng 
and Mechanics; present affiliation, Senior Engineer, Dept. of Propulsion and 
Thermodynamics, McDonnell Aircraft Company, St. Louis, MO 63166. 

2Eminent Professor, Dept. of Mechanical Engineering and Mechanics; Director of 
ICAM. 

3Associate Professor of Mechanical Engineering and Mechanics. 



ACKNOWLEGEMENTS 

This research was conducted in cooperation with the Transonic 

Aerodynamics Division (Theoretical Aerodynamics Branch), NASA Langley Research 

Center, duri ng the peri od June 1983 to December 1987. The authors are 

indebted to Mr. Manuel D. Salas for his cooperation and technical guidance. 

Partial funding for this research was provided by the NASA Langley Research 

Center through the ICAM Program in Aeronautics, Grant NAG-I-363. The grant 

was monitored by Dr. Samuel E. Massenberg, University Affairs Officer, r~ail 

Stop l05A, NASA Langley Research Center, Hampton, Virginia 23665. 

ii 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ................................................... i i 

LIST OF TABLES ••••••••••••••••• •••••••••••••••••••••••••••••••••••• vi 

LI ST OF FIGURES 

LI ST OF SYMBOLS 

Chapter 

.................................................... 

.................................................... 
vii 

x 

1. 

2. 

3. 

4. 

INTRODUCTION •••••••••••••••••••••••••••••••••••••••••••••••• 

PHYSICAL MODELS AND GRID GENERATION . ....................... . 
2.1 

2.2 

Investigation Procedure ................................ 
Grid Generation ........................................ 
2.2.1 

2.2.2 

Conformal Mapping Technique ..................... 
Algebraic Grid Generation ....................... 

1 

9 

9 

12 

13 

17 

2.2.3 Elliptic Smoothing •••••••••••••••••••••••••••••• 23 

GOVERNING EQUATIONS OF FLUID DYNAMICS . ..................... . 
3.1 Introduction ••••••••••••••••••••••••••••••••••••••••••• 

27 

27 

3.2 Mass Conservation Equation ••••••••••••••••••••••••••••• 28 

3.3 Momentum Equation •••••••••••••••••••••••••••••••••••••• 29 

3.4 Energy Conservation Equation ••••••••••••••••••••••••••• 34 

3.5 Two-Dimensional Form of Equations ...................... 
SCHEME 1 - SHOCK CAPTURI~G GABUTTI . ........................ . 
4.1 Introduction ........................................... 

37 

43 

43 

4.2 Transformation of Equations •••••••••••••••••••••••••••• 44 

4.3 Discretization of Equations •••••••••••••••••••••••••••• 49 

iii 



5. 

6. 

7. 

8. 

4.4 Stability Analysis •..••..•.••.....•.••.......•.•....... 

SCHEME 2 - SHOCK FITTING GABUTTI . .......................... . 
5.1 

5.2 

5.3 

Introduction ••••••••••••••••••••••••••••••••••••••••••• 

Transformation to Shock Fitted Coordinates ............. 
Calculation of Shock Acceleration ...................... 

5.4 Updating the Shock Position •••••••••••••••••••••••••••• 

SCHEME 3 - FLUX VECTOR SPLITTING EULER •••••••••••••••••••••• 

6.1 

6.2 

Introduction ••••••••••••••••••••••••••••••••••••••••••• 

Algorithm Development .................................. 

Page 

53 

58 

58 

60 

63 

72 

76 

76 

77 

6.3 Flux-Vector Splitting •••••••••••••••••••••••••••••••••• 81 

6.4 Spatial Discretization ••••••••••••••••••••••••••••••••• 82 

SCHEt1E 4 - BEAM-WARMING NAVIER STOKES • •••••••••••••••••••••• 

7.1 

7.2 

7.3 

7.4 

Introduction ........................................... 
Governlng Equations 

Numerical Algorithm 

.................................... 

.................................... 
Turbulence Model ....................................... 

INITIAL AND BOUNDARY CONDITIONS . ........................... . 
8.1 

8.2 

Introduction ••••••••••••••••••••••••••••••••••••••••••• 

Initial Condition •••••••••••••••••••••••••••••••••••••• 

8.2.1 

8.2.2 

8.2.3 

Problem One 

Problem Two 

..................................... 

..................................... 
Problem Three ................................... 

84 

84 

84 

86 

87 

89 

89 

90 

90 

93 

94 

8.2.4 Problem Four .••••••••••••••••••••.••••••••.•.•.• 94 

8.3 Wall Boundary Conditions ............................... 
8.3.1 

8.3.2 

Scheme One 

Scheme Two 

...................................... 

...................................... 
iv 

95 

95 

96 



8.4 

8.3.3 

8.3.4 

Scheme Three 

Scheme Four 

.................................... 
..................................... 

Subsonic Inflow Boundary ............................... 
8.4.1 

8.4.2 

8.4.3 

Schemes One and Two ............................. 
Scheme Three .................................... 
Scheme Four ..................................... 

Page 

96 

97 

98 

99 

101 

102 

8.5 

8.6 

Outflow Boundary Condition, ••••••••••••••••••••••••••••• 103 

9. 

10. 

Far Field Boundary Condition ........................... 
RESULTS AND DISCUSSION ...................................... 
9.1 

9.2 

9.3 

9.4 

Problem One ............................................ 
9.1.1 Inviscid Results 

9.1.2 Viscous Results 

· ............................... . 
· ............................... . 

Problem Two ............................................ 
9.2.1 

9.2.2 

Inviscid Results 

Viscous Results 

................................ 
· ............................... . 

Problem Three 

Problem Four 

.......................................... 
........................................... 

CONCLUSIONS • •••••••••••••••••••••••••••••••••••••••••••••••• 

REFERENCES ......................................................... 

v 

104 

110 

110 

110 

146 

161 

161 

173 

178 

187 

193 

201 



LIST OF TABLES 

Table Page 

4.1 Results from Stability Analyses ••••••••••••••••••••••••••••• 57 

vi 



LIST OF FIGURES 

Figure Page 

2.1 Configuration Used for Study ................................ 11 

2.2 Transformation for Backward Facing Step ••••••••••••••••••••• 15 

2.3 Transformation for Bump in Channel .......................... 15 

2.4 Circular Arc Computational Domain ••••••••••••••••••••••••••• 19 

2.5 NACA 0012 Computational Domain •••••••••••••••••••••••••••••• 19 

2.6 Construction of Connecting Lines •••••••••••••••••••••••••••• 22 

2.7 Control of • Along 1"1 = Constant Boundary .................... 26 

2.B Control of ~ Along ~ = Constant Boundary •••••••••••••••••••• 26 

4.1 Characteristic Monge Cone ••••••••••••••••••••••••••••••••••• 51 

5.1 Vector Relations at the Shock ............................... 66 

5.2 Construction of, Line I = IS ••••••••••••••••••••••••••••••••• 75 

8.1 r1ach Number at Out flow Bounda ry ••••••••••••••••••••••••••••• 105 

B.2 Far Field Boundary Condition •••••••••••••••••••••••••••••••• 107 

9.1 t'ach Number at Channel Entrance ............................. 111 

9.2 Example B1x41 Grid Used for Inviscid Calculations ••••••••••• 113 

9.3 Mach Number at Shock (1"1 0 = 20) · ............................ . 115 

9.4 Mach Number at Shock (1"1 0 = 40) · ............................. 116 

9.5 Mach Number at Shock (1"1 0 = 100) ............................. 117 

9.6 Shock Location vs 1"10 (1"11 = 20) ............................... 119 

9.7 Shock Location vs 1"10 (1"11 = 40) · ............................. 120 

9.B Shock Location vs 1"10 (1"11 2 100) ............................. 121 

9.9 Entropy Downstream of Shock ................................. 123 
vii 



Figure 

9.10 

9.11 

9.12 

9.13 

9.14 

Vorticity Downstream of Shock ............................... 
~1i nimum M vs no (n1 = 20) · ................................. . 
ReattachMent ~ vs no (n1 = 20) .............................. 
Mi nimum ~1 vs no (n1 = 100) · ................................. . 
Reattachment ~ vs no (n1 = 100) ............................. 

Page 

124 

125 

127 

128 

129 

9.15 Mach Contours (no = 2.0) •••••••••••••••••••••••••••••••••••• 130 

9.16 Lower Wall M (no = 2.0) ••••••••••••••••••••••••••••••••••••• 131 

9.17 Mach Contours (no = 1.2) •••••••••••••••••••••••••••••••••••• 132 

9.18 Lower Wall M (no = 1.2) ••••••••••••••••••••••••••••••••••••• 133 

9.19 Mach Contours (no = 0.4) •••••••••••••••••••••••••••••••••••• 134 

9.20 

9.21 

9.22 

9.23 

9.24 

9.25 

9.26 

Lower Contours (no = 0.4) · ................................. . 
Entropy Contours ............................................ 
Results Scheme 3 (n 0 = 0.4, n1 = 40) · ..................... 
Results Scheme 3 (n 0 = 0.2,n1 = 40) · ..................... 
Results - Scheme 3 (n 0 = 0.1, n1 = 40) · ..................... 
Grid Detail at Corner ....................................... 
Results - Scheme 3 (no = 0.1, n1 = 20) · .................... . 

135 

136 

139 

140 

141 

143 

144 

9.27 Lower Wall M - Scheme 3 (no = 0.1, n1 = 20) ••••••••••••••••• 145 

9.28 Results - Scheme 4 (1500 iterations) •••••••••••••••••••••••• 147 

9.29 Results - Scheme 4 (2000 iterations) · ....................... 150 

9.30 Results - Scheme 4 (2500 iterat ions) · ....................... 153 

9.31 Results - Scheme 4 (3000 iterations) · ....................... 155 

9.32 Results - Scheme 4 (Re ,. 100,000) ........................... 157 

9.33 Results Scheme 4 (Re ,. 100,000) ........................... 159 

9.34 Mach Number YS. "0 •••••• ~ ••••••••••••••••••••••••••••••••••• 162 

9.35 Shock Location vs. no ••••••••••••••••••••••••••••••••••••••• 164 

viii 



Figure Page 

9.36 Entropy Downstream of Shock ................................... 165 

9.37 Vorticity Downstream of Shock ••••••••••••••••••••••••••••••• 166 

9.38 Minimu~ M vs. "0 •••••••••••.•.••.•••••.••••••••••••••••.•.•. 168 

9.39 Reattachment ~ vs. "0 ••••••••••••••••••••••••••••••••••••••• 169 

9.40 Mach Contours ("0 = 1.0) .................................... 170 

9.41 Mach Contours ("0 = 0.4) •••••••••••••••••••••••••••••••••••• 172 

9.42 Results Scheme 2 (81x41 grid, "0 = 0.2) ••••••••••••••••••• 174 

9.43 Results Scheme 3 (81x41 grid, "0 = 0.2) ••••••••••••••••••• 176 

9.44 

9.45 

9.46 

9.47 

9.48 

Results Scheme 4 (1500 iterations) 

Results - Scheme 4 (2000 iterations) 

Results - Problem 3 (algebraic grid) 

· ...................... . 
· ...................... . 
· ...................... . 

179 

180 

182 

Results - Problem 3 (81x41 conformal grid) •••••••••••••••••• 184 

Results - Problem 3 (161x81 conformal grid) ••••••••••••••••• 185 

9.49 Results Problem 3 (81x41 conformal grid) •••••••••••••••••• 186 

9.50 Results - Problem 3 (161x81 conforMal grid) ••••••••••••••••• 188 

9.51 Results - Problem 3 - Scheme 3 •••••••••••••••••••••••••••••• 189 

9.52 Grid for NACA 0012 Airfoil ••••••••••••••••••••••••••••••••.• 190 

9.53 Mach Contours •••••••••••••••••••••••••••••••••••••••••••••.• 192 

ix 



A 

a 

B 

E 

e 

F 

G 

h 

I 

i 

J 

k 

r1, N 

p 

p 

Q 

q 

R 

S 

T 

t 

U, V 

LIST OF SYMBOLS 

Jacobi an matrix 

speed of sound, nondlmensionalized by ao 

Jacobian Matrix 

Total energy 

total energy, nondimensionalized by Po a~ 

flux vector in x or ~ direction 

flux vector in y or n direction 

enthalpy, nondimensionalized by Po a~ 
identify matrix 

internal energy, nondimensionalized by a~ 

Jacobian of transformation 

coefficient of thermal conductivity 

eigenvector matrices corresponding to A and B matrices 

logarithm of p 
2 pressure, nondimensionalized by Po ao 

vector of conserved quantities 

Mass flux 

gas constant 

entropy 

ter.tperature 

time 

contravarient velocity components in t and n directions 

x 



u, v Cartesian velocity components 1n x and y directions 

x,' y Cartesian coordinates 

z x + i y, complex physical plane 

Greek symbols 

y 

~, Tl 

K 

A, n 

p 

ratio of specific heats 

general coordinates 

von Karman's constant 

eigenvalues 

density nondimensionalized by Po 

coefficient of molecular viscosity 

shear stress tensor 

deviatoric stress tensor 

vorti ci ty 

Subscripts 

x, y indicates differentiation with respect 

~ , Tl indicates differentiation with respect 

to Cartesian coordinates 

to general coordinates 

s indicates source term, also variable at shock 

0 indicates stagnation conditions 

GO indicates conditions at infinity 

Superscri pts 

n time level 

t indicates direction of characteristic eigenvalues or 
dHferentiation 

xi 



Chapter 1 

INTRODUCTION 

Although much progress has been made in the field of computational 

fluid dynamics (CFD), the computation of transonic flows containing 

shock waves and of flows exhibiting separation is still a challenge. 

The most commonly used methods to compute such flows sol ve either the 

time-dependent Eu 1 er or Navi er-Stokes equat ions on a fixed gri d. The 

Euler equations allow for rotational flows but neglect viscous effects, 

whereas the Navi er-Stokes equations take into account vi scous effects. 

Both sets of equations, when expressed in integral form, are correct 

even when discontinuities in the flow field are present. The 

cOMpressible potential equation, which has been used extensively for 

aerodynamic prediction, does not allow for rotational flows and viscous 

effects and is therefore not considered in this study. However, when 

shock waves are weak and flow separation is not expected, the potential 

model may provide a good approximation. Furthermore, when coupled with 

boundary layer equations, viscous-inviscid methods have been 

successfully used to compute flows with separation. 

The development of CFD and t more specifi ca lly t methods to solve 

compressible flow problems extends back into the 1950's and a complete 

history is beyond the scope of thh introduction. The mathematical 

theory of these numerical approximations has been developing rapidly as 

has been the Mathematical theQ!Y of hyperbolic conservation laws and 

1 
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shock waves. The 1948 book by Courant and Friedrichs [1]* and the 1973 

SIAM publication by Lax [2] were important contributi9ns to the 

literature which provide much of the basic theory. The 1967 text by 

Richtmeyer and ~1orton [3] is now considered a classic text on the 

application of difference methods to initial value problems. ~10re 

recently, the books by Smoller (4] and Majda [5] provide up-to-date 

exposition of the mathematical theory. While there have been many books 

on CFD pub 1 i shed, the recent text by Anderson, Pl etcher and Tannehlll 

[6] is one of the most popular. Finally, the 1986 survey article by Roe 

contains an excellent discussion of the development and fairly recent 

state of affairs in numerical schemes for the Euler equations (7]. 

Early schemes were relatively simple explicit methods such as the 

Lax-~/endroff scheme [8] and its deri vat ive, the two-step MacCormack 

Scheme [9]. These schemes are essentially central-difference schemes 

and have the undesirable property of being oscillatory near shocks. In 

order to stabilize them, artificial dissipation terms must be added 

which tend to smear out the discontinuities over several mesh 

intervals. Early upwind schemes include the CIR (Courant-Isaacson-Rees 

[10J) and the Godunov [llJ methods. These schemes are both first order 

accurate and are not used today but were important advances and prepared 

the way for more advanced schemes. Upwi nd schemes are purported to be 

more physically correct since they are based on the way characteristic 

information propagates. They are also more stable near shocks and it 

has been shown that upwind difference schemes are the equivalent of 

*Numbers in brackets indicate references. 
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central difference schemes plus artificlal dissipation [12]. The finite 

volUMe schemes popularized by Jameson [13] are also explicit central 

dlfference schemes which must include dissipative terms in order to 

stabilize the scheme and avoid odd-even decoupling of the mesh points. 

All of the explicit schemes are restricted to rather low CFL 

(Courant-Friedrichs-Lewy) numbers which restricts the maximum allowable 

time step they can take. This means that the number of iterations 

required to achieve a given level of convergence is larger than would be 

the case if the schemes could run at a higher CFL number. To overcome 

this limitation, implicit schemes were developed. There have been Many 

such scheMes developed of which one of the most significant is the Beam­

~/armi ng approximate factori zat i on al gorithm [14]. Thi s scheme was a 

major advance and many later schemes were, at least in part, based on 

it. Since this scheme solves the governing equations in conservation 

form, the converged solutions satisfy the Rankine-Hugoniot jump 

relations if shocks are present. However, as is the case with all of 

the schemes discussed up to now, artificial dissipation must be present 

to stabilize the scheme near discontinuities. 

Since the numerical algorithms typically begin with an initial 

guess and then iterate towards a converged solution which must satisfy 

the specified boundary conditions, the problems to which they are 

applied are mathematically described as initial-boundary value 

problems. The discontinuities that are computed and resolved arise 

during the course of the computations and the location of these 

discontinuities is generally not known beforehand. Thus the scheMes are 

frequently described as "shock capturing." Another approach that has 

proven successful is referred to a "shock fitting." In this approach, 
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the location of the discontinuity is at least approximately known 

beforehand and the appropriate mathematlcal relations are used to relate 

the flow conditions an each side of the discontinuity, thus provlding a 

much better resolution of the discontinuity. In this study, both shock 

capturing and shock fitting methods are used and the results are 

compared. 

Separated flow has, in the past, almost always been associated wlth 

boundary layer separation and thus is usually regarded as a viscous 

effect. Several years ago, however, Salas [15] and others noticed that 

inviscid compressible flow past a circular cylinder computed using the 

Euler equations can separate when the free stream Mach number is greater 

than 0.4. Salas pointed out that earlier analytical investigations by 

Fraenkel [16] proved that exact solutions of the incompressible Euler 

equations, for flow past a circular cylinder, can show separation 

bubbles in front of and behind the cylinder, the size of which are 

controlled by the free stream vorticity. Salas also deduced that flow 

through a curved shock could produce sufficient vorticity to cause the 

flow to separate in some cases. He raised several questions concerning 

the validity of the computed solutions. First, are the converged 

solutions unique? Second, what is the relation between the computed 

Euler solutions to the solution of the Navier-Stokes equations, 

especially in the limit as the Reynolds number goes to infinity? 

Kumar and Salas later compared Euler and Navier-Stokes solutions 

for supersonic shear flow past a circular cylinder [17). The i~pinging 

supersonic flow contained vorticity and the separation occurred along a 

symmetry line ahead of the cylinder. The investigators found that while 

the overall size of the separation zone computed using both sets of 
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equations was similar, the internal structure was quite different which 

they attributed to vis,ous effects. The inviscid solution showed only 

one vortex, whereas the viscous solution showed an inner and an outer 

vortex. As the Reynolds number was increased, the inner vortex 

decreased in size and the Navier-Stokes solution becaMe similar to the 

Euler solution. 

Barton and Pulliam also compared Euler and Navier-Stokes solutlons 

for flow past a NACA 0012 airfoil at high angles of attack [18]. They 

used an implicit approximate factorization scheme which solved either 

the Euler equations or the Navier-Stokes equations in thin layer form 

with an algebraic Baldwin-Lomax turbulence model. The authors first 

describe the inviscid results for M = 0.25 and 0.4 on a coarse 249 x 
CD 

41 grid and a fi ne 249 x 67 grid with an a = 150 • At H = 0.25 on 
CD 

the coarse grid, there was no leading edge shock but the flow separated 

and an unsteady oscillatory behavior was observed in the solution. On 

the fine grid, there was a shock but no flow separation and the solution 

converged to a steady state. At M = 0.4, there was a leading edge 
CD 

shock and the solution exhibited an oscillatory separated flow \'/hich did 

not depend on the grid. Viscous and inviscid calculations were carried 

out for t1 = 0.301 and a = 13.50 • The Reynolds number in the viscous 
CD 

calculation was 3.91 x 106• While both the inviscid and viscous 

calculations yielded a separated solution, in the inviscid case, no 

steady state solution was reached and an oscillatory behavior was noted, 

whereas the computations us i ng the vi scous equations converged to a 

steady state. The authors concluded that in this case the Euler 

solution was not a good approxjmation to the Navier-Stokes solution. 

They also concluded that while tn some cases the separated flow computed 
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was the correct solution to the inviscid equations, in other cases 

numerical errors due to the use of a very coarse mesh caused the flow to 

separate and the solution was not valid. 

Separated flow on the leeside of conical delta wings at high angles 

of attack has been the subject of several investigations. t1arconi 

studied supersonic conical separation using a the lambda scheme with 

shock fitting to sol ve the Euler equations [19J. It \'/as assumed that 

the flow is invariant in the axial direction and therefore the three-

dimensonal equations can be solved using a two-dimensional grid. A 

shock wave emanating from the leeside of the body produced a significant 

vorticity gradient which resulted in flow separation. The separated 

flow spirals up and does not form a closed recirculation eddy as in the 

case of flow past a cylinder. Grid refinement was done without any 

significant change in the results. 

Newsome and Thomas computed and compared Euler and Navi er-Stokes 

solutions for a conical delta wing at a M equal to 2.0 and a equal 
GO 

to 100 [20]. The conical assumption was also used allowing the 

calculations to be done on two-dimensional grids. The viscous solutions 

were obtained using both a central difference scheme based on 

t1acCormack's explicit unsplit algorithm and also a flux vector splitting 

scheme developed by Thomas. The viscous solutions obtained with both 

schemes on a 151 x 65 grid agreed closely and showed a separated 

vortical flow on the leeside of the wing with a primary vortex due to 

leading edge separation and a secondary crossflow separation vortex. 

The Euler solutions were obtained using the same schemes after 

dropping the viscous terms and the surface no-slip boundary condition. 
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Two grids, a coarse 75 x 55 grid and the same viscous grid as before, 

were used. On the coarse grid, the MacCormack sc~eme solution showed a 

separation vortex similar to the viscous results. Entropy was produced 

at the leading edge although there was only a small shock evident. The 

upwind flux vector splitting scheme produced solutions with no such 

separation on the coarse grid. The authors concluded that the flow 

separation obtained on the coarse grid was due to the artificial danping 

added to the central difference scheme so that the results were 

considered incorrect. Using the fine grid, both schemes produced 

similar results and the solutions showed a small vortex downstream of 

the crossflow shock. 

Chakravarthy did further calculations on the same problem using a 

TVO scheme to study the issue of inviscid separation [21]. He concluded 

that one possible explanation for the different results that Newsome and 

Thomas had obtained was the use of spatially varying time steps. He 

stated that this practice may result in unphysical transients which does 

not occur when a global time step is used. 

However, Kandil and Chuang performed a careful investigation of 

supersonic vortex domi nated flows about sharp and round-edge coni ca 1 

delta wings and concluded that for the round-edge wings the damping 

coefficients used in the finite-volume code controls whether attached or 

separated solutions are obtained [22]. In addition, their computations 

indicated that the solutions obtained did not depend on whether global 

or local time stepping was used, in contrast to the hypothesis of 

Chakravarthy. 
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In view of the findings of the various investigations just 

{jiscussed, it is clear that numerical solutions of the Euler equations 

which exhibit separated flow must be carefully evaluated to determine 

whether or not the results are realistic. This investigation therefore 

is an attempt to provide further insight into the inviscid separation 

phenomenon and specifically an attempt is made to relate the lnviscid 

separation case to the viscous case. Various codes were used in the 

course of this study and the general investigation procedure is 

described in the next chapter. 



Chapter 2 

PHYSICAL MODELS AND GRID GENERATION 

In this chapter, investigation procedures for different physical 

systems are presented and various techniques of grid generation are 

discussed. 

2.1 Investigation Procedure 

Several simple two-dimensional configurations were chosen which 

could be used to test the various schemes used to solve the Euler and 

Navier-Stokes equations for transonic flow. The first configuration is 

flow past a rearward facing step. It is known from experiment that 

incompressible flow past such a step separates at a Reynolds number, 

based on step hei ght, less than 500 to form one or more reci rcul at i on 

vortices downstream of the step [23, 24]. The incompressible flow case 

has been computed numerically by several investigators and the results 

are contained in the proceedings of a recent GAt1t1 workshop [25]. The 

compressible case for M = 0.5 .. has been computed by Schmi dt and. 

Jameson using the Euler equations and a finite volume scheme [26]. 

The step used in this investigation differs from these cases in 

that a conformal transformation was used to generate the grid. This 

resulted in the requirement that in order to avoid singularities in the 

tranformation metrics, a sharp corner had to be avoided and instead, a 

rounded expansion corner was used. The conformal transformation was 

9 
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used to control the location of the physical boundaries and the 

resu 1 t i ng suddenness of the expans i on. It was found that for very 

gradual expansions the flow in most cases did not separate. Whereas, 

when the expansion corner was brought closer to a sharp corner, separa­

tion occurred. An example of this configuration is shown in Fig. 2.la. 

A second conformal transformation was used to produce a configura­

tion which could be taken to represent a bump in a channel as shown in 

Fig. 2.1b. In the limit, the "bump" would become a semi-circle as will 

be discussed further in the next section on grid generation. The third 

configuration chosen for study is a circular arc inside a channel as 

shown in Fig. 2.lc. This geometry was chosen as other investigators 

have used it and it was thought desirable to be able to compare the 

results obtained in this investigation with the results obtained by 

others. Finally, a NACA 0012 airfoil with a = QO as shown in Fig. 

2.ld was chosen as an external flow problem. 

Three computational techniques were used to solve the Euler 

equations. The first is a Gabutti shock capturing scheme which is a 

variation of the lamda scheme developed earlier by t10retti [27, 28]. 

COMputer codes app 11 ed by the writer to a 11 four test prob 1 em were 

executed on the NASA Langley computer system; some of these codes were 

vectorized to speed up the execution time. 

The second method is a shock fitting version of the first method. 

In this method, the JUMP conditions through the shock are explicitly 

enforced and the grid is forced to adapt to the moving shock. A 

vectorized version was developed for the rearward facing step and 

conforma 1 bump in channel problems and used to perform gri d refi nement 
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studies. The third Euler sol.....er used was an implicit flux vector 

splitting scheme which was originally developed by von Lavante with 

modifications subsequently made by the writer [47]. 

described in subsequent chapters. 

These schemes are 

The full Navier-Stokes equations were solved using an implicit 

upwi nd approximate factori zat i on scheME! developed by Rumsey [29]. The 

COMputer code is fully vectorized and has been shown to give accurate 

solutions for unsteady flow cases. The code was applied to test 

problems one and two as these cases showed flow separation using the 

inviscid equations. Test problems three and four showed no such 

separation and hence the viscous code was not used. 

2.2 Grid Generation 

Problems in fluid dynamics are classified as field problems Slnce 

the solutions are represented by variables such as density, pressure, 

velocity, etc. which are functions of one or more spatial dimensions as 

well as of time. Since computers have finite memories, they can only 

solve the governing equations at a finite number of representative 

spatial locations. The equations must therefore be discretized and 

solved numerically at these locations. The purpose of grid generation 

is therefore to distribute the points at which the solution is desired 

over the spatial domain in some "optimum" sense to facilitate the 

solution. 

Usually this involves a transformation of coordinates from 

cartesian to a body fitted coordinate system. Thus the original (x,y) 

cartesian coordinates are replaced by curvilinear (~,n) coordinates' 

which wrap around the configuration to be studied. The main advantage 
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in doing this is that it is ttSually possible to take advantage of 

computer array data structures which is generally not the case if 

cartesian coordinates are used. However. the governing equations must 

also be transformed and additional computer memory is often required for 

the storage of metric terms and Jacobians. The transformation Must be 

one-to-one and the new curvil i near coordinates are frequently ass i gned 

integer values such t = 0.1. 2 ••••• Imax. 

Various grid generation techniques have been devised and the ones 

which were used in this investigation include conformal mapping, 

algebraic. and elliptic methods. These will be discussed in relation to 

the specific grid generation requirements of each test problem. 

2.2.1 Conformal Mapping Technique 

For the rearward facing step test problem. the transformation from 

the computational plane to the physical plane is shown in Fig. 2.2 and 

the transformation equation is [30] 

(2.1) 

where 

r; = t + in 

z = x + iy • 

The metrics x~. xn' y~. Yn are easily obtained from Eq. (2.1) as 

follows. First dz/dr; is found as 

dz/dr; = 1. [(r; + 1)/(r,; - I)J1/2 
11' 

(2.2) 

• 



Then x
t 

and Y
t 

are found from 

(x + i y ) = ~ = dz S. = 1. ~ 
t dt cit dt 1T r;-l 

Finally from the Cauchy-Riemann equations, we have 

x = y 
; " and y = - x 

t Tl 

The Jacobian of the transformation is given by 

J = edt,,,] = nx,yr 

t x = 

~y = 

Tlx = 

Tly = 

J y 
Tl 

-J x 
Tl 

-J y 
~ 

J x 
t 
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(2.3) 

(2.4) 

For the conformal bump test problem, the transformation is shown in 

Fig. 2.3 and the transformation equation is [30] 

1 
r; = z+z· (2.5) 

Equation (2.4) can be solved for z in terms of r; and the result is 

(2.6) 

The metric terms are then found from 
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For the circular arc test probfem, the conformal transformation is a 

degenerate case of a Karman-Trefftz airfoil [31]. The transformatlon is 

shown in Fig. 2.4 and is 

where 

n 
z - 1 = [(, 2) + (c 2 _ 4) 1/2 

z + 1 (1; + 2) + (1; 2 _ 4) 1/2] 
(2.7) 

n = 2 (1 - !!.) 
1f 

(2.8) 

a = 2 tan-1 (t) 

and t is the thickness of the airfoil. The boundaries of the 

COr.1putational and physical domains are specified according to lines of 

constant ~ and n. The distribution of points along the boundaries was 

specified using simple polynomial and exponential stretching 

functions. In the ~ direction, a third degree polynOMial was found to 

be sufficient: 

where ~o and ~1 are the minimum and maxiMum values of t respectively, 

and aI' a2' and a3 are coefficients which are chosen to satisfy 

x = 0 at ~ = to 

X = IM-1 at ~ = tl 

X = IS at ~ = ts 

where 1M is the nu~ber of points in the ~ direction and IS is chosen 

to be X at ~ = t • s The variable X becomes the new cOr.1putational 

coordinate in the ~ direction. 



17 

In the 1"1 coordinate direc~ion, either a second order polynomial 

similar to Eq. (2.9) or an exponential stretching function 

1"1 = 1"1 + ( ) expfks) - 1 
o n 1 - 1"10 exp k) - 1 (2.10) 

was used where T'lo and n 1 a re the Mi niMum and Maximum va 1 ues of n, 

k is a stretching coefficient, and s is given by 

s = Y / (Jt1 - 1) • (2.11) 

Y is the new computational coordinate in the T'I direction and JH is the 

nUMber of points in the 1"1 direction. The polynomial stretching in the 

T'I direction was used to generate grids used in the inviscid calcula­

tions and the exponential stretching was used to generate grids for the 

viscous calculations. The coefficient k was calculated using an 

iterative Newton routine to satisfy a prespecified dn/dY at 1"1 = a 

given by 

(T'I - T'I) k exp(ks) 
dn = 1 0 
dY Jt1 - 1 exp(k) - 1 (2.12) 

2.2.2 Algebraic Grid Generation 

Bilinear interpolation [32] was used to develop an alternate non-

conforr.lal grid for the circular arc test probleM and the two-boundary 

technique of Smith [33] was used to develop the grid for the ~ACA 0012 

test probleM. Both techniques require that the boundaries be initially 

specified by a distribution of points. Elliptic smoothing, as described 

in Sec. 2.2.3, was used to produce the final grids in both cases. 

The general coordinates ~ and 1"1 along the boundaries of the 

circular arc was related to the arc length along the boundaries by 
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simple polynomial and exponential-stretching functions similar to those 

given in Sec. 2.2.1. The grid was made symmetric about a line passing 

normal to and through the top of the ci rcul ar arc and the stretchi ng 

funct i on was made to sat is fy the requi rement that one of the 1 i nes of 

constant ~ begin at the corner of the arc and the straight lower 

boundary. 

Once the (x,y) locations of the boundary points have been 

established, bilinear interpolation can be used to locate the interior 

points. For example, the x coordinate of the interior points is given 

by 
X(~,T,) = (1-r)x(O,l1)+rx(1,l1) 

+ (1 - s) x(~,O) + s x(~,l) 

(1 - r) [(1 - s) x(O,O) + s x(O,I)] 

- r [(1 - s) x(I,O) + s x(I,I)] (2.13) 

where~, ~, rand s all vary between 0 and 1, and rand s are normalized 

arc lengths weighted by their relative proximities to the top and bottom 

boundaries (in the case of r) and to the left and right side boundaries 

(in the case of s). A similar equation is used to get the y coordinates 

of the interior points. Note that this method does not enforce 

orthogonality along the boundaries. However, this is later achieved 

when the elliptic technique is employed in the smoothing operation. 

The computational region for the NACA 0012 airfoil was designed for 

a lie" type grid for half the airfoil only as shown in Fig. 2.5. The 

airfoil surface is given by the following equation [34]. 
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y = 0.6 [.29~ x1/ 2 - .126 x - .3516 x2 

3 4 + .2843 x - .1015 x ] (2.14) 

Th1s equation does not give y = a at x = 1 and it was therefore 

modified slightly and put into nested form to give y = a at x = 1 as 

follows 

y = .1781 x1/ 2 - x [.0756 + x {.2110 - x (.1706 

- .0621 x)}] (2.15) 

The points on the boundary were distributed first from A to Busing 

a fifth order polynomial 

(2.16) 

where r is the arc length and ~ the computational coordinate and aI' 

a2' a3' and a4 are found after specifying the first derivative dr/d~ 

at A and S, setting d2r/~2 = a at S, and requiring r to be equal to 

the total arc length from A to B at a specified value of~. This 

leads to a system of four equations in four unknowns which can be easily 

solved. Note that since the term in ~2 is not present in Eq. (2.16) 

that d2r/dt 2 = a at r = a as well. 

An exponential stretching function was used to distribute the 

points from S to C such that dr/dt was matched at S. Along the outer 

boundary, a third order polynomial was used to distribute the points. 

Once the distribution of points along the outer boundary from 0 to E and 

along the airfoil surface and the symmetry line A to B to C was made, 

the two boundary technique was used to locate the points in between. 
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Referring to Fig. 2.6, the ~o points a and b are first connected 

by a straight line and the points (xi' Yi) along it are found by linear 

interpolation 

(2.17) 

a .. t (n) .. 1 

Next, the slopes of the boundaries at a and b are computed as mb 

and mt and the slopes at the intermediate points xi are found by linear 

interpolati?n as mi in the same manner as above. Straight lines passing 

through the points xi with slopes mi are then constructed and their 

equations are 
y = y. + m. (x - x.) " , (2.18) 

Lines paSSing through a and b norMal to the boundaries are then 

constructed which have as their equations 

y = y - 1- (x - x ) t mt t (2.19) 

The pOints of intersection of these lines with the lines through xi 

are then easily computed as Xb, Yb and xt ' Yt • 

points from a to b are found as 

Finally the grid 

(2.20) 

Different functjons Q3 and Q4 have been experimented. One possible 

choice is 

.. 
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a 3 = Kb (1 - rd 2 

2 
a4 = Kt n 

where Kb and Kt are constants. 
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(2.21) 

As long as Kb and Kt are finite, orthogonality will be achieved at 

least on the two opposing boundaries and this technique can be extended 

to the side boundaries as well. 

2.2.3 Elliptic S~00thin9 

This technique is based on the following set of Poisson's equations 

[6] 

~ + ~ = P (x ,y) "xx "yy 
(2.22) 

nxx + nyy = Q (x,y) 

where ~ and n are the computational coordinates and P and Q are the 

source terms that control the resulting grid. Since in most cases x and 

y as functions of ~ and n are required, the above equations are 

transformed to 

a x~~ 28 x~n +-y X = - {P X + Q x )/J 2 
nn ~ n 

(2.23) 

a y~~ - 28 Y +-y Ynn = - (P Y + Q y )/J 2 
~n ~ n 

where the Jacobian J = X Y - x y~ and 
~ n n 

a = 2 + 2 
xn Yn 

8 = x x + Y Yn ~ n ~ 

2 + 2 -y = x~ y~ 

c.. 
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Note that if the grid is orthogonal then 

which implies that a is zero. 

A transformation introduced by Middlecoff and Thomas replaces P and 

Q by two new function ~ and ~ as follows [35]: 

__ P (1)2 - a 'J 
(2.24) 

with this transformation, Eqs. (2.19) becoMe 

2a x + y X 
~n nn 

(2.25) 
= a~y +y~y 

~ n 

The terms on the right are commonly called "source terms" and they are 

related to the mesh orthogonality and spacing. Equations (2.21) are 

solved by a SLOR (single line over-relaxation) technique which sweeps 

alternatively in each of the ~ and n directions. The source terms ~ 

and ~ are initially set to zero and are then slowly changed to achleve 

the required angles and spacing of the grid along the boundaries. 

The funct i on ~ along the bounda ri es Tl = cons tant is va ri ed 

according to 
(2.26) 

where cl is some constant and e is the angle at which the lines of 

constant ~ intersect the bounda ry as shown in Fi g. 2.7. Along the 
, 

boundaries ~ = constant, the control function ~ is varied according 

to the spacing ds as shown in Fig. 2.8 as given by Eq. (2.27). 
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,n+1 z ,n ,;-c
2 

(ds - ds') (2.27) 

where ds' is the desired spacing and ds is the actual spacing. 

The source term ~ is controlled along the boundaries ~ = constant 

using a procedure similar to , along the n = contant boundary. Along 

the boundaries n = constant, ~ could be varied to obtain the required 

spacing in a similar fashion as , along ~ = constant boundaries. 

In the interior, ,and ~ are determined by bilinear interpolation 

similar to Eq. (2.13). In this case the variables rand s are related 

to ~ and n by the following third order polynomial blending functions. 

r = (3 ~) ~2 
(2.28) 

This insures that , and ~ blend smoothly from the boundaries into 

the interior. 
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Chapter 3 

GOVERNING EQUATIONS OF FLUID DYNAMICS 

3.1 Introduction 

In this chapter, the co~plete governing equations of fluid dynamics 

in various forms as will be used later are derived. While such a 

derivation can be found in various books on the subject, the 

presentation which is given usually depends, to some extent, on the 

author's background and orientation. For example, the classic book by 

Batchelor, which gives an excellent derivation of the Navier-Stokes 

equations, barely discusses compressible flows [36]. Furthermore, 

advanced topics such as turbulence or weak solutions to the Euler 

equations are covered in only sketchy detail in Most of the introductory 

texts currently in use. This undoubtedly reflects the fact that fluid 

dynamics is an extremely broad and interdisciplinary subject which is 

both highly mathematical and also has applications in many different 

areas. 

The equations which are used in this study are the compressible 

Euler and Navier-Stokes equations in both conservative and non­

conservative form. The viscous equations which are used are for laminar 

flow and, therefore, the topic of turbulence is not discussed herein. 

The assumptions which are made are discussed in the appropriate 

sections. The assumption that the fluid behaves as a continuem is made 

throughout. 
27 
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3.2 Mass Conservation Equation 

The principal of mass conservation states that mass is neither 

created or destroyed. Therefore, a given differential "fluid element" 

of density p and volume 6V moving along with the fluid can be described 

fro~ the Lagrangian point of view by the equation 

&- (p 6 V) = 0 (3.1) 

since the mass of the fluid element remains constant. It is now more 

customary to derive the governing equations from the Eulerian point of 

view using a control volume flxed in space. Consider a control volume 

6V with a total nass given by 

J p dV = mass inside 6V 
v 

The rate of change of the mass inside e,V is then related to the 

integrated mass flux through the boundaries of 6V which is 

J V. n dA = net mass flux 
p 

and therefore the mass conservation law in 

~ J p dV = - J p V • n dA at v A 
(3.2) 

Equation (3.2) is the integral form of the mass conservation law and 

applies even when p and V are not differentiable. 

Using the divergence theorem and assuming the control volume to be 

fixed, this can be written as 

J [~+ div (p V)] dV = 0 
vat 
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Since this equation ~ust hold- for all V, it can be written in 

differential form as 

p + v • (p V) = a 
t 

(3.3) 

It can be shown that Eq. (3.3) is equivalent to Eq. (3.1), for example 

see Karamcheti [31J. In two-dimensions, Eq. (3.3) can also be written 

as 
(3.4) 

3.3 Momentum Equation 

The pri nci pa 1 of conservat i on of ~omentum fo 11 ows from Newton IS 

second law which is valid for non-relatavistic ~asses and states that 

"t = ~ (m V) 
dt 

(3.5) 

where "t is the applied force, m is the mass and V is the velocity. 

For a moving infinitesimal fluid element this can be written as 

F = ~t (p V 6 V) (3.6) 

where DIDt is the substantial (or material) derivative and 6V is the 

elemental volume 

The force in the left side of Eq. (3.6) is usually considered to 

consist of body forces which are the result of gravitational or ~a9netic 

fields and surface forces which only act on surfaces and which are 

pressure and viscous stresses. Normally in aerodynaMic analyses the 

body forces are neglected sin~e they are negligible due to the fact that 

a moving body of air has a much larger kinetic energy than a potential 

energy. 
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It can be shown that the slJ'T'face forces on a fl ui del ement can be 

collectively and completely described by a second order stress tensor 

0ij (The derivation of this fact is contained in most fluid dynamic 

textbooks and will not be repeated herein). The interpretation of the 

individual components of this tensor is that 0ij is the force in the 

ith direction on an element of area whose normal is in the jth 

direction. It can also be shown that the stress tensor is symmetric so 

that 0ij = 0ji. This is due to the fact that an infinitesimal fluid 

element cannot support moment forces as the volume goes to zero faster 

than the rotational forces which would otherwise lead to infinite 

rotational moment forces per unit volume. When referred to the 

principal axes, it is found that the off-diagonal components of the 

stress tensor are zero and that the sum of the di agona 1 el ements, 

referred to as the principal stresses, is an invariant sun under changes 

of direction of the orthogonal axis of reference. 

The stress tensor in reference to the principal axes can be split 

and expressed as the sum of two tensors 

1 
"3 + (3.7) 

where 011,022' and 033 are the principal stresses. The first part 

of Eq. (3.7) is an isotropic tensor and the second part is referred to 

as the deviatoric stress tensor. In a fluid at rest, all of the 

components of the deviatoric stress are zero so the isotropic stress is 

, sinply due to hydrostatic pressure and 
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where p is the uniform hydrostatic pressure. In a moving fluid, the 

isotropic stress tensor is still considered to be due to hydrostatic 

pressure and the components of the deviatoric sress are nonzero. Thus, 

in general, the stress tensor can be written as 

(3.8) 

where T fj is the deviatoric stress. The deviatoric stress is related to 

the motion of the fluid and in particular to the local velocity 

gradients aU;faxj • 

aui/ax j , then 

If it is assumed that T· • 
lJ is a linear function of 

(3.9) 

where Aijk1 is a fourth order tensor coefficient. The tensor of the 

local velocity gradient can also be written as the sum of a symmetrical 

tensor, called the rate-of-strain tensor and an anti-symmetrical tensor 

which represents pure rotation. Thus 

= ekt + ~ k! 

(3.10) 

where wm is the angular vorticity. Thus 

(3.11) 

If AUk! is also assumed to be an istropic tensor, then the fluid is 

said to be "Newtonian ll and Aijk! can be expressed as the sum of the 

product of delta tensors 
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A. 'k lJ .. (3.12) 

where lJ, lJ1' and lJ2 are scalar coefficients. It turns out that II is 

the molecular viscosity of the fluid which is frequently regarded simply 

as a constant but which is a function of the state of the fluid. Since 

the stress tensor is sYMmetric, it MUSt be true that A" k lJ t is a 1 so 

symmet ri c in i and j and that lJ = lJ 1 • Ai jkt must a 1 so be 

symmetrical in k and t with the result that the vorticity term in Eq. 

(3.11) MUSt be zero and therefore 

(3.13) 

where ekk = v • V is the divergence of V. 

The coefficient lJ2 is frequently called the second coefficient of 

viscosity or Lame's constant and given the symbol A. Since in a fluid 

at rest, it MUSt be true that tij is zero so that the mean normal stress 

is just equal to -p 0ij' Stoke's theorem assumes 

A = 2 
-jlJ 

The stress tensor is finally given by 

(3.14) 

(3.15) 

The rate of change of momentum inside a control voluMe oV is equal 

to the SUM of the net momentum flux through the boundaries of oV plus 

the change of momentum inside oV due to the forces acting on oV. The 

net change of momentum inside oV is 
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The net momentum flux in through the boundaries of 6V is 

where p V V is a dyadic called the momentum flux tensor. The integrated 

force due to pressure and the viscous stresses is 

f (-p. n + T • n) dA a V ij 

The momentum equation is then 

~ f p V dV + f p V V • d~ = f (- p + T •• ) • d~ dt v a v a v 1 J 
(3.16) 

Equation (3.16) is the momentum equation in integral form and applies 

even when there are discontinuties in the fluid. By making use of the 

genera 1 ized di vergence theorem and assumrni ng that p, p, and V are 

sufficiently smooth, Eq. (3.16) becomes 

f { ~t (p V) + v • (p V V + P - T •• )} d V = 0 
v a lJ 

(3.17) 

Equation (3.17) must apply to all parts of the control volume and can 

also be written simply as 

! t (p V) + V • (p V V + p) = V • T i j (3.18) 

Equation (3.18) is the Navier-Stokes equation in conservation form. If 

the viscous stresses are assuMed to be zero, then Eq. (3.18) becomes 

~ (p V) + V • (p V V + p) = 0 (3.19 ) 
at 

which is the Euler equation governing inviscid fluids. Equations (3.18) 

and (3.19) can be written in what is called non-conservation form by 

subtracting out the mass conservation equation which occurs in them. 

The result is 

.. 
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(3.20) 

which is a very cOMpact form of the Navier-Stokes equations but which is 

still valid in general. 

3.4 Energy Conservation Equation 

The full three-dimensional mass and Momentum conservation equations 

contain the five variables p, p, \J, v, and w. Since there are only 

four equations thus far, another equation is needed to close the set and 

this is the energy conservation equation. In the chapters which follow, 

the energy equation will be used in different forms so a unified 

derivation is presented here. The energy equation is obtained by 

application of the first law of thermodynamics which relates the rate of 

change of the energy inside a control volume to the energy flux through 

the boundaries of the control volume and to the rate at which work is 

done on the fluid. 

The tot alene rgy of the flow fi e 1 dis the sum of the i nte rna 1 

energy, kinetic energy, and potential energy. The potential energy is 

normally neglected in aerodynamic flows since the density of air is very 

low. Thus the rate of change of the total energy inside the control 

vol ume fl Vis 

dEt d 2 
dt" = dt f p (e + q /2) d V 

V 

where Et is the total energy, e is the internal energy and q2/2 is the 

kinetic energy. 

:the energy flux in through the boundaries, due to convective flux 

of internal and kinetic energy, 1s given by 
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The conductive heat flux is given by 

- I q. dA aV 

The heat fl ux + q is related to the gradi ent of the temperatu re by 

Fourier's law which is 

+ 
q = - k V T 

where k is the thermal conductivity. In many derivations of the energy 

equation, a term is added to account for the heat added per unit mass 

such as would occur from an exothermic chemically reacting flow. This 

term is usually given by the following volume integral 

f p q dV 
V 

where q is the rate of heat addition per unit mass. In this 

investigation, no such flows are considered and, therefore, this term is 

not included. 

The work done on the fluid inside 6V is due to the stress tensor 

and is given by 

I (0 •• V) • dA = f V [( - p + T • .rV] • dA aV lJ a lJ 

Combining the above expressions, the integral form of the energy 

conservation equation is 

d 2 2 1". 1". -t dt Iv p(e + q /2) dV = fa)-p(e + q /2) v + k v T + (-p + Tij)V].dA 

(3.21) 
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Equation (3.21) is very general and applies even when there are 

discontinuties in the flow. By making use of the divergence theorem, 

Eq. (3.21) can also be written in differential form as 

!-. E + v • [E V - k v T + (p - T •• ) V] = 0 at t t lJ 
(3.22) 

If the fluid is considered to be inviscid and non-conductive, then 

Ea. (3.22) reduces to 

Equation (3.23) can be expanded to 

222 
a(e+q/2} q ap q -t. 

P + (e + 2) -a t + (e + 2") v • (p v) 
at 

2 
+ p v · v (e + i ) + v • (p V) = a 

(3.23) 

the second and third terms can be dropped since they include the mass 

conservation equation to yield 

2 
p D (e + q /2) + v • (p V) = a (3.24) 

Dt 

Equation (3.24) can be split into two equations as follows. First, Eq. 

(3.20) can be written for an invic;d fluid as 

DV 
p-+vp = 0 Dt 

This equation can be dotted with V to form a scaler equation 

DV 
p V • - + V • vp = a Dt 

Equation (3.25) can be subtracted from Eq. (3.24) to yield 

De -t. p-+pv.v = 0 Dt 

(3.25) 

(3.26) 
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which expresses the rate of change of internal energy of a moving fluid 

element. Equation (3.26) can be put in terms of the enthalpy using the 

definition of enthalpy 
h = e + pv = e + pIp (3.27) 

Substituting Eq. (3.27) in Eq. (3.26) and by making use of the mass 

conservation equation, it can be shown that the following equation 

holds. 

Oh QQ. 
Pnt+nt = 0 (3.28) 

Furthermore, by adding together Eqs. (3.28) and (3.24), subtracting Eq. 

(3.26), and by making use of the defintion of total enth~lpy, namely, 

ho = h + q2/2, we obtain the following energy equation in terms of the 

total enthalpy. 

If the flow is steady, Eq. (3.29) reduces to 

Oho 
l5t = 0 

(3.29) 

(3.30) 

Equation (3.30) expresses the fact that the total enthalpy along a fluid 

streamline is constant for invicid flows. 

3.5 Two-Oi~ensional Form of Equations 

Since the probleMs studied in this investigation were two­

dimensional in nature, this section contains a summary of the governing 

equations in two dimensions and in various forMs. The MoSt compact way 

of expressing the Navier Stokes equations is in the vector conservation 

form given below 



0t + F + tl = R + S x y x y 

where Q is the vector of the conserved variables given as 

Q = T 
[p t pUt P V t e] 

and F and G are the convective flux vectors given as 

F = 

G = 

pU 

pu
2 + P 

p uv 
(e + p) u - kTx 

pV 

pUV 

pi + p 

{e + p} v - kT • Y 

and Rand S are the viscous flux terMS which are 

0 
TXX 

R = T xy 

UT xx + VT xy 

0 
T xy 

S = Tyy 

ltt xy + 'ltyy 

The viscous stress terms in Eq. (3.31) are 

38 

(3.31) 
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= 2_(2~_~) 
jlJ ay ax (3.32) 

The total energy per unit Mass is the SUM of the internal energy and the 

kinetic energy as follows: 

2 + v2 
e = i + _u---,~_ 

2 (3.33) 

Equations (3.31), (3.32) and (3.33) together contain five scalar 

equations in the nine quantities p, u, v, p, e, i, t, k, and lJ. In the 

model being used, the thermal conductivity k and the molecular viscosity 

lJ are considered constant so two additional equations are needed to 

close the system. The first ;s the perfect gas equation of state 

p = p R T (3.34) 

where R is the gas constant. If the fluid is assumed to be calorically 

perfect, then 
i = c T v 

and consquently by Eq. (3.34) and the relation 

it holds that 

R 
Cv = :y:r 

i = p/[(y-1)p]. 

(3.35) 

(3.36) 

(3.37) 

The governing equations can be nondimensionalized by referring them 

to suitable reference quantities as follows: 

y' = y/R. o t' 



r 

r 

ul = u/ao 
Vi =- vIa I 

0 p 

pi pI (po i) e l 2 = = el (p 0 ao) lJ 0 

i I = i/a2 T' = T/To 0 

The resulting equations after nondimensionalizing are: 

where 

aQ' aF' aGI 1 aR' aS I 
if'" + axr + ayr = "Ire (ax-r + ayr) 

QI = 

F' = 

GI = 

R' = 

SI = 

[ I lUi IV I e,]T p ,p ,p , 

P lUi 
p'u,2 + pi 
p IUIV I 

(e l + pl)U I + ql 
X 

plV I 

P IU IV I 

p'V,2 + pi 

(e l + pi )v I + ql 
Y 

a 
I 

txx 
I 

T xy 
ul I + t xx 

Vi I 
t xy 

a I 
t xy 

I 
t yy 

ul + Vi I 
t xy tyy 
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= p/po (3.38) 

= lJ IlJ 0 

(3.39) 
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and 
2 au' av' = j ~ t (2 ax'" - ay') 

, = 2 '(2 av' _ au') 
t yy j ~ ayr 3X'" 

, (au' av') 
tyy = W + rx-r 

The reference Reynolds number is gi.ven by 

The equation for the total energy, Eq. (3.33), becomes, after nondimen-

sionalizing, 

e' (3.40) 

and the equation of state, Eq. (3.37), becomes 

;' = p'/[(y-l) p'] (3.41) 

Thus the original equations are replaced by equations which have the 

same form but which now include the reference Reynolds number in the 

momentum equations and the reference Peclet number (Reo Pro) in the 

energy equat i on. 

The Euler equations for inviscid fluids are obtained from Eqs. 

(3.31) and (3.39) by dropping the viscous flux terl'ls Rand S. Thus we 

have 

= 0 (3.42) 
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Equation (3.42) is written out as-

p t + (p u) x + (p v) y = 0 

(pu)t + (p u2 + p) x + (p uv ) y = 0 

(pv)t + (puv)x + (pV2 + ply = 0 (3.43) 

et + [(e + p)u - kT]x + [(e + p)v - kT]y = 0 

Eauation (3.43) are in conservation form and include an energy equation 

in terms of the internal energy. In the three schemes used to solve the 

Euler equations, this form of the energy equation was not used. 

Instead, energy equations in terMS of either the enthalpy or entropy 

were used. 

In the following discussion and derivation, the primes are dropped 

for convenience and it should be understood that all quantities are non-

dimensional. 

The next step is to transform the equations to general curvilinear 

coordinates in conservation law form. Equation (3.39) is transformed to 

(3.44) 
where 

Q = Q/J 

F = (F ~ + G ~ )/J x y 

G = (F Tl + G Tl )/J x y 

R = (Rt + ~ )/J x y 
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Chapter 4 

SCHEME 1 - SHOCK CAPTURING GABUTTI 

4.1 Introduction 

The first cOr.lputational scheme used in this study is the Gabutti 

scheme which is a refinement of the x-scheme developed earlier by 

Horetti [28]. The scheme solves the time dependent cOMpressible Euler 

equations in non conservation form by an explicit predictor-corrector 

metho~. Gabutti's method iMproves upon the x-scheme by extending the 

stability range substantially and also by enabling it to satisfy the 

shift condition for a CFL of one which is 

n+l ui = n 
u. 1 1-

The scheme has good shock capturing properties in that the discontinuity 

is usually spread over no more than two or three mesh points. The jumps 

in density, pressure, and velocity through the shock are not correct due 

to the nonconservative nature of the scheme, however, and shock fitting 

must be used to get the correct jump relations. The scheme solves the 

mass conservation, and x and y momentum equations in non-conservative 

form as 

Pt + up + Vp + P X y (ux + vy ) = a 

Ut + uu + vu +!. p = 0 (4.1) x y P x 
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vt + uv + vv ..... .! p x y p y = o. 

If the flow is assumed isentropic along streamlines, and if we use the 

change of variables P = 1n p, then the above equations can be written as 

Pt + uP + vP + y (ux + vy) = a x y 
2 

ut + uu + vu +.!.... P = a (4.2) x y y x 

2 
vt + uV x + VVy + .!... P = o • y y 

The energy equation in its usual differential form is not used, but 

rather the assumption is made that the flow is isenthalpic. In this 

case, the square of the speed of sound a2 is related to the velocities 

by the steady state energy equation 

a2 u2 + l 
+ = ho y:r 2 (4.3) 

where ho is the total enthalpy. If the pressure p and the density pare 

nondimens;onalized by dividing by their stagnation values Po and Po' 

then 

(4.4) 

4.2 Transfonnation of Equations 

In order to use the governing equations, it is first desirable to 

transfonn them to (~'Tl) coordinates. Using Eqs. (2.4) and the chain 

rule, the mass conservation equation becomes 

Pt + UP~ + VP + Y [U + V, = Ps ., Tl ~ Tl-
(4.6), 

where U and V are the contravariant velocities 
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u = (4.7a) 

v = (4.7b) 

and (4.7c) 

The terms 94 and 95 are two of 11 transformation terms that appear ; n 

the 90vernin9 equations after transformation and these are 9iven by 

2 + 2 
91 = x~ Y~ 

9 = i + y2 
2 n n 

93 = x x + Y Yn ~ n t 

94 = x~~ Y n - \n Yt - Ytt 
x + Ytn 

x 
n t 

95 = \n Y~ x Yt - Ytn 
x + Ynn 

x 
nn n ~ 

96 = Yn Xt~ x Y~~ n 

97 = Yn x - x Ynn nn n 

98 = 2 (y x x Y ) n ~n n ~n 

99 = x~ Y~~ - Y x 
~ ~~ 

910 = x~ Y nn - Y F. X 
nn 

911 = 2 (xF. Y~n - Y x ) (4.8) 
F. F.n 

The trans format i on of the two momentum equat ions is somewhat more 

complicated. First, they are writt~n in vector form as 

Qt + uQ + vQ + S = 0 x Y (4.9) 



where Q = [u, v]T and- S 

The vector Q can also be written as 

2 
= a [P p]T Y x' y 

where 

Q = [:1=[:: ::][~I = TO 

T = [ :: ::J 

Q = [ ~ 1 
--1 

~'ultiplying Eq. (4.10) by T ghes 
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(4.10) 

Note a is assumed that T is independent of time. The previous 

equation is equivalent to 

which can be manipulated to get 

o + UO + VO +5 = 0 
t ~ n 

(4.11) 

where 
S = 1-1 [U I 0 + V T 0] + T-1S 

~ n 

Equation (4.11) written out is 

2 
Ut + UU~ + VU + (Ja) [g p - g3 Pn] = Us n y 2 ~ 

(4.12a) 

2 
Vt + UV

t 
+VV + (Ja) [g p - g3 P~] = Vs n y 1 n 

(4.12b) 
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where 
2 2 

Us = -J (96 U + 97 V + 98 UV) (4.12c) 

2 2 
Vs = -J (99 U + 910 V + 911 UV) (4.12d) 

If the transformation from (x,y) to (~,n) is conformal, then the above 

two equations can be reduced using the Cauchy-Riemann equations to 

r- 2 U2 + V2 
Ut + UU~ + VU + ~ P 2 J1 - UV J2 = 0 (4.13a) 

n y ~ 

2 U2 + V2 
Vt + UV~ + VV + ~ P - UV J1 - 2 J2 = 0 (4.13b) 

n y n 

where 

The A-scheme introduced by Moretti is next used to put Eqs. (4.6) 

and (4.12) into a quasi-characteristic form. First, the time derivative 

of Pis spl it into two parts Pi and p1 such that 

'1 + U P~ + Y U~ = 1 
'2' Ps (4.14) 

Pi + V P
n 

V 1 + Y = '2' Ps n 
(4.15) 

Equations (4.12a) and (4.14) can be written as 

7f: + A 7f = Sl 
t t 

(4.16) 

where 
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and 51 is the vector of the remaining terms put on the right side of Eq. 

(4.16). The eigenvalues of matrix A are 

Equation (4.16) can be diagonalized as 

(4.17) 

where [S] is the matrix of the eigenvectors. If [AJ is split into its 

positive and negative eigenvalues, Eq. (4.17) becomes 

(4.18) 

Similary, Eqs. (4.12b) and (4.15) can be written as 

7f + B '01'1 = S2 
t 1'1 

(4.19) 

where 

The eigenvalues of Eq. (4.19) are 

Equation (4.19) can be diagonalized and split into positive and negative 

co~ponents. The result is 

(4.20) 



Equations (4.18) and (4.20) can~e added together to get the final set 

of equations which are given below 

1 [ + + - - + + - - rl: ( + + - -)] Pt + ~ A P + A P + n P + n P + A U - A Ue-
Co ~ ~ T\ T\ a 2 ~ .. 

where Ps ' Us and Vs are unchanged but 

= U s 

4.3 Discretization of Equations 

(4.21) 

Equation (4.22) is now in a form that allows a proper discretiza­

tion of the spatial derivatives according to the signs of the eigen­

values multiplying them by taking into account the domain of dependence. 

In two-dimensional unsteady flow, the governing Euler equations are 

hyperbol i c in time and the solution at any point.!. at time t + 6 t 

depends on the solution at time t within the area dA as shown in Fig. 

4.1. The conoid from the solution surface at time t to pOint.!. at 
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t + flt is called a Monge cone-and it depicts the way the solution 

propagates in time [37]. The numerical algorithm should model the way 

info~ation propagates which means it Must take into account the proper 

doma in of dependence. Therefore, the i nformat i on used to update each 

Mesh point should be taken froM adjacent mesh points in a manner that 

reflects the physical propagation of information. In supersonic flow, 

for exaMple, pressure waves do not propagate upstream and no information 

from downstream points should be used to update the solution at a given 

mesh point. 

The Courant-Frederick-Lewy, or CFL, stability condition reflects 

the requirement that the region of dependence must be at least as large 

as the analytical domain of dependence [6]. In addition, Moretti also 

refers to the "law of forbidden signals" and states that in addition to 

satisfying the CFL stability condition, a numerical scheme should also 

satisfy this law [28]. Uhat this means in practice is that in 

supersonic flow, the information that is used to generate the updated 

solution at a particular mesh point should not come from points 

downstream of it. This is not always possible but the present scheme 

does atteMpt to follow this principal as closely as possible. 

Equations (4.21) are solved using the three-step predlctor-

corrector scheme [27]. The scheme wi 11 be descri bed us i ng the one-

dimensional linear wave equation as a model problem 

(4.22) 

IF! step 1 of the scheme, the spathl derivative Ux is evaluated by 

either a two point backward or forward difference, depending on the sign 

of the characteristics as 

50 
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Flg. 4.1 Characterlstlc Monge Cone. 
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ui - u
i
_
1 Ux = v ui = - taX if a < 0 

ui +1 - ui Ux = tau i = taX if a > 0 (4.23) 

A predicted value ui is then calculated using the Ut that results from 

Eq. (4.22). For example, if the wave speed a is positive then 

(4.24) 

where 

In step two of the scheme, the values of ui at time level n are 

used again to compute Ute Depending on the wave speed a, Ux is computed 

as 

n n n 2u i - 3u. 1 + u. 2 1- 1- a ~ o. Ux = , taX (4.25) 

2u~ n u 
- 3ui +1 + u. 2 , 1+ a < O. Ux = - , taX (4.26) 

Then, compute Ut as 

In step three of the scheme, the predicted values ui are used to 

compute a predicted lit with b/o step backward or forward differences, 

depending as in Eq. (4.23) again on the sign of the characteristic speed 

a. The final update is then made using both the Ut computed in step two 

and Ut as follows 

(4.27) 
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In this example. the sign of th!-wave speed a determines the direction 

in which the spatial derivatives are taken. In Eqs. (4.21). the 

.. + - + -characterlstlcs A and A • and nand n perform this function. The 

scheme satisfies the so-called "shift" condition for v = 1 which is 

Thus. for v = 1, the scheme properly convects waves along the 

characteristic dx/dt = a. 

4.4 Stability Analyses 

The stability of the scheme was analyzed using the classical von 

Neumann method [38]. In this method. the error is expressed as a 

Fourier series and the growth of the error in tine is examined. The 

total error in a numerical calculation consists of both discretization 

error and round-off error. The discretization error arises from the 

fact that what one is actually solving in a numerical calculation is not 

a differential equation but a difference equation. If U(x,t) is taken 

to be the exact solution to the governing POE and if U(iflX, I'ltit) is 

the solution to the approximating difference equation carried out to 

infinite precision. then (U - u) is the discretization error. If this 

di fference goes to zero as fl x goes to zero. then the di fference 

equation is said to be consistent with the POE. 

Roundoff error arises from the fact that the calculations cannot, 

in practice. be carried out with infinite precision and the calculations 

must be rounded-off to some finite number of decimal places. If N is 

called the actual finite preciston numerical solution, then (u - N) is 

the roundoff error and U - N is the sum of the discretization error and 
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the round-off error. The numertcal calculations will be stable if the 

inevitable errors which are introduced are damped out (i.e. decay with 

time) • 

Although the von Neumann stability analyses is not the most 

rigorous method, since it ignores the boundary conditions, it is used 

frequently because one is usually interested in the stability of the 

basic scheme as boundary conditions may change. To examine the effect 

of the boundary conditions, the matrix method may be used [39]. In this 

method, it is necessary to define an amplification matrix A as 

where n+1 u and un are the vectors of the solution. Then the 

eigenvalues of A are examined, and for stability, it is necessary that 

the modulus of all the eigenvalues be less than one. 

Stability analyses of the scheme were done in both one- and two­

dimensions. For the one-dimensional analyses, the model Eq. (4.22) was 

used. For the two-dimensional stability analyses, the following model 

equation was used. 

ut + a u + b u = 0 x y (4.28) 

It turns out that the maximum CFL number for which the scheme is stable 

is two for the one-dimensional equation and one for the two-dimensional 

model equation. The steps in the analyses will only be shown for the 

two-dimensional analyses. 
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The first step in the analY!es is to combine the three steps of the 
n+1 Gabutti scheme into a single step so that ui . is expressed in terms .J 

of the ui.j at time step n. ~rhen this is done. the result is 

n+1 u .. 
, • J 

n 1 [ n = u. . -.,. a( 3 u. . '.J £. '.J 
+S(3u~ . n n - 4 u .. 1 + u .. 2) , .J , .J- , .J-

2( n - 2 n n + a U •• ui _1•j + u. 2 .) , .J , - .J 

+ S 2( u~ . - 2 n + u .. 2) u .. 1 , .J , .J- , .J-

2 a S( u· . - u. 1 . - u. . 1 + u. 1 . 1) J '.J '-.J '.J- ,- .J- (4.29) 

where 

a = a t. xlt:. t 

S = b t.y It:. t 

If e~ is assumed to be an initial error distribution and N~ is the 

solution to the difference equation which satisfies Eq. (4.29) exactly, 

then the error at time level n+1 must also satisfy Eq. (2.29). Thus, 

the error will not grow provided the solution to the difference equation 

is stable and bounded. 

Next, assume that 

(4.30) 

I = 1:-[ 

is a periodic representation of the solution with rn as the amplitude, 

kx and ky as the wavenumbers. and 6 x = kx t. x and 6y = ky t.y as the 

phase angles. Substituting Eq. (4.30) into Eq. (4.29), is found that 
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+ 8 {3 - 3 exp (- Ie ) + exp ( -2 Ie )) y y 

(4.31) 

Define the amplification factor as 

n+1 n ui = G ui (4.32) 

from which it is apparent that G is the same as r. The maximum 

amplification factor G for values of a and 8 ranging from .5 to 1.5 

was found by solving Eq. (4.31) on a computer for values of a and a 

ranging from 0 to 360 degrees. The results are shown in Table 4.1. 

From this, it is seen that the scheme has a maximum CFL number for 

stability of one in two-dimensions. 
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Table 4.1 Results from Stability Analyses 

r-

a a G 

.5 .5 1.0 

.5 1.0 1.0 

.5 1.5 1.0 

1.0 1.0 1.0 

1.0 1.5 3.5 

1.5 1.5 7.0 

,-
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Chapter 5 

SCHEME 2 - SHOCK FITTING GABUTTI 

5.1 Introduction 

Shock fitting, in contrast to shock capturing, does not attempt to 

apply finite differencing across shock waves and instead imposes the 

correct Rankine-Hugoniot jump relations at the discontinuities, the 

location of which is assumed known. Shock fitting methods seem to have 

evolved alongside and in conjunction with shock capturing methods. 

Shock fitting is still frequently used in supersonic problems where a 

bow shock wave develops ahead of the body. The flow ahead of the shock 

is usually taken to be freestream uniform flow and so there is no need 

to apply the time-dependent method to this region. The jump relations 

are applied at the shock, which is fitted as a computational boundary. 

If all of the shocks in the flow field are fitted, then it can be argued 

that the governing equations can be solved numerically in either 

conservation or nonconservation form in the smooth regions of the flow 

field. 

Thus, the use of shock fitting can lead to a reduction in computer 

time from (1) the elimination of the need to apply finite differencing 

to the freest ream uni form flow ahead of the bow shock in supersoni c 

problems and (2) the use of the primitive variable form of the governing 

equations which may be somewhat less expensive to solve nUMerically. 

However, the subsequent development of implicit methods has, to some 
58 
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degree, removed the advantage of~olving the non-conservative equations 

because ultimately one is after the solution to the problem in the least 

amount of computer time and convergence rates are perhaps more relevant 

to this quest than the cost to do a single iteration. 

In this study, the shock which develops, is embedded in the flow 

field and shock fitting is used on a grid which has the shock aligned 

with one of the lines of constant X (in the computational domain). The 

shock is allowed to move and adjust its position and characteristics to 

the evolving flow field. Recently, ~10retti has shown that it is 

possible to do shock fitting on a grid which is stationary such that the 

shock is not aligned with any of the mesh lines [40]. This method has 

also been referred to as IIfront trackingll and is used to describe 

methods for handling discontinuities such as weather fronts and oil flow 

in porous media [41]. 

The shock fitting scheme developed for use in this investigation 

treats the embedded shock which develops as a discontinuity aligned with 

a line of constant X and the Rankine-Hugoniot relations are used to 

relate the upstream and downstream flows through the shock. 

Thi s scheme is ident i ca 1 to the scheme descri bed in Chap. 4 wi th 

five exceptions. First, the initial conditions are the converged 

results of a previous run of scheme 1. Second, the grid is aligned with 

the embedded shock that forms in the initial run. Third, the governing 

equations along with the Rankine-Hugoniot relations are used to 

calculate the shock velocity and acceleration at each point on the shock 

front and the gri dis dynami ca lly adapted as the shock changes its 

position. Fourth, the Rankin-Hugoniot relations are used to calculate 
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the jumps in pressure, density, Yelocity and entropy through the shock, 

and fifth, the equation describing the convection of entropy is included 

with the set of equations to be solved 

os 
\ + u S + v Sy = 0 Of = • x (5.1 ) 

When Eq. (5.1) is transformed to (~ ,Tl ) coordinates, it becomes 

St + US~ + VS = 0 
Tl 

(5.2) 

where U and V are the contravarient velocity components. The entropy is 

related to the nondimensional pressure and density by Eq. (5.3) 

S = lnp-ytnp (5.3) 

The unknowns in the final set of equations are the log of the pressure 

P, the velocity cOMponents U and V, and the entropy S. Since there are 

four equations, the system is closed. 

5.2 Transformation to Shock Fitted Coordinates 

The solution to be used as the initial condition to the shock 

fitting calculations is associated with some curvilinear coordinates ~ 

and Tl which, in general, are not aligned with the shock. The solution 

must, therefore, be interpolated onto a new coordinate system which is 

aligned with the shock. These coordinates will be called X an Y herein 

and the transformation from the previous to the new coordinate system is 

given as 

(t,~, T,) + (T, X, Y) 
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The transformation relatigns to-be used will have X = X (t, t, rd and 

y = Y (t ,Td and, therefore, by the chain rule. 

a a a a = -+-X +- Y at a T a X t a Y t 

a a (5.4) = ax Xt at 

L a + a Y = IT Xn • an if n 

The system of governing equations which results is 

PT + UPx + VP + y [U X + V X + Y Y ] = P y X t X n Y n s 
2 

UT + UUx + VU y + (Ja) [ P X - g3 (Px\ + PYYn)] = U (5.5) y g2 X t s 
2 

VT + UVx + VVy + (Ja) [ 
(PXXn + Py\) - g3 PX\] V y g1 = s 

ST + US + VS = 0 x y 

where 
U = X + UX + VX 

t t n 

V = y + VY 
t n 

-and Ps ' Us and Vs are as previously defined in Eqs. (4.7c) and (4.12c 

and d). 

The desired coordinate transformation in the t direction is 

X = X {t s} 

where ts is the location of the shock which is function of nand t. 

A second degree polynomial given as 

~ 
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t = to + (e, - to) (a I X + a 2 X 2) (5.6) 

was used where to and t, represent the minimum and maximum values of 

t and al and a2 are coefficients determined such that 

It is eas i ly 

where 

~ = ~s when X 

t = tl when X 

found that 

al = bl + b2 f 

a2 = b3 + b4 f 

bl = - X/(X1D} 

b2 = XII (XsD) 

b3 = - bl/Xs 

b4 = - b2/XI 

o = Xl - Xs 

ts - to 
f = 

tl - to 

= Xs 

= Xl • 

(5.7) 

Using the above expressions, the transformation Eqs. (5.8) are 

determi ned as 

X~ = l/[(tl - to} (a l + 2 a2 X)] 

, 2 
X Tl = - (b 2 X + b 4 X ) Xt f Tl (5.8) 
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A transformation from n to Y was done for problems 1, 2, and 3. 

Since t and n are conformal coordinates and are independent of the 

stretchings used to produce the original grid, then it is necessary to 

use some sort of transformation from n to Y if it is desired to have 

~Y = 1. A second order stretching was used as follows 

(5.9) 

where no and n1 are the minimum and naximum values of nand a4 and 

as are coefficients chosen to achieve the desired stretching. In 

problem 1, no' a4 and as were made to be functions of time so that the 

position of the lower boundary as well as the degree of clustering near 

the lower boundary could be changed dynamically. 

5.3 Calculation of Shock Acceleration1 

To cal cul ate the shock accel erat ion, the governi ng equations are 

used along with the Rankine-Hugoniot relations in a fairly straight 

forward manner. First, the governing equations are written in vector 

form as 

T o = [P, u, V] 

(5.10) 

1The writer is indebted to Mr. M. D. Salas for showing how to calculate 
the shock acceleration. 
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where 2 
(Ja) ( X 

y 92 ~ 
2 

(Ja) (9 X 
y 1 n 

A = 

R1 = p s - V P y - y Uy 

- 9 X) 
3 T\ 

- 9 X) 
3 ~ 

2 
R2 = Us - V Uy + (J~) 93 Py 

2 
P3 = Vs - V Vy - (J~) 91 Py • 

yX 
~ 

U 

o 

The matrix A has the eigenvalues 

). 3 = U 

a = Ja [91 X~ - 2 93 X~ Xn + 92 xi] 1/2 

= Ja [SQ]1/2 

and can be dia90nalized as 

where 

s = 

A = S A S-1 

Ja SQ 

93 Xn - 92 X~ 

93 \ - 91 Xn 

ta- SQ 

92 X~ - 93 Xn 

91 Xn - 93 X~ 

yX 
n 

o 

U 

o 
X 

T\ 

-X 
~ 

64 



,-

65 

and SQ is the quantity in square ~ots. Equation (5.l0) can be put into 

characteristic form as 

• (S.ll) 

The equation corresponding to Al is then 

(5.12) 

where 

and Px, Ux and vi are forward differences. 

Figure 5.1 shows the shock in the (e, n) coordinate system with 

unit normal and tangent vectors. The covariant base vectors are 

The contravariant base 

+ e 
C 

+ e 
n 

vectors 

+C e 

= 

= 

are 

X i j + y 
C C 

X i + Y j • n n 

+n 
e = n i +n j. x y 

The unit normal at the shock is given by 

(5.14) 
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F1g. 5.1 Vector Relat10ns at the Shock. 
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N 
vf 

= 
IVfl 

f i + f Y j x = 
.; f2 + i 

x y 

f et + f en 
= i " (5.15) 

';v f • v f 

where f = t - t s (n, t) = 0 

and the length of grad f is 

= h • n 

The unit tangent vector is defined by 

N • T = 0 

and therefore it is found that 

- f 
+ 

+ f + e e 
T " t " " = 

[f2 e + 
-2 f f + + 

• e e • e 
n t t t " t " 

ts et +e 
" = n 

ht 

f2 + + e 
t " 

(5.16) 

+ ]1/2 • e 

" 

(5.16) 

where ts is the shock slope and ht is the square root term a~ove. 

" 
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The velocity relations at-the shock are obtained using these 

equations. The flowfield velocity is 

v = ui+vj 

(5.17) 

Letting the contravariant velocity of the shock be Us' the velocity 

relative to the shock is 

v = (U - U ) ~ + V ~ • 
s s ~ n 

(5.18) 

Note that U and V are different on each side of the shock. The velocity 

component normal to the shock is 

(U - U ) - ~ V 
s s 

V N = n • • s h n 

= Vn (5.19) 

The cOMponent tangent to the shock is 

~s (U - U ) + V 
s 

V T n 
• = s ht 

= Vt • (5.20) 

Since the tangential components of velocity must be equal on both sides 

of the shock, we have 

Ul ~ s + VI = U2 ~ s + V 2 (5.21) 
n n 
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where the subscripts 1 and 2 denote the upstream and downstrean sides of 

the shock respectively. Equations (5.19) and (5.20) can be solved for U 

and V to get 

U = 

V = 

The junp in pressure through the shock is given by 

P2 2 2 - = 1 + -E1- (t, 1 - 1) = P PI y-+l r 

where Ml is the Mach number relative to the shock 

V N (U - U ) - ~ VI • 1 s s 
sl 11 

Ml = = al a
l 

h
n 

Equation (5.24) can be expressed in terMS of the 

The derivative of P2 with respect to time is then 

The terM t11 is equal to 
t 

and 

log 

is given 

of p as 

(5.22) 

(5.23) 

(5.24) 

by 

(5.25) 

(5.26) 

(5.27) 
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where Us is the shock accel~ation and ci and c2 are coefficients 
t 

found to be 

Ul - ~ s VI - ~ s VI al hn 
c1 

t n n t 
- t11 t + t = al hn ~~ 

c2 = - I 
al hn 

. 

Substituting Eq. (5.27) into Eq. (5.26) and rearranging gives 

(5.28) 

where 

The jump in the normal component of velocity relative to the shock is 

given by 

v • N U - U - ~ V2 sl 2 s s 
n (5.29) = u = 

V • N 
r U - U s - ~s VI 1 

s2 n 

Using Eqs. (5.21) and (5.29), the contravariant component U2 is found to 

be 

(5.30) 

~ 
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where the jump in velocity through the shock ur is given by 

2 
(y - 1) HI + 2 

2 
(y + 1) ~11 

The time derivative of Eq. (S.30) is then found to be 

where 

b4 = [1 + c4{U I - Us - VI ~s ) 
n 

71 

(5.31) 

(5.32) 

In a similar manner, taking the time derivative of Eq. (5.21) leads to 

the following expression for V2 • 
t 

(S.33) 

where 

bS = VI + (U1 U2) ~ s + (U1 - b3) ~ s 
t nt t n 

b6 - - b4 ~ 5 • 
n 
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Finally, substituting all of these expressions into EQ. (5.12) and 

solving for Us gives 
t 

• (5.34) 

Thus an expression has been obtained for the shock acceleration. The 

shock position is then updated using the shock acceleration to update 

the shock velocity as described next. 

5.4 Updating the Shock Position 

The method used to update the shock position was arrived at after 

extensive experimentation. It was discovered early that the calculation 

of shock acceleration and the JUMPS in fluid density, velocity, 

pressure, and energy through the shock are all very sensitive to the 

shock velocity and the slope of the shock with respect to the oncoming 

flow. If each point along the shock is computed independently of the 

others, wiggles and oscillations tended to develop in the shape of the 

shock which quickly destroyed the calculations. In order to prevent 

this from occurring, polynomial least squares smoothing was introduced. 

A related problem which had to be addressed was how to update the 

grid above the shock. Since no acceleration is computed for the points 

above the shock along the line of constant ~ which aligns with the 

shock, SOMe artificial means had to be introduced to move these points 

so the grid would not have a discontinuity in it. 

The first step in updating the shock position is to smooth the 

computed shock acce 1 erat ions computed from J = 1 to J = JS, the 1 ast 
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shock point. This was done by a-weighted least squares approxiMation to 

the function values at the JS points using orthogonal polynomials [42]. 

Then, using the smoothed values of the shock acceleration, the updated 

shock veloc1ties and positions were computed in a three-step predictor­

corrector Manner analogous to the Gabutti scheMe. 

In the first step, the following loop is executed 

Do from J = 1 to J = JS 

XSTN(J) = XST(J) + XSTT(J) * ~t 
(5.35) 

XSN(J) = XS(J) + XSTN(J) * ~t 

where XS, XST, and XSTT are the shock position, velocity, and the 

acceleration at the beginning of the time step and XSN and XSTN are the 

predicted values of the shock position and acceleration. The predicted 

values of XSN are then smoothed using orthogonal polynomials up to 

degree three as shown in Fig. 5.2a. 

The points above the shock along the connecting line from J = JS + 

1 to J = JMAX must now be conputed and this was done as follows. First, 

XSN at the top boundary (J = JM) was determine as 

XSN(JM) = .9 * XSO(JM) + .1 * XSN(JS) (5.36) 

This insures that eventually XS(JM) will equal XS(JS) and that the top 

end of the connecting line will not nove too rapidly. Next, the pOints 

in between XSN(JS) and XSN(JM) are calculated as 

XSN(J) = (1 - 3H2 _H3) * XSN(JS) 

(5.37) 
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where 

This insures that the slope of the connecting curve ts is zero at J = 
Tl 

JS and J = JM as shown in Fig. 5.2b. Finally, the points XSN from J = 1 

to J = JS are sMoothed to blend the connecting curve with the shock as 

shown in Fig. 5.2c. The smoothing this tine is done by orthogonal 

polynomials up to degree four. 

In the second step of the Gabutti scheme, the shock accelerations 

are again calculated at each point then smoothed by second degree 

orthogonal polynomials and stored as XSTTS. The predicted values of the 

shock position and the points along the connecting curve are now 

substituted for the original values of XS. 

In the third step, the same procedure is followed as in the first 

step except the calculated values of the shock acceleration are first 

smoothed and then combined with the predicted values from step two as 

foll ows 

XSTT(J) = j (XSTT(J) + XSTTS(J)) 

This follows the same predictor-corrector sequence as the Gabutti scheme 

used in the updating routine and is thus consistent with the rest of the 

scheme. At the end of the third step, the newly corrected values of the 

shock (and connecting line) position and velocity, XS and XST, are 

substituted for the old values. 
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JMAX - - - - - • - - - - - - - • - - - • - - - - - - - - - - - - - - -

P~ed,cted V.lue, XSN 
S.oothed V.lue, XSN (J. J5 

J • lL-____________ ~ ________________ __ 

(a) Calculatl0n of XSN to J - JS 

JMAJ - - - - - - - - - - - - - - - -

J • 1 

(b) Calculatlon of XSN from J • JS+l to JMAX 

JMAX -- ___________________________ _ 

J • 1 L...-__________ L-__________ _ 

(c) Blendlng of XSN from JWALL to JMAX 

Flg. 5.2 Constructlon of Line I - IS. 
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Chapter 6 

SCHEME 3 - FLUX VECTOR SPLITTING EULER 

6.1 Introduction 

The scheMes described in Chaps. 4 and 5, when used together, will 

produce an accurate resolution of the flow field and will give the 

correct jump relations through shock waves. However, the schemes have 

several disadvantages which limit their utility. First, shock fitting 

is not a technique which is easily implemented and the need for adaptive 

gridding adds to the computer run times and complicates the coding. 

Second, since the governing equations are not solved in conservation 

form, there is no guarantee that mass or momentum is conserved through­

out the flowfield. Third, since the equations are solved explicitly, 

there is a restriction to low maximum allowable CFL numbers and as a 

result covergence to a steady state is slow. It was this restriction 

which applies to all explicit schemes which led to the development of 

implicit schemes in the late 1970's. The CFL restriction on the Lambda 

algorithm was removed several years ago with the introduction of 

iMpl i cit Lambda schemes by Dadone and Napol itano [43] and Dadone and 

Magi have developed a "quasi-conservative" Lambda formulation [44]. 

The scheme described in this chapter is an approximate factori-

zation scheme which was developed by von Lavante. The scheme is 

implicit and solves the governing equations in conservation form. The 

76 
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scheme is described in Ref. [45] as the "true Jacobian scheme" WhlCh 

refers to the implicit operator which is used. 

6.2 Algorithm Development 

The two-dimensional, unsteady, compressible Euler equations in 

conservation fo~ are 

where 

0t + F + G = a x y 

Q = T [p, pu, pV] 

G = [pv, puv, pi + p]T 

(6.1 ) 

As was the case in Scheme 1, the pressure is related to the density and 

the velocities by the steady state energy equation 

These equations 

a2 u2 + i ht + 2 = y:r 

a2 = 1.£ 
p 

are nondiMensionalized as follows 

x' = x/L, y' = u/L, u l = u/ao' Vi = v/ao 

pi pi 2 = p/ya o' h i h I 2 t = t ao 

(6.2) 

(6.3) 
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Equations (6.2) and (6.3) then become 

1 =y:r 

2 ' a' = ~ 
p 

78 

(6.4) 

The algorithm to solve Eq. (6.1) first does a time discretization 

of the vector Q by a truncated Taylor series as follows 

(6.S) 

Let ~Q = Qn+1 _ Qn and express the time derivative of Qn+1 by another 

Taylor approximation and Eq. (S.S) becoMes 

Using Eq. (6.1), this becomes 

~Q = -~t [(Fn + Gn) + ~t Lt (Fn + Gn)] x y a x y {6.6} 

The conservation form of the Euler equations has the property that the 

flux vectors F and G are homogeneous functions of degree one of the 

vector Q. This means that 

F = AO and G = BQ (6.7) 

where A and B are the Jacobian matrices aF laQ and aG/a Q respectively. 

These matrices are gi ven below 

a 1 0 

A 1 (sv2 (y+1 )u2} y+l .!.:r. v (6.8a) = 2p -u y y 

-uv v u 
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(6.8b) 

Equation (6.6), after some manipulation, can be expressed in operator 

form as 

aA aB aF aG 
[ I + ~ t (- + -)] ~ Q = -~ t (- + -) ax ay ax ay (6.9) 

This equation can be approximately factored as 

(6.10) 

Equation (6.10) is solved in three steps as follows. First, the right 

hand side of (6.10) is found using the flux-vector splitting as 

described in the next section. Then, ~Q is found in two steps as 

follows 

Finally, Q is updated. 

aA "'" n 
[I + ~t -] Q = R 

ax 

[I + ~ t!!] ~ Q = 1) ay 

(6.11) 

Generally, block tridiagonal matrix inversions must be used to solve Eq. 

{6.11}. Equation (6.10) can also be transformed from cartesian to 

general coordinates 
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[ a A] [ a B] 6 Q -6 t (F + G ) I +6t~ I +6ta;; = ~ 1'l (6.12) 

where 
'0 = Q/J 

- G F = ~x F + ~ y 

G = Tlx F + Tl G y 

1 
x~ YTl - X y 'J = 

Tl ~ 

Since the Euler equations are hyperbolic, the Jacobian matrices A 
and B can be diagonalized by the following similarity transformations 

A -1 
= M AA M 

-1 
(6.13) -S = N AS N 

where t1 and and N are the right eigenvector matrices and AA and AS are 

the diagonal matrices of the eigenvalues. It can be shown by examining 

the equations in primitive variable form that the eigenvalues of A are 

). 2 = u (y + 1) / 2y + SQ (6.14) 

). 3 = u ( y + 1 ) / 2y - SQ 

where 

In Refs. 46 and 47, von Lavante describes how the Jacobian matrices 

can be diagonalized to permit even greater computational siMplification. 
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6.3 Flux=Vector Splitting 

The flux vectors F and G are each split into forward (+) and 

backward (-) fluxes by a method introduced by van Leer [48]. To use the 

flux vector F as an example (the requirements for G are the same), the 

flux F is split as 
(6.15) 

The second requirement is that 

+ + A = aF laQ have all eigenvalues> a 

A- = aF-/aQ have all eigenvalues .. a 

The flux-split components F+ and F- must be continuous and satisfy 

F+ = F for Mach No. '1) 1 

F- = F for '1.. -1. 

The components are further required to correctly Model the symmetry of F 

with respect to the Mach No. M such that 

The split Jacobian matrices A+ and A- must be continuous at sonic and 

stagnation points. This requirement is important as other types of 

splittings do not accoMplish this and these splittings produce 

oscillations when the eigenvaluve change signs. Next, it is required 

that for subsonic flow, A+ and A- Must each have one eigenvalue 

vanish. Thjs requirement makes it possible to capture shocks with no 

more than two interior cells. Van Leer satisfies these requireMents by 

appropriate choices of polynomials to represent F(M) and G(M). 

:. 
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6.4 SpatieH Discretization 

The right hand side of Eq. (6.12) can be integrated over a finite 

volume which consists of the interior of the quadrilateral cell with the 

grid points at (i, j), (i-I, j), (i, j-l), and (i-I, j-l). Thus, using 

Green's Theorem, we have 

= -6 t f F dn - G d~ c (6.16) 

The line integral above can be approximated as 

6Q = -6 t {F. . 1/2 - F. 1 . 1/2 e 1,J- 1- ,J-

+ (6.17) 

where, for exaMple, Fi ,j_l/2 is the flux of F through the cell face 

with midpoint (i,j-l/2). Since the flux F is split into F+ and F-, 

each component must be eva 1 uated at the appropri ate ce 11 face. The 

method used to evaluate the fluxes is the t1USCL type differencing of van 

Leer [49J. In this approach, the fluxes are extrapolated to the cell 

faces according to the signs of the eigenvalues. Thus 

(6.18) 
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The values of 0, F and G in cell_(i,j) are considered as representative 

cell averages. 

In the implicit operator (i.e the left hand side) of Eq. (6.12), 

the Jacobian matrices A and B are also split such that 

Equation (6.12) thus becomes 

The derivatives in Eq. (6.19) are taken as one-sided forward or backward 

differences depending upon the sign. Thus for exaMple 

... + ... - + + 
[I + flt(a B + a B )] flQ = flQ. + flt(A. flQ. - A. 1 flO. 1) n n 1 1 1 1- 1-

+ flt(A. 1 flO. 1 - A. flQ.) (6.20) 
1+ 1+ 1 1 

The form of Eq. (6.20) results in block tridiagonal matrix inversions to 

solve. As the steady state is approached, both sides approach zero, the 

first order accuracy on the left hand side of (6.18) does not affect the 

accuracy of the right hand side which is second order. 

, 
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Chapter 7 

SCHEME 4 - UPWIND NAVIER-STOKES 

7.1 Introduction 

The full compressible Navier-Stokes equations were solved using an 

upwind approximate factorization scheme for test problems 1 and 2. The 

code developed by Rumsey of NASA Langley, is fully vectorized to run on 

the CDC VPS 32 supercomputer, and is accurate for unsteady flows [50]. 

Both the laminar and Reynolds averaged turbulent Navier-Stokes equations 

were solved. A Baldwin-Lomax turbulence model was used and the Reynolds 

number was varied from 10,000 to 100,000. 

7.2 Governing Equations 

The full set of conservation equations in two-diMensions includes 

conservation of mass, conservation of momentum and conservation of 

energy. The momentum equations are the compressi b 1 e Navi er-Stokes 

equations as derived in Chap. 3. In vector form, the equations are 

= 1-(R +5) 
R ~ Tl e 

(7.1) 

where 0, F, G, Rand S are 

Q = Q/J 

F = (t F + t G)/J x y 

84 



and 0, F and G are 

,., 
G = 

R = 

S = 

given by 

Q = 

F = 

(n-F+n G)/J 
x y 

(~ R + ~ S)/J x y 

(n x R + n y 
S)/J 

T [p, pu, pv, e] 

pu 

pu2 + P 
p uv 
(e + p) u 

pv 
puv 

- kT x 

G = p v2 + p 

(e + p) v - kTy 

Rand S are given below as 
R = [0, 'T xx ' 'T xy ' R4]T 

S [0 S ] T 
= , 'T xy' 'T yy' 4 

where the co~ponents of Rand S are 

'Tyy = (). + 2\1) (~y Vc + n v) + ). (~ u + T'I u) 
~ Y n x ~ x n 

'T xy = \I (~ U + Tl U + ~ v + n v) y ~ Y n x ~ x n 
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The Stokes hypothesi s that -x z - j. \J 1 s assumed and the Prandt 1 

numbers is taken as a constant. 

7.3 Numerical Algorithm 

Equation (7.1) is solved using upwind approxiMate factorization as 

described in references 29 and 50. The algorithm is given as 

- -x+ + -- -1 x [I + II tea IS + a B) - R II tea 
nne T\ 

n = - llt R 

Rn = a - 'F+ + a + 'F- + a - 'G+ + a + Ci-
t t T\ T\ 

- R-
1 (a R + a ~) 

e t T\ 

and where as before 

(7.2) 

(7.3) 

A and ~ are the Jacobian matrices given as Eqs. (6.8a) and (6.8b) and 

A = t A+t B 
x Y 

B = n A + T\ B 
x Y 

The (+) and (-) superscripts on the F and 6 terMS indicates the flux 

splitting which is done according to van Leer [48]. The (+) and (-) 

supescripts on the partial derivatives terms denotes the direction of 

differentiation. Thus, for example, at is a backward difference, 

:. 
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while is a forward differ&Rce. All viscous terms are centrally 

differenced. The M and N matrices are linearized viscous terms and 

are given by Steger in reference [51]. The scheme is first order 

accurate in tiMe and second order accurate in space. 

7.4 Turbulence Hodel 

The turbulence r.1odel that is used in this scher.1e is a two layer 

algebraic eddy viscosity model developed by Baldwin and Lomax [52]. The 

r.1odel cOMputes an eddy viscosity Pt which is then added to the 

Molecular viscosity P to get the total viscosity. The Model follows 

from a previous Model developed by Cebeci [53] but avoids the necessity 

for finding the edge of the boundary layer. It has been shown to give 

good results in separated flows and in wake regions. 

In the inner layer Pt is computed as 

Pt = p I. 
2 

Iw I (7.4) 

The length I. is obtained using the van Driest formulation as follows 

+ + 
1 = K Y [1 - exp (- y / A )] (7.5 ) 

;s the von Karman constant equal to .4, y+ is the non-dimensional 

wall unit 

(7.6) 

and A+ ;s equal to 26. 

In the outer region, the turbulent viscosity is given by 

P t = K • C • F k • FKl b (y) cp wa e e (7.7) 
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where 
K = Clauser constant = 0.0168 

Ccp = 1.6 

,-

and Ynax and Fmax are the location and maximum functional value given by 

r 

and 
Cwk = 0.25 

CKleb = 0.3 • 
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Chapter 8 

INITIAL AND BOUNDARY CONDITIONS 

8.1 Introduction 

As stated earlier, the equations of fluid dynamics pose an initial­

boundary value problem which are then solved numerically. Initial 

conditions (i .e. the initial state of the fluid) Must be supplied for 

the so 1 ut i on to proceed. It is usually assumed that the fi na 1 steady 

state solution is independent of the initial conditions, although this 

is not necessarily the case and the author is unaware of any 

mathematical theoreMs that state this is true. 

On the other hand, the boundary conditions are crucial to achieving 

a correct solution of the problem and MuSt be consistent with the 

physics of the problem. The boundaries of the computational domain 

include both physical and artificial boundaries. Physical boundaries 

are norMally walls and it is generally, although not always, possible to 

specify conditions at these boundaries in a straightforward Manner. 

Artificial boundaries exist due to the necessity of having a finite 

computational domain and the specification of conditions at these 

boundaries is more difficult and open to question. 

The boundary conditions are also important insofar as the stability 

and convergence, properties of the numerical scheme. Improper specifica­

tion of the boundary conditions can lead to instability or slow conver-

gence of the computations. 
89 
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8.2 Ini~al Conditions 

The initial conditions used in each of the four problems varied 

depending on the scheMe used and are described in the following 

sections. 

8.2.1 Problem One 

The initial condition used in scheme one was obtained from the 

cOMplex velocity potential. It is shown in texts of ideal fluid flow 

that the potential and stream function together form an analytic 

function which is called the complex potential as follows 

F (r;) = e + i 1/1 

= Adz) (8.1) 

where A is a constant. The derivative of the complex potential is then 

F'(d = dF/dz 

= u - iv (8.2) 

The right-hand side of Eq. (8.2) is called the complex velocity and is 

the cOMplex conjugate of the velocity vector u + iv. For probleM one, 

the cOMplex velocity is given by 

F' (1;) = A 'If [(r; - 1) / (r; + 1)] •5 

=V=u+iv (8.3) 

In order to have u go to u as r; goes to infinity, it is necessary to 
CD 

have 
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k-= u he 
GO 

Equation (8.3) then becoMes 

u + iv = u [(r; - l)/{r; + l)J .5 
GO 

(8.4) 

The value of u in this case is specified according to the pressure at 
GO 

the exit of the channel since there is no "infinity." Isentropic flow 

is assumed and the speed of sound and the r1ach No. at the exit are 

obtained from the exit pressure. The velocity at the exit is then taken 

to be u. 
GO 

The pressure is obtai ned by assuMi ng the flow to be 

isenthalpic and using the initial u and v components in Eq. (4.3) to get 

the speed of sound which is then related to the pressure by the 

isentropic relation 

The initial condition used in scheme two is a converged solution 

froM a previous run of scheme one. First, the solution is scanned along 

1 i nes of constant Tl to determi ne the shock 1 ocat i on. The shock is 

initially placed at the midpoint between the upstream supersonic and 

downstream subsonic points. In order to avoid kinks in the initial 

shape of the shock, which result when the £ coordinate value of the 

midpoint shifts, the shock shape is then SMoothed by a sinple iterative 

routine which keeps the shock between the supersonic and subsonic 

points. 

Once the i ni t i a 1 shock shape has been determi ned, a new shock 

fitted grid is introduced and the old solution is interpolated onto the 

new grid. The distribution of points along the lines of constant Tl is 

done by the following second degree polynomial: 
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where al and a2 are calculated to satisfy 

x = 0 at £ = £ 
0 

X = IM-l at £ = £ 1 

X = IS at £ = £ 
S 

IS is the integer value of the shock point and £s is the £ location 

of the shock. 

The i nte rpo 1 at i on from the old gri d onto the new one is done by a 

first order linear interpolation. The values of the flowfield u, v, and 

P at the upstream shock point are determined by a linear extrapolation 

from the two previous upstreaM points on the old grid. The Rankine­

Hugoniot JUMP relations are used to obtain u, v, P and the entropy S on 

the downstreaM shock points. Since scheme two uses the entropy as the 

energy variable and since this is not one of the variables used in 

scheme one, the entropy at each pOint is obtained from the pressure and 

the speed of sound using Eqs. (4.4) and (5.3). The normalization for 

the entropy sets the entropy of the incoming flow equal to zero and so a 

ca 1 cul ated value of the ent ropy greater than zero at a poi nt i ndi cates 

that the fluid has passed through a shock or some other dissipative 

mechanism. A calculated entropy of less than zero is erroneous and is 

instead set to zero. 

The initial conditions used in scheme three are obtained from the 

speci fi ed Mach nUl'lber at the entrance and exit of the channel and the 

assumption that the v component of velocity is zero at these locations. 
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Then using the assumption that-the flow is isenthalpic the speed of 

sound, the pressure, density and the u component of velocity is obtained 

at the entrance and exit. The points between the entrance (I = 1) and 

the exit (I = 1M) are then determined by a linear interpolation based on 

the I coordinate. 

The Navier-Stokes code (scheme four) was used in a "flate plate" 

option which assumed the upper computational boundary is a free stream 

boundary instead of as a wall as the first three codes assumed. The 

code, therefore, initialized all flow quantities to the specified free 

stream values. 

8.2.2 Problem Two 

In scheme one, the complex velocity is used as in Sec. 8.2.1 and it 

is found that the velocity is given by [29J 

u + iv = u (1 - l/z2) 
CD 

(8.6) 

and the pressure is given by Eq. (8.5) 

The initial conditions in scheme two were obtained using the same 

procedure as in problem one. 

The initial conditions in scheme three were obtained using the same 

procedure as in problem one. However, since the inflow and outflow t1ach 

nUMbers are the same, the initial condition for this problem is one of 

uniform flow. 
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B.2.3 Problem Three 

For scheme one, it can be shown that the velocity is given by 

u + iv = u /[n(dz/d~)] 
GO 

(B.7) 

where dz/d~ is given by 

2 2 dz/dl; = n(z - 1)/(~ - 4) 

and n is given by Eq. (2.B). Again, the pressure is found from the 

assumption that the flow is isenthalpic and isentropic as in problems 

one and two. 

The initial conditions used in schemes two and three are the same 

as those used in probleMs one and two. 

8.2.4 Problem Four 

The initial condition used for the airfoil probleM was developed by 

(1) fi rst setti ng surface where the velocity was set equal to the 

conponent of the uniform free stream u tangent to the wall and then, 
GO 

(2) using a simple laplacian operator to smooth the flowfield prior to 

beginning with the actual flow solver. The reason for using this 

procedure was to minimize transients which could cause instability in 

the initial solution and which would be due to initial sharp gradients 

that would exist such as at the leading edge where the velocity would be 

zero at the wall and free stream one point off the wall. 
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8.3 Wall Betindary Conditions 

The condition of no flow through the wall was applied at all wall 

boundaries. For the inviscid calculations, this is the basic condition 

whereas for the viscous calculations, the additional condition of zero 

velocity tangent to the wall or the so-called "no slip" boundary 

condition must also be imposed. The following sections described in 

detail how these conditions were implemented in each scheme. 

8.3.1 Scheme One 

Referring to Eqs. (4.21), the no penetration boundary condition 

implies that V = V~ = Vt = o. The two governing equations reduce to 

[ + + - - + + - P-Pt +.S ~ P~ +~ P~ +0 PTl+O Tl 

x (~ + u+ - u- + n + V+ - V-) J Ps + - ~ - 0 = 
a/J ~ ~ Tl Tl 

(8.8a) 

Ut + [+ + - U- + aI~ (~+ p+ - P-)] Us .S ~ U~ + ~ - ~ = 
~ Y Tl Tl 

(8.8b) 

[ + + - - air (+ + - - ) J .5 0 V + 0 v + - 0 P - 0 P = V 
Tl Tl Y Tl Tl S 

(8.8c) 

Equation (8.8b) can be used as it is, but before Eq. (8.8a) can be used, 

+ + + + it must be modified to eliminate the terms 0 P and 0 V at the 
Tl Tl 

at the upper wall since lower wall and the terms 0- P- and 0- V-
Tl Tl 

they require information from outside the computational domain. Thi sis 

done by combining Eqs. (8.8a) and (8.8c) to get 
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P 5 [ + p+ - p- + 2 ,..± p+ 
t +. X ~ + X ~ U n 

which applies at the upper wall and 

p + 
s 

x V 
a-l-r s 

+ 1 (x + u+ - X - U+ - A - U- - 2n - V-)] = p - 1 V 
a-l-:r ~ ~ ~ n s a.;-J- s 

• 
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which applies at the lower wall. The governing equations can therefore 

be used at the walls and the three explicit scheme used as in the 

interior points. 

8.3.2 Sche~e Two 

The same concept as just described for scheme one is also applied 

in this case. The resulting equations are slightly different and will 

not be given. 

8.3.3 Scheme Three 

Since scheme three solves the governing equations implicitly, the 

iMplementation of the scheme at the boundaries poses difficulties and 

explicit boundary conditions are used instead. The vel oci ty V and 

density at the wall are first found by extrapolation from the inside. 

The pressure at the wall is next found by extrapolation from the 

interior using the momentum equation in the n direction 

(8.9) 
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where R is the radius of curvatur~ and is given by 

fl = dy/dx (8.10) 

The density at the wall is now recalculated by using the assuMption that 

p = y Py (8.11) 

which is not valid if there are entropy gradients normal to the wall but 

which nay be regarded as approximately true. Using this assumption, the 

density gradient along no is given by 

(8.12) 

8.3.4 Scheme Four 

As stated earlier, for the viscous calculations, both the u and v 

cOMponents of velocity are taken to be zero to satisfy the no-s1 ip 

boundary condition. The density at the wall is next obtained by a zero 

order extrapolation from the point above it. Next, the speed of sound 

one point off the wall is found by using the energy equation as follows. 

The density at the same location is then used in conjunction with the 

speed of sound to get the pressure at the wall. The pressure at the 

wall divided by (y - 1) is then the total energy which cOMpletes the 

procedure. 
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8.4 Subson4c Inflow Boundary 

This section and the following two involve "artificial" boundaries 

in the sense that they exist in the cOMputational domain but not in the 

physical domain. Since boundary conditions must be imposed to make the 

problem solvable and since these conditions must reflect the actual 

physical situation, ttle correct specification of these conditions is 

fairly important. Much of what has been done up until the present time 

involves making some simplifying assumptions and frequently 

characteristic theory is used. At the upstream boundary, the flow is 

subsonic and entering the computational domain. If the flow is assumed 

to be inviscid so that the fuler equations apply, the governing 

equations in primitive variable form are 

Qt + A Q + B Q = 0 x y (8.13) 

where 

(8.14a) 

A - p p 0 

l~P ] u 0 (8.14b) - 0 0 u 
0 yp 0 

B - [ ~ 0 p 

l~P 1 v 0 (8.14c) - 0 0 v 
0 0 yp 
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The eigenvalues of A are u, u, ~ + a and u - a. The eigenvalues of B 

are v, v, v + a and v-a. The directions u + a and v + a are referred 

to as bicharacterisitics and are the intersections of the characteristic 

monge conge with the planes x = constant and y = constant. 

It is well known that for purely one-dlmensional unsteady isen­

tropic flow, the equations of gas dynamics possess Riemann invariants 

which are constant along characteristics. These functions are 

R+ = U + 2 a/(y - 1) 

R- = u - 2 a/ (y - 1) 

along dx/dt = u + a 

along dx/dt = u - a 

(B.15a) 

(B.15b) 

At a subsonic inflow boundary, the R+ value is constant along the 

characteristic entering from outside of the computational domain and can 

therefore be specified and used in conjunction with R- from inside the 

dOMain to get new values of u and a. Equation (4.13) does not possess 

Riemann invariants but according to the theory of Kreiss, the number of 

conditions which must be specified at an inflow (or an outflow) boundary 

in order to have a numerically stable boundary condition Must agree with 

the number of characteristic lines that approach the boundary from the 

outside [52]. If the flow is assumed to be at least locally one­

dimensional, this would mean that ther~ must be three quantities 

specified from the outside and one extrapolated from the inside at the 

inflow boundary and the reverse at the outflow boundary. 

B.4.1 ScheMes One and Two 

The conditions whi ch were assumed for problems one through three 

were that the contravarient component of velocity V is zero and that the 

flow is isentropic and isenthalpic at the inflow boundary. The first 
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assumption is an approxination t~ the actual physical situation and is 

not exactly correct while the therModynamic assuMptions are correct in 

the steady state. Since V and Vt are assumed zero, the governing 

equations are 

P
t 

+.5 [).+ P+x +).- P- +0+ p+ +0- P- + 1 ().+ U
x
+ -).- U-)] = P

s x Y Y aI-J- x 

U V X + a'-J- (n - P- - P-) 
x ~ 21 U Y -0 Y = V s 

Since the flow is subsonic, it is not possible to use these equations 

since P and U require information from outside the domain. But the two 

equations for Pt and Ut can be combined to eliminate these terms to get 

P - 1 U +). - P- + .5 (0+ P; + 0 - P-) + 1 (U -). - U-) = P 
t a'-J- t x (8.16) y afT s x ~ 

It is possible to relate Pt to Ut by the 1-D energy equation 

a2 /(1 - 1) + .5 (u2 + v2) = h = const (8.17) o 

It is not necessary but if it is also assumed that v = 0, then 

a ~ U/J·5 (8.18) 

and since the flow is isentropic 

::. 
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which leads to the equation 

(8.19) 

which can then be substituted back into Eq. (8.18) to get a single 

equation for Ut as follows 

= Us -).- U; - a J.S [Ps -).- P; -.5 (o+ P; +0- Py )] 

Ut [1 + U/a J.S] 

Pt can then be obtained using Eq. (8.19). 

8.4.2 Scheme Three 

The inflow boundary condition used in this scheme is described by 

von Lavante in [47] and will only be briefly discussed here. The 

assumption is made that the flow is locally one-dimensional so that the 

governing equations can be written in the characteristic form 

where W is the characteristic variable given as 

W· [::] 

W1 = 1 + u{y - 1)/2 SOlD 

W2 = 1 - u{y - 1)/2 SQlD 

A = 

(8.20) 

(8.21) 
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The characteristic variable WI propagates along the characteristic dx/dt 

= u + a and is therefore specified whereas the variable W2 propagates 

along the backward characteristic dx/dt = u - a and is taken from the 

inside of the computational domain. Equations (8.21) are then solved 

siMultaneously on the boundary to get the Mach number at the inflow 

which is 

222 
~ = I/{ (y - 1) [l/(Wl - W2) - 1/4]} (8.22) 

ThE' t1ach number is then used to calculate p, U, v and p from the 

isentropic relationships and the energy Eq. (8.ln. The procedure is 

very similar, at least in principle, to a "time split" inflow boundary 

condition introduced by Tong [55] and avoids the necessity for assuming 

that v = 0 at the inflow boundary as was the case in schemes one and 

two. Furthermore, it has been found that the procedure gives good 

results even when the upstream boundary is close to a leading edge. 

8.4.3 Scheme Four 

The condition used in this situation first assumes the v component 

is zero so the flow is taken to be locally one-diMensional. The 

pressure at the inflow boundary is then found from the energy equation 

using the known values of the total energy and the U and v cOMponents of 

velocity at the next point downstream. The pressure is then used to get 

the density assuming the flow is also isentropic. Finally, the u 

component of velocity is found using the isenthalpic energy Eq. (8.17). 

This procedure should thus allow pressure waves which are traveling 

upstream,to escape without reflection. However, the assumption that v = 

o at the boundary is not strictly correct and May introduce errors. 
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8.5 Outflow Boundary Condition 

At the outflow boundary, there are three characteristlcs from 

inside the computational dOMain and one from outside and hence accordlng 

to the theory of Kreiss, one condition may be specified at the outflow 

boundary. This condition is usually taken to be the pressure since this 

deterMine the flow through the channel at the steady state. For 

exaMple, in a De laval nozzel, the backpressure completely deterMines 

the flow inside the nozzel and the conditions at the throat. However, 

if the pressure is specified as constant at the outflow boundary, then 

during the convergence from the initial cond,tion to the final steady 

state solution, pressure waves which May develop inside the 

computational domain are reflected at the outflow boundary instead of 

passing through and this will slow convergence. 

The approach used in the first three schemes was introduced by Rudy 

and Strikwerda [54] and \'1as based on earlier work by Enquist and t1ajda 

[55] and Hedstrom on nonreflective boundary conditions. The idea is to 

apply the following equation at the outflo~1 boundary 

!e.. - p c ~ + a (p - p ) a t at e (B.23) 

where a is some constant and Pe is the specified pressure at the 

boundary. h'l the steady state, the pressure p shoul d be equal to Pee 

The numerical ~pproxiMation to Eq. (8.23) is 

where un+1 is extrapolated from the inside to the boundary. This 

procedure has been found to work well but has the disadvantage that the 

parameter a must be chosen. As a approaches zero, the influence of the 
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specified back pressure is also relaxed and approaches zero. As a is 

increased, the outflow boundary becomes increasingly reflective and p is 

maintained close to the specified Pee Rudy and Strikwerda recommend 

that a be chosen to opt imi ze the convergence to the steady and show 

that a has a signiflcant effect on the number of iterations required 

for a tYt cal test case to converge. Figure 8.1 shows the results of 

applying this boundary condition to problem one. 

In scheme four, the pressure was simply held constant at the 

outflow boundary while the density and the u and v components of 

velocity were set equal to the next upstream point. This is an entirely 

refl ect i ve bounda ry condi t i on but was used in the fl at plate opt ion 

because the flow assumed to be mainly all boundary layer and hence 

parabolic. This assumption was not true in the cases modeled but is the 

physical condition imposed is correct in the steady state. 

8.6 Far Field Boundary Condition 

The far field refers to the flow field at a distance away from the 

body which is significantly greater than the length scale of the body. 

For example, it is common practice to put the outer boundary for two­

dimensional transonic calculations about airfoils at least ten chord 

lengths away from the airfoil. The reason for this is that one would 

like to specify conditions in the free stream where the flow is 

unaffected by the body but this only occurs at an infinite dlstance away 

from the body. Since it is impossible to construct grids which go out 

to infinity, it is necessary to specify boundary conditions in the far 

field where there are still perturbations about the free stream 

cond it ions. 
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In problems one and two, the upper boundary was treated as a solid 

wall in all of the schemes except scheme four. Since this scheme solves 

the viscous equations, it was deeMed desirable to avoid treating the 

upper boundary as a wall since doing so would necessitate grid 

c1 usteri ng at the top and lower boundaries due to the exi stence of 

boundary layer growth on both surfaces. Therefore, this boundary was 

treated in exactly the same manner as the outf10\J boundary was treated. 

The pressure was held constant at the free stream pressure and the 

remaining variables were extrapolated from inside the computational 

doma in. Thl s approach may not produce the best convergence, but the 

results appear reasonable at the top boundary. Attempts were made to 

deve lop characteri st ic based nonref1 ect ive boundary condit ions for the 

top boundary for schemes one, two and three which would permit this 

boundary to be relatively close to the lower boundary and allow for a 

better comparlson between these schemes and scheMe four but these 

efforts were not successful. Instead, the upper boundary was 

progressively moved away from the lower wall until the perturbations at 

the upper boundary were reduced to an acceptable level. 

For problem four, the outer boundary condition which was used was 

developed by Thomas and Salas [56]. The approach assumes that wavelike 

transients in the physical domain arrive at the outer boundary in a 

direction mainly normal to the boundary as shown in Fig. 8.2. The 

flowfie1d at the outer boundary can be thought to consist of a uniform 

flow plus small perturbations due to these transient waves which in time 

should decay to the final deviations from the uniform flow. Therefore, 

the gradients along the outer boundary are assumed small in comparison 

to the gradients normal to the boundary the following characteristic 

relations are presumed valid 
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dS/dt = 0 '8'"long dn/dt = U (B.2la) 

dV/dt = a along dn/dt = U (B.2lb) 

dU + L.2E. = 
df p a at a along dn/dt = U + a J.5 (8.2lc) 

where S is the entropy and U and V are the contravarient velocities in 

the F; and n directions respectively. Since the f10wfield at the 

outer boundary 1 s i sentropi c for invi sci d flow and nearly so even for 

viscous flow, Eq. (8.24) iMplies the existence of RieMann invariants at 

the outer boundary and the equivalent of Eq. (8.15) in a direction 

normal to the outer boundary is 

R± = V • n + 2 a/ (y - 1) 

along dn /dt = V • n + a (8.25) 

where 

The invariant R-, which reaches the boundary from outside the cOl'1puta­

tiona 1 doma in, 1 s specifi ed from the free st ream va 1 ues of u and a 

applied at the outer boundary and the values of R+ is taken from inside 

the computational domain. The equations for R+ and R- are then solved 

simultaneously to get the new values of V and a on the boundary. 

Depending on the sign of V, the values of the remaining variables U, p, 

and p are then either taken from inside or outside the computational 

domain. If V is negative, the flow at the, boundary is in and the free 

stream values of u, p, and p are used. If V is positive, the flow at 
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the boundary is out and U, p, -and p are extrapolated from the inside 

of the domain. This procedure has been found to give good results in 

the computations performed as a part of this investigation. However, 

Roe has questioned the practice of assuming locally one-dimenslonal flow 

at remote boundaries and claiMs that it does not result in the monotonic 

decay of the pressure and the radial component to the expected free 

stream values [57]. t10re work will undoubtedly be done on the treatment 

of far field boundaries in the future in view of the importance of the 

topic. 
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Chapter 9 

RESULTS AND DISCUSSION 

9.1 Problem One 

9.1.1 Inviscid Results 

The three inviscid codes were run using various values of n for the 

lower and upper boundaries, referred to as no and n1 respectively. The 

lower boundary no was varied to study the effect of changing the 

geometry from a channel with a gradual one-sided expansion to a channel 

with a one-sided sudden expansion (rearward facing step). It was found 

that a value no = 2 produced a shock at the expansion corner near 

~ = -1 and the flow was attached. As no was reduced, the flow would 

eventually separate (usually before no = 1) and as no was further 

reduced the recirculation zone would grow in size. The effect of moving 

the upper boundary was also studied; it was found early in the 

investigation that the position of n1 strongly affected the flow in the 

entrance region of the channel ahead of the expansion corner. This;s 

because the ratio of the entrance area to the exit area is increased and 

approaches 1.0 as nl is increased and the result can be seen in Fig. 9.1 

which shows the Mach number distribution across the inflow boundary 

for n1 = 20, 40, and 100 using scheme one. As n1 is increased, the 

inflow r1ach numbers are reduced as would be expected. 
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The three i nvi scid codes 'Were run on 81x41 grids of whi ch an 

example (with no = 2 and nl = 20) is shown in Fig. 9.2. In addition, 

the shock fitting was also repeated using 161x81 grids to determine the 

effect of refining the grid by a factor of two. In general, scheme one 

was run for 3000 iterations in each case, which usually resulted in a 

residual drop, measured by the 12 nOrM of atp, of between two and three 

orders of Magnitude. The slow rate of convergence 1s due to the CFL < 1 

limitation and the fact that no convergence acceleration methods other 

than local time stepping were used. 

The shock fitting runs were done in continuous sequences with no 

initially equal to 2 and then gradually reducing no in a step-like 

manner. Thus, the lower wall was first brought to no of 1.8 and this 

position held constant until the shock movement was reduced to an 

acceptable level. This procedure was repeated by reducing no in steps 

of 0.2 and usually at least 2000 to 3000 iterations were required on the 

coa rse gri d to steady the shock, while on the fi ne gri d 4000 to 5000 

iterations were required. 

The implicit flux-vector splitting scheme was run for 2000 

iterations in most cases and the residual drop, measured by the norm of 

a t P, was usually at least three orders of magni tude. In some cases, a 

constant global time step was used, while in other cases a constant 

local maximum CFL generally between three and six was used. It was 

found that the later approach gave the best convergence results and was 

therefore used for most of the later runs. 

The ~1ach nUMber on the upstream side of the shock foot is shown in 

Figs. 9.3, 9.4 and 9.5 for nl positions of 20, 40 and 100 respectively. 
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In Fig. 9.3, it is apparent that scheme one produces significantly 

higher t1ach numbers as Tlo is reduced than the other two schemes. This 

is believed due to the nonconservat1ve formulation of scheme one. There 

is fairly good agreement between the coarse and the fine grid solutions 

obtained using scheme two. The t1ach numbers obtained using the flux 

vector splitting scheme were consistently lower than those obtained 

using schemes one and two, perhaps due to greater dissipation at the 

shock in scheme three. The lowest Tlo for which solutions were obtained 

was 0.4 for schemes one and two and 0.1 for scheme three. It was only 

possible to get a solution at Tlo = 0.1 for scheme three by changing the 

grid in steps to gradually reduce Tlo' while at the same time increasing 

cluster points at the expansion corner. It can be seen that the t1ach 

number at the shock foot reaches a ~aximu~ for schemes two and three at 

Tlo = 1.2, and as Tlo is further reduced, the Mach number gradually 

becomes lower and the results using scheme three suggest it would go to 

a limit of 1. at Tlo = O. 

The results at TIl = 40 are shown in Fig. 9.4. The results using 

scheme one, aga in, show that as TI 0 is reduced, the Mach number at the 

shock foot increases. The results from the shock fitting scheme two 

show two different tendencies on the coarse and fine grids. On the 

coarse grid, the trend is similar to scheme one, whereas on the fine 

grid the results are similar to those of scheMe three. The anomalous 

results using scheme one were checked by doing this series of runs over 

again with 4000 iterations being taken when Tlo is reduced each 0.2. The 

results were well converged and do not appear to be in error. The 

increase in the Mach number is partially explained by the shock pOSition 

as will be discussed later. A9ain, the results using scheme three 
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show the lowest Mach numbers -and are siMilar to those obtained at 

n1 = 20. The lowest no for which a solution was obtained was 0.1 using 

scheme three and this was again achieved by changing the grid to 

progressively cluster the grid about the expansion corner. The trends 

show the Mach number ahead of the shock decreasing to a limit of one as 

no approaches the limit zero which suggests that the shock would 

eventually vanish. The results obtained using scheme three for 

n1 = 40 agree closely with the results obtained with the same scheme for 

n 1 = 20. 

From Fig. 9.5, it is seen that the Mach number at the shock is 

always less with n1 = 100 than each corresponding case at n1 = 40. 

This is due to the lower velocities in the flow field ahead of the 

shock. The fine grid shock fitting results show the t1ach number to be 

gradually increasing; whereas, for the flux vector splitting, the 

MaximuM value of M occurs at 1.2 and then decreases. No re 1 i ab 1 e 

results were obtained for no values lower than 0.4 because the resolu­

tion of the grids at the corner at ~ = -1 was inadequate. 

Figures 9.6, 9.7 and 9.8 show the shock location ~s in terms of 

the ~ coordinate along the lower wall. A value of ~ equal to -1 

corresponds to the location of the upper corner as shown in Fig. 2.1. 

The results obtained using scheme 1 are identical at n1 = 20 and 

n1 = 40 and are not appreciably different at n1 = 100. The shock 

fitting results and the flux vector splitting results at n1 = 20 show 

general agreement with ~1 = 40 on the coarse grid show the shock moving 

progressively towards ~ = -.5 as no is reduced. This partially explains 

the t1ach numbers at the shock the position ~ = -.5 is considerably 

further around the expansion corner than the fine grid results which 
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means that the flow has accel~ated more and is moving at higher 

velocities. The flux vector splitting results at all three values of 

n1 agree fairly closely. In particular, it is noteworthy that the shock 

position at no =.1 is approaching ~ = -1. The shock fitting scheme 

two for n1 = 100 also shows ~ going to a limit of -1 as no is reduced. 

It thus appears that this is the proper limiting position of the shock, 

but this is not achieved in all of the case computed. 

The maximum entropy in the flow on the downstream side of the shock 

is shown in Fig. 9.9 and the vorticity in the flow downstream of the 

shock is shown in Fig. 9.10 both for cases when n1 = 20. It can be 

seen that there is a fairly consistent trend for the entropy to increase 

and the vorticity to decrease toward larger negative values as no is 

reduced. This result must be interpreted with caution. As stated 

earlier, it may be the vorticity in the initial unsteady transient flow 

which leads to separation. Theoretically, none of the entropy and 

vorticity produce in the flow in the steady state actually enters the 

separation zones, when they occur. Nevertheless, it is indicative of 

the conditions which may have led to separation. 

In Fig. 9.11, the miniMum value of the t1ach number multiplied by 

the direction of the flow along the lower wall is plotted against for 

n1 = 20. This indicates the approximate value of no at which the flow 

separates for each scheme. It can be seen that scheme one produces 

separation at a higher value of no (no = 1.68) than scheme two 

(no = 1.52) and that scheme three requi res no equal to approximately 

1.12 before separation occurs. Thus scheme three appears to be the 

least susceptible to separation as compared with schemes one and two. 
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The reattachement t location~for the same set of cases is shown in 

Fig. 9.12. There appears to be general agreement in that as no 1S 

reduced, the separation bubbles grow in length and reattach further 

downstream. Similar results for the case when n1 = 100 are shown in 

Figs. 9.13 and 9.14. It can be seen that, in general, having the upper 

bounda ry fu rther away reduces the no at whi ch the lower wa 11 must be 

before separation occurs and the t at which reattachment occurs is less, 

which means that the separation bubbles are not as long. 

A conparison of the result using schemes one, two and three with 

n1 = 20 and no = 2.0 is shown in Figs. 9.15 and 9.16. Figures 9.15a-

9.15c show r1ach contours and it can be seen that the results are all 

similar. The r1ach numbers multiplied by the sign of U along the lower 

wall are shown in Fig. 9.16 and again the close agreement is evident. 

The shock location is nearly identical in all three cases while the 

maximum computed Mach number reached at the upstream side of the shock 

is higher using shemes one and two than three. A similar comparison for 

the case with n1 = 20 and no = 1.2 is shown in Figs. 9.17 and 9.18. 

Again general agreement is evident although the Mach contours of the 

flux vector splitting results appear sl'loother. A comparison of the t1ach 

number multiplied by the sign of U is shown in Fig. 9.18. The flux 

vector splitting results, while close to separation, have not separated 

whereas the results of both scheme one and two have. It is also 

apparent that the jump in velocity using the unfitted schene one is now 

much greater than either scheme two or three. A third such comparison 

with no = 0.4 is shown in Figs. 9.19 and 9.20. Figures 9.19b and 9.19c 

show Mach contours generated from the results of scheme two on the 

coarse and fine grids respectively. The contours shown in Fig. 9.19a 
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(a) Scheme One 

(b) Scheme Two 

(c) Scheme Three 
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using scheme one and Fig. 9.l9c -\:,Ising scheMe two on the fine grid both 

show a supersoni c zone extend, ng across the channel just downstream of 

the expansion corner which suggests that the flow is chocked in the 

channe 1 and then expands supersoni ca lly as in a converging-divergi ng 

nozzle. The comparison of "M" vs. t in Fig. 9.20 shows that the flux 

vector splitting results show the least separation whereas the results 

from scheme one are the most separated. 

The entropy produced by flow through the shock is shown in Figs. 

9.2la-9.2lc. These results were obtained using scheme two with the 

upper bounda ry nl = 20. In Fig. 9.2la, the lower boundary is at 2.0 

and the maximum value of the entropy is 0.0878 just downstream from the 

shock along the wall. In Fig. 9.2lb, the lower wall no is at 1.6 and 

the maximum value of S is 0.126 and the entropy gradients are somewhat 

larger than in Fig. 9.2la. In Fig. 9.2lc, the lower wall no is at 1.2 

and the maximum value of S is 0.145. It can be seen that there is a 

recirculation region and the entropy gradients are again greater than in 

the previ ous two cases with most of the entropy bei ng produced very 

close to the lower boundary. These results correlate with Fig. 9.10, 

which shows the vorticity level increasing as no is reduced and with 

Crocco's theorem which states the vorticity will exits in a flow if 

gradients of entropy and/or enthalpy also exist [60]. 

Figures 9.22 through 9.25 show the results of the flux splitting 

scheme three with the upper boundary at 40 and the lower boundary being 

reduced from 0.4 to 0.2 to 0.1. In Figs. 9.22a and 9.22b, the r1ach 

contours and sonic line are sho\'m for no = 0.4 and the large separated 

zone downstream of the step and the shock at the expansion corner are 

evident. The Mach contours for no = 0.2 in Fig. 9.23a and the 
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corresponding sonic line plot-in Fig. 9.23b show a much smaller 

supersonic zone at the corner and a slightly larger supersonic zone 

which is apparently not terminated by a shock just slightly downstreaM 

and above it. In Fig. 9.24a, the Mach contours for no= 0.1 are shown 

and the corresponding sonic zones are given in Fig. 9.24b. It can be 

seen that the supersonic zone at the corner has nearly disappeared and 

the supersonic bubble out in the flow field has grown. The entropy 

contours shown in Fig. 9.24c and the stream function plot in Fig. 9.24d 

show clearly the separation region with the entropy now associated with 

the rotating vortex. Figure 9.25 shows the portion of the grid around 

the expansion corner and the resolution which is achieved at the corner 

by the special clustering. 

A similar procedure was done using the same scheme but with the 

upper boundary instead at nl = 20. The results at no = 0.1 are shown 

in Figs. 9.26 and 9.27. Figure 9.26a shows the r1ach contours and it is 

apparent that a shock has formed which extends across the channel 

downstream of the expansion corner as was noted earlier. There is a 

large supersonic zone as is shown in Fig. 9.26b, which is terminated by 

the shock. The flow has separated from the corner and there is entropy 

trapped inside the recirculation region as shown in Fig. 9.26c. Figure 

9.27 shows the Mach numbers multiplied by the sign of the contravarient 

velocity in the streamwise direction. The location of the shock at the 

expansion corner and at the top wall are clearly evident. It is also 

apparent that the shock at the expansion corner is still fairly strong 

and may not be going to zero as no approaches O. 
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(a) ,,/0 = 2.0 

(b) "0" 1.6 

F1g. 9.21 Entropy Contours. 
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(a) Mach Contours 

(b) Sonic Line 

F1g. 9.22 Results - Scheme 3 (~ •• 0.4, ~I ~ 40). 
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(a) Mach Contours 
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(b) Sonlc line 

F,g. 9.23 Results - Scheme 3 (~. - 0.2, ~I • 40). 
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(a) Mach Contours 

(b) Sonlc Llne 

Flg. 9.24 Results - Scheme 3 (,?,. 0.1, '11 
- 40). 
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Flg. 9.25 Grid Detall at Corner. 



144 

.-

(a) Mach Contours 

(b) Sonlc Llne 

Flg. 9.26 Results - Scheme 3 ("}. - 0.1. "I' - 20). 
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flg. 9.27 Lower Wall M - Scheme 3 ("I" II: 0.1, ,?, II: 20). 
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9.1.2 Viscous Results 

The Navi er-Stokes scheme four has run on the rearward faci ng step 

under a variety of conditions. The purpose of the runs was to determine 

how the viscous results might differ from the inviscid results. No 

attempt was Made to duplicate all of the various positions of the lower 

wall no and the upper wall n1 due to the time and computational expense 

that would be necessary to do this and also because. as will be seen. 

the results that were obtained were so different from the inviscid 

results that this was felt by the writer to be unnecessary. 

The fi rst set of runs was done us i ng a Reynolds number of 10.000 

with the upper boundary at "1 = 40 and the lower boundary at no = 2. A 

grid size of 81x61 was used and the first point off the wall was at 

n = 0.01. A constant global time step of 0.2 was used at the solution 

was run for 3000 iterations and plots obtained at 1500. 2000. 2500 and 

3000 iterations. Figure 9.28 shows the results at 1500 iterations. 

From the Mach contours in Fig. 9.28a. it is evident that the boundary 

1 ayer whi ch begi ns upstream of the corner separates at the corner and 

that there is no shock there. The solution throughout the flow field is 

fairly smooth and the freestream upper boundary condition does not 

appear to be causing any flow abberations. Figure 9.28b shows the 

pressure contours and the presence of at least one vortex is apparent 

from the ci rcular pattern with a low pressure center. Figure 9.28c 

shows the velocity vectors and this large vortex is apparent along with 

two other smaller vorticies upstream. The wall shear stress plot in 

Fig. 9.28d provides further evidence of flow reversal along the lower 

wall between approximately t = -4.6 and t = -1 and also in the vicinity 

of 10 <t < 17. 
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(a) Mach Contours 

(b) Pressure Contours 

F,g. 9.28 Results - Scheme 4 (1500 iterations). 
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The results of 2(100 iterati-ons are shown in Figs. 9.29a through 

9.29d. A comparison between Figs. 9.28a and 9.29a shows that the flow 

field has changed greatly in that the extent of the separation zone has 

grown and there now appears to be more disruption of the flow field 

above the separated region. The pressure contours in Fig. 9.29b an the 

velocity vector plot in Fig. 9.29c show the presence of two large 

vorticies downstreaM of the corner. The wall shear stress plot in Fig. 

9.29d shows a third reverse flow region in the region of -5<t<-l ahead 

of the step. 

Ther results at 2500 iterations are shown in Figs. 9.30a through 

9.30d and it is apparent that the location of the vortices has again 

changed which indicates that either the flow has not reached a final 

steady state or the flow may be unsteady. The writer considers the 

later possibility to be the more likely. One large vortex is present 

just downstream from the corner and the writer believes it is possible 

that thi s may be the Sr.1a 11 vortex whi ch was just begi nni ng to form at 

2000 iterations and has now moved further downstream and grown. At the 

same time, the two large vortices that were present at 2000 iterations 

have been swept out of the computational region. Again, from the wall 

shear stress plot in Fig. 9.30d it is apparent that a smaller reverse 

flow region appears to exist inside the boundary layer ahead of the 

step. This region has not changed location significantly from the 

previous two iterations and it may be a permanent feature that has 

established itself and may be giving rise periodically to shed vortices 

which are then swept downstream. 

The results at 3000 iterations are shown in Figs. 9.31a through 

9.31d and again the flow field appears to have changed. Although the 
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(a) Mach Contours 

(b) Pressure Contours 

Flg. 9.29 Results - Scheme 4 (2000 iterations). 
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(c) Veloclty Vectors 

(d) Wall Shear Stress 

Flg. 9.29 (contlnued). 
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Hach contours in Fig. 9.31a do re-semble the t1ach contours in Fig. 9.30a, 

the pressure contours in Fig. 9.31b now show a fairly strong adverse 

pressure gradient ahead of the corner which was beginning to become 

apparent in Fig. 9.30b. Figure 9.31b shows the presence of four 

circular shaped pressure regions of alternating high and low pressure. 

The velocity vector plots in Fig. 9.31c show two clockwise rotating 

vorticies which appear to correspond in location to the two low pressure 

regions in Fig. 9.31b. The h1gh pressure regions appear to correspond 

to the regions where the flow velocities are low just downstream of the 

step and in between the two vorticies. The wall shear stress plot in 

Fig. 9.31d again shows a small recirculation zone ahead of the step 

which must lie inside of the boundary layer. 

Two runs were a 1 so done at a Reynolds number of 100,000 .and the 

results are compared in Figs. 9.32 and 9.33. The fi rst run was done 

using an 8lx61 grid with a freest reaM t1ach number of 0.865 using a 

nondimensional time step of 0.02. The flow was assumed to be laminar 

and the turbul ent terms were turned off. The '1ach contour, pressure 

contour, wall shear stress, and velocity vectors after 2000 iterations 

are shown in Figs. 9.32a-9.32d respectively. It can be seen that the 

results' are not appreciably different than the results at the lower 

Reynolds number shown previously. Ther are numerous recirculation 

vorticies present in the flow as can be seen from the velocity vector 

plot and there are no shocks in the flow. The second set of results was 

obtained using the same Reynolds number and time step but a 161x61 grid 

and the flow was assumed to be turbulent. The results after 2000 

iterations are shown in Figs. 9.33a-33d. From the Mach and pressure 

contours and the wall shear stress plot, it is apparent that a strong 
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(a) Mach Contours 

(b) Pressure Contours 

Flg. 9.30 Results - Scheme 4 (2500 iteratlons). 
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(c) Velocity Vectors 

(d) Wall Shear Stress 
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(a) Mach Contours 

(b) Pressure Contours 

Flg. 9.31 Results - Scheme 4 (3000 iteratlons). 
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(a) Mach Contours 

(b) Pressure Contours 

Flg. 9.32 Results - Scheme 4 (Re. 100.000). 
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(a) Mach Contours 

(b) Pressure Contours 

Flg. 9.33 Results - Scheme 4 (Re = 100.000). 



,-

(c) 

(d) 

(f) 
(f) 
~ 

100 

-tOO 

Wall Shear Stress 

= = --

.. - • I • . • . . • • • • • • 
I • I • • • • • • • • • • 
I • • . • • • • • • • • • • • • • I • • . • • • • • • • • • • . . • • I • • • • . • • • • • I I • • • • • • • • • • I • • . . • • • • • • • • • • • • • • • • • • • • • • • • . 

I I • • • • • • • • • • • • • • • 
I • • • • • • • • • • • • . 

. ----------~~~~~~~-, .. --------~~~~~~~~~~ ....... ---,.~~--~~--~-.... _---_ .. _----------­..... _-------------­.. -------------­---_... . --------. . . . . . . . . -------

Veloclty Vectors 

Flg. 9.33 (continued). 

160 



161 

shock now exists across the channel s imil ar to some of the i nvi sci d 

cases. Furthermore, the velocity vector plots show only a single 

recirculation vortex which is also similar to the inviscid cases. It 

thus appears that putting the turbulence model into use results in a 

flow pattern that strongly resenbles some of the inviscid results. 

9.2 Problem Two 

9.2.1 Inviscid Results 

The second configuration, a "bump" inside a channel, was treated in 

a manner simi 1 ar to the rea rward faci ng step. The three inviscid 

schemes were all run on 81x41 grids and the shock fitting scheme two was 

also run on a fine grid 16lx81 for comparison. The Navier-Stokes code 

was run on an 81x61 grid and the results from using this code is 

discussed in the next section. In all cases, the upper wall n1 was set 

at 12.0 and the left and right boundaries were set at ~ = -10.0 and 

+10.0 respectively. The lower wall no was varied from a maximum of 1.0 

to a minimum of 0.2 in the inviscid cases. The back pressure boundary 

condition was that the nondimensional pressure pi is 0.5. 

Figure 9.34 shows the t1ach number on the upstrean side of the shock 

foot for the various cases which were run. The shock capturing results 

from scheme one again show that as the lower wall no is reduced and the 

expans i on becomes greater that the Mach number ahead of the shock 

increases much faster than the other schemes which is a result of the 

nonconservative nature of the scheme. The shock fitting results on both 

the coarse and fine grids agree fai rly closely with the ~1ach number 

increasing to about 2.2 as the lower wall no is reduced. The flux 

vector splitting scheme three results show lower Mach numbers than the 



o 
Z 

I 
U 
<{ 
2 

4000 

3 500 

3000 

2 500 

2 000 

i 500 

1 000 

MACH NO AT SHOCK 

----- SCHEME 1 
-+- SCHEME 2 (COARSE GRID) 
-- +- SCHEME 2 (Flt.JE GRID) 
- -,... - SCHEME 3 

000 

""~ , \ .' \ 
\ 

\ 

200 

\ , 
\ 

\ , 
\ , , , 

\ 
A. 

400 600 800 1 ooe 
~OV~/ER WALL ETA 

F1g. 9.34 Mach No. vs. '10' 

162 



163 

two previous schemes and this is-consistent with the results of problem 

one. The maximum Mach number achieved with scheme three is 1.92 at no 

equal to 0.6. 

Figure 9.35 shows the shock locations for the four sets of results. 

The scheme one shock location is consistently greater than 1.4 and 

reaches a maximum of 1.61 at no = 0.2. It should be noted that since 

the grid is fixed in cases one and three, the shock location shifts of 

increment of one grid point and cannot achieve interMediary values. The 

shock fitting scheme two results show that the shock location starts out 

at the same 1 ocat i on as scheme one but that as the lower wa 11 no is 

reduced, the ~ is gradually reduced to about 0.7 at a lower wall no of 

0.2. The results of scheme three are similar at no equal to 0.2, the 

~ is 0.53. 

Figures 9.36 and 9.37 show the entropy and vorticity downstream of 

the shock adjacent to the wall. In Fig. 9.36, it can be seen that as 

the lower wall is reduced the entropy produced by flow through the shock 

tends to increase in all cases. The shock captured solutions of scheme 

one show less entropy than the results of the shock fitting scheme or 

the flux vector splitting scheme three. The results of scheMes two on 

both the coarse and fine grids and scheme three agree fairly closely. 

In Fig. 9.37, it can be seen that in all cases the vorticity is 

increased as the lower \'/all no is reduced. However, the actual levels 

of vorticity vary depending on the scheme. The flux vector splitting 

scheme three shows the least the amount of vorticity present in the 

flow; however, this may be due to the fact that the function values in 

scheme three are cell volume average instead of pOint values and this is 

reflected in the way the values are reported out. 
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The minimum r'1ach numbers Multipl;ed by the sign of the 

contravarient velocity cOr.1ponent along the lower wall for the varlOUS 

cases are shown in Fig. 9.38. The results all indicate that as no is 

reduced, the value of M decreases and that the shock fitting results on 

the coarse grid were the first to separate which is not the same as 

problem one when the scheme one results were the first to separate. In 

general, however, the results in Fig. 9.38 show a fairly high degree of 

consistency. The ~ location of the flow reattachment shown in Fig. 9.39 

indicate that the results of scheme one generally show a smaller 

separation zone than either shock fitting scheme two or the implicit 

shock fitting scheme three. 

A cOMparison of the results of the three schemes for the case with 

the lower wall no equal to 1.0 is shown in Figs. 9.40a-9.40d. From the 

t1ach number contours which are shown, it can be seen that the results 

are all similar. The fine grid shock fitting results are not as well 

converged as the coarse grid results since both runs were for 1000 

iterations and the fine grid case would need probably 2000 iterations 

(which would take 8 times as long since there are roughly four times as 

many points as the coarse grid) to get to the same level of convergence. 

A similar comparison is shown in Figs. 9.41-9.41d. The Mach 

contours produced by scheme one are very similar to those produced by 

scheme two and, in fact, if the two plots are overlaid, the contours are 

seen to be nearly identical throughout the flow field except close to 

the shock. The flux vector splitting Mach contours show a smaller sonic 

region but overall are similar to the results of scheMes one and two. A 

cOMparison of the t1ach number multiplied by the sign of the contra­

varient U shows that the jump through the shock is significantly less 

with scheme three than with schemes one and two. 
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(a) Scheme One 

(b) Scheme Two (81x41 grid) 

Flg. 9.40 Mach Contours (,. • 1.0). 
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(c) Scheme Two (161x81 grld) 

(d) Scheme Three 

Flg. 9.40 (contlnued). 
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(b) Scheme Two 

(c) Scheme Three 
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The next set of results which are shown in Figs. 9.42-9.43 co~are 

the coarse grid shock fitting results to the flux vector spl itting 

results for the case when no is 0.2 which is the most severe case which 

was run. The ~1ach, entropy, and stream function plots for the shock 

fitting results are shown in Figs. 9.42a-9.42d respectively, and the 

same plots for the flux vector splitting results are shown in Figs. 

9.43a-9.43d respectively. A comparison of the Mach contours show that 

the flux vector splitting results shows a smaller sonic region and that, 

in general, the contours are smoother. A cOf'1parison of the entropy 

contours shows that the shock fitting scheme is particularly good at 

preserving the correct entropy jump through the shock with zero entropy 

in the flow which has not been passed through the shock. The vorticity 

contours show that the shock fitting schef'1e results in some vorticity 

being present in the flowfield above the shock where it should not be 

and this is possibly due to lack of grid sf'1oothness in this region. The 

vorticity plot Fig. 9.43d shows high gradients of vorticity near the 

lower boundary which may be due to some error in the way these values 

were computed although this has been checked and is felt not to be the 

case. The comparison of the t1ach number along the lower boundary 

multiplied by the contraviant U in Figs. 9.42b and 9.43b shows again 

that the flux split results have a smaller jump in M through the shock 

than the shock fitting results. 

9.2.2 Viscous Results 

The Navier-Stokes code was run for 2000 iteration at a Reynolds 

number of 10,000 and the results are shown in Fig~. 9.44 and 9.45. The 

flow was assuf'1ed to be laminar and calculated without the turbulence 
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Flg. 9.42 Results - Scheme 2 (81x41 grid, '0 - 0.2). 
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model. In Fig. 9.44a, the f1a.ch and pressure contours after 1500 

iterations are presented. The lower wall no is equal to 1.0 and it can 

be seen that the flow has separated downstream of the step with at least 

one vortex present. The results at 2000 iterations in Fig. 9.45 also 

show the flow to be separated but the Mach and pressure contours are 

dlfferent from those at 1500 lterations indicating that the flow is 

unsteady. An examination of the convergence history reveals that after 

1500 iterations, the computations do not converge any further, which is 

a further indication that the flow is unsteady. The viscous results are 

thus very different from the inviscid results and show that the inviscid 

separation phenomenon is not a good predictor as to when viscous 

separation will occur and that viscous calculations are needed. 

9.3 Problem Three 

The problem of flow past a circular arc (occasionally referred to 

as IINi's bumpll) was solved using the shock capturing scheme 1 and the 

flux vector splitting scheme 3. An effort to do shock fitting was Made 

using two different approaches but both yielded unsatisfactory results. 

The reasons for this are discussed in this section and a possible 

solution is described. The difficulties are the result of the fact that 

unlike the previous two configurations, this configuration has sharp 

stagnation corners where the flow velocity goes to zero. It is, 

therefore, desirable to cluster grid points near the corners in order to 

capture the high flow field gradients that exist in these regions. 

Since the shock fitting, which was attempted, moves the grid as the 

shock moves, special attention must be given to insure that the shock 

Movement does not move the clustered grid away from these corners. 
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(a) Mach Contours 

(b) Pressure Contours 

F,g. 9.44 Results - Scheme 4 (1500 iterations). 
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(a) Mach Contours 

(b) Pressure Contours 

F1g. 9.45 Results - Scheme 4 (2000 1terat1ons). 
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Figures 9.46a shows the first grid which was used to solve the 

problem using scheme one. The grid was developed using bilinear 

interpolation and the elliptic smoothing described in Chap. 2. The grid 

achieves good clustering at the stagnation corners and over the bUMP 

through the third order polynomial distribution which was used. The 

nondimensional back pressure plpo for this case was 0.74. The scheme 

was run for 1000 iterations and the resulting Mach contours are shown in 

Fig. 9.46b. It can be seen that the flow is transonic with a shock 

present over the bump. Unfortunately, there are some wiggles present in 

the flow field emanating from the corners which are apparently due to 

the grid clustering which leads to high gradients in the Metric terms. 

The writer was not able to do the shock fitting on this grid since 

it was generated using algebraic and elliptic methods instead of 

conformal mapping and scheme two relies on the existence of a conformal 

mapping to get the new transformation metrics x
t 

and x." each time the 

grid was moved. In principal, it is possible to do this by interpolat­

ing the metrics from the original grid (since they are known) to the new 

shock fitted grid once the shock position is known and the writer tried 

this approach but it was not successful. 

The writer then learned that a conformal transformation exists for 

this configuration, therefore, it ought to be possible to use the same 

shock fitting program on this case. The transforMation was then used to 

develop the 81x41 grid shown in Fig. 9.47a, which can be seen clusters 

the grid points over the bUMP but not in the corners. Scheme one was 

then run for 2000 iterations on this case and the resulting Mach 

contours are shown in Fig. 9.47b. Although the back pressure is the 

same as in the previ ous run, the shock on top of the bump is much 
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weaker. A plot of the Mach numbe~ along the lower wall is shown in Fig. 

9.47c and it can be seen that there is a fairly weak shock at approxi­

mately t = 1.0. It is also evident that true stagnation conditions are 

not achieved at the corners of the bump as they should be. It was 

throught that a higher grid resolution might alleviate these problems so 

the wri ter then ran the same case us i ng a 16lx41 gri d. The result i ng 

Hach contours are shown in Fig. 9.48a and the t1ach number along the uall 

is shown in Fig. 9.48b. It is interesting to note that the solution 

near the lower boundary has high gradients in the Mach numbers and that 

the velocities near the lower boundary are lower than in the flowfield 

just off the wall. This is believed to be due to the fact that there is 

a discontinuity in the metric terms at the corners wich results from the 

way the grid has been generated. 

In order to obtain a shock captured solution which might facilitate 

shock fitting better than the previous case, it was decided to move the 

upper boundary further away and to increase the back pressure to a 

nondimensional p/Po of 0.54. Scheme one was run on a 81x41 grid and the 

resulting Mach contours are shown in Fig. 9.49a and the vorticity 

contours in Fig. 9.49b. The Mach contours show a strong shock on the 

leeward side of the bump. The vorticity contours in Fig. 9.49b show 

high vorticity along the shock and also at the corner on the upstream 

side of the bump. The vorticity upstream of the shock is not physically 

correct and indicates again that the scheme does not do well in such 

regions. The shock fitting scheme two was tried on this case but with 

little success. The Shock would become unstable after the code had run 

for less than 100 iterations and the code would encounter execution 

errors and stop. 



==:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ••• _-------­
===:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ••• ::::::::=:=: 
====:=::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::==== 
--------------_ ••••••••••••••••••••••• 11 •••• " •••••••••••••••••••••• _----------

======:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::======= 

!lllllllIllti'I\t\ll·~··:··~··'I·::li::iil:lii'~'I·:·11.:ilJliil'lIlllllllIl 
~-:--------- -- --------~~-

(a) 81x41 Gnd 

(b) Mach Contours 

1 5 

5 
~1 0 
• 
~ 

..:.::;. .. 

(c) Lower Wall'M vs ~ 

Flg. 9.47 Results - Problem 3 (81x41 conformal grld). 

184 



(a) Mach Contours 

2.0 

, 5 

:::> 
""-:::> '.0 
* ~ 

.5 

(b) Lower Wall M vs ~o 

F1g. 9.48 Results - Problem 3 (161x81 conformal gr1d). 

135 



186 

(a) Mach Contours 

(b) Vort1c1ty Contours 

F1g. 9.49 Results - Problem 3 (81x41 conformal gr1d). 
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The grid was next refined to a 161x41 grid and the shock capturing 

scheme one tried again. The resulting Mach and entropy contours are 

shown in Figs. 9.S0a and 9.S0b respectively. It was found that refining 

the grid again resulted in a poor solution near the lower boundary due 

to the dicontinuity in the grid metrics at the corners. The entropy 

contours in Fig. 9.S0b show that there is an entropy layer produced 

which starts at the front corner. This is an unphysical result and the 

poor quality of the solution made it not feasible to go on to the shock 

fitting. 

The flux vector splitting scheme three was run on the 8lx41 grid 

and the resulting r1ach contours are shown in Fig. 9.51. The r1ach 

contours appear smooth and there is no problem at the boundaries. The 

writer feels that this is a Much better solution and although the shock 

is not resolved as well as it might be, the case using shock fitting; 

the solution was obtained without any special treatMent which would have 

been necessary to get a shock fitted solution. 

9.4 ProbleM Four 

The gri d for the NACA 0012 ai rfoi 1 was produced by the ell i pt i c 

procedure described in Chap. 2. The grid covered only the top half of 

the airfoil and used 91x33 points in the ~ and n coordinated directions. 

The outer boundary was pl aced ten chords away frOM the ai rfoi 1 surface 

and the downstream boundary was ten chords lengths away. There are 73 

points along the top surface of the airfoil. The grid is shown in Fig. 

9.52 in three perspectives ranging from far away to close to the leading 

edge. It can be seen that the resolution near the leading and trailing 

edges is reasonably dense and that the orthogonality of the grid at the 

airfoil surface is good. 



(a) Mach Contours 

~. 

(b) Entropy Contours 

Flg. 9.50 Results - Problem 3 (161x81 conformal grld). 
\ 
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Flg. 9.51 Results - Problem 3 - Scheme 3. 
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(a) 91x31 C-Grld 

(b) Detal1 over alrfol1 

Flg. 9.52 Gnd for NACA 0012 A,rfo,l. 
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Scheme one was specially Mol1ffied to run this particular case and 

the freestream Mach number used was 0.8, as this is a good transonic 

test case. The scheme was allowed to run for 3000 iterations whi ch 

resulted a drop in the residual of about 2.5 order of magnitude. The 

Mach contours are shwon in Fig. 9.53. Although the solution may appear 

to be reasonable, there are again kinks in the contours near the 

trailing edge which may be due to lack of grid smoothness. Also, the 

shock location and strength are not correct. Steger has computed this 

case and gives the shock location in terns of x/L where L is the chord 

as being 0.6 and the Mach number just before the shock as 1. The 

results which were computed using scheme one show the shock at 0.73 of 

the chord and the Mach number as 1.405. The solution is, therefore, not 

correct and either shock fitting or the flux vector splitting code is 

necessary for better results. 

The writer modified scheme two to do this case, but it was not 

stable and the grid developed extreme skewness as a result use of a 

fifth order polynomial function to distribute the grid points with the 

shock moving. The writer feels that a shock fitting scheme which has 

the grid stationary and simply extrapolates to the shock from the flow 

field would work much better than the existing shock fitting scheme 

which attempts to adapt the grid to the moving shock. Such a scheme is 

being developed by the writer but at the time of this writing, it has 

not yet been completed or tested. 
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(c) Leadlng edge detall 

Flg. 9.53' Problem 4 - Mach Contours. 



Chapter 10 

CONCLUSIONS 

This study was originally initiated as an investigation into the 

inviscid separation phenomenon. Since that time, there have been 

several studies on this topic published and, as yet, reseachers do not 

seem to agree on the significance of these inviscid results. The 

questions concerning inviscid separation appear to belong to three 

separate but related categories which can be stated as: 

1. When are numerically cOMputed solutions which exhibit flow 

separation valid solutions to the governing equations and are they 

unique? 

2. In the case of computed solutions where closed recirculation regions 

are present, what is the source of the vorticity inside the eddies? 

3. What is the physical relevance of an inviscid separated flow to the 

viscous case? 

The first question has been investigated by various researchers 

either by grid refinement procedures or by careful control of parameters 

such as the amount of artificial dissipation which is added to a scheme 

to provide stability [15, 17, 18, 20, 22J. In general, it appears that 

while in some cases the computed inviscid solutions are valid and 

reasonable, it is also possible to pr,oduce inviscid separation if 

excessive artificial dissipation is present or if very coarse grids are 
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used. The question of uniquene-ss has not been adequately examined, 

although it is known that in some cases nonunique solutions to the Euler 

equations do occur. Since numerical solutions are by nature approxinate 

solutions and there exists few rigorous proofs that the solutions 

obtained by any given numerical method are in fact the correct 

approximations to the problem (including boundary conditions) being 

solved, it is possible that this issue will never be completely 

resolved. 

There does not, as yet, appear to be any clear answer to the second 

question. The most common explanation for the presence of vorticity is 

that flow through curved shock waves results in entropy gradients and 

thus by Crocco's theorem, vorticity. Also, since in nearly all cases 

reported, the inviscid separated zone are "captured" during the 

iterations procedure by the numerical algorithm and the initial assumed 

flow field is free of such separated zones, it can be argued that the 

unsteady transient flow leads to entropy and vorticity in the part of 

the flow field that is eventually "pinched-off" and trapped inside the 

eddy. It should also be noted that while in theory, there exists a 

dividing stream line between the trapped eddy and the outside flow field 

and once formed, vorticity and entropy cannot enter the eddy, in actual 

numerical computations the flow inside the eddy is coupled to the flow 

outside the artificial viscosity and the boundary between the two zones 

(which is smeared) may allow the total amount of entropy and vorticity 

inside the change. 

The third question may be the most important of all, since usually 

the purpose of doing an inviscid computation is to provide some insight 

as to how an actual viscous flow would behave without the expense of 
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actually doing viscous calculations. Since real fluids contain 

viscosity, the first two questions, while of theoretical interest, do 

not pertain to the numerical siMulation of viscous flows. 

This investigation had many different aspects to it, but the 

priMary effort involved an atteMpt to solve the transonic flow past 

various two-dimensional configurations using various numerlcal 

procedures. The four configurations which were chosen included a 

rearward facing step, a "bump" in a channel, a circular arc alrfOll, and 

a NACA 0012 airfoil. For the first two configurations, the position of 

the lower boundary was varied to study the effect of flow separation a 

the curvature in the expansion region increased. The last two 

configurations were used to determine how the numerical schemes could 

handle somewhat more complicated geometries. 

The grids for these configurations were produced using either 

conformal mapping or algebraic and elliptic procedures. The conformal 

Mapping procedure has the advantage that it is fast and straightforward 

and produces grid which are perfectly orthogonal as well as satisfy the 

Cauchy-Riemann equations. Also when doing shock fitting, it is 

necessary to recompute the metric terMS each tiMe the grid is Moved and 

this is done very easily if there exists a simple transformation which 

can be used. The disadvantage is that a different mapping must be found 

for each configuration which greatly restricts the geometrical 

versat i 1 i ty of the method. Fi na lly, the method cannot be extended to 

three-dimensional regions in the general case. The algebraic and 

elliptic methods were used for the last two problems and worked well. 
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The numerical sche~es which-were used included three Euler solvers 

and a Navier-Stokes solver. The three Euler solvers included an 

explicit Lambda scheme, a shock fitting version of this scheme and a 

fl ux-vector splitt i ng scheme. The fi rst two schemes were coded by the 

writer and the shock fitting version included some features developed by 

the writer to enable the code to do imbedded shock fitting for the 

regions which were considered. These included the use of polynonial 

functions to smoothly blend the end of the shock to the grid line which 

extended from the end of the shock to the upper boundary and the use of 

least squares fitting to smooth the shock acceleration, velocity and 

position as it was being computed in order to overcome stability 

problems which were encountered. Even so, the method was not successful 

in all cases. The first two schemes were also vectorized for the NASA 

Langley VPS 32 supercomputer which greatly increases their execution 

speed. The flux vector splitting scheme proved to be the most robust 

and was easy to use. Generally, the convergence rate was also higher 

with this code than with the explicit schemes although since it was not 

vectorized, the overall execution time to get a converged solution was 

of the same order of magnitude as the explicit schemes. The Navier­

Stokes code was also robust and was vectorized for the VPS 32. 

The three inviscid scheMes were run on configurations one and two 

under a variety of conditions which were intended to examine the effects 

of changing the position of the lower boundary (on configuration one the 

upper boundary was also tested in three positions). The Navier-Stokes 

was run under more limited sets of conditions since the writer felt that 

the runs which were conducted were sufficient for comparison purposes. 
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Schemes one and three were pun on configuration four and an atteMpt 

was made to do the shock fitting on thlS configuration but this was 

unsuccessful. A new way to do the shock fitting, which does not move 

the grid with the shock, is currently being developed but is not 

available for use as of this writing. This method was not felt to be 

necessary when this study was initiated and therefore was not included 

in the proposal for this research. Scheme one was run on the NACA 0012 

configuration four, but the position and strength of the computed shock 

were not correct. Shock fitting has also been tried on this case but 

again was not successful. However, the flux vector splitting scheme has 

been run on this case extensively by von Lavante and the results as 

reported by this scheme agree well with other reported results. 

The major conclusions, which the writer believes can be made from 

this investigation, are summarized below. 

1. Conformal grid generation worked well for the simple two­

dimensional configurations which were generated as test cases. It 

is fast and produced perfectly orthogonal grids. 

2. For configurations three and four, algebraic and elliptic grid 

gene rat i on was used successfully. Thi s method has the advantage 

that a gri d can be produced fo r vi rtua lly any confi gu rat i on. The 

algebraic method is fairly fast but Must be tuned to get good 

results. The elliptic method will produce good orthogonality at 

the boundaries provided the source terms are carefully 

controlled. The elliptic method requires the solution of a coupled 

set of POE's and, therefore, results much more computer time than 

either the algebraic or conformal methods. 
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3. The shock capturing Lambda £cherne is an accurate scheme which was 

easy to code and is based on characteristic theory. The scheme 

gave results which were in good qualitative agreement with the 

other i nvi sci d schemes used. Unfortunately, si nce the equations 

are sol ved in nonconservative form, the results at shocks were 

generally not correct. Also, the scheme converged very slowly due 

to the explicit CFL limitation. 

4. The shock fitting scheMe developed by the writer overcame the 

disadvantage of the previous scheme by explicitly solving the 

Rankine-Hugoniot jUr.1P relations through the shock. An adaptive 

grid which moved with the shock was used to obtain a high 

resolution of the correct shock shape and position. Vectorization 

of the scheme was fairly straightforward and made the conputations 

fairly efficient despite the restrictive CFL limitation. The major 

disadvantage is that the scheme (at least as it was used by the 

writer) requires a conformal transformation to exist to enable a 

rapid evaluation of the metric terms which must be updated each 

time the gri dis moved. For genera 1 confi gu rat ions -where no such 

transformation exists, shock fitting is still possible but would be 

more difficult to implement. 

5. The flux vector splitting scheme was a robust code and achieved the 

correct jump relations through the captured shocks without the use 

of fitting. The scheme converged faster than the explicit codes 

since the code is implicit which allows a much higher CFL number to 

be used. 
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Two configurations, a rear-ward facing step and a bump inside a 

channel, were studied for flow separation. The inviscid cases were 

run using various positions of the lower boundary to conpare when 

separation occurred. It was found that when the lower boundaries 

were such that the channel transition were very gradual, no 

separation occurred. However, as"o was brought closer to zero, 

flow separation would eventually occur and it appeared to be 

related to entropy gradients in the flow field downstream of the 

shock which produced vorticity in the flow. 

7. Grid refinement was done using the vectorized shock-fitting scheme 

and the results did not indicate that the flow was less likely to 

separate than on the coarse 81x41 grid. 

8. As"o is reduced to zero in the rearward facing step, it appears 

form the results using the flux-vector splitting scheme that the 

shock at the corner in the inviscid cases eventually is reduced to 

a negligible size and the flow simply separates sMoothly from the 

corner with a single recirculation eddy. This is in agreement with 

previous results obtained by Jameson [61]. This was not, however, 

observed with the shock fitting code as it was not possible to get 

results with lower than 0.4 since the resolution of the shock-

fitting grid was not adequate at the corner. 

9. The viscous results which were obtained were significantly 

different from the inviscid results in that flow separation 

occurred due to the effect of the adverse pressure gradients on the 

boundary layer and the flow was steady. In the inviscid cases, 

separation appears to be due to vorticity at the wall produced by 
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flow through the shock (w~ch was not present in the vi scous 

cases) • The vi scous resul ts genera lly showed an unsteady sheddi ng 

of vorticities frofTl the leesic1e of the corner or the bunp with 

multiple recirculation zoneSj whereas, the inviscid results showed 

no separation for the same position of the lower boundary. Hhen 

the lower boundary no was reduced, a single recirculatlon zone 

formed in the inviscid cases which was steady and was not shed. 

10. Two additional configurations were investlgated with the shock 

capturing schemes and an attempt was made to do shock fitting. The 

first was a simple circular arc airfoil and the second was a NACA 

0012 ai rfoi 1. The shock fitting scheme was attempted on the 

circular air airfoil but the conformal grid which was generated had 

a discontinuity in the metric terms at the corner of the arc with 

the lower boundaries which resulted in the production of an entropy 

1 ayer emanating from the front stagnat i on corner whi ch r.1ade the 

shock fitting lambda scheme unstable. The flux vector splittlng 

scheme was run successfully on this configuration. 

11. The NACA 0012 case was run with the shock capturing scheme one but 

the shock position and strength were nor correct and shock fitting 

was tried but so far has not been successful. This is due in part 

to the need to adjust the grid by a fifth order polynomial to keep 

adequate resolution at the leading and trailing edges. A different 

type of shock fitting which holds the grid stationary while the 

shock is moved may be necessary to avoid this problem. 
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