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SUMMARY

A comparison of flow separation in transonic flows is made using various
computational schemes which solve the Euler and the Navier-Stokes equations of
fluid mechanics. The flows examined are computed using several simple two-
dimensional configurations including a backward facing step and a bump in a
channel. Comparison of the results obtained using shock fitting and flux
vector splitting methods are presented and the results obtained using the
Euler codes are compared to results on the same configurations using a code
which solves the Navier-Stokes equations.
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Chapter 1

INTRODUCTION

Although much progress has been made in the field of computational
fluid dynamics (CFD), the computation of transonic flows containing
shock waves and of flows exhibiting separation is still a challenge.
The most commonly used methods to compute such flows solve either the
time-dependent Euler or Navier-Stokes equations on a fixed grid. The
Euler equations allow for rotational flows but neglect viscous effects,
whereas the Navier-Stokes equations take into account viscous effects.
Both sets of equations, when expressed in integral form, are correct
even when discontinuities in the flow field are present. The
compressible potential equation, which has been used extensively for
aerodynamic prediction, does not allow for rotational flows and viscous
effects and is therefore not considered in this study. However, when
shock waves are weak and flow separation is not expected, the potential
model may provide a good approximation. Furthermore, when coupled with
boundary layer equations, viscous-inviscid methods have been

successfully used to compute flows with separation.

The development of CFD and, more specifically, methods to solve
compressible flow problems extends back into the 1950's and a complete
history is beyond the scope of this introduction. The mathematical
theory of these numerical approximations has been developing rapidly as
has been the mathematical theqﬁy of hyperbolic conservation laws and

1



shock waves. The 1948 book by Courant and Friedrichs [1]* and the 1973
SIAM publication by Lax [2] were important contributions to the
literature which provide much of the basic theory. The 1967 text by
Richtmeyer and Morton [3] 1is now considered a classic text on the
application of difference methods to initial value problems. More
recently, the books by Smoller [4] and Majda [5] provide up-to-date
exposition of the mathematical theory. While there have been many books
on CFD published, the recent text by Anderson, Pletcher and Tanneh1ll
[6] is one of the most popular. Finally, the 1986 survey article by Roe
contains an excellent discussion of the development and fairly recent

state of affairs in numerical schemes for the Euler equations [7].

Early schemes were relatively simple explicit methods such as the
Lax-Wendroff scheme [8] and its derivative, the two-step MacCormack
Scheme [9]. These schemes are essentially central-difference schemes
and have the undesirable property of being oscillatory near shocks. In
order to stabilize them, artificial dissipation terms must be added
which tend to smear out the discontinuities over several mesh
intervals. Early upwind schemes include the CIR (Courant-Isaacson-Rees
[10]) and the Godunov [11] methods. These schemes are both first order
accurate and are not used today but were important advances and prepared
the way for more advanced schemes. Upwind schemes are purported to be
more physically correct since they are based on the way characteristic
information propagates. They are also more stable near shocks and it

has been shown that upwind difference schemes are the equivalent of

*Numbers in brackets indicate references.



central difference schemes plus artificial dissipation [12]. The finite
volume schemes popularized by Jameson [13] are also explicit central
difference schemes which must include dissipative terms in order to

stabilize the scheme and avoid odd-even decoupling of the mesh points.

A1l of the explicit schemes are restricted to rather low CFL
(Courant-Friedrichs-Lewy) numbers which restricts the maximum allowable
time step they can take. This means that the number of iterations
required to achieve a given level of convergence is larger than would be
the case if the schemes could run at a higher CFL number. To overcome
this limitation, implicit schemes were developed. There have been many
such schemes developed of which one of the most significant is the Beam-
Warming approximate factorization algorithm [14]. This scheme was a
major advance and many later schemes were, at least in part, based on
it. Since this scheme solves the governing equations in conservation
form, the converged solutions satisfy the Rankine-Hugoniot jump
relations if shocks are present. However, as is the case with all of
the schemes discussed up to now, artificial dissipation must be present

to stabilize the scheme near discontinuities.

Since the numerical algorithms typically begin with an initial
guess and then iterate towards a converged solution which must satisfy
the specified boundary conditions, the problems to which they are
applied are mathematically described as initial-boundary value
problems, The discontinuities that are computed and resolved arise
during the course of the computations and the Tlocation of these
discontinuities is generally not known beforehand. Thus the schemes are
frequently described as "shock Eapturing.“ Another approach that has

proven successful is referred to a "shock fitting." In this approach,



the location of the discontinuity is at Tleast approximately known
beforehand and the appropriate mathematical relations are used to relate
the flow conditions an each side of the discontinuity, thus providing a
much better resolution of the discontinuity. In this study, both shock
capturing and shock fitting methods are used and the results are

compared.

Separated flow has, in the past, almost always been associated with
boundary layer separation and thus is usually regarded as a viscous
effect. Several years ago, however, Salas [15] and others noticed that
inviscid compressible flow past a circular cylinder computed using the
Euler equations can separate when the free stream Mach number is greater
than 0.4, Salas pointed out that earlier analytical investigations by
Fraenkel [16] proved that exact solutions of the incompressible Euler
equations, for flow past a circular cylinder, can show separation
bubbles in front of and behind the cylinder, the size of which are
controlled by the free stream vorticity. Salas also deduced that flow
through a curved shock could produce sufficient vorticity to cause the
flow to separate in some cases. He raised several questions concerning
the validity of the computed solutions. First, are the converged
solutions unique? Second, what is the relation between the computed
Euler solutions to the solution of the Navier-Stokes equations,

especially in the limit as the Reynolds number goes to infinity?

Kumar and Salas later compared Euler and Navier-Stokes solutions
for supersonic shear flow past a circular cylinder [17]. The impinging
supersonic flow contained vorticity and the separation occurred along a
symmetry line ahead of the cylinder. The investigators found that while

the overall size of the separéfion zone computed using both sets of



equations was similar, the internal structure was quite different which
they attributed to viscous effects. The inviscid solution showed only
one vortex, whereas the viscous solution showed an inner and an outer
vortex. As the Reynolds number was increased, the inner vortex
decreased in size and the Navier-Stokes solution became similar to the

Euler solution.

Barton and Pulliam also compared Euler and Navier-Stokes solutions
for flow past a NACA 0012 airfoil at high angles of attack [18]. They
used an implicit approximate factorization scheme which solved either
the Euler equations or the Navier-Stokes equations in thin layer form
with an algebraic Baldwin-Lomax turbulence model. The authors first
describe the inviscid results for M = 0.25 and 0.4 on a coarse 249 x
41 grid and a fine 249 x 67 grid with an o = 150, At M =0.25 on
the coarse grid, there was no leading edge shock but the flow separated
and an unsteady oscillatory behavior was observed in the solution. On
the fine grid, there was a shock but no flow separation and the solution
converged to a steady state. At M = 0.4, there was a leading edge
shock and the solution exhibited an oscillatory separated flow which did
not depend on the grid. Viscous and inviscid calculations were carried
out for M = 0.301 and «a = 13.59, The Reynolds number in the viscous
calculation was 3.91 x 10°. While both the inviscid and viscous
calculations yielded a separated solution, in the inviscid case, no
steady state solution was reached and an oscillatory behavior was noted,
whereas the computations using the viscous equations converged to a
steady state. The authors concluded that in this case the Euler

solution was not a good approximation to the Navier-Stokes solution.

They also concluded that while T some cases the separated flow computed



was the correct solution to the inviscid equations, in other cases
numerical errors due to the use of a very coarse mesh caused the flow to

separate and the solution was not valid.

Separated flow on the leeside of conical delta wings at high angles
of attack has been the subject of several investigations. Marconi
studied supersonic conical separation using a the lambda scheme with
shock fitting to solve the Euler equgtions [19]. It was assumed that
the flow is invariant in the axial direction and therefore the three-
dimensonal equations can be solved using a two-dimensional grid. A
shock wave emanating from the leeside of the body produced a significant
vorticity gradient which resulted in flow separation. The separated
flow spirals up and does not form a closed recirculation eddy as in the

case of flow past a cylinder. Grid refinement was done without any

significant change in the results.

Newsome and Thomas computed and compared Euler and Navier-Stokes
solutions for a conical delta wing at a M equal to 2.0 and & equal
to 10° [20]. The conical assumption was also used allowing the
calculations to be done on two-dimensional grids. The viscous solutions
were obtained using both a central difference scheme based on
MacCormack's explicit unsplit algorithm and also a flux vector splitting
scheme developed by Thomas. The viscous solutions obtained with both
schemes on a 151 x 65 grid agreed closely and showed a separated
vortical flow on the leeside of the wing with a primary vortex due to

leading edge separation and a secondary crossflow separation vortex.

The Euler solutions were obtained using the same schemes after

dropping the viscous terms and the surface no-slip boundary condition.



Two grids, a coarse 75 x 55 grid and the same viscous grid as before,
were used. On the coarse grid, the MacCormack scbeme solution showed a
separation vortex similar to the-viscous results. Entropy was produced
at the leading edge although there was only a small shock evident. The
upwind flux vector splitting scheme produced solutions with no such
separation on the coarse grid. The authors concluded that the flow
separation obtained on the coarse grid was due to the artificial damping
added to the central difference scheme so that the results were
considered incorrect. Using the fine grid, both schemes produced
similar results and the solutions showed a small vortex downstream of

the crossflow shock.

Chakravarthy did further calculations on the same problem using a
TVD scheme to study the issue of inviscid separation [21]. He concluded
that one possible explanation for the different results that Newsome and
Thomas had obtained was the use of spatially varying time steps. He
stated that this practice may result in unphysical transients which does

not occur when a global time step is used.

However, Kandil and Chuang performed a careful investigation of
supersonic vortex dominated flows about sharp and round-edge conical
delta wings and concluded that for the round-edge wings the damping
coefficients used in the finite-volume code controls whether attached or
separated solutions are obtained [22]. In addition, their computations
indicated that the solutions obtained did not depend on whether global

or local time stepping was used, in contrast to the hypothesis of

Chakravarthy.



In view of the findings of the various investigations just
discussed, it is clear that numerical solutions of the Euler equations
which exhibit separated flow must be carefully evaluated to determine
whether or not the results are realistic. This investigation therefore
is an attempt to provide further insight into the inviscid separation
phenomenon and specifically an attempt is made to relate the 1inviscid
separation case to the viscous case. Various codes were used in the

course of this study and the general investigation procedure is

described in the next chapter.



Chapter 2

PHYSICAL MODELS AND GRID GENERATION

In this chapter, investigation procedures for different physical
systems are presented and various techniques of grid generation are

discussed.

2.1 Investigation Procedure

Several simple two-dimensional configurations were chosen which
could be used to test the various schemes used to solve the Euler and
Navier-Stokes equations for transonic flow. The first configuration is
flow past a rearward facing step. It is known from experiment that
incompressible flow past such a step separates at a Reynolds number,
based on step height, less than 500 to form one or more recirculation
vortices downstream of the step [23, 24]. The incompressible flow case
has been computed numerically by several investigators and the results
are contained in the proceedings of a recent GAMM workshop [25]. The
compressible case for M = 0.5 has been computed by Schmidt and

Jameson using the Euler equations and a finite volume scheme [26].

The step used in this investigation differs from these cases in
that a conformal transformation was used to generate the grid. This
resulted in the requirement that in order to avoid singularities in the
tranformation metrics, a sharp corner had to be avoided and instead, a

rounded expansion corner was used. The conformal transformation was

9
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used to control the 1location of the physical boundaries and the
resulting suddenness of the expansion, [t was found thgt for very
gradual expansions the flow in most cases did not separate. Whereas,
when the expansion corner was brought closer to a sharp corner, separa-

tion occurred. An example of this configuration is shown in Fig. 2.la.

A second conformal transformation was used to produce a configura-
tion which could be taken to represent a bump in a channel as shown in
Fig. 2.1b. In the limit, the "bump" would become a semi-circle as will
be discussed further in the next section on grid generation. The third
configuration chosen for study is a circular arc inside a channel as
shown in Fig. 2.lc. This geometry was chosen as other investigators
have used it and it was thought desirable to be able to compare the
results obtained in this investigation with the results obtained by
others. Finally, a NACA 0012 airfoil with o« = 09 as shown in Fig.

2.1d was chosen as an external flow problem.

Three computational techniques were used to solve the Euler
equations. The first is a Gabutti shock capturing scheme which is a
variation of the lamda scheme developed earlier by Moretti [27, 28].
Computer codes applied by the writer to all four test problem were
executed on the NASA Langley computer system; some of these codes were

vectorized to speed up the execution time.

The second method is a shock fitting version of the first method.
In this method, the jump conditions through the shock are explicitly
enforced and the grid is forced to adapt to the moving shock. A
vectorized version was developed for the rearward facing step and

conformal bump in channel prob]éms and used to perform grid refinement
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studies. The third Euler solver used was an implicit flux vector
splitting scheme which was originally developed by von Lavante with
modifications subsequently made by the writer [47]. These schemes are

described in subsequent chapters.

The full Navier-Stokes equations were solved using an implicit
upwind approximate factorization scheme developed by Rumsey [29]. The
computer code is fully vectorized and has been shown to give accurate
solutions for unsteady flow cases. The code was applied to test
problems one and two as these cases showed flow separation using the
inviscid equations. Test problems three and four showed no such

separation and hence the viscous code was not used.

2.2 Grid Generation

Problems in fluid dynamics are classified as field problems since
the solutions are represented by variables such as density, pressure,
velocity, etc. which are functions of one or more spatial dimensions as
well as of time. Since computers have finite memories, they can only
solve the governing equations at a finite number of representative
spatial locations. The equations must therefore be discretized and
solved numerically at these locations. The purpose of grid generation
is therefore to distribute the points at which the solution is desired
over the spatial domain in some "optimum" sense to facilitate the
solution.

Usually this 1involves a transformation of coordinates from
cartesian to a body fitted coordinate system. Thus the original (x,y)
cartesian coordinates are replaced by curvilinear (g,n) coordinates”

which wrap around the configuration to be studied. The main advantage
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in doing this is that it is usually possible to take advantage of
computer array data structures which is generally not the case if
cartesian coordinates are used. However, the governing equations nust
also be transformed and additional computer memory is often required for
the storage of metric terms and Jacobians. The transformation must be
one-to-one and the new curvilinear coordinates are frequently assigned
integer values such ¢ = 0,1, 2, «o., Inq,.

Various grid generation techniques have been devised and the ones
which were used in this investigation include conformal mapping,
algebraic, and elliptic methods. These will be discussed in relation to

the specific grid generation requirements of each test problem.

2.2.1 Conformal Mapping Technique

For the rearward facing step test problem, the transformation from
the computational plane to the physical plane is shown in Fig. 2.2 and

the transformation equation is [30]

z = %.[(;2 DM wgn oo+ 2 - DY) (2.1)
where
g = g +in
zZ = x +1iy .

The metrics Xes Xoo Yo ¥, 2re easily obtained from Eq. (2.1) as

follows. First dz/dz is found as

dz/dg =3 [(z + 1)/ - N2 (2.2)

-

R .

N



14

-

Then xE and yE are found from
(2.3)
Finally from the Cauchy-Riemann equations, we have

XE = yn and yE = - xn

The Jacobian of the transformation is given by

= 3( N = -
Dot R T ey ety (2.4)

gy = J¥
Ey = xn
ny = VY
ny T 9%

For the conformal bump test problem, the transformation is shown in

Fig. 2.3 and the transformation equation is [30]

_ 1
C - Z +'z- Y (2.5)
Equation (2.4) can be solved for z in terms of ¢ and the result is
z=50+ 7 - 04 (2.6)

The metric terms are then found from

F-rurue’-alh
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For the circular arc test probdem, the conformal transformation is a
degenerate case of a Karman-Trefftz airfoil [31]. The transformation is

shown in Fig., 2.4 and is

2= 1, -2+ ”1/2]n (2.7)
here z+1 (c +2) + (CZ _ 4)1/2
n=2(1- %) (2.8)
a =2 'can'1 (t)

and t 1is the thickness of the airfoil. The boundaries of the
computational and physical domains are specified according to lines of
constant ¢ and n. The distribution of points along the boundaries was
specified wusing simple polynomial and exponential stretching
functions. In the g direction, a third degree polynomial was found to

be sufficient:
- 2 3
E = 50 + (51 - EO) (al X + 32 X= + a3 X%) (2.9)

where £o and gy are the minimum and maximum values of ¢ respectively,

and aj, ay, and ay are coefficients which are chosen to satisfy

X = 0 at £ = &,
X = IM-1 at A
X = 1IS at E = &g

de/dX = al(g1 - 50) at X = 0

where IM is the number of points in the ¢ direction and IS is chosen

to be X at ¢ = Ege The variable X becomes the new computational

coordinate in the & direction,
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In the n coordinate direction, either a second order polynomial

similar to Eq. (2.9) or an exponential stretching function

n = gt (ng-ng) gip ks) — i (2.10)

was used where o and ny are the minimum and maximum values of n,

k is a stretching coefficient, and s is given by
s = Y/(M-1). (2.11)

Y is the new computational coordinate in the n direction and JM is the
number of points in the n direction. The polynomial stretching in the
n direction was used to generate grids used in the inviscid calcula-
tions and the exponential stretching was used to generate grids for the
viscous calculations. The coefficient k was calculated using an
iterative Newton routine to satisfy a prespecified dn/dY at n =0
given by

d (hy = ng) Kk exp(ks)

¥ IS T ep(R) -1 (2.12)

2.2.2 Algebraic Grid Generation

Bilinear interpolation [32] was used to develop an alternate non-
conformal grid for the circular arc test problem and the two-boundary
technique of Smith [33] was used to develop the grid for the NACA 0012
test problem. Both techniques require that the boundaries be initially
specified by a distribution of points. Elliptic smoothing, as described

in Sec. 2.2.3, was used to produce the final grids in both cases.

The’general coordinates ¢ and n along the boundaries of the

circular arc was related to the arc length along the boundaries by
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simple polynomial and exponentiat-stretching functions similar to those
given in Sec. 2.2.1. The grid was made symmetric about a line passing
normal to and through the top of the circular arc and the stretching
function was made to satisfy the requirement that one of the lines of

constant & begin at the corner of the arc and the straight lower
boundary.

Once the (x,y) Jlocations of the boundary points have been
established, bilinear interpolation can be used to locate the interior

points. For example, the x coordinate of the interior points is given

by
(1 -r) x(0,n) +r x(1,n)

X(E N )

(1 -s) x(g,0) +s x(g,1)

+

(1 -r) [(1-5s) x(0,0) +s x(0,1)]

r[(1-35s) x(1,0) +s x(1,1)] (2.13)

where £, ¢z, r and s all vary between 0 and 1, and r and s are normalized
arc lengths weighted by their relative proximities to the top and bottom
boundaries (in the case of r) and to the left and right side boundaries
(in the case of s). A similar equation is used to get the y coordinates
of the interior points. Note that this method does not enforce
orthogonality along the boundaries. However, this is later achieved

when the elliptic technique is employed in the smoothing operation.
The computational region for the NACA 0012 airfoil was designed for

a "C" type grid for half the airfoil only as shown in Fig. 2.5. The

airfoil surface is given by the following equation [34].
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y = 0.6 [.2967 x/2 - ,126 x - .3516 x°

3

+ 2843 x° - L1015 x*] (2.14)

This equation does not give y = 0 at x = 1 and it was therefore
modified slightly and put into nested form to give y = 0 at x = 1 as

follows

y = .1781 x2 _ x [.0756 + x {.2110 - x (.1706

- .0621 x)}] (2.15)

The points on the boundary were distributed first from A to B usihg
a fifth order polynomial

ro= agta, 53 +a, 54 +a, 55 (2.16)

where r is the arc length and ¢ the computational coordinate and aj,
3y, 33, and 3, are found after specifying the first derivative dr/dg

at A and B, setting d2r/d52 = 0 at B, and requiring r to be equal to
the total arc length from A to B at a specified value of ¢. This

leads to a system of four equations in four unknowns which can be easily

2

solved. Note that since the term in ¢“ 1is not present in Eq. (2.16)

that dzr/dg2 =0 at r = 0 as well,

An exponential stretching function was used to distribute the
points from B to C such that dr/df was matched at B. Along the outer
boundary, a third order polynomial was used to distribute the points.
Once the distribution of points along the outer boundary from D to E and
along the airfoil surface and the symmetry line A to B to C was made,

the two boundary technique was used to locate the points in between.
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Referring to Fig. 2.6, the two points a and b are first connected
by a straight line and the points (x;, y;) along it are found by linear

interpolation

X, +tln) (x - x,)

x
-
L]

(2.17)
Yo ttin) (yy - y,)

<
-
]

0< tln) < 1

Next, the slopes of the boundaries at a and b are computed as T
and my and the slopes at the intermediate points x; are found by linear
interpolation as m; in the same manner as above. Straight lines passing

through the points x; with slopes m; are then constructed and their

equations are

y = Y4 + m; (x - xi) (2.18)

Lines passing through a and b normal to the boundaries are then

constructed which have as their equations

Yom oy xax) . oy =y - -x)  (219)

b t
The points of intersection of these lines with the lines through x;
are then easily computed as }b’ ?b and }t’ ?t . Finally the grid

points from a to b are found as

Xj +ay (xp = x3) +aq (X - x5)

x
n

(2.20)

<
1

Yi *ag (p - ¥3) +aq (3, - yy)

Different functions aj and ay have been experimented. One possible

choice is



Fag.

2.6
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ay = Kg(1-n)?
) ) (2.21)

tn

04 K

where Kb and Kt are constants.

As long as Ky and K, are finite, orthogonality will be achieved at
least on the two opposing boundaries and this technique can be extended

to the side boundaries as well.

2.2.3 Elliptic Smoothing

This technique is based on the following set of Poisson's equations

(6]

Eex Eyy P (x,y)
(2.22)

Q (x,y)

Nyx Myy

where ¢ and n are the computational coordinates and P and Q are the
source terms that control the resulting grid. Since in most cases x and

y as functions of & and n are required, the above equations are

transformed to

2

a xEE -2 XEn +y xnn = - (P xE + 0 xn)/J

(2.23)

2
- + = -
a yEE 28 ygn Y Yon (p yE + Q yn)/J

. - _ d
where the Jacobian J xE Yy xn yE an

w
"

>
b3
+
<
=*<
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Note that if the grid is orthogonal then
VEgEeVn =0

which implies that g is zero.

A transformation introduced by Middlecoff and Thomas replaces P and

Q by two new function ¢ and y as follows [35]:

P ,1,2
¢ = ';(-J)
(2.24)
- 0 ,1,2
y = "Y—('J)
with this transformation, Eqs. (2.19) become
- + = +
GXEE ZBxEn Yxrm a¢x5 y:pxn
(2.25)
- + = +
o Yer ZByEn Y Yo ¢ é Y tyvy

The terms on the right are commonly called "source terms" and they are
related to the mesh orthogonality and spacing. Equations (2.21) are
solved by a SLOR (single line over-relaxation) technique which sweeps
alternatively 1in each of the g and n directions. The source terms ¢
and y are initially set to zero and are then slowly changed to achieve

the required angles and spacing of the grid along the boundaries.

The function ¢ along the boundaries n = constant 1is varied

according to

¢"+1 = ¢n *+cq tang (2.26)

where c; is some constant and ¢ 1is the angle at which the lines of
constant £ intersect the boundary as shown in Fig. 2.7. Along the

boundaries & = constant, the control function ¢ is varied according

to the spacing ds as shown in Fig. 2.8 as given by Eq. (2.27).
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o =" ¢, (ds - ds’) (2.27)

where ds' is the desired spacing and ds is the actual spacing.

The source termy is controlled along the boundaries £ = constant

using a procedure similar to ¢ along the n = contant boundary. Along
the boundaries n = constant, y could be varied to obtain the required

spacing in a similar fashion as ¢ along ¢ = constant boundaries.

In the interior, ¢ and ¢y are determined by bilinear interpolation
similar to Eq. (2.13). In this case the variables r and s are related

tog and n by the following third order polynomial blending functions.

(3 - 2;)52

-
"

(2.28)

(7]
[}

(3 - 2) n?

This insures that ¢ and ¢ blend smoothly from the boundaries into

the interior,
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Chapter 3
GOVERNING EQUATIONS OF FLUID DYNAMICS

3.1 Introduction

In this chapter, the complete governing equations of fluid dynamics
in various forms as will be used later are derived. While such a
derivation can be found 1in various books on the subject, the
presentation which is given usually depends, to some extent, on the
author's background and orientation. For example, the classic book by
Batchelor, which gives an excellent derivation of the Navier-Stokes
equations, barely discusses compressible flows [36]. Furthermore,
advanced topics such as turbulence or weak solutions to the Euler
equations are covered in only sketchy detail in most of the introductory
texts currently in use. This undoubtedly reflects the fact that fluid
dynamics is an extremely broad and interdisciplinary subject which is

both highly mathematical and also has applications in many different

areas.

The equations which are used in this study are the compressible
Euler and Navier-Stokes equations in both conservative and non-
conservative form. The viscous equations which are used are for laminar
flow and, therefore, the topic of turbulence is not discussed herein.
The assumptions which are made are discussed in the appropriate
sections. The assumption that the fluid behaves as a continuem is made

throughout.
27



28

3.2 Mass Conmservation Equation

The principal of mass conservation states that mass is neither

created or destroyed. Therefore, a given differential "fluid element"
of density p and volume 6§V moving along with the fluid can be described

from the Lagrangian point of view by the equation

sy = 0 (3.1)

since the mass of the fluid element remains constant. It is now more
customary to derive the governing equations from the Eulerian point of

view using a control volume fixed in space. Consider a control volume

8V with a total mass given by
[ o dV = mass inside 6V
v

The rate of change of the mass inside &V is then related to the

integrated mass flux through the boundaries of 6V which is

[ Vendh = net mass flux
p

and therefore the mass conservation law in
9
ﬁfvpdv--prTI-ndA (3.2)

Equation (3.2) is the integral form of the mass conservation law and

applies even when p and V are not differentiable.

Using the divergence theorem and assuming the control volume to be

fixed, this can be written as

J, 55+ div e 1] av = o .
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Since this equation must hold~ for all V, it can be written in

differential form as

btV =0 (3.3)

It can be shown that Eq. (3.3) is equivalent to Eq. (3.1), for example
see Karamcheti [31]. In two-dimensions, Eq. (3.3) can also be written

as

Py + (pu)x + (;:;v).y = 0 (3.4)

3.3 Momentum Equation

The principal of conservation of momentum follows from Newton's

second law which is valid for non-relatavistic masses and states that
d
T - = (m 12 (3.5)

where F is the applied force, m is the mass and ¥V is the velocity.

For a moving infinitesimal fluid element this can be written as
D
P o- E?(DVH V) (3.6)

where D/Dt is the substantial (or material) derivative and &V is the
elemental volume

The force in the left side of Eq. (3.6) is usually considered to
consist of body forces which are the result of gravitational or magnetic
fields and surface forces which only act on surfaces and which are
pressure and viscous stresses. Normally in aerodynamic analyses the
body forces are neglected since they are negligible due to the fact that

a moving body of air has a much larger kinetic energy than a potential

energy.
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It can be shown that the surface forces on a fluid element can be
collectively and completely described by a second order stress tensor
°ij (The derivation of this fact is contained in most fluid dynamic
textbooks and will not be repeated herein). The interpretation of the
individual components of this tensor is that 94 is the force in the
ith direction on an element of area whose normal is in the jth

direction. It can also be shown that the stress tensor is symmetric so

that o, = This is due to the fact that an infinitesimal fluid

ij — %ji°
element cannot support moment forces as the volume goes to zero faster
than the rotational forces which would otherwise lead to infinite
rotational moment forces per unit volume, When referred to the
principal axes, it is found that the off-diagonal components of the
stress tensor are zero and that the sum of the diagonal elements,

referred to as the principal stresses, is an invariant sum under changes

of direction of the orthogonal axis of reference.

The stress tensor in reference to the principal axes can be split
and expressed as the sum of two tensors
B y - 1 i
Tii ‘73T
3 Tii ¥ 22 "3 Nii
Tii 933 3 Tii

(3.7)

g 3

where ;11. Tops and gqq are the principal stresses. The first part
of Eq. (3.7) is an isotropic tensor and the second part is referred to
as the deviatoric stress tensor. In a fluid at rest, all of the
components of the deviatoric stress are zero so the isotropic stress is

- simply due to hydrostatic pressure and

o5 T Py
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where p is the uniform hydrostatic pressure. In a moving fluid, the
isotropic stress tensor is still considered to be due to hydrostatic
pressure and the components of the deviatoric sress are nonzero. Thus,

in general, the stress tensor can be written as

C:: = -p61j+TiJ‘ (3.8)

where Tfi is the deviatoric stress. The deviatoric stress is related to
the motion of the fluid and in particular to the 1lo¢cal velocity

gradients aui/axj. If it is assumed that T3 is a linear function of
aui/axj, then

Ti5 T Aijkg 3Uk/PX, (3.9)
where A is a fourth order tensor coefficient. The tensor of the

ijke
local velocity gradient can also be written as the sum of a symmetrical

tensor, called the rate-of-strain tensor and an anti-symmetrical tensor

which represents pure rotation. Thus

au u Ju au Ju
P A v R A Ol
[} 2 k L k
Tl Tk
= e -4 (3.10)
ke = 7 %kem “m :
where W is the angular vorticity. Thus
= A (e, -3 ) (3.11)
Tij ijke ke T 2 Ckem “m)° .

If A is also assumed to be an istropic tensor, then the fluid is

ijke

said to be "Newtonian" and A,

ijke can be expressed as the sum of the

product of delta tensors
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where 1y, Mys and up, are scalar coefficients. It turns out that , is
the molecular viscosity of the fluid which is frequently regarded simply
as a constant but which is a function of the state of the fluid. Since
the stress tensor is symmetric, it must be true that Aijkz is also
symmetric in i and j and that u = ye Aijkz must also be
symmetrical in k and & with the result that the vorticity term in Eq.

(3.11) must be zero and therefore

T.l'j = 2u eij + u2 ekk G.ij (3-13)

where &k - v . Vis the divergence of V.

The coefficient P is frequently called the second coefficient of
viscosity or Lame's constant and given the symbol A. Since in a fluid

at rest, it must be true that T4 is zero so that the mean normal stress

J
is just equal to -p Gij’ Stoke's theorem assumes
o= -4y (3.14)

The stress tensor is finally given by

1
o5y T Pt 2 (eij -39 - v Gij) (3.15)

The rate of change of momentum inside a control volume §V 1is equal
to the sum of the net momentum flux through the boundaries of &V plus
the change of momentum inside &V due to the forces acting on §V. The

net change of momentum inside §V is

d
-a?fvaldV
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The net momentum flux in through the boundaries of &V is
IBVDVV. dA

where p TVVisa dyadic called the momentum flux tensor. The integrated

force due to pressure and the viscous stresses is

The momentum equation is then

%{ fv p Vdv + Iav p VVv. b = fav (-p + Tij) . di (3.16)

Equation (3.16) is the momentum equation in integral form and applies
even when there are discontinuties in the fluid. By making use of the
generalized divergence theorem and assumming that ,, p, and YV are

sufficiently smooth, Eq. (3.16) becomes

Iv{%(Pv)*'V-(DVV‘PP-riJ.)} dv. = 0 (3.17)

Equation (3.17) must apply to all parts of the control volume and can

also be written simply as

-:-t-(pTl)+v.(pVT/+p) = ey, (3.18)

Equation (3.18) is the Navier-Stokes equation in conservation form. If

the viscous stresses are assumed to be zero, then Eg. (3.18) becomes

gﬂpv)w.mmp) =0 (3.19)

which is the Euler equation governing inviscid fluids. Equations (3.18)
and (3.19) can be written in what is called non-conservation form by

subtracting out the mass conservation equation which occurs in them.

The result is
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0 %%“’ V. ayy (3.20)

which is a very compact form of the Navier-Stokes equations but which is

still valid in general.

3.4 Energy Conservation Equation

The full three-dimensional mass and momentum conservation equations

contain the five variablesp, p, u, v, and w. Since there are only
four equations thus far, another equation is needed to close the set and
this is the energy conservation equation. In the chapters which follow,
the energy equation will be used in different forms so a unified
derivation 1is presented here. The energy equation is obtained by

application of the first law of thermodynamics which relates the rate of
change of the energy inside a control volume to the energy flux through
the boundaries of the control volume and to the rate at which work is
done on the fluid.

The total energy of the flow field is the sum of the internal
energy, kinetic energy, and potential energy. The potential energy is
normally neglected in aerodynamic flows since the density of air is very

Tow. Thus the rate of change of the total energy inside the control

volume §V is
dE
t d 2
- " .E[vp(e+q/2) dv
where E, is the total energy, e is the internal energy and q2/2 is the
kinetic energy.

The energy flux in through the boundaries, due to convective flux

of internal and kinetic energy, is given by
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- [,y ol sq?r2) V. dh .

The conductive heat flux is given by
&>
'Iavq'di

The heat flux a is related to the gradient of the temperature by

Fourier's law which is

E = -kvT

where k is the thermal conductivity. In many derivations of the energy
equation, a term is added to account for the heat added per unit mass
such as would occur from an exothermic chemically reacting flow. This

term is usually given by the following volume integral

[ o @4V
v

where G is the rate of heat addition per unit mass. In this

investigation, no such flows are considered and, therefore, this term is
not included.
The work done on the fluid inside &V is due to the stress tensor

and is given by

Sy Gy e dh = [(-p e 0] . dh

Combining the above expressions, the integral form of the energy

conservation equation is

%E'Iv ple + q2/2) dv = fav['P(e + q2/2) V+koT+ (-p+ Tij)v].?é "
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Equation (3.21) is very general and applies even when there are
discontinuties in the flow. Bj making use of the divergence theorem,

Eq. (3.21) can also be written in differential form as

5—-Et +v . [E VokyT+ (p- t, ) 1 =0 (3.22)

If the fluid is considered to be inviscid and non-conductive, then

Ea. (3.22) reduces to

at E, +9 - [(st +p)¥V] = 0 (3.23)

Equation (3.23) can be expanded to

a(e + a°/2) @, 2 o’ 1
P —-—-—a—t-———- + (e +—2—) -a—t+ (e +-2—) V o (p )
2

+pVoV(e+g—)+v.(p‘V) = 0

the second and third terms can be dropped since they include the mass

conservation equation to yield

2
o 218 ;tq 2 ve o) = 0 (3.24)

Equation (3.24) can be split into two equations as follows. First, Eq.

(3.20) can be written for an invicid fluid as

This equation can be dotted with ¥V to form a scaler equation

oV
pVege+Vevp = 0 (3.25)

Equation (3.25) can be subtracted from Eq. (3.24) to yield

De
PO tPY ¥V = o0 (3.26)
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which expresses the rate of change of internal energy of a moving fluid
element. Equation (3.26) can be put in terms of the enthalpy using the

definition of enthalpy
h = e + pv = e + p/p (3.27)

Substituting Eq. (3.27) in Eq. (3.26) and by making use of the mass
conservation equation, it can be shown that the following equation

holds.

o} %—2— + %% = 0 (3‘28)

Furthermore, by adding together Eqs. (3.28) and (3.24), subtracting Eq.
(3.26), and by making use of the defintion of total enthalpy, namely,

hg = h + q2/2, we obtain the following energy equation in terms of the

total enthalpy.

Dh
0 ,23P _
P Tt + >t 0 (3.29)
If the flow is steady, Eq. (3.29) reduces to
Dho
W = 0 (3.30)

Equation (3.30) expresses the fact that the total enthalpy along a fluid

streamline is constant for invicid flows,

3.5 Two-Dimensional Form of Equations

Since the problems studied in this investigation were two-
dimensional in nature, this section contains a summary of the governing
equations in two dimensions and in various forms. The most compact way

of expressing the Navier Stokes equations is in the vector conservation

form given below



0, +F + F& = R+ Sy

where Q is the vector of the conserved variables given as
T
Q = [o,pu,pv, €]

and F and G are the convective flux vectors given as

pU

ouz +p
puv
_(e +p)u- ka |

-
pv 1
puv

6 = on +p

(e +p) v - kT

y

and R and S are the viscous flux terms which are

XX

Xy

XX Xy

Txy

S =
Tyy

Yy Y Yy

The viscous stress terms in Eq. (3.31) are

_ 2 au AV
Txx 3¢ (2'37’57)

38
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. 2—(¢,3V _23u

Tyy © '3-.11 (25?'57) (3.32)
_ . (3U v

Txy =y (;y‘+ 3x)

The total energy per unit mass is the sum of the internal energy and the

kinetic energy as follows:

u * v (3.33)

Equations (3.31), (3.32) and (3.33) together contain five scalar

equations in the nine quantities p, u, v, p, €, i, t, k, and y. In the

model being used, the thermal conductivity k and the molecular viscosity
u are considered constant so two additional equations are needed to

close the system. The first is the perfect gas equation of state

P = pRT (3.34)

where R is the gas constant. If the fluid is assumed to be calorically

perfect, then
i=c. T (3.35)

¢, - Y—RT (3.36)
it holds that
i = p/ly-1)p]. (3.37)

The governing equations can be nondimensionalized by referring them

to suitable reference quantities as follows:

[} - ] - [ ]
x' = x/t y = ,V/!.o t' = tac/mo
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u' = u/ao v' =v/a, o' = p/p0 (3.38)
[] - 2 ] - 2 ]

p' = p/lo, 2,) e' = e/, a,) TR STV

ol - : 2 ' -

i' = 1/ao T' = T/To

The resulting equations after nondimensionalizing are:

Q' , aF'  3G' _ 1
atﬁr+ Yh + 3y" - Re (5;7-+ 5&’9 (3.39)
where
Ql = [pl’plul,plvl’ eu]T

F' = 1,0,

G' = ' |2

Rl ]

L]
~

XX Txy

SI = T.




a1

and - .
v . 2 au'  av
Txx 3 ¥ (257'"37")
' = 2 I (2 v _ au')
Tyy Kie 3y’ 3x.
v cau' L av'
Ty = Gyt e

The reference Reynolds number is given by

aopol

Re = 0
Yo

0
The equation for the total energy, Eq. (3.33), becomes, after nondimen-
sionalizing,

e =i+ 4 2V (3.40)

and the equation of state, Eq. (3.37), becomes
i' = p'/l(y-1) p'] (3.41)

Thus the original equations are replaced by equations which have the
same form but which now include the reference Reynolds number in the

momentum equations and the reference Peclet number (Reo Pro) in the
energy equation.

The Euler equations for inviscid fluids are obtained from Egs.

(3.31) and (3.39) by dropping the viscous flux terms R and S. Thus we

have

Ot + Fx + Gy = 0 (3.42)
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Equation (3.42) is written out as”
oy + (pu), + (pV).y = 0
(pu)y + (pu? + p), + (oUV)y = 0
(pv)y + (puv), + (pv% + P)y = 0 (3.43)

"
o

e, + [(e+pu-kT] +[(e+p)v- kT]y

Equation (3.43) are in conservation form and include an energy equation
in terms of the internal energy. In the three schemes used to solve the
Euler equations, this form of the energy equation was not wused.
Instead, energy equations in terms of either the enthalpy or entropy
were used.

In the following discussion and derivation, the primes are dropped
for convenience and it should be understood that all quantities are non-
dimensional,

The next step is to transform the equations to general curvilinear
coordinates in conservation law form. Equation (3.39) is transformed to

9 +F +G = R +7% (3.44)
T n

where

ot
"
o
~
<

-
n
——
-

v
+
o

o
S
~
[

T = (F nt G ny)/J

ot
n

(Re, + S5 )19

wn
"

(Rny + Sny)/9
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Chapter 4
SCHEME 1 - SHOCK CAPTURING GABUTTI

4,1 Introduction

The first computational scheme used in this study is the Gabutti
scheme which is a refinement of the a-scheme developed earlier by
Moretti [28]. The scheme solves the time dependent compressible Euler
equations 1in non conservation form by an explicit predictor-corrector
method. Gabutti's method improves upon the a-scheme by extending the
stability range substantially and also by enabling it to satisfy the

shift condition for a CFL of one which is

u?+1 = J° .
i i-1
The scheme has good shock capturing properties in that the discontinuity
is usually spread over no more than two or three mesh points. The jumps
in density, pressure, and velocity through the shock are not correct due
to the nonconservative nature of the scheme, however, and shock fitting
must be used to get the correct jump relations. The scheme solves the

mass conservation, and x and y momentum equations in non-conservative

form as

]
o

py * Up, * pr +p (ux + Vy)

(4.1)

]
o

+ + + =
up *uu + vug + 2 py

43
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vV, +uv, + vv -*-l p = 0.,
t X Y oY

If the flow is assumed isentropic along streamlines, and if we use the

change of variables P = a¢n p, then the above equations can be written as

Pt + qu + va +ty (ux + vy) = 0
a2
u, +uu, 4 vuy + —;—Px = 0 (4.2)
a2
+uv, + v +—2P = 0.

Y x "Wy T Ty

The energy equation in its usual differential form is not used, but

rather the assumption is made that the flow is isenthalpic. In this

case, the square of the speed of sound a2 is related to the velocities

by the steady state energy equation

2 2 2
a u® + vo

where h, is the total enthalpy. If the pressure p and the density p are

nondimensionalized by dividing by their stagnation values p, and Pos

then

2
a
h, = ;:% - ;%T . (4.4)

4,2 Transformation of Equations

In order to use the governing equations, it is first desirable to
transform them to (£,n) coordinates. Using Eqs. (2.4) and the chain

rule, the mass conservation equation becomes

+ +VvV]1 = .6)-
Py ¥ UP, + VP 4y U+ V] Pe (4.6)

where U and V are the contravariant velocities
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U = E}u + gyv (4.7a)
V = nxu + nyV (4.7b)
and P = =« [g4U + 95V] . (84.7¢)

The terms g4 and gg are two of 11 transformation terms that appear in

the governing equations after transformation and these are given by

2 2
= +
9% e T Y
2 2
= +
g2 xn yn

9 = 2 (yn xEn . xn yEn)

9 7 % Yeg T e

9 ° % Ymn Y Min

97 = 2 (xE Yen ™ Ve xEn) . (4.8)

The transformation of the two momentum equations is somewhat more

complicated. First, they are written in vector form as

Qt + uQx + vQ.y +S =0 (4.9)



where Q = [u, v]T and— S

The vector Q can also be written as

u xE xn
Q = =
v
yE Yn )
X xw
where T = § n
y Yy
14 n
U

Fol
"
—y
<

Multiplying Eq. (4.10) by 3! gives

~

G, + T (F )+ v

t

Note it is assumed that T s independent of time.

equation is equivalent to

~ -1
Qt + 7

which can be manipulated to get

where
~-1

wn
"

Equation (4.11) written out is

u(t 5)E +V

T[T G+vT 0 +T S
3 n

= & T
- L0
U
= TQ
v
1

(T Q)y] +T°S

-
O
e
—J
+
—
w

(

1

2
(Ja) -
Up + U, + W+ 25— [g, P - g3 P ]

2
(Ja) -
Ve + UV, + W+ 529 P - g5 P
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(4.10)

The previous

(4.11)

(4.12a)

(4.12b)
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where
-3 (g v + % v2 s gg UV) (4.12¢)

(==
"

2
v 2, 9oV + 9, W) . (4.12d)

S

-J (g9 ]

If the transformation from (x,y) to (g,n) is conformal, then the above

two equations can be reduced using the Cauchy-Riemann equations to

U, + UU + VU + 9a° p W2+ V2 J, =W J, = 0 4.13
t ¥ U NS iy il e 2 = (4.13a)
2 .2
Ja U= + v _
VW rw v sy -5 Ly, - o (4.13b)

where

Iy = N

Jp = 9N

The A-scheme introduced by Moretti is next used to put Egs. (4.6)
and (4.12) into a quasi-characteristic form. First, the time derivative

of P is split into two parts Pi and Pg such that

P+ U Poty Y = %-PS (4.14)
PLeve 4y v - 3P (4.15)
Equations (4.12a) and (4.14) can be written as
AR ﬁi = s, (4.16)
where ) u Y
Ao N v

P

1/2

31 = [(Ja)2 (xf + yf)]
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and Sy is the vector of the remaining terms put on the right side of Eq.

(4.16). The eigenvalues of matrix A are

t S ~
A U ¢ ay -

Equation (4.16) can be diagonalized as
~E -1 ~
G+IDIBITE - s (4.17)

where [S] is the matrix of the eigenvectors. If [x] is split into its

positive and negative eigenvalues, Eq. (4.17) becomes

+ -

o107 E 07 E - s (s

Similary, Eqs. (4.12b) and (4.15) can be written as

no_
62 + B bn = s, (4.19)
where
v Y
B =
Eg/y v
1/2
~ 2 ,.2 . 2
3, = [(a)" (x +y)] .

The eigenvalues of Eq. (4.19) are
 _ ~
Q - vtazo

Equation (4.19) can be diagonalized and split into positive and negative

components. The result is

+ -
T+ ETRTP +RLIRTT -5, (420
n n
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Equations (4.18) and (4.20) can “be added together to get the final set

of equations which are given below

1, 4o+ cp= 4 ot = O
Pp vz P +A7P 2P+ P“+-5YI—(AU - ATU]

2 13
+. 4+ - _
+ Eﬁ; (o V- a vn) = P
aJ
1, 4,4 - 2 , 4t -
Ut+7[xue+xUE+Y (APE APE)]
2
_9a)” -
+ VUn - 93 Pn US
aJ
1 44 =y 1, 44 -
Ve +g 2V v a™Vor —=(@'P -a'P )]
2
+uvn-("$) 93 P, = v (4.21)

where Pgs Ug and Vg are unchanged but

o= WZTTZ
£k

Jp = W T2
n n

4,3 Discretization of Equations

Equation (4.22) is now in a form that allows a proper discretiza-
tion of the spatial derivatives according to the signs of the eigen-
values multiplying them by taking into account the domain of dependence.
In two-dimensional unsteady flow, the governing Euler equations are
hyperbolic in time and the solution at any point X at time t +at
depends on the solution at time’t within the area dA as shown in Fig.

4.1. The conoid from the solution surface at time t to point X at



t +at 1is called a Monge cone—and it depicts the way the solution
propagates in time [37]. The numerical algorithm should model the way
information propagates which means it must take into account the proper
domain of dependence. Therefore, the information used to update each
mesh point should be taken from adjacent mesh points in a manner that
reflects the physical propagation of information. In supersonic flow,
for example, pressure waves do not propagate upstream and no information
from downstream points should be used to update the solution at a given

mesh point.

The Courant-Frederick-Lewy, or CFL, stability condition reflects
the requirement that the region of dependence must be at least as large
as the analytical domain of dependence [6]. In addition, Moretti also
refers to the "law of forbidden signals" and states that in addition to
satisfying the CFL stability condition, a numerical scheme should also
satisfy this law [28]. lhat this means in practice is that in
supersonic flow, the information that is used to generate the updated
solution at a particular mesh point should not come from points
downstream of it. This is not always possible but the present scheme

does attempt to follow this principal as closely as possible.

Equations (4.21) are solved using the three-step predictor-
corrector scheme [27]. The scheme will be described using the one-

dimensional linear wave equation as a model problem

u +au, = 0o . (4.22)

t

In step 1 of the scheme, the spatial derivative u, is evaluated by
either a two point backward or forward difference, depending on the sign

of the characteristics as

50



Bicharacteristics

dA

~ Fig. 4.1 Characteristic Monge Cone.
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Ui = Y5 .
UX=VUi-'—=—'A—x—— ifag¢ 0

u - U,
_ . i+l j :

A predicted value ﬁi is then calculated using the uy that results from

Eq. (4.22). For example, if the wave speed a is positive then

~  _ N
Uy = uy +u at (4.24)

where ut = -2 ux

In step two of the scheme, the values of u; at time level n are

used again to compute uy. Depending on the wave speed a, u, is computed

as

u, = A s, a> 0. (4.25)
2u” - 3" o+ Y
_ i i+l i+2
u, = - = , a <0, (4.26)
Then, compute u, as
Ut = -a ux

In step three of the scheme, the predicted values ii are used to
compute a predicted ﬁt with two step backward or forward differences,
depending as in Eq. (4.23) again on the sign of the characteristic speed

a. The final update is then made using both the u; computed in step two

and ﬁt as follows

+ ~
u? L u? + -%-(ut + ut) At . (4.27)
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In this example, the sign of the-wave speed a determines the direction
in which the spatial derivatives are taken. In Egqs. (4.21), the
characteristics A+ and A, and n+ and o~ perform this function, The

scheme satisfies the so-called "shift" condition for v = 1 which is

ntl _ n

Thus, for v =1, the scheme properly convects waves along the

characteristic dx/dt = a.

4,4 Stability Analyses

The stability of the scheme was analyzed using the classical von
Neumann method [38]. In this method, the error is expressed as a
Fourier series and the growth of the error in time is examined. The
total error in a numerical calculation consists of both discretization
error and round-off error. The discretization error arises from the
fact that what one is actually solving in a numerical calculation is not
a differential equation but a difference equation. If U(x,t) is taken
to be the exact solution to the governing PDE and if wu(iax, nat) is
the solution to the approximating difference equation carried out to
infinite precision, then (U - u) is the discretization error. If this
difference goes to zero as aAx gaoes to zero, then the difference

equation is said to be consistent with the PDE.

Roundoff error arises from the fact that the calculations cannot,
in practice, be carried out with infinite precision and the calculations
must be rounded-off to some finite number of decimal places. If N is
called the actual finite precisfon numerical solution, then (u - N) is

the roundoff error and U - N is the sum of the discretization error and
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the round-off error. The numerfcal calculations will be stable if the
inevitable errors which are introduced are damped out (i.e. decay with
time).

Although the von Neumann stability analyses is not the most
rigorous method, since it ignores the boundary conditions, it is used
frequently because one is usually interested in the stability of the
basic scheme as boundary conditions may change. To examine the effect
of the boundary conditions, the matrix method may be used [39]. In this

method, it is necessary to define an amplification matrix A as

where !n+1 and !n are the vectors of the solution. Then the
eigenvalues of A are examined, and for stability, it is necessary that

the modulus of all the eigenvalues be less than one.

Stability analyses of the scheme were done in both one- and two-
dimensions. For the one-dimensional analyses, the model Eq. (4.22) was

used. For the two-dimensional stability analyses, the following model

equation was used.

uy tau + b u.y = 0 (4.28)

t

It turns out that the maximum CFL number for which the scheme is stable
is two for the one-dimensional equation and one for the two-dimensional
model equation. The steps in the analyses will only be shown for the

two-dimensional analyses.
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The first step in the analyses is to combine the three steps of the

n+l

Gabutti scheme into a single step so that U j is expressed in terms
]

of the Ui j at time step n. VWhen this is done, the result is

ntl _ n 1 n n n
Uig T Ui,z le(3uy A gt i g)
n n n
LSRRI R )
+ 2(un -2} +uf )
e isj i'loj i-zﬁj

n

2, n
S R BRI N )

2a s(ui’j S Uipg T Y51t “i-l,j-l)] (4.29)
where
a = aax/at
B8 = bay/at

If e? is assumed to be an initial error distribution and N? is the
solution to the difference equation which satisfies Eq. (4.29) exactly,
then the error at time level n+l must also satisfy Eq. (2.29). Thus,

the error will not grow provided the solution to the difference equation

is stable and bounded.

Next, assume that

u? = " exp (1 (ki ax + kyj ay)] (4.30)
1 = =1

is a periodic representation of the solution with M as the amplitude,

as the wavenumbers, and 0, = kx Ay and ey = ky Ay as the

Substituting Eq. (4.30) into Eq. (4.29), is found that

k, and k

X y

phase angles.
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ro= [1-5[a(3 - 3exp(-Is,) + exp(-21s )
+8(3 -3 exp(-Iey) + exp(-ZIey))
+al(1 - 2 exp(-Is,) + exp(2ls_))
+ 82(1 -2 exp(-Iey) + exp(ZIey))
+ag(2 -2 exp(-Iex) -2 exp(-Iey)
+ exp(-I(e, + ey)))]l . (4.31)

Define the amplification factor as

u?+1 = 6] (4.32)

from which it 1is apparent that G is the same as r. The maximum
amplification factor G for values of « and g8 ranging from .5 to 1.5
was found by solving Eq. (4.31) on a computer for values of o« and B

ranging from 0 to 360 degrees. The results are shown in Table 4.l.

From this, it is seen that the scheme has a maximum CFL number for

stability of one in two-dimensions.



Table 4.1 Results from Stability Analyses

a B G
5 5 1.0
5 1.0 1.0
5 1.5 1.0
1.0 1.0 1.0
1.0 1.5 3.5
1.5 1.5 7.0
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Chapter 5
SCHEME 2 - SHOCK FITTING GABUTTI

5.1 Introduction

Shock fitting, in contrast to shock capturing, does not attempt to
apply finite differencing across shock waves and instead imposes the
correct Rankine-Hugoniot jump relations at the discontinuities, the
location of which is assumed known. Shock fitting methods seem to have
evolved alongside and in conjunction with shock capturing methods.
Shock fitting is still frequently used in supersonic problems where a
bow shock wave develops ahead of the body. The flow ahead of the shock
is usually taken to be freestream uniform flow and so there is no need
to apply the time-dependent method to this region. The jump relations
are applied at the shock, which is fitted as a computational boundary.
If all of the shocks in the flow field are fitted, then it can be argued
that the governing equations can be solved numerically in either

conservation or nonconservation form in the smooth regions of the flow
field.

Thus, the use of shock fitting can lead to a reduction in computer
time from (1) the elimination of the need to apply finite differencing
to the freestream uniform flow ahead of the bow shock in supersonic
problems and (2) the use of the primitive variable form of the governing
equations which may be somewhat less expensive to solve numerically.

However, the subsequent development of implicit methods has, to some
58
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degree, removed the advantage of-solving the non-conservative equations
because ultimately one is after the solution to the problem in the least
amount of computer time and convergence rates are perhaps more relevant

to this quest than the cost to do a single iteration.

In this study, the shock which develops, is embedded in the flow
field and shock fitting is used on a grid which has the shock aligned
with one of the lines of constant X (in the computational domain). The
shock is allowed to move and adjust its position and characteristics to
the evolving flow field. Recently, Moretti has shown that it is
possible to do shock fitting on a grid which is stationary such that the
shock is not aligned with any of the mesh lines [40]. This method has
also been referred to as "front tracking" and is used to describe
methods for handling discontinuities such as weather fronts and oil flow

in porous media [41].

The shock fitting scheme developed for use in this investigation
treats the embedded shock which develops as a discontinuity aligned with
a line of constant X and the Rankine-Hugoniot relations are used to

relate the upstream and downstream flows through the shock.

This scheme is identical to the scheme described in Chap. 4 with
five exceptions. First, the initial conditions are the converged
results of a previous run of scheme 1. Second, the grid is aligned with
the embedded shock that forms in the initial run. Third, the governing
equations along with the Rankine-Hugoniot relations are used to
calculate the shock velocity and acceleration at each point on the shock
front and the grid 1is dynamically adapted as the shock changes its

position. Fourth, the Rankin-Hugoniot relations are used to calculate
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the jumps in pressure, density, velocity and entropy through the shock,

and fifth, the equation describing the convection of entropy is included

with the set of equations to be solved

DS

When Eq. (5.1) is transformed to (¢ ,n) coordinates, it becomes
+ = .
St USE + VSn 0 (5.2)

where U and V are the contravarient velocity components. The entropy is

related to the nondimensional pressure and density by Eq. (5.3)
S = anp-ysenp . (5.3)

The unknowns in the final set of equations are the log of the pressure
P, the velocity components U and V, and the entropy S. Since there are

four equations, the system is closed.

5.2 Transformation to Shock Fitted Coordinates

The solution to be used as the initial condition to the shock
fitting calculations is associated with some curvilinear coordinates ¢
and n which, in general, are not aligned with the shock. The solution
must, therefore, be interpolated onto a new coordinate system which is
aligned with the shock. These coordinates will be called X an Y herein

and the transformation from the previous to the new coordinate system is

given as

(t,E.n) + (To Xy Y) .
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The transformation relations to-be used will have X = X (t, £, n) and

Y=Y (t,n) and, therefore, by the chain rule.

9 3 9 e

3t ST tax e tav Vi

2 . 3

5T ¥ XE (5.4)
3 _ 3 3

The system of governing equations which results is

Po+ U + VP +y [UXXE + VXXn + YYYn] = PS

2
- - (Ja) -
UT + UUX + VUY + ——;——-[92 PXXE - g3 (PXXn + PYYn)] = US (5.5)
2
Vo o+ UV, + VW + (Ja) [g, (PX +PY)=-qg PX] =V
T X Y 1 V%% T Yy 3 X s

S_.+US +Vs = 0
X y

where

[ e
n

X + UX + VX
t E n

<
]

Yt + VYn

and PS; Us and Vg are as previously defined in Eqs. (4.7c) and (4.12c
and d).

The desired coordinate transformation in the ¢ direction is
X = X (gg)

where Eg is the location of the shock which is function of n and t.

A second degree polynomial given as



g = gt (By -y (3 X + 2 x?)

62

(5.6)

was used where Eo and ¢, represent the minimum and maximum values of

£ and a; and a, are coefficients determined such that

It is easily found that

where

ts

&1

Using the above expressions,

determined as

><
[

><
1}

"
><

when X

n
>

when X

's "%
81 %o

the transformation

V(g -g,) (2 + 2 3, X)]

2
- (b2 X + b, X ) xE fn

(5.7)

are

(5.8)
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- 2

A transformation from n to Y was done for problems 1, 2, and 3.
Since ¢ and n are conformal coordinates and are independent of the
stretchings used to produce the original grid, then it is necessary to
use some sort of transformation from n to Y if it is desired to have

AY = 1. A second order stretching was used as follows
= n 4 (g -n) (a, ¥ +ag Y2) (5.9)
n Mo ™ 'N1 " No’ 1% 5 .

where "o and n, are the minimum and maximum values of n and as and
ag are coefficients chosen to achieve the desired stretching. In
problem 1, Ngs 24 and ag were made to be functions of time so that the

position of the lower boundary as well as the degree of clustering near

the lower boundary could be changed dynamically.

5.3 Calculation of Shock Acceleration1

To calculate the shock acceleration, the governing equations are
used along with the Rankine-Hugoniot relations in a fairly straight

forward manner. First, the governing equations are written in vector

form as

Ot + A Ox = R (5.10)

0o = [p, U, V1T

-

1The writer is indebted to Mr. M. D. Salas for showing how to calculate
the shock acceleration.



where

The matrix A has

U X
2 ” e
(Ja) -
. (92 Xe 9, X ) u
2
(Ja)
X X 0
. (91 . 9, E)

2
(Ja)
Ug - V Uy + =93 Py
2
(Ja)
Ve -V vy - ~— 9 Py -

U-73
U+a
0

2
Ja [g1 Xn -2 93 XE Xn + 4, X§]1/2

Ja [S()]l/2

and can be diagonalized as

where

A SAS

93% %%  92% -9k
-9 K 9 % - 9% XE

[omd )
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and SQ is the quantity in square oots. Equation (5.10) can be put into

characteristic form as

-1 -1 P |
S 0t +AS QX = SR . (5.11)

The equation corresponding to Ay is then

Pe * Py *8p (Up+a- Uy) +a5 (Vp 42 Vy)

where
82 'Yx3/5
83 = -Y Xn/E

and P;, Uy and V; are forward differences.
Figure 5.1 shows the shock in the (¢, n) coordinate system with
unit normal and tangent vectors. The covariant base vectors are

E = X i+ J
13 € yE
(5.13)

P>
e = X
n

-
+
-
[ SN )
L]

The contravariant base vectors are

-EE T 3

]
o
——
+
oy
[ &)

(5.14)

+n < =
= i+ .
nx “y J

The unit normal at the shock is given by

-



Fig.

5.

1

Vector Relations at the Shock.
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i.

= (5.15)

where f E - gs(n, t) = 0 (5.16)

and the length of grad f is

’Vf| [fg .42 fE fn 11 YR f: ., 3"]1/2

= h .

n

The unit tangent vector is defined by

and therefore it is found that

T = n _§ n
(F°8 « & -2fF f & % +725 .82
n g n n n
&>
s %E ¥ en
=—‘£—'ﬁ"— (5.16)
t

where £ is the shock slope and hy is the square root term above.
n
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The velocity relations at— the shock are obtained using these

equations. The flowfield velocity is

Vo= ud+v J

>
+ . .
U & v En (5.17)

Letting the contravariant velocity of the shock be Ug, the velocity

relative to the shock is

VS = (- EE + 7 En . (5.18)

Note that U and V are different on each side of the shock. The velocity

component normal to the shock is

(v - u) -g, v

N - n
vS‘N h .
n

=V (5.19)

The component tangent to the shock is

g, (U-U) +V

(5.20)

Since the tangential components of velocity must be equal on both sides

of the shock, we have

U1 £g ¥ V1 = U2 Eg ¥ V2 (5.21)
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where the subscripts 1 and 2 denote the upstream and downstream sides of

the shock respectively. Equations (5.19) and (5.20) can be solved for U

and V to get

U = U+ } (5.22)
S

t
vV o= i . (5.23)
2
1+ £
n
The jump in pressure through the shock is given by
P2 2 2
b 1*7_+LI("1' 1) = p, (5.24)
where M; is the Mach number relative to the shock and is given by
Vv « N (U -U) -eg vy
Sl n
M, = = . (5.25)
1 a1 a1 hn
Equation (5.24) can be expressed in terms of the log of p as
P, = Py +2n (pr) .
The derivative of P, with respect to time is then
1
P = P, + -—-(——EXIJ M, M. . (5.26)
2, Ly Py # 171,
The term Hl is equal to
t
M = ¢t US (5.27)
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where US is the shock acceleration and 9] and Cp are coefficients

t
found to be

Uy, -8g Vi -8 Y a  h,

c = t n n t - M —£+F_t
1 a1 hn 1 a1 n
c, = - ——lﬁ— .
2 4 M

Substituting Eq. (5.27) into Eq. (5.26) and rearranging gives

P = b, +b, U (5.28)
2t 1 2 St

where
- 1
17 Pyt (;'4;19 MG
I | ﬂI
b2 = E(Y*’l) Ml C2 .

The jump in the normal component of velocity relative to the shock is

given by
Vsl . N U, - U -g V,
n
—_— =y = . (5.29)
¥ o.oN rooh-l-e Yy
52 n

Using Eqs. (5.21) and (5.29), the contravariant component U, is found to

be
2
Us *+ Vg Esn + Y 5sn tu, (Ul - - Esn) :
U = 5.30)
2 1+ E2
s
n
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where the jump in velocity through the shock u. is given by

vy - 1) M% + 2
u. = 5 . (5.31)
vy +1) Ml

The time derivative of Eq. (5.30) is then found to be

U2t = b3 + b4 USt (5.32)
where
by = [Vlt 8 t V1&g tUp gg *2Ueg g
n Ny t n noong
t e (Ul - Us - v1 s )+ ur(Ul -V, -V g )
n t t ny
-2U, e, g, ]/(1 ¢ 52 )
2 >s S S
n nt n
2
by = [1+cg(Uy - Ug-Vygg) -ul/+g0)
n n
c, = =-4c./(y+1) M3)
3 1 1

Cy = c3 c2/c1 .
In a similar manner, taking the time derivative of Eq. (5.21) leads to

the following expression for V2 .

t
v = b +b, U (5.33)
2t 5 6 St
where
by = V) + (U - Up)gg  + (U -b3) g ’
t ne t
b6 = - b4 Eg -
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Finally, substituting all of these expressions into Ea. (5.12) and

solving for U gives
5t

Ry =bp =Pl - gy(by + A7) - B3(bg +ATV))
2 T By Dby *B30Dg

Thus an expression has been obtained for the shock acceleration. The
shock position is then updated using the shock acceleration to update

the shock velocity as described next.

5.4 Updating the Shock Position

The method used to update the shock position was arrived at after
extensive experimentation. It was discovered early that the calculation
of shock acceleration and the jumps in fluid density, velocity,
pressure, and energy through the shock are all very sensitive to the
shock velocity and the slope of the shock with respect to the oncoming
flow. If each point along the shock is computed independently of the
others, wiggles and oscillations tended to develop in the shape of the
shock which quickly destroyed the calculations. In order to prevent

this from occurring, polynomial least squares smoothing was introduced.

A related problem which had to be addressed was how to update the
grid above the shock. Since no acceleration is computed for the points
above the shock along the line of constant g which aligns with the
shock, some artificial means had to be introduced to move these points

so the grid would not have a discontinuity in it.

The first step in updating the shock position is to smooth the

computed shock accelerations computed from J = 1 to J = JS, the last
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shock point. This was done by a-weighted least squares approximation to
the function values at the JS points using orthogonal polynomials [42].
Then, using the smoothed values of the shock acceleration, the updated
shock velocities and positions were computed in a three-step predictor-

corrector manner analogous to the Gabutti scheme.

In the first step, the following loop is executed

Do from J =1 to J = JS

XSTN(J) XST(J) + XSTT(J) * at

(5.35)
XS(J) + XSTN(J) * at

XSN(J)

where XS, XST, and XSTT are the shock position, velocity, and the
acceleration at the beginning of the time step and XSN and XSTN are the
predicted values of the shock position and acceleration. The predicted
values of XSMN are then smoothed using orthogonal polynomials up to

degree three as shown in Fig. 5.2a.

The points above the shock along the connecting line from J = JS +
1 to J = JMAX must now be computed and this was done as follows. First,

XSN at the top boundary (J = JM) was determine as
XSN(JM) = .9 * XSO(JM) + .1 * XSN(JS) . (5.36)

This insures that eventually XS(JM) will equal XS(JS) and that the top
end of the connecting line will not move too rapidly. Next, the points

in between XSN(JS) and XSN(JM) are calculated as
. _ 2 3y .
XSN(J) = (1 - 3H® -HY) XSN(JS)

+ (3H = 203) + XSN(JIM) (5.37)
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where
Ho= ng =ngg)/lngy - nyg) -

This insures that the slope of the connecting curve Eg is zero at J =

JS and J = JM as shown in Fig. 5.2b. Finally, the poings XSN from J = 1

to J = JS are smoothed to blend the connecting curve with the shock as

shown in Fig. 5.2c. The smoothing this time is done by orthogonal

polynomials up to degree four.

In the second step of the Gabutti scheme, the shock accelerations
are again calculated at each point then smoothed by second degree
orthogonal polynomials and stored as XSTTS. The predicted values of the
shock position and the points along the connecting curve are now

substituted for the original values of XS.

In the third step, the same procedure is followed as in the first
step except the calculated values of the shock acceleration are first

smoothed and then combined with the predicted values from step two as

follows

XSTT(J) = %(xsn(a) + XSTTS(J)) .

This follows the same predictor-corrector sequence as the Gabutti scheme
used in the updating routine and is thus consistent with the rest of the
scheme. At the end of the third step, the newly corrected values of the
shock (and connecting 1ine) position and velocity, XS and XST, are

substituted for the old values.



JMAX

z/) J = JS

Predicted Values XSN
Smoothed Values XSN

J =

(a) Calculation of XSN to J = J§

JMAX
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(b) Calculation of XSN from J = JS+1 to JIMAX
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(c) Blending of XSN from JWALL to JMAX

Fig. 5.2 Construction of Line I = IS,
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Chapter 6
SCHEME 3 - FLUX VECTOR SPLITTING EULER

6.1 Introduction

The schemes described in Chaps. 4 and 5, when used together, will
produce an accurate resolution of the flow field and will give the
correct jump relations through shock waves. However, the schemes have
several disadvantages which limit their utility. First, shock fitting
is not a technique which is easily implemented and the need for adaptive
gridding adds to the computer run times and complicates the coding.
Second, since the governing equations are not solved in conservation
form, there is no guarantee that mass or momentum is conserved through-
out the flowfield. Third, since the equations are solved explicitly,
there is a restriction to low maximum allowable CFL numbers and as a
result covergence to a steady state is slow. It was this restriction
which applies to all explicit schemes which led to the development of
implicit schemes in the late 1970's. The CFL restriction on the Lambda
algorithm was removed several years ago with the introduction of
implicit Lambda schemes by Dadone and Mapolitano [43] and Dadone and

Magi have developed a "quasi-conservative" Lambda formulation [44].

The scheme described in this chapter is an approximate factori-
zation scheme which was developed by von Lavante. The scheme is

implicit and solves the governing equations in conservation form. The
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scheme is described in Ref. [4§j as the "true Jacobian scheme" which
refers to the implicit operator which is used.
6.2 Algorithm Development

The two-dimensional, unsteady, compressible Euler equations in

conservation form are

0, + Fx +G6G =0 (6.1)

where
[, pu, pv1

o
1

F = [oU.pu2+p.puVJT

lov, puv, pv2 + p]T

oD
[}

As was the case in Scheme 1, the pressure is related to the density and

the velocities by the steady state energy equation

L (6.2)

2 _ xp
a ” (6.3)

x' = x/L, y' = u/L, u' = u/ao, v = v/ao

v 2 "
p/po, p’ = p/yao, ht = ht/ao

©
!
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Equations (6.2) and (6.3) then béEome

22 w2y 02
v I |
St gl (6.4)

The algorithm to solve Eq. (6.1) first does a time discretization

of the vector Q by a truncated Taylor series as follows

aQn+1

2
=g ot + 0 (at%) (6.5)

Qn+1 = Q"+

Let aQ = Qn+l - Q" and express the time derivative of Q"+1 by another

Taylor approximation and Eq. (5.5) becomes

) aQ" 3 aQ"
s0 = ot (G ot Ip ) + 0 ah)
Using Eq. (6.1), this becomes
_ n n ) n
aQ = -t [(F, + Gy) at 2 (F, + Gy)] (6.6)

The conservation form of the Euler equations has the property that the
flux vectors F and G are homogeneous functions of degree one of the

vector Q. This means that
F = A0 and G = BQ (6.7)

where A and B are the Jacobian matrices 3F/aQ and 3G/aQ respectively.

These matrices are given below

0 1 0
- 2 2 y+1 1y
A = 2—-(3v - (y+1)u®) - —?-u - v (6.8a)
-uv v u
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(8u? - (y+1)vd)

0 0 1
B = %;- -uv v u (6.8b)
1y, xtl,
Y Y

-’

Equation (6.6), after some manipulation, can be expressed in operator

form as
3A 3B _ 3aF . a6
[I+at 35+ é—y)] 8Q = -t (3% + a_i) (6.9)
This equation can be approximately factored as
dA 3B _ oF . 3G
[T +at 53] [T +at SSﬂ 80 = -t (3¢ 533
= R" (6.10)

Equation (6.10) is solved in three steps as follows. First, the right
hand side of (6.10) 1is found using the flux-vector splitting as

described in the next section. Then, AQ is found in two steps as

follows

|
=

A ~
[1+at 2] 3
(6.11)

"
Vo

[1 +At;3-§] AQ
Finally, Q is updated.
" =" +aq

Generally, block tridiagonal matrix inversions must be used to solve Eq.

(6.11). Equation (6.10) can also be transformed from cartesian to

-

general coordinates
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Y. B, ~ . o~
I +at —] [] + At — = -At(F + G .
(I +a aE] [ an] a0 at( . n) (6.12)
where
D o= qn
F o= £, F+ gy G
T =n F+n G

1
J XE yn - xn yE
Since the Euler equations are hyperbolic, the Jacobian matrices A
and B can be diagonalized by the following similarity transformations

A = Mp M
(6.13)

B

"
=
=

=

where M and and N are the right eigenvector matrices and Ap and Ag are
the diagonal matrices of the eigenvalues. It can be shown by examining

the equations in primitive variable form that the eigenvalues of A are

u(y+1)/2y + SQ (6.18)
u(y+1)/2y - SQ

where
sQ = [(uly-1)/2y)2 + a%/y1Y/2

In Refs. 46 and 47, von Lavante describes how the Jacobian matrices

can be diagonalized to permit even greater computational simplification.
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6.3 Flux-Vector Splitting

The flux vectors F and G are each split into forward (+) and
backward (-) fluxes by a method introduced by van Leer [48]. To use the

flux vector F as an example (the requirements for G are the same), the

flux F is split as
F(0) = F'(0) + F(0) (6.15)

The second requirement is that

aF+/aQ have all eigenvalues > 0

b -]
n

A” aF /3Q have all eigenvalues < 0

The flux-split components F* and F~ must be continuous and satisfy

+

F F  for Mach No. M> 1

F" = F for M< -1,

The components are further required to correctly model the symmetry of F

with respect to the Mach No. M such that
FrM) = & F(-M) if F(M) = & F(-M)

The split Jacobian matrices A* and A~ must be continuous at sonic and
stagnation points. This requirement is important as other types of
splittings do not accomplish this and these splittings produce
oscillations when the eigenvaluve change signs. Next, it is required
that for subsonic flow, A* and A" rust each have one eigenvalue
vanish. This requirement makes it possible to capture shocks with no
more than two interior cells. Van Leer satisfies these requirements by

appropriate choices of polynomials to represent F(M) and G(M).
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6.4 Spatial Discretization

The right hand side of Eq. (6.12) can be integrated over a finite
volume which consists of the interior of the quadrilateral cell with the
grid points at (i, j), (i-1, j), (i, j-1), and (i-1, j=1). Thus, using
Green's Theorem, we have

2Q, = at[, (F, +G) dA

= ¢tfc?¢1-ﬁd5 (6.16)

The line integral above can be approximated as

8¢ = Atk so1/2 7 Ficgo12

812, ~ Y1, 5-1) (6.17)

where, for example, ?i j-1/2 is the flux of F through the cell face

with midpoint (i,j-1/2).  Since the flux F is split into F* and F-,
each component must be evaluated at the appropriate cell face. The
method used to evaluate the fluxes is the MUSCL type differencing of van

Leer [49]. In this approach, the fluxes are extrapolated to the cell

faces according to the signs of the eigenvalues. Thus

+ B + +
Fisry2 = (3 Fy-Fi )72

(6.18)
Fisryz = B Fyyq - Fiypl/2
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The values of 0, F and G in cell_(i,j) are considered as representative
cell averages.

In the implicit operator (i.e the left hand side) of Eq. (6.12),
the Jacobian matrices A and B are also split such that

~t ~t
A aF /aQ

aF /3Q

>
]

Equation (6.12) thus becomes
[1+ At(agl+ +3 A (1 At(an“é+ +3 87)] a0 = RHS (6.19)

The derivatives in Eq. (6.19) are taken as one-sided forward or backward

differences depending upon the sign. Thus for example
I +at(a B +2 B7)] a0 = aQ, +at(A, 720, - A% 20, .)
[L+oatle a0 M a0 = a0y *at(Aiay - Ay, a0, )

+at(A, . a0

j+1 80541 - A; 20,) (6.20)

The form of Eq. (6.20) results in block tridiagonal matrix inversions to
solve. As the steady state is approached, both sides approach zero, the
first order accuracy on the left hand side of (6.18) does not affect the

accuracy of the right hand side which is second order.



Chapter 7
SCHEME 4 - UPWIND MAVIER-STOKES

7.1 Introduction

The full compressible Navier-Stokes equations were solved using an
upwind approximate factorization scheme for test problems 1 and 2. The
code developed by Rumsey of NASA Langley, is fully vectorized to run on
the CDC VPS 32 supercomputer, and is accurate for unsteady flows [50].
Both the laminar and Reynolds averaged turbulent Navier-Stokes equations

were solved. A Baldwin-Lomax turbulence model was used and the Reynolds

number was varied from 10,000 to 100,000.

7.2 Governing Equations

The full set of conservation equations in two-dimensions includes

conservation of mass, conservation of momentum and conservation of

energy. The momentum equations are the compressible Mavier-Stokes

equations as derived in Chap. 3. In vector form, the equations are

~ 1 ~ ~
+F +T% = — (R +73 7.1
bt et o Re(E n) (7.1)

where O, F, &, R and § are

0 Q/J

(:

(gx F + Ey G)/J

84



o
"

el
"

o
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and 0, F and G are given by

o
[}

R and S are given below as
R

S =

(n;F + ny, G)/J
(Ex R+ &y S)/J

(nx R + n, $)/J

lo, pu, pv, e]T

pv 1

puv

on +p

+ - kT

L(e p) v y
T

[0, tyxo Txy® Ry
T

[Os Txy’ Tyys 54]

where the components of R and S are

Tyx A+ ) (e
Ty = ra) e
Ty - MlEy Y
Ry = Uty ¥V
S, = u=t +tvVr1

4 Xy

x Yt U) Haley vty v )
y ety vn) *aley Ue ¥y Un)
yh tEx Ve T )

wy * wle, Té tn, Tn)/[Pr(Y'l)]
gy tu(Ey Tty TH/IPrh-1)]
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The Stokes hypothesis that —x = - %'u is assumed and the Prandt]

numbers is taken as a constant.

7.3 Numerical Algorithm

Equation (7.1) is solved using upwind approximate factorization as

described in references 29 and 50. The algorithm is given as

st Aoy -1
[1+ At(a5 1+ N 1) - R at ae(ﬁ/d)]

(7.2)
-t PO - -
x[1+atla” B +2 %) - R Tate ()] o8
n n e n
= - at R"
R" = 3T et e et Y
13 13 n n
-1
-R " (@ R+3 3§ 7.3
. 0, R+a ) (7.3)
and where as before
at = aF?
2Q
gt = 3Gt
3q

A and R are the Jacobian matrices given as Eqs. (6.8a) and (6.8b) and

A

Ex A+ gy B

B

nxA+nyB

The (+) ard (-) superscripts on the F and 6 terms indicates the flux
splitting which is done according to van Leer [48]. The (+) and (-)
supescripts on the partial derivatives terms denotes the direction of

differentiation. Thus, for example, a; fs a backward difference,
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while a; is a forward differerce. All viscous terms are centrally
differenced. The M and N matrices are linearized viscous terms and
are given by Steger in reference [51). The scheme is first order

accurate in time and second order accurate in space.

7.4 Turbulence Model

The turbulence model that is used in this scheme is a two layer
algebraic eddy viscosity model developed by Baldwin and Lomax [52]. The
model computes an eddy viscosity vy which is then added to the
molecular viscosity u to get the total viscosity. The model follows
from a previous model developed by Cebeci [53] but avoids the necessity
for finding the edge of the boundary layer. It has been shown to give

good results in separated flows and in wake regions.

In the inner layer g is computed as

e = 022 ol (7.4)

The length 2 is obtained using the van Driest formulation as follows
£ o= x, [1 - exp(- y /A%y (7.5)

« is the von Karman constant equal to .4, y' is the non-dimensional
wall unit

y'oe oyl ) (7.6)

and A* is equal to 26.

In the outer region, the turbulent viscosity is given by

=K. C _F . F (7.7)

Mt cp ° "wake ° "Kleb ()



where

and Yna

and

X

F

and Fma

X

K = Clauser constant = 0.0168

Ccp

wake ~ Min |:Ymax Fmax’ ka Ymax Umax

FK1eb

are the location and maximum functional value given

Fly) =y ) 1

wk

Kleb

(y) = [1 +5.5 (Ckleb/vmax

= 1.6

2 r

max

1671

- exp(-y*/A")]

= 0.25

= 0.3 .

]
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Chapter 8
INITIAL AND BOUNDARY CONDITIONS

8.1 Introduction

As stated earlier, the equations of fluid dynamics pose an initial-
boundary value problem which are then solved numerically. Initial
conditions (i.e. the initial state of the fluid) must be supplied for
the solution to proceed. It is usually assumed that the final steady
state solution is independent of the initial conditions, although this

is not necessarily the case and the author is wunaware of any

mathematical theorems that state this is true.

On the other hand, the boundary conditions are crucial to achieving
a correct solution of the problem and must be consistent with the
physics of the problem. The boundaries of the computational domain
include both physical and artificial boundaries. Physical boundaries
are normally walls and it is generally, although not always, possible to
specify conditions at these boundaries in a straightforward manner.
Artificial boundaries exist due to the necessity of having a finite
computational domain and the specification of conditions at these

boundaries is more difficult and open to question.

The boundary conditions are also important insofar as the stability
and convergence. properties of the numerical scheme. Improper specifica-
tion of the boundary conditions can lead to instability or slow conver-

gence of the computations.
89
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8.2 Initial Conditions
The initial conditions used in each of the four problems varied
depending on the scheme used and are described in the following

sections,

8.2.1 Problem One

The initial condition used in scheme one was obtained from the
complex velocity potential., It is shown in texts of ideal fluid flow
that the potential and stream function together form an analytic

function which is called the complex potential as follows

Flz) =0 + 1y

Az(z) (8.1)

where A is a constant. The derivative of the complex potential is then

F'(z) = dF/dz

u - iv (8.2)

The right-hand side of Eq. (8.2) is called the complex velocity and is
the complex conjugate of the velocity vector u + iv. For problem one,

the complex velocity is given by

Ax (g -1)/(c+1)] -5

F'(g)

V=u-+iv (8.3)

In order to have u go to u as ¢ goes to infinity, it is necessary to

-

have
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A—= u“/w
Equation (8.3) then becomes

u+iv=u [(g-1)/(+1)] 5 (8.4)

The value of u_  1in this case is specified according to the pressure at
the exit of the channel since there is no "infinity." Isentropic flow
is assumed and the speed of sound and the Mach No. at the exit are
obtained from the exit pressure. The velocity at the exit is then taken
to be u_. The pressure is obtained by assuming the flow to be
isenthalpic and using the initial u and v components in Eq. (4.3) to get

the speed of sound which is then related to the pressure by the

isentropic relation

p = La?r1/ 1)

The initial condition used in scheme two is a converged solution
from a previous run of scheme one. First, the solution is scanned along
lines of constant n to determine the shock location. The shock is
initially placed at the midpoint between the upstream supersonic and
downstream subsonic points. In order to avoid kinks in the initial
shape of the shock, which result when the e coordinate value of the
midpoint shifts, the shock shape is then smoothed by a simple iterative
routine which keeps the shock between the supersonic and subsonic

points.

Once the initial shock shape has been determined, a new shock
fitted grid is introduced and the old solution is interpolated onto the
new grid. The distribution of points along the lines of constant n is

done by the following second degree polynomial:
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e =e ¢t (el"’eo) (al X + aZXZ)

0

where a, and a, are calculated to satisfy

>
1]

IM-1 at € =g

IS at € T ¢

>
n

IS is the integer value of the shock point and €g is the ¢ location

of the shock.

The interpolation from the old grid onto the new one is done by a
first order linear interpolation. The values of the flowfield u, v, and
P at the upstream shock point are determined by a linear extrapolation
from the two previous upstream points on the old grid. The Rankine-
Hugoniot jump relations are used to obtain u, v, P and the entropy S on
the downstream shock points. Since scheme two uses the entropy as the
energy variable and since this is not one of the variables used in
scheme one, the entropy at each point is obtained from the pressure and
the speed of sound using Eqs. (4.4) and (5.3). The normalization for
the entropy sets the entropy of the incoming flow equal to zero and so a
calculated value of the entropy greater than zero at a point indicates
that the fluid has passed through a shock or some other dissipative
mechanism. A calculated entropy of less than zero is erroneous and is
instead set to zero.

The initial conditions used in scheme three are obtained from the

specified Mach number at the entrance and exit of the channel and the

assumption that the v component of velocity is zero at these locations.
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Then using the assumption that-the flow is isenthalpic the speed of
sound, the pressure, density and the u component of velocity is obtained
at the entrance and exit. The points between the entrance (I = 1) and

the exit (I = IM) are then determined by a linear interpolation based on

the I coordinate.

The Navier-Stokes code (scheme four) was used in a "flate plate"
option which assumed the upper computational boundary is a free stream

boundary instead of as a wall as the first three codes assumed. The

code, therefore, initialized all flow quantities to the specified free

stream values.

8.2.2 Problem Two
In scheme one, the complex velocity is used as in Sec. 8.2.1 and it

is found that the velocity is given by [29]

utiv=u (1-1/2%) (8.6)

and the pressure is given by Eq. (8.5)
The initial conditions in scheme two were obtained using the same
procedure as in problem one.

The initial conditions in scheme three were obtained using the same
procedure as in problem one. However, since the inflow and outflow Mach

numbers are the same, the initial condition for this problem is one of

uniform flow.
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8.2.3 Problem Three -

For scheme one, it can be shown that the velocity is given by
u+iv =u /[n(dz/d;)] (8.7)

where dz/dg is given by
_ 2 2
dz/dg = n{z° - 1)/(c“ - 4)

and n is given by Eq. (2.8). Again, the pressure is found from the
assumption that the flow is isenthalpic and isentropic as in problems
one and two.

The initial conditions used in schemes two and three are the same

as those used in problems one and two.

8.2.4 Problem Four

The initial condition used for the airfoil problem was developed by
(1) first setting surface where the velocity was set equal to the
component of the uniform free stream u_ tangent to the wall and then,
(2) using a simple laplacian operator to smooth the flowfield prior to
beginning with the actual flow solver. The reason for using this
procedure was to minimize transients which could cause instability in
the initial solution and which would be due to initial sharp gradients
that would exist such as at the leading edge where the velocity would be

zero at the wall and free stream one point off the wall,



8.3 Wall Betindary Conditions

The condition of no flow through the wall was applied at all wall
boundaries. For the inviscid calculations, this is the basic condition
whereas for the viscous calculations, the additional condition of zero
~ velocity tangent to the wall or the so-called "no slip" boundary
condition must also be imposed. The following sections described in

detail how these conditions were implemented in each scheme.

8.3.1 Scheme One

Referring to Eqs. (4.21), the no penetration boundary condition

implies that V = VE = Vg = 0. The two governing equations reduce to

+ .+ - - + .+, - -
. + + +
P . 5 [ PE A PE Q Pn Q Pn

P S f S M S S A A S g} B .
T ( 1 A 11 n & n)J 3 (8.8a)

- + 4 - -, &Y + ¢t - n-
+ -
Uy + .5 [ UE + 2 UE Y (x Pn A Pn)] Ug (8.8b)

VS (8.8¢)

.5 [n+ TR /T (sz+ pt - o~ P7)]
n n Y n n

Equation (8.8b) can be used as it is, but before Eq. {8.8a) can be used,
- it must be modified to eliminate the terms n+ P: and gt V: at the
lower wall and the terms q~ P; and @ V; at the upper wall since
- they require information from outside the computational domain. This is

done by combining Eqs. (8.8a) and (8.8c) to get
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P, + .50\ P; +27 B+ 2 a

t n

e (URMED SR X M LN S T
&/ J ¢ ¢ n VAN

which applies at the upper wall and

+ + - - - -
Pt + .5 [a PE + A PE +2Q Pn
= (UMD SR M RIS b I S (O
a’ 9 13 3 13 n a/.J

which applies at the lower wall. The governing equations can therefore

be used at the walls and the three explicit scheme used as in the

interior points.

8.3.2 Scheme Two

The same concept as just described for scheme one is also applied

in this case. The resulting equations are slightly different and will

not be given.

8.3.3 Scheme Three

Since scheme three solves the governing equations implicitly, the
implementation of the scheme at the boundaries poses difficulties and
explicit boundary conditions are used instead. The velocity V and
density at the wall are first found by extrapolation from the inside.

The pressure at the wall is next found by extrapolation from the

interior using the momentum equation in the n direction

22 -5 (o + VP)/IR(Z + 02)*°] (8.9)
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where R is the radius of curvature and is given by
R = (1 + (f.)z)l.slf..
f' = dy/dx (8.10)
The density at the wall is now recalculated by using the assumption that
p =y p' (8.11)

which is not valid if there are entropy gradients normal to the wall but
which may be regarded as approximately true. Using this assumption, the

density gradient along "o is given by

3p _ 2\ 9
5% = (1/a )Sf (8.12)

8.3.4 Scheme Four

As stated earlier, for the viscous calculations, both the u and v
components of velocity are taken to be zero to satisfy the no-slip
boundary condition. The density at the wall is next obtained by a zero
order extrapolation from the point above it. Next, the speed of sound
one point off the wall is found by using the energy equation as follows.
The density at the same location is then used in conjunction with the
speed of sound to get the pressure at the wall. The pressure at the

wall divided by (y - 1) 1is then the total energy which completes the

procedure.
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8.4 Subsonic Inflow Boundary

This section and the following two involve "artificial" boundaries
in the sense that they exist in the computational domain but not in the
physical domain. Since boundary conditions must be imposed to make the
problem solvable and since these conditions must reflect the actual
physical situation, the correct specification of these conditions is
fairly important. Much of what has been done up until the present time
involves making some simplifying assumptions and frequently
characteristic theory is used. At the upstream boundary, the flow is
subsonic and entering the computational domain. If the flow is assumed
to be inviscid so that the Fuler equations apply, the governing

equations in primitive variable form are

Qt + A Qx + B Qy =0 (8.13)
where
[o]
_
Q=1, (8.14a)
| P
ru p 0 0 7
_ 10 u 0 1/p
0 Yp 0 u
(V 0 P 0 1
10 v 0 0
B = 0 0 v 1/p (8.14c)
| 0 0 Yp v
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The eigenvalues of A are u, u, =+ a and u - a. The eigenvalues of B
are v, v, v + a and v - a. The directions u + a and v + a are referred
to as bicharacterisitics and are the intersections of the characteristic

monge conge with the planes x = constant and y = constant,

It is well known that for purely one-dimensional unsteady isen-
tropic flow, the equations of gas dynamics possess Riemann invariants

which are constant along characteristics. These functions are

RV =u+2 ally - 1) along dx/dt = u + a (8.15a)

u-a (8.15b)

“=u-2a/ly -1) along dx/dt

po)
H

At a subsonic inflow boundary, the R* value is constant along the
characteristic entering from outside of the computational domain and can
therefore be specified and used in conjunction with R™ from inside the
domain to get new values of u and a. Equation (4.13) does not possess
Riemann invariants but according to the theory of Kreiss, the number of
conditions which must be specified at an inflow (or an outflow) boundary
in order to have a numerically stable boundary condition must agree with
the number of characteristic lines that approach the boundary from the
outside [52]. If the flow is assumed to be at least locally one-
dimensional, this would mean that there must be three quantities
specified from the outside and one extrapolated from the inside at the

inflow boundary and the reverse at the outflow boundary.

8.4.1 Schemes One and Two

The conditions which were assumed for problems one through three
were that the contravarient component of velocity V is zero and that the

flow is isentropic and isenthalpic at the inflow boundary. The first
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assumption is an approximation te- the actual physical situation and is
not exactly correct while the thermodynamic assumptions are correct in

the steady state. Since V and V, are assumed zero, the governing

equations are

+ .+ - - + .+ - - + .+ - -
- =
P, + .5 [ PX + 2 Px +Q Py +Q Py + ——13— ( Ux A Ux)] Ps

+ + - - A J + 4+ - - _
U + 5 07 UL +a7 U+ . (A" P -2 P = Ug
v J - - - p-
uv, x +2 P -q” P =
Ve ¥e + =g (a7 Py - Py s
Since the flow is subsonic, it is not possible to use these equations

since P and U require information from outside the domain. But the two

equations for P, and Uy can be combined to eliminate these terms to get

Y
Pp - ——= U

+ 2 P+ .5 (Q+ pt &+ Q" P7) + X — (U -~ uZ) =P
ay X y y 3 X
(8.16)

o J £

It is possible to relate Py to Uy by the 1-D energy equation
a? /ty - 1) + .5 (uZ + %) =h_ = const (8.17)
It is not necessary but if it is also assumed that v = 0, then
RUALE (8.18)

and since the flow is isentropic

al< y p(Y-l)/Y
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which leads to the equation -

P, % -y UU/(a?0) (8.19)

t

which can then be substituted back into Eg. (8.18) to get a single

equation for Uy as follows

- - .5 - p- + o+, -
Ug -2 U -aJd”  [Po-a" P - .5 P.y +Q Ex)]

t [1+ U/a 3%

Py can then be obtained using Eq. (8.19).

8.4,2 Scheme Three

The inflow boundary condition used in this scheme is described by
von Lavante in [47] and will only be briefly discussed here. The
assumption is made that the flow is locally one-dimensional so that the

governing equations can be written in the characteristic form

=
@

9
at T A

W,
X = 0 (8020)

.32

where VW is the characteristic variable given as

1+ uly - 1)/2 50
w=| ! 10 (8.21)

=
=
—
1]

W, Wy = 1 - uly - 1)/2 SQpp
A 0
A:
0 Ao

sq, = [(uly - 1)/2y)? + a?H1°°
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The characteristic variable Nl propagates along the characteristic dx/dt
= u + a and is therefore specified whereas the variable W, propagates
along the backward characteristic dx/dt = u - a and is taken from the
inside of the computational domain. Equations (8.21) are then solved

simultaneously on the boundary to get the Mach number at the inflow

which is
M= 10l - 1DZ 10 - W) - 1/8)) (8.22)

The Mach number is then used to calculate p, u, v and p from the
isentropic relationships and the energy Eq. (8.17). The procedure is
very similar, at least in principle, to a "time split" inflow boundary
condition introduced by Tong [55] and avoids the necessity for assuming
that v = 0 at the inflow boundary as was the case in schemes one and
two. Furthermore, it has been found that the procedure gives good

results even when the upstream boundary is close to a leading edge.

8.4,3 Scheme Four

The condition used in this situation first assumes the v component
is zero so the flow is taken to be locally one-dimensional. The
pressure at the inflow boundary is then found from the energy equation
using the known values of the total energy and the u and v components of
velocity at the next point downstream. The pressure is then used to get
the density assuming the flow is also isentropic. Finally, the u
component of velocity is found using the isenthalpic energy Eq. (8.17).
This procedure should thus allow pressure waves which are traveling
upstream.to escape without reflection. However, the assumption that v =

0 at the boundary is not strictly correct and may introduce errors.
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8.5 Outflow Boundary Condition

At the outflow boundary, there are three characteristics from
inside the computational domain and one from outside and hence according
to the theory of Kreiss, one condition may be specified at the outflow
boundary. This condition is usually taken to be the pressure since this
determine the flow through the channel at the steady state. For
example, in a De lLaval nozzel, the backpressure completely determines
the flow inside the nozzel and the conditions at the throat. However,
if the pressure is specified as constant at the outflow boundary, then
during the convergence from the initial condition to the final steady
state solution, pressure waves which may develop inside the
computational domain are reflected at the outflow boundary instead of

passing through and this will slow convergence.

The approach used in the first three schemes was introduced by Rudy
and Strikwerda [54] and was based on earlier work by Enquist and Majda
[55] and Hedstrom on nonreflective boundary conditions. The idea is to

apply the following equation at the outflow boundary

%%-pcg—‘t‘-+a(p-pe) (8.23)

where o 1is some constant and p, is the specified pressure at the
boundary., Tr the steady state, the pressure p should be equal to p,.

The numerical epproximation to Eq. (8.23) is
o= " raat py ¢ " W™ - WMV v aat)

where u™1 s extrapolated from the inside to the boundary. This
procedure has been found to work well but has the disadvantage that the

parameter « must be chosen. As o approaches zero, the influence of the
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specified back pressure is also relaxed and approaches zero. As a is
increased, the outflow boundary becomes increasinaly reflective and p is
maintained close to the specified Pe- Rudy and Strikwerda recommend
that a« be chosen to optimize the convergence to the steady and show
that « has a significant effect on the number of iterations required
for a ty, cal test case to converge. Figure 8.1 shows the results of

applying this boundary condition to problem one.

In scheme four, the pressure was simply held constant at the
outflow boundary while the density and the u and v components of
velocity were set equal to the next upstream point. This is an entirely
reflective boundary condition but was used in the flat plate option
because the flow assumed to be mainly all boundary layer and hence
parabolic. This assumption was not true in the cases modeled but is the

physical condition imposed is correct in the steady state.

8.6 Far Field Boundary Condition

The far field refers to the flow field at a distance away from the
body which is significantly greater than the length scale of the body.
For example, it 1is common practice to put the outer boundary for two-
dimensional transonic calculations about airfoils at least ten chord
lengths away from the airfoil. The reason for this is that one would
like to specify conditions in the free stream where the flow is
unaffected by the body but this only occurs at an infinite distance away
from the body. Since it is impossible to construct grids which go out
to infinity, it is necessary to specify boundary conditions in the far

field where there are still perturbations about the free stream

conditions.
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In problems one and two, the upper boundary was treated as a solid
wall in all of the schemes except scheme four. Since this scheme solves
the viscous equations, it was deemed desirable to avoid treating the
upper boundary as a wall since doing so would necessitate grid
clustering at the top and lower boundaries due to the existence of
boundary layer arowth on both surfaces. Therefore, this boundary was
treated in exactly the same manner as the outflow boundary was treated.
The pressure was held constant at the free stream pressure and the
remaining variables were extrapolated from inside the computational
domain., This approach may not produce the best convergence, but the
results appear reasonable at the top boundary. Attempts were made to
develop characteristic based nonreflective boundary conditions for the
top boundary for schemes one, two and three which would permit this
boundary to be relatively close to the lower boundary and allow for a
better comparison between these schemes and scheme four but these
efforts were not successful. Instead, the upper boundary was
progressively moved away from the lower wall until the perturbations at

the upper boundary were reduced to an acceptable level.

For problem four, the outer boundary condition which was used was
developed by Thomas and Salas [56]. The approach assumes that wavelike
transients in the physical domain arrive at the outer boundary in a
direction mainly normal to the boundary as shown in Fig. 8.2. The
flowfield at the outer boundary can be thought to consist of a uniform
flow plus small perturbations due to these transient waves which in time
should decay to the final deviations from the uniform flow. Therefore,
the gradients along the outer boundary are assumed small in comparison
to the gradients normal to the boundary the following characteristic

relations are presumed valid



Fig.
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dS/dt = 0 zlong dn/dt = U (8.21a)
dv/dt = 0 along dn/dt = U (8.21b)
& -&-539% =0 along dn/dt = U + a J°° (8.21¢)

where S is the entropy and U and V are the contravarient velocities in
the & and n directions respectively. Since the flowfield at the
outer boundary is isentropic for inviscid flow and nearly so even for
viscous flow, Eq. (8.24) implies the existence of Riemann invariants at
the outer boundary and the equivalent of Eq. (8.15) in a direction

normal to the outer boundary is

RE=V.n+2a/(y - 1)

along dn/dt =V . n+a (8.25)

where

Ven=vo (xé + yé)'s]

The invariant R™, which reaches the boundary from outside the computa-
tional domain, is specified from the free stream values of u and a
applied at the outer boundary and the values of R* is taken from inside
the computational domain. The equations for R* and R~ are then solved
simultaneously to get the new values of V and a on the boundary.
Depending on the sign of V, the values of the remaining variables U, o,
and p are then either taken from inside or outside the computational
domain. If V is negative, the flow at the_boundary is in and the free

stream values of u, p, and p are used. If V is positive, the flow at
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the boundary is out and U, p, “and p are extrapolated from the inside
of the domain. This procedure has been found to give good results in
the computations performed as a part of this investigation. However,
Roe has questioned the practice of assuming locally one-dimensional flow
at remote boundaries and claims that it does not result in the monotonic
decay of the pressure and the radial component to the expected free
stream values [57]. More work will undoubtedly be done on the treatment

of far field boundaries in the future in view of the importance of the

topic.
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Chapter 9

RESULTS AND DISCUSSION

9.1 Problem One

9.1.1 Inviscid Results

The three inviscid codes were run using various values of n for the
lower and upper boundaries, referred to as "o and nq respectively. The
lower boundary n, Was varied to study the effect of changing the
geometry from a channel with a gradual one-sided expansion to a channel
with a one-sided sudden expansion (rearward facing step). It was found
= 2 produced a shock at the expansion corner near

that a value "o

£ = -1 and the flow was attached. As n, was reduced, the flow would
eventually separate (usually before ng ° 1) and as ng Was further
reduced the recirculation zone would grow in size. The effect of moving
the upper boundary was also studied; it was found early in the
investigation that the position of n strongly affected the flow in the
entrance region of the channel ahead of the expansion corner. This is
because the ratio of the entrance area to the exit area is increased and
approaches 1.0 as n is increased and the result can be seen in Fig. 9.1
which shows the Mach number distribution across the inflow boundary
for ny < 20, 40, and 100 using scheme one. As ny is increased, the

inflow Mach numbers are reduced as would be expected.
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The three inviscid codes were run on 81x41 grids of which an
example (with ng = 2 and ny = 20) is shown in Fig. 9.2. In addition,
the shock fitting was also repeated using 161x81 grids to determine the
effect of refining the grid by a factor of two. In general, scheme one
was run for 3000 iterations in each case, which usually resulted in a
residual drop, measured by the %, norm of atp, of between two and three
orders of magnitude. The slow rate of convergence is due to the CFL <1

limitation and the fact that no convergence acceleration methods other

than local time stepping were used.

The shock fitting runs were done in continuous sequences with "o
initially equal to 2 and then gradually reducing "o in a step-like
manner. Thus, the lower wall was first brought to "o of 1.8 and this
position held constant until the shock movement was reduced to an
acceptable level. This procedure was repeated by reducing "o in steps
of 0.2 and usually at least 2000 to 3000 iterations were required on the
coarse grid to steady the shock, while on the fine grid 4000 to 5000

iterations were required.

The implicit flux-vector splitting scheme was run for 2000
iterations 1in most cases and the residual drop, measured by the norm of
3,P, was usually at least three orders of magnitude. In some cases, a
constant global time step was used, while in other cases a constant
local maximum CFL generally between three and six was used. It was
found that the later approach gave the best convergence results and was

therefore used for most of the later runs.

The Mach number on the upstream side of the shock foot is shown in

Fias. 9.3, 9.4 and 9.5 for N positions of 20, 40 and 100 respectively.
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In Fig. 9.3, it is apparent that scheme one produces significantly
higher Mach numbers as "o is reduced than the other two schemes. This
is believed due to the nonconservative formulation of scheme one. There
is fairly good agreement between the coarse and the fine grid solutions
obtained using scheme two. The Mach numbers obtained using the flux
vector splitting scheme were consistently lower than those obtained
using schemes one and two, perhaps due to greater dissipation at the
shock in scheme three. The lowest uls for which solutions were obtained
was 0.4 for schemes one and two and 0.1 for scheme three. It was only
possible to get a solution at Ny = 0.1 for scheme three by changing the
grid in steps to gradually reduce uPy) while at the same time increasing
cluster points at the expansion corner. It can be seen that the Mach
number at the shock foot reaches a maximum for schemes two and three at
= 1.2, and as ~n is further reduced, the Mach number gradually

) o
becomes lower and the results using scheme three suggest it would go to

n

a limit of 1. at ng © 0.

The results at ny = 40 are shown in Fig. 9.4. The results using
scheme one, again, show that as U is reduced, the Mach number at the
shock foot increases. The results from the shock fitting scheme two
show two different tendencies on the coarse and fine grids. On the
coarse grid, the trend is similar to scheme one, whereas on the fine
grid the results are similar to those of scheme three. The anomalous
results using scheme one were checked by doing this series of runs over
again with 4000 iterations being taken when U is reduced each 0.2. The
results were well converged and do not appear to be in error. The
increase in the Mach number is partially explained by the shock position

as will be discussed later. Again, the results using scheme three
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show the Tlowest Mach numbers —and are similar to those obtained at
ny = 20.  The lowest n for which a solution was obtained was 0.1 using
scheme three and this was again achieved by changing the grid to
progressively cluster the grid about the expansion corner. The trends
show the Mach number ahead of the shock decreasing to a 1imit of one as

"o approaches the 1limit zero which suggests that the shock would

eventually vanish., The results obtained using scheme three for

ny 40 agree closely with the results obtained with the same scheme for

Ny 20.

From Fig. 9.5, it is seen that the Mach number at the shock is
always less with ny = 100 than each corresponding case at ny = 40.
This is due to the lower velocities in the flow field ahead of the
shock. The fine grid shock fitting results show the Mach number to be
gradually increasing; whereas, for the flux vector splitting, the
maximum value of M occurs at 1.2 and then decreases. No reliable

results were obtained for "o values lower than 0.4 because the resolu-

tion of the grids at the corner at ¢ = -1 was inadequate.

Figures 9.6, 9.7 and 9.8 show the shock location Eg in terms of
the ¢ coordinate along the lower wall. A value of g equal to -1
corresponds to the location of the upper corner as shown in Fig. 2.1.
The results obtained using scheme 1 are identical at ny = 20 and
ny = 40 and are not appreciably different at ny = 100. The shock
fitting results and the flux vector splitting results at ny = 20 show
general agreement with £y = 40 on the coarse grid show the shock moving
progressively towards ¢ = -.5 as n, is reduced. This partially explains

the Mach numbers at the shock the position g = -.5 is considerably

further around the expansion corner than the fine arid results which
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means that the flow has accelerated more and is moving at higher
velocities. The flux vector splitting results at all three values of
ny agree fairly closely. In particular, it is noteworthy that the shock
position at no = .1 is approaching g = -1, The shock fitting scheme
two for ny = 100 also shows £ going to a limit of -1 as u is reduced.

It thus appears that this is the proper limiting position of the shock,

but this is not achieved in all of the case computed.

The maximum entropy in the flow on the downstream side of the shock
is shown in Fig. 9.9 and the vorticity in the flow downstream of the
shock is shown in Fig. 9.10 both for cases when ny = 20. It can be
seen that there is a fairly consistent trend for the entropy to increase
and the vorticity to decrease toward larger negative values as N, is
reduced. This result must be interpreted with caution. As stated
earlier, it may be the vorticity in the initial unsteady transient flow
which leads to separation. Theoretically, none of the entropy and
vorticity produce in the flow in the steady state actually enters the
separation zones, when they occur. Nevertheless, it is indicative of

the conditions which may have led to separation.

In Fig. 9.11, the minimum value of the Mach number multiplied by
the direction of the flow along the lower wall is plotted against for
ny = 20. This indicates the approximate value of UM at which the flow
separates for each scheme. It can be seen that scheme one produces
separation at a higher value of No (no = 1.,68) than scheme two
(no = 1.52) and that scheme three requires o equal to approximately

1.12 before separation occurs. Thus scheme three appears to be the

least susceptible to separation as compared with schemes one and two.
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The reattachement £ locations- for the same set of cases is Shown in
Fig. 9.12. There appears to be general agreement in that as N 1S
reduced, the separation bubbles grow in length and reattach further
downstream. Similar results for the case when ny = 100 are shown in
Figs. 9.13 and 9.14, It can be seen that, in general, having the upper
boundary further away reduces the ne at which the lower wall must be
before separation occurs and the ¢ at which reattachment occurs is less,

which means that the separation bubbles are not as long.

A comparison of the result using schemes one, two and three with
ny = 20 and Ny = 2.0 is shown in Figs. 9.15 and 9.16. Figures 9.15a-
9.15c show Mach contours and it can be seen that the results are all
similar. The Mach numbers multiplied by the sign of U along the lower
wall are shown in Fig. 9.16 and again the close agreement is evident.
The shock 1location is nearly identical in all three cases while the
maximum computed Mach number reached at the upstream side of the shock
is higher using shemes one and two than three. A similar comparison for
the case with ny = 20 and Ne = 1.2 is shown in Figs. 9.17 and 9.18.
Again general agreement is evident although the Mach contours of the
flux vector splitting results appear smoother. A comparison of the Mach
number multipiied by the sign of U is shown in Fig. 9.18. The flux
vector splitting results, while close to separation, have not separated
whereas the results of both scheme one and two have. It is also
apparent that the jump in velocity using the unfitted scheme one is now
much greater than either scheme two or three. A third such comparison
with N, © 0.4 is shown in Figs. 9.19 and 9.20. Figures 9.19b and 9.19c

show Mach contours generated from the results of scheme two on the

coarse and fine grids respectively. The contours shown in Fig. 9.19a
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(a) Scheme One

(c) Scheme Three

Fig. 9.15 Mach Contours (Mo = 2.0).
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(a) Scheme One

(b) Scheme Two (81x41 grid)

(¢c) Scheme Two (161x81 grid)

Fig. 9.19 Mach Contours ( ﬁb = 0.4).
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using scheme one and Fig. 9.19c -using scheme two on the fine grid both
show a supersonic zone extending across the channel just downstream of
the expansion corner which suggests that the flow is chocked in the
channel and then expands supersonically as in a converging-diverging
nozzle. The comparison of "M" vs. g in Fig. 9.20 shows that the flux
vector splitting results show the least separation whereas the results

from scheme one are the most separated.

The entropy produced by flow through the shock is shown in Figs.
9.21a-9.21c. These results were obtained using scheme two with the
upper boundary ny - 20. In Fig. 9.21a, the lower boundary is at 2.0
and the maximum value of the entropy is 0.0878 just downstream from the
shock along the wall. In Fig. 9.21b, the lower wall o is at 1.6 and
the maximum value of S is 0.126 and the entropy gradients are somewhat
larger than in Fig. 9.2l1a. In Fig. 9.21c, the lower wall "o is at 1.2
and the maximum value of S is 0.145. It can be seen that there is a
recirculation region and the entropy gradients are again greater than in
the previous two cases with most of the entropy being produced very
close to the lower boundary. These results correlate with Fig. 9.10,
which shows the vorticity level increasing as o is reduced and with
Crocco's theorem which states the vorticity will exits in a flow if

gradients of entropy and/or enthalpy also exist [60].

Figures 9.22 through 9.25 show the results of the flux splitting
scheme three with the upper boundary at 40 and the lower boundary being
reduced from 0.4 to 0.2 to 0.1. In Figs. 9.22a and 9.22b, the Mach
contours and sonic line are shown for N = 0.4 and the large separated
zone downstream of the step and the shock at the expansion corner are

evident. The Mach contours for N = 0.2 in Fig. 9.23a and the
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corresponding sonic line plot=—in Fig. 9.23b show a much smaller
supersonic zone at the corner and a slightly larger supersonic zone
which is apparently not terminated by a shock just slightly downstreanm
and above it. In Fig. 9.24a, the Mach contours for no* 0.1 are shown
and the corresponding sonic zones are given in Fig. 9.24b. It can be
seen that the supersonic zone at the corner has nearly disappeared and
the supersonic bubble out in the flow field has grown. The entropy
contours shown in Fig. 9.24c and the stream function plot in Fig. 9.24d
show clearly the separation region with the entropy now associated with
the rotating vortex. Figure 9.25 shows the portion of the grid around

the expansion corner and the resolution which is achieved at the corner

by the special clustering.

A similar procedure was done using the same scheme but with the
upper boundary instead at ny = 20. The results at Ny = 0.1 are shown
in Figs. 9.26 and 9.27. Fiqure 9.26a shows the Mach contours and it is
apparent that a shock has formed which extends across the channel
downstream of the expansion corner as was noted earlier. There is a
large supersonic zone as is shown in Fig. 9.26b, which is terminated by
the shock. The flow has separated from the corner and there is entropy
trapped inside the recirculation region as shown in Fig. 9.26c. Figure
9.27 shows the Mach numbers multiplied by the sign of the contravarient
velocity in the streamwise direction. The location of the shock at the
expansion corner and at the top wall are clearly evident. It is also
apparent that the shock at the expansion corner is still fairly strong

and may not be going to zero as "o approaches 0.
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(a) 7, = 2.0

Fig. 9.21 ¢Entropy Contours.
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(a) Mach Contours
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(b) Sonic Line

Fig. 9.22 Results - Scheme 3 ( 7 = 0.4, 7 = 40).
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(a) Mach Contours

O
\_

(b) Sonic Line

Fig. 9.23 Results - Scheme 3 (7. = 0.2, 7 = 40).



~ (a) Mach Contours

(b) Sonic Line

Fig. 9.24

Results - Scheme 3 ( 7. = 0.1, 7, = 40).
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Fig. 9.25 Grid Detail at Corner,
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- (a) Mach Contours

(b) Sonic Line

Fig. 9.26 Results - Scheme 3 ( Mo = 0.1, 2 = 20).
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Fig. 9.26(c) Entropy Contours
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9,1.2 Viscous Results -

The Navier-Stokes scheme four has run on the rearward facing step
under a variety of conditions. The purpose of the runs was to determine
how the viscous results might differ from the inviscid results. No
attempt was made to duplicate all of the various positions of the lower

wall n_ and the upper wall Ny due to the time and computational expense

)
that would be necessary to do this and also because, as will be seen,
the results that were obtained were so different from the inviscid

results that this was felt by the writer to be unnecessary.

The first set of runs was done using a Reynolds number of 10,000
with the upper boundary at ny = 40 and the lower boundary at ng = 2. A
grid size of 81x61 was used and the first point off the wall was at
n = 0.01. A constant global time step of 0.2 was used at the solution
was run for 3000 iterations and plots obtained at 1500, 2000, 2500 and
3000 iterations. Figure 9.28 shows the results at 1500 iterations.
From the Mach contours in Fig. 9.28a, it is evident that the boundary
layer which begins upstream of the corner separates at the corner and
that there is no shock there. The solution throughout the flow field is
fairly smooth and the freestream upper boundary condition does not
appear to be causing any flow abberations. Figure 9.28b shows the
pressure contours and the presence of at least one vortex is apparent
from the circular pattern with a low pressure center. Figure 9.28¢
shows the velocity vectors and this large vortex is apparent along with
two other smaller vorticies upstream. The wall shear stress plot in
Fig. 9.28d provides further evidence of flow reversal along the lower

wall between approximately ¢ = -4.6 and ¢ = -1 and also in the vicinity

of 10 << 17,
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(a) Mach Contours

(b) Pressure Contours

Fig. 9.28 Results - Scheme 4 (1500 iterations).
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The results of 2000 iterattons are shown in Figs. 9.29a through
9.29d. A comparison between Figs. 9.28a and 9.29a shows that the flow
field has changed greatly in that the extent of the separation zone has
grown and there now appears to be more disruption of the flow field
above the separated region. The pressure contours in Fig. 9.29b an the
velocity vector plot in Fig. 9.29c show the presence of two large
vorticies downstream of the corner. The wall shear stress plot in Fig.

9.29d shows a third reverse flow region in the region of -5%g<-1 ahead

of the step.

Ther results at 2500 iterations are shown in Figs. 9.30a through
9.30d and it is apparent that the location of the vortices has again
changed which indicates that either the flow has not reached a final
steady state or the flow may be unsteady. The writer considers the
later possibility to be the more likely. One large vortex is present
just downstream from the corner and the writer believes it is possible
that this may be the small vortex which was just beginning to form at
2000 iterations and has now moved further downstream and grown. At the
same time, the two large vortices that were present at 2000 iterations
have been swept out of the computational region. Again, from the wall
shear stress plot in Fig. 9.30d it is apparent that a smaller reverse
flow region appears to exist inside the boundary layer ahead of the
step. This region has not changed location significantly from the
previous two iterations and it may be a permanent feature that has
established itself and may be giving rise periodically to shed vortices

which are then swept downstream.

-

The results at 3000 iterations are shown in Figs. 9.3l1a through

9.31d and again the flow field appears to have changed. Although the
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(a) Mach Contours

(b) Pressure Contours

Fig. 9.29 Results - Scheme 4 (2000 iterations).
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Mach contours in Fig. 9.31a do resemble the Mach contours in Fig. 9.30a,
the pressure contours in Fig. 9.31b now show a fairly strong adverse
pressure gradient ahead of the corner which was beginning to become
apparent in Fig. 9.30b. Figure 9.31b shows the presence of four
circular shaped pressure regions of alternating high and low pressure.
The velocity vector plots in Fig. 9.31c show two clockwise rotating
vorticies which appear to correspond in location to the two low pressure
regions in Fig. 9.31b. The high pressure regions appear to correspond
to the regions where the flow velocities are low just downstream of the
step and in between the two vorticies. The wall shear stress plot in
Fig. 9.31d again shows a small recirculation zone ahead of the step

which must lie inside of the boundary layer.

Two runs were also done at a Reynolds number of 100,000 .and the
results are compared in Figs. 9.32 and 9.33. The first run was done
using an 81x61 grid with a freestream Mach number of 0.865 using a
nondimensional time step of 0.02. The flow was assumed to be laminar
and the turbulent terms were turned off. The Mach contour, pressure
contour, wall shear stress, and velocity vectors after 2000 iterations
are shown in Figs. 9.32a-9.32d respectively. It can be seen that the
results are not appreciably different than the results at the lower
Reynolds number shown previously. Ther are numerous recirculation
vorticies present in the flow as can be seen from the velocity vector
plot and there are no shocks in the flow. The second set of results was
obtained using the same Reynolds number and time step but a 161x61 grid
and the flow was assumed to be turbulent. The results after 2000
it;rations are shown in Figs. 9.33a-33d. From the Mach and pressure

contours and the wall shear stress plot, it is apparent that a strong
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(a) Mach Contours

(b) Pressure Contours

Fig. 9.30 Results - Scheme 4 (2500 iterations).
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(c) Velocity Vectors
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Fig. 9.30 (continued).
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(a) Mach Contours

00 -
00 -4
"

(b) Pressure Contours

Fig. 9.31 Results - Scheme 4 (3000 iterations).
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(a) Mach Contours

(b) Pressure Contours

Fig. 9.32 Results - Scheme 4 (Re = 100,000).
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(a) Mach Contours

(b) Pressure Contours

Fig. 9.33 Results - Scheme 4 (Re = 100,000).
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shock now exists across the channel similar to some of the inviscid
cases. Furthermore, the velocity vector plots show only a single
recirculation vortex which is also similar to the inviscid cases. It
thus appears that putting the turbulence model into use results in a

flow pattern that strongly resembles some of the inviscid results.
9.2 Problem Two

9.2.1 Inviscid Results

The second configuration, a "bump" inside a channel, was treated in
a manner similar to the rearward facing step. The three inviscid
schemes were all run on 81x41 grids and the shock fitting scheme two was
also run on a fine grid 161x81 for comparison. The Navier-Stokes code
was run on an 81x6l grid and the results from using this code is
discussed in the next section. In all cases, the upper wall ny was set
at 12.0 and the 1left and right boundaries were set at ¢ = -10.0 and
+10.0 respectively. The lower wall ngo Was varied from a maximum of 1.0
to a minimum of 0.2 in the inviscid cases. The back pressure boundary

condition was that the nondimensional pressure p' is 0.5.

Figure 9.34 shows the Mach number on the upstream side of the shock
foot for the various cases which were run. The shock capturing results
from scheme one again show that as the lower wall "o is reduced and the
expansion becomes greater that the Mach number ahead of the shock
increases much faster than the other schemes which is a result of the
nonconservative nature of the scheme. The shock fitting results on both
the coarse and fine grids agree fairly closely with the Mach number

increasing to about 2.2 as the lower wall U is reduced. The flux

vector splitting scheme three results show lower Mach numbers than the
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two previous schemes and this is—consistent with the results of problem

one. The maximum Mach number achieved with scheme three is 1.92 at o

equal to 0.6.

Figure 9.35 shows the shock Tocations for the four sets of results.
The scheme one shock location is consistently greater than 1.4 and
reaches a maximum of 1.61 at Ng = 0.2. It should be noted that since
the arid is fixed in cases one and three, the shock location shifts of
increment of one grid point and cannot achieve intermediary values. The
shock fitting scheme two results show that the shock location starts out
at the same location as scheme one but that as the lower wall "o is
reduced, the ¢ is gradually reduced to about 0.7 at a lower wall U of

0.2. The results of scheme three are similar at "o equal to 0.2, the

g is 0.53.

Figures 9.36 and 9.37 show the entropy and vorticity downstream of
the shock adjacent to the wall. In Fig. 9.36, it can be seen that as
the lower wall is reduced the entropy produced by flow through the shock
tends to increase in all cases. The shock captured solutions of scheme
one show less entropy than the results of the shock fitting scheme or
the flux vector splitting scheme three. The results of schemes two on
both the coarse and fine grids and scheme three agree fairly closely.
In Fig. 9.37, it can be seen that in all cases the vorticity is
increased as the lower wall "o is reduced. However, the actual levels
of vorticity vary depending on the scheme. The flux vector splitting
scheme three shows the least the amount of vorticity present in the
flow; however, this may be due to the fact that the function values in
scheme three are cell volume average instead of point values and this is

reflected in the way the values are reported out.
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The minimum Mach numbers rultiplied by the sign of the
contravarient velocity componenf—a1ong the lower wall for the various
cases are shown in Fig. 9.38. The results all indicate that as o is
reduced, the value of M decreases and that the shock fitting results on
the coarse grid were the first to separate which is not the same as
problem one when the scheme one results were the first to separate. In
general, however, the results in Fig. 9.38 show a fairly high degree of
consistency. The g location of the flow reattachment shown in Fig. 9.39

indicate that the results of scheme one generally show a smaller

separation zone than either shock fitting scheme two or the implicit

shock fitting scheme three.

A comparison of the results of the three schemes for the case with
the lower wall o equal to 1.0 is shown in Figs. 9.40a-9.40d. From the
Mach number contours which are shown, it can be seen that the results
are all similar. The fine grid shock fitting results are not as well
converged as the coarse grid results since both runs were for 1000
iterations and the fine grid case would need probably 2000 iterations
(which would take 8 times as long since there are roughly four times as

many points as the coarse grid) to get to the same level of convergence.

A similar comparison is shown in Figs. 9.41-9.41d. The Mach
contours produced by scheme one are very similar to those produced by
scheme two and, in fact, if the two b]ots are overlaid, the contours are
seen to be nearly identical throughout the flow field except close to
the shock. The flux vector splitting Mach contours show a smaller sonic
region but overall are similar to the results of schemes one and two. A
comparison of the Mach number multiplied by the sign of the contra-
varient U shows that the jump through the shock is significantly less

with scheme three than with schemes one and two.
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(a) Scheme One

(b) Scheme Two (81x41 grid)

Fig. 9.40 Mach Contours (7, = 1.0).
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- (a) Scheme One

(b) Scheme Two

(c) Scheme Three

Fig. 9.41 Mach Contours (3% = 0.4).
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The next set of results which are shown in Figs. 9.42-9.43 conpare
the coarse grid shock fitting results to the flux vector splitting
results for the case when "o is 0.2 which is the most severe case which
was run. The Mach, entropy, and stream function plots for the shock
fitting results are shown in Figs. 9.42a-9.42d respectively, and the
same plots for the flux vector splitting results are shown in Figs.
9.43a-9.43d respectively. A comparison of the Mach contours show that
the flux vector splitting results shows a smaller sonic region and that,
in general, the contours are smoother. A comparison of the entropy
contours shows that the shock fitting scheme is particularly good at
preserving the correct entropy jump through the shock with zero entropy
in the flow which has not been passed through the shock. The vorticity
contours show that the shock fitting scheme results in some vorticity
being present in the flowfield above the shock where it should not be
and this is possibly due to lack of grid smoothness in this region. The
vorticity plot Fig. 9.43d shows high gradients of vorticity near the
lower boundary which may be due to some error in the way these values
were computed although this has been checked and is felt not to be the
case. The comparison of the Mach number along the lower boundary
multiplied by the contraviant U in Figs. 9.42b and 9.43b shows again
that the flux split results have a smaller jump in M through the shock

than the shock fitting results.

9.2.2 Viscous Results

The Navier-Stokes code was run for 2000 iteration at a Reynolds

number of 10,000 and the results are shown in Figs. 9.44 and 9.45. The

flow was assumed to be laminar and calculated without the turbulence



174

(a) Mach Contours
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Fig. 9.42 Results - Scheme 2 (81x41 grid, 7, = 0.2).



(c) Entropy Contours

(d) Vorticity Contours

(e) Stream Function Contours

Fig. 9.42 (continued).
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(a) Mach Contours
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Fig. 9.43 Results - Scheme 3 (81x41 grid.zk = 0.2).
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(c) Entropy Contours

(d) Vorticity Contours

(e) Stream Function Contours

Fig. 9.43 (continued).



178

model. In Fig. 9.44a, the Mach and pressure contours after 1500
iterations are presented. The lower wall "o is equal to 1.0 and it can
be seen that the flow has separated downstream of the step with at least
one vortex present. The results at 2000 iterations in Fig. 9.45 also
show the flow to be separated but the Mach and pressure contours are
different from those at 1500 1i1terations indicating that the flow is
unsteady. An examination of the convergence history reveals that after
1500 iterations, the computations do not converge any further, which is
a further indication that the flow is unsteady. The viscous results are
thus very different from the inviscid results and show that the inviscid
separation phenomenon is not a good predictor as to when viscous

separation will occur and that viscous calculations are needed.

9.3 Problem Three

The problem of flow past a circular arc (occasionally referred to
as "Ni's bump") was solved using the shock capturing scheme 1 and the
flux vector splitting scheme 3. An effort to do shock fitting was made
using two different approaches but both yielded unsatisfactory results.
The reasons for this are discussed in this section and a possible
solution is described. The difficulties are the result of the fact that
unlike the previous two configurations, this configuration has sharp
stagnation corners where the flow velocity goes to zero. It is,
therefore, desirable to cluster grid points near the corners in order to
capture the high flow field gradients that exist in these regions.
Since the shock fitting, which was attempted, moves the grid as the
shock moves, special attention must be given to insure that the shock

movement does not move the clustered grid away from these corners.
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(a) Mach Contours
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(b) Pressure Contours

%

(1500 iterations).

Fig. 9.44 Results - Scheme 4
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(a) Mach Contours

(b) Pressure Contours

Fig. 9.45 Results - Scheme 4 (2000 iterations).
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Figures 9.46a shows the first grid which was used to solve the
problem using scheme one. The grid was developed using bilinear
interpolation and the elliptic smoothing described in Chap. 2. The grid
achieves good clustering at the stagnation corners and over the bump
through the third order polynomial distribution which was used. The
nondimensional back pressure p/p, for this case was 0.74. The scheme
was run for 1000 iterations and the resulting Mach contours are shown in
Fig. 9.46b. It can be seen that the flow is transonic with a shock
present over the bump. Unfortunately, there are some wiggles present in
the flow field emanating from the corners which are apparently due to

the grid clustering which leads to high gradients in the metric terms.

The writer was not able to do the shock fitting on this grid since
it was generated using algebraic and elliptic methods instead of
conformal mapping and scheme two relies on the existence of a conformal
mapping to get the new transformation metrics XE and xn each time the
grid was moved. In principal, it is possible to do this by interpolat-
ing the metrics from the original grid (since they are known) to the new

shock fitted grid once the shock position is known and the writer tried

this approach but it was not successful,

The writer then learned that a conformal transformation exists for
this configuration, therefore, it ought to be possible to use the same
shock fitting program on this case. The transformation was then used to
develop the 81x41 grid shown in Fig. 9.47a, which can be seen clusters
the grid points over the bump but not in the corners. Scheme one was
then run for 2000 iterations on this case and the resulting Mach
contours are shown in Fig. 9.47b. Although the Eéck pressure is the

same as in the previous run, the shock on top of the bump is much
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weaker. A plot of the Mach numbes along the lower wall is shown in Fig.
9.47¢ and it can be seen that there is a fairly weak shock at approxi-
mately £ = 1.0. It is also evident that true stagnation conditions are
not achieved at the corners of the bump as they should be. It was
throught that a higher grid resolution might alleviate these problems so
the writer then ran the same case using a 161x41 grid. The resulting
Mach contours are shown in Fig. 9.48a and the Mach number along the wall
is shown in Fig. 9.48b. It is interesting to note that the solution
near the lower boundary has high gradients in the Mach numbers and that
the velocities near the lower boundary are lower than in the flowfield
just off the wall. This is believed to be due to the fact that there is
a discontinuity in the metric terms at the corners wich results from the

way the grid has been generated.

In order to obtain a shock captured solution which might facilitate
shock fitting better than the previous case, it was decided to move the
upper boundary further away and to increase the back pressure to a
nondimensional p/p, of 0.54. Scheme one was run on a 81x41 grid and the
resulting Mach contours are shown in Fig. 9.49a and the vorticity
contours in Fig. 9.49b. The Mach contours show a strong shock on the
leeward side of the bump. The vorticity contours in Fig. 9.49b show
high vorticity along the shock and also at the corner on the upstream
side of the bump. The vorticity upstream of the shock is not physically
correct and indicates again that the scheme does not do well in such
regions. The shock fitting scheme two was tried on this case but with‘
little success. The Shock would become unstable after the code had run
for less than 100 iterations and the code would encounter execution

errors and stop.
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Fig. 9.49 Results - Problem 3 (81x41 conformal grid).
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The grid was next refined to a 161x41 grid and the shock capturing
scheme one tried again. The r;;u1ting Mach and entropy contours are
shown in Figs. 9.50a and 9.50b respectively. It was found that refining
the grid again resulted in a poor solution near the lower boundary due
to the dicontinuity in the grid metrics at the corners. The entropy
contours in Fig. 9.50b show that there is an entropy layer produced
which starts at the front corner. This is an unphysical result and the
poor quality of the solution made it not feasible to go on to the shock
fitting.

The flux vector splitting scheme three was run on the 81x41 grid
and the resulting Mach contours are shown in Fig. 9.51. The Mach
contours appear smooth and there is no problem at the boundaries. The
writer feels that this is a much better solution and although the shock
is not resolved as well as it might be, the case using shock fitting;

the solution was obtained without any special treatment which would have

been necessary to get a shock fitted solution.

9.4 Problem Four

The grid for the NACA 0012 airfoil was produced by the elliptic
procedure described in Chap. 2. The grid covered only the top half of
the airfoil and used 91x33 points in the ¢ and n coordinated directions.
The outer boundary was placed ten chords away fron\the airfoil surface
and the downstream boundary was ten chords lengths away. There are 73
points along the top surface of the airfoil. The grid is shown in Fig.
9.52 in three perspectives ranging from far away to close to the leading
edge. It can be seen that the resolution near the leading and trailing

edges is reasonably dense and that the orthogonality of the grid at the

airfoil surface is good.
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(a) Mach Contours

(b) Entropy Contours

Fig. 9.50 Results - Problem 3 (161x81 conformal grid).
\
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Fig. 9.51 Results - Problem 3 - Scheme 3.
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Scheme one was specially modified to run this particular case and
the freestream Mach number used was 0.8, as this is a good transonic
test case. The scheme was allowed to run for 3000 iterations which
resulted a drop in the residual of about 2.5 order of magnitude. The
Mach contours are shwon in Fig. 9.53. Although the solution may appear
to be reasonable, there are again kinks in the contours near the
trailing edge which may be due to lack of grid smoothness. Also, the
shock location and strength are not correct. Steger has computed this
case and gives the shock location in terms of x/L where L is the chord
as being 0.6 and the Mach number just before the shock as 1. The
results which were computed using scheme one show the shock at 0.73 of
the chord and the Mach number as 1.405. The solution is, therefore, not
correct and either shock fitting or the flux vector splitting code is

necessary for better results.

The writer modified scheme two to do this case, but it was not
stable and the grid developed extreme skewness as a result use of a
fifth order polynomial function to distribute the grid points with the
shock moving. The writer feels that a shock fitting scheme which has
the grid stationary and simply extrapolates to the shock from the flow
field would work much better than the existing shock fitting scheme
which attempts to adapt the grid to the moving shock. Such a scheme is
being developed by the writer but at the time of this writing, it has

not yet been completed or tested.
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Fig. 9.53- Problem 4 - Mach Contours.



Chapter 10

CONCLUSIONS

This study was originally initiated as an investigation into the
inviscid separation phenomenon. Since that time, there have been
several studies on this topic published and, as yet, reseachers do not
seem to agree on the significance of these inviscid results. The
questions concerning inviscid separation appear to belong to three

separate but related categories which can be stated as:

1. When are numerically computed solutions which exhibit flow
separation valid solutions to the governing equations and are they

unique?

2. In the case of computed solutions where closed recirculation regions

are present, what is the source of the vorticity inside the eddies?

3. What is the physical relevance of an inviscid separated flow to the

viscous case?

The first question has been investigated by various researchers
either by grid refinement procedures or by careful control of parameters
such as the amount of artificial dissipation which is added to a scheme
to provide stability [15, 17, 18, 20, 22]. In general, it appears that
while in some cases the computed inviscid solutions are valid and
reasonable, it is also possible to produce inviscid separation if

excessive artificial dissipation is present or if very coarse grids are
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used. The question of uniqueness has not been adequately examined,
although it is known that in some cases nonunique solutions to the Euler
equations do occur. Since numerical solutions are by nature approximate
solutions and there exists few rigorous proofs that the solutions
obtained by any given numerical method are in fact the correct
approximations to the problem (including boundary conditions) being
solved, it 1is possible that this issue will never be completely

resolved,

There does not, as yet, appear to be any clear answer to the second
question. The most common explanation for the presence of vorticity is
that flow through curved shock waves results in entropy gradients and
thus by Crocco's theorem, vorticity. Also, since in nearly all cases
reported, the 1inviscid separated zone are ‘“captured" during the
iterations procedure by the numerical algorithm and the initial assumed
flow field is free of such separated zones, it can be argued that the
unsteady transient flow leads to entropy and vorticity in the part of
the flow field that is eventually "pinched-off" and trapped inside the
eddy. It should also be noted that while in theory, there exists a
dividing stream line between the trapped eddy and the outside flow field
and once formed, vorticity and entropy cannot enter the eddy, in actual
numerical computations the flow inside the eddy is coupled to the flow
outside the artificial viscosity and the boundary between the two zones
(which is smeared) may allow the total amount of entropy and vorticity
inside the change.

The third question may be the most important of all, since usually

the purpose of doing an inviscid computation is to provide some insight

as to how an actual viscous flow would behave without the expense of
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actually doing wviscous calculations, Since real fluids contain
viscosity, the first two questions, while of theoretical interest, do

not pertain to the numerical simulation of viscous flows.

This investigation had many different aspects to it, but the
primary effort involved an attempt to solve the transonic flow past
various two-dimensional configurations using various numerical
procedures. The four configurations which were chosen included a
rearward facing step, a "bump" in a channel, a circular arc airfoil, and
a NACA 0012 airfoil. For the first two configurations, the position of
the lower boundary was varied to study the effect of flow separation a
the curvature in the expansion region increased. The 1last two
configurations were used to determine how the numerical schemes could

handle somewhat more complicated geometries.

The grids for these configurations were produced using either
conformal mapping or algebraic and elliptic procedures. The conformal
mapping procedure has the advantage that it is fast and straightforward
and produces grid which are perfectly orthogonal as well as satisfy the
Cauchy-Riemann equations. Also when doing shock fitting, it is
necessary to recompute the metric terms each time the grid is moved and
this is done very easily if there exists a simple transformation which
can be used. The disadvantage is that a different mapping must be found
for each configuration which greatly restricts the geometrical
versatility of the method. Finally, the method cannot be extended to
three-dimensional regions in the general case. The algebraic and

elliptic methods were used for the last two problems and worked well,
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The numerical schemes which-were used included three Euler solvers
and a Navier-Stokes solver. The three Euler solvers included an
explicit Lambda scheme, a shock fitting version of this scheme and a
flux-vector splitting scheme. The first two schemes were coded by the
writer and the shock fitting version included some features developed by
the writer to enable the code to do imbedded shock fitting for the
regions which were considered. These included the use of polynomial
functions to smoothly blend the end of the shock to the grid line which
extended from the end of the shock to the upper boundary and the use of
least squares fitting to smooth the shock acceleration, velocity and
position as it was being computed in order to overcome stability
problems which were encountered. Even so, the method was not successful
in all cases. The first two schemes were also vectorized for the NASA
Langley VPS 32 supercomputer which greatly dincreases their execution
speed. The flux vector splitting scheme proved to be the most robust
and was easy to use. Generally, the convergence rate was also higher
with this code than with the explicit schemes although since it was not
vectorized, the overall execution time to get a converged solution was
of the same order of magnitude as the explicit schemes. The Navier-

Stokes code was also robust and was vectorized for the VPS 32.

The three inviscid schemes were run on configurations one and two
under a variety of conditions which were intended to examine the effects
of changing the position of the lower boundary (on configuration one the
upper boundary was also tested in three positions). The Navier-Stokes
was run under more limited sets of conditions since the writer felt that

-

the runs which were conducted were sufficient for comparison purposes.
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Schemes one and three were run on configuration four and an attempt
was made to do the shock fitting on this configuration but this was
unsuccessful. A new way to do the shock fitting, which does not move
the grid with the shock, is currently being developed but is not
available for use as of this writing. This method was not felt to be
necessary when this study was initiated and therefore was not included
in the proposal for this research. Scheme one was run on the MACA 0012
configuration four, but the position and strength of the computed shock
were not correct. Shock fitting has also been tried on this case but
again was not successful. However, the flux vector splitting scheme has
been run on this case extensively by von Lavante and the results as

reported by this scheme agree well with other reported results.

The major conclusions, which the writer believes can be made from

this investigation, are summarized below.

1. Conformal grid generation worked well for the simple two-
dimensional configurations which were generated as test cases. It

is fast and produced perfectly orthogonal grids.

2. For configurations three and four, algebraic and elliptic grid
generation was used successfully. This method has the advantage
that a grid can be produced for virtually any configuration. The
algebraic method is fairly fast but must be tuned to get good
results. The elliptic method will produce good orthogonality at
the boundaries provided the source terms are carefully
controlled. The elliptic method requires the solution of a coupled
set of PDE's and, therefore, results much more computer time than

either the algebraic or conformal methods.



198

3. The shock capturing Lambda scheme is an accurate scheme which was
easy to code and is based on characteristic theory. The scheme
gave results which were in good qualitative agreement with the
other inviscid schemes used. Unfortunately, since the equations
are solved in nonconservative form, the results at shocks were
generally not correct. Also, the scheme converged very slowly due

to the explicit CFL limitation,

4, The shock fitting scheme developed by the writer overcame the
disadvantage of the previous scheme by explicitly solving the
Rankine-Hugoniot jump relations through the shock. An adaptive
grid which moved with the shock was used to obtain a high
resolution of the correct shock shape and position. Vectorization
of the scheme was fairly straightforward and made the computations
fairly efficient despite the restrictive CFL limitation. The major
disadvantage is that the scheme (at least as it was used by the
writer) requires a conformal transformation to exist to enable a
rapid evaluation of the metric terms which must be updated each
time the grid is moved. For general configurations where no such
transformation exists, shock fitting is still possible but would be

more difficult to implement.

5. The flux vector splitting scheme was a robust code and achieved the
correct jump relations through the captured shocks without the use
of fitting. The scheme converged faster than the explicit codes

since the code is implicit which allows a much higher CFL number to

be used.
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Two configurations, a rearward facing step and a bump inside a
channel, were studied for flow separation. The inviscid cases were
run using various positions of the lower boundary to compare when
separation occurred. It was found that when the lower boundaries
were such that the channel transition were very gradual, no
separation occurred. However, as n, was brought closer to zero,
flow separation would eventually occur and it appeared to be
related to entropy gradients in the flow field downstream of the

shock which produced vorticity in the flow.

Grid refinement was done using the vectorized shock-fitting scheme
and the results did not indicate that the flow was less likely to

separate than on the coarse 81x41 grid.

As up is reduced to zero in the rearward facing step, it appears
form the results using the flux-vector splitting scheme that the
shock at the corner in the inviscid cases eventually is reduced to
a negligible size and the flow simply separates smoothly from the
corner with a single recirculation eddy. This is in agreement with
previous results obtained by Jameson [61]. This was not, however,
observed with the shock fitting code as it was not possible to get
results with lower than 0.4 since the resolution of the shock-

fitting grid was not adequate at the corner.

The viscous results which were obtained were significantly
different from the inviscid results in that flow separation
occurred due to the effect of the adverse pressure gradients on the
boundary layer and the flow was steady. In the inviscid cases,

separation appears to be due to vorticity at the wall produced by
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flow through the shock (which was not present in the viscous
cases). The viscous results generally showed an unsteady shedding
of vorticities from the leeside of the corner or the bump with
multiple recirculation zones; whereas, the inviscid results showed
no separation for the same position of the lower boundary. When
the lower boundary n, was reduced, a single recirculation zone

formed in the inviscid cases which was steady and was not shed.

Two additional configurations were investigated with the shock
capturing schemes and an attempt was made to do shock fitting. The
first was a simple circular arc airfoil and the second was a NACA
0012 airfoil, The shock fitting scheme was attempted on the
circular air airfoil but the conformal grid which was generated had
a discontinuity in the metric terms at the corner of the arc with
the lower boundaries which resulted in the production of an entropy
layer emanating from the front stagnation corner which made the
shock fitting Lambda scheme unstable. The flux vector splitting

scheme was run successfully on this configuration.

The NACA 0012 case was run with the shock capturing scheme one but
the shock position and strength were nor correct and shock fitting
was tried but so far has not been successful. This is due in part
to the need to adjust the grid by a fifth order polynomial to keep
adequate resolution at the leading and trailing edges. A different
type of shock fitting which holds the grid stationary while the

shock is moved may be necessary to avoid this problem.
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