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GUIDE TO READING THE REPORT

The reader Is encouraged to consult the Table of Contents In order

to maximize efficiency In reading this report. The Executive Summary (I)

summarizes key results from this effort and should be considered a road

map for determining areas of interest. The Introduction ( I I ) outlines the

basis and background for the study. There is then division into two major

components: productivIty/cover estimation at TM and AVHRR scales of

resolution (III and IV), followed by classification enhancement using TM

and biogeographleal data (V and V I ) . Each has a section devoted to

methods and another to results and discussion. Special attention is

recommended for the TM-AVHRR Scale-up sections ( I I I .D and IV.B) since they

describe much of the truly unique efforts In this project. The Overall

Conclusions section ( V I I ) reiterates some of the main points of the study

in the context of future needs. The Bibliography ( V I M ) and

Acknowledgements and Collaboration ( IX ) sections fo l low. Finally, the

Appendix (X) consists of Information on other extensive sites which

underwent only preliminary investigations (A), a short description of the

facil i t ies and equipment used in the project (B), a summary of papers and

presentations resulting from the study (C), and attached manuscripts and

abstracts resulting frcm the study (D).
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I. EXECUTIVE SUMMARY

Many pressing environmental Issues such as climate change and acid

precipitation are global or regional In nature. Resolving these Issues has

been di f f icul t In part because of their enormous geographic scale In

relation to ground-based measures. Satellite imagery Is the only source of

extensive, synoptic data on global physical and biological features;

however, not alI features of the biosphere can be measured directly. Some

must be modeled with process models that require spatially extensive

estimates of driving variables and parameter values. In many cases,

satellite sensors cannot measure even these variables and parameters

directly. The dilemma of developing spatially extensive estimates of

variables for which one only has local, ground-based, point estimates Is

unavoidable.

One approach to solving this dilemma is to make use of an underlying

functional relationship between a secondary variable, measured by a

satel lite sensor, and the variable of interest to develop a model that

predicts the desired information on the basis of the sensor data values.

This approach depends on the existence of (1) a functional relationship

between some sensor variable and the variable of Interest and (2)

ground-based data on the variable of interest that can be paired with

sensor data to develop the model parameters. These models may be developed
f.

by regression or classification techniques. Examples of biological

variables that have been related to satellite data In this manner are

leaf-area Index (Running £± .a!., 1986), vegetation cover (e.g., Hopkins £±

al, 1988), and absorbed photosynthetic radiation (Asrar.e±.al, 1984). By

applying the models to fu l l scenes of reflectance data, one can make

spatial |y extensive estimates of the variables. In taking this approach

one must consider:



1. The statistical properties of models that link grounds-based

values of a variable to satellite-sensed surface reflectance

characteristics.

2. Whether models that use fine-scale spectral Imagery to make

predictions can be extended to larger regions by nesting fIne-

and coarse-scale Imagery such as TM and AVHRR scenes.

3. How landscape heterogeneity and structure Influence the observed

relationship belween the Imagery and the ground-based data.

The objective of our research was to relate spectral Imagery of

varying resolution with ground-based data on forest productivity and

cover, and to create models to predict regional estimates of forest

productivity and cover with a quantifiable degree of accuracy. We took a

three-stage approach, outlined In Figure 1. In the first stage, we

developed models relating forest cover or productivity to TM surface

reflectance values (TM/FOREST models). We were successful In making this

TM/ground-based data link over four wide ly differing landscapes—southern

II I inois, the Great Smoky Mountains In Tennessee, the Adirondack Mountains

In New York, and the subalplne zone of the Colorado Rocky Mountains. In

all cases the models were based on functional relationships between forest

cover and forest productivity and landscape properties, phenology, and

canopy characteristics that affected TM-measured surface reflectance

characteristics. The TM/FOREST models were more accurate when

blogeographic information regarding the landscape was either (1) used to

stratify the landscape into more homogeneous units or (2) Incorporated

directly Into the TM/FOREST model.

The statistical properties of the TM/FOREST models were sufficient

to predict the mean or median forest productivity or cover of the

landscape with a quantifiable degree of accuracy (standard error of the
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estimate was ± 5 percent In some landscapes). The fine-scale

(pixel-tc-plxel) pattern of productivity was not wel I captured by these

models, as the standard error about any single pixel prediction of forest

productivity was greater than 30 percent. This results from heterogeneity

of forests even at the TM scale, which created a large degree of

unexplained variance despite the fact that the parameters of the model

were we l I estimated [e.g., the models were highly significant (p=<0.0001),

but r2 values were lowU. The error term for the average of all pixels In

a landscape is dominated by the error associated with the parameters. The

standard error about the expected value of a single pixel Is dominated by

the unexplained variance. Consequently, the TM imagery could be used

successfully to estimate the productivity and cover of a landscape but not

the pixel-to-pixel pattern of that productivity.

In the second stage, we developed AVHRR/FOREST models that predicted

forest cover and productivity on the basis of AVHRR band values.

AVHRR/FOREST models for the midwestern and southeastern regions of the

United States were developed by overlaying a partial TM scene, previously

used to generate landscape TM/FOREST models, with an AVHRR scene and

subsequently relating AVHRR band values to TM-predicted forest cover or

productivity (Fig. 8). These AVHRR/FOREST models had statistical

properties similar to or better than those of the TM/FOREST models. The

predicted forest cover value for an AVHRR scene encompassing Tennessee,

Georgia. Kentucky, North Carolina, and Virginia had a standard error of ±

4 percent. Furthermore, the AVHRR/FOREST models explained more of the

pixel-to-pixel variance; consequently, the models could be used to capture

some of the broad-scale patterns of forest cover and productivity.

In the third stage, we compared our regional predictions with

independent U.S. Forest Service (USFS) data. To do this we first created



regional forest cover and forest productivity maps using AVHRR scenes and

our AVHRR/FOREST models. From these maps we calculated county values of

forest productivity and cover. These Image-derived county-level estimates

of forest cover and productivity were then compared with USFS county-level

values of forest cover and productivity. In all Illinois-region cases our

forest cover estimates correlated wel I with those of the USFS (e.g., a

correlation of 0.97 for forest cover of 77 counties in Missouri, a

correlation of 0.87 overal I for a 10-state midwestern region composed of

432 counties). Our forest productivity estimates also correlated w e l l in

the I l l inois region with the USFS estimates (e.g., a correlation of 0.72

over all counties, and a correlation of >0.85 for counties within 200 km

of the calibration site). In addition, the overall estimates of mean

county percent forest and mean county annual growth were very close to

that of the USFS estimates for the region (e.g., 24.2 percent for AVHRR

vs. 21.6 percent for USFS estimates of percent forest, 39,300 cubic meters

per county for AVHRR vs. 43,000 for USFS estimates of growth).

Correlations and predictions were not nearly as good In the Smoky Mountain

region, but the two estimates were highly and significantly correlated.

Such results are a strong confirmation of the abllIty of our approach to

develop regional estimates of variables for which there are only limited

ground-based data and no direct means of measurement by satellite sensors.

It Is apparent that the landscape has a strong influence on the

success of our approach. We were most successful in the Midwest, where

forests are uniformly dominated by hardwoods, topography Is fair ly

consistent, and bodies of water are not an overwhelming feature of the

landscape. These three features al lowed consistent across-reglon

interpretation of the TM and AVHRR spectral Imagery. In the Southeast,

forests are mixtures of hardwood and conifer stands, topography ranges
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from the mountainous region of the Great Smoky Mountains to flatlands of

western Tennessee, and bodies of water, wh i le frequent, are also large.

Our AVHRR-based predictions were relatively poorer under these conditions.

Topography and conifer presence were influential because the AVHRR/FOREST

models for the Southeast were derived from the TM/FOREST models which had

been developed from ground-based data on hardwood forests In the Tennessee

Smoky Mountains. The TM-forest productivity model was based in part on

elevational temperature differences that were both captured by the TM

sensor and strongly correlated with productivity In that particular

landscape. In the Rocky Mountains the spatial pattern of the alpine and

subalplne vegetation was too fine to be captured even with TM data, but

was separated with the addition of blogeographlcal data such as slope,

aspect, and elevation. However, the four montane forest ecosystems were

not readily distinguishable with the avai lable information. We therefore

made no attempt to create AVHRR/FOREST models in this region because the

fine-scale spatial heterogeneity precluded use of that approach and

productivity data were unavailable. In the Northeast, we were less

successful In developing TM/FOREST models than In either the Midwest or

the Southeast, and preliminary efforts to develop AVHRR/FOREST models were

unsuccessful. This is apparently a consequence of two factors: (1) the

presence of many mixed hardwood-conifer stands and (2) the presence of

many small wetlands and lakes. We were successful In developing TM/FOREST

models only when we stratified the data based on forest type. In the

larger AVHRR pixels, the forest/band value relationship was confounded by

the extreme heterogeneity of the landscape, and we were unsuccessful in

deriving a significant relationship.

In summary, an approach of using nested scales of Imagery In

conjunction with ground-based data can be successful In generating
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regional estimates of variables that are functionally related to some

variable a sensor can detect. Furthermore, this approach permits the error

associated with such estimates to be documented. The approach w i l l be most

useful In regions In which either (1) the functional relationship Is not

confounded by other features of the landscape or (2) confounding landscape

features can be stratified to reduce the overall variance. As new sensors

are developed, more biosphere variables w i l l be functionally related to

satellite measurements. Our ability to detect global processes and map

global patterns w i l l depend on our abllIty to capitalIze on these

relationships.
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II. INTRODUCTION

Many pressing environmental Issues such as climate change and acid

precipitation are global or regional In nature. Resolving these Issues has

been dif f icult In part because of their enormous geographic scale In

relation to ground-based measures. Satellite Imagery Is the only source of

extensive, synoptic data on global physical and biological features.

Satellite sensors can directly measure many of the significant features

which define and regulate the habltablllty of the globe; however, not all

features of the biosphere can be measured directly. Some must be modeled

with process models driven by physical and biological variables. The

utility of these models for making regional or global predictions w i l l

depend In part on acquiring spatially extensive estimates of driving

variables and parameter values. In many cases these variables and

parameters w i l l be di f f icult If not Impossible to measure directly from

data collected by the satellite sensors. The dilemma of developing

spatially extensive estimates of variables for which one only has local,

ground-based, polnt estimates Is unavoidable.

One approach to solving this dilemma is to make use of an underlying

functional relationship between a secondary variable, measured by a

satellite sensor, and the variable of Interest to develop a model that

predicts the desired Information on the basis of the satel lite sensor

data. This approach depends on the existence of (1) some functional

relationship between some sensor variable and the target variable and (2)

ground-based data on the variable of interest that can be paired with

sensor data to develop the model parameters. These models may be

developed by regression or classification techniques. Examples of

biological variables that have been related to spectral data in this

manner are leaf area index (Running .e± ,a_i., 1986), vegetation cover types



13

(Hopkins £± .al., 1988), and absorbed photosynthetlc radiation (Asrar .fi±

alp 1984). In each of these cases the sensor was Incapable of directly

measuring the variable but measured a surface reflectance characteristic

that was directly related to the target variable. By applying the models

to fu l l scenes of reflectance data, one can make spatially extensive

estimates of the variables.

In making this linkage of spectral Imagery and ground-based data,

one must consider:

1. The statistical properties of models that link ground-based

values of a variable to satel I Ite-sensed surface

reflectance characteristics.

2. Whether models that use fine-scale spectral Imagery can be

extended to larger regions by nesting fine- and

coarse-scale Imagery such as TM and AVHRR scenes.

3. How landscape heterogeneity and structure Influence the

observed relationship between the Imagery and the

ground-based data.

These Issues w i l l become Increasingly significant as we attempt to

measure global patterns and processes. The success of the Earth Observing

System (EOS) and Its moderate and high resolution Imaging spectrometers

(MORIS and HIRIS) w i l l depend In part on our abil i ty to use satellite

Imagery to extend local, ground-based data to larger regions.

It Is we l l known that current satellite technology can be

successfully used for a large number of ecologically meaningful analyses

over relatively small areas. Innumerable examples exist for using such

data to map and quantify vegetation on the landscape. Patterns of

land-cover change over time have been assessed with multi-temporal data

(Colwel l , 1980; Hoffer. 1984; Woodwel I .£±.91., 1984; Hall £±.al., 1987;
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Iverson and Risser, 1987; Sader and Joyce, 1988). Use of satellite data

for determination of some functional attributes of conmunitles, —

ecosystems, landscapes, and regions Is now becoming Increasingly Important

with Investigators and funding agencies. For example, satellite data are

being successful ly used In assessments of vegetation stress due to

disease, Insect damage, drought, and pollution (Jackson, 1986; Rock j§±

.al., 1986; Vogelmann and Rock, 1986; W i l l i a m s and Nelson, 1986).

Vegetation productivity or blomass estimates have been made for several

different ecosystems with a variety of sensors (Tucker, 1980; Lulla,

1981).

Most of these studies have been with agronomic crops (Idso et a I.,

1977; Gardner .e± .ai., 1982; Conese .e± .al., 1986; Redelfs.ei.al., 1987),

grasslands (Pearson Q± .al., 1976; Olang, 1983), wetlands (Butera et al.

1984; Hardisky e± M., 1984), or shrublands (Vinogradov, 1977; Strong s±

a I. f 1985; Pech je± _§!., 1986), and coniferous forests or plantations

(Butera, 1985; Fox jg± .al., 1985; Jensen and Hodgson, 1985; Franklin,

1986; Peterson <e± .al., 1986; Running £±_al., 1986; Peterson £± .ai., 1987;

Wu and Sader, 1987). These studies reported varying degrees of success,

with the relationships generally poorer as the system in question became

structurally and functionally more complex (I.e., uneven-age forest

systems have less rel iable predictions of productivity or biomass than do

most agronomic systems). Additionally, very little work has been reported

for estimating forest productivity in deciduous-dominated forests, and

none of these studies attempt to extend the relationships over large

regions.

Advanced Very High Resolution Radiometer (AVHRR) data have been

reported as very useful in monitoring gross correlates to primary

productivity at the continental scale (Goward £± _ai., 1985, 1987; Tucker
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.£±.91., 1985, 1986; Shimoda .e± .al., 1986; Townshend and Justice, 1986).

The normalized difference vegetation Index (NDVI), when Integrated over a

growing season, has been highly correlated with preliminarily estimated

net primary productivity of 24 North and South American blomes (Goward et

3±., 1987). Sadowskl and Westover (1986) also used AVHRR data

successfully as an estimator for rangeland greenness In monitoring

grassland fire-danger hazard in Nebraska. It is generally difficult,

however, to obtain ecologically va l id estimates of primary productivity or

other ecological parameters across an AVHRR scene directly since it Is

logistically difficult to obtain ground observations over such large

regions for comparison to AVHRR remote-sensed information (Curran and

WII liamson, 1986).

One approach in estimating continental land cover has been to use

multilevel sampling procedures with Landsat MSS data; this method carries

potential although considerable numbers of scenes would need analysis to

reduce standard errors of the estimates (Nelson MM., 1987). The

combination of AVHRR and Landsat data provides another mechanism to

calibrate ecologically meaningful information on the ground over vast

areas. Conifer biomass modeling over large areas has been accomplished

with some degree of success with the combination of MSS and AVHRR data

(Logan, 1983; Logan and Strahler, 1983); the merger of TM and AVHRR for

ecological purposes has not, to our knowledge, been reported.

Understanding and estimating the spatial pattern of forest cover and

productivity at large scales Is Important for understanding biosphere

processes. Forest covers an estimated 2.5 x 109 ha of the earth's surface

(Southwlck, 1985) and are a dominant feature of the global carbon and

hydrologlcal cycles (Moore, 1984; Southwlck, 1985). Forests provide not

only lumber, fuel, and paper for humanity, but also habitat for the
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world's w i l d l i f e . The abundance and pattern of forests across a landscape

can have significant effects on both w i l d l i f e and the economic well-being

of a society.

Because of the size and longevity of trees, forest productivity is

diff icult to measure directly (Lieth and Whittaker, 1975); ground-based

estimates of forest productivity tend to be localized and Infrequent In

many parts of the world (Olson, 1975; Goward .e± .ai, 1987). Consequently

spatial patterns and absolute values of forest cover and productivity have

been difficult to quantify at larger scales (Olson, 1975; Nelson and

Hoi ben, 1986; Nel son £± .gj.., 1987).

The objective of our research was to relate spectral imagery of

varying resolution with ground-based data on forest productivity and cover

to create models capable of predicting landscape and regional estimates of

forest productivity and cover with a quantifiable degree of accuracy. Our

strategy was to use satellite imagery to extend ground-based values of

forest productivity and cover to landscape and regional estimates of cover
s

and productivity. We took a three-stage approach (Fig. 1). The key

questions which we addressed were:

1. Are there functional relationships between TM-observed

surface reflectance characteristics and ground-based

measures of forest cover and productivity that can be used

to create TM-based models of forest, cover and productivity

(TM/FOREST models)? Can spatial differences in forest

productivity be used in l ieu of temporal differences In

developing that model?

2. What are the statistical properties of such TM/FOREST

models? How do their statistical properties control their

util ity?



TM quarter scenes

(IL, TN, NY, CO)

Ground—based data

(IL, TN, NY, CO)

Develop TM models of
forest cover/productivity

Quantify model accuracy

Create landscape maps of
forest cover/productivity

Landscape maps of
forest cover/productivity

AVHRR scenes

Midwest
Southeast
Northeast

County boundary map

U. S. Forest Service
county—level data on
forest cover/productivity

Develop AVHRR models of

forest cover/productivity

Create regional maps of

forest cover/productivity

Regional maps of
forest cover/productivity

*Verify AVHRR-derived maps
a)Calculate county—level
forest cover/productivity
from AVHRR maps.
b) compare AVHRR county
data with Forest Service
county data

Fig. 1. Three-stage approach to ground-TM-AVHRR
investigations reported in this study.
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3. Can these TM/FOREST models be used in conjunction with

nested TM and AVHRR Imagery to develop coarse-scale

AVHRR/FOREST models that are appl icable to extensive

regions?

4. Can such AVHRR/FOREST models be used In conjunction with

AVHRR Imagery to develop rel iable regional maps of forest

cover and productivity?

5. How does landscape heterogeneity and structure affect the

utility of our approach for extending ground-based data?

In the first stage of our research, we examined the relationship of

TM surface reflectance values and forest cover or productivity In four

wide ly differing landscapes—southern Illinois, the Tennessee Smoky

Mountains, the Adirondack Mountains of New York, and the alpine to montane

zones of the Colorado Rocky Mountains. Ground-based data on forest cover

and productivity were paired with TM spectral data of l ike resolution to

develop models predicting forest cover or productivity from TM band values

(TM/FOREST models). In the second stage, we paired AVHRR data with

predictions of forest cover or productivity derived from TM/FOREST models

to develop models predicting forest cover or productivity from AVHRR band

values (AVHRR/FOREST models). In the third stage, we evaluated our

multi-stage, multi-sensor approach for extending limited ground-based data

by comparing regional predictions of forest cover and productivity

generated with our AVHRR/FOREST models to Independent USFS data.

In summary, our approach was to use nested scales of Imagery In

conjunction with ground-based data to generate quantIf 5ab l y accurate

landscape and regional estimates of two variables (forest cover and forest

productivity), both of which cannot be directly measured by a sensor but
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are functionally related to surface reflectance characteristics that TM

and AVHRR sensors can detect.

III. PRODUCTIVITY/COVER ESTIMATION METHODS

A. Study Sites

1. Southern II IInols

The southern I l l inois study area ranged from less than one

county to about 10 states In size, depending on the component of the study

(overall study area depicted In Figure 2). ATM-CIS (TM/FOREST) model for

forest productivity was generated for the northern half of Pope County,

II IInols. This area was also used as the calibration point for AVHRR

productivity estimates (AVHRR/FOREST models). A nearby county, Jackson,

was also the location for the cal ibratlon of AVHRR data for percent

forests over a 10-state area centered on Illinois. A seven-county area In

southern Il l inois (Including Pope and Jackson counties) was used for

regression model building to compare mean forest production as estimated

by the USFS to TM spectral signatures and ancillary GIS data.

The seven-county study area In southern Ill inois averages about 36

percent forest cover and contains the Shawnee National Forest; It Is the

most densely forested portion of the state (Hahn, 1984). The area had over

95 percent forest prior to European colonization In the early 1800s

(Iverson .eJt .al., 1986). These forests are part of the central hardwood

zone of the eastern deciduous forests, and grow on a wide variety of

sites.

Bottomland forests—primarily pin oak, cottonwood, maple and

elm—exist In the major flood plains of the Mississippi and Ohio rivers

and In the narrow val leys of smaller streams. Southern I l l inois'

bottomlands, about 100 m above sea level, are extremely fertile because of



Fig. 2. Illinois region study area consisting of 10 states,
432 counties centered on Illinois. Also shown is
the set of 100 km rings around the Jackson County
calibration site.
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continual deposition of new sediment from upslope and upstream erosion,

but In some Instances are restricted In productivity because of poorly

drained sol Is.

The terrain of upland forest sites varies from level to steeply

rolling, with deep loess to thin, rocky soils. In many areas of southern

Illinois, forests persist only because steep slopes or soil conditions

have limited agricultural use of the land. Most of the state's highest

elevations occur here, but these reach only about 350 m above sea level

such that elevation alone would not be expected to Influence vegetation.

Aspect and position does, however, Influence the vegetation qual Ity and

quantity. Upland forests In the region are largely oak-hickory

associations. There are small amounts of shortleaf pine plantations In the

region, planted mostly on upland sites that were formerly agricultural

f ields abandoned In the 1930-1950 period.

The southern Il l inois study area Is cold In winter and hot In

summer, with average dally temperatures of 2 and 25°C in January and July,

respectively. Mean annual precipitation Is about 1,060 mm, and Is fair ly

uniformly distributed across.the year. Winter precipitation generally

results In sufficient accumulation of soil moisture, which minimizes

summer drought on most soils (Herman, 1979). The average growing season

length (days above 0°C) Is 169 days, the period during which 55 percent of

the annual precipitation fal ls.

2. Great Smoky Mountains

The TM/FOREST productivity analysis area In this region was

•
located In the western portion of the Great Smoky Mountain National Park

In Tennessee and North Carolina (Cades Cove 7.5 minute quadrangle) (Fig.

3). The area covers a complex set of ridges and val leys general ly



Ttntmur North Carolina Boundary of Great Smear Inwrauu, Federal,and State Location of reologie Mellon*
boundary Mounuin. National Part hi«hw.,m.,ith hvh»a> nombcn •hown on f

NORTH CJLROUMA

Fig. 3. Smokies region study area with the Cades Cove
quadrangle as the intensive study site.

ORIGINAL PAGE IS
OF. POOR.

Huntlngton
Wildlile
Forest

Fig. 4. New York's Adirondack Mountains study area with
the Huntington Wildlife Forest as the intensive
study site.
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oriented In a north-south direction. Elevation ranges from 270 to 2024 m.

Only 20 percent of the landscape Is pristine. The other 80 percent has

experienced direct human disturbance In the form of logging and farming,

although these activities almost ceased 50+ years ago with the Park's

establishment In 1934.

The climate In the Park Is strongly Influenced by the abrupt

changes In elevation and the complex topography of the Great Smoky

Mountains. Temperatures In February range from a monthly mean of 4.4°C at

445 m to -1,8°C at 1,919 m. July temperatures show a much more pronounced

elevatlonal difference, averaging 22.1°C at 445 m and 13.6 at the 1,919 m

elevation. Precipitation Increases with elevation. October Is the driest

month wh i le February and March are the wettest.

The complex topography and extensive disturbance have created a

finely patterned mosaic of vegetation communities. Successlonal forest

covers much of the park. Cove forests containing 10 or more tree species

occupy the sheltered mid-slope positions. On exposed Icw-to-mlddle

elevation slopes, oaks, pines, black gum, sourwood, and red maple are

found. Higher slopes have northern hardwood and hemlock communities, with

spruce-fir at the highest elevations.

Regional extrapolation using AVHRR data encompassed portions of six

states, from Kentucky In the northwest to Georgia In the southeast. The

TM analysis for the Cades Cove area provided data for the scale-up

approach with AVHRR.

3. Huntington W l l d l ife Forest, New York

The Huntington W i l d l i f e Forest is managed as a research forest

by the State University of New York (SUNY), College of Environmental

Science and Forestry, Syracuse. The Forest Is a 6,000-ha f ie ld station
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located In the center of the Adirondack Mountains near Newcomb, New York

(Fig. 4).

The vegetation of the Huntlngton Forest Is transitional between the

boreal forests to the north and the hardwood forests to the south. Of the

5,073 ha of forest. 3,409 ha are classif ied as northern hardwood (beech,

sugar maple, ye l low birch), 1,066 ha as hardwood-conifer (primarily red

spruce and balsam fir with hardwoods), and 598 ha as conifer (white pine,

white cedar, eastern hemlock). Elevations of the Forest range from 475 to

820 m above sea level. At the higher elevations, red spruce and balsam

fir are the major species, whereas the hardwoods dominate the intermediate

zones where soils are deeper and drainage Is better. Eastern hemlock, red

spruce, and balsam fir also occupy the poorly drained bottomlands around

lakes and streams. The area was glacial ly scoured and has about 10

percent surface water.

The climate is cool and moist, with a mean annual temperature of

5.5°C (January -8.8°C, July 18.8°C). The average annual frost-free period

is 122 days, with snowfal I varying from 2,500 to 5,000 mm annually and

snow cover continuous frcm early December to mid-April.

B. Data

1. Thematic Mapper (TM)

Thematic Mapper data were acquired for about 25 areas of the

United States and Canada. Preliminary processing was done on many of

these data w h i l e the project methodology evolved. As areas were selected

for which the best combinations of all types of data were available, the

fo l lowing TM data sets covering these areas were processed extensively. A

comprehensive listing of all project TM data was provided in earlier

progress reports (Iverson ejt .al., 1986a, 1986b, 1987).
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These were the quarter scenes processed for southern Illinois:

Path Row Quad Date of Coverage Quality

23 34 2 7/18/84 Clear
4 Clear

22 34 1 5/24/84 Clear
3 Clear

These data covered two geographically disjunct portions of the Shawnee

National Forest in southern Illinois, and In conjunction represented the

seven-county region of the State studied in the TM-productlvity analysis.

For the Great Smoky Mountains, the fo l lowing scenes were processed:

Path Row Quad Date of Coverage Qua I ity

19 35 4 9/8/84 Clear
19 35 4 10/26/84 Clouds 15$

These two quarter scenes provided multi-temporal coverage of the area

surrounding Cades Cove quadrangle. The 9/8/84 quarter scene, because It

was collected before significant senescence of the trees, was the more

useful data set. although both scenes were processed.

At the Huntfngton W i l d l i f e Forest in New York, two dates were

observed:

Path Row Quad Date of Coverage Qua I ity

14 29 3 6/17/84 Clouds 10$
14 29 3 9/21/84 Clouds 15$

In addition to these TM data sets for the Huntington W i l d l i f e Forest

analysis, the two scenes were normalized for solar irradiance to reduce

between-scene variabil i ty (Markham and Barker, 1986). The calibrated data

sets were merged by means of ratioing like bands from each date. The

multi-temporal ratios were combined with the original data from both dates

to generate a third TM data set.
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2. Advanced Very High Resolution Radiometer (AVHRR)

AVHRR data used In the study were acquired from two

sources. Initial ly,, the data were avai lable only from Satel lite Data

Services Division of NOAA. The data purchased from NOAA were HRPT format

and required georeferencing In order for them to be useful In the

methodology of this study. Diff icult ies were encountered In the

transforming the data to UTM coordinates with a I inear transformation

algorithm, especially due to off-nadir distortions. At about that time in

the project, EROS Data Center had perfected a georeferencing technique and

were making geocoded AVHRR available to federal researchers. Therefore,

geocoded AVHRR data of the Il l inois, Great Smoky Mountains, and New York

study areas were also acquired. The descriptions below mention which data

were used for each area and the dates of coverage.

Geocoded AVHRR data collected 6/4/87, and covering all or some of

Arkansas, Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota,

Missouri, Tennessee, and Wisconsin, were obtained from EROS Data Center

for the I l l inois region. The data has been referenced to the UTM

coordinate system and resampled to a 1110 m x 1110 m pixel size. AVHRR

Bands 1-4, v is ib le to thermal range, were Included In this data set.

For the Smoky Mountain region, HRPT format AVHRR data collected

9/28/85, and covering alI or some of Georgia, Kentucky, Mississippi, North

Carolina, South Carolina, Tennessee, and Virginia, were purchased from

NOAA. Four bands of information were Included. Linear transformation to

the UTM coordinate system was of acceptable accuracy, aided by the

uniqueness of Cades Cove as an open area surrounded by a rather

homogeneous forested landscape. Pixel size was 1,110 m x 1,110 m.

Geocoded AVHRR data collected 6/17/87 and covering the northeastern

United States ( including the Huntington W i l d l i f e Forest), were obtained
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from EROS Data Center. The data have been referenced to the UTM

coordinate system and resampled to 1,110 m x 1,110 m pixels. Four

spectral bands were also Included In the data set.

3. Productivity

Fundamental to the TM-forest productivity analysis

technique of this study was the availabil i ty of f ie ld data estimating

forest productivity at a particular site. These data needed to be: (1)

col lected at a resolution similar to the TM data (30 m x 30 m), (2)

measurements representative of the conditions "seen" by the satellite when

the TM data were collected, and (3) Identified In such a way that the

exact locations of the plots (in UTM coordinates) were known or could be

determined. QualIty and number of these ground measurements varied by

study area and are discussed below In more detail. We recognize that our

productivity data are not estimates of entire ecosystem productivity, but

only major components of that ecosystem production. For purposes of the

discussion here, the term productivity is used even though we are only

estimating a portion of the total ecosystem productivity.

An inventory of I l l inois forest land was completed by the USFS In

1985. The data for 32 sample points from the Inventory occurring In the

study area were made avai lable by the USFS for this study. Field plots

varied in size according to land use patterns and tree size, but averaged

0.4 ha. Measurements taken at each site al lowed for the calculation of

mean annual increment (MAI) as an estimate of the main woody (above

ground) part of total ecosystem productivity. MAI Is defined In this case

as the cubic volume of hardwood growing stock at a site divided by stand

age (cu/A/yr). Volume and age of the plots were extrapolated frcm trees

which had diameters in excess of 12.5 cm at breast height. Plot locations,
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referenced to the nearest meter of UTM, were randomly selected to

represent the conditions of forests In southern Il l inois.

Forest productivity data for the Great Smoky Mountain study site

were stand bole volume growth estimates taken from Call away (1983-Je. These

data were developed from tree core measurements of 128 20 m x 50 m

National Park Service permanent plots. The plots were selected to be

representative of topographic range and degrees of disturbance In the

Park. Plot elevations ranged from 523 m to 1,540 m. No spruce^fa*r stands

were Included. Each plot was divided Into f ive subplots and a random

sample tree was selected within each subplot. In order to represent the

canopy species production exclusively, only trees with diameters greater

than 30 cm at breast height (1.3 m) were chosen. Each sample tree was

measured for diameter at breast height, bole height and 10-year radial

growth increment. Bole volume growth (mVyr) was calculated as -follows:

Annual individual bole volume growth = pi/3 x H x • (1)

(r2 _ (r-|)2)/lO

where r = radius at breast height (m),

H = bole height (m),

and I = 10-year radial growth Increment (m)

Stand bole volume growth (m3/ha/yr) was calculated by mult ip ly ing the

average annual bole volume growth of the sample trees by 10X the number of

trees greater than 30 cm diameter at breast height wi thin the permanent

plot. These data are very approximate estimates of bole volume growth of

these stands and should be viewed really as indexes of forest productivity

rather than actual forest productivity. However, the large sample size

and diversity of site situations represented by the plots made the data
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set suitable to this methodology even though Important components of total

ecosystem production are missing (Olson, 1971; Graham .e± _ai., 1988.

Continuous forest Inventory plots were established In 1970 at

Huntlngton W i l d l i f e Forest by the SUNY Department of Environmental Science

and Forestry at Syracuse. Remeasurements of the plots were taken In 1976

and 1981. Data from 173 of -ftiese plots were available for the TM

analysis. Using the repeated measurements of tree diameter, coupled with

published biomass regression equations for tree species found In the

region, stand productivity at each site was clculated as change In l ive

above-ground biomass plus mortality (kg/ha/yr). This measure of

productivity In biomass was used as an index of forest productivity.

4. Biogeographical

Blogeographical data Included any ecological attributes of

the landscape avai lable for a study site that were considered to be

potentially Important either as an Independent variable used for

explaining variability in forest productivity, or as a stratification

variable for generating more homogeneous samples In TM and productivity

data being analyzed. When possible, data were acquired In digital format.

The quality and types of biogeographical data avai lab le varied by study

site and are described below.

a. High Resolution

The I l l inois study site was in part selected because of

high quality, high resolution data avai lab le from the I l l inois GIS,

including landscape position, soil associations, slope angle and aspect,

and vegetation community types. These were rasterized, reformatted, and
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directly Integrated with the TM and productivity data with Image

processfng/G IS software.

Additional ly, site Information data w€8-e;col lected for 'each

Inventory plot by the USFS. Moisture class xfece'rlc, mesic, hydrcmeslc, or

hydrlc) and slope angle, aspect, and posltlorfdone of the four quarters of

the slope face) were Incorporated with the orBrer data. Woodland

productivity Indexes were translated from thelcSotl Conservation Service's

ratings of soil mapping units on their abiltty't'to produce timber

(Fehrenbacher .e± .al., 1978); sun radiance Indexes were ca I cu I ated from

aspect, slope angle, and latitude (Frank anddfee, 1966).

Callaway (1983) had documented elevation, aspect, slope, topographic

position, soil depth, forest type, distance t<0 nearest stream, and

disturbance history of each plot location diim{ng his f ie ld work, and these

were Included In the TM-productlvity analysls"cfor the Smoky Mountain study

area. A digital elevation model for the Cade! Cove quadrangle was also

used to project modeling results In three dimensions for better assessment

of roles played by elevation and aspect In effecting forest production.

Soil mapping units for Huntington WII d| l'f,e Forest were digitized,

and from these soil capacity for timber production was interpreted (sugar

maple site Index). Slope angle and aspect were" known for each Inventory

plot, as was forest community type. Sun radiance Indexes were calculated

from slope angle, aspect, and latitude data.

b. Coarse Resolution

The Oak Ridge National Laboratory Geoecology data base

(Olson, 1980) was used for verification of the-AVHRR regional scale-up

work (Section III D). The data set Is a compilation of published data

from the USFS ranging in age from 1965 to 1980^ and contains data on
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percent forest cover and annual growing stock growth at county resolution.

The III Inols data In the Geoecology data base predated the most recent

figures published after the Inventory of 1985 (Hahn, 1987). These updated

estimates were also Included In the regional AVHRR analysis.

For the Smoky Mountain region, estimates of percent forest and

forest production for 187 counties under Jurisdiction of the Tennessee

Val ley Authority (TVA) were Incorporated with the Geoecology data and

tested. The TVA data were considered an Improvement over the Geoecology

Information, largely because TVA Included non-commercial forest lands In

their estimates.

C. TM Productivity Analysis

Several methods were used to analyze the utility of TM data In

explaining the variance In forest productivity. Regardless of the

technique or study area, similar preprocessing steps were necessary In

order to merge the TM and productivity data. An Image processing

algorithm was written that created a GIS output f i le Identifying the

pixels pertaining to ground sample points when given the UTM coordinates

of their locations. By overlaying the two files, the GIS f i le was used to

extract a 3 x 3 window of TM pixels surrounding the ground sample point

and combine these data In an ASCII f i l e for subsequent processing by SAS

statistical analysis software. The reasons for using a 3 x 3 window of TM

pixels were to a l l ow for registration errors In both data sets and to take

into consideration that the ground plots were larger than a TM pixel.

Other blogeographical data were mostly collected with the productivity

information and could therefore be merged into the ASCII f i l es using the

plot identification. Exceptions were noted above In the descriptions of

blogeographical data by study area.
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1. Correlation

a. Southern II I inols

Correlations were run between the estimate of forest

productivity in cu ft/A/yr (MAI) and the variables listed In Table 1.

Table 1. Variables correlated with forest productivity estimates and used
as independent variables In regression analyses for Illinois.
Non-numeric biogeographical data were ranked as to expected
effect on productivity.

1. AlI single band values (9 pixel averages)
2. Al I possible band ratios (9 pixel averages)
3. Transformed vegetation Indexes (Tucker, 1979) (9 pixel averages)

a. (Band4 - Band2)/(Band4 + Band2)
b. (Band4 - Band3)/(Band4 + Band3)
c. (Band5 - Band2)/(Band5 + Band2)
d. (Band5 - Band3)/(Band5 + Band3)

4. Site moisture (xeric, xeromeslc, meslc, hydromesIc,and hydric)
5. Slope angle (percent)
6. Slope position (quarters of the slope face)
7. Aspect
8. Soil woodland productivity indexes
9. Sun radiance Indexes

b. Great Smoky Mountains

Correlation analyses were performed with forest plot

volume growth (cu m/ha/yr) or its natural log and TM and biogeographical

values associated with the plots. The TM variables that were Investigated

are I Isted In Table 2. In al I cases the mean TM val ue of the 3x3 pixel

window associated with each forest plot location was used. Principle

component values for pixels were generated by applying the ERDAS principal

components program (PRINC) to the September TM scene. Because conifer

canopies have very different reflective properties than hardwood canopies

and thus confound the TM relationships, the plots were also stratified
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into hardwood, conifer, and mixed community types to test for Improvements

In the correlations.

Table 2. Variables correlated with forest productivity estimates and used
as Independent variables In regression analyses for the Great
Smoky Mountains.

1. All single band values (9 pixel averages)
2. All possible band ratios (9 pixel averages)
3. 4 TM vegetation Indexes (9 pixel averages)

(Band4 - Band4)/(Band4 + Band2)
(Band4 - Band3)/(Band4 + Band3)
(Band5 - Band2)/(Band5 + Band2)
(BandS - Band3)/(Band5 + Band3)

4. TM principal component values 1-7 (9 pixel averages)
5. Plot elevation (m) .
6. Plot slope (percent)
7. Plot distance to stream (m)
8. Plot drainage - hectares of watershed above plot

c. Huntington W i l d l I f e Forest, New York

Correlations were run between TM values, biogeographlcal

data, and estimates of forest productivity (kg/ha/yr) for the 173

continuous forest Inventory plots of the Huntington W i l d l i f e Forest. The

TM and biogeographical data used are listed in Table 3.

Table 3. Variables correlated with estimates of forest productivity, and
used as Independent variables In regression analyses for the New
York site.

1. All single band values (9 pixel averages)
2. All possible band ratios (9 pixel averages)
3. 4 TM vegetation Indexes (9 pixel averages)

(Band4 - Band2)/(Band4 + Band2)
(Band4 - Band3)/(Band4 + Band3)
(BandS - Band2)/(Band5 + Band2)
(BandS - Band3)/(Band5 + Band3)

4. Same band temporal band ratios (e.g. JuneTM3:SeptemberTM3)
5. Soil woodland productivity Indexes
6. Sun radiance indexes
7. Slope angle (percent)
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Stratified correlations were also run using aspect and community

types as the strata. Using eight aspect directions resulted in sample

sizes too smalI for some of the directions, so they were grouped Into

three general categories: E, SE, and S; N, NE, and NW; and W and SW.

These were Intended to represent the general aspect orientations known to

effect plant communities. Forest community types are listed In Table 4.

Table 4. Community types of Huntlngton W i l d l i f e Forest (New York) used
for correlation and regression stratification.

1. White pine, white cedar
2. Beech
3. Red spruce, ye l low birch, balsam fir, red maple, beech
4. Red maple, yel low birch
5. Sugar maple, beech, yel low birch
6. Sugar maple, beech

2. Regression Modeling

a. Southern II IInols

Multiple regression analysis was used to investigate

which TM and blogeographical data best accounted for the variance in the

forest productivity Index. The method of multiple regression used was

called R-SQUARE In SAS, which ranks the models from best to worst (by

largest r2) for all possible combinations of the Independent variables

being used. Diagnostics were also run to investigate problems of

col linearity among the independent variables. Independent variables were

weeded from the analysis if they were highly correlated with other

Independent variables that contributed more to the r2 of the model.

Ultimately a model was selected as "best" based on the highest adjusted

r2, significance of the model, a high probability that the parameter of
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each variable In the model was non-zero, and that the model did not

violate regression assumptions concerning col Itnearlty. Variables

Investigated as Independent variables for I l l inois are listed above In

Table 1. Once a model was selected, Its mathematical formula was applied

to each TM pixel of the Illinois region to generate a productivity map.

b. Great Smoky Mountains

All comments made above concerning regression analysis

for -the Ill inois study site also pertain to the Smoky Mountains.

Additionally, with the advantage of more sample points of productivity

data, the Smoky Mountain regression analyses included stratification by

forest associations of hardwood, mixed, and conifer. Independent variables

are listed above In Table 2.

c. Huntington Wi ld l I fe Forest, New York

Variables used as Independent variables In the

regression analyses are listed In Table 3. Once again, techniques were

similar to those discussed under Il l inois. Regression was also performed

with stratification by three aspect categories and six forest community

types (Table 4).

3. Classlf tcatlon/ANOVA

a. Great Smoky Mountains

An unsupervlsed classif ier was applied to the September

TM scene to classify the pixels into 35 categories. Using topographic

maps, some famil iarity with the area, and mean band values for each of the

35 classes, the classes were Identified as water, non-forest, or forest.

The TM cover classes for the nine pixels ( 3 x 3 blocks) associated with
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the point location of each forest productivity plot were written to an

ASCII f i le for statistical analysis. Each plot was assigned to the class

that occurred most frequently within the nine pixels (none was associated

with non-forest or water). Only plots In which the most common class

occurred In at least four of the nine pixels were used In subsequent

statistical analyses. Of the 128 plot locations, only f ive plots had. to

be dropped for this reason. Another 12 plots were dropped because of

Insufficient sample plots within a class type, I.e., only one to four

plots had that class type. The plot frequency distribution of six class

types that were associated with at least six forest productivity plots was

virtually Identical to the frequency distribution of those classes within

•the entire classified scene.

Once each plot had been assigned to a class or dropped from the data

set for the reasons above, analysis of variance was performed on the data

in several ways. Both stand volume growth and the natural log of stand

volume growth were used as dependent variables. An unbalanced 1-way

analysis of variance was performed to determine if TM class type could

explain a significant portion of the observed variation In forest

productivity (ANOVA Model I). A covariate variable, plot elevation, was

then Introduced Into -ftie 1-way analysis (ANOVA Model II). In the third and

fourth tests, pure pine plots were elIminated from the data set and a

1-way analysis of variance was performed with and without the covariate

variable of elevation (ANOVA Models III and IV). The plots were also

classed Into four aspect classes (NE, SE, SW, and NW), and a 2-way

analysis of variance using TM class and aspect as the independent

variables was performed. Analysis of variance using plot elevation, plot

slope, or plot distance to water as the dependent variable was also used

to examine the relationship of class type to these features. Using results
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from the analyses of variance, productivity values were assigned according

to the classes for each forested pixel In the region to produce a-

productlvity map of the region.

The October scene was also classif ied in the same manner as the

September scene with the Intention of performing the same analyses.

However, once the class values for the nine pixels surrounding each plot

location were extracted from the classified October scene, it became

apparent that further analyses would be fruitless because (1) far fewer of

the plots were associated with four or more pixels with the same TM class

and (2) there were few TM classes which had six or more plots associated

with them.

b. HuntIngton W i I d l i f e Forest, New York

The June TM data for Huntlngton W i l d l i f e Forest (Fig.

5) were classif ied Into 30 classes using the unsupervlsed classifier,

which were subsequently Identified as water, non-forest, or forest. As

described In the Great Smoky Mountain methodology, nine pixel blocks were

given the class identification of the most commonly occurring class. .At

least six plots had to fa l I Into a class for the class to be considered In

the analysis. ANOVA analysis was run on the plots using all sites (n=144),

as wel I as stratified according to forest cutting dates. It was assumed

that If a highly productive site had been thinned before the TM data were

collected, the relationship of TM values and productivity data would be

confused. The six cutting stratifications were: (1) all sites not

thinned after 1976 (n=116), (2) all sites thinned after 1976 (n=28), (3)

all sites not thinned after 1970 (n=86), (4) all sites not thinned before

but thinned after 1976 (n=24), (5) all sites thinned between 1970 and

1976 but not after 1976 (n=30), and (6) all sites thinned both between
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1970 and 1976 and between 1976 and 1981 (n=4). It should be noted that

these cutting times were Inferred from decreases In basal areas recorded

at the sites. If the basal area decreased by 20 ft2/p|ot or more the site

was assumed to have been cut. The results of ANOVA for New York were

Inconclusive and w i l l not be discussed In this report.

D. TM/AVHRR Seal e-Up

1. TM/AVHRR CalIbratlon

For southern Ill inois and the Great Smoky Mountains, a

procedure was developed to use the TM data as a vector for calibrating

AVHRR pixels to estimate forest cover or productivity over large regions.

An AVHRR data set covering 564,175 km2 centered on Illinois (latitude

34-44 N, longitude 86-94 W) for June 4, 1987, was acquired from the EROS

Data Center, Sioux Falls, South Dakota (Fig. 6). These data had been

geocoded to Universal Transverse Mercatur (UTM) coordinates and resampled

to 1,110 m x 1110 m. Similarly, AVHRR data for September 28, 1985, from a

243,090 km2 area centered on the Smoky Mountains (latitude 33-37 N,

longitude 81-86 W), were acquired from the National Oceanographlc and.

Atmospheric Administration (NOAA) (Fig. 7). Georeferenclng of these data

to UTM coordinates was performed to subplxel accuracy, using a linear

transformation algorithm generated from ground-control points (e.g.,

slopes and grassy balds) and adjusted via the known UTM1 s of prominent

features In the AVHRR data such as Cades Cove.

The acquisition dates corresponded to time Intervals when all

forests In the study areas would be In fu l l leaf stage, whereas the

signatures from row-crop agriculture (the dominant non-forest feature of

especial ly the I l l inois region) would be dominated by non-chl orophytlc

plants since acquisition was early or late In the crop calendar years.
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The AVHRR data were then overI ayed with TM data for a portion (99-154

1,110 m x 1,110 m AVHRR pixels occupying 120-190 km2) of the study areas,

subset to cover precisely the same areas, and resampled to the TM's 30 m

x 30 m pixel size which subdivided each original AVHRR pixel Into 1,369

(37 x 37 matrix) pixels. These f i les were merged to create an 11-band

file, Including TM Bands 1-7 and AVHRR bands 1-4. Also added to these

f i les were bands containing class assignments from an unsupervised

classification of the TM data used to derive percent forest and

productivity estimates, and an identification field, to group pixels

according to each original AVHRR pixel for analysis. An additional band

for the I l l inois region contained productivity estimates for each pixel

generated from the TM regression model for the region.

The resulting f i les are represented for one case, Cades Cove In the

Smoky Mountains (Fig. 8) where the green gun corresponds to TM Band 4

data, and the red gun corresponds to AVHRR Band 2 data. A samp I Ing program

extracted data from this f i l e frcm every fourth l ine and fourth column (a

1/16th sample) to reduce data density, and data were output to ASCII f i les

for SAS statistical analysis. Correlation and regression analysis were

used to test relationships between productivity or percent forest

calculated from TM regression models or classifications for each original

AVHRR pixel and various AVHRR spectral characteristics, Including AVHRR

Bands 1-4, the normal ized difference vegetation Index

(Band2-Band1/Band2+Band1), band ratios, and various other Indices which

Included Bands 3 and 4 and have been used previously for assessing

agronomic species biomass (Gardner .e± .ai., 1982). For regression models,

productivity or percent forest estimates as ascertained by TM data were

used as Independent variables with AVHRR spectral characteristics as the

dependent variables.
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Fig. 8. TM - AVHRR overlay
for Cades Cove
Quadrangle, TN.
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2. Percent Forest Estimation by County

The best AVHRR regression models which predicted percent

forest were applled to the AVHRR data sets In the fo l low ing manner. An

unsupervlsed classification was performed on the 4 band AVHRR data to mask

out water, bare ground, and other non-forest data. A very conservative

approach was taken In assigning classes with the aid of maps and aerial

photographs such that If the pixel was Interpreted as having any forest,

It was classed as a forested pixel. The regression equation was then

applied to each AVHRR pixel to produce an estimate of percent forest over

the entire region. Fran the resulting data set, a standard error around

the mean and 95 percent confidence Intervals were calculated to estimate

the variance of the regression predictions. The percent forest estimates

were then classif ied Into seven cover classes to ease data manipulation

and visual Interpretation: 0 percent, 1-20 percent, 21-40 percent, 41-60

percent, 61-80 percent, 81-99 percent, and 100 percent.

To project AVHRR-estlmated forest cover percentage over entire

counties, the percent forest classif ied GIS layer described above was

overlain with a GIS of county boundaries. A summary text f i l e was then

produced which gave the number of pixels of each class for each county;

this f i l e was Imported Into SAS for calculating forest cover for

individual counties.

3. Productivity Estimation by County

A similar approach was used to estimate forest productivity

over the study regions. In this case, a productivity map derived via

regression analyses for northern Pope County was used as the calibration

center to formulate the regression equation used over the I l l inois AVHRR
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scene, and the Cades Cove quadrangle classif ied Into productivity classes

was used for -the Smoky Mountains region. Total growth estimates for each

AVHRR pixel were made by summing the growth projected for the 1,369 TM

pixels within an AVHRR pixel. Similarly, total county growth estimates

were calculated by summing the estimates of growth for each AVHRR pixel

within a county.

4. Verification of AVHRR Estimates

Once the output estimate of percent forest class or

productivity over the entire AVHRR study area was produced via regression

analysis, it was Important to compare the output data against another data

set. The USFS data, acquired by county nationwide, was selected as the

validation data set, and was available through Oak Ridge National

Laboratory's (ORNL) Geoecology data base (Olson, 1980). This data set is a

ccmpNation of USFS published data ranging in age from 1965 to 1980. An

additional, more current data set was acquired for the Smoky Mountain

region from itie TV A. Because of the more current data and a better

estimation of non-commercial forest land in the TVA data, they were chosen

for use over the ORNL Geoecology data for the Smoky Mountains.

The county data were then merged to a vector GIS coverage of al I

U.S. states and counties by FIPS codes, rastertzed to a grid cell size

which matched that of the AVHRft data (1,110 m x 1,110 m), registered to

UTM Zone 15 ( I l l ino is ) or Zone 16 (Smoky Mountains) projection, and subset

to match the appropriate AVHRR data set. The two data sets (AVHRR and

Geoecology or TVA) were then output to SAS for statistical comparisons

between the estimates of cover or productivity. The data were also output

to ERDAS for display of county estimates from AVHRR, Geoecology or TVA,
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and difference maps depicting geographically where similarities and

dissimilarities existed In the estimates.

Correlation analyses were performed to compare the AVHRR estimates

to the Geoecology or TVA (USFS) estimates of percent forest or

productivity. This was done in three ways: all counties grouped together,

counties stratified by state, and counties stratified by distance from the

calibration center. For the latter evaluation, ARC/INFO was used to

create circular buffers away from the center point of the calibration area

of 0-100, 100-200, 200-300, 300-400, and >400 km; the counties were then

assigned a buffer code for stratification. A total of 432 counties

existed in the I l l inois study area scene, and 182 counties in the Smoky

Mountains scene. If less ttian 75 percent of land area of a particular

county existed in the AVHRR scene (edge counties) It was elIminated from

statistical analysis. County means from the two estimates were also

compared using pair-wise t-tests.

For two states, I l l inois and Missouri, a second, more recent, source

of data was used in addition to the Geoecology data. This was done to test

the impact of using older data sets as w e l I as data from a different

source. For Il l inois, 1985 USFS Inventory percent cover and annual

growing stock growth data (Hahn, 1987) were substituted for the 1965 data.

With Missouri, data used were a result of digitization of forests

interpreted from 1984 TM photographic Images (Giessman e_± .ai., 1986).
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IV. PRODUCTIVITY/COVER ESTIMATION RESULTS AND DISCUSSION

A. TM Production

1. Correlation

a. Southern II I Inols

Among the 32 forest plots considered In this analysis,

mean annual Increment (MAI) ranged from 0.6 to 5.5 cu m/ha/yr (8.7 to 78.7

cu ft/A/yr). The strongest correlation between MAI and TM spectral

characteristics was with the ratio of Band 7 to Band 4 (r=-0.46, p<0.01).

Few variables correlated with MAI significantly; only band ratio 7:4 and

band ratio 7:1 correlated at the 0.01 level of significance, with eight

other variables correlating at the 0.05 level (Table 5). Several of these

could be significant on chance alone, so caution must be exercised In

Interpretation of these results.

However, a couple of points can be made based on Individual

correlation coefficients: (1) the spectral Information clearly provides

more Information on forest productivity than do other single

characteristics acting Independently, such as slope, moisture class, sun

radiance, and soil woodland productivity Index. Spectral data are by

nature integrators of a large number of factors, many of which (e.g.,

moisture, density, green leaf volume) could be expected to Influence

productivity more than other single landscape attributes and (2) ratioing

of the raw TM data Increases Information content relative to single band

data or even transformed vegetation Indexes when considering forest

productivity. Ratioing minimizes radiometric distortions across the

imagery (Leckie, 1987) and reduces some topographic effects (Short, 1982).

Ratioing also accentuates the effect of interacting components.
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Table 5. Correlations between TM band values and plot forest productivity
for I l l inois. Correlations In which p=<0.05 are shown. If
p=<0.01 then *.

July 18, 1985

TM Variable
(al l plots)

Band7/Band4
Band7/Band1
Band7/Band5
Band7
Band5/Band4
Band7/Band2
Band7/Band3
Band4/Band2
Band7/Band6
(Band4-Band2)/(Band4+Band2)

r
(n=32)

-0.46*
-0.44*
-0.40
-0.39
-0.39
-0.38
-0.38
+0.37
-0.36
+0.35

The inverse correlation of MAI and band ratio 7:4 could be

interpreted as an interactive effect of greater leaf-water and greater

biomass on more productive sites. Band 7, In the middle infrared, is

Indirectly related to leaf-water content; Band 7 values are reduced on

higher productivity sites because more leaf water is avai lable to absorb

In that spectral range (Badhwar £± .ai., 1986). Band 7 alone Is

significantly correlated with MAI, which supports this assumption (Table

5). On the other hand, Band 4, in the near Infrared, has been shown in

some studies (though not this one) to be directly related to vegetation

density or biomass (Knipling, 1970; Badhwar $± M. 1984). Ratiolng Bands

7 and 4 accentuated the differences to provide a relationship stronger

than either single band. Most of the significant correlations had Band 7

as a component and can be Interpreted s imi lar ly (Table 5).

None of the landscape attributes correlated significantly (p=<0.05)

to MAI, although the soil woodland productivity index correlated at the

0.1 level of significance. County soil survey map resolution is not as

f ine as the forest plot and TM data such that unrecorded Inclusions of
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soil units too smalI to map or errors In boundary lines could account for

the poor relationship (Soil Conservation Service, 1951). —

b. Great Smoky Mountains

Natural log transformation of the productivity data

Increased the amount of data variance which could be explained by TM

and/or blogeographleal data using any method of analysis. Other

researchers have reported that the sensitivity of TM bands to such forest

variables as basal area and leaf blomass decreases with Increasing basal

area or leaf blomass and thus a logarithmic transformation of these

variables improves the TM relationships (Franklin, 1986). It also helps

to make variance more uniform so that regression and variance analysis

assumptions are fu l f i l led.

The correlation analysis showed that (1) the same TM variables in

both the September and October scenes were significantly correlated with

forest productivity, (2) the TM bands were highly correlated with each

other and with the biogeographlcal variables, (3) raw band data or band

ratios were much better correlated with the forest productivity data than

were TM vegetation indices or TM principle component values, and (4) TM

variables were better correlated with the natural log of volume growth

than Just volume growth (Table 6).

The same set of TM variables tended to be correlated with

productivity in both scenes (Table 6). The abil i ty of these variables to

account for a significant proportion of the variance in productivity is

explained by (1) the influence of topography and phenology (timing of leaf

senescence) on reflected or emitted radiation and (2) the relationship of

forest productivity to topography and phenology. Forest productivity In

the Smoky Mountains is related to both elevation (negative) and soil
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Table 6. Correlations between TM band values and plot drbrest productivity
data by date of Smoky Mountain TM scene. Onlyeicorrelations in which
p<.01 are shown. If p<.001 then "**". If p<QO001 then "***". If
variable is significant for both dates for allpiplots then "+". If
a variable is significant for. both dates for rVfcardwoodv plots then *
"//". Hardwood plots are those plots containipg'nhardwood trees.

September 8, 1985

TM var. r
(all (n=128)
plots)

6/1 +.391***

+6/3 +.382***

6/2 +.359***

+3/1 -.282

+7/6 -.259

+6/5 +.254

+3/2 -.251

+7 -.229

+7/1 -.227

»

TM var.
(hrdwod. )

#6/1

#6/3

6/2

#3/2

#7/6

#6/5

#7

#7/4

#3/1

#7/1

#5/4

#7/2

#7/5

#3/

#5/

6/

#7/3

r
(n=lll)

+.518***

+.421***

+.375***

-.350**

-.342**

+.323**

-.323**

-.320**

-.316**

-.303*

-.299*

-.294

-.283

-.261

-.255

+.253

-.249

TM var.
(all
plots)

7/3

7/2

+7/6

+7

+7/1

7/5

+3/2

+6/3

(5-2)/5+2)

5/2

3

+6/5

5

+3/1

5/1

7/4

5/3

October 26, 1985

r
(n-112)

-.369***

-.261***

-.356***

-.350**

-.350**

-.310

-.296

+.295

-.294

-.293

-.282

+.279

-.274

-.273

-.272

-.260

-.243

.'-FTM var.
0(hrdwod.)

s #7/2

#7/6

' #7

#7/1

#7/3

#3/2

#6/3

; #3

##3/1

?:#7/4

r#7/s
i: 5/2

U( 5-2) 7(5+2)

f:#6/l

t:#5

: 5/1

I #6/5

r#5/4

1

r
n=95

-.427***

-.425***

-.416***

-.410***

-.409***

-.400***

+.378**

-.373**

-.357**

-.354**

-.349**

-.349**

-.337**

+.329

-.329

-.319

+.315

-.309

-.279
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moisture (positive) (Whlttaker, 1966). The soil moisture Is also a

function of topography as ridges are dry and coves are wet. Forest types

occur In different locations In this matrix of elevation and moisture

(Fig. 9). In a morning and mountainous-terrain scene, high values of

Band 6 (thermal) w i l l be found at the warmer, lower elevations. Indeed

there was a strong negative correlation between Band 6 and elevation

(r=-0.804 p=<0.0001). Since forest productivity Is strongly linked to

elevation, It fo l lows that Band 6 should be positively related to

productivity In this mountainous terrain. Also, hardwood canopies are

generally warmer than conifer canopies and thus higher Band 6 values would

be expected from the warmer, generally more productive hardwood stands.

The relationship of forest productivity to Band 6 Is, however, confounded

by (1) sunny, warm, dry south-facing slopes that are low In productivity

due to lack of soil moisture and (2) pine stands which are l ikely to be

cooler when the canopy Is more dense (e.g. more productive) (Franklin,

1986; Sader, 1986). Consequently dividing Band 6 by Bands 1,2, or 3,

which are sensitive to foliage biomass amount and quality (Tucker, 1979;

Badhwar .fi± .ai., 1984; Franklin, 1986) yields the best correlation with

forest productivity. Phenology may explain why Band 1 was better than

Bands 2 or 3 in early September. Absorption in'Band 1 Is related to both

chlorophyll and carotenoids (Tucker, 1979). In early September, leaves

were just starting to turn color. The expression of fa l l color Is partly

a reflection of the relative ratios of chlorophyll to carotenoids. The

timing of fa l l color Is a function of species, elevation (earlier the

higher), and moisture (earlier the drier). Thus, at this time of year Band

1 may have been more sensitive to features related to productivity such as

species, elevation, and moisture than the other two bands. This may also

explain why the Band6:1 ratio was much more strongly correlated to forest
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productivity If only hardwood or mixed pine hardwood stands were

considered (r=0.518 (n=111) versus r=0.391 (n=128)). Bands 7 and 5, which

were Important explanatory variables In October, cover regions of the

spectrum In which water Is absorbing radiation (Tucker, 1979). As foliage

senesces the canopy contains less and less water. Thus, Band 7 and Band 5

values should Increase as the forest canopies turn color, lose leaves, and

dry out. Since senescence occurs earlier at high elevation and on dry

sites and those are the sites with low forest productivity, one would

expect that Band 5 and Band 7 should be negatively correlated with forest

productivity In fall TM scenes. Indeed, In comparing the September scene

to the late October scene Bands 5 and 7 became Increasingly significant

(Table 6).

c. Huntlngton W i l d l i f e Forest, New York

Because more forest productivity plots were available

for the New York study area and because of the muItl-temporal TM data,

many Iterations of correlations were run using stratifications and

different TM data. In general, for each of the three TM data sets (June

17, 1984; September 21, 1984; and the merged data set of the two dates

after calibration) correlations were generated for all plots, plots

stratified by six forest community types, and plots stratified by three

aspect directions. The significant correlations for these are listed In

Tables 7 to 9.

A few general conclusions can be drawn from these tables: (1) the

June TM values overall correlated more strongly with forest productivity,

especially In the calibrated data sel—one could assume that at this

northern latitude, In late September, the trees have begun to senesce,

thus reducing the characteristics such as chlorophyll and moisture content



Table 7. Correlations between TM band values and plot forest productivity
data by date of New York TM scene. Only correlations in which
p<.01 are shown. If p<.001 then **, p<,0001 then ***. If
variable is significant for both dates then +.

TM var.

June 17,

(n =

+3/1

2/1

+3

2

7/5

+6/3

7/4

6/2

6

+5/4

+(4-3)7(4+3)

4/3

4

+4/2

7

7/1

r

1984

161)

-.423***

-.396***

-.377***

-.371***

-.371***

-.316***

-.304***

+.287**

-.244*

-.221*

+.206*

+.200

+.199
g

+.199

-.191

-.181

TM var. r TM var. r

Sept. 21, 1984 Merged June /September

(n = 147) (n = 144)

3/2 +.357*** June 7/5

+3/1 +.272** +June 3/1

+6/3 -.227* June 3/September 3

+(4-2)/(4+2) +.209 June 7/4

6/4 -.205 June 3

+3 +.202 June 2

+4/2 +.191 June 2/1

4/1 +.181 September 3/2

4 +.170 June 5/4

+5/4 -.167 June 2/September 2

+September 3/1

June 7

June (4-3)7(4+3)

June 7/1

June 4/3

June 4/2

June (4-2)7(4+2)

-.415***

-.385**

-.379***

-.379***

+.377***

-.368***

-.361***

+.294***

-.284**

-.243

+.240

-.238

+.236

-.231

+.288

+.218

+.236



Table 8. Correlations between TM band values and plot forest productivity data
for New York, from June, September, and merged TM scenes.
Correlations are based on stratification of plots by community types.
Only correlations in which p<.01 are shown. If p<.001 then **,
p<.0001 then ***. If variable is significant for more J:han one
community type, then #.

Red Spruce, Yellow Birch,
Balsam Fir, Red Maple

Beech Community

TM var. r

Sugar Maple, Beech
Community

TM var.

Sugar Maple, Beech, Yellow
Birch Community

TM var.

(n = 41)

June 17, 1984

(n = 32)

#3/1
#3
3/2 .
7/5

#6/3
7/4
(4-3)7(4+3)

-.588***
-.515**
-.505**
-.474
+.467
-.434
+.407

2
2/1
6/2

#3/1
#3
#6/3

-.640***
-.622***
+.595**
-.588**
-.581**
+.510

(n = 36)

#7/5 -.527**

September 21, 1984

(n = 32)

#7/5 -.510

(n = 34)

2/1 +.446

(n = 36)

June (4-3)7(4+3) +.470
June 4/3 +.456
June 3/2 -.451
#June 3/1 -.427

Merged June/September

(n = 27)

June 2
June 7/5
June 2/1
June 7
June 7/1
June 7/4
June /3
#June 3/1
June 7/2

-.640**
-.622**
-.621**
-.587**
-.578
-.577
-.520
-.504
-.490

Note: Community types not tabulated did not produce significant correlations or had
too small of a sample.



Table 9. Correlations between TM band values and plot forest productivity
data for New York, June, September, and merged TM scenes.
Correlations are based on stratification of plots by general
aspect directions. Only correlations in which p<.01 are shown. If
p<.001 then **, p<.0001 then ***. If variable is significant for
more than one aspect then #.

Aspects E, SE, S

TM var. r

Aspects N, NE, NW

TM var. r

Aspects SW, W

TM var. r

(n = 44)

June 17, 1984

(n = 46)

September 21, 1984

(n = 65)

(4-3)/(4+3)
4/3
4/2
(4-3)/(4+3)
3/1

+.407
+.395
+.389
+.385
-.384

7/4
#7/5
5/4

#3/1
#2/1
#2
#3

-.463**
-.441
-.428
-.424
-.388
-.377
-.374

#2/1
#3/1
#2
#3
6/2
6/3
7

#7/5
7/1
7/6

-.536***
-.494***

-.485***
-.452**
+.400
+.385
-.362
-.358
-.349
-.348

(n = 59)

3/2
3II

+.532***
+.358

Merged June 17, 1984 and September 21, 1984

(n= 45) (n = 57)

#June 7/4 -.518** June 3/1 -.474**
#June 7/5 -.486** June 3 -.451**
June 5/4 -.482** //June 2/1 -.437**
#June 2 -.417 #June 2 -.431**
#June 2/1 -.411 June 3/September 3 -.425**

June 7 -.410
#June 7/5 -.407
June 7/1 -.405
September 3/2 +.405
#June 7/4 -.383

Note: Correlations for aspects not tabulated were not statistically significant
at the 0.01 level.
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to which the spectral data are sensitive, (2) stratifying the data to

achieve more homogeneity among the plots Improved the correlations, and

(3) larger sample numbers were needed to be able to make meaningful

comparisons among some of the strata.

Table 10 shows the two best variables correlated with forest

productivity for the three TM data sets when stratified by forest

community type. The best overall correlation with forest productivity was

TM Band 2 from the June data set for a sugar maple/beech community type

(-0.64, p=<0.0001). A strong Inverse correlation of productivity to TM

Band 2 during the growing season is intuitively logical since higher

amounts of chlorophyll in vegetation causes TM Band 2 values to decrease

due to absorption (Badhwar jeJ: .al., 1984). Healthier, more productive

vegetation, therefore, would have lower TM Band 2 values. The sugar

maple/beech community type was also one of the most homogeneous with few

conifer mixtures. In June, the v is ib le band data were more correlated to

productivity, whereas In the September data, the infrared bands carried

the highest correlations (Tables 8 and 10). Similar results were found in

the Smoky Mountain data when comparing September to October data. For the
•

higher latitude of New York, September would be analogous to October in

the Smoky Mountains in terms of fa l l foliage, so the argument as to the

Importance of infrared bands at the margin of the growing season would be

the same as discussed above In the Smoky Mountains section.

When stratifying by aspect, It can be seen that the v is ib le band

combinations generally correlate better to productivity on more

Illuminated slopes (E, SE, S, SW, and W), whereas nearand mld-IR bands

are more important on the shadowed, northerly slopes (Table 9). It seems

that when strata were based on aspect as opposed to vegetation types, the

differences between TM dates and their corresponding leaf conditions were



Table 10. Best correlations of TM values to plot forest productivity data
in New York, all data sets, when stratified by community types.
Only correlations in which p<.01 are shown. If p<.001 then **,
p<.0001 then ***.

Date

June 1984

Sept 1984

Merged

TM
Variable

2

2/1

7/5

7/5

June 2

June 7/5

r

-.640***

-.622***

-.527**

-.510

-.640**

-.622**

Community Type

sugar

sugar

maple

maple

red spruce,
fir, red

sugar

sugar

sugar

maple

maple

maple

, beech

, beech

yellow
maple ,

, bee ch

, beech

, beech

(n =

(n =

birch
beech

(n =

(n =

(n =

32)

32)

, balsam
(n = 36)

27)

27)

27)
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not as critical to correlations as were the degree of Illumination.

Northerly slopes, with less contamination from high variability of

Illumination, may better represent the Interplay In productivity of

vegetation density and moisture content to which the IR bands are

sensitive. However, given that fewer variables correlated significantly

or as strongly when stratified by aspect as did when stratified by com-

munity types, the community types appear to be more determinate of produc-

tivity In this region Hian aspect and elevation, which were greater Im-

portance In the Smoky Mountains. This could be due, In part, to the fact

that moisture stress (a manifestation of heat) Is not generally a limiting

factor to productivity In New York but can be In the Smoky Mountains. In

support of this fact, note that the thermal band played no role in highly

significant variables in New York, even when stratified by aspect, whereas

Band 6 was the major factor In the Smoky Mountain analysis.

d. Comparisons Among Sites

When comparing correlations among sites the fo l lowing

points become clear: (1) ratios of TM bands correlate better than single

bands or vegetation Indexes, (2) stratifying, when sample sizes are

adequate, improves correlations by way of reducing spectral variance In

the data from factors other than productivity, (3) the best correlations

to productivity are TM variables In the v i s ib le bands In some cases and in

the infrared bands in other cases, depending largely on forest phenology

In the region and time of the TM data, (4) thermal Information has an

Important relationship to productivity in regions where elevation and

aspect dramatically effect forest ccmmunitles, especial ly due to moisture

stress, and (5) no single band, band ratio, or other band combination

stood out across all sites in correlating to forest productivity because
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of too many other factors at each location contributing to the overalI

variance. This points to the next logical step being multiple regression,

where the Interplay of more than one variable, Including btogeographteal

data not pertaining to the TM values, can be considered.

2. Regression Modeling

a. Southern III Inois

Multiple regression techniques revealed a combination of

independent variables related to MAI. All variables previously mentioned

were regressed against MAI, with the proviso that multl-colIInearlty

diagnostics were monitored to avoid violation of regression assumptions.

The variables entering the best regression model, In order, were TM 7:4

ratio, soil woodland productivity Index, and TM 2:1 ratio, according to

the fol lowing equation:

MAI = 201.3984 - 313.2450CTM7/4) + 0.03949 (soil prod. Index) (2)

-391.9469(TM 2/1)

Addition of other variables fa i led to contribute significantly to

the model due to col I inearity. Earlier studies have Indicated that TM

data provided the most Information on an ecosystem when a mid-IR, near—IR,

and v is ib le band were considered In the analysis (Dottavlo and Wi l l i ams ,

1982; Haas and Waltz, 1983; Badhwar £± .ai., 1984; Spanner £±M., 1984;

Benson and DeGlorla, 1985; Sheff ield, 1985). Each of these spectral

components are Included In the best 3-varIable model. Acknowledging the

role of site characteristics in predicting productivity, the inclusion of

soil productivity in the model Is Important and underscores the ablIIty to

include new independent information in models when biogeographical data
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are used. The 3-varlable model was highly significant (p=<.002, n=32),

Indicating a good approximation of where the line should be, but high

amounts of scatter caused the adjusted r2 to be low (0.39) and resulted In

a fair ly poor MAI predictability curve (Fig. 10).

Correlation and regression statistics were also performed with

standing growing stock, i.e., volume, rather than MAI, as the Independent

variable. These relationships were weaker than those to MAI, suggesting

that TM spectral data provide more information on productivity than

biomass; this in agreement with the theoretical interpretation of the

sensor by Tucker and Sellers (1986). However, the ability to analyze

these in much detail Is limited by the small sample size, and more

elaborate discussion Is saved for the other areas below.

b. Great Smoky Mountains

Because of a high degree of correlation among

Independent variables, col linearity was a major problem In developing

multiple variable regression models. In fact, once models with

col linearity problems had been discarded, there were no multiple variable

models that were significantly better than the single variable models.

Highly significant relationships between TM variables and forest

productivity were demonstrated; however, there was a lways a large amount

of unexplained variabil i ty (Table 11). This is due, In part, to the

extreme shade-sunl ight variations resulting from the low morning sun angle

and the mountainous terrain which caused the band values to be highly

correlated with each other. Other unexplained variabil i ty may be due to

(1) errors in the productivity measurements (only the volume growth of

large trees In the stands were considered [Section III, B.3.b3)» and (2)

the multi-species nature of these forests.



Fig. 10. Regression of 3-var-
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Table 11. The best models to predict forest productivity from TM data and
biogeographical data (forest type, slope, elevation, aspect) using
various combinations of techniques.

BEST MODELS BY METHODS

METHODS

REG, STRAT, BG

REG-PRINC, STRAT

REG-PRINC, STRAT, BG

REG, BG

REG-PRINC

REG-PRINC, BG

CLASS, ANOVA

CLASS, ANOVA, BG

CLASS, ANOVA, STRAT

CLASS, ANOVA, STRAT, BG

VARIABLES IN MODEL

band6/bandl

PCA3

Elevation

band6/bandl

PCA3

Elevation

6 classes

6 classes, elevation

6 classes

6 classes, elevation

n

111

94

111

128

105

128

111

111

97

97

r2

.269

.145

.191

.152

.113

.136

.181

.232

.163

.247

P<

.0001

.0002

.0001

.0001

.0004

.0001

.0007

.0001

.0056

.0002

TECHNIQUES
REG = Multiple regression modeling using TM band values, TM band ratios, and
TM vegetation indices. NOTE - Although multiple variables were allowed to
enter the models, in no instance did a multiple variable model prove better
than a single variable model if collinearity among variables was controlled
for.

STRAT = Allowing only hardwood and mixed pine-hardwood stands in the
analysis.

ANOVA = Analysis of variance of class data generated by CLASS.

REG-PRINC = Principal Component analysis to generate principal component TM
variables called PCA1- PCA7 followed by multiple regression using PCA1-7
values.

CLASS = Unsupervised classification (using all 7 bands) of TM scene to
classify pixels.

BG = allowing a biogeographical variable to enter the regression model if it
improved the model. (the variables listed were the best predictors)
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The high significance (p=<0.0001) but high unexplained variance In

forest productivity ( low r2) of these models means that the models can be

used to accurately predict the median or average forest productivity of

many pixels but cannot be used to project the productivity of any one

pixel. Consequently the models are useful for evaluating the overalI

productivity of forest on the landscape but not the spatial pattern of

that productivity. Statistically this Is a consequence of the fact that

the parameters of the model are w e l l estimated (In part due to the many

data observations, n>100), even though the Individual error terms are

large. For example, the model which best accounted for the observed

variabil i ty In forest productivity In this rugged terrain was a single

variable regression model developed frcm the September TM scene and

hardwood and pine-hardwood stand productivity data:

In(productivity) = -14.4 + 6.65(TM 6/1), (3)

r2 = .269, n=111, p=<0.0001

This model can be used to predict the median hardwood/mixed-hardwood

forest productivity over large areas (>100 pixels) with a high degree of

accuracy (± ca. 10 percent) (see confidence intervals In Figure 11.),

w h i l e its abil i ty to predict the forest productivity of any one pixel is

poor (see pixel confidence intervals in Figure 11). Thus, the model Is

very useful In predicting the overalI productivity of the landscape but

not in predicting the fine-scale spatial pattern of productivity.

The results of the work In the Smoky Mountains demonstrates two

Important points. First, In mountainous terrain the topographic position

of a forest stand w i l l strongly determine its productivity. Thus, TM

variables which relate to topographic features w i l l be useful In
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predicting forest productivity. Consequently, combining a band that

directly measures a variable associated with topography and a TM band

which relates to the qualIty of the vegetation w l l I explain the most

variance In forest productivity over a mountainous landscape. Second,

although TM data cannot capture the precise patterns of productivity In

the landscape, they can be used to evaluate the overall productivity of

the landscape with a reasonable degree of precision. Thus, TM data could

be useful In tracking the temporal pattern of forest productivity on the

Iandscape.

c. Huntington W i l d l i f e Forest, New York

Multiple regression analysis yielded a best model with an adjusted

r2 of 0.42 (p=<0.0001, n=45), using TM5/4 from June, June TM3/September

TM3, soil productivity/site Index, and sun radiance Index, for N, NE, and

NW aspects (Fig. 12). Not only does this regression support the

correlation findings about Improved relationships from stratification, but

it also presents an interesting comparison to the I l l inois study site.

The best regression models for the two study sites each include a mld-IR

to near-IR ratio, visible bands In some form, and soil product!vity/site

Index. In each case, the best models of fewer variables consisted only of

TM variables, and the addition of site characteristics Improved the

model s.

Table 12 relates the best regression models found for each TM data

set, using all plots as w e l l as stratifications by aspect and community

types. In alI cases, models were improved when the data were stratified,

achieving more homogeneity among plots. As was true for the other study

sites, considerable variance In productivity Is unexplained by the models

( low r2), although they are highly significant (p=<0.0001).



Table 12. Best models to predict forest productivity
from TM data and biogeographical data for
New York using all plots and stratifications
by aspect and community types.

TM Data Adj. r2 p< Variables

June
All plots 160 .19
by aspect (N, NE, NW) 46 .27

by community type (mixed*) 41 .33

Sept
All plots 141 .13
by aspect (SW, W) 57 .38
by community type (mixed*) 33 .27

Merged
all plots 138 .25

by aspect (N, NE, NW) 44 .42

by community type (mixed*) 33 .32

.0001 3/1, 7/5

.0001 5/4, site index, sun
radiance index

.0001 3/1, 7/5, site index

.0001 3/2, 7/4

.0001 2, 3, 7/5

.0001 6/4, 7/5

.0001 June I/Sept 1, June 7/4
June 3/Sept 3

,0001 June 5/4, sun radiance
index, site index,
June 3/Sept 3

.001 Sept 7/5, site index,
June 3/Sept 3

*Mixed is the red spruce, yellow birch, balsum fir, red maple and beech
community type.



c 64

For New York, biogeographleal data were more Important In explaining

productivity than at the other study sites. A high degree of

hardwood-conifer mix In the forest communities confounds the

TM/producttvIty relationship because of the very different reflectance

patterns of conifers and hardwoods. Non-spectral data, such as sBte Index,

provide Important additional Information In explaining variance In

productivity at these sites. Additionally, the overall better performance

of the multi-temporal data set, especially with temporal ratlos::of the

same bands, Indicates that seasonal changes In hardwoods, e.g.,

chlorophyll, have strong relationships to productivity, In contrast to the

role heat and moisture extremes play In determining productivity In the

Smoky Mountains.

Regression results, wh i le Improved with stratification, werej overal I

not as good as was hoped for, considering that this site had the =liargest

sample of plot data as w e l l as multi-temporally combined TM data. aSeveral

factors probably contributed to the problems. First of all, one cannot be

absolutely certain of a precise a IIgnment of TM data and productivity

plots to the coordinate system. Smal I Inaccuracies In such a hetecogenous

landscape could skew the analyses. Secondly, the area Is complex it) terms

of forest communities, most of which are mixtures In varying degrees of

hardwoods and conifers, and mixed communities occur at all elevations,

unlike in the Smoky Mountains. Thirdly, the phenology of the vegetation at

the times of the TM data may not have been the best possible situation

(too early in the growing season on June 14 and too late on September 21).

Final ly, the TM DN values and their ranges were smaller because of -a high

degree of water and boggy areas and they were, therefore, not as sensitive

to the vegetation characteristics as for the other study areas.
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d. Comparison Among Sites

In general, the regression models of alI study areas

were highly significant but left a great deal of variance In forest

productivity unexplained. This Is a similar finding with other studies of

forest structure, blcmass, or productivity. Because of extreme

heterogeneity of forest stands at the 30 m x 30 m resolution and the many

abiotic and blotlc variables acting on an ecosystem, it Is not reasonable

to expect a high degree of predictability on small, site-specific areas

(Franklin, 1986; Peterson g± .al., 1986). However, by changing the scale

of reference to cover larger areas, or by pooling and/or stratifying data,

predictability can be improved. For example, by stratifying observations

according to species/basal area classes and replacing Individual

observations by class medians, Franklin (1986) found r2 values Increasing

from 0.29 to 0.67 In regressing single-band data to conifer foliar

blcmass. Stratifying by community type and aspect in New York was also

found to Improve regression fits considerably over unstratlfied data wh i l e

maintaining very high significance levels (Cook .e_± .al., 1987).

The results shown here are encouraging for the potential to use TM

spectral data In combination with anci l lary data to produce regional

forest productivity estimates. By creating an image f i l e with scaled TM

7/4, soil woodland productivity Index, and TM 2/1 as the channels, the

regression equation (2) was then appl led to each pixel of northern Pope

County, I l l inois, to produce an output Image of MAI estimates for the

deciduous forests in the area. Classi fy ing these further into seven

productivity classes and smoothing with a 3 x 3 window fi lter reduced some

of the inherent spatial variabil i ty and resulted In a map of estimated

forest productivity (Fig. 13). The total production for this portion of

Pope County (14,724 ha of deciduous forest) was estimated to be 20,949 cu
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Fig. 13. Estimated productiv-
ity for deciduous
forests in northern
Pope County,
Illinois; based on
regression model
presented in Fig. 10.

Fig. 14, Two-dimensional
portrayal of pro-
ductivity classes for
Cades Cove Quadrangle
in the Smokies.
Blues and purples are
most productive;
yellow and greens,
the least.

Fig. 15. Three-dimensional
portrayal of pro-
ductivity classes for
Cades Cove Quadrangle
as viewed from the
NW; classes delin-
eated as in Fig. 14.
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m/yr. Assuming similar productivity across the entire county, which

contains an estimated 44,720 ha of deciduous forest (Hahn, 1987), one can

calculate a total county production estimate of 63,628 cu m/yr. The 1985

U.S. Forest Service estimate, using conventional ground-samplIng methods,

was 87,244 cu m/yr for the entire county. The U.S. Forest Service

estimate at the county level was based on 49 forest plots, and could be

expected to have a sampl ing error of about 20 percent (Hahn, 1987). This,

along with the inevitable errors associated with the remotely-sensed

estimate because of the Incomplete sample (one-third of the county) and

the low r2 of the regression equation, can account for the differential of

25 percent between the two estimates. Clearly, additional efforts need to

be conducted to test and validate the relationships, but these Initial

results reveal an encouraging potential to use this methodology for

estimating forest productivity over relatively large areas. The

relationship of these TM-productivity regression-model estimates to AVHRR

spectral values, with ultimate extension to a multi-state region, was one

attempt to vaI I date the technique, and is discussed below.

3. Classif icatlon/ANOVA

a. Great Smoky Mountains

All three ANOVA techniques successfully used the TM and

blogeographlcal data to explain a statistically significant proportion of

the observed variance in productivity (Table 11). Using the

biogeographical data either to stratify the observations or as a covarlate

In ANOVA Improved our ability to use TM data to predict forest

productivity (Table 11). The use of elevation as a covariate Improved the

model significance considerably. There were no significant TM

class-elevation Interaction effects. Plot aspect did not explain a
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significant proportion of forest productivity. Of the blogeographleal

variables, only plot elevation varied significantly among the TM-classes.

TM data were most useful In their raw state. Deriving the principal

component values of the TM data prior to relating the spectral Information

to forest productivity was not beneficial in explaining forest

productivity variance.

Using results from ANOVA to assign productivity values to the TM

classes, a productivity map for Cades Cove quadrangle was produced in two

(Fig. 14) and three (Fig. 15) dimensions. These figures show, in blues

and purples, the highest productivity cove sites; the ye l lows and greens

show the less productive higher elevation sites. The addition of the third

dimension can be seen as a valuable visual aid In Interpreting the

results. The productivity map was also used for the AVHRR scale-up in the

Smoky Mountain region.

B. TM/AVHRR Scale-Up

1. Percent Forest Estimation

a. Southern 111Inols

Percent forest, as ascertained by TM classification,

and certain AVHRR spectral characteristics were significantly correlated

within the Jackson County, Illinois, calibration center. The NDV I

calculated from AVHRR data was correlated to percent forest cover

(r=0.585, n=154, p=<0.0001), as were Individual AVHRR Bands 1 (r=0.599,

n=154, p=<0.0001) and 2 (r=0.334, n=154, p=<0.0001). The best 2 band

regression model, violating no assumptions related to multi-col 11 nearity

and having an adjusted r2 of 0.407, used a combination of Bands 1 and 2 as

shown in equation (1) of Table 13. This equation, when applied over the

I l l inois AVHRR study area for the pixels which had been c lassi f ied as



Table 13. Regression equations relating TM and AVHRR spectral data.

Region
Dependent
Variable Regression Equation Adj R2 P

1. Illinois Percent Forest 232.0 - 3.056 (AVI) + 0.615 (AV2) .41 <.0001 154

2. Illinois Percent Forest 59.9 - 1.822 (AVI) + 0.443 (AV2) + 1.541 (AV4) .49 <.0001 154

3. Illinois Productivity,
Cu m/AV pixel -378.6 + 1314.71 (AV2 - AV 1)/(AV2 + AVI) .32 <.0001 154

4. Smokies Percent Forest

5. Smokies Productivity
Cu m/AV pixel

-221.8624 + 2.151398 (AV4) + 940.428929
(AV3/(AV4 * AVI)

-253.643 + 49.93923(AV3/AV1)

,57 <.0001 99

.51 <.0001 99

6. Smokies Productivity
In Cu m/AV pixel -32.62848 + 90.18815 (AV2 - AV1)/(AV2 + AVI) +

56.2267 (AV3/(AV2 * AVI))
.53 <.0001 99
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having some forest, produced a mean of 31.0 percent forest, a standard

error around the mean of 4.9, and with 95 percent confidence limits at the

overall mean of 21.3 to 40.6 percent. The pixels classif ied as having

some measurable forest In the region (63.31 percent of all pixels), In

other words were, on average, 31 percent forested. Calculating through

for non-forested pixels (row-crop agriculture, urban centers, water), the

mean calculated AVHRR-estimated percent forest was 19.6 percent, with 95

percent confident limits of 13.5 to 25.7 percent. This compares to the

USFS calculated mean for the area was 20.8 percent forest, wel l within the

expected range.

When al I four AVHRR bands were Included In the model, the best model

accounted for 48.5 percent of the variance and Included Bands 1, 2, and 4,

according to equation (2) of Table 13. Error estimates were not

calculated for the 3-varIable model.

Regression equation (1) of Table 13 was applled to each pixel In the

10-state AVHRR data set of June 4, 1987 (Fig. 5), and classif ied Into

seven classes to produce a map depicting percent forest class over the

entire area (Fig. 16). The map shows vast regions of I l l inois and Iowa

with very low forest cover, with Increased forest percentage In the Ozarks

and Mark Twain Forest of Missouri, the Hoosler Forest of Indiana, some

southwestern Michigan forests, much of Wisconsin, and the Shawnee National

Forest of southern Illinois. To test the validity of this map, a compari-

son was made to U.S. Forest Service estimates of percent forest by county

(Fig. 17). The two maps generally are In agreement, but visual comparisons

are di f f icul t because of the differing scales of resolution. By summing

the AVHRR estimates by county, a new county-resolution estimate with AVHRR

data is achieved (Fig. 18). The resulting map can then be overlayed with

the U.S. Forest Service data to produce a difference map (Fig. 19).
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Fig. 16. Percent forest esti-
mates by AVHRR
pixels for Illinois
region.

Fig. 17. County forest per-
centages as esti-
mated by the USFS
for the Illinois
region.

Fig. 18. County forest per-
centages as
ascertained by
aggregation of AVHRR
pixels in Fig. 16.
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Analysis of this map a l l ows visual assessment of where AVHRR estimates

differ most from the U.S. Forest Service estimates. For example, several

western Indiana counties show AVHRR estimates more than 15 percent In

excess of Geoecology estimates. This may be partially explained by the

aged (1969 published date) U.S. Forest Service data from Indiana, and that

there has been a trend toward increasing forest cover since that time In

neighboring Il l inois counties. The underestimation by AVHRR In the

extreme southeast corner of the scene and along the eastern edge of Lake

Michigan is the result of seme cloud cover masking the AVHRR data in those

areas. Correlation analysis revealed a very high relationship between the

two estimates, with r=0.72 overall (Table 14, Fig. 20). When the

difference map is compared to the buffer map depicting proximity to the

calibration center in Jackson County (Fig. 2), one can see how the

relationship holds up'as one goes away from the center. When evaluated

by buffer distance, the highest r values occurred within the 0 to 200 km

radius (r=0.94), with the relationship si ipplng only slightly beyond 200

km (Table 14). Analysis of states with adequate samples showed highly

significant correlation coefficients ranging from 0.72 In 36 Wisconsin

counties to 0.96 in 77 Missouri counties.

Comparisons between means using pair-wise t-tests revealed a 2.7

percent higher estimate for the AVHRR data compared to the U.S. Forest

Service data over all counties (overall estimate of 24.2 percent forest

with AVHRR estimate and 21.5 percent with U.S. Forest Service estimate),

which had a highly significant t value (Table 14). However, six of the ten

states, accounting for over 70 percent of the total counties evaluated,

did not have significant differences between AVHRR and U.S. Forest Service

estimates. Counties within the 100 km buffer zone matched almost precisely

(Table 14). Some of the differences between estimates can be accounted for



Fig. 19. Difference map depicting amount of discrepancy between
USFS and AVHRR estimates of Illinois percent forest.
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Table 14. Percent forest estimates by AVHRR bands 1 and 2 and the US Forest
Service. Data include T value and probability of means differing
from each other, correlation coefficient between county estimates
and its probability level, number of observations, and date the
U.S. Forest Service data were published.

Date
AVHRR USFS
(ave. percent forest)

All
by State

Arkansas

Illinois

Indiana

Iowa

Kentucky

Michigan

Missouri

-

Tennessee

Wisconsin

by Buffer

0-100 km

100-200

200-300

300-400

> 400

1965-1980

(1980)

(1965)

(1985)

(1969)

(1974)

(1978)

(1966)

(1977)

(1972)

(1970)

(1968)

24.2

39.7

12.7

30.3

4.5

42.1

35.6

32.8

34.1

24.6

28.5

27.4

36.6

27.7

12.1

21.6

34.1

12.0

13.7

19.1

4.9

33.4

41.8

32.6

36.0

36.6

22.8

28.4

29.3

30.4

21.8

10.9

5.1

2.5

1.0

-1.9

8.3

-0.8

4.0

-1.6

0.3

-4.7

-0.7

0.8

0.1

-2.1

5.7

3.5

1.9

.0001

.0281

.3429

.0590

.0001

.4075

.0003

.1386

.7469

.0001

.4668

.4583

.9450

.0355

.0001

.0008

.0550

.87

.93

.85

.90

.91

.80

.72

.78

.96

.97

.80

.72

.94

.94

.88

.70

.84

.0001

.0001

.0001

.0001

.0001

.0001

.0001

.0048

.0001

.0001

.0001

.0001

.0001

.0001

.001

.0001

.0001

432

15

101

101

62

55

39

11

77

77

24

36

27

70

98

83

154
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by real changes fn percent forest In the time intervals Involved. For

example, a recent U.S. Forest Survey In I l l inois Indicated a 10 percent

Increase In forest acreage since the 1965 survey (Iverson s± .al., 1986);

this could account for the higher value estimated by AVHRR. To test this

hypothesis, two states ( I l l ino is and Missouri) which had recent surveys

were evaluated In the same manner. It was found that, for both states, the

1985 percent forest estimates were higher than the earl ier U.S. Forest

Service data, and that the correlation to AVHRR estimates was even higher.

For Illinois, the new estimate was 13.7 percent forest with a correlation

coefficient of 0.898, compared to 12 percent forest and 0.850 (Table 14).

For Missouri, the new estimate was 36 percent forest with a correlation of

0.966, compared with 32.8 percent and 0.963.

Another difference beiv/een estimates is the definition of

forestland. With AVHRR estimates, any group of trees regardless of where

they are or how sparse they are, w i l l reflect to the sensor. With U.S.

Forest Service estimates, there are several categories cal led

"non-forestI and with trees" which do not enter into the final forest

acreage estimates. Examples of this type include cropland with trees,

wooded strips, urban forest, windbreaks, and wooded pasture. In Illinois,

these categories accounted for 364,000 ha statewide, or 2.5 percent of the

state (Iverson s± .al., 1986). For biospherlc studies, large areas that are

even more arid than I l l inois are l ikely to show wider discrepancies of

this same kind.

b. Great Smoky Mountains

For the Smoky Mountain region, there was again a

highly significant relationship between TM-ascertained percentage of an

AVHRR pixel forested and the spectral characteristics in the AVHRR data.
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Equation (4) In Table 13 shows the best regression equation, with an

adjusted p2 of 0.57, using AVHRR Band 4 and a combination of Bands 3, 4,

and 1.

As before, this equation was applled to alI pixels In the region

from the September 28, 1985, AVHRR data (Fig. 7); the result shows, as one

might expect, the most dense cover In the Smoky Mountain National Park,

with fairly high cover throughout except In the agricultural zones of

central and western Tennessee (Fig. 21). Summation and averaging of

percent cover for all pixels within a county allowed calculation of the

estimated county coverage, which could, In turn, be compared to forest

data acquired fron the TVA (Table 15). Both the AVHRR (Fig. 22) and the

TVA (Fig. 23) county estimates were mapped, as well as a difference map

depicting county agreement (and disagreement) between the estimates (Fig.

24). The southeast corner of the scene was not represented due to the

unavailability of TVA data for those Georgia and South Carolina counties.

Over all data points, the relationship between AVHRR and TVA

estimates of county forest cover, were not that good. The correlation was

a low, but highly significant, 0.47 (Table 16). Comparison of means by

state show >20 percent underestimate by AVHRR In Georgia and South

Carolina, and a 23 percent overestimate In 13 counties of Virginia (Table

15, Fig. 24). The Influence of high amounts of conifer forests In Georgia

and South Carolina (26 and 35 percent of the county forests, respectively)

(Table 15) undoubtedly contribute to an underestimation of percent forest

by AVHRR, since the pines are darker and cooler than the

deciduous-dominated forests, such as the Cades Cove quadrangle where the

calibration was done. This is borne out by the prevalence of

underestimated counties In the Piedmont zones of Georgia and South

Carolina (Fig. 24), and the fact that hardwood percent forest correlates
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Fig. 21. Percent forest
estimates by AVHRR
pixels for Smokies
region.

Fig. 22. County forest per-
centages as
ascertained by
aggregation of AVHRR
pixels in Fig. 22.

Fig. 23. County forest per-
centages as
estimated by TVA for
the Smokies region.



Table 15. Percent forest estimates of the Smokies region from AVHRR
and TVA data.

a. Over all counties with >75% of county in AVHRR scene

Category AVHRR, % TVA, % Difference, %

All

By Buffer
0-100 km

100-200
200-300

By State
GA
KY
NC
SC
TN
VA

b. Hardwood

All

By Buffer
0-100 km

100-200
200-300

By State

GA
KY
NC
TN
VA

c. Mountains

All

By Buffer
0-100 km

100-200
200-300

By State

GA
KY
NC
TN
VA

52.2

62.3
53.8
44.2

42.9
57.9
66.7
38.8
46.8
84.9

62.6

69.4
66.2
55.0

66.7
60.8
67.9
69.2
54.9
62.0

-10.5

- 7.1
-12.4
-10.7

-23.8
- 3.0
- 1.1
-30.4
- 8.0
23.0

Hardwood, %

38.0

41.3
42.3
30.3

29.5
50.0
44.7
24.0
38.6
52.5

Softwood, %

14.9

11.9
14.1
17.8

26.1
5.0
11.7
34.5
6.7
4.2

Mixed, %

9.7

16.2
9.8
6.9

11.1
5.8
11.5
10.7
'9.6
5.3

N

190

28
92
67

50
20
32
18
57
13

>40% of forest

65.0

72.9
63.6
58.0

66.6
65.9
69.0
54.6
85.9

occupying

63.0

62.3
61.4
66.3

57.1
70.0
71.2
53.0
84.9

72.8

81.1
74.4
59.8

85.6
75.6
77.3
67.4
64.7

>50% of

68.5

69.4
69.8
63.4

75.7
76.6
75.7
60.6
62.0

- 7.8

- 8.3
-10.8
- 1.8

-19.0
- 9.7
- 8.3
-12.8
+21.2

county

- 5.5

- 7.1
- 8.4
2.9

-18.6
- 6.6
- 4.4
- 7.6
23.0

55.8

55.4
57.9
49.8

49.1
63.2
59.0
52.5
58.0

45.7

41.3
48.0
44.0

37.4
62.0
51.3
41.5
52.5

7.7

12.5
7.3
4.4

21.9
5.6
7.8
5.5
2.2

11.7

11.9
11.8
12.4

25.3
7.0
10.8
8.0
4.2

9.3

13.2
9.2
5.6

14.6
6.8
10.5
9.4
4.5

11.1

16.2
10.0
7.0

13.0
7.6
13.6
11.1
5.3

78

16
45
15

10
12
17
29
10

116

28
67
18

23
11
24
43
13



Fig. 24. Difference map
depicting amount
of discrepancy
between USFS and
AVHRR estimates
of Smokies per-
cent forest.

Fig. 25. Productivity esti-
mates by AVHRR
pixel for Illinois
region.

rcriON
from USFS

Fig. 26. County productivi-
ity as estimated
by the USFS for the
Illinois region.
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Table 16. Correlations of percent forest estimates from AVHRR to TVA data for
Smokies region.

a. Over all counties with >75% of county in AVHRR scene

Correlation of AVHRR estimated percent forest to TVA estimate of:
Total Forest % Hardwood Forest % Softwood Forest %

Category

All

By Buffer
0-100 km

100-200
200-300

By State
GA
KY
NC
SC
TN
VA

b. Hardwood

All

By Buffer
0-100 km

100-200
200-300

By State

GA
KY
NC
TN
VA

c. At least

All

By Buffer
0-100 km

100-200
200-300

By State

GA
KY
NC
TN
VA

r

.47

.84

.48

.17

.68

.81

.54

.08

.62

.00

>40% of forest

.41

.52

.31

.46

.78

.85

.43

.48
-.15

50% of county

.43

.84

.35
-.20

.59

.80

.42

.48

.00

P

.0001

.0001

.0001

.1616

.0001

.0001

.0014

.7606

.0001

.9975

.0002

.0396

.0416

.0837

.0079

.0005

.0823

.0091

.6718

mountains

.0001

.0001

.0036

.4328

.0033

.0029

.0397

.0010

.9975

r

.58

.66

.56

.50

.70

.76

.21

.23

.46

.23

.34

.41

.25

.53

.46

.69

.08

.29
-.22

.43

.66

.33

.42

.59

.77
-.20
.38
.23

P

.0001

.0001

.0001

.0001

.0001

.0001

.2532

.3486

.0004

.4462 •

.0025

.1190

.0989

.0404

.1821

.0132

.7714

.1248

.5611

.0001

.0001

.0071

.0804

.0032

.0057

.3477

.0121

.4462

r

-.26

.17
-.31
-.21

-.15
.32
.05

-.14
.24
-.60

.12

.06

.08

.03

.08

.22

.32

.31

.15

-.13

.17
-.08
-.54

-.19
-.50
.31
.09
-.60

P

.0003

.3981

.0023

.0845

.3071

.1647

.7802

.5812

.0682

.0303

.3093

.8353

.6219

.9055

.8158

.4890

.2099

.0992

.6883

.1738

.3981

.5401

.0203

.3945

.1192

.1466

.5641

.0303

N

190

28
92
67

50
20
32
18
57
13

78

16
45
15

10
12
17
29
10

116

28
67
18

23
11
24
43
13
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much better to AVHRR estimates than softwood (Table 16). The Virginia

overestimate Is harder to explain. The vegetation of that portion of

Virginia should be fairly similar to that In the Smoky Mountains, except

itiat the spruce-fir zones were less than In Virginia. Consequently,

higher DN's and higher predicted forest cover In the Virginia counties Is

the result (Fig. 23 and 24).

Correlation and mean comparison show a much better fit of the

relationship for the other states (Kentucky, North Carolina, Tennessee).

AVHRR-estimated means were 1 to 8 percent underestimated. Again, this

slight underestimation Is probably because of greater conifer forests

overalI than In the calibration zone, with correlations ranging from 0.54

to 0.81 (Tables 15 and 16).

Assessment of the relationship between the two estimates according

to distance from the calibration center revealed a rapid decline in

correlations. Within 100 km of Cades Cove the correlation was 0.84, but

It dropped to 0.17 at the 200 to 300 km distance (Table 16). This

Indicates a greater specificity of the model to the calIbratlon center In

this highly heterogenous region.

Since the Cades Cove calibration center was located In

hardwood-dominated, mountainous terrain, subsets of counties (hardwoods

occupying over 40 percent of the county, and mountains occupying >50

percent of the county) are addressed In Tables 15 and 16. The trends are

general ly the same, however, for these subsets of data relative to the

overal I data set.

c. Comparison Among Sites

A much better agreement was found between USFS and

AVHRR estimates of percent forest cover In the I l l i n o i s region relative to
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the Smoky Mountain region. This can be attributed to the relative

uniformity of landscapes and forest types and, therefore, similarity to

the calibration center In the Il l inois region; this was not the case In

the Smoky Mountain region. Extreme variations In terrain and

hardwood/softwood/mtxed components for the Smoky Mountains undoubtedly

contributed to the poorer relationship. However, with proper use of

stratifications, multiple calibration centers, and mult iple AVHRR data to

differentiate hardwood/conifer zones, It is believed that this technique

can be utilized with good results over any part of the globe. This Is

borne out by the good fit found within 100 km of the calibration center,

and for some states having similar forest types and topography.

For relatively homogeneous and even sparsely-forested zones like

Illinois, this technique provides rapid, inexpensive, and fair ly precise

estimates of percent forest over vast areas.

2. Productivity Estimation

a. Southern II I Inols

As with percent cover, there was a high correlation

between AVHRR-predicted county annual forest growth and the USFS estimated

growth (r=0.72) (Table 17). This result was developed from the

productivity model at the TM scale for northern Pope County, I l l inois

(Fig. 13), being related to spectral data In the raw AVHRR scene (Fig. 6).

The resulting equation (3) of Table 13 predicts annual forest growth from

NDVI within an AVHRR pixel, and when extended over a 10-state region,

yields a map of productivity by pixel (Fig. 25).

For verification. USFS growth data were avai lab le for only four

states: I l l inois (1962 and 1985 data), Missouri (1972), Minnesota (1977),

and Tennessee (1970); the county data are presented in Figure 26. The



Table 17. Illinois productivity by county as estimated by AVHRR and USFS. Data
include means for AVHRR and USFS estimates, difference t values and
probability of differing from each other, correlation coefficients
between estimates, correlation probability levels, and number of
observations.

AVHRR USFS . Difference
(cubic meter growing stock/county)

n

All

by State

Illinois (1962)

Illinois (1985)

Minnesota

Missouri

Tennessee

by Buffer

0-100 km

100-200

200-300

300-400

> 400

39,300

13,200

13,200

44,300

83,200

43,000

37,300

46,900

55,600

21,000

20,900

43,000

23,900

27,000

34,000

56,000

105,600

51,100

63,600

49,800

22,600

15,900

- 3600

- 10,700

- 13,800

10,300

27,200

- 62,600

- 13,700

- 16,700

5900

- 1600

5100

- 1.3

- 6.2

- 9.3

.1.3

6.0

- 5.5

- 3.09

- 3.70

0.80

- 0.40

1.18

0.18

.0001

.0001

.195

.0001

.0001

.005

.0007

.43

.69

.250

.72

.57

.71

.99

.83

.93

.86

.91

.56

.40

.79

.0001

.0001

.0001

.0002

.0001

.0001

.0001

.0001

.0001

.0217

.0001

176

99

100

4

58

14

•

26

40

51

32

27
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AVHRR estimates were aggregated by pixel to y ie ld a county map (Fig. 27)

which, when overlayed with the USFS estimates map, produces a difference

map (Fig. 28). One can see in this map, and In Table 17, an

underrepresentation of forest productivity in I l l inois and Tennessee, and

an overrepresentatlon In Missouri, such that the overall means between the

two are not significantly different. The reasons for the discrepancies

are not clear; more work needs to be done along these lines. One

possibility may be the geographic variation of the agricultural component

in the landscape, and the large Impact it has on the NDVI of an AVHRR

pixel. The Pope County, Illinois, calibration center contains a smaller

fraction of row-crop agriculture (barren at the May-June overflight dates)

than nearly any other I l l inois county, and a greater amount than most

Missouri counties. Consequently, the NDVI and resulting production

prediction may be lower in row-crop-dominated counties and higher In

forest-dominated counties than we would expect from the calibration

center.

The individual state estimates, though not in agreement with USFS

production estimates, show highly significant correlations ranging from

0.71 to 0.93. This seems to indicate the potential for fine-tuning of the

models and the addition of multiple calibration locations which would

increase the precision of the models over large regions. Error in the

USFS estimates also must be taken into consideration.

Correlations by buffer distance (compare Figures 2 and 28) revealed

a very high relationship (r=>0.85) between estimates within a 200 km

radius (Table 17). Beyond 200 km, the correlation values dropped off but

continued to show a significant relationship. The mean values predicted

by AVHRR were very close, however, to those estimated by the USFS, and

were not significantly different in distance beyond 200 km (Table 17).
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b. Great Smoky Mountains

Calculations of regression relationships were

performed with productivity estimates and a natural log transformation of

productivity estimates (Callaway, 1983). These results are presented In

equations (5) and (6) of Table 13; a little over one-half of the variance

In productivity Is accounted for by combinations of AVHRR spectral

Information. These regression equations were developed from

classification predictions of Cades Cove productivity (Section III.C.3.a,

Figs. 14 and 15).

Equation (5) of Table 13 was then applied to each AVHRR pixel in the

region and grouped into seven productivity classes to y ie ld a map of

forest productivity (Fig. 29). As before, this map was aggregated by

county to produce a map depicting county annual growth estimates In cubic

meters per county (Fig. 30). This was compared to the TVA estimates for

county annual growth (Fig. 31). AVHRR estimate was much below that of the

TVA estimate.

The measures of productivity between USFS (TVA) and Cal laway (1983)

are not directly comparable as the methodologies were greatly different.

Nonetheless, these two different measures of productivity can be compared

in a correlative sense, as shown in Table 18. Analyzing the data In this

way, the results are encouraging (Table 18). All correlations between

estimates were significant, with most at the 0.0001 level. Total growth

correlated with AVHRR estimates over 168 counties (r=0.52).

Interestingly, softwood growth was correlated at r=0.87 for the same area

(Table 18).

Evaluations by state Indicate that with the exception of softwood

production in South Carolina and Virginia, significant correlations exist



Fig. 30. County productivity for the Illinois Smokies region as ascertained
from aggregation of AVHRR pixels in Fig. 29.

Fig. 31. County forest productivity for the Smokies region as estimated by
the USFS.
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Table 19. Smokies Productivity as predicted by AVHRR correlations to TVA estimates
of total, hardwood, and softwood annual growth increments.

a. Over all counties Correlation of AVHRR estimated productivity to:
Total Forest Hardwood Forest Softwood Forest

Category

All

By Buffer
0-100 km

100-200
200-300

By State
GA
KY
NC
SC
TN
VA

b. Hardwood

All

By Buffer
0-100 km

100-200
200-300

By State

GA
KY
NC
TN
VA

c. Mountains

All

By Buffer
0-100 km

100-200
200-300

By State

GA
KY
NC
TN
VA

r

.52

.86

.55

.47

.72

.76

.78

.55

.73

.66

>40% of forest

.68

.78

.64

.77

.86

.79

.82

.74

.75

occupying >50%

.63

.78

.61

.68

.87

.80

.82

.69

.75

P

.0001

.0001

.0001

.0001

.0001

.0001

.0001

.0228

.0001

.0134

.0001

.0004

.0001

.0008

.0013

.0021

.0001

.0001

.0119

of county

.0001

.0004

.0001

.0319

.0022

.0092

.000.1

.0001

.0119

r

.62

.78 _

.75

.58

.80

.96

.91

.62

.85

.88

.91

.88

.90

.94

.88

.92

.93

.96

.99

.89

.88

.88

.94

.88

.95

.93

.95

.99

P

.0001

.0001

.0001

.0001

.0001

.0001

.0001

.0076

.0001

.0001

.0001

.0001

.0001

.0001

.0008

.0001

.0001

.0001

.0001

.0001

.0001

.0001

.0001

.0018

.0001

.0001

.0001

.0001

r

.87

.52

.80

.94

.90

.54

.48

.29

.80
-.23

.53

.47

.59

.27

.84

.27

.36

.82
-.26

.52

.47

.58

.28

.84

.08

.36

.82
-.26

P

.0001

.0074

.0001

.0001

.0001

.0173

.0065

.2618

.0001

.4965

e,

.0001

.0641

.0001

.3730

.0022

.3912

.1663

.0001

.539

.0001

.0641

.0002

.4282

.0047

.8414

.1663

.0001

.5385

N

168

27
91
64

49
19
32
17
55
13

78

16
45
15

10
12
17
29
10

70

16
42
10

9
9
16
25
10
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between the two estimates. Correlations with hardwood production among

states was even better, ranging from 0.62 In South Carolina to 0.96 In

Kentucky (Table 16).

Further evidence for a good potential In estimating, especially

hardwood production, can be found In Table 18b, where only counties >40

percent hardwood forest are considered. Here, the overalI correlation to

hardwood production was 0.91, with state correlations ranging from 0.88 to

0.99 (a l l highly significant but sample sizes were small). Enhancement of

correlation coefficients also occurred when a subset of data was made

which Included only those counties with greater than 50 percent mountains

(Table 18c).

Evaluations by buffer distance revealed a correlation of 0.86 within

100 km, fa l l ing to 0.47 at the 200 to 300 km distance (Table 18a). The

trend was similar, but more drastic, In percent forest estimates for the

Smoky Mountains (Table 16a). As one would logically predict, the

relationship Is best In the vicinity of the calibration center; however,

with production, the relationship remains significant across the entire

scene among the distances and subsets tested (Table 18).

c. Comparisons Among Sites

The overalI correlation between estimates (AVHRR vs.

USFS) of annual forest production was 0.72 for the Il l inois region and

0.52 for the Smoky Mountain region. The fit was generally better for the

Il l inois region, probably for the same reasons discussed earlier—more

level topography, more homogenous landscapes, and more consistent

dominance of hardwood forest types.
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V. CLASSIFICATION STUDIES METHODS —

A. Study Site

A study area In the Colorado Rocky Mountain Front Range,

enclosed entirely within the Ward, Colorado, 7.5 minute quadrangle (Fig.

32), was chosen to study vegetation distributions In the alpine to

montane plant zones. The area surrounding Nlwot Ridge, a long-term

ecological research site (LTER) for alpine tundra and located along the

east side of the Continental Divide approximately 50 km west of Boulder,

Colorado, was selected for study because ecological surveys and

vegetation maps exist for this area (Keammerer, 1976; Kcmarkova and

Webber, 1978; Hansen-Brlstow, 1981), and earlier remote sensing studies

were conducted here (Frank and Thorn, 1985; Frank and I sard, 1986).

This area contains a diversity of vegetation types within a

relatively small area for three primary groups—alpine, subalplne and

montane ecosystems (Table 19).

1. Alpine Ecosystems

Nlwot Ridge slopes gently to the east, dropping from

3,750 to 3,400 m above sea level (asl). Strong prevailing winds from the

west control the distribution of snow cover, producing windswept

knolls and areas of deep snowpack. West-facing slopes and ridge tops are

generally free of snow due to w ind action, wh i l e east slopes usually

accumulate snowpack. Vegetation exhibits a general change from moist

communities In the west to drier communities In the east (Komarkova and

Webber, 1978). Local controls on vegetation are Influenced by

local habitat characteristics, particularly soil moisture, snow

accumulation, and soil disturbance (Webber and May, 1977). In turn,



Table 19. Description of dominant vegetation ecosystems In the Colorado
Rocky Mountain Front Range (Hansen-Brlstow, 1981; personal
communication, 1987).

1. Wet herbaceous meadow (sedge-elephantella). This ecosystem consists
of herbaceous species which form dense cover found below tlmberlIne
on both steep slopes (along a drainage or below areas of late lying
snow) and on flat or gently sloping sites of poor drainage.

2. Dry herbaceous meadow (golden banner-yarrow). This ecosystem forms an
open to dense community found below tlmberlIne on both gentle and
steep slopes with good drainage and low soil moisture.

3. Moist alpine meadow (alpine avens alpine meadow). A low herbaceous
ecosystem found on moist, leeward and north-facing slopes, forming
a dense, tight turf, generally with less than 25 percent-exposed
rock.

4. Kobresla alpine meadow (Kobresia myosuroldes). This alpine
ecosystem consists of small dense clumps of this sedge species. It
Is covered during winter with only scattered snowbanks which melt
early In the spring. This ecosystem Is found on the meslc end of
the moisture gradient, and Is found mostly on well-drained
Interfluves and broad ridges.

5. Dry sedge-Kobresla alpine meadow (Carex-Kobresla). This Is a rocky
ecosystem composed of low grass species found In areas of good
soil drainage and sparse winter snow cover, often on ridge tops or
on we l l stabilized talus slopes.

6. Moss campion-rocky alpine meadow (Si lene acaulIs-Carex rupestrls).
Highly tolerant ecosystem found only on extreme wind-exposed
ridges, with ground surface cover 50 to 80 percent rock.

7. SalIx bog (Sphagnum-SalIx-Betula). A dense, very moist, broad-
leaved deciduous shrub and moss ecosystem found In areas of
excessive soil moisture below tlmberl Ine.

8. SalIx moist meadow (Sa l ix ) . An open to semi-dense broad-leaved
deciduous shrub found In areas of meslc soil moisture below
tlmberlIne, where snow cover does not last long Into the growing
season.

9. Krummholz (Plcea-Abtes-Plnus). Low, open krummholz Interspersed
with alpine meadows located where winter snow protects
krummholz Islands from dessleating winds. Distribution results
from strong westerly winds moving downslope, over the alpine and
Into the forestlplne tundra ecotone.

10. flag-tree (Plcea-Ables-Plnus). Low to medium tall open forest. Trees
are flagged, supporting branches on only the leeward side of the main
stem. Located within the lower zone of the forest-alpine tundra
ecotone, the ecosystem lies immediately above tlmberlIne.



11. Plcea engelmannll-Ab!es laslocarpa (engelmann spruce-subalpine fir
forest). A stable need Ie-leaved evergreen forest. Located within
the upper zone of the forest, this ecosystem grades at lower
elevations Into the ponderosa pine and lodgepole pine forests and
at higher elevations Into the alpine zone. This Is a climax
forest, found In undisturbed areas, with small Islands of f lag
trees, dry golden banner-yarrow meadows, wet sedge-elephantel la
meadows, rock outcrops, lodgepole pine, limber pine, and peat moss
communities.

12. PInus f lex l l ls (limber pine forest). This open, needle-leaved
evergreen forest ecosystem Is found on wind-swept, dry, rocky
ridges where little competition from other species exists. The
ecosystem Is drougfrHtolerant and forms the uppermost treellne on
windy ridges.

13. Populus tremuloldes (quaking aspen forest). The aspen ecosystem Is an
open to dense, broad-leaved deciduous forest. The ecosystem ranges
In elevation throughout the entire forest of the study area, and
even extends to treeline on a south-east facing slope of Nlwot
Ridge. It Is found on both wet and dry slopes. This community
has variable ecotypes ranging from moist to meslc to dry soil
conditions.

14. PInus contorta (lodgepole pine forest). This ecosystem Is a dense,
successlonal, narrow-trunk, needle-leaved evergreen forest. This
ecosystem seldom occurs below 2,560 m, and If lower, Is
usually restricted to meslc, north-facing slopes. It is found
rarely at treeline and within the forest-alpine meadow ecotone,
and is most frequently found below tlmberline. In dry soils.

15. PInus ponderosa (ponderosa pine forest). This ecosystem Is an
open, needle-leaved evergreen forest that Is found only within
the lower elevations of the study area, mainly on south-facing
slopes. This ecosystem Is a topographic climax on hot and dry
slopes, a topoedaphic climax on deep soils on the lower part of the
south-facing slopes, and a edaphic climax on very coarse soils on
north exposures and rldgetops (Marr, 1961).

16. Pseudotsuga menzlesll (Douglas-fir forest). The Douglas-fir
ecosystem is a fair ly dense needle-leaved evergreen found mainly
on north-facing slopes In moist canyons. With in the higher
elevations, this community Is located on the more meslc sites,
and within the lower elevatlons It is found on steep, north-facing
slopes. It is not abundant In the study area.
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these factors are controlled by the Interaction of slope and aspect.

Above the timberlIne, no trees are found, rather deep-rooted mat and

cushion plants, dwarf w i l lows, grasses, and sedges. Grassy slopes are

usual ly referred to as alpine meadows to distinguish them from the more

rocky fel l f ields (Weber, 1976).

2. Subalplne Ecosystems

The forest-alpine tundra, ecotone surrounds Nlwot

Ridge In a subalplne zone approximately 3,400 to 2,700 m asl. Vegetation

is characterized by a mosaic of Picea engelmannlI. Abies lasiocarpa,

and flnus fI ex11Is f moist meadows, ponds, and bogs. The zone represents

.transitional vegetation types between the alpine and montane forests.

3. Montane Forests

Forest ecosystems are found in the montane zone from

approximately 2,700 to 2,500 m asl. This zone Is transitional between the

subalpine zone above and the foothill vegetation types below. Dominant

forest ecosystems are PInus contorta, Plcea engelmannlI and £. pungens,

Pseudotsuga menzieslI f Populus tremuloidesf and some PInus ponderosa

(Weber, 1976).

Structural characteristics and habitat descriptions of the

alpine, subalplne, and montane ecosystems that were used In this study

were summarized for each ecosystem (Hansen-Brlstow, 1981; personal

ccmmunication, 1987) (Table 19).

1. Alp ine vegetation: (1) wet herbaceous meadow

(sedge-lephantella), (2) dry herbaceous meadow (golden banner-yarrow),

(3) moist alpine meadow (alpine avens alpine meadow), (4) Kobresia
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alptne meadow (dry), (5) dry sedge-Kobresta alpine meadow, and (6) moss

campion-rocky alpine meadow ( fe l l f le ld) .

2. Subalplne vegetation: (7) Sa11x bog, (8) SalIx moist

meadow, (9) krummholz (conifers In upper portion of ecotone), (10)

flag-trees (In lower portion of ecotone), (11) PIcea engelmannlI and Abies

lasiocarpar and (12) Pinus f lex! I Is..

3. Montane vegetation; (13) Populus tremuloldes,. (14)

Pinus contorta, (15) Pinus ponderosg, and (16) Pseudotsuga menziesi I.

B. Classification Procedure

A map of dominant vegetation ecosystems (Table 19)

covering the Ward, Colorado, 7.5 minute quadrangle (Fig. 32), prepared by

Hansen-Brlstow (1981), was digitized from the 1:24,000 scale sheet,

and subsequently converted Into raster format with 30 m x 30 m

resolution. The area surrounding Niwot Ridge was extracted for the

study area enclosed within a rectangle defined by Universal Transverse

Mercator coordinates: 447000E to 457000E and 4437000N to 443000N

(Fig. 33).

1. Landsat TM Transformations

A Landsat-5 TM digital image acquired on June 29, 1984,

was geographically referenced to the study area represented by the map

(Graham, 1977). Landsat TM data were acquired for seven spectra!

bands: TM1 (.45-.52fm), TM2 (.52-.60fm), TM3 (.63-.69fm), TM4 (.76-.90fm),

TM5 (1.55-1.75fm), TM6 (10.40-1 2.48fm), and TM7 (2.08- 2.35fm). TM7

was found to be highly correlated (r=0.98) with TM5, and along with the

thermal band (TM6), was not used in this study. The TM spectral bands

were transformed into f ive band ratios and normalized difference
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Fig. 32. Ward Quadrangle, Boulder County, CO classified TM map
as draped over DEM topographic data.

Fig. 33. Three dimensional presentations of CIS vegetation map
of Niwot Ridge (top) and classification map of same
based on TM and DEM data (bottom).
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variables to characterize the spectral patterns of vegetation

ecosystem cover types:

1. Vegetation Index Ratio of NIR and RED bands

VI1 = TM4/TM3*(S.D.TM4+S.D.TM3) (4)

2. Normalized difference with NIR and RED bands

ND1 = ((TM4-TM3)/(TM4+TM3) + 1.) / 2. * K (5)

3. Vegetation Index Ratio of NIR and MIR bands

VI2 = TM4/TM5 * (S.D.TM4+S. D.TM5) (6)

4. Normalized difference with NIR and MIR bands

ND2 = ((TM4-TM5)/(TM4+TM5) + 1.) / 2. * K (7)

5. RefIectance/absorptance ratlp R/A = TM4/(TM3+TM5)

* (S.D.TM4+((SD.TM3+S.D.TM5)/2.)> (8)

where: k Is constant used to convert to eight-bit Integer

S.D. Is standard deviation

Band ratios and transformations were used to reduce differences

between Illuminated and shadowed slopes, and to enhance the spectral

absorption and reflectance differences of vegetation ecosystems.

2. Topographic Measures Derived From DEM

Topographic effects on vegetation distributions were

examined using estimates of elevation, slope, aspect, and relief to

characterize vegetation ecosystem types In this study area. Digital

Elevation Model (DEM) data came directly frcm the Ward, Colorado, DEM

prepared by the United States Geological Survey. The DEM contains

elevation data In a UTM referenced matrix for 30 m x 30 m elements

(Elassal and Caruso, 1983). Slope gradient was calculated from the

partial derivatives in the easl-west and north-south directions of the
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study area. Slope was then measured as the magnitude of the elevation

gradient:

Slope = SQRT((ef/ex)**2 + (ef/ey)**2) (9)

where: ef/ex=(8f (x+h)-8f (x-hHf (x-2h)-f (x+2h))/12h

ef/ey=(8f(y+h)-8f(y-h)+f(y-2h)-f(y+2h))/12h

where: ef/ex Is the partial derivative In the eas"f-west

ef/ey Is the partial derivative In the north-south

h Is the grid Interval In meters

Aspect, the direction of slope, was calculated from the two

partial derivatives:

Aspect = arctanC(ef/ey)/(ef/ex)) (10)

This method has been shown to approximate the true slopes and

aspects in a digital elevation model (Snyder, 1983). Elevation was

used to represent the altitudlnal gradient of vegetation ecosystems, and

aspect was used to approximate differences in exposure to solar

radiation. Elevation and aspect have been used widely to characterize

vegetation distributions (Hoffer, £±.31., 1975; Strahler .e± M., 1978;

Hutchlnson, 1982; Frank and Thorn, 1985; Cibula and Nyquist, 1987)

Local differences in elevation which create convex or concave ,

slopes also characterize moisture gradients in mountain vegetation.

Measures such as relief, the absolute difference between the highest

elevation in the study area and the elevation at a specif ic location in

the study area, can represent landscape drainage characteristics. In

this study, local relief was used to measure variations in

elevation from a general trend in the altitudlnal gradient. This

measure was used to characterize favorable habitats for dry or wet

vegetation types. The altitudlnal gradient was approximated by a
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polynomial function derived from the digital elevation model.

Predicted elevation was a function of x,y map coordinates using a

third order polynomial. Then local relief was the difference belween

actual elevation and predicted elevation:

Rel ief = Elevation - (aO - a1X + a2Y + a3X2 + a4XY + a5Y2) (11)

where: X and Y are DEM Cartesian coordinates

Elevation is from the DEM

This method accounts for any general tendency in altltudinal

gradient In both the eas-f-west and north-south directions

simultaneously. Consequently, the local relief Is calculated for a

particular study site so that the measure Is sensitive to local

differences that may be associated with vegetation habitats.

3. Topoclimatic Index Derived From DEM

A topocl imatic Index was created from the digital

elevation model to distinguish between favorable habitats for

windblown, xerIc ecosystems and snow-covered, mesic ecosystems.

Slope-aspect Index (SAD was used in this study to characterize

prevailing wind effects on soil moisture and subsequent vegetation

distributions:

SAI = sin(slope) * aspect / max.SAI * K (12)

where: max.SAI is maximum Index value

K is constant to convert to eight bit value

Topoclimatic conditions were defined by relationships between

wind patterns and aspect and slope effects on snow accumulation for

three topographic conditions: r^
C " &—
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northwest facing slopes: 270 < aspect < 360

SAI=(90.-(360.-aspect)) * sln(slope) / Max.SAI * K

northeast facing slopes: 0 < aspect < 90

SAI=(180.-(90.-aspect)) * sin(slope) / Max.SAI * K

south facing slopes: 90 < aspect < 270

SAM270.-aspect) * sin(slope) / Max.SAI * K

High values of SAI indicated areas that are generally leeward,

steep slopes that usually accumulate deep, long-lasting snow banks. Low

SAI values indicated areas that are windblown, snow-free, and

generally highly desslcated. SAI was shown previously to be a good

discriminatory alpine vegetation types on Niwot Ridge, even when the

types did not exhibit spectral reflectance/absorptance differences

(Frank and I sard, 1986). SAI was adapted for use in this study to

discriminate among ecosystems In the fores"f-al pine tundra ecotone and the

forest ecosystems.

4. Determination of Classification Variables

Samples from the dominant vegetation ecosystems were

stratified by structural/piant zone grouping with reference to the

Hansen-Brlstow (1981) map. Spectral, topographic, and topoclImatic

characteristics of the ecosystems were characterized by VI1, ND1,

VI2, ND2, R/A, elevation, slope, aspect, relief, and SAI. The abil i ty of

the spectral, topographic, and topoclimatic variables to discriminate

among the dominant vegetation ecosystems was examined using the

statistical procedure discriminant analysis. Based on the

collection of variables, the problem was to distinguish among the
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vegetation ecosystems, and to Identify the variables that were

Important for distinguishing among the groups.

Linear combinations of the predictor variables were formed from

the analysts, which served to post-predict the sample memberships, and to

subsequently serve as the basis for c lassi fy ing new observations. Each

predictor variable had a unique coefficient for each dominant

vegetation ecosystem so that the original value of each variable,

multiplied by the coefficient, and summed over the predictor

variables, provided a discriminant score for an observation for each

dominant ecosystem. Then using the discriminant scores, each

observation was assigned to the dominant ecosystem using the posterior

probability: the probability that an observation with a discriminant

score of D belonged to dominant vegetation ecosystem group G was

estimated by the conditional probability, and the observation was

assigned to the group which produced the largest conditional

probablIIty.

The best predictor variables were found by calculating a

discriminant function value for each observation, then calculating the

correlation beiveen each predictor variable and the discriminant

function values. ND1, V12, R/A, elevation, aspect, relief, and SAI were

the best predictors of vegetation ecosystems. ND2, VI1, and slope were

highly correlated with at least one other variable, and were not

necessary for classification. Both topographic and topoclimatlc

variables were necessary, in combination with the Landsat spectral

variables, to distinguish among the dominant ecosystems because no

single variable exhibited sufficient difference among all ecosystems.



101

VI. CLASSIFICATION RESULTS AND DISCUSSION

A. Classt f fcat fon

The study area was stratified Into three structural

groups for classification. First, alpine meadow observations were

assigned to one of the six dominant alpine meadow vegetation ecosystem

classes using the set of predictor variables. The classification was

repeated for subalpine and montane forests. Therefore, three separate

classification maps were derived Independently, eliminating classification

error between groups. The three maps were overlayed to produce a

composite map (Fig. 33). Prior to comparing the classification map to

the Hansen-Br!stow (1981) map, the classification map was filtered to

eliminate small classification errors. This step was necessary because

Landsat-derived maps exhibit spatial variability not usual ly evident on

manually-derived maps. The degree to which this Is a problem depends on

(1) the level of detail expressed on the map, and subsequent pattern

sizes selected for display at various scales of published maps; and

(2) the spatial diversity Identified within the image, controlled

primarily by the resolution of the data In the Image. A neighborhood

filter was applied to the classification map, thereby removing some

spatial diversity from the classification (Guptill, 1978).

B. Assessing Agreement Between Classif ication and Map

Evaluation of the classification was conducted by

comparing the predicted dominant vegetation ecosystem classification

against the Hansen-BrI stow (1981) map. Site-specific comparisons were

made by calculating the frequency of coincident classes, point by

point, on the map and the classification, and reporting coincident

frequencies in an error matrix (Table 20). The row sums on the right
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edge of the error matrix give the total number of observations for each

ecosystem fron the map, and column totals along the bottom of the error

matrix give the total number of observations for each ecosystem from

the classification. Elements along the diagonal of the error matrix

Indicate the frequency of agreement between the classification and the

map. For each vegetation ecosystem, percent correct, percent

commission, and percent emission errors were calculated from the

error matrix. These are widely used measures for assessing

classifications against maps (Campbell, 1987). Overall percent

agreement was averaged from the Individual percent correct measures.

A better measure of overalI agreement beiween the map and the

classification was the Kappa statistic (Cohen, 1960; Bishop .e± .ai.,

1975; Conga I ton and Mead, 1983). Kappa adjusts the overalI percent

correct measure by subtracting the estimated contribution of chance

agreement. Kappa, the maximum IIkelIhood estimate frcm the multi-nomial

distribution and a measure of the actual agreement of two maps minus the

chance agreement, is discussed elsewhere (Conga I ton and Mead, 1983).

Not all vegetation ecosystem classes could be identified with

certainty, so classes were aggregated together within structural

groups, but not between structural groups. The aggregation resulted In

three alpine meadow classes, four subalpine classes, and seven montane

classes (Table 20). The areal proportions of dominant vegetation

ecosystems were then calculated for the aggregated classes from both the

map and the classification (Table 21).

C. Community Classification Variations

The results of this study suggest that Landsat TM data,

in combination with topographic and topocl imatic indexes, can be used



Table 20. Coincident frequency matrix and accuracy assessment for
dominant vegetation ecosystems from the Hansen-Brfstow
(1981) map and classification results.

Classification Results

Dominant Meadow Ecosystems

Han sen-Bri stow Map %Corr %Comm %0m

Herbaceous meadows 2279 93 327
Moist a I pine meadows 74 1628 753
Dry alpine meadows 118 318 2849

Kappa .6954 % OveralI agreement 80.06

84.44 7.77 15.56
66.31 20.16 33.69
86.73 27.49 13.27

SalIx bog
S a l I x meadow
Krummholz
Fl agged trees
PIcea-Abtes
PInus f lex l l is

Dominant Subalpine Ecosystems

4 5 6 7 8 9 %Corr %Camm % 0 m

109
0

47
0
0
0

0
335
164

0
0
0

1
3

4410
0
0
0

0
2

430
177

0
0

0
0
0
0

10448
1874

0
0
0
0

3171
2880

99.
98.
87.

100.
76.
60.

09
53
31
00
72
58

30
32

0
70
15
52

.13

.87

.09

.94

.21

.40

0.91
1.47

12.69
0.00

23.28
39.42

Kappa .6190 % Overall agreement 76.33

Dominant Montane Ecosystems

10 11 12 13 %Corr %Canm %0m

I us tremuloldes
fMnus contorta
glnus ponderosa
Pseudotsuoa menzlesl1

1328
646

11
3

135
1986

5
3

57
656
293

51

268
1185

38
259

61.34 37.15 38.66
18.44 35.73 81.56
77.51 74.76 22.49
75.95 86.74 24.05

Kappa .3762 % Overall agreement 55.83



Table 21. Areal coverage estimates of dominant ecosystems from
map (Hansen-Brlstow, 1981) and classification
results.

Map

Ha %

Meadow Ecosystems

Herbaceous meadows
Moist alpine meadows
Dry al pine meadows

Subalplne Ecosystems

Sal ix bog
Sal Ix mol st meadow
Krummholz
Fl agged trees
PIcea-Ables
Pinus f lexi 1 Is

Montane Ecosystems

Populus tremuloldes
Pinus contorta
Pinus ponderosa
Pseudotsuga menzlesll

242.91
220.95
295.65

9.90
32.85

457.20
15.93

1241.19
277.65

121.68
325.17

6.03
28.98

5.50
5.00
6.69

0.22
0.74

10.34
0.36

62.04
13.88

6.08
16.25

.30
1.45

Classf f I

Ha

222.39
183.51
353.61

14.04
44.91

397.26
54.81

947 .43
358.65

120.69
357.39
86.94

129.60

cation

5.10
4.21
8.11

0.32
1.03
9.11
1.26

47.35
17.93

6.03
17.86
4.35
6.48

Kappa .6828 % Overal I agreement 73.56
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to map dominant vegetation ecosystems In the Colorado Rocky Mountain

Front Range. Alpine, subalplne, and montane ecosystems were Identifiable

when compared to a manually-derlved vegetation map.

Herbaceous meadows (84.44 percent), moist alpine meadows (66.31

percent), and dry alpine meadows (86.73 percent) compared favorably with

the map, and errors of commission and emission were not a significant

problem. However, fe l l f le ld ecosystems were not distinguishable from dry

alpine meadows because spectral and topographic differences were

not sufficiently different at the resolution of the data base. Wet

alpine meadows were not distinguishable from wet herbaceous meadows

because the spectral characteristics of wet ecosystems were similar, even

though elevation differences existed between the ecosystems.

Six subalplne ecosystems could be mapped accurately; however,

flagged-trees and Finns f lexlI Is had high errors of commission.

F|agged-trees were predominantly a structural difference among £icea,

Abies, and PInus ecosystems, therefore, high errors of commission were

not unexpected. Plnus f lexl I Is did not occur frequently In the study

area, and spectral differences were not apparent between this

ecosystem and PIcea engelmannlt and Abies laslocarpa.

Four montane forest ecosystems were difficult to map. A

deciduous-coniferous distinction was obvious, yet each ecosystem had

unique problems. Populus tremuloldes was not confused often with

other forest ecosystems, but then It was only correctly Identified

61.34 percent of the time. PInus contorta was Identified poorly

(18.44 percent correct) due to high errors of omission (81.56 percent).

PInus ponderosa was the most distinguishable forest ecosystem (77.51

percent correct), but this ecosystem had a high error of commission

(74.76 percent). Pseudotsuga menzlesll also had a high correct



106

classification (75.95 percent) and a high error of commission (86.74

percent).

Areal comparisons between ecosystems estimated from- the

classification and the map (Table 21) indicated that alpine meadow

ecosystems compare favorably overall; subalpine ecosystems compare

favorably with the exception of PIcea-Ables and Pinus f lexlI Is; and

montane forest ecosystems do not compare favorably, even though Populus

tremuloides and Pinus contorta appear to have approximately similar

distributions. The two distributions do not coincide spatially (Table

20).

The results of this study suggest that Landsat TM, In combination

with topographic and topoclimatic Indexes, may be useful to map some

dominant vegetation ecosystems In the Colorado Rocky Mountain Front

Range. Alpine meadow and subalpine ecosystems were identified more

accurately than expected, using the spatial resolution of Landsat TM and

USGS digital elevation data. Results for meadow and subalpine

ecosystems suggest that the models used in this study should be useful for

mapping other alpine and subalpine ecosystems in the Front Range.

However, the poor results for forest ecosystems suggest that additional

procedures must be developed to better del ineate various forest

ecosystems in mountainous envIronments.

Preliminary efforts have been made in this study to develop a new

approach In examining the topographic vegetation distribution model. The

approach Involves calculating a statistical description of the vegetation

distribution along elevational and slope-aspect gradients. A similar

method was used by Fleming and Hoffer (1979), only they used field-plot

data in defining their vegetation zones, whereas this effort used DEM and

TM-classified data in a GIS.
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The histograms shown in Figure 34 show the vegetation cover as a

function of elevation, with north-facing slopes displayed on the left and

south-facing slopes on the right sides of the histograms. The diagrams

show the forest systems differing el evatlonal ly frcm the alpine meadow

ecosystems, but not much differentiation among forest classes (Fig. 34).

Further studies are under way to enhance the capability of separating

forest classes In mountainous terrain, with the combination of topographic

and spectral data In the classification process.

VII . OVERALL CONCLUSIONS

We have seen reasonably accurate regional estimates of cover and

productivity with the use of TM-calIbrated AVHRR data. Higher local (TM

scale) variance reduces reliabil ity of determining productivity at the

Individual pixel level, but when spatially averaged over the larger AVHRR

pixels, spatial variance is substantially reduced.

Throughout our research It was apparent that landscape heterogeneity

and structure had a strong Influence on the success of our approach. We

were most successful in the I l l inois region where the forests are

uniformly dominated by hardwoods, the topography is fair ly consistent, and

bodies of water are not a prominent feature of the landscape. These three

features allowed consistent across-region interpretation of the TM and

AVHRR spectral Imagery, even though forest Is not the dominant vegetation

cover type of this region.

We were also generally more successful In predicting regional

percent forest cover than productivity. This is reasonable to expect

since one less level of scale-up was used in determining forest cover.

With productivity, we went frcm ground points to TM scale to AVHRR scale,

whereas percent forest only went from TM to AVHRR scales.
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We were less successful In predicting productivity or cover in the

Smoky Mountain region where the forests may be dominated by either^

hardwoods or conifers, the topography ranges from the mountainous region

of the Smoky Mountains to flatlands of western Tennessee, and bodies of

water, wh i l e frequent, are also large. The models predicted highly

correlated values (r=>0.84) of production or cover within 100 km of the

calibration center, but the relationships broke down outside that buffer

distance. Beyond that distance, one sees the greatest change in

topography and hardwood/conifer distribution. The TM/FOREST and

AVHRR/FOREST models used to calibrate the Smoky Mountain AVHRR models were

developed in a landscape that is dominated by hardwood. Consequently, when

the forest Is dominated by conifers, which have very different reflective

properties, such as in the Piedmont region of Georgia and South Carolina,

and the models are poor predictors of especially percent forest.

Topography was influential because the TM/FOREST model was based, in part,

on elevational differences in temperature, which were both captured by the

TM sensor and strongly correI ated with productivity in that mountainous

landscape. Consequently, when topography flattened, the relationship

tended to weaken.

In future work, dif f icult ies created by conifer-hardwood contrasts

and topography might also be circumvented somewhat by stratification

techniques. Conifer- and hardwood-dominated pixels might be delineated by

their reflectance signatures, especial ly In the winter. Separate TM/FOREST

and AVHRR/FOREST models might then be developed for each vegetation type.

Such a strategy is clearly feasible using multi-temporal TM and AVHRR

scenes, at least In the Smoky Mountains where conifer and hardwood stands

•fend to be fair ly pure. Where mixtures of hardwood/conifer stands exist

with in even a TM-sIzed pixel, the models w l l I become more confounded.
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Dividing the continents Into ecologically meaningful strata, such as the

"Ecoreglon-conttnuum" regions proposed by Logan (1985), and exemplified by

Bailey's ecoreglons of North America (1981), provides a logical start to

stratification and determination of the number of locations of calibration

centers. In relatively homogenous regions ( l ike Il l inois), fewer

calibration centers w i l l be needed, whereas heterogenous areas, like the

Smoky Mountains, w i l l need a higher density of calibration centers. A G I S

could be used to stratify the major regions, and one might then explore

province-specific cal ibration models.

In the New York area, we were less successful In developing

TM/FOREST models than In the other regions, and we had no success in

developing AVHRR/FOREST models. This is apparently a consequence of two

factors: (1) the presence of mixed hardwood-conifer stands, and (2) the

presence of many small wetlands and lakes. The mixed conifer-hardwood

stands created dif f icult ies in f inding TM characteristics that were

uniformly related to forest productivity. We were successful In developing

TM/FOREST models only if we stratified the data based on forest type. In

the larger AVHRR pixels, the signature was confounded by not only the

extreme heterogeneity of the forests but also the wetland component of the

landscape. Here again stratification of the region might Improve one's

abilIty to extend ground-based data to regional estimates.

In the subalpine Rockies, the spatial pattern of the vegetation was

too fine to be captured with TM data without the addition of

blogeographical data such as slope, aspect, and elevation. We made no

attempt to create AVHRR/FOREST models in this region because the

fine-scale spatial heterogeneity and the lack of suitable productivity

measurements precluded using our approach. However, the methods employed

In this study did greatly increase the classif ication accuracy over the
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use of TM data alone. Differentiation of such community types w i l l be

valuable In pursuing this line of research. —

In summary, our approach of using nested scales of Imagery In

conjunction with ground-based data and a geographic Information system can

be very successful In generating landscape and regional estimates of

variables which cannot be directly measured by a sensor but are

functionally related to some variable a sensor can detect. Furthermore,

the approach permits the error associated with such estimates to be

documented and is extremely thrifty in its use of imagery. The approach

w i l l be most useful In regions where either the functional relationship Is

not confounded by other features of the landscape or the confounding

landscape features can be stratified to reduce the overall variance. Our

research is a prototype of the research that w l l I be needed to develop

spatially-extensive estimates with quantifiable accuracy of those global ly

Important variables that cannot be measured directly from satellite

sensors. As new sensors are developed, many more important biosphere

variables w l l I become possible to Indirectly sense through their

relationship to variables that can be sensed directly. Our abi l i ty to

detect global processes and map global patterns w i l l depend on our abil ity

to capital ize on these relationships.

Among the many challenges in developing regional and global models

Is quantifying the accuracy of those models. Our experience suggests that

techniques for extending limited ground-based data to much larger regions

should be developed where they can be rigorously tested, even though the

techniques are most needed In regions of the globe where Imagery Is the

only source of extensive data. We believe that in our current stage of

model and sensor development. It Is only prudent to work In regions of the
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globe where the models or model Ing approach can be valIdated through

comparison with Independent data.

Our research experience working with very different landscapes

supports the argument for much more work on stratification techniques and

evaluating heterogeneity within strata. What causes heterogeneity within a

strata, and what Is the spatial resolution of that heterogeneity? Can one

use analysis of variance In a rigorous sense to test the goodness of the

stratification? How does landscape affect our abil i ty to stratify?

Answering these questions w i l l require that we map features of a landscape

or region, I.e., describe the pattern, Independently of knowledge of the

processes that created those patterns. The potential Is there and the

possible yield Is great. If a network of calibration centers via

stratification Is accomplished, repeated forest productivity or cover

estimates can be performed relatively easy using newly acquired AVHRR

data. In this way, we can monitor global vegetation change and perhaps

provide tools for developing public policy to better manage our global

blospherlc and atmospheric resources. It Is our responsibility to do no

less.
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X. APPENDIX

A. Extensive Site Preliminary Studies

In addition to the four Intensive sites reported on here,

preliminary data col lection and Image processing was accomplished for a

number of counties where additional study sites are located, as shown in

Figure A1. This work was reported in earlier progress reports (lverson.g±

M., 1986a, 1986b, 1987) and w i l l not be repeated here. The sites cover a

variety of bicme types, and are intended to assist In AVHRR scale-up

calibration and testing. Forest growth and cover characteristics (Table

A1) and climate characteristics (Table A2) also vary w ide ly In order to

cross-check AVHRR scale-up across a large diversity of landscape and

b I ones.

B. Facilities and Equipment

The I l l inois Natural History Survey, the University of I l l inois

Spatial Data Analysis Laboratory (Department of Geography), and the Oak

Ridge National Laboratory were the three institutions with the chief

responsibility for the project. Each of these institutions have extensive

computer hardware and software for Image processing, GIS, and statistical

analysis. Only the equipment actually used and/or acquired speci f ical ly

for this project are discussed In this section.

1. I l l inois Natural History Survey

The I l l inois Natural History Survey has been using GIS

technology In natural resources research since 1983, when the I l l inois GIS

began with ARC/INFO running on a Prime 750 minicomputer as the primary

software and hardware. During the time-frame of the project, a Prime 9955
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Table Al.

State County

Total, hardwood, and softwood annual growth estimates for
extensive site network sites.

Annual Growth, cubic meter/county
Commercial Hardwood Softwood Percent forest

CA

CA

FL

IL

IL

IL

IL

IL

ME

ME

MN

MN

MS

NY

NC

NC

OR

OR

SD

TN

TN

TN

WI

Fresno

Tuolumne

Leon

Calhoun

Grundy

Jackson

Lake

Pope

Knox

Waldo

Itasca

St. Louis

Adams

Essex

Macon

Swain

Crook

Grant

Custer

Anderson

Blount

Sevier

Outagamie

444

39

8

19

8

90

158

354

962

1,718

342

379

147

288

144

206

198

NA

NA

,600

,600

,500

,800

,500

,600

,600

,000

,700

,800

,600

NA

,400

,200

NA

NA

,800

,400

,700

,200

NA

130

39

8

19

8

84

39

90

475

843

263

322

110

2

107

113

119

NA

NA

,300

,600

,500

,800

,500

,900

,600

,600

,700

,800

,300

NA

,800

,400

NA

NA

,800

,600

,300

,000

NA

NA

NA

314,300

0

0

0

0

5,700

118,900

263,300

487,000

875,000

79,300

NA

56,600

36,800

NA

NA

286,000

36,800

93,400

79,300

NA

1

13

66

36

4

33

4

57

70

76

76

63

62

50

79

31

22

52

41

64

33

- 41

17

.3

.7

.6

.1

.1

.8

.3

.2

.1

.1

.0

.2

.2

.4

.7

.8

.3

.8

.2

.3

.6

.1

.0

The following counties had no forest information in the Geoecology data base:
Boulder and Weld, CO, Geary and Riley, KS, Emery, UT.



Table A2. Some climatic characteristics of extensive site network.
Source Geoecology data base.

State County

FL

IL

IL

IL

IL

KS

K.S

ME

ME

MN

MN

MS

NC

NC

NY

SD

TN

TN

WI

Leon

Calhoun

Grundy

Jackson

Lake

Geary

Mley

Knox

Waldo

Itasca

St. Louis

Adams

Ma con

Swain

Essex

Custer

Anderson

Blount

Outagamie

Average
Jan

11.4

- 1.7

- 4.5

1.0

- 5.5

- 1.8

- 1.8

- 5.4

- 6,6

-14.3

-14.0

9.6

3.6

3.4

- 9.6

- 4.3

3.5

4.3

- 8.7

Temperature,
July

27.

24.

23.

25.

22.

26.

26.

19.

20.

19.

19.

27.

22.

23.

19.

22.

25.

24.

21.

1

8

3

6

2

0

2

6

0

7

5

6

2

0

0

7

1

9

5

°C
Annual

19

12

10

13

12

12

7

7

4

3

19

12

13

5

8

14

14

7

.7

.2

.3

.9

9.0

.7

.8

.3

.0

.0

.9

.0

.9

.2

.5

.6

.5

.7

.1

Annual
Precip., cm

150.

98.

85.

110.

83.

85.

84.

115.

105.

66.

71.

139.

165.

143.

95.

43.

129.

129.

75.

60

76

34

92

34

14

02

77

84

67

34

32

30

43

05

99

41

11

59

Annual
Evapor. , cm

104

75

70

80

65

78

79

58

59

57

56

101

72

74

56

63

81

81

62

.34

.67

.08

.70

.48

.69

.22

.60

.11

.18

.44

.42

.49

.40

.13

.44

.05

.36

.13

Annual
Mois.Indx

44

31

21

37

27

8

6

98

79
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superminicomputer was networked with the 750 to accommodate tremendous

growth In ttie use of the system. The G IS data base consists of nearly 100

parameters, Including soils, vegetation, landforms, surface hydrology,

Infrastructure, surflcial geology, and administration units for the entire

State at coarse resolution, and for selected areas at higher resolution

(1-4 ha). The southern I l l inois Intensive study site for this project is

within the area of high resolution data in the I l l inois GIS. Several GIS

parameters were extracted for use In percent forest and forest

productivity modeling work that was done (Section IV C).

The INHS acquired an IBM PC-AT and an ERDAS image processing system

In January I986. A 20-mg removable cartridge IOMEGA Bernoul II Box was

added later to accommodate storage requirements for the TM, GIS, and AVHRR

data. Nearly alI image processing for the study was done on this system,

or a comparable one at the University of I l l inois Department of Geography.

Transfer of data from the I l l inois GIS Prime environment to ERDAS on the

PC, for much of the project's duration, was accomplished via an ELAS

version 415 module for converting gridded ARC/INFO f i les to ERDAS format.

Other PC's were used for SAS statistical analysis and graphics/word

processing functions.

In June I987, a hardware/software link for running ERDAS on the

Prime, with the PC as a Prime workstation, was installed. This system has

al lowed better Integration of GIS and remotel y- sensed data, the use of

more powerful hardware, and an access to greater storage and

fi le-manipulating capability. However, we have been plagued with problems

In ccmmunications such that the link Is not as effective as we had hoped

for. The link Is quite val uable, however, especial ly in the

TM-AVHRR-Geoecology efforts.
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2. University of I l l inois Spatial Data Analysis Laboratory
(Depafhnent of Geography)

The University of Illinois1 Spatial Data Analysis

Laboratory has several networked ERDAS systems. Al I processing for the

Colorado study site was done on these systems. The 1600 bpl tape-drive

peripheral to -the ERDAS systems In the laboratory was used extensively for

TM and GIS f i l e transfers before the INHS had the Prime ERDAS (and thus

could use the Prime tape drives). Department of Geography staff aff i l iated

with this study made use of the University of Ill inois' IBM and Cyber

mainframes as needed; for example, when the digital elevation model data

on tape had a buffer size too large to read on the Prime. They also

developed several ERDAS modules using ERDAS programming tools that were

essential to the study. They are described in section 111-B of this

report.

3. Oak Ridge National Laboratory

The ORNL Computer Sciences Division has several major

computer systems, as we l l as Image processing capabilit ies via |2s. Data

were shared between the ORNL and INHS systems, such as digital elevation

model data and the Geoecology data base from which percent forest and

forest growth by county for the United States were available. The

Environmental Sciences Division also acquired an ARC/INFO (on Vax

computer) and ERDAS PC station during the course of the project. ORNL

staff also used PC- and mainframe-based SAS.

4. Global Patterns Associates

A Compaq-286 transportable microcomputer with 60-mb hard

disk was also used on this project.
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C. Papers, Proceedings, and Presentations (Related to NASA Contract
NAS-5-28781)

Papers

Frank, T.D. 1988. Mapping dominant vegetation ecosystems in
the Colorado Rocky Mountain Front Range and Landsat TM.
Photogrammetric Engineering and Remote Sensing
(submitted)

Graham, R.L., L.R. Iverson, E.A. Cook, and J.S. Olson. 1988.
Long-term records of stand structure and growth in the
Great Smoky Mountains, Tennessee, (in review)

Graham, R.L., M.G. Turner, and V.H. Dale. 1988. Changing
climate and atmospheric CX>2: forest resource issues.
BioScIence (In preparation)

Hunsaker, C.T., R.L. Graham, C.W. Barnthouse, S.M. Bartel I,
R.H. Gardner, R.B. O'Neil l , and G.W. Suter, II. 1988.
Assessing ecological risk at a regional scale. Landscape
Ecology (submitted)

Iverson, L.R. 1988. Land-use changes In Illinois, USA: the
influence of landscape attributes on current and
historic land use. Landscape Ecology (submitted)

O'Neil l , R. V., J.R. Krummel, R.H. Gardner, G. Sugihara, B.
Jackson, D.L. DeAngel is, B. T. Milne, M.G. Turner, B.
Zygmunt, S. Christensen, V.H. Dale, and R.L. Graham.
1988. Indices of landscape pattern. Landscape Ecology
(accepted)

Chapters

Agbu, P.A. and T.D. Frank. 1988. Quantification of the
Improvement in soil mapping using SPOT HRV over Landsat
MSS imagery. Pages 191-197. Ju: The Wor ld In Space.
American Society for Photogrammetry, St. Louis,
Missouri. March.

Brigham, W.U., L.R. Iverson, and E.A. Cook. 1987. An
overview of the 111 inois Geographic Information System
and selected biological applications to surface mining
and reclamation. Pages 5-10. Jn: Proceedings of the
1987 National Symposium on Mining, Hydrology, Sedi-
mentology, and Reclamation, (D. H. Graves, ed.),
University of Kentucky, Lexington.

Cook, E. A., L.R. Iverson, and R.L. Graham. 1987. Estimating
forest productivity In southern I l l ino is using Landsat
thematic mapper data and geographic Information system



129

analysis techniques. Pages 255-265. In; Proceedings
of the 1987 American Society of Photogrammetry and
Remote Sensing and American Congress on Surveying and
Mapping, Technical Papers, Volume 1, Remote Sensing,
FalIs Church, Virginia.

Cook, E. A., L. R. Iverson, and R. L. Graham. 1987. The
relationship of forest productivity to Landsat Thematic
Mapper data and supplemental terrain Information. Pages
43-52. _Lo: Proceedings of Pecora XI Symposium,
American Society for Photogrammetry and Remote Sensing
and American Congress on Surveying and Mapping, Falls
Church, Virginia.

Iverson, L.R. and P.G. Rlsser. 1987. Analyzing long-term
vegetation change uti l izing geographic Information
system and remotely sensed data. Advances In Space
Research 7(11): 183-194.

Olson, J.S. 1986. Global and regional synthesis: needs and
opportunities for a hierarchy of scales of remote
sensing and model Ing. Pages 9-22. Jj; CouplIng of
Ecological Studies With Remote Sensing: Potentials at
Four Biosphere Reserves In the United States, (M. I. Dyer
and D.A. Crossley, eds.). U.S. Man and the Biosphere
Program, Washington, D.C.

Rlsser, P.G. and L.R. Iverson. 1988. Geographic Information
system for natural resource management at the state
level. Pages . In; Our Role In Changing the Global
Environment: What We Can Do About Large Scale
Environmental Issues. (D.B. Botkln, M. F. Caswell , J.E.
Estes, and A.A. Orlo, eds.) Academic Press (In press)

Tylka, D.L. and E.A. Cook. 1986. St. Louis vegetative cover
study. Pages 43-46.. In; Proceedings of Integrating Man
and Nature In the Metropolitan Environment: A National
Symposium on Urban W i l d l i f e , (L. W. Adams and D. L.
Leedy, eds.), National Institute for Urban WlId| I fe,
Columbia, Maryland.

Abstracts

Cook, E. A., J.E. Gardner, J.D. Garner, and J.E. Hofmann.
1988. Analyzing home range and habitat selection of the
Indiana bat using radio telemetry and GIS techniques.
1988 Annual Meeting of the Ecological Society of
America, Davis, California. — August. (Invited and
submitted)

Gardner, J.E., J.E. Hofmann, J.D. Garner, and E.A. Cook.
1987. Foraging range and habitat utilization of
male Myptls soda I Is In I l l inois determined by radio
telemetry and computer analysis techniques. 17th Annual
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North American Symposium on Bat Research, Toronto,
Ontario. October 15-17.

Garner, J.D., J.E. Gardner, J. Hofmann, and E.A. Cook. 1987.
Determination of home range size and roost tree
selection of Indiana bats. Midwest Fish and W i l d l i f e
Conference: 200, Milwaukee, Wisconsin. December 5-9.
(Poster)

Graham, R.L., L.R. Iverson, and E.A. Cook. 1986. Assessing
forest productivity In the Great Smoky Mountains
National Park using Thematic Mapper spectral data. Page
58. In: Proceedings of the Third Annual Acid Rain
Conference for the Southern Appalaclans, GatlInburg,
Tennessee. October 27-28, 1986. (H. 01 em, ed.)
TV VON RED AWR-87/15.

Graham, R.L., L.R. Iverson, and E.A. Cook. 1987. Evaluating
spatial patterns of forest productivity In a disturbed,
mountainous landscape using LANDSAT data and a GIS.
Bulletin of the Ecological Society of America 68: 314.
(Poster)

Graham, R.L., L.R. Iverson, and E.A. Cook. 1988. Long-term
records of stand structure and growth In the Great Smoky
Mountains, Tennessee. 1988 Annual Meeting of the
Ecological Society of America, Davis, Cal ifornla. —
August, (accepted)

Graham, R.L., L.R. Iverson, and E.A. Cook. 1988. Stand
structure and growth In the Great Smoky Mountains,
Tennessee: Whlttaker's stands revisited. Pages .
In; Proceedings of the Fourteenth Annual Meeting on
Scientific Research in the National Parks of the Upland
Section of the Southeast Region. Gatl Inburg, Tennessee.
May 12-13, 1988. (In press)

Iverson, L.R. and E.A. Cook. 1986. Ecological applIcatlons
of the I l l inois Geographic Information System: a case
study of Jackson County, Il l inois. IV International
Congress of Ecology: 188.

Iverson, L.R., E.A. Cook, and R.L. Graham. 1987. GIS and
remote sensing as tools for detection of landscape
patterns and processes. Bulletin of the Ecological
Society of America 68: 330. (Invited)

Iverson, L.R., E.A. Cook, and R.L. Graham. 1988.
Applications of remote sensing to forested ecosystems.
1988 Annual Meeting of the Ecological Society of
America, Davis, California. — August. (Invited and
submitted)
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Major Technical Memoranda

Iverson, L.R. 1987. Blospheric studies. Pages 247-256 and
397-403. In; Landsat Workshop. Laboratory for
Terrestrial Physics, National Aeronautics and Space
Administration, Washington, D. C.

Iverson, L.R. 1987. Interpreting forest and grassland blome
productivity utilizing nested scales of Image resolution
and bi©geographical analysis. Pages 359-396. JJQ: 1986
Landsat Workshop, Laboratory for Terrestrial Physics,
National Aeronautics and Space Administration,
Washington, D.C.

Iverson, L.R., E. A. Cook, R. L. Graham, T. Frank, Y. Ke, and J.
Olson. 1986, 1987. Interpreting forest and grassland
blome productivity util izing nested scales of image
resolution and blogeographical analysis. Numbers 1, 2,
and 3. Reports to the National Aeronautics and Space
Administration, Washington, D. C.

Iverson, L.R., E.A. Cook, R.L. Graham, T. Frank, Y. Ke, and J.
Olson. 1987. Assessment of forest productivity using
TM and GIS data. Pages 73-78. In: 1987 LANDSAT
Workshop, Laboratory for Terrestrial Physics, National
Aeronautics and Space Administration, Washington, D.C.

Abstracts Not Covered Above

Graham, R.L., L.R. Iverson, and E.A. Cook. 1987. Evaluating
abandoned pasture patch stability within a forest matrix
using LANDSAT TM data and historic vegetation maps.
International Symposium on Landscape Ecology, Munster,
West Germany. July.19. (Invited)

Oral Conferences or Workshop Presentations

Frank, T.D. 1987. Comparing Landsat TM, MSS, and digitized
NHAP photography for vegetation analysis. Western Great
Lakes Region of American Society for Photogrammetry and
Remote Sensing Fall Meeting, Urbana, Illinois.
November.

Frank, T.D. 1987. Comparison of Vegetation Mapping
Techniques in Arid Environments. Arid Lands Remote
Sensing Conference, Arid Lands Remote Sensing Working
Group, Bishop, California. March.

Frank, T.D. 1987. Third mapping on the IBM PC/AT with
professional graphics capability. Remote Information
ProcessIng/Video Image Process!ng Workshop, Northern
II I inois University, DeKal b. April.
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Frank, T.D. 1988. Comparing drainage density estimates from
digitally enhanced Landsat TM and color Infrared aerial
Imagery. Arid Lands Remote Sensing Conference, Arid
Lands Remote Sensing Working Group, Reno, Nevada.
Apr 11.

Gardner, J.E., J.E. Hofmann, J.D. Garner, and E.A. Cook.
1987. Foraging range and habitat utllIzatlon of
male Myotls soda I Is In I l l inois determined by radio
telemetry and computer analysis techniques. 17th Annual
North American Symposium on Bat Research, Toronto,
Ontario. October 15-17.

Graham, R.L. 1988. Risk assessment of the landscape at
regional scale. International Association of Landscape
Ecologlsts Meeting, Albuquerque, New Mexico.

Iverson, L.R. 1985. The III Inols Geographic Information
System (GIS) : a tool to better manage the State's
natural resources. Regional meeting of the American
Society for Photogrammetry and Remote Sensing, Northern
Il l inois University, DeKalb. November 1.

Iverson, L.R. 1985. Natural resources Information management
using the I l l inois Geographic Information System.
Regional meeting of the Soil Conservation Society of
America, Decatur, Ill inois. November 7.

Iverson, L.R. 1987. Integration of ERDAS with ARC/INFO for
assessment of regional forest productivity. Midwest
Regional ARC/INFO User's Conference, Champaign,
Illinois. October 15. (Invited)

Iverson, L.R. and E.A. Cook. 1987. Forest productivity
estimates using combinations of GIS, TM, and AVHRR data.
Western Great Lakes Regional Meeting of the American
Society for Photogrammetry and Remote Sensing,
Champaign, I l l inois. Novembers. (Invited)

Olson, J.S. 1986, 1987. Uncontrolled experiments. Carbon
dioxide and global climatic change. Short lecture
courses. Swedish University of Agricultural Sciences,
Uppsala, Sweden. September 23j Chernobyl fallout and
Its future In Swedish forests. Institute of Ecological
Botany, Uppsala University, Uppsala, Sweden. October 2;
Predicting redistribution of radioceslum in Nordic
forests. Lecture to Nordic Working Conference,
Radioecology Department, Swedish University of
Agricultural Sciences, Uppsala, Sweden. October 29;
International geosphere-biosphere program: computer
models and nested remote sensing of landscape complexes.
Sweden. March.
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Popular Press Coverage

Iverson, L.R. 1987. Can the productivity of I l l inois forests
be estimated from space? Pages 5-7. la: Illinois
Natural History Survey High I ights of the Annual Report,
1986-1987, Department of Energy and Natural Resources,
Champaign.

«

Iverson, L.R. and E.A. Cook. 1988. Can the productivity of
forests be estimated from space? I l l inois Natural
History Survey Reports No. 273.

D. Meetings, Visits, and Travel (No Presentation Given)

Cook, E.A. and L.R. Iverson. 1988. Annual Convention of the
ASPRS-ACSM, St. Louis, Missouri. March 14-18.

Frank, T.D. 1986. Attended American Society of
Photogrammetry and Remote Sensing (ASPRS) Fall Technical
Conference, Anchorage, Alaska. October.

Frank, T.D. 1986. Attended GIS User Group Workshop, Seattle,
Wash Ington. November.

Graham, R.L. 1986. Work at the 111inois Natural History
Survey, Champaign. June.

Graham, R.L. 1986. Annual Meeting of the International
Congress of Ecology, Syracuse, New York. August.

Graham, R.L. 1987. Work at the I l l inois Natural History
Survey, Champaign. June.

Graham, R.L. 1987. Attended meeting of the International
ERIM Conference, Ann Arbor, Michigan. October.

Graham. R.L. 1987. Site visit and data collection at
Tennessee Va l l ey Authority, Norris. October.

Graham, R.L. 1988. Work at the I l l inois Natural History
Survey, Champaign. March.

Iverson, L.R. 1985. Attended the CERMA Conference on
Integration of Remote Sensed Data In Geographic
INformatlon Systems for Processing of Global Resource
Information. May.

Iverson, L.R. and E.A. Cook. 1985. Attended International
ERIM Conference, Ann Arbor, Michigan. October 21-24.

Iverson, L.R., J.S. Olson, Y. Ke, and T. Frank. 1985.
Attended meeting of the American Society of
Photogrammetry and Remote Sensing, Indianapolis,
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Indiana. (Also occurring at that time was the first TM
Working Group Conference.) September 8-13.

Iverson, L.R. 1985-1988. Attended meetings of the I l l inois
Ccmmlsslon on Forest Development. (Served as Chairman of
the Forest Resources Analysis Committee.) December
1985-AprII 1988.

Iverson, L.R. 1986. Visited the North Central Experiment
Station, St. Paul, Minnesota. July.

Iverson, L.R. 1987. Site visit and data collection at Custer
County, South Dakota. May.

Iverson, L.R., Graham, R.L., and J.S. Olson. 1986. Site visit
to Huntington W i l d l i f e Forest, New York. August.

Olson, J.S. Attended meeting of Land Processes Research on
Forests, Goddard Space Flight Center. December 17-18.

Olson, J.S. 1986. Attended workshop on ClI mate-Vegetation
Interactions, Goddard Space Flight Center. January
27-29.

Olson. J.S. and R.L. Graham. 1986. Relocation of
Whlttaker-Becklng-Olson plots In Great Smoky Mountains
National Park. August.

Olson, J.S. 1987. Swedish results on thematic mapper and
SPOT imagery. Discussed with Margharetta Ihse and
others, Department of Natural Geography, Stockholm
University. February 1.

Olson, J.S. 1987. Workshop on Land Use Change and the Carbon
Cycle. Oak Ridge Associated Universities, Oak Ridge,
Tennessee. May 25-27.

Olson, J.S. 1987. Work at the 11 Iinols Natural History
Survey (June 8-10) and NASA Ames Laboratory, Moffett
Field, California. June 11-15. P lansw i th David
Peterson, Pamela Mattson, and colleagues.

Olson, J.S. 1987. Workshop on Positive Feedback and the
Carbon Cycle. Oak Ridge Associated Universities, Oak
Ridge, Tennessee. June 29-July 1.

Olson, J.S. 1987. Planning with Satimage Corporation, and
Swedish Land Survey, Kiruna, Sweden. August 10 and 17.

Olson, J.S. 1987. NASA Goddard Institute of Space Sciences,
Columbia University, New York City, New York. October
22-23. Coordination with Inez Fung, V i v i a n Gornitz, and
Dav id Hansen.
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Olson, J.S. 1987. Work at I l l inois Natural History Survey
(November 10-12); NASA Headquarters and Goddard Space
Flight Center (November 13); and National Space
Technology Laboratory (November 16-18).

Olson. J.S. 1987. NASA Ames Laboratory, California (December
10-11); Yosemlte and Sequoia-King's Canyon Parks
(December 14-17). Options for technology transfer to
National Park Service.




