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GUIDE TO READING THE REPORT

The reader is encouraged to consult the Table of Contents in order
to maximize efficiency in reading this report. The Executive Summary-(l)
summérizes key results from this effort and should be considered a road
map for de+erminin§ areas of Inferesf.. The Introduction (I1) outlines the
basis and background for the study. There is then dtyIsTon into two major
components: productivity/cover estimation at TM and AVHRR scales of
resol ution (111 and 1V), followed by classification enhancement using TM
and biogeographical data (V and VI). Each has a section devoted to
methods and another to results and discussion, Special attention is
recommended for the TM-AVHRR Scale-up sections (111.D and IV.B) since they
describe much of the truly unique efforts In this project. The Overall
Conclusions section (VI|) reiterates some of the maln points of the study
in the context of future needs. The BIbeography (viit) and
Acknowiedgements and Col laboration (IX) sections follow. Finally, the
Appendix (X) consists of Informafion on other extensive sites which
underwent only preliminary investigations (A), a short description of the
facilities and equipment used in the project (B), a summary of papers and
presentations resulting from the study (C), and attached manuscripts and

abstracts resulting from the study (D).



TABLE OF CONTENTS

GUIDE TO READING THE REPORT..eeveescscescses cessnenss cesresens
le EXECUTIVE SUMMARY. . cceevoccccccosossossasasssesosasoasnsnssnons
Ile INTRODUCT IONscaseoeesooseccocoassacnsnssssasnacscacescrancsnans
I1l. PRODUCTIVITY/COVER ESTIMATION METHODS.: seecocescsscasarsessacss
A. Study SiteSieececierececcesnncnse ceseone cectsserecsene
| 1. Southern Il11in0iS.ceesseesecssssenssoasssnses
2., Great Smoky MountainsS..ececeereecscececncens
3. Huntington Wildlife Forest, New YorkK........
B Dat@.eeeeeeecescorceecsescscnssscanossrsnssasssnssons
1. Thematic Mapper (TM).ceeeceecsocessocescases
2, 'Advanced Very High Resolution Radiometer
(AVHRR) 4t veveennnnsesassssctasssnsasnnnsns
3, Productivity..ecee.. tececsesesecesransrananse
4., Biogeographical.eeesseccscecccososcssscsnces
a. High Resolution.isesecocecesscccanas
b. Coarse Resolution.ceecevessasessnses
C. TM Productivity AnalysiS.ieeeecesesscscscsessnsscsnsas
1. Correla?lon.................................
a. Southern lllinois..... ceseseracssnns
b. Great Smoky MountainsS..c.eeceveccesss
c. Huntington Wildlife Forest, New York
2, Regression Modeling.....;...................
a. Southern I11in0OiS.ceeieeceescossnces
b. Great Smoky MountainsS.eeesececocecces

c. Huntington Wildlife Forest, New York

Page

12
19-
19
19 |
21
23
24
24

26
27
29
29
30
31
32
32
32
33
34
34
35
35



3. Classification/Analysis of Variance (ANOVA)
ModelIng.......;.................

a. Great Smoky MountainS.eecececsceeces
b. Huntington Wildlife Forest, New York

D. TM/AVHRR Scale—Up........................;...........
1. TM/AVHRR Calibration.ceeesessrecscccsncssens

2. Percent Forest Estimation by County...ce....
3. Productivity Estimation by County.....eceees
4

. Verification of AVHRR EstimateS.eeescvcccses

IV. PRODUCTIVITY/COVER ESTIMATION RESULTS AND DISCUSSION...vseeeeses

A. TM/ProduCtion.seeeeeeeeosassacsssesccsoasasossasceses
1. Correlation.sieeeeccececeasescsessscronnsnss

a. Southern Il1in0OiSieseeececssscncnnes

b. 'Great Smoky MountainsS.e.eecececececes

¢. Huntington Wildlife Forest, New Ybrk

d. Comparisons Among SiteS.cececiecceses

2; Regression Model ingeeeecereececceocascnnnens

a. Southern I111001S.eeeeerencecncnnnes

b. Greé+ Smoky Mountains.eeeeeeeecsonse

C. lHunTing?on Wildlife Forest, New York

d. Comparisons Among Site€S.ceieesecaces

3, Classification/ANOVA. . .cvevevreonsnvesensnnns

a. Great Smoky Mountalins.e.eeeseeecesan

B. TM/AVHRR Scale—Up................;...................
1. Percent Forest Estimation.cesiecasecisaaceanes

a. Southern [11In0iSieeerececeecccennes

b. Great Smoky Mountains...eeeeesvcesss

c. Comparisons Among SiteS.eeecececevse

35
35
37
39
39
42
42
43
45
45
45
45
47
50
56
57
57
58
62
65
67
67
68
68
68
75

81



V.

vi.

Vil.
Vill,
IX.

X,

2. Productivity Estimation..eeseeeeeecesceeonas
a. Southern Illlnois;..................
b. Great Smoky Mountains....cceceaceess
c; Comparisons Among SiteS.eecececcecss
CLASSIFICATION STUDIES METHODS..eveeeeesccnsosascascccssncnesse
A. Study Site..cieieneenanens ceeees Cetreseresastsaseseans
B. Classification Procedure...cceeeeeecencieccaneracanss
1. Landsat TM Transformations..eceeeseccccssses
2. Topographic Measures Derived From Digital
Efevation Models (DEM)..cveeeccececnnccens
3. Topoclimatic Index Derived From DEM.........
4. Determination of Classification Variables...
CLASSIFICATION RESULTS AND DISCUSSION:sececeesssoocosaosnsasas
A. Classifica+lon.......................f...;...........
B. Assessing Agreement Beilween Classification and Map...
C. Community Classification Variations..... ceesenaes cees

OVERALL mNa—USIONSO0.00000.000'.00.0.tco'ncocolc'coolo.ul'noc

}BIBLIa;RAPHY-...o..-.......--...........-.....---.-.-....-.-.o

ACKNWLEDGWNTS AND COLLABORATION."'l..'....."........'."..

APPEND'X..C..."Q...Q.I'..'..ll.'.'"0.0'0.0'...'OI......‘....

A. Extensive Sites Preliminary StudieS.ceieceesssscennas
B. Facili+ies and Equ]pmen‘r....'.?l"..lll..’....;...l‘..
C. Papers, Proceedings, and PresentationS.cceeceesceccces

D. Meetings, Visits, and Travel...... teresesensscscennos

82
82
86
89
30
90
94

94

96
98

101
101
101
102
107
113
121
122
122
122
128
133



l. EXECUTIVE SUMMARY

Many pressing environmental [ssues such as clfmaTe change and acid
precipitation are global or regional In nature. Resolving these Issues has
been difficult in part because of their enormous geographic scale in
relation fo ground-based measures. Satellite Imagery is the only source of
extensive, synoptic data on global physical and biological features;
however, not all features of the biosphere can be measured directly. Some
must be modeléd with process models that requlre spatially extensive
estimates 6f driving variables and parameter values. In many cases,
satel | ite sensors cannot measure even these variables and parameters
directly. The dilemma of developing spatial ly extensive estimates of
»variables for which one only has local, ground-based, point estimates is
unavol dable.

One approach to solving this dilemma is to make use of an underlying
functional relationship between a secondary variable, measured by a
satel | ite sensor, and the variable of interest to develop a model that
predicts the desired information on the basis of the sensor data val ues.
This approach depends on the existence of (1) a functional relationship
between some sensor variable and the variable of interest and (2)
ground-based data on the variablé of interest that can be paired with
sensor data to develop the model parameters. These models may be developed
by regression or classification techniques. Examples of biological
variables that have been related to satellite data In this manner are
|eaf-area index (Running et al., 1986), vegetation cover (e.g., Hopkins et
al, 1988), and absorbed photosynthetic radiation (Asrar et al, 1984). By
applying the models to full scenes of reflectance data, one can make
spatial ly extensive estimates of the variables. In taking this approach

one must conslider:



1. The statistical properties of models that | ink ground-based
values of a variable to satellite-sensed éurface reflectance
characteristics.

2. Whether models that use fine-scale spectral Imagery to make
predictions can be extended to larger regions by nesting fine-
and coarse-scale Imagery such as TM and AVHRR scenes.

3. How landscape heterogeneity and structure influence the observed
relé+lonshlp between the Iimagery and the ground-based data. |

The objective of our research was to relate spectral imagery of

varying resolution with ground-based data on forest productivity and
cover, and to create models to predict regional estimates of forest
productivity and'cover with a quantifiable degree of accuracy. We took a
three-stage approach, outlined in Figure 1. In the first stage, we
developed models relating forest cover or productivity to TM surface
reflectance val ues (TM/FOREST models). We were successful in making this
TW ground-based data |ink over four widely differing |andscapes--southern
I1linois, the Great Smoky Mountains In Tennessee, the Adirondack Mountains
in New York, and the subalpine zone of the Colorado Rocky Mountains. In
all cases the models were based on fﬁncfional relationships between forest
cover and forest productivity andilandscape properties, phenology, and
canopy characteristics that affected TM-measured surface reflectance
characteristics. The TM/FOREST models were more accurate when
biogeographic information regarding the landscape was either (1) used to
stratify the landscape Into more homogeneous unifé or (2) incorporated
directly Into the TM/FOREST model.

The statistical properties of the TM/FOREST models were sufficient

to predict the mean or median forest productivity or cover of the

landscape with a quantiflable degree of accuracy (standard error of the



estimate was + 5 percent in some Iandscapes). The fine-scale
(pixel=-to-pixel) pattern of productivity was not weil captured by these
models, as the standard error about ahy slngle pixel prediction of fore$+.
productivity was greater than 30 percent. This results from heterogeneity
of forests even at the TM scale, which créafed a large degree of
unexplained variance despite the fact that the parameters of the model
were wel | estimated [e.g., the models were highly significant (p=<0,0001),
buf_r2 values‘were lowl. The error term for the average of all pixels In |
a landscape is dominated by the error associated with the parameters. The
standard error about the expected value of a single pixel is daminated by
the unexplained variance. Consequently, the TM imagery could be used
successful ly to estimate Thé productivity and cover of a landscape but not
the pixel-to-pixel pattern of that productivity.

In the second stage, we developed AVHRR/FOREST models that predicted
forest cover and productivity on the basis of AVHRR band values.
AVHRR/FOREST model s for the midwestern and southeastern regions of the
United States were developed by overliaying a partial TM scene, previously
used to generate landscape TM/FOREST models, with an AVHRR scene and
subsequently relating AVHRR band values to TM-predicted forest cover or
productivity (Fig. 8). These AVHRR/FOREST model s had statistical
properties similar to or better than those of the TM/FOREST models. The
predicted forest cover value for an AVHRR scene encompassing Tennessee,
Georgia., Kentucky, North Carolina, and Virginia had a standard error of %
4 percent. Furthermore, the AVHRR/FOREST models explained more of the
pixel-to-pixel variance; consequently, the models could be used to capture
some of the broad-scale patterns of forest cover and productivity.

In the third sfage,.we compared our regional predictions with

independent U.S. Forest Service (USFS) data. To do this we first created



regional forest cover and forest productivity maps using AVHRR scenes and
our AVHRR/FOREST models. From these maps we calcula+ed county values of
forest productivity and cover. These Image-derived county-level estimates
of forest cover and productivity were then compared with USFS county-|level
values of forest cover and productivity. In all lllinois-region cases our
forest cover estimates correlated well with those of the USFS (e.g., a
correlation of 0.97 for forest cover of 77 counties in Missourl, a
correiaflon of 0.87 overall for a 10-state midwestern region composed of
432 counties). bur forest productivity estimates al so correlated well In
the Illinois region with the USFS estimates (e.g., a correlation of 0.72
over all countles, and a correlation of >0.85 for counties within 200 km
of the calibration site). In addition, the overall estimates of mean
county percent forest and mean county annual growth were very close to
that of the USFS estimates for the region (e.g., 24.2 percent for AVHRR
vs. 21.6 percent for USFé estimates of percent forest, 39,300 cubic meters
per county for AVHRR vs., 43,000 for USFS estimates of growth).
Correlations and predictions were not nearly as good in the Smoky Meountain
region, but the two estimates were highly and significantly correlated.
Such results are a strong conflrma*fon of the ability of our approach to
develop regional estimates of vafiables for which there are only |imited
ground-based data and no direct means of measurement by satel|ite sensors.
It Is apparent that the landscape has a strong influence on the
success of our approach., We were most successful in the Midwest, where
forests are uniformly daminated by hardwoods, topography is falirly
consistent, and bodies of water are not an overwhelming feature of the
landscape. These three features allowed consistent across-region
Interpretation of the TM and AVHRR spectral Imagery. In the Southeast,

forests are mixtures of hardwood and conifer stands, topography ranges
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from the mountainous region of the Great Smoky Mountains to flat|ands of
western Tennessee, and bodies of water, while frequent, are also large.
Our AVHRR-based predictions were relatively poorer under these conditions.
Topography and coﬁifer presence were influential because the AVHRR/FOREST
models for the Southeast were derived from the TM/FOREST models which had
been developed from ground-based data on hardwood forests In the Tennessee
Smoky Moun+élns. The TM-forest productivity model was based in part on
elevational +émpera+ure differences that were both captured by the TM
sensdr and strongly correlated with productivity In that particular
landscape. In the Rocky Mountains the spatial pattern of the alpine and
subal pine vegetation was too fine to be captured even with TM data, but
was separated with the addition of biogeographical data such as slope,
aspect, and elevation. However, the four montane forest ecosystems were
not readily distinguishable with the available information. We therefore
made no attempt to create AVHRR/FOREST models in this region because the
fine-scale spatial heterogeneity precluded use of that approach and
productivity data were unavailable. In the Northeast, we were |ess
successful in developing TM/FOREST models than in either the Midwest or
the Southeast, and preliminary efforts to develop AVHRR/FOREST model s were
unsuccessful. This is apparently é consequence of two factors: (1) the
presence of many mixed hardwood-conifer stands and (2) the presence of
many smal | wetlands and lakes. We were successful in developing TM/FOREST
model s only when we stratifled the data based on forest type. In the
larger AVHRR pixels, the forest/band value relationship was confounded by |
the extreme heterogeneity of the landscape, and we were unsuccessful in
deriving a significant relafionshlpf

In summary, an approach of using nested scales of imagery in

conjunction with ground-based data can be successful.ln generating
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regional estimates of variables that are functionally related to some
variable a sensor can detect. Furthermore, this approach permits the error
associated with such estimates to be documented. The approach will be most
useful in regions In which either (1) the functional relé?lonshlp Is not
confounded by other features of the landscape or (2) confounding |andscape
features can be stratified to reduce the overall variance. As new sensors
are developed, more blosphere variables will be functionally relafed‘fo
satel |l Ite measurements. Our ablility to detect global processes and map
global patterns will depend on our ability to capital ize on these

relationships.
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1. INTRODUCT ION

Many pressing environmental Issues such as climate change and acid
précipl+a+lon are global or regional in nature. Resolving these issues has
been difflicult In part because of thelir enormous geograpﬁic scale in
relation to ground-based measures. Satellite Imagery Is the only source of
extensive, synoptic data on global physical and biological features.
Satel | Ite sensors can directly measure many of the signiflicant features
- which define and regulate the habitability of the globe; however, not all
features of the blosphere can be measured directly. Some must be modeled
with process models driven by physical and biological variables. The
util ity of these models for making regional or global predictions will
depend in part on acquiring spatially extensive estimates of driving
variables and parameter values. In many cases these variables and
parameters will be difficult if not impossible to measure directly from
data collected by the satel |ite sensors. The dilemma of developing
spatial ly extensive estimates of variables for which one only has local,
ground-based, polnt estimates is unavoidable.

One approach to solving this d[lemma is to make use of an underlying
functional relationship between a secondary variable, measured by a
satel | Ite sensor, and the variable of interest to develop a model that
predicts the desired information on the basis of the satel | ite sensor
data. This.approach depends on the existence of (1) some functional
relationship between some sensor variable and the target variable and (2)
ground-based data on the variable of Interest that can be palred with
sensor data to develop the mode! parameters. These models may be
developed by regression or classification techniques. Examples of
biological variables that have been related to spectral data in this

manner are leaf area Index (Running et al., 1986), vegetation cover types
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(Hopkins et al., 1988), and absorbed photosynthetic radtiation (Asrar et
al, 1984). In each of these cases the sensor was Incapable of directly
measuring the variable but measured a surface reflectance characteristic
that was directly related to the target variable. By apblylng the model s
to full scenes of reflectance data, one can make spatially extensive

estimates of the variables.

In making this |inkage of spectral Imagery and ground-based data,
one must consider:

1. The statistical properties of models that |ink ground-based
values of a variable to satellite-sensed surface
ref |ectance characteristics.

2. Whether models that use fline-scale spectral imagery can be
extended to larger regions by nesting flne- and
coarse-scale Imagery such as TM and AVHRR scenes.

3. How landscape heterogeneity and structure influence the
observed relationship between the imagery and the
ground-based data.

These issues will become Increaslngly significant as we attempt to
measure global patterns and processes. The success of the Earth Observing
System (EOS). and Its moderate and high resolution imaging spectrometers
(MORIS and HIRIS) will depend in part on our ability to use satellite
Imagery to extend local, ground-based data to larger regions.

I+ Is well known that current satellite ftechnology can be
successful ly used for a large number of ecologlcally meaningful analyses
over relatively small areas. Innumerable examples exist for using such
data to map and quantify vegetation on the landscape. Patterns of
| and-cover change over time have been assessed with multi-temporal data

(Colwel I, 1980; Hoffer. 1984; Woodwe!l et al., 1984; Hall et al., 1987;
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Iverson and Risser, 1987; Sader and Joyce, 1988). Use of satellite data
for determination of some functional atfributes of cammunities, -~
ecosystems, landscapes, aﬁd regions Is now becoming increasingly important
with Investigators and funding agencies. For example, séfelllfe data are
being successfully used In assessments of vegetation stress due to
disease, Insect damage, drought, and pollution (Jackson, 1986; Rock et
al., 1986; Vogelmann and Rock, 1986; Wil liams and Nelson, 1986).
Vegetation productivity or biomass estimates have been made for several
different ecosystems with a variety of sensors (Tucker, 1980; Lulla,
1981).

Most of these studies have been with agronomic crops (ldso et al.,
1977; Gardner et al., 1982; Conese et al., 1986; Redelfs et al., 1987),
grasslands (Pearson et al., 1976; Olang, 1983), wetlands (Butera ef al.
1984; Hardisky et al., 1984), or shrublands (Vinogradov, 1977; Strong et A
al., 1985; Pech et al., 1986), and coniferous forests or plantations
(Butera, 1985; Fox et al., 1985; Jensen and Hodgson, 1985; Franklin,
1986; Peterson et al., 1986; Running et al., 1986; Peterson et al., 1987;
Wu and Sader, 1987). These studies reported varying degrees of success,
with the felafionshlps general ly poorer as the system in question became
structurally and functionally more complex (i.e., uneven-age forest
systems have less reliable predictions of productivity or biomass than do
most agronamic systems). Additionally, very I|ittle work has been reported
for estimating forest productivity in decliduous-dominated forests, and
none of these studies attempt to extend the relationships over large
regions.

Advanced Very High Resol ution Radiometer (AVHRR) data have been
reported as very useful in monitoring gross correlates to primary

productivity at the continental scale (Goward et al., 1985, 1987; Tucker
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et al., 1985, 1986; Shimoda et al., 1986; Townshend and Justice, 1986).
The normal ized difference vegetation index (NDVI), when integrated over a
growing season, has been highly correlated with preliminarily estimated
net primary broducflvi*y of 24 North and South American 5Iomes (Goward et
al., 1987). Sadowski and Westover (1986) also used AVHRR data
successful ly as an estimator for rangeland greenness in monitoring
grassland flre-danger hazard in Nebraska. |t is generally difficult,
however, to obtain ecologically valid estimates of primary produp#ivlfy or
other ecological parameters across an AVHRR scene directly since i+.ls
logistically difficult to obfain ground observations over such large
regions for comparison to AVHRR remote-sensed information (Curran and
Williamson, 1986).

One approach in estimating continental land cover has been to use
mul tilevel sampling procedures with Landsat MSS data; this method carries
potential although considerable numbers of scenes would need analysis to
reduce standard errors of the estimates (Nelson et al., 1987). The
combination of AVHRR and Landsat data provides another mechanism to
cal ibrate ecological ly meaningful Informa+lon on the ground over vésf
areas. Conifer biomass model ing over |arge areas has been accompl Ished
with some degree of success with the combination of MSS and AVHRR data
(Logan, 1983; Logan and Strahler, 1983); the merger of TM and AVHRR for
ecological purposes has not, to our knowledge, been reported.

Understanding and estimating the spatial pattern of forest cover and
productivity at large scales Is Important for understanding biosphere
processes. Forest covers an estimated 2.5 x 109 ha of the earth's surface
(Southwick, 1985) and are a daminant feature of the global carbon and
hydrological cycles (Moore, 1984; Southwick, 1985). Forests provide not

only lumber, fuel, and paper for humanity, but also hablfaf for the
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world's wildlife. The abundance and pattern of foresfs across a |andscape
can have significant effects on both wildlife and the econamic wel I-being
of a society.

Because of the size and longevity of trees, foresf-producfivlfy Is
difficult to measure directly (Lieth and Whiffaker, 1975); ground-based
estimates of forest productivity tend to be local ized and infrequent In
many parts of the world (Olson, 1975; Goward et al, 1987). Consequently
spatial patterns and absolute values of forest cover and productivity have
been difficult to quan+lfy'a+ larger scales (Olson, 1975; Nelson anq
Holben, 1986; Nelson et al., 1987). '

The objective of our research was to relate spectral Imagery of
varying resol ution with ground-based data on forest productivity and cover
to create models capable of predicting landscape and regional estimates of
fores+ productivity and cover with a quanflfiasle degree of accuracy. Our
strategy was to use satel|ite Imagery to extend ground-based values of
forest productivity and cover to landscape and regional estimates of cover
and productivity. We took a Thr;e-sfage approach (Fig. 1). The key
qyesflons which we addressed were:

1. Are there functional relationships between TM-observed
surface reflectance characteristics and ground-based
measures of forest cover and productivity that can be used
to create TM-based models of forest cover and productivity
(TM/FOREST mode!s)? Can spatial differences in forest
productivity be used in |ieu of temporal differences in
developtng that model?‘

2, What are the statistical properties of such TM/FOREST
models? How do thelr statistical properties control their

utility?



T™ quarter scenes Develop TM models of
(L, TN, NY, CO) forest cover/prqductlwty

Quantify model accuracy

Ground—based data
Create landscape maps of
(IL, TN, NY, CO) forest cover/productivity

Landscape maps of
forest coven{productivity |

AVHRR scenes Develop AVHRR models of
Midwest forest cover/productivity
Southeast |
Northeast Create regional maps of

forest cover/productivity

Regional maps of
forest cove;/productivity

Verify AVHRR—derived maps
a)Calculate county—level

U. S. Forest Service forest cover/productivity

county—level data on from maps.

forest cover/productivity b) compare AVHRR county
data with Forest Service

county data

County boundary map

Fig. 1. Three-stage approach to ground-TM-AVHRR
investigations reported in this study.
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3. Can these TWFOREST models be used in conjunction with
nested TM and AVHRR Imagery to develop coarse-scale
AVHRR/FOREST models that are appl icable to extensive
regions? |
4, Can such AVHRR/FOREST models be used In conjunction with
AVHRR Imagery to develop reliable regional maps of forest
cover and productivity?
5. How does landscape heterogeneity and structure affect the
utll ity of our approach for extending ground-based data?
In the first stage of our research, we examined the rela+ionshlp of
TM surface reflectance val ues and forés+'cover or pfoduc+tvi+y in four
widely differing landscapes--southern lllinols, the Tennessee Smoky
Mountains, the Adirondack Mountains of New York, and the alpine +o montane
zones of the Colorado Rocky Mountains. Ground-based data on forest cover
and productivity were paired with TM spectral data of |ike resolution to
Aevelop models predicting forest cover or productivity from TM band val ues
(TM/FOREST models).- In the second stage, we paired AVHRR data with
predictions of forest cover or produqfivify derived from TM/FOREST models
to develop models predicting forest cover or productivity from AVHRR band
values (AVHRR/FOREST mode!s). In the third stage, we evaluated our
mul ti~stage, mul ti-sensor approach for extending |imited ground-based data
by comparing regional predlc+}ons of forest cover and productivity
generated with our AVHRR/FOREST models to Independent USFS data.
In summary, our approach was to use nested scales of imagery in
conjunction with ground-Based data to generate quantifiably accurate
landscape and reglonal estimates of two variables (forest cover and forest

productivity), both of which cannot be directly measured by a sensor but
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are functional ly related to surface reflectance characteristics that T™M

and AVHRR sensors can detect.

i11.  PRODUCTIVITY/COVER ESTIMATION METHODS
A. Study Sites
1. Southern Illinols -
The southern |llinols study area ranged from less than one
county to about 10 states in size, depending on the component of the study
(overal | study area depicted in Figure 2). A TM-GIS (TM/FOREST) mod_el for
forest productivity was generated for the northern half of Pope County,
IllTnols. This area was also used as the calibration point for AVHRR
productivity estimates (AVHRR/FOREST models). A nearby county, Jackson;
was also the location for the calibration of AVHRR data for percent
forests over a 10-state area centered on Illinois. A seven-county area iIn
southern lllinois (including Pope and Jackson counties) was used for
regrésslon model building to compare mean forest production as esflmafed
by the USFS to TM spectral signatures and ancillary GIS data.

The seven-county study area in southern Il'linois averages about 36
percent forest cover and contalns the Shawnee National Forest; it is the
most densely forested portion of the state (Hahn, 1984), The area had over
95 percent forest prior to European colonization In the early 1800s
(lverson gi.al., 1986), These forests are part of the central hardwood
zone of the eastern declduous forests, and grow on a wide variety of
slites.

Bottoml and fores+s4-prlmarlly pin oak, cottonwood, maple and
elm=-exist in the major flood plains of the Mississippi and Ohio rivers
and in the narrow val leys of smal ler streams. Southern Illinois!

bottomlands, about 100 m above sea level, are extremely fertiie because of
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Fig. 2. 1Illinois region study area consisting of 10 states
432 counties centered on Illinois. Also shown is
the set of 100 km rings around the Jackson County
calibration site.

b
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continual deposition of new sediment from upslope and upstream erosion,
but in some Instances are restricted in productivity because of poorly
drained solls. |

The terrain of upland forest sites varies from level o steeply
rolling, with deep loess to thin, rocky soils. In many areas of southern
li1inols, forests persist only because steep siopes or soil conditions
have |imited agricultural use of the land. Most of the state's highest
elevations océur here, but these reach 6nly about 350 m above sea level
such that elevation alone would not be expected to Influence vegetation.
Aspect and position does, however, Influence the vegetation qual ity and
quantity. Upland forests in the reglion are largely oak-hickory
associations. There are small amounts of shortleaf pine plantations in the
region, planted mostly on upland sites that were formerly agricultural
fiel ds abandoned in the 1930-1950 period.

The southern Illinols study area is cold In winter and hot in
summer, with average dally temperatures of 2 and 25°C in January aﬁd July,
respectively. Mean annual precipitation is about 1,060 mm, and is fairly
uniformly distributed across.the year. Winter precipitation generally
results in sufficient accumulation of soil moisture, which minfmizes
summer drought on most soils (Hefman, 1979). The average growing season
length (days above 0°C) is 169 days, the period during which 55 percent of

~ the annualvpreclplfafion fal ls.

2. Great Smoky Mountains
The TM/FOREST productivity analysis area in this region was
located in the western portion of the Great Smoky Mountain Néflona! Park
in Tennessee and North Carol Ina (Cades Cove 7.5 minute quadrangle) (Fig.

3). The area covers a complex set of ridges and val leys generally
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Fig. 3. Smokies region study area with the Cades Cove
quadrangle as the intensive study site.
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oriented in a north-south direction. Elevation ranges from 270 to 2024 m,
Only 20 percent of the landscape is pristine. The other 80 percent has
experienced direct human dlsfurbance.ln the form of logging and farming,
alfﬁough these actlvities almost ceased 50+ years ago with the Park's
establ ishment in 1934,

The climate in the Park is strongly Influenced by the abrupt
qhanges in elevation and the complex topography of the Great Smoky
Mountai ns. Témpera+ures in February range from a monthiy mean of 4.4°C at
445 m to -1.8°C at 1,919 m. July temperatures show a much more pronounced
elevational difference, averaging 22.1°C.a+ 445 m and 13.6 at the 1,919 m
elevation., Precipitation increases with elevation. October is the driest
month while February and March are the wettest.

The complex topography and extensive disturbance have created a
finely patterned mosaic of vegetation communities. Successional forest
covers much of the park. Cove forests confatnfng 10 or more tree species
occupy the sheltered mid-slope positions. On exposed low-to-middle
el evation slopeé, oaks, pines, black gum, sourwood, and red maple are
found. Higher slopes have northern hardwood and hemlock communities, with
spruce~fir at the highest elevations.

Regional extrapolation us!ﬁg AVHRR data encompassed portions of slx.
states, from Kentucky in the northwest to Georgia in the southeast. The
TM analysis for the Cades Cove area provided data for the scale-up

appreoach with AVHRR,

3. Huntington Wildlife Forest, New York
The Huntington Wildlife Forest is managed as a research forest
by the State University of New York (SUNY), College of Envirommental

Science and Forestry, Syracuse., The Forest is a 6,000-ha field station



24

located in the center of the Adirondack Mountains near Newcomb, New York
(Fig. 4).

The vegetation of the Huntington Forest is transitional between the
boreal forests to the north and the hardwéod forests to the south. Of the
5,073 ha of forest, 3,409 ha are classified as northern hardwood (beech,
sugar maple, yellow birch), 1,066 ha as hardwood=conifer (primarily red
spruce and balsam fir with hardwoods), and 598 ha as conlfer (whlte pine,
whlfe cedar, éasfern hemlock). Elevations of the Forest range from 475 to
820 m above sea level. At the higher elevations, red spruce and bal sam
fir are the major species, whereas the hafdwoods daminate the intermediate.
zones where soils are deeper and drainage Is better. Eastern hemlock, red
spruce, and balsam fir also occupy the poorly drained bottomlands around
lakes and streams. The area was glacial ly scoured and has about 10
percent surface water.

The climate is cool and moist, with a mean annual temperature of
5.5°C (January -8.8°C, July 18.8°C). fhe average annual frost-free period
Is 122 days, with snowfall varying from 2,500 to 5,000 mm annual ly and

snow cover continuous from early December to mid-April.

B. Data
1. Thematic Mapper (TM)

Thematic Mapper data were acqulred.for about 25 areas of the
United States and Canada. Preliminary processing was done on many of
these data while the project methodology evolved. As areas were selected
for which the best combinations of all types of data were available, the
fol lowing TM data sets covering these areas were processed extensively. A
comprehensive |1sting of all project TM data was provided in earlier

progress reports (lverson et al., 1986a, 1986b, 1987).
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These were the quarter scenes processed for southern I[llinois:

Path Row Quad Date of Coverage Quality

23 34 2 7/18/84 Clear
4 Clear
22 34 1 5/24/84 Clear
3 Clear

These data covered two geographical ly disjunct portions of the Shawnee
National Forest in southern Illlnois, and In conjunction represented the
seven-county region of the Sfafe studied in the TM-productivity analysis.
For the Great Smoky Mountains, the following scenes were processed:
Path Row Quad Date of Coverage Quality

19 35 4 9/8/84 Clear
19 35 4 10/26/84 Clouds 15%

These two quarter scenes provided mul t+i-temporal coverage of the area
surrounding Cades Cove quadrangle. The 9/8/84 quarter scene, because it
was col lected before significant senescence of the +fees, was the mofe
useful data set. al though both scenes were processed.
At the Huntington Wildlife Forest in New York, two dates were
observed:
Path  Row  Quad Dafé of Coverage Quality

14 29 3 6/17/84 Clouds 10%
14 29 3 9/21/84 Clouds 15%

In addition to these TM data sets for the Huntington Wildlife Forest
analysis, the two scenes were normal ized for solar lIrradiance to reduce
between-scene variability (Markham and Barker, 1986)., The calibrated data
sets were merged by means of raflb!ng |ike bands from each date. The

mul ti-temporal ratios were combined with the original data from both dates

to generate a third TM data set.
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2. Advanced Very High Resolution Radiometer (AVHRR)

AVHRR data used In the study were acquired fram two
sources. Initially, the data were available only from Satel |ite Data
Services Division of NOAA. The data purchased from NOAA were HRPT format
and required georeferencing in order for them to be useful in the
methodology of this study. Difficulties were encountered In the
transforming the data to UTM coordinates with a | inear transformation
algorifhm, esbeclally due to off-nadir distortions. At about that time in
the project, EROS Data Center had perfected a georeferencing technique and
were making geocoded AVHRR available to federél researchérs. Therefore,
geocodéd AVHRR data of the Illinois, Great Smoky Mountains, and New York
study areas were also acquired. The descriptions below mention which data
were used for each area énd the dates of coverage.

Geocoded AVHRR data col lected 6/4/87, and covering all or some of
Arkansas, lllinois, Indtana, lowa, Kentucky, Michlgaﬁ, Minnesota,
Missouri, Tennessee, and Wisconsin, were obtained from EROS Data Center
for the lllinois region. The data has been referenced to the UTM
coordinate system and resampied to a 1110 m x 1110 m pixel size. AVHRR
Bands 1-4, visible to thermal range, were fncluded in this data set.

For the Smoky Mountain reglbn, HRPT format AVHRR data collected
9/28/85, and covering all or some of Georgla, Kentucky, Miss{ssippi, Nérfh
Carol ina, South Carolina, Tennessee, and Virginia, were purchased from
NOAA. Four bands of Information were included. Linear transformation to
the UTM coordinate system was of acceptable accuracy, aided by the
uniqueness of Cades Cove as an open area surrounded by a rather
homogeneous forested |andscape. Pixel size was 1,110 m x 1,110 m.

Geocoded AVHRR data col lected 6/17/87 and covering the northeastern

United States (including the Huntington Wildlife Forest), were obtalined



21

from EROS Data Center. The data have been referenced to the UTM
coordinate system and resampled to 1,110 m x 1,110 m pixels. Four

spectral bands were also included in the data set.

3., Productivity
Fundamental to the TM-forest productivity analysis

technique of this study was the availability of field data estimating
forest produc+tvi+y at a particular site. These data needed to be: (1)
col lected at a resolution simila} to the TM data (30 m x 30 m), (2)
measurements representative of the conditions "seen" by the satel|lite when,
the TM data were col lected, and (3) identified in such a way that the
exact locations of~+he plots (in UTM coordinates) were known or could be
determined. Qual ity and number of these ground measurements varied by
study area and are discussed below In more detail. We recognize that our
productivity data are nof estimates of entire ecosys+em productivity, but
only major components of that ecosystem production. For purposes of the
discussion here, the term productivity Is used even though we are only
estimating a portion of the total ecosystem productivity.

An inventory of Illinols forest land was completed by the USFS in
1985. The data for 32 sample polﬁfs from the inventory occurring in the
study area were made available by the USFS for this study. Field plots
varied In size according to land use patterns and tree size, but averaged
0.4 ha. Measurements taken at each site allowed for the calculation of
mean annual Increment (MA[l) as an estimate of the main woody (above
ground) part of total ecosystem productivity. MAIl is defined in this case
as the cubic volume of hardwood growing stock at a site divided by stand
- age (cu/A/yr). Volume and age of the plots were extrapolated from trees

which had diameters in excess of 12.5 cm at breast height. Plot locations,
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referenced to the nearest meter of UTM, were randomly selected to
represent the conditions of forests in southern Illinols.

Forest productivity data for the Great Smoky Mountaln study site
were stand bole volume growth estimates taken from Callaway (1983,  These
data were developed from Tree.core measurements of 128 20 m x 50 m
National Park Service permanent plots. The plots were selected to be
representative of topographic range and degrees of disturbance In the
Park. Plot eievafions ranged from 523 m to 1,540 m. No spruce~fdr stands
were included. Each plot was divided iﬁfo five subplots and a random
sample tree was selected within each subplot. In order to represent the
canopy species production exclusively, only trees with diameters greater
than 30 cm at breast height (1.3 m) were chosen. Each sample {ree was
ﬁeasured for diameter at breast height, bole helght and 10-year. radial

growth increment. Bole volume growth (m3/yr) was calculated as follows:

Annua!l individual bole volume growth = pi/3 x H x (1)

(r2 = (~~1)2)/10

where r = radius at breast height (m),

H = bole hefght (m),

and | 10-yéar radial growth increment (m)

Stand bole volume growth (m3/ha/yr) was calculated by multiplying the
average annual bole volume growth of the sample trees by 10X the number of
trees greater than 30 cm diameter at breast height within the permanent
plot. These data are very approximate estimates bf bole volume growth of
these stands and should be viewed really as indexes of forest productivity

rather than actual forest productivity. However, the large sample size

and diversity of site situations represented by the plots made the data
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set suitable to this methodology even though imporfanf components of total
ecosystem production are missing (Olson, 1971; Graham gi,él., 1988,
Continuous forest inventory plots were establ ished in 1970 at
Huntington Wildlife Forest by the SUNY Department of Envfronmenfal Science
and Forestry at Syracuse. Remeasurements of the plots were taken in 1976
>and 1981: Data from 173 of these plots were available for the TM
analysis. Using the repeated measurements of tree diameter, coupled with
publ ished biomass regression equations for tree species found in the
region, stand productivity at each site was clculated as change in |ive
above-ground biomass plus mortality (kg/ha/yr). This measure of

productivity in blomass was used as an index of forest productivity.

4, Blogeographical

Blogeographical data included any ecological attributes of
the landscape available for a study site that were considered to be
potential ly Important either as an Independent variable used for
explaining varlabil{fy in forest productivity, or as a stratification
variable for generating more homogeneous samples in TM and productivity
data being analyzed. When possible, data were acquired in digital format.
The qual ity and types of biogeographical data available varied by study

site and are described below.

a. High Resolution
The lllinois study site was in part selected because of
high quality, high resol ution data available from the Illinois GIS,
including landscape position, soil associations, slope angle and aspect,

and vegetation conmunity types. These were rasterized, reformatted, and
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directly Integrated with the TM and productivtity data with image
processing/G IS software.

Additional ly, site Informafipn data were:col lected for ‘each
Inventory plot by the USFS. Moisture class #xeric, mesic; hydromesic, or
hydric) and slope angle, aspect, and positiorctone of the four quarters of
the slope face) were Iincorporated with the othrer data. Woodland
productivity indexes were transliated from thécSoil Conservation Service's
ratings of soll mapping units on their abilltyrto produce timber
(Fehrenbacher}gi al., 1978); sﬁn radiance indexes were calculated from
aspect, slope angle, and latitude (Frank anddeee, 1966).

Cal laway (1983) had documented elevation, aspect, slope; topographic
position, soll depth, forest type, distance to nearest stream, and
disturbance history of each plot location during his fleld work, and these
were included In the TM-productivity analysiscfor the Smoky Mountain study
area, A digital elevation mode! for the Cadeé§ Cove quadrangle was also
used to project modeling results In three dimensions for better assessment
of roles played by e}eva+lon and aspect In effécting forest production.

Soil mapping units for Huntington Wildl fe Forest were digitized,
and from these soll capacity for timber produtction was interpreted (sugar
maple site Index). Slope angle and aspect were known for each Inventory
plot, as was forest community type. Sun radiance indexes were calculated

from slope ahgle, aspect, and latitude data.

b. Coarse Resolution
| The Oak'Ridge‘Nafional Laboretory Geoecology data base
(Olson, 1980) was used for verification of the' AVHRR regional scale-up
work (Section 111 D). The data set is a compilation of published data

from the USFS ranging in age from 1965 to 19805, and contains .data on
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percent forest cover and annual growing stock growfh at county resolution.
The lllinois data In the Geoecology data base predated the most recent
figures publishéd after the inventory of 1985 (Hahn, 1987). These updated
estimates were also included in the regional AVHRR analyéis.

For the Smoky Mountain region, estimates of percent forest and
forest production for 187 counties under jurisdiction of the Tennessee
Val ley Authority (TVA) were incorporated with the Geoecology data and
tested. The TVA data were considered an improvement over +he Geoecol ogy
information. largely becauée TVA included non-commercial forest lands In

Their estimates.

C. TM Productivity Analysis

- Several methods were used to analyze the utility of TM data In
explatning the variance In forest productivity. Regardlesé of the
technique or study area, similar preprocessing sfeps were necessary in
order to merge the TM and productivity data. An Image processing

al gorithm was wrl++eh that éreafed a GIS output file Identifying the
pixels pertaining to ground sample points when given the UTM coordinates
of their locations. By overlaying the two files, the GIS file was used to
extract a 3 x 3 window of TM pixels surrounding the ground sample point
and combine these data In an ASCIf file for subsequent processing by SAS
sfafisficai analysis software. The reasons for using a 3 x 3 window of TM
pixels were to al low for regfsfraflon errors in both data sets and to take
into consideration that the ground plots were larger than a TM pixel.
Other blogeographical data were mostly collected with the productivity
information and could therefore be merged into the ASCI| files using the
plot identification. Exceptions were noted above in the descriptions of

biogeographical data by study area.
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1. Correlation
a. Southern Illlndls
Correlations were run between the estimate of forest

productivity in cu ft/A/yr (MAl) and the variables listed in Table 1.

Table 1. Variables correlated with forest productivity estimates and used
as Independent variables in regression analyses for Illinois.
Non-numeric biogeographical data were ranked as to expected
ef fect on productivity.

1. All single band values (9 pixel averages)

2, All possible band ratios (9 pixel averages)
3. Transformed vegetation indexes (Tucker, 1979) (9 pixel averages)
a. (Band4 - Band2)/(Band4 + Band2)
b. (Band4 - Band3)/(Band4 + Band3)
c. (Band5 - Band2)/(Band5 + Band2)
d. (Band5 - Band3)/(Band5 + Band3)

Site moisture (xeric, xeromesic, mesic, hydromesic,and hydric)
Slope angle (percent)

Stope position (quarters of the slope face)

Aspect

Soll woodland producﬁivify Indexes

. Sun radiance Indexes

Vo~ A
L]

b. Great Smoky Mountains

Correlation analyses were performed with forest plot
volume growth (cu m/ha/yr) or its hafural log and TM and biogeographical
Qalues asséciafed with the plots. The TM variables that were investigated
ae listed in Table 2. In all cases the mean TM value of the 3 x 3 pixel
window associated with each forest plot location was used. Principle
component val ues for pixéls were generated by applying the ERDAS principal
components program (PRINC) to the September TM scene. Because conifer
canoples have very different reflective properties than hardwood canoples

and thus confound the TM relationships, the plots were also stratified
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into hardwood, conifer, and mixed community types to test for improvements
In the correlations.
Table 2. Varlables correlated with forest proddcfivnfy estimates and used

as independent variables in regression analyses for the Great
Smoky Mountains.

1. All single band values (9 pixel averages)
2, All possible band ratios (9 pixel averages)
3. 4 TM vegetation indexes (9 pixel averages)

(Band4 - Band4)/(Band4 + Band2)
(Band4 - Band3)/(Band4 + Band3)
(Band5 - Band2)/(Band5 + Band2)
(Band5 - Band3)/(Band5 + Band3)

TM principal component values 1-7 (9 pixel averages)
Plot elevation (m)

Piot slope (percent)

Plot distance to stream (m)

Plot drainage - hectares of watershed above plot

O~ b
. .

c. Huntington Wildlife Forest, New York
Correlations were run between TM values, biogeographical
dafa, and estimates of forest productivity (kg/ha/yr) for the 173 |
continuous forest inventory plots of the Huntington Wiid!ife Foreéf. The
T™M and blogeograpﬁical data used are listed in Table 3.
Table 3. Varlables correlated with estimates of forest productivity, and

used as independent variables .In regression analyses for the New
York site.

1. All single band val ues (9 pixel averages)
2, All possible band ratios (9 pixel averages)
3. 4 TM vegetation indexes (9 pixel averages)

(Band4 - Band2)/(Band4 + Band2)
(Band4 ~ Band3)/(Band4 + Band3)
(Band5 - Band2)/(Band5 + Band2)
(Band5 - Band3)/(Band5 + Band3)

Same band temporal band ratios (e.g. JuneTM3:SeptemberTM3)
Soil woodland productivity I[ndexes

Sun radiance indexes

Slope angle (percent)

~NOY\WU s
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Stratified correlations were also run usiﬁg aspect and community
types as the strata. Using elghf aspect directions resulted in sample
sizes too smal | for some of the directions, so they were'grbuped into
three general categories: E, SE, and S; N, NE, and NW; and W and SW.
These were intended to represent the general aspect orientations known fo

ef fect plant conmunities. Forest community types are listed in Table 4.

Table 4., Community types of Hunfingfon Wildl 1fe Forest (New York) used
for correlation and regression stratification.

White pine, white cedar
Beech
 Red spruce, yellow birch, balsam fir, red maple, beech
Red maple, yellow birch
Sugar maple, beech, yellow birch
. Sugar maple, beech

.

AT WN —
.

2. Regression Model ing
a. Southern Illinois

Multiple regression analysis was used to investigate
which TM and bliogeographical data best accounted for the varlahce in +he
forest productivity index. The meThéd of multiple regression used was
cal led R-SQUARE In SAS, which ranks the models from best to worst (by
largest r2) for all possible combinations of the Independent variables
being used. Diagnostics were also run to investigate problems of
col linearity among the independent variables. Independent variables were
weeded from the analysis if they were highly correlated with other
independent variables that contributed more to the r2 of the model.
Ultimately a model was selected as "best" based on the highest adjusted

rZ, signiflicance of the model, a high probabil ity that the parameter of
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each variable fn ‘+the model was non-zero, and that the model did not
violate regression assumptions concerning colllﬁearify. Varlables
investigated as Independent variables for I|llinois are | isted above In
Table 1. Once a model was selected, i+s mathematical formula was applied

to each TM pixel of the I(llinols region to generate a productivity map.

b. Great Smoky Mountains
All comments made above concerning regression analysis
for the Il1inols study site also pertain to the Smoky Mountains.
Additional ly, with the advantage of more sample po!hfs of prodhcfivt*y
data, the Smoky Mountain regression analyses included stratification by
forest associations of hardwood, mixed, anq coni fer. Independent variables

ae |isted above in Table 2.

é. Huntington Wiidlife Forest, New York
‘ Variabfes used as Independent variables In the
regression analyses are listed In Table 3. Once agalin, techniques were
similar to those discussed under lil|inois. Regression was also performed
with sfréfiflcafion by three aspect categories and six forest community

types (Table 4).

3.‘Classif!ca+ion/ANOVA
a. Great Smoky Mountains
| An unsupervised classifler was applied to the September
T™M scene to classify the pixels into 35 categories. Using topographic
maps. some famllfarify with the area, and mean band values for each of the
35 classes, the classes were identified as water, non-forest, or forest.

The TM cover classes for the nine pixels (3 x 3 blocks) associated with
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the point location of each forest prbducflvlfy plot were written to an’
ASCII file for statistical analysis. Each plot was'assIgned to the class
+ha+ occurred most frequently within the nine pixels (none was associated
.wifh non-forest or water). Only plots In which the most common class
occurred In at least four of the nine pixels were used in subsequent
statistical analyses. Of the 128 plot locations, only five plots had. to
be dropped for this reason. Another 12 plots were dropped because of
Insufficient Sample plots within a class type, i.e., only one to four
b|o+§ had that class type. The plot frequency distribution of six class
types +Ha+ were associated with at least six forest productivity plots was
virtual ly identical to the frequency distribution of those classes within
the entire classifled scene.

Once each plot had been assigned to a class or dropped from the data
set for the reasons above, analysis of variance was performed on the data
in several ways. Both stand volume growth and the natural log of stand
volume growth were used as dependent variables. An unbalanced 1-way
analyslis of variance was performed to determlne if TM class type could
explaln a significant portion of the observed variation in forest
productivity (ANOVA Mode! 1). A covariate variable, plot elevation, was
then introduced into the l-way anélysls (ANOVA Model I1). In the third and
fourth tests. pure pine plots were el iminated from the data set and a
1-way analysis of ;ariance was performed with and without the covariate
variable of elevation (ANOVA Models |1l and IV). The plots were also
classed into four aspect classes (NE, SE, SW, and.NW), and a 2-way
analysis of variance using TM class and aspect as the independent
variables was'performed. Analysis of variance using plot elevation, plot
slope, or plot distance to water as the dependent variable was also used

to examine the relationship of class type to these features. Using results
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from the analyées of variance, productivity valqes were assigned according
to the classes for each forested pixel In the réglon to produce a.-
productivity map of the region.

The October scene was also classified in the same manner as the
September scene with the inftention of performing the same analyses.
However, once the class values for the nine pixels surrounding each plot
location were extracted from the classified October scene, it became
apparent that further analyses would be fruitiess because (1) far fewer of
The plots were assoclated with four or more pixels with the same TM class
and (2) there were few TM classes thch had six or more plots éssociéfed

with them.

b. Hpnflngfoﬁ Wildlife Forest, New York
The June TM data for Huntington Wildlife Forest (Fig.

5) were classified into 30 classes using the unsupervised classifier, |
which were subsequently Identifled as water, non-forest, or forest. As
described In the Great Smbky Mountain mefhodology, nine pixel blocks were
given the class idenflf!éa+lon of the most commonly occurring class. . At
least six plots had to fall into a cléss for the class to be considered in
the analysis. ANOVA analysis was run on the plots using all sites (n=144),
as well as stratified according to forest cutting dates. It was assumed
'fhaf if é highly productive site had been thinned before the TM data were
col lected, the relationship of TM values and productivity data would be
confused. The six cutting stratifications were: (1) all sites not
thinned after 1976 (n=116), (2) all sites thinned after 1976 (n=28), (3)
all sites not thinned after 1970 (n=86), (4) all sites not thinned before
but thinned after 1976 (n=24), (5) all sites thinned between 1970 and

1976 but not after 1976 (n=30), and (6) all sites thinned both between
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1970 and 1976 and between 1976 and 1981  (n=4)., |+ should be noted that
these cutting times were inferred from decreases in basal areas recorded
at the sites. If the basal area decreased by 20 f+2/pl ot or more the site
was assumed to have been cut. The results of ANOVA for New York were

Inconclusive and will not be discussed In this report.

D. TM/AVHRR Scal e=Up
1. TMWAVHRR Cal ibration

For southern lllinois and the Great Smoky Mountains, a
procedure was developed to use the TM data as a vector for cal ibrating
AVHRR pixels to estimate forest cover or productivity over large regions.
An AVHRR data set covering 564,175 kmZ centered on It1inois (latitude
34~44 N, longitude 86-94 W) for June 4, 1987, was acquired from the EROS
Data Center, Sioux Falls, South Dakota (Fig. 6). These data had been
geocoded to Universal Transverse Mercatur (UTM) coordinates and resampled
t0 1,110 m x 1110 m. Similarly, AVHRR data for September 28, 1985, from a
243,090 km? area centered on the Smoky Mountains (latitude 33-37 N,
longitude 81-86 W), were acquired from the National Oceanographlc and.
Atmospheric Administration (NOAA) (Fig. 7). Georeferencing of these data
to UTM coordinates was performed to subpixel accuracy, using a |inear
.+ransforma+ioh al gorithm generated from ground-control points (e.g.,
slopes and grassy balds) and adjusted via the known UTM's of praminent
features in the AVHRR data such as Cades Cove.

The acquisition dates corresponded to time intervals when all
forests In the study areas would be in full leaf stage, whereas the
signatures fram row~-crop agriculture (the dominant non-forest feature of
especial ly the Illinols region) would be dominated by non-ch!orophytic

plants since acquisition was early or late in the crop calendar years.
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The AVHﬁR data were then overlayed with TM data for a portion (99-154
1,110 m x 1,110 m AVHRR pixels occupying 120-190 kmZ) of The—sfudy areas,
subset to cover precisely the same areas, and resampled to the TM's 30 m
x 30 m pixel size which subdivided each original AVHRR pixel Into 1,369
(37 x 37 matrix) pixels. These files were merged to create an 11-band
file, Including TM Bands 1-7 and AVHRR bands 1-4. Also added to these
files were bands containing class assignments from an unsuperv ised
classlflcafloﬁ of the TM datea used to derive percent forest and
-productivity estimates, and an identification field, to group pixels
according to each original AVHRR pixel for analysis. An additlonal band
for the lllinois region contained productivity estimates for each plxel
generated from the TM regression‘model for the region.
The resulflng files are represented for one case, Cades Cove In the

Smoky Mountains (Fig. 8) where the green gun corresponds to TM Band 4
data, and the Eed gun corresponds to AVHRR Band 2 data. A sampling program
extracted data from this file from every fourth |ine and fourth column (a
1/16th sample) to reduce data density, and data were output to ASCII files
for SAS statistical analysis. Correlation and regression analysis were
used to test relationships between productivity or percent forest
calculated from TM regression models or classifications for each original
"AVHRR pixel and various AVHRR spectral characteristics, including AVHRR
Bands 1-4, the normal ized difference vegetation index
(Band2~Band1/Band2+Band1), band ratios, and various other Indices which
included Bands 3 and 4 and have been used previously for assessing
agronomic species biomass (Gardner et al., 1982). For ?egression moqels,
productivity or percent forest estimates as ascertained by TM data were
used as Independent variables with AVHRR spectral characteristics as the

dependent variables.
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Fig. 9. Representation of vegetation types in the Smokies
based on elevation and moisture gradients (after
Whittaker 1952).
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2, Percent Forest Estimation by County

The best AVHRR regression models which predicted percent
forest were applied to the AVHRR data sets in the fol lowing manner. An
unsupervised classification was performed on the 4 band AVHRR data to mask
out water, bare ground, and other non-forest data. A very conservative
approach was taken In assigning classes with the ald of maps and aerial
phofographs such that if the pixél was Interpreted as having any forest,
It was classed as a forested pixel. The regression equation was then
appl fed to each AVHRR pixel to produce an estimate of percent foresf.over
the entire region. Frém the resul ting data set, a standard error around
the mean and 95 percent confidence intervals were calculated to estimate
the variance of the regression predictions, The percent forest estimates
were then classified into seven cover classes to ease data manipulation
and visual interpretation: O percent, 1-20 percent, 21-40 percenf, 41-60
percent, 61-80 percent, 81-99 percent, and 100 percent. '

To project AVHRR-estimated forest cover percentage over entire
counties, the perce6¥ forest classified GIS layer described above was
overlain with a GIS of county boundaries. A summary text file was then
produced which gave the number of pixels of each class for each county;
this file was imported Into SAS for calculating forest cover for

individual counties.

3. Productivity Estimation by County
A similar épproach was used to estimate forest productivity
over the study regions. In this case, a productivity map derived via
regression analyses for northern Pope County was used as the cal ibration

" center to formulate the regression equation used over the lllinois AVHRR
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scene, and the Cades Cove quadrangle classifled into productivity classes
was used for the Smoky Mountains region., Total growth estimates for each
AVHRR pixel were made by summing the growth projected for the 1,369 TM
pixels within an AVHRR pixel. Similarly, total county growth estimates
were calcul ated by summing the estimates of growth for each AVHRR pixel

within a county.

4, Verfficafion of AVHRR Estimates
Once the output estimate of percent forest class or

productivity over the entire AVHRR study area was produced via regression
analysis, it was Iﬁporfanf to compare the output data against another data
set. The USFS data, acquired by county nationwlide, was.selec+ed as the
validation data set, and was available through Oak Ridge National
Laboratory's (ORNL) Geoecology data base (Olson, 1980), This data set is a
campilation of USFS publlshed data ranging in age from 1965 to 1980. An
additional, more current data set was acquired for the Smoky Mountain
region from the TVA, Because of the more current data and a better
estimation of non-cémmercial forest land in the TVA data, they were.chosen
for use over the ORNL Geoecology data for the Smoky Mountains.

The county data were then ﬁerged to a vector GIS coverage of all
U.S. states and counfies by FIPS codes, rasterized to a grid cell size
which matched that of the AVHRR data (1,110 m x 1,110 m), registered to
UTM Zone 15 (Il1inois) or Zone 16 (Smoky Mountains) projection, and subset
to match the appropriate AVHRR data set. The two data sets (AVHRR and
Geoecology or TVA) were then output to SAS for statistical comparisons
between the estimates of cover or productivity. The data were also output

to ERDAS for display of county estimates from AVHRR, Geoecology or TVA,
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and difference maps depicting geographical ly where similarities and
dissimilarities existed in the estimates.

Correlation analyses were perfofmed to compare the AVHRR estimates
to the Geoecology or TVA (USFS) estimates of percent forest or
productivity. This was done in three ways: all counties grouped together,
counties stratified by state, and counties stratified by distance from the
calibraTlon.cenfer, For the latter evaluation, ARC/INFO was used to
creafe clrculér buf fers away fraom the center point of the calibra+l6n area
of 0-100, 100-200, 200-300, 300-400, and >400 km; the counties were fhen
assigned a buffer code for stratification. A total of 432 counties
existed in the Illinois study area scene, and 182 counties in the Smoky
Mountains scene. If less than 75 percent of land area of a particular
county existed in the AVHRR scene (edge counties) it was eliminated from
statistical analysis. County means from the two estimates were also
compared using pair-wise T;Tesfs.

For two states, Illinois and Missouri, a second, more recent, source
~of data was used in addition to the Geoecology data. This was done to test
the Impact of using older data sets as well as data from a different
source. For Illinois, 1985 USFS Inventory percent cover and annual
growing stock growth data (Hahn, i987) were substituted for the 1965 data.
With Missouri, data used were a result of digitization of forests

interpreted from 1984 TM photographlc images (Giessman et al., 1986).
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IV. PRODUCTIVITY/COVER ESTIMATION RESULTS AND DISCUSSION

A. TM Production
1. Correlation
a. Southern lilinois
Among the 32 forest plots considered in this analysis,

mean annual Increment (MAI) rangéd from 0.6 to 5.5 cu m/ha/yr (8.7 to 78.7
cu ft/A/yr). ‘The strongest correlation between MAl and TM spectral |
characteristics was with the ratio of Band 7 to Band 4 (r=-0.46, p<0.01).
Few variables correlated with MAl significantly; only band ratio 7:4 and
band ratio 7:1 correlated at the 0.01 |evel of significance, with eight
other varlables correlating at the 0.05 |level (Table 5). Several bf these
could be significant on chance alone, so caution must be exercised in
InfefprefaTIon of these results.

However, a couple of points can be made based on individual
correlation coefficients: (1) the spectral Informafion.clearly provides
more information on forest productivity than do other single
characteristics acf{ﬁg Independently, such as slope, moisture class, sun
radiance, and soil woodland producTiQify index. Spectral data are by
nature Integrators of a large nuﬁber of factors, many of which (e.g.,
moi sture, density, green leaf volume) could be expected to Influence
productivity more than other single landscape attributes and (2) ratioing
of the raw TM data Increases Information content relative to single band
data or even transformed vegetation indexes when considering forest
productivity. Ratioing minimizes radiometric distortions across the
imagery (Lecklie, 1987) and reduces some topographic effects (Short, 1982).

Ratioing also accentuates the effect of interacting components.
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Table 5. Correlations between TM band values and plot forest productivity
for lllinois. Correlations in which p=<0.05 are shown, |[f
p=<0.01 then ¥,

July 18, 1985

T™ Variable r

(all plots) (n=32)
Band7/Band4 -0.46%
Band7/Band! ~0.44%
Band7/Band5 -0.40
Band7 -0,39
Band5/Band4 -0.39
Band7/Band2 -0.38
Band7/Band3 -0.38
Band4/Band2 +0.37
Band7/Band6 -0.36

(Band4-Band2)/(Band4+Band2) 40,35

The inverse correlation of MAl and band ratio 7:4 could be
interpreted as an interactive effect of greater leaf-water and greater
biomass on more productive sites. Band 7, In the middie infrared, Is
lndirec*ly related to leaf-water content; Band 7 values are reduced on
higher productivity sites because more leaf water Is available to absorb
in that spectral range (Badhwar et al., 1986). Band 7 alone Is
significantly correlated with MAl, which supports this assumption (Table
5). On the other hand, Band 4, In the near infrared, has been shown in
some studies (though not this oné) to be directly related to vegetation
density or biomass (Knipling, 1970; Badhwar,éi.ﬁl. 1984). Ratiolng Bands
7 and 4 accentuated the differences to provide a relationship stronger
than either single band. Most of the significant correlations had Band 7
as a component and can be interpreted similarly (Table 5),

None of the landscape atirlbutes correlated significantly (p=<0,05)
to MAl, although the soll woodland productivity index correlated at the
0.1 level of significance. County soll survey map resolution is not as

fine as the forest plot and TM data such that unrecorded inclusions of
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soil units too small to map or errors in boundary |ines could account for

the poor relationship (Soil Conservation Service, 1951), —

b. Great Smoky Mountains

.Nafural log transformation of the productivity data
increased the amount of data variance which could be explained by TM
and/or biogeographical data using any method of analysis. Other
researchers héve reported that the sensitivity of TM bands to such forest
variables as basal area and leaf biomass decreases with inéreasing basal
area or leaf biomass and thus a logarithmic transformation of these
variables improves the TM relationships (Franklin, 1986). It also helps
to make variance more uniform so that regression and variance analysis
assumptions are ful fil led.

The correlation analysis showed that (1) the same TM variables in
both the September and October scenes were significantly correlated with
forest productivity, (2) the TM bands were highly correlated with each
other and with the blogeographical variables, (3) raw band data or band
ratios were much be;fer correlated with the forest productivity data than
were TM vegetation lhdlces or ™M prlﬁciple component val ues, and (4) TM
variables were better correlated Qifh the natural log of volume growth
than Just volume growth (Table 6).

The same set of TM variables tended to be correlated with
productivity in both scenes (Table 6). The ability of these variables to
account for a significant proportion of the variance in productivity is
explained by (1) the influence of topography and phenology (+iming of leaf
senescence) on reflected or emitted radiation and (2) the relationship of
forest productivity to topography and phenology. Forest productivity in

the Smoky Mountains is related to both elevation (negative) and soil



Table 6.

ORIGINAL PAGE IS
OE POOR QUALITY

p<.01 are shown.

Correlations between TM band values and plot dbrest productivity
data by date of Smoky Mountain TM scene.
If p<.001 then "#¥*",

Onlyé¢icorrelations in which
If p<lOO01l then "*%**™,
variable is significant for both dates for allpiplots then "+".

If
If

a variable is significant for. both dates for ithardwood” plots then -

A

Hardwood plots are those plots containigghhardwood trees.

September 8, 1985 October 26, 1985
T™M var. T T™ var. r ™ var. T FTM var. r
(all (n=128) (hrdwod.) (n=111) (all (n=112) (thrdwod.) n=95
plots) plots)
6/1 +.391%%% #6/1 +.518%%% 7/3 -.369%%%x £ #7/2 = 427 %%%
+6/3 +.382%%* #6/3 +o42]%%% 7/2 -.261%%* - {#7/6 = 425%%%
6/2 +.359%%% 6/2 +.375%%% +7/6 ~356%%* "~ {7 - 416%**
+3/1 -.282 #3/2 -.350%* +7 -.350%%* #7/1 ;.410***
+7/6 -.259 #7/6 '—.342** +7/1 -.350%% #7/3 —.409%%%
+6/5 +.254 #6/5 +.323%% 7/5 -.310 #3/2 = 400%**
+3/2 -.251 #7 —e323%% +3/2 -.296 #6/3‘ +.378%%
+7 -.229 #7/4 -.320%* +6/3 +.295 : #3 ~.373%%
+7/1 ~.227 #3/1 —.316%* (5-2)/5+42) -.294 # #3/1 ~.357%%
#7/1 -.303* 5/2 -.293 E#7/4 —«354%%
#5/4 -.299*% . 3 -.282 7#7/5 —.349%%
#7/2 -.294 +6/5 +.279 I 5/2 —349%%
#7/5 -.283 5 -.274 5(5-2)/(5+2) =.337%%
#3/ -.261 +3/1 -.273 £46/1 +.329
#5/ -.255 5/1 -.272 i #5 -.329
6/ +.253 7/4 ~.260 T 5/1 ~-.319
#7/3 ~-.249 5/3 ~.243 i #6/5 +.315
i #5/4 -.309
1 -.279
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mof sture (posifiQe) (Whittaker, 1966). The soil moisture Is also a
function of topography as ridges are dry and coves ére wet, Forest. types
occur in different locations in this hafrlx of eleva+lon'and.mois#ure
(Fig. 9). In a morning and mountainous-terrain scene, hlgh val ues of
Band 6 (thermal) will be found at the warmer, lower elevations. Indeed
there was a strong negative correlation between Band 6 and elevation
(r=-0.804 p=<0.0001) Since forest productivity is s+rongly | Tnked to.
elevation, i+ follows that Band 6 should be positively related to
productivity in this mountainous terrain. Also, hardwood canopies are
general ly warmer than conifer canopies and thus higher Band 6 val ues would
be expected from the warmer, general ly more productive hardwood stands.
The relationship of forest productivity to Band 6 is, however, confounded
by (1) sunny, warm, dry south-facing slopes that are low In productivity
due to lack of soil moisture and (2) pine: stands which are Ilkely to be
cooler when the canopy is more dense (e.g. more productive) (Franklin,
1986; Sader,'1986) Oonsequenfly divid}ng Band 6 by Bands 1, 2, or 3,

which are sensitive +o fol iage bIomass amount and qual ity (Tucker, 1979;
Badhwar et al., 1984 Frankiin, 1986) yields the best correlation with
forest productivity. Phenology may explain why Band 1 was better than
Bands 2 or 3 in early September, ‘Absorpfion in'Band 1 Is related to both
chlorophyl| and carotenoids (Tucker, 1979). |In early September, leaves
were just starting to turn color. The expression of fall color is partly
a reflection of the relative ratios of chlorophyll to carotenoids. The
timing of fall color is a function of species, elevation (earlier the
higher), and moisture (earlier the drier). Thus, at this time of year Band
1 may have been more sensitive to features related to productivity such as
species, elevation, and moisture than the other two bands. This may al so

explain why the Band6:1 ratio was much more strongly correlated to forest
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productivity if 6nly hardwood or mixed pine hardwood stands were
considered (r=0.518 (n=111) versus r=0,391 (n=128)5. Bands 7 and 5, which
were important explanatory varlables-in October, cover regions of the
spectrum in which water is absorbing radiation (Tucker, 1979), As foliage
senesces the canopy contains less and less water. Thus, Band 7 and Band 5
values should increase as the forest canopies turn color, lose leaves, and
dry out. Since senescenée occurs earlier at high elevation and on dry
sites and fhoée are the sites with low forest productivity, one would
expect that Band 5 and Band 7 should be negatively correlated with forest
productivity in fall TM scenes. Indeed, in comparing the September scene
to the late October scene Bands 5 and 7 became increasingly significant

(Table 6).

c. HunTingfon Wildl ife Forest, New York
Because more forest productivity plots were availabie

for the New York study area and becauge of the mul ti-temporal TM data,
Amany Iterations of correlations were run using stratifications and
dlfferenf T™M data. ﬁln general, for each of the three TM data sets (June
17, 1984; September 21, 1984; and the merged data set of the two dates
after calibration) correlations Qere generated for all plots, plots
stratified by six forest community types, and plots stratified by three
aspect directions. The significant correlations for these are |isted in
Tables 7 to 9.

A few general conclusions can be drawn from these tables: (1) the
June TM values overall correlated more strongly with forest productivity,
especial ly In the calibrated data set--one could assume that at this
northern latitude, in late September, the trees have begun to senesce,

thus reducing the characteristics such as chlorophy!l| and moisture content



Table 7. Correlations between TM band values and plot forest productivity
data by date of New York TM scene. Only correlations in which
p<.01 are shown. If p<.001 then **; p<.0001 then ***, If
variable is significant for both dates then +.

T™ var. r ™ var. ‘ r TM var. r

Merged June/September

June 17, 1984

Sept. 21, 1984

(n 161) (n = 147) (n =
+3/1 —b23*%% 3/2 +.357%%% June 7/5 — 41 5%%%
2/1 —.396%%% +3/1 +,272%% +June 3/1 -.385%%
+3 ~377%%% +6/3 -.227% June 3/September 3  -—.379%%%
2 —.371%%% +(4-2)/(4+2) +.209 June 7/4 —.379%%%
7/5 ~e371%%% 6/4 -.205 June 3 +,377%%%
+6/3 -.316%%*% +3 +.202 June 2 —.368%%*
7/4 —-.304%%% +4/2 +.191 June 2/1 —.361%%%
6/2 +,287%% 4/1 +.181 September 3/2 +.294%%%
6 —.244% 4 +.170 June 5/4 —e284%%
+5/4 ~.221% +5/4 -.167 June 2/September 2  -.243
+(4-3)/(4+43) +,206%* +September 3/1 +.240
4/3 +,200 June 7 -.238
+(4-2)/(4+2)  +.199 June (4-3)/(4+3) +.236
+4/2 0+.199 June 7/1 -.231
7 -.191 June 4/3 +.288
7/1 -.181 June 4/2 +.218
June (4-2)/(4+2) +.236



Table 8. Correlations between TM band values and plot forest productivity data
for New York, from June, September, and merged TM scenes.
Correlations are based on stratification of plots by community types.
Only correlations in which p<.01 are shown. If p<.001 then *%*,
p<.0001 then #***, If variable is significant for more than one
community type, then #. -

Red Spruce, Yellow Birch, - Sugar Maple, Beech Sugar Maple, Beech, Yellow
Balsam Fir, Red Maple ) Community Birch Community
Beech Community

™ var. r T™M var. r ™ wvar. r

June 17, 1984

(n = 41) (n = 32)
#3/1 —.588%*% 2 —e 640% %%
#3 —.515%% 2/1  =.622%%%
3/2 —=.505%% 6/2  +.595%%
7/5 -.474 #3/1 —.588%*
#6/3 +.467 #3 ~.581%%*
7/4 ~.434 #6/3  +.510

(4-3)/(4+3) +.407

September 21, 1984
(n = 36) (n = 32) (n = 34)

#7/5 - 527 %% #7/5 -.510 - 2/1 +.446

Merged June/September

(n = 36) ‘ (n = 27)

June (4-3)/(4+3) +.470 June 2 —.640%*

June 4/3 +.456 June 7/5 ~.622%%

June 3/2 -.451 June 2/1 —.621%**

#June 3/1 -.427 June 7 ~.587%%
June 7/1 -.578
June 7/4 -.577
June /3 -.520
#June 3/1 -.504
June 7/2 -.490

Note: Community types not tabulated did not produce significant correlations or had
too small of a sample.



Table 9. Correlations between TM band values and plot forest productivity
data for New York, June, September, and merged TM scenes.
Correlations are based on stratification of plots by general
aspect directions. Only correlations in which p<.0l are shown. If
p<.001 then **, 6 p<{,0001 then ***, If variable is significant for
more than one aspect then #. -

Aspects E, SE, S Aspects N, NE, NW Aspects SW, W

T™M var. r ™ var. r ™ var. r

June 17, 1984

(n = 44) ' : (n = 46) (n = 65)
(4-3)/(4+3) +.407 . 7/4 -~ 463%* #2/1 —e536%%%
4/3 +.395 ) #7/5 ~.441 #3/1 - 494%%%
4/2 +,389. 5/4 -.428 #2 - 485%%%
(4-3)/(4+3) +.385 #3/1 -.424 : #3 —-.452%%
3/1 . -.384 #2/1 -.388 6/2 +.400

. #2 -.377 6/3 +,385

#3 ~-.374 7 -.362
#7/5 -.358

7/1 -.349

7/6 -.348

September 21, 1984

(n = 59)
3/2 +.532%%%
3/1 +.358
Merged June 17, 1984 and September 21, 1984
(n= 45) (n = 57)
#June 7/4 -.518%** June 3/1 - b74%%
#June 7/5. -.486%% June 3 ~o451 %%
June 5/4 - 482%% #June 2/1 -.437%%
#June 2 -.417 #June 2 — 431 %%
#June 2/1 -.411 June 3/September 3 -.425%%
June 7 -.410
#June 7/5 -.407
June 7/1 -.405
September 3/2 +.405
#June 7/4 -.383

Note: Correlations for aspects not tabulated were not statistically significant
at the 0.01 level.
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to which the spectral data are sensitive, (2) stratifying the data to
achieve more homogeneity among the plots improved the correlations, and
(3) larger sample numbers were needed to be able to make meaningful
comparisons among some of the strata.

Table 10 shows the two best variables correlated with forest
productivity for the three TM data sets when stratified by forest
communi ty +9pe. The best overall correlation with forest productivity was
TM Band 2 froﬁ the June data set for a sugar maple/beech cémmuni+y type |
(-0.64, p=<0.0001). A strong inverse correlation of productivity to T™
Band 2 during the growing season is Intuitively logical since higher
amounts of chlorophyll in vegetation causeslTM Band 2 values to decrease
due to absofpfion (Badhwar et al., 1984), Healthier, more productive
vegetation, therefore, would have |lower TM Band 2 val ues. The sugar
maple/beech community type was also one of the most homogeneous with few
conjfer mixtures. |In June, the visible band data were more correlated to
productivity, whereas in the September data, the infrared bands carried
the highest correlations (Tables 8 and 10)., Similar results were found in
the Smoky Mountain aa+a when comparing September to October data. For the
higher Ia*ifudé of New York, September would be analogous to October in‘
the Smoky Mountains in terms of féll foliage, so the argument as to the
importance of infrared bands at the margin of the growing season would be
the same as discussed above in the Smoky Mountains section.

When stratifying by aspect, It can be seen that the visible band
combinations generally correlate better to productivity on more
{lluminated stopes (E, SE, S, SW, and W), whereas nearand mid-IR bands
are more important on the shadowed, northerly slopes (Table 9). I+ seems
that when strata were based on aspect as opposed to vegetation types, the

differences between TM dates and their corresponding leaf conditions were



Table 10. Best correlations of T™M values to plot forest productivity data
in New York, all data sets, when stratified by community types.
Only correlations in which p<.0l are shown. If p<.00l1 then #*%*,
p<.0001 then **%,

Date Varigble T Community Type
June 1984 2 = 640%*% sugar maple, beech (n = 32)
2/1 - T=e622%%% sugar maple, beech (n = 32)
Sept 1984 7/5 ~e527%% red spruce, yellow birch, balsam
fir, red maple, beech (n = 36)
7/5 -.510 sugar maple, beech (n = 27)
Merged June 2 —. 640%% sugar maple, beech (n = 27)
June 7/5 - 622%% sugar maple, beech (n = 27)
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not as critical to correlations as were the degree of illumination.
Northerly slopes, with less confamination from high.variablllfy of

11 lumination, may better represent the interpiay in productivity of
vegetation density and moisture content to which the IR bands are
sensitive. However, given that fewer variaﬁles correlated significantly
or as strongly when stratified by aspect as did when stratified by com
munity types, the community types appear 1o be more determinate of produc-
tTivity in +hi§ region than aépeéf and elevation, which were greater im |
portance in the Smoky Mountains. This could be due, in part, to the fact
that moisture stress (a manifestation of heat) is not generally a |imiting
factor to productivity in New York but can be in the Smoky Mountains. In
support of this fact, note that the thermal band played no role in highly
significant variables in New York, even when stratified by aspect, whereas

Band. 6 was the major factor in the Smoky Mountain analysis.

d. Comparisons Among Sites

When comparing correlations among sites the following
points become clear; (1) ratios of TM bands correlate better than single
bands or vegetation indexes, (2) stratifying, when sample sizes are
adequate, improves correlations by way of reducing spectral variance In
the data from factors other than productivity, (3) the best correlations
to productivity are TM variables in the visible bands in some cases and in
the infrared bands in other cases, depending largely on forest phenology
in the region and time of the TM data, (4) thermal information has an
important relationship to productivity in regions where élevaflon and
aspect dramatically effect forest communities, especially due to moisture
stress, and (5) no single band, band ratio, or other band combination

stood out across all sites in correlating to forest productivity because
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of too many other factors at each location contributing to the overal |
variance. This points to the next logical step being multiple regression,
where the interplay of more than one varlable, inciuding biogeographical

data not pertaining to the TM values, can be considered.

2. Regression Model ing
a. Southern Illinois
- Multiple regression techniques revealed a combination of
independent variables related to MAI., All Qariabies previously mentioned
were regressed against MAl, with the proviso that multi-col | inearity
diagnostics were monitored to avolid violation of regression assumptions.
The variables entering the best regression model, in order, were TM 7:4
ratio, soil woodland productivity index, and TM 2:1 ratio, according to

the fol lowing equation:

MAI = 201.3984 - 313.2450(TM7/4) + 0,03949 (soil prod. index) (2)
~391.9469(TM 2/1)

Addition of other variables fafled to contribute significantly to
the model due to collinearity. Eérlter studies have indicated that TM
data provided the most Information on an ecosystem when a mid-IR, near-IR,
and visible band were considered in the analysis (Dottavio and Williams,
1982; Haas and Wal tz, 1983; Badhwar et jd;, 1984; Spanner et al., 1984;
Benson and DeGloria, 1985; Sheffield, 1985). Each of these spectral
components are included in the best 3-variable model. Acknowledging the
role of site characteristics in predicting productivity, the Inclusion of
soil productivity In the model is Important and underscores the ability to

include new independent information in models when biogeographical data
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are used. The 3-varliable model was highly significant (p=<,002, n=32),
Indicating a good approximation of where the |ine should be, but high
amounts of scatter caused +He adJus+éd rZ +o be low (0.39) and resulted In
a fairly poor MA| predictability curve (Fig. 10).

Correlation and regression statistics were also performed with
standing growing stock, i.e., volume, rather than MAl, as the independen+
variable. These relationships were weaker than those to MAI, suggesting
that T™ spec+fal data provide more information on productivity than
biomass; this in agreement with the theoretical Interpretation of the
sensor by Tucker and Sellers (1986). However, the ability to analyze
these in much detaill is limited by the small sample size, and more

elaborate discussion is saved for the other areas below.

b. Great Smoky Mountains
Because of a high degree of correlation among

Independent variables, collinearity was a major problem in developiné
mul tiple variable regression models. In fact, once models with
col{lnearity problems had been discarded, there were no multiple variable
model s that were signiflcantly better than the single variable models.

Highly significant relafionéhips between TM variables and forest
productivity were demonstrated; however, there was always a |large amount
of unexplained variabil ity (Table 11), This is due, In part, to the
extreme shade-sunlight variations resulting from the low morning sun angle
and the mountainous terrain which caused the band values to be highly
correlated with each other. Other unexplained variability may be due to
(1) errors in the productivity measurements (only the volume growth of

large trees in the stands were considered [Section 111, B.3.b]), andv(2)

the mul ti-species nature of these forests.
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Table 11. The best models to predict forest productivity from TM data and
biogeographical data (forest type, slope, elevation, aspect) using
various combinations of techniques.

BEST MODELS BY METHODS

METHODS VARIABLES IN MODEL n r2 P<

REG, STRAT, BG band6/bandl 111 .269 .0001
REG-PRINC, STRAT PCA3 94 .145 .0002
REG-PRINC, STRAT, BG Elevation 111 .191 .0001
REG, BG band6/bandl 128 .152 .0001
REG-PRINC PCA3 105 113 .0004
REG-PRINC, BG Elevation 128 .136 .0001
CLASS, ANOVA 6 classes 111 .181 .0007
CLASS, ANOVA, BG 6 classes, elevation 111 «232 .0001
CLASS, ANOVA, STRAT 6 classes 97 _.163 .0056
CLASS, ANOVA, STRAT, BG 6 classes, elevation 97 247 -.0002

TECHNIQUES

REG = Multiple regression modeling using TM band values, TM band ratios, and
TM vegetation indices. NOTE -~ Although multiple variables were allowed to
enter the models, in no instance did a multiple variable model prove better
than a single variable model if collinearity among variables was controlled
for. '

STRAT = Allowing only hardwood and mixed pine-hardwood stands in the
analysis.

ANOVA = Analysis of variance of class data generated by CLASS.

REG-PRINC = Principal Component analysis to generate principal component TM
variables called PCAl- PCA7 followed by multiple regression using PCAl-7
values,

CLASS = Unsupervised classification (using all 7 bands) of TM scene to
classify pixels.

BG = allowing a biogeographical variable to enter the regression model if it
improved the model. (the variables listed were the best predictors)
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The high significance (p=<0.0001) but high unexplained variance in
forest productivity (low r2) of these models means that the models can be
used to accurately predict the median or average forest productivity of
many pixels but cannot be used to project the productivity of any one
pixel. Consequently the models-are useful for evaluating the overal |
productivity of forest on the landscape but not the spatial pattern of
that productivity. Statistically this is a consequence of the fact that
the parame+efs of the model are well estimated (in part due to the many
data observations, n>100), even though the individual error terms are
large. For eXample, the model which best accounted for the observed
variability In foresf productivity iIn this rugged terrain was a single
variable regressibn model developed from the September TM scene and

hardwood and pine-hardwood stand productivity data:

In(productivity) = ~14.,4 + 6,65(TM 6/1), (3)

rZ = ,269, n=111, p=<0,0001

This mode!l can be used to predict the median hardwood/mixed-hardwood
forest productivity over large areas (>100 pixels) with a high degree of
accuracy (+ ca. 10 peréen+) (see.confldence Intervals In Figure 11.),
while its ability to predict the forest productivity of any one pixel is
poor (see pixel confidence intervals in Figure 11). Thus, the model Is
very useful in predicting the overall productivity of the landscape but
not in predicting the fine-scale spatial pa++ern of productivity.

The results of the work in the Smoky Mountains demonstrates two
important points., . First, In mountainous terrain the topographic position
of a forest stand will strongly determine its productivity. Thus, TM

variables which relate to topographic features will be useful in
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predicting forest productivity. Consequently, combining a band that
directly measures a variable associated with topography and a TM band
which relates to the qual ity of the vegetation will explain the most
variance in forest productivity over a mountainous landscape. Second,
al though TM data cannot cabfure the precise patterns of productivity in
the landscape, they can be used to evaluate the overall productivity of
the landscape with a reasonable degree of precision. Thus, TM data could
be useful In +racking the temporal pattern of forest productivity on the

| andscape.

c. Hunffngfon Wiltdl 1fe Forest, New York

Mul tiple regression analysis yielded a best model with an adjusted
rZ of 0.42 (p=<0,0001, n=45), using TM6/4 from June, June TM3/September
TM3, soll productivity/site index, and sun radiance index, for N, NE, and
NW aspects (Fig. 12). Not only does this regfession support the
correlation findings about improved relationships from stratification, but
it also presents an inferes*ing.comparison to the lilinols study site.

The best regression models for the two study sites each include a mid-IR
to near-lé ratio, visible bands in some form, and soil productivity/site
index. In each case, the best models of fewer variables consisted only of
TM variables, and the addition of site characteristics Improved the
model s.

Table 12 relates the best regression models found for each TM data
set, using all plots as well as stratifications by aspect and community
types. In all cases, models were Improved when the data were stratified,
achieving more homogeneity among plots. As was frue for the other study
sites, considerable variance in productivity is unexplained by the models

(low r2), although they are highly significant (p=<0.0001).



Table 12.

Best models to predict forest productivity
from ™ data and biogeographical data for
New York using all plots and stratifications
by aspect and community types.

TM Data n Adj. 2 p< Variables
June .
All plots 160 .19 .0001 3/1, 7/5
by aspect (N, NE, NW) 46 .27 .0001 5/4, site index, sun
radiance index
by community type (mixed*) 41 .33 .0001 3/1, 7/5, site index
Sept
All plots 141 .13 .0001 3/2, 7/4
by aspect (SW, W) 57 .38 .0001 2, 3, 7/5
by community type (mixed*) 33 .27 .0001 6/4, 7/5
Merged
all plots 138 .25 .0001 June 1/Sept 1, June 7/4
June 3/Sept 3
by aspect (N, NE, NW) 44 42 .0001 June 5/4, sun radiance
index, site index,
A June 3/Sept 3
by community type (mixed*) 33 .32 .001 Sept 7/5, site index,

June 3/Sept 3

*Mixed is the red spruce, yellow birch, balsum fir, red maple and beech

community type.
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(g

For New York, biogeographical data were more important in explaining
productivity than at the other study sites. A high degree of
hardwood-cénifer mix in the forest cohmunlfies confounds the
TM/productivity relationship because of Tﬁe very different reflectance
patterns of conifers and hardwoods. Non-spectral data, such as sHte index,
provide important additional information in explaining vafiance In
productivity at these sites. Additionally, +hé overal | better performance
of the mul+l-+empora| data set, especially with temporal ratios:of the
Same_bands, indicates that seasonal changes in hardwoods, e.gq.,
chlorophyll, have strong relationships to productivity, In contrast to the
role heat and moisture extremes play in determining productivity :in the
SmokyAMounfalns.

Regression results, while Improved with stratification, werea overall
not as good as was hoped for, considering that this site had +hésﬁarges+
sample of plot data as well as multi-temporal ly combined TM data. aSeveral
factors probab_lyl contributed to the problems. First of all, one cannot be
absolutely certain of a precise al ignment of TM data and productivity
plots to the coordinate system. Small Inaccuracies in such a heterogenous
landscape could skew the analyses. Secondly, the area is complex-in terms
of forest communities, most of whfch are mixtures in varying degrees of
hardwoods and conifers, and mixed communities occur at all elevations,
unlike in the Smoky Mountains., Thirdly, the phenology of the vegetation at
the times of the TM data may not have been the best possible situation
(too early in the growing season on June 14 and Téo late on September 21).
Final ly, the TM DN values and their ranges were smal ler because of-a high
degree of water and boggy areas and they were, therefore, not as sensitive

to the vegetation characteristics as for the other study areas.
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d. Comparison Among Sites
In general, the regression models.of all'sfudy areas

were highly significant but left a gréa+ deal of variance in forest
productivity unexplained. This is a similar finding with other studies of
forest structure, bioﬁass, or productivity. Because of extreme
heterogeneity of forest stands at the 30 m x 30 m resolution and the many
ablotic and biotic variables acting on an ecosystem, it is not reasonable
to expect a hfgh degree of predictability on small, site-specific areas
(Franklin, 1986; Peterson et al., 1986). However, by changing the scale
of reference to cover |arger areas, or by pooling and/orbsfrafifying data,
predictabil ity can be improved. For example, by stratifying observations
according to species/basal area classes and replacing Individual
observations by class medians, Franklin (1986) found r2 values increasing
from 0.29 to 0.67 in regressing single-band data to conifer follar
biomass. Stratifying by coammunity type and aspect in New York was also
found to Improve regression fits considerably over unstratified data while
maintaining very high signiflcénce levels (Cook et al., 1987).

The results shown here are encouraging fof the potential to use TM
spectral data in combination with anéillary data to produce regional
forest productivity estimates. By creating an image file with scaled TM
7/4, soll woodland productivity index, and TM 2/1 as the channels, the
regression equation (2) was then applied to each pixel of northern Pope
County, lllinois, to produce an output image of MAl estimates for the
deciduous forests in the area. Classifying these further into seven
productivity classes and smoothing with a 3 x 3 window filter reduced some
of the inherent spatial variability and resulted in a map of estimated
forest productivity (Fig. 13). The total production for this portion of

Pope County (14,724 ha of deciduous forest) was estimated to be 20,949 cu



Fig. 13. Estimated productiv-
ity for deciduous
forests in northern
Pope County,
I1linois; based on
regression model
presented in Fig. 10.

Fig. 14. Two-dimensional
portrayal of pro-
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Cades Cove Quadrangle
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m/yr. Assuming similar productivity across the entire county, which
contains an es+ima+ed_44,720 ha of deciduoUs‘foresf-(Hahn, 1987), one can
calculate a total county production estimate of 63,628 cu m/yr. The 1985
U.S. Forest Sefvice estimate, using conventional ground-sampling methods,
was 87,244 cu m/yr for the entire county. The U.S. Forest Service
estimate at the county level was based on 49 forest plots, and could be
expecfed to have a sampling error of about 20 percent (Hahn, 1987). This,
~along with +hé inevitable errors associated with the remotely-sensed |
estimate because of the Incomplete sample (one-third of the county) and
the low r2 of the regression equation, can account for the differential of
25 percent between the iwo estimates. Clearly, additional efforts need to
be conducted to test and validate the relationships, but these initial
results reveal an encouraging potential to use thls methodology for
estimating forest productivity over relatively large areas. The
relationship of these TM-productivity regression-model estimates to AVHRR
spectral values, with ultimate extension to a multi-state region, was one

attempt to val idate the technique, and is discussed below.

3. Classification/ANOVA
a. Great Smoky Moun+alﬁs
All three ANOVA techniques successfully used the TM and
biogeographical data to explain a statistically significant proportion of
the observed variance In productivity (Table 11). Using the
biogeographical data either to stratify the obsefva+lons or as a covariate
in ANOVA improved our ability to use TM data to predict forest
productivity (Table 11). The use of elevation as a covariate improved the
model significance considerably. There were no significant TM

class-elevation interaction effects. Plot aspect did not explain a
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Slgnificanf proportion of fores+>produc+1vify. Of the biogeographical
varliables, only plot elevation varied significantly among the TM-clésses.
TM data were most useful in their raw state. Deriving +he‘prlnclpal
component val ues of the TM data prior to Eelafing the spectral information
to forest productivity was not beneficial in explaining forest
productivity variance.

Using results from ANOVA to assign productivity values to the TM |
classes, a préducflvify‘map for Cades Cove quadrangle was produced in two
(Fig. 14) and three (Fig, 15) dlmenstons. These figures shoﬁ, in blues
and purples, the highest producfivf?y cove sites; the yellows and greens
show the less produc+Ive higher elevation sites. The addition of the third
dimension can be seen as a valuablé visual aid in interpreting the
results. The productivity map was also used for the AVHRR scale-up in the

Smoky Mountain region.

B. TM/AVHRR Scal e=Up
1. Percent Forest Estimation
a. Southern lllinois

Percent forest, as ascertained by TM classification,
and certain AVHRR spectral characferisfics were ;ignificanfly correlated
within the Jackson County, Illinois, cal ibration center. The NDVI
calculated from AVHRR data was correlated to percent forest cover
(r=0.585, n=154, p=<0.0001), as were individual AVHRR Bands 1 (r=0.599,
n=154, p=<0,0001) and 2 (r=0.334, n=154, p=<0,0001), The best 2 band
regression model, violating no assumptions refated to multi-col linearity
and having an adjusted rZ of 0,407, used a combination of Bands 1 and 2 as
shown in equation (1) of Table 13. This equation, when applied over the

Il1linois AVHRR study area for the pixels which had been classified as



Table 13. Regression equations relating TM and AVHRR spectral data.

Dependent
Region Variable Regression Equation Adj R2 P N
1., 1Illinois Percent Forest 232.0 - 3.056 (AV1l) + 0.615 (AV2) W41 <.0001 154
2. Illinois Percent Forest 59.9 - 1.822 (AV1) + 0.443 (AV2) + 1.541 (AV4) .49 <.0001 154
3. 1Illinois  Productivity, ,
‘ Cu m/AV pixel -378.6 + 1314,71 (AV2 - AV 1)/(AV2 + AV1) .32 <.0001 154
4., Smokies Percent Forest ~221.8624 + 2,151398 (AV4) + 940.428929 «57 <.0001 99
(AV3/(AV4 * AVY) '
5. Smokies Productivity
' Cu m/AV pixel -253.643 + 49.93923(AV3/AV1) .51 <.0001 99
6. Smokies Productivity
In Cu m/AV pixel -32.62848 + 90.18815 (AV2 - AV1)/(AV2 + AV]1) + «53 99

56.2267 (AV3/(AV2 * AV1))

<.0001
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having some forest, produced a mean of 31.0 percent forest, a standard
error around the mean of 4.9, and with 95 percent confidence !imits at the
overal | mean of 21.3 to 40.6 percent. The pixels classified as having
some measurable forest in the region (63.31 percent of all pixels), in
other words were, on average, 31 percent forested. Calcuiaflng through
for non—forested pixels (row-crop agriculture, urBan centers, water), the
mean calculated AVHRR-estimated percent forest was 19.6 percenf;,wlfh 95
percent confiaenf limits of 13.5 to 25.7 percent. This compares to the
USFS calculated mean for the area was 20.8 percent forest, well within the
expected range.

When all four.ANHRR bands were included in the model, the best model
accounted for 48.5 percent of the variance and included Bands 1, 2, and 4,
according to equation (2) of Table 13, Error estimates were not
calculated for the 3-variable model.

Regression equation (1) of Table 13 was applied to each pixel in the
10-state AVHRR data set of June 4, 1987 (Fig. 5), and classified into
seven classes to produce a map depicting percent forest class over the
entire area (Fig. 16). The map shows vast regions of |llinois and lowa
with very low forest cover, with incfeaséd forest percentage in the Ozarks
and Mark Twain Forest of Mlssourl; the Hoosier Forest of Indlana, some
southwestern Michigan forests, much of Wisconsin, and the Shawnee National
Forest of southern Illinois. To test the validity of this map, a compari-
son was made to U.S. Forest Service estimates of percent forest by county
(Fig. 17). The two maps generally are In agreement, but visual comparisons
are difficult because of the differing scales of resolution. By summing
the AVHRR estimates by county, a new county-resolution estimate with AVHRR
‘data is achieved (Fig. 18). The resulting map can then be overlayed with

the -U.S. Forest Service data to produce a difference map (Fig. 19).



Percent forest esti-
mates by AVHRR
pixels for Illinois
region.

County forest per-
centages as esti-

mated by the USFS
for the Illinois
region.

County forest per-
centages as
ascertained by
aggregation of AVHRR
pixels in Fig. 16.
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Analysis of this map allows visual assessment of where AVHRR estimates
differ most from the U.S. Forest Service estimates. For example, several
western Indiana counties show AVHRR estimates more than 15 percent in
excess of Gedecology estimates. This may be partially explained by the
aged (1969 published date) U.S. Forest Service data from indiana, and that
there has been a trend toward increaslhg forest cover éince fﬁaf time in
neighboring lilinois counties. The underestimation by AVHRR in the
extreme southeast corner of the scene and along the eastern edge of Lake
Michigan Is the result of some cloud cover masking the AVHﬁR data in those
aeas. Correlation analysis revealed a very high relaTionshlﬁ between the
two estimates, with r=0.72 overal | (Table 14, FIQ.'?O). When the
difference map Is compared to the buffer map depicting proximity to the
cal ibration center in Jackson County (Fig. 2), one can see how the
relationship holds up as one goes away from the center. Wﬁen eval uated
By'buffer distance, the highest r values occurred within the 0 to 200 km
radius (r=0.94), with the relationship slipping.only slightly beyond 200
km (Table 14), Analysis of states with adequate samples showed hlghl*
significant correlation coefficients ranging from 0.72 in 36 Wisconsin
counties to 0.96 in 77 Missouri counties.

Compar isons between means using pair-wise t-tests revealed a 2.7
percent higher estimate for the AVHRR data compared to the U.S. Forest
Service data over all counties (overall estimate of 24.2 percent forest
with AVHRR estimate and 21.5 percent with U.S. Forest Service estimate),
which had a highly significant t value (Tablé 14). However, six of the ten
states, accounting for over 70 percent of the tfotal counties eval uated,
did not have significant differences between AVHRR and U.S. Forest Service
estimates. Counties within the 100 km buffer zone matched almo§+ precisely

(Table 14). Some of the differehces between estimates can be accounted for
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Difference map depicting amount of discrepancy between
USFS and AVHRR estimates of Illinois percent forest.

ILLINOIS REGION PERCENT ESTIMATE

1 k-

904

80

70

. / |
Ve
+ /
/
- N /
*e + - N * »
+ + + @
- * * » % *
AR
* + +
R *
- at +
+ /
‘9 + + 4 Fe
N
: + 44 ’
+ ' + v
-
3 Y b

Fige

20.

S

40 30 60 70 80 90
USFS PERCENT FOREST

100

Correlation between USFS and AVHRR estimates of percent
forest over 432 counties in the Illinois region.




Table 14, Percent forest estimates by AVHRR bands ! and 2 and the US Forest
Service. Data include T value and probability of means differing
from each other, correlation coefficient between county estimates
and its probability level, number of observations, and date the
U.S. Forest Service data were published.

AVHRR USFS t ] T p n

Date (ave. percent forest)

All . 1965-1980 24,2 21.6 5.1 .0001 .87 .0001 432

by State
Arkansas (1980) 39.7 34.1 2,5 .0281 .93 .0001 15
Illinois (1965) 12.7 12.0 1.0 .3429 85 .0001 101
(1985) 13.7 -1.9 .0590 .90 .0001 101
Indiana (1969) 30.3 19.1 8.3 ;0001 .91 .0001 62
Igwa (1974) 4.5 4.9 -0.8 4075 .80 .0001 55
Kentucky (1978) 42.i 33.4 4.0 .0003 .72 .0001 39
Michigan (1966) 35.6 41.8 -1.6 .1386 .78 .0048 11
Missouri (1977) 32.8 32.6 0.3 . 7469 .96 .0001 77
(1972) 36.0 -4,7 .0601 .97 .0001 77
Tennessee  (1970)  34.1 . 36.6 0.7 .4668 .80 .0001 24
Wiéconsin (1968) 24,6 22.8 0.8 4583 .72 .0001 36

by Buffer
0-100 km ¢ 28.5 . 28.4 0.1 .9450 .94 .0001 27
100-200 27.4 29.3 -2.1 .0355 .94 .0001 70
200-300 : 36.6 30.4 5.7 .0001 .88 .001 98
300-400 27.7 21.8 3.5 .0008 .70 .0001 83

> 400 12.1 10.9 1.9 .0550 .84 .0001 154
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by real changes in percent forest in the time intervals Involved. For
example, a recent U.S. Forest Survey in lllinois indicated a 10 percent
Increase in forest acreage since the 1965 survey (lverson et al., 1986);
this could account for the higher value estimated by AVHRR. To test this
hypothesis, two states (lllInois and Missouri) which had recent surveys
were eval uated in the same manner. It was found that, for both states, the
1985 percent forest estimates were higher than the earlier U.S. Forest
Service data, and +ha+ the correlation to AVHRR estimates was even higher.
For Illinois, the new estimate was 13.7 percent forest with a correlation
coefficient of 0.898, compared to 12 percent forest and 0.850 (Table 14).
For Missouri, the new estimate was 36 percent forest with a correlation of
0.966, compared with 32.8 percent and 0.963. |

Another difference between estimates is the definitfion of
forestland. With AVHRR estimates, any group of trees regardless of where
they are or how sparse they are, will reflect to the sensor. WIfh.U.S.
Forest Service estimates, there are several categories called
"non-forestland with trees" which do not enter into the final féres+
acreage estimates. Examples of this type include cropland with frees,
wooded strips, urban forest, windbreaks, and wooded pasture. In Illinois,
 these categorles accounted for 364,000 ha statewide, or 2.5 percent of the
s+a+e‘(lverson,gi al., 1§86). For biospheric studies, large areas that are
even more arid than lllinols are |likely to show wider discrepancies of

this same kind.

b. Great Smdky Mountains
For the Smoky Mountain region, there was again a
highly significant relationship between TM-ascertained percentage of an

AVHRR pixel forested and the specfrél characteristics in the AVHRR data.
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Equation (4) in Table 13 shows the best regression equation, with an
adjusted rZ of 0.57, using AVHRR Band 4 and a combination of Bands 3, 4,
and 1. | '

As before, this equation was applied to all pixels in +ﬁe fegion
fran the September 28, 1985, AVHRR data (Fig. 7); the result shows, as one
might expect, fhe most dense cover In the Smoky Mountain National Park,
with fairly high cover throughout except in the agricultural zones of
central and western Tennessee (Fig. 21). Summation and averaging of
percent cerr for all pixels within a county allowed calculation of the
estimated county coverage, which could, in turn, be compared +§ foregf
data acquired from the TVA (Table 15). Both the AVHRR (Fig. 22) and the
TVA (Fig. 23) county estimates were mapped, as well as a difference map -
depicting county agreement (and disagreement) between the estimates (Fig.
24). The southeast corner of the scene was not represented due to the
unavailability of TVA data for those Georgia and South Carolina counties.

Over all data points, the relationship between AVHRR and TVA
estimates of county forest cover, were not that good. The correlation was
a low, but highly significant, 0.47 (Table 16). Comparison of means by
state show >20 percent underestimate by AVHRR in Georgia and South
Carolina, and a 23 percent overestimate in 13 counties of Virginia (Table
15, Fig. 24). The influence of high amounts of conifer forests in Georgia
and South Carolina (26 and 35 percent of the county forests, respectively)
(Table 15) undoubtedly contribute to an underestimation of percent forest
by AVHRR, since the pines are darker and cooler than the
deciduous~daminated forests, such as the Cades Coye quadrangle where the
cal ibration was done. This is borne out by the prevalence of |
underestimated counties In the Piedmont zones of Georgia and South

Carolina (Fig. 24), and the fact that hardwood percent forest correlates
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Fig. 21. Percent forest
estimates by AVHRR
pixels for Smokies
region.

Fig. 22. County forest per-
centages as
ascertained by
aggregation of AVHRR
pixels in Fig. 22.

Fig. 23. County forest per-
centages as
estimated by TVA for
the Smokies region.




Table 15. Percent forest estimates of the Smokies region from AVHRR
and TVA data.

a. Over all counties with >75% of county in AVHRR scene

Category AVHRR, Z TVA, %7 Difference, % Hardwood, 7 Softwood, % Mixed, % N

All 52.2 62.6 -10.5 38.0 14.9 190
By Buffer

0-100 km 62.3 69.4 -7.1 41.3 11.9 28
100-200 53.8 66.2 -12.4 42.3 14.1 92
200-300 44,2 55.0 -10.7 30.3 17.8 67
ﬁy State .

GA 42.9 66.7 -23.8 29.5 26.1 50
KY 57.9 60.8 - 3.0 50.0 5.0 20
NC 66.7 67.9 - 1.1 44,7 11.7 32
Sc 38.8 69.2 ~30.4 24.0 34.5 18
TN 46.8 54.9 - 8.0 38.6 6.7 57
VA 84.9 62.0 23.0 52.5 4,2 13
~ b. Hardwood >407% of forest
ALl 65.0 72.8 - 7.8 55.8 7.7 78
By Buffer

0-100 km 72.9 81.1 - 8.3 55.4 12.5 16
100-200 - 63.6 74.4 -10.8 57.9 7.3 45
200-300. 58.0 59.8 - 1.8 49.8 4.4 15
By State

GA 66.6 85.6 -19.0 49.1 21.9 10

KY 65.9 75.6 - 9.7 63.2 5.6 12

NC 69.0 77.3 - 8.3 59.0 7.8 17

TN 54.6 67.4 -12.8 52.5 5.5 29

VA 85.9 64.7 +21.2 58.0 2.2 10
c. Mountains occupying >50% of county

All 63.0 68.5 - 5.5 45.7 11.7 116
By Buffer .

0-100 km  62.3 69.4 - 7.1 41.3 11.9 28
100-200 61.4 69.8 - 8.4 48.0 11.8 67
200-300 66.3 63.4 2.9 44,0 12.4 18
By State

GA 57.1 75.7 -18.6 37.4 25.3 23
KY 70.0 76.6 - 6.6 62.0 7.0 11
NC 71.2 75.7 - 4.4 51.3 10.8 24
TN 53.0 60.6 - 7.6 41.5 8.0 43
VA 84.9 62.0 23.0 52.5 4,2 13
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Fig. 24. Difference map
depicting amount
of discrepancy
between USFS and
AVHRR estimates
of Smokies per-
cent forest.

Fig. 25. Productivity esti-
mates by AVHRR
pixel for Illinois
region.

Fig. 26. County productivi-
ity as estimated
by the USFS for the
Illinois region.
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Table 16.

Smokies region.

Correlations of percent forest estimates

a. Over all counties with >75% of county in AVHRR scene

Correlation of AVHRR estimated percent
Hardwood Forest

Total Forest %

Softwood Forest

from AVHRR to TVA data for

forest to TVA estimate of:

4

Category r P r P r P N

All 47 .0001 .58 .0001 -.26 .0003 190
By Buffer '

0-100 km .84 .0001 .66 .0001 .17 .3981 28
100-200 .48 .0001 .56 .0001 -.31 .0023 92
200-300 .17 .1616 .50 .0001 ~-.21 .0845 67
By State

GA .68 .0001 .70 .0001 -.15 .3071 50

KY .81 .0001 .76 .0001 .32 .1647 20

NC «54 .0014 .21 .2532 .05 .7802 32

sc .08 . 7606 .23 .3486 -.14 .5812 18

TN .62 .0001 46 .0004 24 .0682 57

VA .00 .9975 .23 4462 ~.60 .0303 13
b. Hardwood >407 of forest

‘A1l .41 .0002 .34 .0025 12 .3093 78
By Buffer

0-100 km .52 .0396 41 .1190 .06 .8353 16
100-200 .31 .0416 .25 .0989 .08 .6219 45
200-300 46 .0837 .53 .0404 .03 .9055 15
By State

GA .78 .0079 .46 .1821 .08 .8158 10

KY .85 .0005 .69 .0132 .22 .4890 12

NC 43 .0823 .08 7714 .32 .2099 17

TN .48 .0091 .29 .1248 .31 .0992 29

VA -.15 .6718 .22 .5611 .15 .6883 10
c. At least 507 of county mountains

All 43 .0001 43 .0001 -.13 .1738 116
By Buffer '

0-100 km .84 .0001 .66 .0001 .17 .3981 28
100-200 .35 .0036 .33 .0071 -.08 .5401 67
200-300 -.20 .4328 42 .0804 -.54 .0203 18
By State

GA .59 .0033 .59 .0032 . -.19 .3945 23
KY .80 .0029 W77 .0057 -.50 .1192 11
NC 42 .0397 .20 .3477 .31 .1466 24
TN .48 .0010 .38 .0121 .09 5641 43
VA .00 .9975 .23 4462 -.60 .0303 13
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much better to AVHRR estimates than softwood (Table 16). The Virginia
overestimate Is harder to explain., The vegetation of that portion of
Virginia should be fairly similar fo that in the Smoky Mountalns, except
that the spruce-fir zones were less than In Virginia. Consequently,
higher DN's and higher predicted forest cover In the Virginia counties is
the result (Fig. 23 and 24),

Correlation and mean comparison show a much better fit of the
relationship for the other states (Kentucky, North Carol ina, Tennessee).
AVHRR-estimated means were 1 to 8 percent underestimated. Again, this
sl 1ght underestimation Is probably because of greater conifer foresfé
overal | than in the cal ibration zone, with correlations ranging from 0.54
to 0,81 (Tables 15 and 16).

Assessment of the relationship béfween the two estimates according
to distance from the cal ibration center revealed a rapid decline in
cbrrela?tons. Within 100 km of Cades Cove the correlation was 0.84, but
it dropped to 0.17 éf the 200 to 300 km distance (Table 16). This
Indicates a greater specificity of the model to the calibration center in
this highly heterogenous region.

Since the Cades Cove calibra?ioh center was located in
hardwood-daminated, mountainous terraln, subsets of counties (hardwoods
occupying over 40 percent of the county, and mountains occupylng >50
percent of the county) are addressed in Tables 15 and 16. The trends are
general ly the same, however, for these subsets of data relative to the

overal| data set.

c. Comparison Among Sites
A much better agreement was found between USFS and

AVHRR estimates of percent forest cover in the Illinols region relative to
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the Smoky Mountain region. This can be attributed to the relative
uni formity of landscapes and forest types and, therefore, similarity to
the cal ibration center in the Illinols region; this was not the case In
the Smoky Mountain region. Extreme variations in terrain and
hardwood/softwood/mixed components for the Smoky Mountains undoubtedly
contributed to the poorer relationship. However, with proper use of
stratifications, multiple calibrafion centers, and multiple AVHRR data to
differentiate hardwood/conifer zones, it is believed that this technique
can be utilized with good results over any part of the globe. This is
borne out by the good fit found within 100 km of the calibrafién cen;er,
and for some states having similar forest types and topography.

For relatively homogeneous and even sparsely-forested zones |ike
Illinois, this technique provides rapid, inexpensive, and fairly precise

estimates of percent forest over vast areas.

2, Productivity Estimation
a. Southern Illinois
A§ with percent cover, there wés a high correlation ‘

befween-AVHRR-predIcfed county annual forest growth and the USFS estimated
growth (r=0,72) (Table 17). This result was developed from the
productivity model at the TM scale for northern Pope County, lllinois
(Fig. 13), being reléfed to spectral data In the raw AVHRR scene (Fig. 6).
The resulting equation (3) of Table 13 predicts annual forest growth from
NDVI within an AVHRR pixel, and when extended over a 10-state region,
ylelds a map of productivity by pixel (Fig. 25).

For verification, USFS growth data were available for only four
states: lllinols (1962 and 1985 data), Missouri (1972), Minnesota (1977),

and Tennessee (1970); the county data are presented in Figure 26. The



Table 17. Illinois productivity by county as estimated by AVHRR and USFS. Data
include means for AVHRR and USFS estimates, difference t values and
probability of differing from each other, correlation coefficients
between estimates, correlation probability levels, and number of
observations. '

AVHRR USFS . Difference t p r p n
(cubic meter growing stock/county)

All , 39,300 43,000 - 3600 - 1.3 0.18 .72 .0001 176
by State
Illinois (1962) 13,200 23,900 - 10,700 - 6.2 .0001 «57 .0001 99
Illinois (1985) 13,200 27,000 - 13,800 - 9.3 .0001 .71 .0001 100
Minnesota 44,300 34,000 10,300 1.3 .195 .99 .0002 4
Missouri 83,200 56,000 27,200 6.0 .0001 .83 .0001 58
Tennessee 43,000 105,600 - 62,600 - 5.5 .0001 .93 .0001 14
by Buffer
0-100 km 37,300 , 51,100 - 13,700 - 3.09 005 - .86 .0001 26
100-200 46,900 63, 600 - 16,700 - 3.70 .0007 91 .0001 40
200-300 55,600 49,800 5900 0.80 o43 «56 .0001 51
300-400 21,000 22,600 —_1600 - 0.40 .69 .40 .0217 32

> 400 20,900 15,900 5100 1.18 «250 .79 .0001 27
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AVHRR estimates were aggregated by pixel to yield a county map (Fig. 27)
which, when overlayed wi+h the USFS estimates map, produces a difference
map (Fig. 28). One can see in this map, and in Table 17, an
underrepresentation of forest productivity in lllinols and Tennessee, and
an overrépresenfaflon In Missouri, such that the overall means between the
two are not significantly different. The reasons for the discrepancies
are not clear; more work needs to be done along these |ines. One
possibil ity may be the geographic variation of the agricul tural component
in the landscape, and the large impact it has on the NDVI| of an AVHRR
pixel. The Pope County, Illinols, calibration center con+ains'a smal ler
fraction of row-crop agriculture (barren at the May-June overflight dates)
than nearly any other Illinols county, and a greater amount than most
Miséourl counties. ConsequenTIy, the NDVI and resulting production
prediction may be lower In row-crop~dominated counties and higher In
forest-dominated counties than we would expect from the calibration
center.

The individual state estimates, though not in agreement with USFS
production esflmafes,'show highly significant correlations ranging from
- 0.71 to0 0.93. This seems to indicate the potential for fine-tuning of the
model s and the addition of multiple calibration locations which would
increase the precision bf the models over large regions. Error in the
USFS estimates also must be taken into consideration.

Correlations by buffer distance (compare Figures 2 and 28) revealed
a very high relationship (r=>0.85) between estimates within a 200 km
radius (Table 17). Beyond 200 km, the correlation values dropped of f but
continued to show a significant relationship. The mean values predicted
by AVHRR were very close, however, to those estimated by the USFS, and

were not significantly different in distance beyond 200 km (Table 17).
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pixel for Smokies
region.
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b. Great Smoky Mountains
Calculations of regression relationships were

performed with productivity estimates and a natural log Transformafion of
productivity estimates (Cal laway, 1983). These results are presented in
equations (5) and (6) of Table 13; a |ittle over one-half of the variance
in productivity is accounted for by combinations of AVHRR spectral
information. These regression equations were developed from
classification predicfiéns of Cades Cove productivity (Section II11.C.3.a,
Figs. 14 and 15), | |

Equation (5) of Table 13 was then applied to-each AVHRR pixel in the
region and grouped into seven productivity classes to yield a map of
forest productivity (Fig. 29). As before, this map was aggregated by
county to produce a map depicting county annual growth estimates in cubic
ﬁefers per county (Fig. 30). This was compared to the TVA estimates for
county annual growth (Fig. 31). AVHRR estimate was much below that of the
TVA estimate. |

The measures of productivity between USFS (TVA) and Cal laway (1983)
‘are not directly comparable as the methodologies were greatly different.
Nonetheless, these two different measures of productivity can be compared
In a correlative seﬁse, as shown in Table 18. Analyzing the data in this
way, the results are encouraging (Table 18). Al}{ correlations between
estimates were significant, with most at the 0.0001 level. Total growth
correlated with AVHRR estimates over 168 counties (r=0.52),
Interestingly, softwood growth was correlafed at r=0.87 for the same area
(Table 18).

Evaluations by state indicate that with the exception of softwood

production in South Carolina and Virginia, significant correlations exist



Fig. 30. County productivity for the Illinois Smokies region as ascertained
from aggregation of AVHRR pixels in Fig. 29.

Fig. 31. County forest productivity for the Smokies region as estimated by
the USFS.
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Table 19.

Smokies Productivity as predicted by AVHRR correlations to TVA estimates

of total, hardwood, and softwood annual growth increments.

a. Over all counties

Correlation of AVHRR éstimated»pfoductivity to:
Hardwood Forest

Total Forest

Softwood Forest

Category r P r P r P N

All «52 .0001 .62 .0001 .87 .0001 168
By Buffer

0-100 km .86 .0001 .78 .0001 .52 .0074 27
100-200 «55 .0001 .75 .0001 .80 .0001 91
200-300 47 .0001 .58 .0001 .94 .0001 64
By State

GA 72 .0001 .80 .0001 .90 .0001 49

KY .76 .0001 .96 .0001 54 .0173 19

NC .78 .0001 .91 .0001 .48 .0065 32

Sc .55 .0228 .62 .0076 «29 .2618 17

TN .73 .0001 .85 .0001 .80 .0001 55

VA .66 0134 .88 .0001 ~-.23 4965 13

" b. Hardwood >40% of forest .

‘All .68 .0001 .91 .0001 «53 .0001 78
By Buffer .

0-100 km .78 .0004. .88 .0001 47 .0641 16
100-200 .64 .0001 .90 . .0001 «59 .0001 45
200-300 77 .0008 94 .0001 .27 .3730 15
By State

GA .86 .0013 .88 .0008 .84 .0022 10

KY .79 .0021 .92 .0001 .27 .3912 12

NC .82 .0001 .93 .0001 .36 .1663 17

TN 74 .0001 .96 .0001 .82 .0001 29

VA 75 0119 .99 .0001 -.26 .539 10
¢. Mountains occupying >50Z of county

All .63 .0001 .89 .0001 .52 .0001 70
By Buffer .

0-100 km .78 .0004 .88 .0001 47 0641 16
100-200 .61 .0001 .88 .0001 .58 .0002 42
200-300 .68 .0319 .94 .0001 +28 .4282 10
By Stéte

GA .87 .0022 .88 .0018 .84 .0047 9

KY .80 - .0092 .95 .0001 .08 .8414 9
NC .82 .0001 .93 .0001 .36 .1663 16
TN .69 .0001 .95 .0001 .82 .0001 25
VA .75 .0119 .99 .0001 -.26 .5385 10
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between the Twé estimates. Correlations with hardwood production among
states was even better, ranging from 0.62 in South Carolina o0 0.96 In
Kentucky (Table 16).

Further evidence for a good potential in estimating, especilally
hardwood production, can be found In Table 18b, where only counties >40
percent hardwood forest are considered. Here, the overal | correlation to
hardwood production was 0.91, with state correlations ranging from 0.88 to
0.99 (all highly significant but sample sizes were small). Enhancement of
correlation coefficients also occurred when a subset of data was made
which included only those counties with greater than 50 percenf moun#alns
(Table 18c).

Evaluations by buffer distance revealed a correlation of 0.86 within
100 km, falling to 0.47 at the 200 t+o 300 km distance (Table 18a). The
trend was similar, but more drastic, in percénf forest estimates for the

Smoky Mountains (Table 16a). As one would logically predict, the
relationship is best In the vicinity of the calibration center; hﬁwever,
with production, the relationship remains significant across the entire

scene among the distances and subsets tested (Table 18).

c. Cbmparfsons Among Sites
The overal | correlation between estimates (AVHRR vs.
USFS) of annual forest production was 0.72 for the I[llinois region and
0.52 for the Smoky Mountain region. The fit wasAgenerally better for the
I1linols region, probably for the same reasons discussed earlier--more
level topography, more homogenous |andscapes, and more consistent

daninance of hardwood forest types.
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V. CLASSIFICATION STUDIES NETHODS —
A. Study Site

A study area in the Colorado Rocky Mountain Front Range,
enclosed entirely within fhé Ward, Colorado, 7.5 minute quadrangle (Fig.
32), was chosen to study vegetation distributions in the alpine to
montane plant zones. The area surrounding Niwot Ridge, a long-term
ecological research site (LTER) for alpine tundra and |ocated along the
east side of the Continental Divide approximately 50 km west of Boul der,
Colorado, was selected for study because ecological surveys aﬁd |
vegetation maps exist for this area }Keammerer, 1976; Komarkova and
Webber, 1978; Hansen-Bristow, 1981), and earlier remote sensing studies
were conducted here (Frank and Thorn, 1985; Frank and lsard, 1986).
This area contains a diversity of vegetation +types within a
relatively small area for three primary groups—-élpine, subalpine and

montane ecosystems (Table 19).

1. Alpine Ecosystems

Niwot Ridge slope§ gently to the east, dropping from
3,750 to 3,400 m above sea level (asl). Strong prevailing winds from fﬁe
west control the distribution of snow cover, producing windswept
knol ls and areaé of deep snowpack. West-facing slopes and ridge tops are
general ly - free of snow due to wind action, while east slopes usually
accumulate snowpack. Vegetation exhibits a general change from molst
communities in the west to drier communities in the east (Komarkova and
Webber, 1978). Local controls on vegetation are influenced by
local habitat characteristics, particularly soil moisture, snow

accumulation, and soil disturbance (Webber and May, 1977). In turn,



Table 19. Description of dominant vegetation ecosystems in the Colorado

Rocky Mountain Front Range (Hansen-Bristow, 1981; personal
communication, 1987),

10.

. This ecosystem consists
of herbaceous species which form dense cover found below timber! ine
on both steep slopes (along a drainage or below areas of late lying
snow) and on flat or gently sloping sites of poor dralnage.

- . This ecosystem forms an
open to dense community found below timberline on both gentle and
steep slopes with good drainage and low soil moisture.

e « A low herbaceous
ecosystem found on moist, leeward and north~facing slopes, forming

a dense, tight turf, generally with less than 25 percent-exposed
rock.

. This alpine
ecosystem consists of small dense clumps of this sedge species, It
is covered during winter with only scattered snowbanks which melt
early In the spring. This ecosystem is found on the mesic end of
the molsture gradient, and is found mostly on wel |-drained
Interfluves and broad ridges.

Dry sedge-Kobresia alpine meadow (Carex-Kobresia). This Is a rocky
ecosystem composed of low grass species found in areas of good

soi|l drainage and sparse winter snow cover, often on ridge tops or
on well stablilized talus slopes.

nghlyA#oleranf eoosysfem found only on>exfreme wlnd—exposed
ridges, with ground surface cover 50 to 80 percent rock.

Salix bog (Sphagnum-Sal Ix-Betula). A dense, very moist, broad-
leaved deciduous shrub and moss ecosystem found in areas of
excessive soll moisture below timberline.

Salix moist meadow (Salix). An open to semi-dense broad~|eaved
deciduous shrub found in areas of mesic soll molsture below

timberl ine, where snow cover does not tast long info the growing
season,

Krummhoiz (Picea-Abies-Pinus). Low, open krummholz Interspersed
with alpine meadows located where winter show protects
krummholz Islands from dessicating winds. Distribution results

from strong westerly winds moving downslope, over the alpine and
Into the forest!lpine tundra ecotone.

Flag-tree (Picea~Abies~Pinus). Low to medium tall open forest. Trees
are flagged, supporting branches on only the leeward side of the main
stem. Located within the |lower zone of the forest-alpine tundra
ecotone, the ecosystem |les Immediately above timberline.



11,

12,

13.

14.

15.

16.

c -
forest). A stable needle~leaved evergreen forest. Located within
the upper zone of the forest, this. ecosystem grades at |ower
elevations Into the ponderosa plne and lodgepole pine forests and
at higher elevations into +the alpine zone. This is a climax
forest, found in undisturbed areas, with small Islands of flag
frees, dry golden banner-yarrow meadows, wet sedge-elephantella
meadows, rock outcrops, lodgepole pine, |imber pine, and peat moss
communities.

Plnus flexilis (limber pine forest). This open, needle-leaved

evergreen forest ecosystem Is found on wind-swept, dry, rocky
ridges where |ittle competition from other specles exists. The
ecosystem Is drought-tolerant and forms the uppermost treeline on
windy ridges.

. The aspen ecosystem is an
open to dense, broad-leaved deciduous forest. The ecosystem ranges
In elevation throughout +the entire forest of the study area, and
even extends to +treeline on a south-east facing siope of Niwot
Ridge. I+ Is found on both wet and dry slopes. This community
has varlable ecotypes ranging from moist to mesic to dry soll
conditions.

Pinus contorta (lodgepole pine forest). This ecosystem Is a dense,
successional, narrow-trunk, needle-{eaved evergreen forest. This
ecosystem seldom occurs below 2,560 m, and If lower, Is

usual ly restricted to meslc, north-facing slopes. It Is found
rarely at treeline and within the forest-alpine meadow ecotone,
and Is most frequently found below timberline, In dry soils.

Plinus ponderosa (ponderosa plne forest). This ecosystem 1Is an

open, needle-leaved evergreen forest +that Is found only within
the lower elevations of the study area, malnly on south-facing
slopes. This ecosystem 1Is a topographlic climax on hot and dry
slopes, a topoedaphic clImax on deep ‘solls on the |lower part of the
south-facing slopes, and a edaphic climax on very coarse solls on
north exposures and ridgetops (Marr, .1961).

Pseudotsuga menziesil (Douglas-fir forest). The Douglas-fir
ecosystem Is a falrly dense needle-leaved evergreen found mainly
on north-facing slopes 1In moist canyons. Within the higher
elevations, this community 1Is located on the more mesic sites,
and within the lower elevations it Is found on steep, north-facing
siopes. |t is not abundant in the study area.
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these factors are controlled by the interaction of slope and aspect.
Above the timberline, no trees are found, rather deep-rooted mat and
cushion plants, dwarf willows, grasges,. and sedges. Grassy slopes are
usual ly referred to as alpine meadows to distinguish them from the more

rocky fellfields (Weber, 1976).

2, Subalpine Ecosystems
| The forest-alpine tundra, ecotone surrounds Niwot
Ridge in a subalpine zone approximately 3,400 to 2,700 m asl. Vegetation
is characterized by a mosaic of Picea engelmannii, Abies lasiocarpa,
and Pinus flexills, moist meadows, ponds, and bogs. The zone represents

-transitional vegetation types between the alpine and montane forests.

3, Montane Forests
Forest ecosystems are found in the montane zone from
approximately 2,700 to 2,500 m asl. Thi§ zone Is transitional between the
subalpine zone above and the foothill vegetation types below. Dominant
forest ecosystems are Pinus contorta, Picea engeimannii and P. pungens,
Pseudotsuga menziesii, Populus iremulojdes, and some Pinus ponderosa
(Weber, 1976).

STrucfuraf characteristics and habitat descriptions of the
alpine, subalpine, and montane ecosystems that were used in this study
were summarized for each ecosystem (Hansen-Bristow, 1981; personal
communication, 1987) (Table 19). ’

1. Alpine vegetation: (1) wet herbaceous meadow
(sedge~lephantel la), (2) dry herbaceous meadow (golden banner-yarrow),

(3) moist alpine meadow (alpine avens alpine meadow), (4) Kobresla
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al pine meadow (dry), (5) dry sedge~Kobresia alpine meadow, and (6) moss
campion-rocky alpine meadow (fellfield). | -

2, Subalpine yegetation: (7) Salix bog, (8) Salix moist
meadow, (9) krummholz (conifers 1in upper portion of ecotone), (10)
flag~trees (in lower portion of ecotone), (11) Picea engelmannii and Abies
lasiocarpa, and (12) Pinus flexilis.

3. Montane vegetation: (13) Populus iremuloides, (14)
Plnus contorta, (15) Pinus ponderosa, and (16) Pseudotsuga menzlesil.

B. Classification Procedure
A map of dominant vegetation ecosystems (Table 19)-

covering the Ward, Colorado, 7.5 minute quadrangle (Fig. 32), prepared by
Hansen-Bristow (1981), was digitized from +the 1:24,000 scale sheet,
énd subsequenfly- converted Into raster format with 30 m x 30 m
resol ution. The area surrounding Niwot Ridge was extracted for. the
study area enclosed within a rectangle defined by Universal Transverse
Mercator coordinates: 447000E to 457000E and 4437000N to 443000N

(Fig. 33).

1. Landsat T™ Transformafions

A Landsat=5 TM digital image acquired on June 29, 1984,
was geographical ly referenced to the study area represented by the map
(Graham, 1977), Landsat TM data were acquired for seven spectral
bands: TM1 (,.45-,52fm), TM2 (.52-,60fm), TM3 (.63~,69fm), TM4 (.76-.90fm),
™ (1.55-1.75fm), TM6 (10.40-12.48fm), and TM7 (2.08- 2.35fm). TM7
was found to be highly correlated (r=0.98) with TMb, and along with the
thermal band (TM6), was not used in this study. The TM spectral bands

were transformed into five band ratios and normal ized difference
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Fig. 32. Ward Quadrangle, Boulder County, CO classified TM map
as draped over DEM topographic data.
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Fig. 33. Three dimensional presentations of GIS vegetation map
of Niwot Ridge (top) and classification map of same
based on TM and DEM data (bottom).
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variables to chérac+erize the spectral patterns of vegetation
ecosystem cover types: |
1. Vegetation Index Ratio of NIR and RED bands
VIl = TM4/TM3*(S, D, TM4+S, D. TM3) (4)
2, Normal ized difference with NIR and RED bands
ND1 = ((TMA-TM3)/(TMA+TM3) + 1,) / 2, * K (5)
3. Vegetation Index Ratio of NIR and MIR bands
VI2 = TMA/TMS * (S.D,TMA+S.D,TM5) (6)
4. Normal ized difference with NIR and MIR bands
ND2 = ((TMA-TMB)/(TMA+TM5) + 1,) / 2, * K (7)
5. Reflecfance/absorpfance ratio R/A = TM/(TM3+TMD)
% (5. D, TMH+((SD. TM3+S, D, TN5)/2.)) (8)
where: k is constant used to convert to eight-bit Integer

S.D. is standard deviation

Band ratios and transformations were used to reduce differences
between Illuminated and shadowed slopes, and to enhance the spectral

absorption and reflectance differences of vegetation ecosystems.

2. prégraphic MeasuresADerIved From DEM
Topographic effects on vegetation distributions were

examined using estimates of elevation, slope, aspect, and relief to
characterize vegetation ecosystem types in this study area. Digital
Elevation Model (DEM) data came directly from the Ward, Colorado, DEM
prepared by the United States Geological Survey. The DEM contains
elevation data in a UTM referenced matrix for 30 m x 30 m elements
(Elassal and Caruso, 1983). Siope gradient was calculated ffom the

partial derivatives in the eastwest and north-south directions of the
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study aréa. Slope was then measured as the magnitude of the elevation
gradient:

Slope = SQRT((ef/ex)*¥2 + (ef/ey)¥%2) . (9)
where: ef/ex=(8f(xth)=8f(x~h)+f(x-2h)=f(x+2h))/12h

ef/ey=(8f(y+h)-8f(y-h)+f(y=2h)-f(y+2h))/12h
where: ef/ex iIs the partial derivative in the east-west

ef/ey is the partial derivative in the north-south

h is fhe grid interval In meters

Aspect, the direction of slope, was calculated from the 1wo

partial derivatives:

Aspect = arctan((ef/ey)/(ef/ex)) (10)

This method has been shown to approximate the +true slopes and
aspects in a digital elevation mode! (Snyder, 1983). Elevation was
used to represent the altitudinal gradient of vegetation ecosystems, and
aspect was used to approximate differences in exposure to solar
radiation. Elevation and aspect have been used widely to characterize
vegetation distributions (Hoffer, et al., 1975; Strahler et al., 1978;
Hutchinson, 1982; Frank and Thorn, 1985; Cibula and Nyquist, 1987)

Local differences in elevéfion which create convex or concave
slopes also characterize moisture gradients in mountain vegetation.
Measures such as relief, the absolute difference between the highest
elevation in +the study area and the elevation at a specific location in
the study area, can represent landscape drainage characteristics. In
this study, local relief was used to measure variations in
elevation from a general trend in +the altitudinal gradient. This
measure was used to characterize favorable habitats for dry or wet

vegetation types. The altitudinal gradient was approximated by a



polynomial function derived from the digital elevation model.
Predicted elevation was a function of X,y map cbordinafes using a
third order polynomial. Then local rellef was the differenqe between
actual elevation and predicted elevation:
Rel fef = Elevation - (a0 - alX + a2Y + a3X2 + adXY + &5Y2) (1)
where: X and Y are DEM Cartesian coordinates

Elevation is from the DEM

This method accounts for any general tendency in altitudinal
gradient 1in both the east-west and north-south directions
simul+qneous|;. Consequently, the local relief 1Is calculated for a
particular study site so that the measure 1is sensitive to local

di fferences that may be associated with vegetation habitats.

3.{proclima*[c Index Derived From DEM
A topocl imatic index was created from the digital

elevation model to distinguish between favorable habitats for
windblown, xeric ecosystems and snow-covered, mesic ecosystems.
Slope-aspect index (SAl) was used in this study to characterize
prevalling wind effects on soil mbisfure and subsequent vegetation
distributions:

SAl = sin(slope) * aspect / max.SAl * K (12)

where: max.SAl is maximum Index value

K is constant to convert to eight bit value

Topocl imatic conditions were defined by relationships between
wind patterns and aspect and slope effects on snow accumulation for

three topographic conditions: (: E
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northwest facing slopes: 270 < aspect < 360
SA1=(90.~(360.-aspect)) * sin(slope) / Max.SAl * K

northeast facing slopes: 0 < éspecf < 90
SA1=(180.-(90.-aspect)) * sin(slope) / Max.SAl * K

south facing slopes: 90 < aspect < 270
SAI=(270,-aspect) * sin(slope) / Max.SAl * K

High vaiues of SAl indicated areas +that are generélly leeward,
éfeep slopes that usually accumulate deep, long-lésfing snow banks. Low
SAl values indicated areas that are windblown, snow-free, and
general ly highly dessicated. SAl was shown previously to be a good
discriminator of alpine vegetation types on Niwot Ridge, even when the
types did not exhibit spectral reflectance/absorptance differences
(Frank and Isard, 1986). SAl was adapted for use in this study to
discriminate among ecosystems in the foreéf-alpine tundra ecofone,énd the

forest ecosystems.

4, Determination of Classification Variables

Samples from +he'd§ninan+ vegetation ecosystems were
stratified by structural/plant zoﬁe grouping with reference to the
Hansen-Bristow (1981) map. Spectral, topographic, and topoclimatic
characteristics -of the ecosystems were characterized by Vi1, ND1,
VIZ, ND2, R/A, elevation, slope, aspect, relief, and SAl. The ablility of
the spectral, topographic, and +topoclimatic variables to discriminate
among the doaminant vegetation ecosystems was examined using the
statistical procedure discriminant analysis. Based on the

col lection of variables, the problem was +to distinguish among +the
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vegetation ecosystems, and +to identify +the variables that were
important for distinguishing among the groups.

Linear combinations of the predictor variables were formed from
the analysis, which served to post-predict the sample memberships, and to
subsequently serve as the basis for classifying new observations. Each
predictor variable had ~a unique coefficient for each daminant
vegetation ecosystem so that the original value of each variable,
multiplied by +the coefficient, and summed over the predictor
variables, provided a discriminant score for an observation for each
daninant ecosystem. Then using the discriminant scores, each
observation was assigned to the dominant ecosystem using the posterior
probability: the probability that an observation with a discriminant
score of D belonged to dominant vegetation ecosystem group G was
estimated by the conditlonal probability, and the observation was
assighed to the group which produced the largest conditional
probability.

The best predictor variables were found by calculating a
discriminant function value for each_observafion, then calculating the
correlation between each predictor variable and the discriminant
function values. ND1, V12, R/A, elevation, aspect, relief, and SA| were
the best predictors of vegetation ecosystems. ND2, VI1, and slope were
highly correlated with at least one other variable, and were not
necessary for classification. Both topographic and topoclimatic
variables were necessary, in combination with +the Landsat spectral
variables, to disf!nguish among the dominanf ecosystems because no

single variable exhibited sufficient difference among all ecosystems.
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| VI. CLASSIFICATION RESULTS AND DISCUSSION
A. Classification

The study area was stratified into three structural
groups for classification., - First, alpine meadow observations were
assigned to one of the six dominant alpine-meadow vegetation ecosystem
classes using the set of predictor variables. The classification was
repeated for subalpine and montane forests. Thérefore, three separaTe
classification maps were derived independenfly, el iminating classification
error between groups., The three maps were overlayed to produce a
composite map (Fig. 33). Prior to comparing the classificéfion ﬁap to
the Hansen-Bristow (1981) map, the classification map was filtered to
eliminate small classification errors, This step was necessary because
Landsat-derived maps exhibit spafiél variabil ity not usually evident on
manual | y-derived maps. The degree to which this Is a problem depends on
(1) the level of detall expressed on +the map, and subsequent pattern
sizes selected 'for display at various scales .of published maps; and
(2) the spatial diversity identified within the 1Image, control led
primarily by the resolution of the data in the image. A nelghborhood
filter was applied to the classification map, thereby removing some

spatial diversity from the classification (Guptitl, 1978).

B. Assessing Agreement Between Classification and Map
Evaluation of the classification was conducted by
comparing the predicted dominant vegetation ecosystem classification
against the Hansen-Bristow (1981) map. Site-specific comparisons were
made by calculating the frequency of coincident ciasses, point by
point, on the map and the «classification, and reporting coincident

frequencies in an error matrix (Table 20). The row sums on the right
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edge of the error matrix give the total number of observations for each
ecosystem fram the map, and column totals along the bottom of the error
maitrix give the total number of observations- for each ecosystem from
the classification, Elements alﬁng the diagonal of the error matrix
indicate the frequency of agreement between the ciassification and the
map., For each vegetation ecosystem, percent correct, percent
commission, and percent omission errors were calculated from the
error matrix, These are widely used measures for assessing
classifications against maps (Campbell, 1987). Overal | percent
agreement was averaged from the individual percent correct meaéures.'

A better measure of overall agreement between the map and the
classification was the Kappa statistic (Cohen, 1960; Bishop et al.,
1975; Congal ton and Méad,’1983). Kappa adjusts the overal | percent
correct measure By subtracting the estimated contribution of chance
agreement, Kappa, the maximum |ikel ihood estimate from the multi-nomial
distribution and a measure of the actual agreement of two maps minus the
chance agreement, is discussed elsewhere (Congalton and Mead, 1983).

Not all vegetation ecosystem classes could be identified with
certainty, so classes were aggregated +together within structural
groups, but not between structural groups. The aggregation resulted in
three alpine meadow classes, four subalpine classes, and seven montane
classes (Table 20). The areal proportions of daminant vegetation
ecosystems were then calculated for the aggregated classes from both the

map and the classiflication (Table 21).

C. Community Classification Variations
The results of this study suggest that Landsat TM data,

in combination with tTopographic and topoclimatic indexes, can be used



Table 20. Coincident frequency matrix and accuracy assessment for
dominant vegetation ecosystems from the Hansen-Bristow

(1981) map and classification results.

Classification Results

Dom I nant Meadow Ecosystems

Hansen-Bristow Map 1 2 3 $Corr $Comm %Om
Herbaceous meadows 2279 93 327 84.44 7.77 15.56
Moist alpine meadows 74 1628 753 66.31 20,16 33.69
Dry alpine meadows 118 318 2849 86.73 27.49 13.27 -

Kappa .6954 % Overal| agreement 80.06

Dominant Subalpine Ecosystems

4 5 6 7 8 9 fCorr #Comm %0m
Sal ix bog 109 0 1 0 0 0 99,09 30.13 0,91
Sal ix meadow 0 335 3 2 0 0 98.53 32.87 1,47
Krummhol z 47 164 4410 430 0 0O 87.31 0,09 12,69
Flagged trees 0 0 0 177 0 0 100,00 70,94 0.00
Plicea~Abies 0 0 0 0 10448 3171 76.72 15.21 23,28
Pinus flexilis 0 0 0 0 1874 2880 60,58 52,40 39,42

Kappa .6190

Pseudotsuga menziesii 3 3 51

Kappa .3762

¢ Overall agreement 76.33

Dominant Montane Ecosystems

10 1 12 13
1328 135 57 268
646 1986 656 1185
11 5 293 38
259

% Overall agreement 55,83

$Corr %Comm %0m

61.34 37.15 38,66
18.44 35,73 81.56
77.51 74,76 22.49
75,95 86.74 24,05




Table 21. Areal coverage estimates of dominant ecosystems from
map (Hansen-Bristow, 1981) and classification

resul ts.

Map Classification
Ha g Ha %
Meadow Ecosystems
Herbaceous meadows 242,91 5.50 222,39 5.10
Moist alpine meadows 220,95 5.00 183,51 4.21
Dry alpine meadows 295,65 6.69 353.61 8,11
Subalpine Ecosystems
Salix bog 9.90 0.22 14,04 0,32
Salix moist meadow 32.85 0.74 44,91 1.03
Krummholz 457,20 10,34 397.26 9.11
Flagged frees 15.93 0.36 54,81 1.26
Picea-Abies 1241.19 62,04 947.43 47.35
Pinus flexilis 277.65 13.88 358.65 17.93
Montane Ecosystems
Populus tremuloides 121,68 6,08 120,69 6.03
Plinus contorta 325.17 16.25 357.39 17.86
Pinus ponderosa 6.03 .30 86.94 4.35
Pseudotsuga menziesii 28.98 1.45 129,60 6.48

Kappa .6828 ¢ Overall agreement 73.56
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to map dominant vegetation ecosystems in the Colorado Rocky Mountain
Front Range. Alpine, subalpine, and montane ecosystems were identifiable
when compared to a manual ly-derived vegetation map.

Herbaceous meadows (84.44 percent), moist alpine meadows (66,31
percent), and dry alpine meadows (86.73 percent) compared favorably with
the map, and errors of commission and omission were not a significant
problem. However, fellfield ecosystems were not distinguishable from dry
al pine meadows because spectral and “topographic differences were
not sufficiently different at the resolution of the data base. Wet
alpine meadows were not distinguishable from wet herbaceous meadows
because the spectral characteristics of wet ecosystems were similar, even
though elevation differences existed between the ecosystems.

Six subalpine ecosystems could be mapped accurately; however,
flagged-trees and Plnus flexilis had high errors of commission.
Flagged-trees were predominantly a structural difference among Picea,
Ables, and Plnus ecosystems, therefore, high errors of commission were
not unexpected. Pinus flexilis did not occur frequently in the study
area, and spectral differences were not apparent between this
ecosystem and Picea engelmannii and Ables laslocarpa.

Four montane forest ecosystems were difficult to map. A
deciduous-coniferous distinction was obvious, yet each ecosystem had
unique problems. Populus tfremuloides was not confused often with
other forest ecosystems, but +then It was only correctly identified
61.34 percent of +the time. Plnus contorta was Identified poorly
(18.44 percent correct) due to high errors of amission (81,56 percent).
Pinus ponderosa was the most distinguishable forest ecosystem (77.51
percent correct), but this ecosystem had a high error of commission

(74.76 percent). Pseudotsuga menziesi] also had a high correct
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classification (75.95 percent) and a high error of commission (86.74
percent).

Areal comparisons between ecosystems estimated from.” ‘the
classification and the map (Table 21) indicated that alpine meadow
ecosystems compare favorably 6verall; subal pine ecosystems compare
favorably with the exception of Picea-Abies and.Elnus.ihaﬂJJ$§ and
montane forest ecosystems do not compare favorably, even though Populus
iremuloides and Pinus contorta appear to have approximately similar
distributions. The two distributions do not coincide spatially (Table
20).

The résulfs of this study suggest that Landsat TM, in combination
with topographic and topoclimatic Indexes, may be useful to map some
dominant vegetation ecosystems in the Colorado Rocky Mounfaln Front
Range. Alpine meadow and subalpine ecosystems were identified more
accurately than expected, using the spatial resolution of Landsat TM and
USGS digital elevation data. Results for meadow and subalpine
ecosystems suggest that the models used in this study should be useful for
mapping other alpine and subalpine ecosystems in the Front Range.
However, the poor results for forest ecosystems suggest that additional
procedures must be developed to better del ineate various forest
ecosystems in mountainous environments,

Preliminary efforts have been made in this study to develop a new
approach In examining the topographic vegetation distribution model. The
approach Involves calculating a statistical description of the vegetation
distribution along elevational and slope-aspect gradients. A similar
method was used by Fleming and Hoffer (1979), only they used field-plot
data in defining their vegetation zones, whereas this effort used DEM and

TM=classified data in a GIS.
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The histograms shown in Figure 34 show +h¢ vegetation cover as a
function of elevation, with north-facing slopes displayed on the left and
south-facing slopes on the right sides of 1'he-hls+ograms. The dlagf-ams
show the forest systems differing elevationally fram the alpine meadow
ecosystems, but not much di fferenti ation aﬁong forest classes (Fig. 34).
Further studies are under way to enhance the capability of separating
forest classes in mognfainous terrain, with the combination of +opo§raphic

and spectral data in the classification process.

Vif, OVERALL CONCLUSIONS

We have seen reasonably accurate regional estimates of cover and
productivity with the use of TM-cal Ibrated AVHRR data. Higher local (TM
scale) variance reduces reliability of determining productivity at the
individual pixel level, but when spatial ly averaged over the larger AVHRR
pixels, spatial variance is substantially reduced.

Throughout our research it was apparent that landscape heterogeneity
and structure had a strong influence on the success of our approach. We
were most successful In the lllinois region where the forests are
uniformly daminated by hardwoods,:fhe topography is fairly consistent, and
bodies of water are not a prominent feature of the landscape. These three
features allowed consistent across-region interpretation of the TM and
AVHRR spectral Imagery, even though forest is not the dominant vegetation
cover type of this region.

We were al so general ly more successful in predicting regional
percent forest cover than productivity. This Is reasonable to expect
since one less level of scale-up was used in determining forest cover.
With productivity, we went from ground points to TM scale to AVHRR scale,

whereas percent forest only went from TM to AVHRR scales.
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We were less successful in predicting productivity or cover in the
Smoky Mountain region whére the forests may be dominated by either-
hardwoods or conifers, the +opography-range$ from the mountalnous region
of the Smoky Mountains to flatiands of western Tennessee, and bodies of
water, while frequent, are also large. The models predicted highly
correlated val ues (r=>0.84) of production or cover within 100 km of the
cal ibration center, but the relationships broke down outside that 5uffer
distance. Beyond that distance, one sees the greatest change in
fopography and hardwood/con! fer distribution. The TM/FOREST and
AVHRR/FOREST models used to cal ibrate the Smoky Mountain AVHRR models were
developed in a landscape that Is dominated by hardwood. Consequently, when
the forest is dominated by conifers, which have very different reflective
properties, such as in the Piedmont region of Georgia and South Carolina,
and the models are poor predictors of especially percent forest.
Topography was influential because the TM/FOREST model was based; in part,
on elevational differences in temperature, which were both captured by the
TM sensor and strongly correlated with productivity in that mountalinous
landscape. Consequently, when topography flattened, the relaflonshlp
+ended to weaken.

In future work, dlfflculTIe§ created by conifer-hardwood contrasts
and topography might also be circumvented somewhat by stratification
techniques. Conifer- and hardwood-dominated pixels might be del Ineated by
their reflectance signatures, especially In the winter. Separate TM/FOREST
and AVHRR/FOREST models might then be developed fbr each vegetation type.
Such a strategy is clearly feasible using multi-temporal TM and AVHRR
scenes, at least in the Smoky Mountains where conifer and hardwood stands
tend to be fairly pure. Where mixtures of hardwood/conifer stands exist

within even a TM-sized pixel, the models wil| become more confounded.
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Dividing the continents into ecological ly meaningful strata, such as the
"Ecoreglion-continuum™ regions proposed by Logan-(1985), and exemplified by
Bailey's ecoregions of North America (1981), provides a logical start to
stratification and determination of the number of locations of calibration
centers. In relatively homogenous regions (like lllinois), fewer

cal ibration centers wlll be needed, whereas heterogenous areas, | ike the
Smoky Moun%alns, will need a higher density of calibration centers. A GIS
~could be used‘fo stratify the major regions, and one might then explore
brovlnce-speclffc cal ibration models.

In the New York area, we wére less successful in developing
TM/FOREST models than in the other regions, and we had no success in
developing AVHRR/FOREST models. This is apparently a consequence of two
factors: (1) the presence of mixed hardwood-conifer stands, and (2) the
presence of many small wetlands and lakes, The mixed conifer-hardwood
stands created difficulties In finding TM characteristics that were
uniformly related to forest productivity., We were successful [n developing
TM/FOREST mode! s only if we stratified the data based on forest type. In
the larger AVHRR pixels, the signature was confounded by not only the
extreme heterogenelty of the forests but also the wetland component of the
landscape. Here again sfraffficaffon of the region might Improve one's
abil ity to extend ground-based data to regional estimates.

In the subalpine Rockies, the spatial pattern of the vegetation was
too fine to be captured with TM data without the addition of
biogeographical data such as slope, aspect, and elevation. We made no
attempt to create AVHRR/FOREST models in this regfon because the
fine-scale spatial heterogeneity and the lack of suitable productivity
measurements precluded using our approach. However, the methods employed

in this study did greatly increase the classification accuracy over the
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use of TM data alone. Differentiation of such community types will be
valuable in pursuing this |ine of research. —

In summary, our approach of using nested scales of Imagery in
conjunction with ground-based data and a geographic information system can
be very successful in generating landscape and regional estimates of
variables which cannot be directly measured by a sensor but are
functional ly related to some variable a sensor can detect. Furthermore,

" the approach bérmifs the error associated with such estimates to be
documented and is extremely thrifty in i1ts use of imagery. The approach
will be most useful in regions where either the functional relationship is
not confounded by other features of the |andscape or the confounding
landscape features can be stratified to reduce the overall variance. Our
research is a prototype of the research that will be needed to develop
spatial ly-extensive estimates with quantifiable accuracy of those globally
Important variables that cannot be measured directly from satellite
sensors. As new sensors are developed, many more important biosphere
variables will become possible to Indirectly sénse through their
relationshlp to variables that can be sensed directly. Our ablility to
défec+ global processes and map global patterns will depend on our abil ity
to capital ize on these relaflonships.

Among the many chal lenges in developing regional and global models
Is quanfifylhg the accuracy of those models. Our experience suggests that
techniques for extending |imited ground-based data to much |arger regions
should be developed where they can be rigorously tested, even though the
techniques are most needed In regions of the gldbe where Imagery Is the
only source of extensive data. We believe that in our current stage of

model and sensor development, it is only prudent to work In regions of the
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globe where the models or model ing approach can be val idated through
comparison with Independent data.

Our research experience working with very different |andscapes
supports the argument for much more work on stratification techniques and
evaluating heterogeneity within strata. What causes heterogeneity within a
strata, and what is the spatial resolution of that heferogeneify? Can one
use analysis of varliance in a rigorous sense to test the gopdness of the
'Asfra?ificafioﬁ? How does landscape affect our abillty to stratify?
Answerlng these questions will require that we map features of a landscape
or region, l.e., describe the pattern, Independently of knowledge of the
processes that created those patterns. The potential Is there and the
possible yield Is great. If a network of calibration centers via
stratification Is accompl ished, repeated forest productivity or cover
estimates can be performed relatively easy using newly acquired AVHRR
data. In thls way, we can monitor global vegetation change and perhaps
provide tools for developing public policy to better manage our global
blospheric and atmospheric resources. It is our responsibility to do no.

less.
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X. APPENDIX

A. Extenslve Site Preliminary Studles

In addition to the four Intensive sites reported on here,
preliminary data col lection and image processing was accomplished for a
number of counties where additional study sites are located, as shown in
Figure At, This work was reported in earlier progress reports (lverson et
~al., 19864, f986b, 1987) and will not be repeated here. The sites cover a
Qariefy of biome types, and are intended to assist in AVHRR scale-up
cal ibration and fesfing; Forest growth and cover characteristics (Table
A1) and cl imate characteristics (Table A2) also vary widely Ih order to
cross—check AVHRR scale~up across a large diversity of landscape and

biomes.

B. Facilities and Equipment

The tllinols Natural History Survey, the University of [llinois
Spatial Data Analysis Laboratory (Department of Geography), and the Oak
Ridge National Laboratory were the three institutions with the chief
responsibil ity for the pfojecf.. Each of these Institutions have extensive
cohpu+er hardware and software fér Image processing, GIS, and statistical
analysis. Only the equipment actually used and/or acquired specifically

for this project are discussed In this section.

1. lliinois Natural History Survey
The Illinois Natural History Survey has been using GIS
technology in natural resources research since 1983, when the lllinois GIS

began with ARC/INFO running on a Prime 750 minicomputer as the primary

software and hardware. During the time-frame of the project, a Prime 9955
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Table Al.

Annual Growth, cubic meter/county

Total, hardwood, and softwood annual growth estimates for
extensive site network sites.

Boulder and Weld, CO, Geary and Riley, KS, Emery, UT.

State County Commercial Hardwood Softwood Percent forest
 CA Fresno NA NA NA 1.3
CA .Tuolumne NA NA NA 13.7
FL Leon 444,600 130,300 314,300 66.6
IL Calhoun 39,600 39,600 0 36.1
IL Grundy 8,500 8,500 0 4,1
IL Jackson 19,800 19,800 0 33.8
IL, Lake 8,500 8,500 0 4.3
IL Pope 90, 600 84,900 5,700 57.2
ME Knox 158,600 39,600 118,900 70.1
Mﬁ Waldo 354,000 90, 600 263,300 76.1
MN Itasca 962,700 475,700 487?000 76.0
MN St. Louis 1,718,800 843,800 A875,000 63.2
MS Adams 342,600 263,300 79,300 62.2
NY Essex NA NA NA 50.4
NC Macon 379,400 322,800 56,600 79.7
NC Swain 147,200 110,400 36,800 31.8
OR Crook NA NA NA 22.3
OR Grant NA NA NA 52.8
SD Custer 288,800 2,800 286,000 41,2
TN Anderson 144,400 107,600 36,800 64.3
TN Blount 206,700 113,300 93,400 33.6
TN Sevier 198, 200 119,000 79,300 41.1
WI Outagamie NA NA NA 17.0
The following counties had no forest information in the Geoecology data base:



Table A2. Some climatic characteristics of extensive site network.
Source Geoecology data base.

State County Average Temperature, - °C Annual Annual Annual
Jan - July Annual Precip., cm Evapor., cm Mois.Indx.
FL Leon 11.4 : 27.1 19.7 150.60 104.34 44
IL Calhoun - 1.7 24.8 12,2 98.76 75.67 31
IL Grundy - 4,5 23.3 10.3 : 85.34 70.08 - 21
IL Jackson ' 1.0 25.6 13.9 110,92 80.70 ¥
IL Lake - 5.5- 22.2 9.0 | 83.34 65.48 27
KS Geary - 1.8 26.0 12,7 85.14 78.69 8
KS Riley - 1.8 26.2 12.8 84,02 79.22 6
ME Knox - 5.4 19.6 7.3 115.77 58.60 98
ME Waldo - 6.6 20.0 7.0 105,84 59.11 79
MN Itasca -14,3 19.7 4,0 66.67 57.18 17 |
MN St. Louis ~14.,0 19.5 3.9 71.34 56.44 26
MS Adams 9.6 27.6 19.0 139.32 101.42 37
NC Macon 3.6 - 22.2 12.9 165.30 72.49 128
NC Swain 3.4 23.0 13.2 143,43 74,40 93
NY Essex - 9.6 19.0 5.5 95.05 ‘ 56.13 69
SD Custer - 4.3 22.7 8.6 " 43.99 63.44 -31
TN Anderson 3.5 25.1 | 14,5 129.41 81.05 60
TN Blount 4.3 T 24.9 | 14.7 129,11 81.36 59
W1 Outagamie - 8.7 21.5 7.1 75.59 62.13 22

Data not available in Geoecology for the following counties: Boulder and Weld, CO, Emery,
UT, Fresno and Tuolumne, CA, and Crook and Grant, OR.
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superminicomputer was networked with the 750 to accommodate tremendous
growth in the use of the system. The GIS data base consists of nearly 100
parameters, Including solls, vegetation, Iandfbrms, surface hydrol ogy,
infrastructure, surflicial geology, and administration units for the entire
State at coarse resolution, and for selected areas at higher resolution
(f—4 ha). The southern Illinois Intensive study site for this project Is
within the area of high resolhflon data in the lllinols GIS., Several GIS
parameters were extracted for use in percent forest and forest
productivity model ing work that was done (Section IV C).

The INHS acquired an IBM PC-AT and an ERDAS image proceséing system
in January 1986, A 20-mg removable carfrldgéﬁlOMEGA Bernoul | i Box was
added later to accanmodate storage requirements for the TM, GIS, and AVHRR
data. Nearly all image processing for the study was done on this system,
or a camparable one at the University of IllInois Depariment of Geography.
Transfer of data from the Illinois GIS Prime environment to ERDAS on the
PC, for much of the project's duration, was accomplished via an ELAS
version 415 module for converting gridded ARC/INFO files to ERDAS format.
Other PC's were used for SAS s+afls+tcal analysis and graphics/word |
processing functions.

In June 1987, a hardware/software |ink for running ERDAS on the
Prime, with the PC as a Prime workstation, was installied. This system has
al lowed better Integration of GIS and remotely~sensed data, the use of
more powerful hardware, and an access to greater storage and
flle-manipulating capabil Ity. However, we have been plagued with problems
In canmunications such that the link |s not as effective as we had hoped
for. The link is quite valuable, however, especially in the

TM-AVHRR-Geoecology efforts.
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2. University of Illinois Spatial Data Analysls Laboratory
(Department of-Geography)
The University of Illinois' Spatial Data Analysis
Laboratory has severa!'ne1worked ERDAS systems. All processing for the
Colorado study sjfe was done on these systems. The 1600 bpi tape-drive
peripheral to the ERDAS systems in the laboratory was used extensively for
TM and GIS file transfers before +he_lNHS had the Prime ERDAS (and thus
could use the Prime tape drives). Depariment of Geography staff affillated:
with this study made use of.fhe University of Illinois' IBM and Cyber
mainframes as needed; for example, when the digital elevation model data
on tape had a buffer size too large to read on the Prime. They also
developed several ERDAS modules using EﬁDAS programming tools that were
essential to the study. They are described in section [|1-B of this

report.

3. Oak Rldgé National Laboratory
The ORNL Computer Sciences Division has several major

computer systems, as well as image processing capabilities via 12S. Data
were shared between the ORNL and INHS systems, such as digital elevation
model data and the Geoecology data base from which percent forest and
forest growth by counfy for the United States were available. The
Environmental Sciences Division also acquired an ARC/INFO (on Vax
computer) and ERDAS PC station during the course of the project. ORNL

staff also used PC- and mainframe-based SAS.

4, Global Patterns Associates
A Compaq-286 transportable microcomputer with 60-mb hard

disk was also used on this project.
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Leedy, eds.), National Institute for Urban Wildlife,
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Abstracts
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1988 Annual Meeting of the Ecological Soclety of
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Terrestrial Physics, National Aeronautics and Space
Administration, Washington, D. C.

Iverson, L.R. 1987. Interpreting forest and grassland biome
productivity utilizing nested scales of image resolution
and biogeographical analysis. Pages 359-396. _n: 1986
Landsat Workshop, Laboratory for Terrestrial Physics,
National Aeronautics and Space Administration,
Washington, D.C.

Iverson, L.R., E.A. Cook, R.L. Graham, T. Frank, Y. Ke, and J.
Olson. 1986, 1987, Interpreting forest and grassland
biome productivity utilizing nested scales of Imade
resol ution and biogeographical analysis. Numbers 1, 2,
and 3. Reports to the National Aeronautics and Space
Administration, Washington, D.C.

Iverson, L.R., E.A. Cook, R.L. Graham, T. Frank, Y. Ke, and J.
Olson, 1987, Assessment of forest productivity using
T™ and GIS data. Pages 73-78. _1n: 1987 LANDSAT
Workshop, Laboratory for Terrestrial Physics, National
Aeronautics and Space Administration, Washington, D.C.

Abstracts Not Covered Above

Graham, R.L., L.R. lverson, and E.,A. Cook. 1987, Evaluating
abandoned pasture patch stablility within a forest matrix
using LANDSAT TM data and historic vegetation maps.
International Symposium on Landscape Ecology, Munster,
West Germany. July.19. (lInvited)

Oral Conferences or Workshop Presentations

Frank, T.D. 1987, Comparing Landsat TM, MSS, and digitized
NHAP photography for vegetation analysis. Western Great
Lakes Region of American Society for Photogrammetry and
Remote Sensing Fal | Meeting, Urbana, lllinois.
November.

Frank, T.D. 1987, Comparison of Vegetation Mapping
Techniques in Arid Environments. Arid Lands Remote
Sensing Conference, Arid Lands Remote Sensing Working
Group, Bishop, California. March,

Frank, T.D. 1987. Third mapping on the IBM PC/AT with
professional graphics capabllity. Remote Information
Processing/Video Image Processing Workshop, Northern
It1inols University, DeKalb. April,



132

Frank, T.D. 1988. Comparing drainage density estimates from
digital ly enhanced Landsat TM and color Infrared aerial
imagery. . Arid Lands Remote Sensing Conference, Arid
Lands Remote Sensing Working Group, Reno, Nevada,
April.

Gardner, J.E., J.E. Hofmann, J.D. Garner, and E.A. Cook.
1987. Foraging range and habitat wutilization of
male Myotis sodalis in [llinols determined by radio
telemetry and computer analysis techniques. 17th Annual
North American Symposium on Bat Research, Toronto,
Ontario, October 15-17,

Graham, R.L. 1988. Risk assessment of the |andscape at
regional scale. International Association of Landscape
Ecologists Meeting, Albuquerque, New Mexico.

Iverson, L.R. 1985, The lllinois Geographic Information
System (GIS): a tool to better manage the State's
natural resources. Regional meeting of the American
Society for Photogrammetry and Remote Sensing, Northern
Il inols University, DeKalb. November 1.

Iverson, L.R. 1985, " Natural resources information management

using the |llinois Geographic Information System.
Regional meeting of the Soil Conservation Society of
America, Decatur, |liinolis. November 7.

Iverson, L.R. 1987. Integration of ERDAS with ARC/INFO for
assessment of regional forest productivity. Midwest
Regional ARC/INFO User's Conference, Champaign,
I1linols. October 15, (lInvited)

Iverson, L.R. and E.A. Cook. 1987. Forest productivity
estimates using combinations of GIS, TM, and AVHRR data.
Western Great Lakes Reglional Meeting of the American’
Society for Photogrammetry and Remote Sensing,
Champaign, lllinois. November 6. (lnvited)

Olson, J.S. 1986, 1987. Uncontrolled experiments. Carbon
dioxlde and global climatic change. Short lecture
courses. Swedish University of Agricultural Sciences,
Uppsala, Sweden. September 23; Chernoby! fal lout and
its future in Swedish forests. Institute of Ecological
Botany, Uppsala University, Uppsala, Sweden. October 2;
Predicting redistribution of radiocesium in Nordic
forests. Lecture to Nordic Working Conference,
Radioecology Department, Swedish University of
Agricultural Sciences, Uppsala, Sweden. October 29;
International geosphere-biosphere program: computer
model s and nested remote sensing of landscape complexes.
Sweden. March.
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Popular Press Coverage

lverson, L.R. 1987. Can the productivity of lllinols forests
be estimated from space? Pages 5-7. .1n: tllinols
Natural History Survey .Highl ights of the Annual Report,
1986-1987, Department of Energy and Natural Resources,
Champaign.

Iverson, L.R. and E.A, Cook. 1988. Can the productivity of
forests be estimated from space? |Illinois Natural
History Survey Reports No. 273.

D. Meetings, Visits, and Travel (No Presentation Given)

Cook, E.A. and L.R. lverson. 1988, Annual Convention of the
ASPRS-ACSM, St. Louls, Missouri. March 14-18,

Frank, T.D. 1986. Attended American Society of
Photogrammetry and Remote Sensing (ASPRS) Fall Technical
Conference, Anchorage, Alaska. October.

Frank, T.D. 1986. Attended GIS User Group Workshop, Seattle,
Washington. November.

Graham, R.L. 1986, Work at the Illinois Natural History
Survey, Champaign. June.

Graham, R.L. 1986. Annual Meeting of the International
Congress of Ecology, Syracuse, New York. August.

Graham, R.L. 1987, Work at the !liinois Natural History
Survey, Champaign. June.

Graham, R.L. 1987. Attended meeting of the International
ERIM Conference, Ann Arbor, Michigan. October.

Graham, R.L. 1987. Site visit and data col lection at
Tennessee Val ley Authority, Norris. October.

Graham, R.L. 1988. Work at the Illinois Natural History
Survey, Champaign. March,

lverson, L.R. 1985, Attended the CERMA Conference on
Integration of Remote Sensed Data in Geographic
INformation Systems for Processing of Global Resource
Information. May.

lverson, L.R. and E.A. Cook. 1985, Attended International
ERIM Conference, Ann Arbor, Michigan. October 21-24,

lverson, L.R., J.S. Olson, Y, Ke, and T. Frank. 1985,
Attended meeting of the American Society of
Photogrammetry and Remote Sensing, Indianapolis,
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Indiana. (Also occurring at that time was the first TM
Working Group Conference.) September 8-13.

lverson, L.R, 1985-1988, Attended meetings of the lllinois
Canmission on Forest Development. (Served as Chairman of
the Forest Resources Analysis Committee.) December
1985-April 1988,

lverson, L.R, 1986, Visited the North Central Experiment

Station, St. Paul, Minnesota. July.

Iverson, L.R. 1987. Site visit and data collection at Custer
County, South Dakota. May.

|verson, L.R., Graham, R.L., and J.S. Olson. 1986. Site visit
to Huntington Wildlife Forest, New York. August.

Olson, J.S. Attended meeting of Land Processes Research on
Forests, Goddard Space Flight Center. December 17-18,

Olson, J.S. 1986, Attended workshop on Cl imate-Vegetation
Interactions, Goddard Space Flight Center. January
27-29.

Olson, J.S. and R.L. Graham. 1986. Relocation of
Whittaker-Becking-Olson plots In Great Smoky Mountains
National Park. August.

Oison, J.S. 1987. Swedish results on thematic mapper and
SPOT imagery. Discussed with Margharetta |hse and
others, Depariment of Natural Geography, Stockholm
University. February 1.

Olson, J.S. 1987. Workshop on Land Use Change and the Carbon
Cycle. 0Oak Ridge Associated Universities, Oak Ridge,
Tennessee. May 25-27.

Oison, J.S. 1987. MWork at the Illinois Natural History
Survey (June 8-10) and NASA Ames Laboratory, Moffett
Field, California. June 11-15, Plans with David
Peterson, Pamela Mattson, and col leagues.

Olson, J.S. 1987, Workshop on Positive Feedback and the
Carbon Cycle. Oak Ridge Associated Universities, Oak
Ridge, Tennessee. June 29-July 1.

Olson, J.S. 1987, Planning with Satimage Corporation, and
Swedish Land Survey, Kiruna, Sweden. August 10 and 17.

Olson, J.S. 1987. NASA Goddard Institute of Space Sciences,
Columbia University, New York City, New York. October
22-23, Coordination with lnez Fung, Vivian Gornitz, and
Dav id Hansen. '
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Olson, J.S. 1987. Work at lllinois Natural History Survey
(November 10-12); NASA Headquarters and Goddard Space
Fl ight Center (November 13); and National Space
Technology Laboratory (November 16-18),

Olson, J.S. 1987. NASA Ames Laboratory, California (December
10-11); Yosemite and Sequoia-King's Canyon Parks
(December 14-17)., Options for technology transfer to
National Park Service,





