
. -s • V.f-' ,- v "-• - , „-
.— 0.; ^ ^'- (•; - . : • • •

..-National Aeronautics and
k "$Pace^Adminisfration --'

•. >• •
"'

. ^

;_S;

r.

>^-.
. /

-.•-: -t

JPL Publication 88-14

Diagnosing Faults in
Autonomous Robot Plan Execution

Raymond K. Lam
Rajkumar S. Doshi
David J. Atkinson
Denise M. Lawson

March 1,1988

NASA
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

ABSTRACT

A major requirement for an autonomous robot is the capability to
diagnose faults during plan execution in an uncertain environment. Many
diagnostic researches concentrate only on hardware failures within an
autonomous robot. Taking a different approach, this publication describes the
implementation of a Telerobot Diagnostic System that addresses, in addition to
hardware failures, failures caused by unexpected event changes in the
environment or failures due to plan errors. One unique feature of the system
is the utilization of task-plan knowledge and context information to deduce
fault symptoms. This forward deduction provides valuable information on past
activities and the current expectations of a robotic event, both of which can
guide the plan-execution inference process. The inference process adopts a
model-based technique to recreate the plan-execution process and to confirm
fault-source hypotheses. This technique allows the system to diagnose multiple
faults due to either unexpected plan failures or hardware errors. This
research initiates a major effort to investigate relationships between
hardware faults and plan errors, relationships that have not been addressed in
the past. The results of this research will provide a clear understanding of
how to generate a better task planner for an autonomous robot and how to
recover the robot from faults in a critical environment.

111

CONTENTS

1. INTRODUCTION 1

2. APPROACHES TO FAULT DIAGNOSIS 3

3. FACTORS IN DETERMINING THE APPROPRIATE
TELEROBOT DIAGNOSTIC SYSTEM APPROACH 5

3.1 TELEROBOT DOMAIN CONSTRAINTS 5

3.1.1 Environmental Constraints 5

3.1.2 Operational Constraints 5

3.2 TELEROBOT KNOWLEDGE ENVIRONMENT 6

4. THE TELEROBOT DIAGNOSTIC SYSTEM TECHNIQUE 9

4.1 TDS APPROACH 9

4.1.1 The Robotic Environment Interpretation Phase 9

4.1.2 The Plan Execution Inference Phase 10

4.2 TELEROBOT SYSTEM OVERVIEW 10

4.3 TDS ARCHITECTURE 10

4.3.1 TDS System Overview 13

4.3.1.1 Alarm Handler 13

4.3.1.2 Sensor Interpreter 13

4.3.1.3 Context & Plan Interpreter 16

4.3.1.4 Symptom Identifier 17

4.3.1.5 Fault Region Identifier 19

4.3.1.6 Plan Execution Inference Module 19

5. CONCLUSION 23

PRECEDING PAGE BLANK NOT FILMED

ACKNOWLEDGMENTS 25

REFERENCES 27

F i g u r e s

1 Example of the Telerobot Control Environment 7

2 Telerobot Operation Configuration 11

3 Telerobot System Diagram 12

4 Telerobot Diagnostic System Diagram 14

5 Example of the Acquire Action 15

6 Symptom Identification Process 18

7 Example of the Plan Execution Inference Process 20

VI

SECTION 1

INTRODUCTION

An autonomous robot is a vehicle that has some degree of
intelligence to plan and navigate in an uncertain environment. It must be
capable of performing some useful task without the intervention of human
operators. There is a wide range of applications suitable for autonomous
operation due to either hazardous environments or human inaccessibility.
These areas include mining operation, space exploration, space operation,
underwater exploration, nuclear plant servicing, and military surveillance.

The operational environment of an autonomous robot differs
from the manufacturing environment of an assembly robot in several ways.
One example that demonstrates these differences is the autonomous robot in
the space environment:

1. Human assistance in maintaining, diagnosing, and repairing the
robot is very difficult, and sometimes impossible, to achieve in
space. Thus, the robot must operate independently and
autonomously to perform very complex tasks.

2. A space robot performs many unique tasks in different scenarios,
as opposed to solely performing repetitive routines. For instance,
a space robot's tasks include the acquisition of satellites, the
repair of damaged instruments, and the assembly of large space
structures. The space robot must actively utilize special expert
knowledge to generate and execute specific task plans for these
unique scenarios.

3. There is a communication delay between a space robot and the
ground station, a situation that limits the availability of sensor
information and past-activity information. This limitation
reduces the effectiveness of performing real-time diagnosis on
ear th .

4. When a failure occurs on a space robot, it is critical to discover
the origin of the failure as quickly as possible and to understand
how and why the failure occurred. This must be done in order to
recover from failure gracefully and prevent future occurrences
of the same failure.

5. A space robot has minimal self-checking and sensing capabilities
due to its physical size limitation.

One such example of a space robot is the research robot called
Telerobot, which is being developed at the Jet Propulsion Laboratory (JPL) to
perform satellite servicing. The Telerobot will be controlled by human
operators on earth. Having been given a specific task by the operators, the
Telerobot should be able to generate a plan, carry out the operations, and
complete the task. A major concern is that the Telerobot have the capability to
diagnose faults during plan execution in the space environment. This fault
diagnosis requires the interpretation of multiple faults in the environment,

the handling of plan faults and hardware faults, and the prevention of any
further errors that could cause irreversible damage to the Telerobot itself.
Therefore, the Telerobot should have a diagnostic capability to interpret the
environment at failure, reason about the fault symptoms, classify the faults,
generate hypotheses about abnormalities, and search for an appropriate
solution.

The Telerobot Diagnostic System (TDS), a NASA-sponsored
research project at JPL, addresses the issues mentioned above. In this
publication, we will discuss approaches to fault diagnosis, factors that
influenced the determination of the TDS approach, and the TDS architecture in
a space environment. The space environment is similar to other critical
environments that demand the diagnostic capabilities of an autonomous robot.
Hence, the TDS approach can be applied to different areas in the autonomous
robot domain.

SECTION 2

APPROACHES TO FAULT DIAGNOSIS

In recent years, a great deal of research has been devoted to
knowledge-based diagnostic systems in several domains.1-5 Few of these
systems, however, address the problems inherent in the Telerobot domain.

Collectively, knowledge-based fault diagnostic systems can be
classified as one of two approaches.6 The first approach involves reasoning
from device-specific symptom/cause relationships, and the second involves
reasoning from the basic principles of connectivities and functionality.

In an example of the first approach, Gini et al.7-9 present a
symbolic reasoning technique to automate fault recovery in manufacturing
robots. Implementation by these authors classifies operations based on the
semantic and qualitative meaning of actions, and maps each operation into a
predetermined relationship table to identify a set of possible faults. The
technique uses this set of data to infer from the existing fault symptoms and
sensor history in an attempt to deduce the source of the fault. By taking
advantage of heuristic knowledge in the robotic domain, this classification and
mapping technique reasons about the relationships between operations and
the possible faults. A major drawback to the symptom/cause reasoning
approach is its inability to explicitly know the underlying mechanisms of
operations. Also, it requires much effort to generate an adequate set of
symptom/cause relationships.

In an example of the second approach^ Krishnamurthi et al.l 0
developed an assembly robot fault-diagnosis expert system using a
combination of deep and shallow modeling approaches. The system diagnoses
electromechanical problems by combining deep reasoning based on the
design description of robot components and shallow reasoning based on simple
decision rules, which emulate the reasoning process of a human robot-
diagnosis expert. To diagnose a fault, the system reasons about physical and
electrical interconnections, the expert's knowledge and experience, and test
data. Since the system is used as an advisor to assist the technician in
diagnosing hardware faults, and the robot is simply performing repetitive
routines in a static manufacturing environment, the system does not infer
from past operation history or plan knowledge to identify fault sources.
Rather, it reasons about the current situation and relies on test data reported
by the technician to guide the diagnostic process.

Neither of these systems addresses all of the environmental and
operational requirements in the Telerobot domain. The following sections will
discuss Telerobot system requirements and associated constraints leading to a
fault diagnostic technique that attempts to address these issues.

SECTION 3

FACTORS IN DETERMINING THE APPROPRIATE
TELEROBOT DIAGNOSTIC SYSTEM APPROACH

3.1 TELEROBOT DOMAIN CONSTRAINTS

One consideration in determining an effective Telerobot
diagnostic approach is the factor of Telerobot domain constraints, which can
be classified as either environmental or operational.

3.1.1 Environmental Constraints

An important characteristic for the Telerobot system to have is
the ability to perform complex tasks in many unique scenarios. This variety of
scenarios means that the TDS must be able to understand the context of the
environment and the implication of the environmental constraints in order to
diagnose faults effectively.

In addition, changes in the system configuration made by each
specific task require that the TDS be able to recognize each new configuration
of components. These components include the manipulators, instruments,
sensors, and objects in the environment. Different configurations can lead to
different interpretations of the same set of sensor data. For example, while
alarmed force/torque sensor data may indicate that a moving arm has hit an
obstacle, it could also indicate that a stationary arm is trying to pick up an
unmovable object. Because of the limited availability or inaccuracy of sensor
data, a factor of uncertainty is added to the understanding of the environment.
Therefore, the TDS must be able to reason in this uncertain environment in
order to predict the consequences of an operation and to resolve conflicts
among sensor data. In cases where faults are propagated from previous
operations, the TDS must be able to reason backward to determine where the
faults occurred and why they were not detected when they occurred.

Finally, because space operation demands a highly reliable
autonomous robot to perform critical tasks, it is essential that the TDS provide a
complete picture on how and why faults occurred in order for fault recovery
to regain control of the Telerobot and to prevent future fault occurrences.

3.1.2 Opera t ional Constraints

The TDS must have a clear interpretation of the task plan in order
to effectively handle the complexity of Telerobot functions. Multiple
mechanical maneuvers, such as dual arm operations, are sometimes required,
and such maneuvers can often lead to hardware faults caused by malfunctions
of the manipulators. These maneuvers can also lead to the discovery of plan
faults caused by coordination problems in the task plan. The TDS must be able
to interpret the task plan in order to differentiate between these types of
faults. Also, a complex task normally involves a large number of actions, and
it is difficult to generate a complete set of fault symptom/cause relationships

PRECEDING PAGE BLANK NOT FILMED

for all actions. An understanding of the task plan can compensate for this
incomplete set of relationships.

Another operational constraint involves the taxonomy of
Telerobot control. Telerobot control is structured hierarchically, separating
specific knowledge about an operation into several levels. The TDS must be
capable of organizing and inferring knowledge from multiple levels in order
to deduce the sources of faults. Active testing on the manipulators with
incomplete knowledge about the environment at each level could lead to
secondary effects and could ultimately cause catastrophic failure of the
system.

Because of the uncertainty of the environment, it is almost a
necessity to interpret the environment first in order to capture the Telerobot
status and effectively identify the faults. Also, the complexity of the Telerobot
operation and the inability to actively test for problem identification implies
that the task plan becomes the only mechanism for capturing the Telerobot
configuration, as well as the point of failure of the Telerobot. An event-driven
approach that uses events to drive the interpretation also takes advantage of
constraint knowledge.

3.2 TELEROBOT KNOWLEDGE ENVIRONMENT

In addition to Telerobot constraints, another important issue to
consider in determining the appropriate TDS approach is the knowledge
environment. The Telerobot knowledge environment is characterized by the
hierarchical structure of the Telerobot control environment as shown in
Figure 1. The Telerobot control architecture generates plan knowledge at
three levels: Task Planning knowledge at the top of the hierarchy, followed
by Process Command knowledge at the intermediate level, and Machine
Command knowledge at the bottom of the hierarchy.i l Task Planning
knowledge resides in a Telerobot subsystem called the Task Planner, and is
concerned with the overall context of a task. (See Section 4.2, "Telerobot
System Overview," for a brief description of this and the following
subsystems.) The Task Planner generates a logical global plan to achieve the
objective of a given task. Process Command knowledge resides in the Run Time
Controller subsystem, and involves the detailed specification of the subtasks.
The Run Time Controller generates physical and geometrical requirements to
specify the precise manipulations of Telerobot components. Machine
Command knowledge is used by the Manipulation and Control Mechanization
subsystem and the Sensing and Perception subsystem to control the basic
manipulation and sensor capability of the Telerobot.

The Telerobot knowledge environment determines what and how
information is available to the TDS. Since there is more information available
in the Telerobot knowledge environment than in possible Telerobot problems
and solutions at the time of failure, it makes sense to concentrate on the event
to drive the diagnosis, rather than concentrating directly on the problem.
Also, because of the hierarchical nature of the Telerobot knowledge
environment and control structure, it is advantageous to adopt the event-
driven approach to understand the knowledge environment at different levels
and to exploit plan knowledge for interpreting symptoms.

Al Task Planner

Task Plan Command

i.e., (Move Arm_1 Location_1)

Run Time Controller

Process Command

i.e., (1 10000 1 0 0 50 50 0 1 0
0 0 - 1 -30.66 -432.55 -350.12)

Manipulation & Control
Mechanization Subsystem

Machine Command
i.e., (0100101101110011)

Figure 1. Example of the Telerobot Control Environment

SECTION 4

THE TELEROBOT DIAGNOSTIC SYSTEM TECHNIQUE

4.1 TDS APPROACH

Considering the nature of Telerobot constraints and the nature of
the Telerobot knowledge environment, an event-driven approach was chosen
for the Telerobot fault-diagnosis system. By determining the context of the
environment first, the TDS can better interpret component relationships and
reason forward to identify the specific step of an action that caused a fault.
Also, since a plan can contain many sequential actions and thus generate a
large search space, by interpreting the Telerobot task objective and the
environment first, the TDS can reduce the search space. It does so by
enhancing the coordination and interpretation of knowledge at different
levels and identifying which actions demand detailed analysis and which
actions require only high-level attention. Using the event-driven approach
also leads to a better understanding of the environment. Since the
interpretation of the environment is more complete, there is an increased
capability to understand the problems and correctly deduce the fault sources.

The event-driven approach addresses diagnosis in two phases.
The first phase interprets the existing Telerobot environment at failure in
order to deduce fault symptoms, and the second phase recreates the task-plan
execution process in an attempt to discover the sources of the faults.

4.1.1 The Robotic Environment Interpretation Phase

Because of the complexity of tasks and the existence of unique
scenarios, it is important for the TDS to exploit context knowledge of the
environment and plan knowledge of the task plan in order to determine the
configurations of the Telerobot at failure. Context knowledge is concerned
with the representation of component state information in symbolic form and
the interrelationship of components in the Telerobot environment. Context
knowledge is generated via the interpretation of characteristics of
components, initial state information, sensory data, and state information at
failure. The availability of context knowledge enables the TDS to resolve
conflicts about sensory data, to identify symptoms at different control levels, to
resolve ambiguous state information, and to produce unique interpretations of
sensor data of the Telerobot environment.

Plan knowledge is concerned with the operation of actions that
modify the component state of the environment. The interpretation of these
operations provides the possible changes to the environment and the
accessibility of components at each state. The availability of plan knowledge
enables the TDS to determine the effects of the operation, review mechanical
problems in the manipulators, discover plan errors, confirm the consistency
of actions at different control levels, and isolate the components involved in
the abnormal operation.

The availability of both context knowledge and plan knowledge
enables the TDS to interpret the environment and thus determine the

9
PRECEDING PAGE BLAKK NOT FILMED _~^ (j *aSBSXfl%^$®&

Telerobot status at failure. It combines symptoms from both types of
knowledge to resolve conflicts and deduce a list of suspected failed
components. The suspect component list is used to limit the number of
hypotheses during plan execution simulation in the second phase and to
determine the appropriate control level for the task-plan execution simulation
process.

4.1.2 The Plan Execution Inference Phase

The Plan Execution Inference phase attempts to discover the
source of a fault by recreating the task plan execution process. Each action is
performed in a simulated environment so the TDS can observe the
consequences of that action. The TDS adopts a model-based inference
technique 12-14 using behavioral models of components and functional models
of operations to infer the fault sources. This technique uses deep-level models
that provide a capability to predict consequences of an operation, to recreate
the plan execution process, and to confirm fault-source hypotheses.

The flexibility of the model-based technique allows the TDS to
simulate plan execution with any combination of actions or manipulator
configurations. This reduces dependency on imperfect sensory data while still
taking advantage of the data's potential when available. The model-based
technique allows the reasoning process to switch control levels at will to
concentrate on the suspected components. More importantly, reasoning with
the behavioral and functional models of the components provides the
capability to hypothesize multiple faults that sometimes may occur. When
multiple faults occur, the TDS can simulate the abnormal behaviors of each
individual component in sequence to hypothesize the collective consequence
of the faults.

4.2 TELEROBOT SYSTEM OVERVIEW

The Telerobot system at JPL consists of three PUMA 560
manipulators and four cameras as shown in Figure 2. Two manipulators are
used to perform tasks, and the third manipulator is installed with a two-camera
stereo vision system to monitor manipulations in the testbed. In addition, two
wing cameras are used to track the illustrated satellite. The manipulators are
controlled hierarchically by three subsystems: the Task Planner, the Run
Time Controller, and the Manipulation and Control Mechanization subsystem.
These subsystems contain specialized knowledge on task planning, process
commands, and machine commands, respectively. In addition to these
subsystems are the Execution Monitor,15 which observes the Telerobot status,
the Telerobot Diagnostic .System, which detects faults, and the Sensing and
Perception subsystem, which provides visual information. A diagram of the
Telerobot system is shown in Figure 3.

4.3 TDS ARCHITECTURE

The Telerobot Diagnostic System was developed on a Symbolics
3640 LISP Machine using the ZetaLisp language and a JPL-developed expert

10

Figure 2. Telerobot Operation Configuration

1 1

cc
LU

Q_

CO

CC

LU

LU

§1
cc p
LU CO

£8
i
Q

O GC

§?
ag
S3i

o

°8

</> ^
0) ^5

*^~ ctJ

LU _
O ^
rr LU
LU I-

%>
CD m

co w

LU
co

O CD

03 CO

9= <

la

2
W)

o
>^

•GO

O
.0

2

CO

§

12

system tool called TELESIS.16-17 Most of the knowledge is implemented as
production rules, and the modules are implemented as procedural functions.

4.3.1 IDS System Overview

The inference structure of the TDS is composed of six modules: the
Alarm Handler, Sensor Interpreter, Context & Plan Interpreter, Symptom
Identifier, Fault Region Identifier, and Plan Execution Inference Module.
During the interpretation phase, the TDS uses the first five modules to reason
about the existing environment and identify possible sources of errors. The
sixth module, Plan Execution Inference, is used during the second phase to
simulate the task-plan execution process, to hypothesize past activities, and to
confirm the sources of the faults. A diagram of the Telerobot Diagnostic
System is shown in Figure 4. The following sections will describe the
operations of each module.

4.3.1.1 Alarm Handler. Many sensors, such as grip sensors and
force/torque sensors, exist in the Telerobot system. During the plan execution
phase, the Execution Monitor examines those sensors that are directly relevant
to the action currently executing. Sensors not relevant to the current action
are stored in an Event Trace, which is located within the Execution Monitor.
When a sensor value exceeds its thresholds of validity, the Execution Monitor
will activate the TDS Alarm Handler and report the abnormal data. 18 The
Alarm Handler translates the alarm values into a symbolic form that
represents the alarmed state of the sensors. For example, if the Gripper should
be in a closed state (value = 0) and, for some reason, it is open (value = 1), the
Alarm Handler will translate this numerical information into the symbolic
form (Status Gripper Open).

A sensor in a state of alarm can affect an action in one of two
ways. If the sensor does not affect the continuation of the current plan step
within the action, then the plan step will be completed before the Alarm
Handler halts the action. For instance, in the ACQUIRE action illustrated in
Figure 5, suppose that the Contact_Sensor indicates that grip status goes into
alarm during Primitive Plan Step 2 (Close Arm_J). This is not critical to the
completion of the CLOSE command, therefore the Alarm Handler allows the
CLOSE command to finish before halting the ACQUIRE action at Primitive Plan
Step 2.

On the other hand, if the sensor data is critical to the
continuation of the current plan step, then the Alarm Handler will cause the
action to be halted immediately. For example, if force/torque sensors used in a
compliance motion detect excessive force, then the action will be halted
immediately to avoid possible component damage.

4.3.1.2 Sensor Interpreter. During the Interpretation phase, the
Execution Monitor passes the valid sensor data to the TDS Sensor Interpreter,
which translates the sensors' numerical values into symbolic forms in a
similar manner as the Alarm Handler. The Sensor Interpreter compares this
information with the expected conditions of the current action. The physical

13

INFORMATION FROM
OTHER SUBSYSTEMS

ALARM
HANDLER

SENSOR
INTERPRETER

CONTEXTS PLAN
INTERPRETER

FAULT REGION
IDENTIFIER

SYMPTOM
IDENTIFIER

TDS

PLAN EXECUTION
INFERENCE MODULE

PLAN
SIMULATION

HYPOTHESES
GENERATION

FAULT
CONFIRMATION

RESULTS FOR
FAULT RECOVERY

Figure 4. Telerobot Diagnostic System Diagram

14

ACTION: Acquire Block_A With Arm_1
From Location_
To Location_2

Preconditions:
(At Block_A Location_1)
(Contains Arm_1 Nil)
(Status Arm_1 Open)
(At Nil Location_2)

Primitive Plan Steps:
1. Move Arm_1 To Location_1
2. Close Arm_1
3. Move Arm_ 1 To Location_2

Expected State:
(Contains Arm_1 Block_A)
(Status Arm_1 Close)
(At Nil Location_1)
(At Arm_1 Location_2)

Figure 5. Example of the Acquire Action

15

components that successfully generate the expected conditions of the current
environment will be considered as valid components. These components will
be eliminated from fault consideration during the second phase, Plan
Execution Inference.

The Sensor Interpreter is also responsible for translating the
sensor data in the Execution Monitor's Event Trace. It does this to provide
historical information to the Plan Execution Inference process.

4.3.1.3 Context & Plan Interpreter. One objective of the Context &
Plan Interpreter module is to abstract information from the Task Planner and
the Run Time Controller. Another objective is to interpret for each action the
two types of knowledge generated from this module—context knowledge and
plan knowledge.

Context knowledge comprises information about stationary
objects and instruments in the environment. This includes the location,
orientation, and characteristics of each object involved in a given action. The
spatial relationship of objects and the constraints of the objects on each other
are represented explicitly. However, plan errors or propagated faults are
difficult to diagnose by inferring only sensor data, so context knowledge is
essential in order for the Symptom Identifier to isolate the faults. For example,
suppose Block_A and Block_B lie against each other, and there is an operation
to move Block_A to a new location. This operation can accidentally displace
Block_B and still can carry out the execution successfully. However, if at a
later time the manipulator wants to grasp Block_B, the previous displacement
will cause failure on that operation since B lock_B is not at its anticipated
position. By reasoning with context knowledge about the relationship
between Block_A and Block_B, and with plan knowledge of the manipulator's
trajectory path, the Symptom Identifier will be able to deduce that Block_B was
possibly displaced during the MOVE operation for Block_A.

Plan knowledge is subdivided into task-plan knowledge provided
by the Task Planner, and manipulator knowledge generated by the Run Time
Controller. Task-plan knowledge provides high-level information on how to
achieve an objective, and includes information on the intentions of the
objective, the actions needed to achieve the task, the expected state of the
environment after the operation, and the relationship between objects and
actions before and after the action (i.e., the effect of a M O V E operation on
Block_A). Task-plan knowledge also includes constraint information on each
action. For example, if a MOVE operation cannot be completed, the task-plan
knowledge and the location of the manipulator can be used to deduce why the
operation failed. If the manipulator failed outside of the proposed MOVE path,
then the Symptom Identifier module will assume a mechanical failure of the
manipulator. If, however, the operation failed while the manipulator was on
course, and all environmental and operational constraints were satisfied, then
the Symptom Identifier module will suspect a coordination problem in the task
p lan .

Manipulator knowledge is generated from the Run Time
Controller and concerns the kinematics and dynamics of the manipulator. The
manipulator configurations along the trajectory path can provide information

16

such as potential spatial problems, joint limitations, and critical paths or
configurations that should be avoided. For example, suppose the gripper
attempts to pick up a slippery object. The grasping and transporting postures
of the manipulator during the GRASP operation can predict what may happen
to that object. If the object has a degree of freedom toward the ground, then it
will most likely slip from the gripper, and the Symptom Identifier will assume
that the object was dropped somewhere along the trajectory path.

In summary, the Context & Plan Interpreter uses knowledge
about the environment and knowledge about the task plan and manipulators to
deduce the Telerobot status at failure.

4.3.1.4 Symptom Identifier. The Symptom Identifier accepts alarm
conditions from the Alarm Handler, the status of valid components from the
Sensor Interpreter, and state information from the Context & Plan Interpreter.
Initially, it checks for consistency of information from these modules. When
conflicts arise, the Symptom Identifier will reason about the contradictions
and consult with the vision system and other sensing systems to identify the
errors. It then attempts to understand the implications of the existing
environment, deduce symptoms, and generate a list of suspected components
that may have caused the faults.

Shown in Figure 6 is an example of the Symptom Identifier
process. Assume that A r m _ l is supposed to pick up Block_A from a table.
Block_A is very slippery, so the manipulator should pick it up in a posture that
allows it no degree of freedom toward the ground. However, in this case, the
Task Planner did not consider the slippery characteristic of the block.
Therefore, during the operation, the Alarm Handler will detect that the
Contact_Sensor suddenly opens, and it will interrupt the system from further
operation. The Symptom Identifier accepts state information from the Alarm
Handler, the Sensor Interpreter, and the Context & Plan Interpreter, then
checks this data for consistency. It rules out the assumption that the
Contact_Sensor is broken since Force_Sensor information and vision data
contradict the assumption. The other assumption, that the object is missing,
remains consistent with the state information. Therefore, components that
could have caused the object to disappear—arm trajectory and object
characteristics—are placed on the suspect component list. The Symptom
Identifier reasoning process uses all of the information from the three
modules to deduce this suspect component list, and fault inferencing will be
confined to just these components.

Another responsibility of the Symptom Identifier module is to
classify fault type. Because of the complex nature of the task plan, the TDS
must avoid a complete search of the task plan for suspected components to
prevent a combinatorial explosion of the search space. One method to limit
this problem is to isolate the faults within a specific region. The Symptom
Identifier classifies faults as either local faults or propagated faults. When a
fault occurs during execution of an action or during the verification of an
expected state of an action, the fault is classified as a local fault. On the other
hand, if the fault happens during verification of preconditions of an action, it
will be classified as a propagated fault. Propagated faults are normally caused
by the side effect of previous actions.

17

o

o
CO
c
CD

CO
_J
o
as
"c
o
O^

•
r*?" *^

1 ®
O «•— »

° ol

"~ E-*
i'«
< a1

CD o

0
CD

^
O
CO
r- I

•̂ ?-

i

g

J2 i.
Q_ fl)

m
te

xt

&
1

n
te

rp
re

t

o —

*s'
O
O

CO

CD
a.
Q.

—^^ '^

o
_c
nlro
"c
o
O

b.s u
CO
Q.
CO

5̂_
y.

^3
CD

jr"u
1~

O
CO
c
0

CO

.'

1 — ̂
O
o
LL

CD
•H-0)

Q.

V
c

ô
(A
C
0
(/>

^ .̂
CD
Q.
O

*-k

>

H
an

dl
er

E
a

<

!_/

CO

CD
CO

O

c
o

CO

CO

O 0}
co *- c
C O o
CD aj ex
°3 S- 1 *-1 VJ **• *•*

^1 3 O .co
0 CO O C3
03 ^^ O
"c CM "CD
o I ^,
0 0 -~-̂ *-*

O ^ ^1 ±—

s.-, 1
l<<\
111
^ ^- 2-

CO
o
O

° ^C 0
a>

CO

t̂o (**l

CO
03

0
CO
3

ca•«— •
*LLf
~'

3>
03

COc

^ y

O O /
CO *J y/

<D /
CO /

81 /
o /
LL /

CO
3

Q

W

CD
4—*
O
03

(
2
0

1
§
5^

^
?
2

i
CO

E

^̂i.

^_^
c m
CD .2

•*£ CtJ t
E Q o
m c E

1 i| 1
CD >. c —

co .Q1 <i>

l' IS i*-• ^ **c qj °8 Q-
o Q E
" w

<ii

io
O

S
&=j

CO

^_

ĈD
C
0
D

1
O

^ O
•*̂
03•*-,

Q.
S

c7?
vC,

o
8

cC
a
.2
o
S
c
(D

2
E
o
Q,

&
00

vo

u
3
bO
£

18

If the fault is propagated, the suspect list will be given to the
Fault Region Identifier to determine the suspected fault region. If the fault is
local, the suspect list will be used directly by the Plan Execution Inference
Module to diagnose faults on the current action.

4.3.1.5 Fault Region Identifier. The Fault Region Identifier isolates
a suspected region where propagated faults in the task plan may have
originated. It uses the suspect component list generated by the Symptom
Identifier to reason backward from the current action until it identifies the
prior action that generated the violated precondition of the current action.
Since the validity of this precondition is established at the end of the prior
action, and the violation occurred subsequent to the prior action, the prior
action becomes the beginning of the suspected region that contains the
violation. After the region is isolated, the Fault Region Identifier examines the
relationship between the suspected components, the violated precondition, and
each action in the suspected region in order to identify actions that are
irrelevant to the violation. These irrelevant actions will be eliminated from
consideration during fault diagnosis. The Plan Execution Inference Module
will examine all of the relevant suspected actions in the region.

4.3.1.6 Plan Execution Inference Module. The objective of the
Plan Execution Inference Module is to infer the sources of faults from the fault
symptoms and the component model. The module generates hypotheses from
the suspect component list and utilizes behavior models to analyze the
characteristics of components. It also employs functional models to predict
the consequence of actions and compares hypothesized results with alarm
conditions to confirm faults.

The inference process is represented as a context-tree data
structure. The nodes in the context tree represent state information and the
arcs represent actions that caused the state to change. The root node contains
the initial state of the environment. The various levels of the tree represent
alterations of the environment, and nodes on the same level correspond to
multiple hypotheses for consequences of that action. Hence, any vertical
path from the root node to an end node represents a series of environmental
changes that correspond to state change hypotheses. Figure 7 illustrates an
example of the context-tree structure generated by the Plan Execution
Inference process.

For local fault diagnosis, the Plan Execution Inference Module
generates a root node that contains a set of states representing the initial
environment of the current action. The current action normally consists of
several plan steps. Each plan step causes a state change to the environment,
which is represented as a new level of nodes on the context tree. The Plan
Execution Inference Module reasons from the suspect component list and the
state information to determine the state change hypotheses on that level (the
arcs), and reasons from the behavior and functional models to determine the
consequence of the hypotheses (the new level of nodes). When any
consequence conflicts with the alarm environment, that hypothesis will be
eliminated from further consideration. Hypothesis generation and plan
simulation for each plan step proceed in a breadth-first manner. However,
when the state information in any hypothesized path matches the alarm

19

DKTQNAE PXGK IS
OF POOR QUALITY

'•s

a
a
c.a

"Si
•

n x

is
°3
2 3
4J I)

X

s
-
31-1

UI

U &£0

u •-
0) OT

X UI
V-l

u >
u

o o

v
wo
c u

X «
CD U.

_J u.a; uj

.
a_ a: o o a. a.
o a. u. >- Q. z o

•

QC — --*O C *"^
Z QC \O

u. VD »-*
ui cc H-

CJ »—
« =3 vs

•1 — O CD

^ -H C_> H-

a. S: o uj zso &. w. ^- a vi

O

O

£
o
oI
c

o

CJ

W

6
C3
X

W

20

environment, the Inference module will begin a depth-first diagnosis along
that hypothesized path. If the environment in the hypothesized path is
consistent with the alarm environment at the point where the malfunction
occurred, the TDS will report the abnormal hypotheses along that path as the
sources of the various faults, and provide this information for replanning
purposes. Otherwise, if the hypothesized path environment does not match the
alarm environment where the malfunction occurred, the TDS will backtrack
and diagnose other hypothesized paths.

For propagated fault diagnosis, the Plan Execution Inference
Module evaluates each action in the suspected region. Relevant actions are
analyzed in detail similar to the local fault diagnostic process. Irrelevant
actions are not examined at the plan step level (they are assumed to be
normal), but exist in the context tree to preserve the coherency of plan
execution simulation. This process will continue on all actions until the TDS
simulates an environment that is identical to the alarm environment and
identifies the propagated faults.

21

SECTION 5

CONCLUSION

The Jet Propulsion Laboratory's Telerobot plan-execution
Diagnostic System demonstrates an effective event-driven approach to the
problem of fault diagnosis in uncertain domains. The use of environmental
knowledge and plan knowledge, with respect to a given action, supplements
the TDS model-based inferencing technique, thus enhancing diagnostic
capability for plan and hardware faults in various scenarios. The plan-
execution inference process allows the system to diagnose multiple faults at
multiple levels of abstraction. Also, because of the generality of the Telerobot
Diagnostic System, it can be applied to other autonomous robot domains as well.
However, the system has the following drawbacks, which need to be
investigated in the ongoing research. First, the TDS may fail in the absence of
a complete model of the behavior and function of the actions. Also, inherent
uncertainties in the environment that are unknown to the TDS may cause the
system to fail.

A preliminary version of the Telerobot Diagnostic System has
been successfully tested in simple scenarios. Efforts are continuing on
further refinement of the system for diagnosis in more complex
environments. Future research will investigate the feasibility of using a
similar approach to perform task planning in addition to fault diagnosis. The
process of combining knowledge, extracted from multiple control levels, to
increase the effectiveness of the system will be studied, along with an
investigation of how knowledge used during the planning phase can be
exploited by the . diagnostic process to eliminate redundant reasoning on
irrelevant issues.

PRECEDING PAGE BLAtfK NOT FILMED

23

SECTION 6

ACKNOWLEDGMENTS

The authors wish to thank Mark James for his support on the use
of the "TELESIS" expert system tool. Additionally, the authors are grateful to
Jim White and Rajiv Desai for their criticisms and comments. We are very
grateful to Henry Stone, Anatoly Lokshin, Bob Balaram, John Beahan, Samad
Hayati and Kam-Sing Tso for providing operational information and
demonstrations on the Telerobot.

PRECEDING PAGE BLANK NOT FILMED

25

REFERENCES

1. Davis, R., "Diagnosing via Causal Reasoning: Paths of Interaction and
the Locality Principle," Proceedings of the National Conference on
Artificial Intelligence, August 1983, Washington, D.C., pp. 88-94.

2. Genesereth, M.R., "Diagnosis Using Hierarchical Design Models,"
Proceedings of the National Conference on Artificial Intelligence,
August 1982, Pittsburgh, PA, pp. 278-283.

3. Genesereth, M.R., "The Use of Design Descriptions in Automated
Diagnosis," Artificial Intelligence, 24, 1984, pp. 411-436.

4. Georgeff, M.P., and Lansky, A.L., "A System for Reasoning in Dynamic
Domains Fault Diagnosis on the Space Shuttle," SRI International
Technical Note 375, January 1986, Artificial Intelligence Center, SRI
In te rna t iona l .

5. Kuipers, B., "Commonsense Reasoning About Causality: Deriving
Behavior from Structure," Artificial Intelligence 24, 1984, pp. 169-203.

6. Lamer, D.L., "A Recursive Expert Troubleshooting System Utilizing
General and Specific Knowledge," Second Conference on Artificial
Intelligence Applications, December 1985, Miami Beach, FL, pp. 34-41.

7. Gini, M., and Smith, R., "Monitoring Robot Actions for Error Detection
and Recovery," Proceedings of the Workshop on Space Telerobotics, July
1987, Pasadena, CA, Volume III, pp. 67.

8. Gini, M., Doshi, S., Garber, M., Smith, R., and Zualkernan, I., Symbolic
Reasoning as a Basis for Automatic Error Recovery in Robotics,
Technical Report TR 85-24, Computer Science Department, University of
Minnesota, August 1985.

9. Gini, M., and Gini, G., "Towards Automatic Error Recovery in Robot
Programs," Proceedings of the 8th International Joint Conference on
Artificial Intelligence, August 1983, Washington, D.C., pp. 821-823.

10. Krishnamurthi, M., Mayer, R.J., and Friel, P.O., "Robot Fault Diagnosis
Using Deep and Shallow Modeling Approaches," Robotics and Expert
Systems, June 1986, NASA/Johnson Space Center, pp. 269-278.

11. Balaram, B., "A Run-Time Architecture for the JPL Telerobot,"
Proceedings of the IEEE International Conference on Robotics and
Automation, 1987, Raleigh, NC, p. 310.

12. Adams, T.L., Orr, G.L., and Tollander, C.J., "An Artificial Intelligence
Approach to Coordinated Fault Diagnosis, Control and Planning for the
Space Station Electrical Power System," 20th Intersociety Energy
Conversion Engineering Conference, August 1985, Miami Beach, FL,
pp. 472-478.

13. Adams, T.L., "Model-Based Reasoning for Automated Fault Diagnosis and
Recovery Planning in Space Power Systems," Proceedings of the AIAA
Space System Technology Conference, June 9-12, 1986, San Diego, CA,
pp. 69-78.

14. Pan, Y.C., "Qualitative Reasoning with Deep Level Mechanism Models For
Diagnoses of Mechanism Failures," First International Conference on
the Applications of Artificial Intelligence, December 1984, Denver, CO.,
pp. 295-301.

15. Doyle, R., Atkinson, D.J., and Doshi, R.S., "Generating Perception
Requests and Expectations to Verify the Execution of Plans," Proceedings
of the Fifth National Conference on Artificial Intelligence, August 1986,
Philadelphia, PA, pp. 81-88.

16. James, M., "TELESIS: Tool Environment and Language for Expert System
Implementation and Synthesis," unpublished document.

17. James, M., "TELESIS: User's Manual," unpublished document.

18. Doyle, R., Sellers, S.M., and Atkinson, D.J., "Predictive Monitoring Based
on Causal Simulation," unpublished document.

28

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.
JPL 88-14

2. Government Accession No.

4. Title and Subtitle

Diagnosing Faults in Autonomous Robot Plan Execution

7. Author (s)

R. Lam, R. Doshi, D. Atkinson, D. Lawson

9. Performing Organization Name an

JET PROPULSION LABC
California Institut
4800 Oak Grove Dri-v
Pasadena, Calif orna

d Address

)RATORY
:e of Technology
re
.a 91109

12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date
March 1. 1988

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

1 1 . Contract or Grant No .
NAS7-918

13. Type of Report and Period Covered

JPL Publication

14. Sponsoring Agency Code
RE 159 BK-549-02-31-02-00

15. Supplementary Notes

16. Abstract

A major requirement for ah autonomous robot is the capability to
diagnose faults during plan execution in an uncertain environment. Many
diagnostic researches concentrate only on hardware failures within an
autonomous robot. Taking a different approach, this publication describes
the implementation of a Telerobot Diagnostic System that addresses, in
addition to hardware failures, failures caused by unexpected event changes
in the environment or failures due to plan errors. One unique feature of
the system is the utilization of task-plan knowledge and context information
to deduce fault symptoms. This forward deduction provides valuable information
on past .activities and the current expectations of a robotic event, both of
which can guide the plan-execution inference process. The inference process
adopts a model-based technique to recreate the plan-execution process and to
confirm fault-source hypotheses. This technique allows the system to diagnose
multiple faults due to either unexpected plan failures or hardware errors.
This research initiates a major effort to investigate relationships between
hardware faults and plan errors, relationships that have not been addressed in
the past. The results of this research will provide a clear understanding of
how to generate a better task planner for an autonomous robot and how to
recover the robot from faults in a critical environment.

17. Key Words (Selected by Author($))

Computer Programming and Software
Cybernetics
Systems Analysis

18. Distribution Statement

Unclassified - Unlimited

19. Security Clossif. (of this report)

Unclassified

20. Security Clossif. (of this page)

Unclassified

21. No. of Pages

vi + 28

22. Price

JPL 0184 R9I83

HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the
report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14
blank. Complete the remaining items as follows; • -

3. Recipient's Catalog No. Reserved for use by report recipients.

7. Author(s). Include corresponding information from the report cover. In
addition, list the affiliation of an author if it differs from that of the
performing organization.

8. Performing Organization Report No. Insert if performing organization
wishes to assign this number.

10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72),
which uniquely identifies the work unit under which the work was authorized.
Non-NASA performing organizations will leave this blank.

11. Insert the number of the contract or grant under which the report was
prepared.

15. Supplementary Notes. Enter information not included elsewhere but useful,
such as: Prepared in cooperation with. . . Translation of (or by). .. Presented
at conference of.. . To be published in. . .

16. Abstract. Include a brief (not to exceed 200 words) factual summary of the
most significant information contained in the report. If possible, the
abstract of a classified report should be unclassified. If the report contains
a significant bibliography or literature survey, mention it here.

17. Key Words. Insert terms or short phrases selected by the author that identify
the principal subjects covered in the report, and that are sufficiently
specific and precise to be used for cataloging.

18. Distribution Statement. Enter one of the authorized statements used to
denote releasability to the public or a limitation on dissemination for
reasons other than security of defense information. Authorized statements
are "Unclassified—Unlimited, " "U. S. Government and Contractors only, "
"U. S. Government Agencies only, " and "NASA and NASA Contractors only.

19. Security Classification (of report). NOTE; Reports carrying a security
classification will require additional markings giving security and down-
grading information as specified by the Security Requirements Checklist
and the DoD Industrial Security Manual (DoD 5220. 22-M).

20. Security Classification (of this page). NOTE; Because this page may be
used in preparing announcements, bibliographies, and data banks, it should
be unclassified if possible. If a classification is required, indicate sepa-
rately the classification of the title and the abstract by following these items
with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for
classified items.

21. No. of Pages. Insert the number of pages.

22. Price. Insert the price set by the Clearinghouse for Federal Scientific and
Technical Information or the Government Printing Office, if known.

REVERSE SIDE JPL 0184 R 9/83

