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dimensional controllers in order to minimize real-time computational requirements. Standard ap­
proaches to this problem employ model/controller reduction techniques in conjunction with LQG 
theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional 
Bernstein/Hyland optimal projection theory. Our approach yields fixed-finite-order controllers 
which are optimal with respect to high-order, approximating, finite-dimensional plant models. We 
illustrate the technique by computing a sequence of first-order controllers for one-dimensional, 
single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, 
Ritz- Galerkin, finite element approximation. Our numerical studies indicate convergence of the 
feedback gains with less than 2% performance degradation over full-order LQG controllers for the 
parabolic system and 10% degradation for the hereditary system. 
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1. Introduction 

Approximation methods for the optimal control of distributed parameter systems have been 

widely studied. In particular, the approach taken in [1-12] involves approximating the original 

distributed parameter system by a sequence of finite-dimensional systems and then using finite­

dimensional control-design techniques to obtain a sequence of approximating, sub-optimal control 

laws, observers, or compensators. Furthermore, in these treatments it was demonstrated that if 

the open-loop system is approximated appropriately, then it is possible to guarantee convergence 

of the sequence of sub-optimal controllers, observers, or compensators, respectively, to the optimal 

controller, observer, or compensator for the original infinite-dimensional system. In addition, it 

can also be shown that when the approximating sub-optimal control laws or estimators are applied 

to the original system, near-optimal performance can frequently be obtained. These ideas were 

pursued in the context of both open- and closed-loop control, in both continuous and discrete-time, 

and for both full-state-feedback control and LQG (i.e., Kalman-filter-based) state estimation and 

compensation. 

In practical situations, however, it is often of interest to obtain the simplest (i.e., the lowest 

order) controller which provides a given, desired feedback performance. This is usually achieved 

in one of two ways. Either the plant approximation order is reduced prior to controller design, or, 

alternatively, reduction techniques are applied to a given high-order control law. Unfortunately, 

the former approach may result in undesirable spillover effects while the latter may yield low-order 

controllers of low authority which perform unacceptably. In fact, with the second approach, this 

may occur even when a suitable controller is known to exist. For example, as is shown in [13], 

controller reduction techniques may even destabilize the closed-loop system. 

A third, more direct approach involves fixing the controller order a priori, and then optimizing 

a performance criterion over the class of fixed-order controllers. In a finite-dimensional setting, a 

set of necessary conditions in the form of four coupled matrix equations (as a direct extension of 

the pair of the separated Riccati equations of LQG theory) which characterize the optimal fixed­

order compensator was derived in [14]. These four equations are coupled via an oblique projection 

(idempotent) matrix. In the full-order case, this projection becomes the identity thus effectively 

eliminating the additional two equations, and the necessary conditions reduce to the standard LQG 

Riccati equations. 
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The notion that this direct (i.e., fixed-finite-order) approach can be applied to distributed 

parameter systems was first suggested by Johnson in [15] and further developed in [16] and [17]. 

To realize such an approach, however, would require a suitable generalization of the optimality 

conditions for the finite-dimensional fixed-order theory. This result was subsequently obtained in 

[18] where the matrix optimal projection equations obtained in [14] for finite-dimensional systems 

were extended to a set of four coupled operator Riccati and Lyapunov equations characterizing 

optimal fixed-finite-order controllers for infinite-dimensional systems. 

In developing numerical schemes to actually compute fixed-finite-order compensators for 

infinite-dimensional systems, one might consider an approach wherein LQG reduction procedures 

are applied to a sequence of controllers obtained by using finite-dimensional full-order design tech­

niques in conjunction with high-order finite-dimensional plant approximations. However, such an 

approach is unappealing for two reasons. First, since such methods are not predicated on the 

minimization of a performance index, prospects for convergence are slim. And, second, controller­

reduction methods have not proven to be reliable in producing stabilizing compensators (see, for 

example, [13]). 

Hence, on the other hand, we develop an abstract approximation framework (and ultimately 

computational schemes) which combine the infinite-dimensional optimal projection theory of [18] 

with the approximation ideas developed in [9-12] for infinite-dimensional LQG problems. More 

precisely, our approach involves constructing a sequence of approximating finite-dimensional sub­

spaces of the original, underlying, infinite-dimensional Hilbert state space along with correspond­

ing sequences of bounded linear operators which approximate the given input, output, and system 

operators. Then, by choosing bases for these approximating subspaces and applying the finite­

dimension8l optimal projection theory, a sequence of matrix equations characterizing a sequence 

of approximating optimal, fixed-finite-order compensators for the distributed system is obtained. 

Finally, numerical techniques for solving the matrix optimal projection equations (for example, the 

homotopic continuation algorithm described in [19] and [20]) can be used to compute the sequence 

of approximating gains. 

Our primary aim in this paper is to describe the general approach we are proposing, to discuss 

its implementation, and to demonstrate its feasibility and practicality. We offer no convergence 

arguments here, but rather reserve them for a more theoretical paper to follow. Instead, we consider 

the application of our technique to two examples. One involves the control of a one-dimensional, 
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single-input, single-output parabolic (heat/diffusion) system while the other involves a single-input 

single-output one-dimensional hereditary control system. These relatively simple examples have 

been used throughout the distributed parameter control literature to illustrate the application of 

new theories and techniques. A detailed discussion of the application of our ideas to more complex 

control systems, for instance, the vibration control of flexible structures, will also appear elsewhere. 

We use spline- based Ritz-Galerkin finite element schemes to approximate the open-loop systems 

(one for which convergence can be demonstrated in the LQG case) and present and discuss some 

of the numerical results which we have obtained using our general approximation framework. 

We now outline the remainder of the paper. In Section 2 we briefly review the infinite­

dimensional optimal projection theory from [18], describe the approximation framework, and derive 

the corresponding equivalent matrix equations and feedback gains which characterize the approx­

imating fixed-finite-order compensator. In Section 3 we consider the examples, construct the ap­

proximation schemes, and discuss our numerical findings. Section 4 contains a summary and some 

concluding remarks. 

2. Optimal Projection Theory and Finite-Dimensional Approximation 

We consider the following fixed-finite-order dynamic-compensation problem. Given the infinite­

dimensional control system 

x(t) = Ax(t) + Bu(t) + HIW(t) (2.1) 

with measurements 

yet) = ex(t) + H2w(t), (2.2) 

where t E [0,00), design a finite-dimensional, ncth-order dynamic compensator 

(2.3) 

(2.4) 

which minimizes the steady-state performance criterion 

(2.5) 

For convenience we denote the infinite-dimensional plant by II; that is, 
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Here x(t) lies in a real, separable Hilbert space X with inner product (., ·),A : Dom (A) C X -+ X is 

a closed, densely defined operator which generates a Co semigroup {T(t) : t ~ o} of bounded linear 

operators on X,B E l(mm,X), and C E l(X,mt). We assume that the state and measurement 

are corrupted by a white noise signal wet) in a real, separable Hilbert space X (see [21] or [22]), 

that Hl E l(X, X), H2 E l(X, mt), Rl E leX) is (self-adjoint) nonnegative definite, and that R2 

is an m X m (symmetric) positive-definite matrix. We define Vl = HlHi and V2 = H2H;, where 

( )* denotes adjoint, and assume for convenience that HlH; = 0 and that V2 is positive definite. 

The compensator is assumed to be of fixed, finite order ne (i.e., xe(t) E mn
.) and that Ae,Be, 

and Ce are matrices of appropriate dimension. For further details and discussion on the problem 

statement and the above assumptions, see [18]. 

We summarize here the primary result from [18] characterizing optimal fixed-finite-order con­

trollers. For convenience define E ~ BR2"l B· and E ~ C·V2-
l C. Also let In. and Ix denote 

respectively the ne X ne identity matrix and the identity operator on X. 

Theorem 2.1. Let ne be given and suppose there exists a controllable and observable neth­

order dynamic compensator (Ae, Be, Ce) which minimizes J given by (2.5) and for which the closed­

loop semi group generated by 

is uniformly exponentially stable. Then there exist nonnegative-definite operators Q, P, Q, P on X 

such that Ae, Be, and Ce are given by 

Ae = rCA - QE - EP)G., (2.6) 

Be = rQc·v2-1, (2.7) 

Ce = -R;lB·PG., (2.8) 

where Q : Dom(A·) -+ Dom(A),P : Dom(A) -+ Dom(A·),Q : X -+ Dom(A),p X-+ 

Dom (A .), and G, r E l (X, m n.), and such that the following conditions are satisfied: 

rank 0 = rank? = rank O? = ne, (2.9) 

QP=G·Mr, rG· = In., (2.10) 

for some ME mn• xn., 
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where 

0= AQ + QA* + V1 - QEQ + T.lQEQTl., 

0= A*P+PA+R1 - PEP+Tl.PEPT.l, 

0= (A - EP)Q + Q(A - EP)* + QEQ - T.lQEQTl., 

0= (A - QE)* P+ PeA - QE) + PEP - Tl.PEPT.l, 

T ~ G* r, ll. 
T.l = Ix - T. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

It is shown in [18] that the factorization (2.10) for the nonnegative-definite operators Q and P 
satisfying rank QP = nc always exists and is unique except for a change of basis in mno. It is also 

shown in [18] that r* : mno --t Dom (A *) so that the expression (2.6) is well defined. 

Equations (2.11)-(2.14) are, in general, infinite-dimensional operator equations. To actually use 

them to compute the optimal fixed-order compensator, a finite-dimensional plant approximation is 

required. For each N = 1,2, ... , let X N denote a finite-dimensional subspace of X and let pN : 

X --t XN denote the corresponding orthogonal projection of X onto XN. Let AN E 'c(XN),BN E 

'c(mm,xN),cN E 'c(XN,mt),Rf E 'c(XN), and V1
N E 'c(XN). We consider the system (2.6)­

(2.14) with the plant II replaced by the plant lIN given by 

Typically the ~perators BN CN RN and VN are chosen as BN - pN B eN - cpN RN - pN R , "1 1 -, - '1- 1 

and V1N = pNV1 with the requirement that pN converge strongly to the identity Ix as N --t 00. 

The operator AN is chosen so that it and its adjoint satisfy the hypotheses of the Trotter-Kato 

semigroup approximation theorem (i.e., stability and consistency, see, for example, [23]). That is, 

AN is chosen so that limN-+oo TN (t)PN 4> = T(t)4>, and limN-+oo TN (t)* pN 4> = T(t)*4>, uniformly 

in t for t in bounded intervals, for each 4> EX, where TN (t) = exp(tAN), t ~ O. We shall say more 

about these choices for AN, BN, eN, Rf, and V1N when we address convergence questions below. 

Although with the plant lIN equations (2.11)-(2.14) are finite dimensional, they are still oper­

ator equations. It is their matrix equivalents which are used in computations. Unless orthonormal 

bases are chosen for the subspaces XN (which is typically not the case in practice) some care must 

be taken to obtain the appropriate matrix system. 
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For each N = 1,2, ... , let {4>.f}j:l be a basis for X N and choose the standard bases for all 

Euclidean spaces. For a linear operator L with domain and range X N or any Euclidean space, 

let [L] denote its matrix representation with respect to the bases chosen above. Also, let pN 

denote the kN -square Gram matrix corresponding to the basis {4>,f}1:1i that is, PS} = (4)f, 4>7), 
i,j=1,2, ... ,kN • Noting that 

[(AN)*] = (pN)-l[AN]TpN, [(BN)*] = [BN]TpN, [(eN)] = (pN)-l[cN]T, 

[(rf)*] = (pN)-l[rfjTpN, [ENj = [BNjR2"l[BNjTpN,. [ENj = (pN)-1[CNjTV2-1[eNj, 

the matrix equivalents of the operator equations (2.11)-(2.14) become 

0= [AN][QNj + [QN](pN)-l[ANjTpN + [Vtj- [QN][EN][QNj 

+ [rf][QN][EN][QN1- (pN)-l[rflTpN, (2.15) 

0= (pN)-l[AN]TpN[pN] + [pNj_'[ANj + [Rf]- [pN][EN][pN] 

+ (pN)-l[rfjTpN[pNj_ P;N][pN][rfj, (2.16) 

0= ([AN]_ [EN][pN]) [QNj + [QN](pN)-l([ANj_ [EN][pN])TpN 

+ [QN][EN][QN] _ [rf][QN][EN][QN](pN)-l - [rf]TpN, (2.17) 

0= (pN)-l([ANj_ [QN][EN]) TpN [pNj + [PN]([ANj_ [QN][EN]) 

+ [pN][EN][pN]_ (pN)-l[rf]TpN[pN][EN][pN][rfj. (2.18) 

Therefore, if we define the kN X kN nonnegative-definite matrices 

Q~ ~ [QN](pN)-l, 

Q~ ~ [QN](pN)-l, 

VoN ~ [Vt](pN)-l, 

E~ ~ [BNjR2"l[BNjT, 

pl/ ~ pN[pN], 

Pl/ ~ pN[pNj, 

R~ ~ pN[Rfj, 

E~ ~ [CNjTV2-1[CNj, 

we can solve the matrix optimal projection equations given in [14] corresponding to the matrix 

plant model 

to obtain the matrices Q~, PI:, Q~ and PI:. The approximating optimal ncth-order dynamic 

compensator {A~, B~ , C:'} is then given by 

A~ = rl/ ([ANj_ Qfj E~ - E~ Pl/)(Cfj)T, 

B~ = rl/Qfj[eN]TV2-l, 

e:' = _R2"l[BNjTPl/(cfj)T, 

6 



where r.N GN E mn.x/cN and MN E m n• xn• satisfy 0, 0 , 

When an infinite-dimensional controller will suffice, Ce = _R2'1 B* P E ..c(X, mm) and Be = 

QC*V2-
1 E ..c(Rt , X) are the usual infinite-dimensional LQG controller and observer gains (see [9]). 

The operators P,Q E ..c(X) are the nonnegative-definite solutions to the two decoupled operator 

algebraic Riccati equations (2.11) and (2.12) with T and T.l formally set to Ix and 0, respectively. 

Since Ce has range in mm and Be has domain mt, there exist vectors Ce = (c!, ... ,C:;")T E Xi=I X 

and be = (b!, ... ,b~)T E.X~=IX such that 

i = 1,2, ... ,m, x EX, 

and 
t 

BeY = b'[y = LYib~, 
i=1 

The vectors Ce and be are referred to as the optimal LQG controller and observer functional gains 

respectively. 

With regard to approximation for the full-order LQG problem, for each N = 1,2, ... we take 

ne = kN. Then it is not difficult to show that 

C~[pN x] = (c~, x), xE X, 

and 

where cN E X'?1- X N and bN E x~ X N are given by cN = C N (pN)-IA-.N and bN = (BN)TA-.N e 3=1 e 3=1 e e 'f' e e 'f' 

respectively with l/JN = (l/Jf, ... , l/JfN) E X ~=1 X N. The vectors c~ and b~ are referred to as the 

approximating optimal LQG controller and observer functional gains. To compute them we need 

only solve two standard decoupled matrix algebraic Riccati equations for the kN x kN nonnegative­

definite matrices Qrf and Pf. 

A rather complete convergence theory for LQG approximation can be found in [9]. Essentially, 

it is shown there that if the approximating subspaces X N are chosen so that the projections pN 
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converge strongly to the identity as N -+ 00, the operators AN, BN, C N , Rf, and Vr are chosen 

as was described above, and the operators QN and pN are uniformly bounded in N, then QN and 

pN converge weakly to Q and P, respectively as N -+ 00. This in turn implies that cf -+ Ce , 

strongly, Bf -+ Be, weakly, c~ -+ Ce and b~ -+ be, weakly, and the closed-loop semigroup 

for the approximating optimal LQG compensator converges weakly to the closed-loop semigroup 

for the optimal infinite-dimensional LQG compensator, as N -+ 00. If, in addition, the operators 

SN (t) = TN(t)+BN Cf and §N(t) = TN (t)-BfCN are uniformly exponentially stable, uniformly 

in N, then QN -+ Q and pN -+ P, strongly, cf -+ Ce and Bf -+ Be, in norm, c~ -+ Ce and 

b~ -+ be, strongly, and the closed-loop semigroups converge strongly, as N -+ 00. If Rf and VIN 

are coercive, uniformly in N, then SN(t) and §N(t) will be uniformly exponentially stable. If it is 

also true that RI and VI are trace class and Rf pN -+ RI and VI
N pN -+ VI in trace norm then Q 

and P are trace class and QN pN -+ Q and pN pN -+ P in trace norm as N -+ 00. 

Returning to the fixed-finite-order case, we note that in general the approximating optimal 

projection equations may not possess a unique solution. However, in [19] it is shown for the finite­

dimensional case that it is possible to obtain an upper bound for the number of stabilizing solutions. 

Using topological degree theory, the following result was obtained in [19]. 

Theorem 2.2. Consider the equations (2.11)-(2.14) with the infinite-dimensional plant II re­

placed by the finite-dimensional plant II N. Let nu denote the dimension of the unstable subspace of 

ANand assume that ne ~ nu. Then in the class of nonnegative-definite operators QN, pN, (IN , fiN 

on X N satisfying rank (IN = rank fiN = rank qN pN = ne, there exist at most 

(
min(kN,m,i)-nu), (N) ne ~ min k , m, i , 

ne - nu 
1, otherwise, 

solutions of (2.11)-(2.14), each of which is stabilizing. If, in addition, the plant (AN,BN,CN) 

is stabilizable by an neth-order controller, then there exists at least one stabilizing solution of 

(2.9)-(2.14) . 

Theorem 2.2 shows that while there may exist multiple solutions to the finite-dimensional op­

timal projection equations, in practice this number can be quite small. For example, if ne ~ nu 

and the system is either single input (m = 1) or single output (i = 1) then there exists at most 

one solution to (2.9)-(2.14) for the plant IIN. The existence of at least one stabilizing solu­

tion of course depends upon whether or not the plant is stabilizable by an neth-order controller 
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(for relevant results, see [24]). Finally, while it may be possible to stabilize a plant with nc < nUl 

this case lies outside the scope of the analysis given in [19]. 

3. Examples and Numerical Results 

We first consider the one-dimensional, single-input/ single-output, parabolic (heat/diffusion) 

control system with Dirichlet boundary conditions given by 

v(t,O) = 0, v(t,l) = 0, t> 0, 

y(t) = fal c('7)v(t, '7)d'7 + h2W2(t), t > 0, 

where a > 0, and b(·) and c(·) are given by 

and 

c('7) = { 'Y~:'Yl' 
0, 

'11 ::; '7 ::; '12, 

elsewhere, 

(3.2) 

(3.3) 

with ° ::; {31 < {32 ::; 1 and ° ::; '11 < '12 ::; 1. In (3.1) and (3.3), h(.) E Loo(O, 1), Wl(t,.) E 

L2(0, 1), a.a. t E [0,(0), (see [22], p. 314), h2 is a nonzero constant and W2(') is unit-intensity white 

nOlse. 

To rewrite (3.1)-(3.3) in the form (2.1)' (2.2), in the usual way we take X = L 2 (0, 1) endowed 

with the standard L2 inner product, let x(t) = v(t, .), t ~ 0, define A : Dom (A) C X -t X by 

AtP = aD2tP for tP E DomA ~ H2(0, 1) n HJ(O, 1), and define BE 'c(ml, X) and C E 'c(X, ml) by 

Bu = b(·)u for u E m1
, and CtP = f; c('7)tP('7)d'7, for tP E L2(0, 1), respectively. Furthermore, let 

i ~ L2(0, 1) X m, set w(t) ~ (Wl(t, .), W2(t)) E i, and define HI E 'c(i, X) and H2 E 'c(i, ml) 

by H1z = hl(-)Zl and H2z = h2z2 for Z = (ZbZ2) E i. 

It is well known (see, for example, [23]) that A is closed, densely defined, and negative definite. 

Furthermore, A is the infinitesimal generator of a uniformly exponentially stable, analytic (abstract 

parabolic) semigroup {T(t) : t ~ O} of bounded, self-adjoint linear operators on X. 

We consider linear spline-based Ritz-Galerkin approximation for the open-loop system. For 

each N = 2,3, ... , let {tPf}f=11 be the linear spline ("hat") functions defined on the interval [0,1] 
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with respect to the uniform partition {a, it, iv, .. . , 1}, i.e., 

{ 

N . 1 [i=..! .i.) 
'" - J + , '" E N, N ' 

</>f ("') = j + 1 - N"" '" E [~, itl), 
0, elsewhere on [0,1], 

J = 1,2, ... ,N - 1. Set XN = span{</>f}f=·i and note that kN = dimX N = N - 1, and 

XN C HJ(a,l) for all N. If pN : X -+ XN denotes the orthogonal projection of X onto XN, 

then standard convergence estimates for interpolatory splines (see [25]) can be used to show that 

limN-+oo pN </> = </> in L2(a, 1) for </> E L2(a, 1). 

There are two equivalent ways to obtain an operator representation for the usual Ritz-Galerkin 

approximation to A. First, A can be extended to a bounded linear operator from HJ(a, 1) onto its 

dual, H-l(O, 1), via 

(A</>)(,p) = -a{D</>, D1/1), </>,1/1 E HJ(a, 1). (3.4) 

Since XN c HJ(a,l) for all N = 2,3, ... , we define AN E £(XN) by AN</>N = A</>N,</>N E XN, 

with A</>N E H-I(a, 1) considered to be a linear functional on XN. From the Riesz Representation 

theorem we obtain AN </>N = ,pN where ,pN is that element in XN which satisfies (AN </>N)(XN) = 

-a{D</>N, DXN) = (,pN , XN). 

Alternatively and equivalently, by using the fact that A is self-adjoint, we can define AN as 

follows. Let Pf : HJ(a,l) -+ X N denote the orthogonal projection of the Hilbert space HJ(a,l) 

onto XN. Using the definition (3.4), it is not difficult to show that -A E £(HJ(a,1),H-1 (a,1)) 

is coercive and, therefore, that A-I: H-I(a, 1) -+ HJ(a, 1) exists and is bounded. We then define 

AN E £(XN) to be the inverse of the operator given by (AN)-I = Pf A-I IXN . 

Using either definition, it is easily argued that AN is well defined, self-adjoint, and is the 

infinitesimal generator of a uniformly exponentially stable (uniformly in N) semigroup, TN (t) = 

exp(tAN),t ~ 0, of bounded linear operators on XN. Also, using the approximation properties of 

splines, it is not difficult to show that limN-+oo(AN)-lpN</> = A-I </>,</> E X. Consequently, the 

hypotheses of the Trotter-Kato theorem (see [23]) are satisfied and we have limN-+oo TN (t)PN </> = 

T(t)cp and limN-+oo TN (t)* pN </> = T(t)*</>, </> EX, uniformly in t for t in bounded intervals. A 

detailed discussion of the results just outlined can be found in [8]. 

We define BN = P N B and eN = e p N , from which it immediately follows that limN -+00 BN = 

Band limN-+oo eN = e in norm and similarly for their adjoints. For the example we shall consider 
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r , 
) 

'-

.1 
here, we have chosen Rl = rlIx,R2 = r2I'ITI.' with r1,r2 > o. Setting h1('1) = vl,O < '1 < 1, and 

.1 
h2 = vi with V1, V2 > 0, we obtain VI = vIIx and V2 = V2. We then take Ri' = pN Rl and 

V1
N = pNVI. For the LQG problem, the open-loop uniform exponential stability of both the 

infinite-dimensional system and the approximating systems is sufficient to conclude the strong 

convergence of the approximating Riccati operators to the solutions of the infinite-dimensional 

Riccati equations, the uniform norm convergence of the approximating controller and observer 

gains, and the strong convergence of the functional gains, as N -. 00. 

Since the basis elements {<fof}f=11 are piecewise linear with respect to the uniform mesh 

{a, ~, 'tv, ... , I} on [0,1]' the equivalent matrix representations for the operators defined above can 

be computed directly and in closed form. The Gram matrix g;f} = (<fof,cfof),i,j = 1,2, . .. ,N-1 

is given by g;N = ~ Tridiag{ i, ~, i}, and if we define the generalized stiffness matrix q;N by 

q;,~ = -a{D<fof, D<fof), i,j = 1,2, ... , N - 1, then q;N = aN Tridiag{l, -2, I}. It follows that 

[AN] = (g;N)-Iq;N, [BN] = (g;N)-lbN, [eN] = eN, with bf = (b, <fof) = {3~!..{31 J::~ <fof ('1)d'1, and 

e!i = (e,<fo!i) = _1_ f'T~ <fo!i(f'])df'],i = 1,2, ... ,N -1, and that Rf! = rlg;N and VoN = Vl(g;N)-1. 
• • 'T~ -'11 '11 • 

For our numerical study we set a = 1, (31 = .75 - .030, (32 = 75 + .040, /1 = .25 - .040, /2 = 
.25 + .030,r1 = VI = l,r2 = V2 = 10-" hI ('1) == 1, and used our technique to compute approxi­

mating optimal LQG (i.e., ne = N -1) and 1st order (i.e., ne = 1) compensators for various values 

of N. The open-loop stability of system (3.1)-(3.3) and the approximating systems imply that the 

finite-dimensional approximating optimal projection equations have a solution. Theorem 2.2 on the 

other hand, with nu = a and nc = 1 or nc = N - 1, implies that they have at most one solution. 

Consequently, the system of equations (2.11)-(2.14) with the plants IIN admits a unique solution. 

The optimal projection equations (2.11)-(2.14) were solved using the homotopic continuation 

algorithm described in [19]. It is shown in [19] that the operation count for the algorithm is 

proportional to p(2n3 + (m + l)n2 + (m + l)3n~) where p is the number of integration steps and n 

is the dimension of the finite-dimensional plant. This is competitive with the operation count for 

the Hamiltonian solution of the standard Riccati equations which is O(16n3 ) for LQG. Also, note 

that the computational burden for the solution of the optimal projection equations decreases with 

Since m = l = 1 in the LQG case, the optimal functional observer and feedback control gains 

be and ec and the approximating gains b~ and e~, are all simply L2 functions with b~ and e~ 

elements in X N. We plot the functions b~ and c~ we obtained for various values of N respectively 
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in Figures 3.1 and 3.2 below. That convergence is indeed achieved can immediately be observed in 

the figures. 
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In the fixed-order case with ne = 1, the compensator gains Ae, Be, and Ce are all scalars. Also, 

for a first-order controller there are only two independent parameters, Ac and BcCc. In Table 3.1 

below we give the values we obtained for A~ and B~ C~ for various values of N. Once again, 

it is clear that the gains are converging as N increases. In addition, in Table 3.1 we provide the 

closed-loop costs JfQG and J1!o for the LQG and first-order controllers. These closed-loop costs 

were evaluated using a 64th-order modal approximation to the infinite-dimensional system. For all 

values of N the performance of the fixed-order compensator was within 2% of the corresponding 

LQG controller. Thus, for example, the replacement of a 32nd-order approximating optimal LQG 

controller by an approximating optimal first-order controller will yield considerable implementation 

simplification with only minor performance degradation. Note that for the example we consider 

here, it is possible to compute the open-loop cost for the infinite-dimensional system in closed form. 

We have 

Finally, for comparison purposes, we tried applying balancing techniques to the LQG controllers 

to reduce their order. However, with ne = 1, such controllers were found to be destabilizing. Based 

upon the results in [13], this was not unexpected. 

N AN 
c BNCN 

c c JfQG J1!o 

4 -687.6 5470 .06999 .07014 

8 -720.9 5231 .06870 .06993 

12 -730.9 5182 .06872 .06991 

16 -734.3 5145 .06874 .06990 

20 -738.0 5127 .06875 .06990 

24 -737.6 5108 .06876 .06990 

28 -739.8 5109 .06876 .06990 

32 -738.7 5099 .06877 .06990 

Table 3.1 
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As a second example we consider the one-dimensional, single-input, single-output hereditary 

control system given by 

(3.5) 

y(t) = cotJ(t) + h2w(t), t> 0, (3.6) 

where ao,al,bo,co,h1 ,h2,p E rn.l with h2 i- 0, and w is a unit-intensity white noise process. To 

rewrite (3.5), (3.6) in the form (2.1), (2.2), we take X = rn.l X L 2 ( -p, 0) endowed with the usual 

product space inner product, ('1,4», (e,1/J)) = '1e+ J~p4>1/J, and let x(t) = (tJ(t),tJt), t ~ 0, where 

for t ~ 0, tJt E L2( -p,O) is given by tJt(O) = tJ(t+O), -p ::; ° ::; 0. Define A: Dom(A) c X -+ X by 

A~ = (ao4>(O) + al4>(-p),D4» for ~ = (4)(0),4>) E Dom(A) ~ ((e,1/J) E X:1/J E H1 (-p,0),1/J(0) = 

e}, and let B E £(rn.t,X) and C E £(X,rn.l) be given by Bu = (bou,O) and C('1,4» = Co'1, 

respectively. Let i = rn.l and define Hl E £(i,X) and H2 E £(i,rn.l) by HlZ = (hlz,O) and 

H2z = h2Z, for Z E rn.l . 

The operator A is densely defined and is the infinitesimal generator of a Co semigroup {T(t): t ~ 

O} of bounded linear operators on X with T(t)('1,4» = (tJ(tj'1,4», tJt('1,4>)), t ~ 0, where tJ(.j'1,4» 

is the unique solution to (3.5) with bo = hl = 0, and initial conditions tJ(O) = '1, tJo = 4>. We take 

Rl E £(X) and R2 E £(rn.l) to be Rl ('1,4» = (rl'1,O) and R2u = r2u, respectively, with rt,r2 > 0. 

The definitions of Hl and H2 given above imply that Vl E £(X) and V2 E £(rn.l) are given by 

Vl ('1,4» = (h~'1,O) and V2z = h~z, for ('1,4» E X and Z E rn. l . 

We employ an approximation scheme recently proposed by Ito and Kappel in [26J. We briefly 

outline it herej a more detailed discussion can be found in [26]. For each N = 1,2, ... let xf E 

L2( -p, 0) denote the characteristic function for the interval [-jp/N, -(j -l)p/N),j = 1,2, ... , N, 

and let X N be the (N + l)-dimen~ional subspace of X defined by_ 

XN = span{ (1,0), (O,xi"), ... , (O,x~)}. 

Let pN: X -+ X n denote the orthogonal projection of X onto X N. Let {4>f}f=o denote the linear B­

spline functions defined on the interval [-p,O] with respect to the uniform mesh [-p, ... , -p/N,O}, 

and set Xr = span{(4)f(O),4>fl}:=o. Then xi' is an (N + l)-dimensional subspace of Dom(A) 

and it is not difficult to demonstrate that the restriction of pN to Xr is a bijection onto XN. Using 

the fact that A restricted to Xr has range in XN, we define AN E £(XN) by AN = A(PN)-l, 

and set TN(t) = exp(ANt), t ~ 0. Noting that R(B) C XN, we take BN E £(rn.t, XN) to be given 

by BN = B. Similarly, we take Rf = Rl and VlN = Vl. We set CN = C. 

14 



.. 

" 

It is shown in [26] that PN(fl,¢) --+ (fl,¢), TN(t)PN(fl,¢) --+ T(t)(fl,¢), and 

TN (t)* pN (fl, ¢) --+ T(t)* (fl, ¢) for (fl, ¢) E X as N --+ 00, uniformly in t, for t in bounded subsets 

of [0,(0). It then follows that limN -+00 BN = B and limN -+00 eN pN = e, in norm. 

For the LQG (full-order) problem, the optimal functional observer and feedback control gains 

be and Ce are of the form be = (Po,Pt) and Ce = (-rO,il) with Po,io E m\ and Pbil E L2(-P,0). 

The approximating gains are of the form b~ = (Pf!, pf') and c~ = (if!, 'Yf') with pf!, if! E m I and 

pf', if' E span {xf}f=l' Since we are treating a one-dimensional example, if bo =f. 0, the theory 

in [26] implies that p~ --+ Po and if! --+ io in ml, and pf' --+ P1, and if' --+ "11 in L2(-p,0), as 

N --+ 00. 

Once again, as in the first example, matrix representations for the operators AN, BN, eN, Rf', 

and V1N are not difficult to compute in closed form. Indeed, the (N + 1) X (N + 1) matrix repre­

sentation for the bijection pN: Xr --+ Xl is given by 

1 0 0 
~ ~ 0 
~ ~ 

[pN] = 
0 ~ ~ 0 

~ ~ 

0 ~ ~ 0 
~ ~ 

0 0 ~ ~ 
~ ~ 

Then [AN] = [KN][PN]-l, where 

ao 0 0 al N _N 0 p p 

0 If.. _lL 0 
[KN] = p p 

0 If.. _N 0 
p p 

0 0 If.. _If.. 
p p 

We have the (N + 1) X 1 matrix [BN] = [bo 0 ... O]T and the 1 X (N + 1) matrix [eN] = [co 0 ... 0], 

while [Rf'] = r1[MN] and [Vf] = h~[MN] where the (N + 1) X (N + 1) matrix [MN] is given by 

We set ao = a1 = bo = Co = r1 = h1 = P = 1, r2 = .1, and h2 = V1 and computed 

approximating optimal LQG (i.e., nc = N + 1) and first-order (i.e., nc = 1) compensators for 
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N = 8,16,24, and 32. The optimal LQG observer gains are given in Table 3.3 and Figure 3.3; the 

control gains are given in Table 3.4 and Figure 3.4. The first 23 open-loop poles of the system 

(see [27]) are given in Table 3.2. The approximating first-order compensator gains along with the 

corresponding and LQG closed-loop costs are given in Table 3.5 below. These costs were computed 

using an evaluation model obtained by setting N = 64 .. Note that the performance of the first­

order controllers is within 10% of the performance of the LQG controllers. Once again it is clear 

that convergence is achieved. 

1.278465 

-1.588317 ± 4.155305i 

-2.417631 ± 10.68603i 

-2.861502 ± 17.05611i 

-3.167754 ± 23.38558i 

-3.401945 ± 29.69798i 

-3.591627 ± 36.00146i 

-3.751047 ± 42.29965i 

-3.888543 ± 48.59442i 

-4.009422 ± 54.88686i 

-4.117267 ± 61.17761i 

-4.214618 ± 67.46710i 

Table 3.2 
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-4.4213 -4.4229 -4.4233 -4.4234 

Table 3.4 
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N 8 16 24 32 

4.4213 4.4229 4.4233 4.4234 
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N AN 
c BNCN 

c c JfQG Jffo 
8 -4.835 -16.057 1.4042 1.5221 

16 -4.936 -16.343 1.403877 1.5298 

24 -4.959 -16.378 1.403856 1.5309 

32 -4.962 -16.404 1.403852 1.5317 
Table 3.5 

4. Summary and Concluding Remarks 

We have proposed an approximation technique for computing optimal fixed-order compensators 

for distributed parameter systems. Our approach involves using the optimal projection theory for 

infinite-dimensional systems (which characterizes the optimal fixed-order compensator) developed 

in [18] in conjunction with finite-dimensional approximation of the infinite-dimensional plant. We 

demonstrated the feasibility of our approach with two examples wherein we used spline-based Ritz­

Galerkin finite element schemes to compute approximating optimal first-order controllers for one­

dimensional, singe-input/output, parabolic (heat/diffusion) and hereditary control systems. Our 

numerical studies indicate that convergence of the compensator gains is achieved and that using 

the first-order controller would lead to only minimal performance degradation over a standard LQG 

compensator while yielding significant implementation simplification. 

At this point one is led naturally to ask the question of whether or not a satisfactory convergence 

theory could be developed. We are working on this at present and expect that such a theory 

would conform closely in form and spirit to the convergence results for LQG approximation found 

in [9] and [10] and outlined in Section 2 above. We also intend to consider our approximation 

ideas in the context of discrete-time or sampled-data systems, and for continuous-time systems 

involving unbounded input and/or output (for example, boundary control systems), and systems 

with control or measurement delays, see [11],[12]). Finally, we intend to investigate the application 

of our approximation framework to other infinite-dimensional control systems, in particular the 

vibration control of flexible structures (i.e., second-order systems such as wave, beam, or plate 

equations) . 
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