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10 INTRODUCTION AND OVERVIEW

This report summarizes the results of a study performed by a joint effort of

Axiomatix, Tau Corporation and Motorola, Inc. The purpose of this study was to evaluate

potential uses of GPS in spacecraft applications in the following areas:

1.
2.
3.
4.

Attitude Control and Tracking

" Structural Control

Traffic Control

Time Base Definition (Synchronization)

Each of these functions are addressed in the sections that follow. Section 2 deals

with GPS application to attitude control. This issue was examined by Axiomatix. Another

issue examined by Axiomatix was the structure control. Section 3 deals with this topic.

Section 4 examines the traffic control issue. Tau Corporation is the contributor in this area.

The subject of time base definition was examined jointly by Motorola and Axiomatix.

Section 5 deals with the time transfer technology.

Motorola also addressed the hardware related issues concerning the application of

GPS technology and provided comparisons with alternative instrumentatién methods for

specific functions required for an advanced low earth orbit spacecraft. Appcndik A

summarizes Motorola's findings in these areas. Appendix B contains analysis pertaining to

attitude determination.



20 ATTITUDE CONTROL
21 Problem Statement

One potential application of GPS is to perform space vehicle control and pointing
by use of radio-interferometry.

The attitude of a spacecraft is its orientation in space. Attitude determination is the
process of computing the orientétion of the spacecraft relative to either an inertial reference
or some object of interest such as the Earth. Attitude control and pointing is the process of
orienting the spacecraft in a specified, predetermined direction. We address attitude
determination since that is necessary before attitude control can be done.

Current téchniques to obtain attitude defermination include Sun Sensors, Horizon
Sensors, Magnetometers, Star Sensors and Gyroscopes (Rate Gyros, Rate Integrating
Gyros, and Control Moment Gyros).

The motivation for the task described in this section is to develop the possibility of
using GPS-based interferometric techniques to determine and control the attitude of a large
spacecraft.

GPS signals from a particular Navstar satellite can be simultaneously received by
three (or more) antennas aboard the host vehicle. Phase comparison of two received
signals can yield the angle of the baseline between the two antennas and the transmitting
Navstar. If the angles are measured with respect to different Navstars, the absolute
orientation of the spacecraft can be determined. Through observation of the attitude or
-attitude rates (or some combination thereof) experienced by the baselines between antennas,
the vehicle can be stabilized or re-oriented. Two orthogonal baselines, one along the
attitude and one perpendicular to it, can be used to determine the attitude and rotational
position. Attitude without regard to rotational position can be obtained by using only one
baseline with two antennas, in principle.

In subsections which follow, we provide the technical details pertaining to the use

of GPS for attitude determination.



22 GPS Attitude Measurement Performance
22.1 Background

This section describes the simulation developed to assess the performance of GPS
in measuring spacecraft attitude. To determine the attitude of a spacecraft using GPS
requires the position vector of the spacecraft and 3 appropriate GPS satellites. These data
were obtained from two programs written by William Lear of TRW, Inc. The positions
generated by these programs are referenced to the Earth Centered Inertial (ECI) coordinate
system. The first program, Traj2, computes the orbit (state vector as a function of time) for
a spacecraft given the state vector at some initial time. The second program called
GPSNAY generates GPS measurements and processes these data in a Kalman filter. The
initial part of this program contains the ephemerides for the full constellation of 18 GPS
satellites and given the position of the GPS receiver, picks the 4 GPS satellites that will
minimize position dilution of precision, PDOP. This portion of GPSNAYV forms the initial
part of the GPS attitude simulation. The rest of the program was written at Axiomatix and

is described in this section.

222 Concept

The basic concept of how GPS can be used to determine Space Station attitude is
illustrated in Figure 2.2-1. The figure shows two receivers separated by a distance By, the
baseline. A line drawn between them defines the attitude vector, A. Using interferometry,
the differential path, AR, between the GPS satellite and the two GPS receivers can be
determined. This, in turn, allows @, the angle between the baseline and the line to the GPS
satellite to be determined. This does not, however, uniquely determine A. As shown in
Figure 2.2-2, the lack of any information describing the direction of o results in the
possible solutions of A describing a cone with half angle & about G. If two GPS satellites
are used, then the solution to A is narrowed to the two vectors formed by the intersection

of the two resulting cones as shown in Figure 2.2-3. One intersection represents the true
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attitude vector, and the other is the virtual baseline. The resolution of this final ambiguity
requires a third GPS satellite, the vector defined by the intersection of the three cones being
the true attitude vector. This is illustrated in Figure 2.2-4 where the cones are viewed end
on. The overall configuration showing the Space Station, the 3 GPS satellites and the three

resulting angles o}, a,, and @3 is shown in Figure 2.2-5.

223 Simulation Overview
We have shown that given the vectors to 3 GPS satellites (G, G, and G3) and the

resulting angles between them and the baseline o, a,, and a4 the attitude vector, A,
defined by the coordinates of the baseline, can be determined. As shown in Figure 2-2-6,
the vectors G;, G, and G; which give the coordinates of the 3 GPS satellites in the Space
Station centered frame of reference, are determined by the vectors defining the true position
(in ECI coordinates) to the 3 GPS satellites and the Space Station. The simulation imparts
no error into the value of Gy, G, and G3. This is not unrealistic as thé uncertainty in the
position of the héad and the tail of the vector (position of GPS satellite and Space Station
receiver, respectively) is on the order of 10 of meters while the length of the vector is on

the order of 25,000 km.

The main source of error is in the determination of the baseline angle o, o, and
03. The angle o is determined from the path difference AR between the GPS satellite and
the two receivers. The error in AR is related to the error in the phase of the received carrier
as measured by the two receivers. Using a model of the receiver, the simulation introduces
an error into the true values of o, a5 and a3. Using ., 0.5 and a3 and G, G, and
G,, an estimate of the attitude vector, A,, is determined by solving for the intersection of
the 3 cones as previously described. The estimated attitude is then compared against the
true attitude, A, the difference being the error in the attitude measurement.

Figure 2.2-7 shows a flow diagram of the simulation. The two inputs to the

program are the baseline (distance between the two receivers) selected by the user, and the
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orbit (state vector vs. time) of the Space Station. These latter data were generated using Dr.
Lear's Traj2 program and are stored in a data file which is read by the simulation. The
program first establishes the true attitude vector Ay. This vector is defined by the line
drawn between the two receivers. The position of the first receiver is assumed to be the
coordinates of the Space Station, S from the data file generated by Traj2. The position of
the second receiver is established a distance B} away from the first in a direction radially
outward from the earth's center. Hence, At always points straight "up” simulating the
orientation that will be maintained by the Space Station.

Given the position of the Space Station (first receiver), the program then selects the

3 GPS satellites that will minimize PDOP. Subtracting (vectorially) S from GPS,;, GPS,
and GPS; yields G;, G, and G; (see Figure 2.2-6). Using the position of the second
receiver relative to the first, the 3 differential ranges, AR, are determined.
The model of the receiver generates two sources of phase error. The first, ¢, is
‘an error in the phase measurement due to multipath. The second is an error due to receiver
thermal noise. Here, the model generatcé the random error statistic, Gy, which is a function
of the net C/N,. The receiver model utilizes a model of the antenna gain pattern to modify
the nominal C/N, value of 42.75 dB based on the effective gain in the direction of the GPS
satellite. Additionally, as will be explained in more detail later, multipathing also affects the
“net C/N,,. |
The resulting value of o is then converted into a pseudo-random carrier phase error
by a Gaussian random number generator. The resulting phase error due to receiver thermal
noise is then summed with the phase error due to multipath and the total converted into an
error in AR by multiplying by the wavelength, A. This error in the measurement of AR is
then added to the true value of AR and the baseline angle (with error) o, computed.
Using the three values of ¢, and the three values of G, the program then solves for

the attitude vector, A,. After converting A, and Ay to unit vectors, the angular error

12



between the measured attitude and the true attitude is found by forming the dot product.

We have:
cos 0, = Ar°* A,

A value of is 0., determined for each value;,of ¢ from the random noise generator and
stored in an accumulator. After the requisite number of trials have been run, the mean and
standard deviation are determined. The program then reads in the next orbital position from
the Space Station orbit data file and the process begins again. This is repeated until the

error statistics for an entire orbit are obtained.

224 Detailed Simulation Description

The only significant inputs to the simulation made by the user are the baseline
(distance between the two receivers) and the number of monte-carlo trials to be run. The
first action taken by the simulation is to read in the state vector of the Space Station for the
first orbital position (T = 0). The state vector is comprised of the position (x, y, z) and
velocity (x, ;r, z) of the Space Station. The position of the first GPS receiver, S, is defined

to be at this location. Based upon these position data, it then selects the ID numbers (1

through 18) of the 4 GPS satellites that will minimize PDOP. Once identified, the state |

vectors of these four GPS satellites are then determined.

The next task is to determine the position of the second or what will be referred to
here as the offset receiver, S,. Refer to Figure 2.2-8 for the following discussion. It is to
be located a distance B away from the first receiver radially outward from the earth. The
position of the offset receiver X, with respect to the first is generated by forming a unit
vector from the position vector S of the first receiver. Since the origin of S is the center of
the earth, S points radially outward. Multiplying by By gives it thé correct length. The

position of the offset receiver in ECI coordinates is then given by:

S, = S+X,

13
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To determine the coordinates of the GPS satellites in an inertial coordinate system centered

about the first receiver, the following vector subtraction is performed.
G = GPS-S

The magnitude of G is the distance between the first receiver and the GPS satellite.

The position of the GPS satellite relative to the offset receiver is then given by
G, = GPS -§,
The difference m the magnitudes of G and G then is the differential range, AR.
AR = |G| -G,

After calculating AR for each of the 4 GPS satellites, the 4 baseline angles o, are

determined by:
o = cos™ (AR/By)

Dr. Lear's GPS NAYV program required four GPS satellites in order to yield a GPS
position measurement, however, we need only 3 to solve for attitude. The next task is to
select the best 3 to suit our purpose. The greatest accuracy in the measurement of « (i.e,
minimize Ao dependency on AR) is obtained when a is 90°. Hence, the program
examines the four values of o and selects the three GPS satellites with the highest values of
o.

We now have 3 values of G and resulting 3 error free half cone angles, a. The
next task is to use a model of the receiver to generate an error in the values of o
representative of a real system. This begins the monte-carlo portion of the simulation. A§
discussed earlier, the receivc;,r model injects error due to thermal noise and multipath. The
multipath model is complex and is described in detail in Section 2.6. A flow diagram of the

receiver is given in Figure 2.2-9. As shown, the receiver first determines the gain of the
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antenna in the direction of the incident and reflected signal. These gains are used by the
multipath model to determine the net C/N,,. From this, the 1- ¢ phase error due to receiver
thermal noise is obtained. Next, the phase error due to multipath ¢, is determined.
Now, we begin an integration over the loop bandwidth. For each pass through the loop, a

Gaussian noise sample X , is generated. The measured phase error for that trial is

determined by
Oerr = ¢mp + 0%,

The value of 9o, is summed to an accumulator and after the requisite number of trials (equal

to the bandwidth in Hz) the mean value is determined by:

o =22

o e—
=

B

The value of @ represents the error in a single phase measurement by the receiver. Three
values of @ are determined, one for each of the 3 GPS satellites.

The next task is convert the error in the phase measurement to an error in the
baseline angle o. First, ® is converted to meters by multiplying by the wavelength, A.

The product of ® and A is the error in AR. The value of AR with error, AR, is given by
AR¢r = AR + QA

where AR is the true differential range.

From this we determine the value of o with error, o,y

)

' -1
O, = COS
e ( o,

At this point, the program has generated the three values of G; G,, G, and G3 and the
accompanying three values of Oerr ; Olerr1s Oerr2 » Xerr3 - Using these six parameters, the

simulation solves for the intersection of the three cones to determine the measured attitude

17



vector. This solution is complex and is described in detail in Appendix B. We note that
due to the fact that the three values of o used in the solution are not error free, the three
cones will not intesect at a single point. The result will actually be three pairs of
intersections as shown in Figure 2.2-10. The simulation picks (pairwise) the three closest
to the true attitude. The estimated attitude A, is formed by averaging these three solutions
by summing them (vectorially). The result is then converted into a unit vector by dividing
by the magnitude of the resulting vector.

Using the true attitude vector KT defined at the beginning of the program and the
estimated attitude ?&e, the simulation is now ready to determine the attitude error defined by
the angle between them. This is done by forming the dot product of the two vectors. We

have
A A
cos By = AT A,

The value of 6, is stored in an accumulator. The simulation now returns to the receiver
model and generates new values of the error in the phase measurement @, utilizing the
- Gaussian noise generator. This results in a new value of 6.. After the selected number of
Monte Carlo trials have been run, the mean value of 8, is determined by dividing the
summed value of B, by the number of trials. The result is the mean attitude, or pointing
error for the particular orbital position of the Space Station. The simulation now returns to
the beginning and reads the state vector for the next orbital position and the whole process
repeats resulting in a mean value of the pointing error for the new orbital position. This

process repeats until the error statistics for the entire orbit have been collected.
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23 Receiver Model

The receiver model plays a role in determining the random carrier phase error,
which in turn, determines the attitude determination accuracy. In establishing the receiver
model, we have assumed that a modern GPS receiver such as GPSDR which is being built
by Motorola for the TOPEX satellite is used. This allows us to take into account various
implementation losses which may occur in a modern, digitally implemented receiver.

Figure 2.3-1 shows an overall functional block diagram for the random carrier
phase error. This model is quite general and not all of the capabilities of this model have to
be utilized for our problem on hand.

The left portion of the model contains the block which represents the path
loss/receiver RF portion of the model. The factors which determine the nominal C/N,
value applied to the receiver are listed in this block and are taken into the account. Some of
these factors are invariable with the satellite selection. Other factors depend on the angle to
a particular GPS satellite. For example, the received signal level is a function of the
antenna gain in the direction of a GPS satellite. Consequently, the C/N, value is affected.

The right portion of the receiver model represents the block which accounts for the
Signal losses contributed by the receiver processor/Costas loop demodulator. As the result
of passing through this block, the C/N,, is converted into an equivalent random phase
measurement error. Another output of this model block is the mean slip time. For the
purpose of attitude determination, the mean slip time may not be of concern because it
usually is in hours, while the attitude measurement is required within minutes or even
seconds. Thus, the main result of the output of the model is the random phase
measurement error.

Another error which is developed in a GPS receiver is the systematic error. This
error is typically caused by the effect of either the doppler or the doppler rate, or both, upon
the receiver circuitry. Figure 2.3-2 shows the model for the systematic error. As shown, '

there may be two components of the systematic error. These components, however, can be
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either removed or virtually eliminated by subsequent signal processing which utilizes good
estimates of doppler and doppler rate.

Figure 2.3-3 shows a functionally reduced model for both the random and the
systematic phase error (bias) models. As indicated in this figure, the doppler rate and the
integrate and dump bias errors can be made negligible by appropriate processing. The
information required for such processing can be obtained from almanac (doppler and.
doppler rate) as well as from inertial sensors (doppler rate). After considering all of the
factors indicated in Figures 2.3-1 through Figure 2.3-3, we reduced the receiver model to
being responsible only for elements contributing to the random carrier phase error. The
functional diégrém of this simplified model is shown in Figure 2.3-4. With this model, we
assume a "nominal" C/N, which is based on fixed RF receiver losses and noise
temperature. Based on system geometry, we then modify this C/N, vaiue by the antenna
gain in the direction of a particular satellite. Depending on the resulting C/N,, we compute
the Costas loop squaring loss and then use random noise model to develop noise
corresponding to a particular resulting C/N,. The output is then the required phase
measurement error which subsequently is used for calculating the attitude accuracy. If a
multipath case is selected, then the phase measurement is affected accordingly as described

in Section 2.5 of this report.

24  Antenna Model

The antenna model assumes that the maximum gain of the antenna used for
determining the attitude is always in the zenith direction.

The gain vs. direction relationship for the antenna model used for our simulations is
shown in Figure 2.4-1. This pattern is modeled after GPSDR equipment to be used on
TOPEX satellite. |
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25 Multipath Model
25.1 Background

Multipathing results when the incident wave is reflected off ancillary structures into
‘the backlobe of the receiving antenna. The signal that arrives at the receiver then is actually
a composite signal comprised of both incident and reflected energy. Since the reflected
wave arrives at the antenna out of phase (in general) with the incident wave, the ability of
the receiver to recover the phase of the incident wave is reduced.

The easiest way to understand this effect is through the use of a phasor diagram.
Such a diagram is shown in Figure 2.5-1 where I is the incident voltage vector with phase
o, R, the reflected wave voltage vector and C, the resulting composite voltage vector seen
by the receiver. We note that there are two effects. First, depending upon the relative
phase of I and R, the magnitude of C will be either lérger or smaller than the magnitude of
I (constructive or destructive interference). This, in turn, affects the net C/N,. Second, a

phase error, Qg is introduced. The measured phase is now ¢ + ¢y -

25.2 Derivation of Model

The difﬁcul& in developing a multipath model is that the actual effects are highly
dependent on the specific geometry of the structures involved and the relative placement of
the antenna. A general model is described in this report which can be used as a basis for a
more detailed accurate model as specifics of the the structure become finalized. This
section deals with the derivation of the interaction between a primary incident wave and a
secondary reflected wave of arbitrary phase and reduced amplitude. The approximation
involved assumes that the reflected wave is significantly smaller than the primary wave so
that small angle approximations can be used.

If the primary incident wave is cos(wt), then the secondary reflected wave will be
B cos(wt + §), with B the ratio of the amplitude of the secondary and primary waves, and &

the relative phase of the two. Thus,
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C(t) = cos(wt) + B cos(wt + J),

cos(wt) + P cos(wt) cos(8) — B sin(wt) sin(d)

{1+ B cos(8)} cos(wt) - B sin(8) sin(wt)

These are the I and Q components of the signal. The magnitude is then

ICl = {(l + B cos(8))* + (B sin(8))2}m, and the phase is

B sin(8) }

o = tan‘l{
1+ B cos(d)

IfB<<l,ie, the reflected energy is much less than the direct energy, then

ICl = { 1 + 2B cos(8) + B2 cos(5) + B2 cosz(S)} 172

{1+2Bcos®) + B2} 2= 1+B cos(d)

. [_Bsin®) } (R ) o
and o tan {1 + B c0s(d) tan™ {B sm(8)} B sin(d),
and C(@t) = (1 + B cos(d)) cos(wt + P sin (8)), B << 1.

We are now left to solve for B, the ratio of the amplitude of the secondary or
reflected wave to the primary or incident wave. After much consideration it was decided to
model the reflected wave as a radar problem. This is illustrated in Figure 2.5-2.
Specifically, the reflected wave results from a portion of the incident wave being reflected
by some ancillary part of the structure assumed to have a radar cross section, 6. By the
definition of sigma, this energy is spread isotropically into space and arrives at the antenna
a distance r away. To solve for B, we must compute the received power of both the
incident and received signal.

Let us assumé that the signal from the GPS satellite arrives with power flux density

(watts/mz) S;. The total power received due to the incident wave, P,, is then
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P~ = SAAl

1 1

where A, is the effective aperture of the antenna in the direction of the received signal. We

normally characterize antenna by their gain so making the following substitution, we have

A
o3z

SG;
P ==

where G; is the gain of the antenna in the direction of the received signal.

Now we solve for the total reflected power, P,. The total power intercepted by the

structure and reradiated back into space is

Upon arrival at the antenna, the power flux density of the signal is

Sy ==
T 4nr?

The total power P, intercepted by the antenna is then

4arr

where A, is the effective aperture of the antenna in the direction of the reflected wave.
Making the substitution for gain, we have

_ Si GG,
2;"2

. =
4nr



The ratio of the received reflected signal power to the received incident signal power

is then

Since B is in voltage and we have calculated a power ratio, we have for B

. oG, 12
ﬁ - l: 41tr2Gi ]

In order to calculate r, some height must be established for the antenna. A value of

0.3 m was chosen although it is completely arbitrary. A value of 1 m? was assigned for o,

the "radar" cross section.

Lastly, the relative phase of the two signals, 8, is shown in the derivation as a
constant for simplification reasons. In reality, due to the orbital motions of the Space

Station, J is a time varying parameter and is equal to
O = 2n sin (1)

where ¥ is the orbital rate of the Space Station in radians per second.

32



26 Results
26.1 Background and Definition of Mean Pointing Error

As described in Section 2.2, the simulation is configured to output a mean pointing
error for each point of the orbit (based on Monte Carlo trials of receiver thermal noise).
The Traj2 program computeS the orbital position of the Space Station at 120 sec intervals
for T =0 to T = 5520 sec (one orbit) resulting in a total of 46 points. At the end of the
program, a mean pointing error for the entire orbit is computed by averaging these 46
individual pointing errors. Additionally, the 16 standard deviation of the error is also
computed. Two-versions of the program were developed and run. The first assumes that
receiver thermal noise is the 6nly error source. The second includes error due to multipath.
Comparison of the results of these two cases reveals much about the various error
mechanism involved. |

The definition of the pointing error requires some explanation. As was explained in
Section 2.2, the pointing error is defined as the angle between the true attitude vector Ay
and the measured attitude vector A,. Itis determined by taking the dot product of the two

vectors:
0., = cos™! [ Ape Ae]

This method is in contrast to the more conventional method of describing the pointing error
solely by the 10 standard deviation of the attitude error. This latter method assumes that a
scatter plot of the measured attitude error would form a 2-dimensional Gaussian with zero
mean about the true attitude. This method was not adopted for two reasons. First, as we
will see, the affect of multipath is to introduce a bias term into the attitude error. Hence, a
scatter plot of the attitude error is not centered about zero error but is offset by the amount
of the bias. Secondly, for each point in the orbit, the Space Station is assumed to be
stationary so a large number of Monte Carlo trials can be run to determine the mean

pointing error. In the real world, this is not the case. Orbital motion of the Space Station
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will result in rotation of the attitude vector at a rate of 2x radians per orbital period. Asa
result, the receiver will only have the opportunity of integrating a few samples before
smearing of the attitude vector due to its rotation exceeds the accuracy of the measurement
process. Hence, for each point in the orbit, the output of the receiver would have some
mean value.

The results indicate three sources of error the effects of which will be discussed in
detail later in this section. The first is due to receiver thermal noise and acts to spread the
pointing error values out in the familiar 2-dimensional Gaussian shape when viewed in a
scatter plot. The second results from the solution to the intersection of the cones when the
cones intersect at nonuniform error source angles and acts to skew the Gaussian
distribution in one directioh (i.e., nonuniform 6). The last error source is due to multipath

effects and as already stated acts to introduce a bias term to the pointing error.

26.2 Results from Single Orbit

Figure 2.6-1 shows the mean pointing error vs. time for one complete Space
Station orbit for a receiver baseline of 5 meters. The results from both the multipath (with
noise) and the noise only program are plotted for comparison. Note that for some periods
of time the multipath résults "track" the noise only results, i.e., where there is a peak in the
multipath results, there is a peak in the noise only results, etc. Examples of this are at T
equal approximately 700 sec, 1800 sec and 3400 sec. Yet at other times, peaks in the
multipath results are accompanied by valleys or regions of benign activity in the noise only
case. Examples of this are at T equal 2800 sec and 5200 sec. For the noise only results,
peaks (regions of large error) are due to shallow cone intersection angles that result from
the relative geometry of the three GPS satellites and the Space Station. The effect of this
error can be seen in a scatter plot of the pointing error. Here, individual values of 8,
(resolved into x and y coordinates) are plotted. Each is the result of one Monte-Carlo trial

for a single orbital position. Figure 2.6-2 shows the results for T = 0, the first orbital
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position. Here, the mean pointing error is about as low as at any other point in the orbit.
Note that the points are distributed in a nearby uniform 2-dimensional Gaussian pattern.
Compare these results with those of T = 2880 presented in Figure 2.6-3. The mean error is
only slightly larger, but we can see that the points are beginning to be stretched or skewed
in one direction. Now lets examine a case where the mean pointing error is high. Figure
2.6-4 shows the data for T = 1800 sec where the mean pointing error is nearly an order of
magnitude greater than it is in the previous two cases (T =0 and T = 2800 sec). Here, the

points are highly skewed along a single axis.

263 Error Due o Satellite Geometry

Section 2.2 and Appendix B describe how the simulation solves for the estimated
attitude vector by finding the intersection of the three cones. The accuracy by which the
point of intersection can be determined, however, is dependent on the relative geometry of
the cones. The problem is easily understood by examining the solution for the intersection
of two lines as shown in Figure 2.6-5. If the lines cross at right angles, then a disturbance
in the position of one line by the amount Ax moves the intersection point an amount equal
to Ax. If, however, the ‘lines cross at a very shallow angle, then shifting one line an
amount Ax will shift the intersection point much more.

Figure 2.6-6 illustrates this for two intersecting cones. When the cones intersect at
a shallow angle, the intersection point is a strong function of the perturbation in the half
cone angle a (Aat) due to thermal noise. The result is that the points get spread out along a

line formed by the two intersection points.

264 Error with Multipath

As mentioned before, multipath introduces a bias error term in the overall pointing
error. Hence, instead of the points being spread out about 0,0 as was the situation for the
noise only case, they will be shifted in a particular direction. Figure 2.6-7 shows a plot of

the data from T = 1080 with multipath. Note the moderate error due to satellite geometry
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which results in the skewing of the data points. A slight error due to multipath can also be
seen evidenced by the slight offset from 0,0. Now lets examine the results with multipath
for T = 2880 sec. The results for this time for noise only were shown in Figure 2.6-3.
The results for this time with multipath are shown in Figure 2.6-8. Note ihat the basic

pattern indicating a low error due to satellite geometry is maintained. But that the entire

collection of points has been shifted from 0,0. Figure 2.6-9 shows the results with

multipath for T = 1800 seconds. Again, compare it against the results from the same item
for noise only in Figure 2.6-4. The shape of the pattern due to satellite geometry is
maintained while the entire plot is shifted from 0,0 due to the bias error term introduced as

a result of multipath.

265 Error Due to Multipath
As described briefly in Section 2.2.4 and in detail in 2.6, multipath introduces a
phase error term, ¢, into the overall phase error term generated in the receiver model.

The equation for ¢y, is given by
Omp = B sin (27 sin (1))

where f is the ratio of the reflected (multipath) signal to the incident (primary) signal and y
is the rotation rate of the attitude vector due to orbital motion equal to 2n radians per orbital
period. Hence, the value of ¢, depends upon both the position in the orbit (sin (1)) and
the strength of the multipath signal (B). It results in a bias error term because for any point
in the orbit, it is a constant where as the phase error term due to receiver thermal noise
follows a Gaussian distribution, i.e., will have both positive and negative values of varying

magnitude.
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26.6 Mean Error vs. Antenna Baseline
Figure 2.6-10 gives the méan pointing error (averaged over an entire orbit) as a
function of antenna baseline for the multipath and noise only cases. As expected, the

pointing error is inversely proportional to the baseline length.
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27 Comparison with Alternate Approaches (Attitude)

The alternative method of attitude determination is to use a star tracker such as
represented by Ref. [2.7-1]. Such instruments have been proven for space applications
and can achieve accuracies that are 2 orders of magnitude better than those projected for
schemes using the GPS signals. Cost of this star tracker is also competitive with projected
costs for multiple space borne GPS receivers to observe attitude.

Table 2.7-1 summarizes the methods available for attitude control and tracking.

Table 2.7-2 provides a comparison between these methods.

28 References
[2.7-1] Specification Sheet for Large Field of View Star Tracker — CT-411 Ball

Acrospace Systems Division, Boulder, Colorado.
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perrormance/ cosT - /ReuaBiLITY / coMPLEXITY
MED MED
GPS 1 mrad $3M | (3-5YRLIFE)| 6 CHANNEL
1500 PARTS
STAR
.05 mrad $1M MED MED
TRACKERS
INTER- :
FEROMETRIC mrad M
FIBEROPTIC | 0-34 —— | $0.35—-—/  HIGH LOW
GRYO

Table 2.7-2. Technology for Spaceborn Attitude Contro! and Tracking.
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30 LARGE SPACE STRUCTURE CONTROL
3.1 Problem Statement

Structure control involves the characterization and control of the possible modes of
oécillation associated with the configuration. Position sensors must measure the vibrational
displacements and periods, and this information is then analyzed to determine means to
counteract the resultant oscillations. Corrective control mechanisms must then be activated
which will counterbalance the vibrational forces.

The use of GPS for structure control can be implemented in a number of ways.
The most obvious technique uses many GPS receivers located throughout the structure to
make simultaneous absolute position measurements, which when correlated, characterizes
the vibrational modes. GPS differential position measurements using interferometry, as
discussed earlier for attitude control, is another possibility. This GPS differential carrier
phase sensor can make continuous simultaneous measurements, an important feature for
sensing relative vibrational displacements.

The GPS absolute position measurements are straightforward but slow due to
processing time and costly due to the large number of receivers required. The GPS
differential position measurements may not have enough accuracy to be useful. The GPS
differential carrier measurements, however, show more promise for this particular

application and will, therefore, be described in more detail in this section.

3.2 Lliterature Survey
As a part of this task, Axiomatix performed a literature survey. The references

examined are listed in Table 3.2-1. The summary of this survey is given in Table 3.2-2.
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33 GPS Ditferential Carrier Phase Measurement

The GPS differential carrier phase measurement scheme can be implemented in a

number of ways, but the most straightforward method is shown in Figure 3.3-1, where the

main features are that the PN code (C/A or P) is stripped from the carrier and the Costas

loops are used to measure the carrier phase difference between relative positions. The

differential carrier phase change (over time), corrected for the angular relationship to the

GPS satellite, is a direct measure of the induced vibrational displacement. Specifically, this

technique operates as follows:

In absence of vibrational / displacement, both the "moving" and the
"fixed"Costas receivers track the phase of the incoming GPS signal.

When vibration and / or displacement takes place, the "moving” Costas
receiver tracks the phase of the received carrier. Thus, a phase difference is
generated between the VCO phases of the two Costas receivers.

Comparison of phases of the two VCO's generates a relative phase difference
signal which is proportional to the displacement of the structure.

An elaboration on the two-point differential measurement is shown in figure 3.3-2.

With this scheme displacement of several structure points can be measured with respect to

some long-term average phase. Specifically, this method operates as follows:

Each receiver tracks its own phase by means of a Costas loop which includes
a VCO.

Phases of VCO's are compared and averaged over a period much longer than
the vibration period.

Thus, an average "reference” phase is established.

Comparison of phases of different VCO's against the "reference" phase yields
signals proportional to the displacement of each receiver.
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Because the relative phase of signals applied to the phase averaging circuit may
change with time as the entire structure moves in its orbit with respect the GPS satellites an
angle of arrival correction should be applied to remove the "bias" which is generated. The
correction can be computed by determining the attitude of the structure or the beam with
respect to a selected set of satellites in view.

The effectives of this scheme depends on good differentiation between the
“average” phase and the relatively "fast” changes in the relative displacements. For
example, for a structure in a near earth orbit, the average phase "bias” may change at the
rate of one cycle in approximately 90 minutes. In comparison, the relative phases may
change at the structure vibration frequencies which may be in the range of one cycle per ten

seconds to one cycle per second.

34 Sensor Model

Figure 3.4-1 shows a functional diagram of the large space structure control sensor
model developed by Axiomatix for the purpose of simulating relative displacement
measurement.

As sho§vn in this figure, the measurement error is the difference between (1) the
true displacement of the space vehicle's (in this case a Space Station) points with respect to
a GPS constellation and (2) a noisy estimate of the displacement. The true R and R relative
displacements are computed and from these displacements, Ris generated. The true values
of R, 1.2, and R are then applied to a receiver model described in Section 2.3 and various
aberrations associated with the receiver model are added. The resulting ¢g (bias) and Oy
(random component) are then applied to a pseudorandom carrier phase generator. This
generator provides a random perturbation to a true phase. The randomness is determined
by a Monte-Carlo method under control of the output of the receiver model. The random
perturbation is then summed with the true displacement resulting in a simulated "noisy"

displacement. The latter is then differenced with the true displacement. The error

57



58

‘|BPOW 10SUSS |043U0D) ainjonulg adedg abie “i-p-g ainbiy

Jouss selq 8|qeIda.I0D

11940 NV H3AO NOLLYINWIS O14VYD-ILNOW 1
r-r——------ - - -=--—-=-=- ]
|  3ANLILLY ANV NOILISOd | SOILSILYLS Bouus
NOILYINWIS OTHVO-3LNOW <
_ 3SYHd H3IHYYD (e o ISYHd H31HYVD 40
| WOQNYH-0aN3sd| | o * ¢ 130N H3AIZO3Y
| . |
_ o _ TRIRY!
| |
| |
IN3W3DVdSIa
_ hzmzm%oﬁn_m_o ! SNV
| J1VWILST ASION | LINIW3OV1dSIa JAILYI3YH m_ H3INnHlL
_ _ 11840 Sdo
| |
| p |
| v |
! | v _ SLNIOd 40
_ SOILSILVLS f _ IN3IW3DOVIdSIa
HOHW4Y3 - ¢
! amond A %ouma| P TP INaNa0VTdsIa 3naL | HEEO NOLVAS
| |
L e o o o e e e e e e L
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |_



59

generated in this manner can be used for determining the statistical characteristics of the

result error.

35 Sensor Dilution of Precision (SDOP) Considerations

In sensing the relative displacement of various points on a given structure, the best
accuracy is obtained when the displacements are along a vector extending from the sensors
to a given reference satellite. If the vector is deviating from this "optimum" position, then
the measured displacement becomes smaller in magnitude and, therefore, noisier. To
provide some quantitative definition of this phenomenon, we introduced a concept of

SDOP which characterizes sensor dilution of precision. In general

1

SDOP &
cos 0

where 0 is the angle of deviation from the optimum direction.

Figure 3.5-1 illustrates this concept for a one-dimensional displacement
measurement. Similarly, Figure 3.5-2 demonstrates this concept for a two dimensional
displacement. The point being made here is that when the displacement measurement are
made using a set of GPS satellites, only the best satellites for the displacement
measurement along a given axis should be selected. It is important to note that this
selection may not necessarily be compatible with the best GDOP selected for the
conventional position measurement.

Figure 3.5-3 illustrates how best SDOP may be selected for space structures of

different orientations in space.
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3.6 Simulation Results

Figure 3.6-1 shows a result of a simulation program used for structure vibration
sensing. Although the frequency and amplitude of the vibration indicated were selected
arbitrarily, other parameters represented a relatively close "true life" situation. The purpose
of this exercise run was to test the validity of our displacement sensing model described in
Section 3.4.

Figure 3.6-2 shows the true displacement for this test run and the associated
measurement error introduced by random (thermal) noise and multipath. The statistics
associated with error are listed in this figure.

37 Comparison with Alternate Approaches (Large Space Structure
Control)

An alternate technology for directly monitoring relative structural motion is the
laser / retroreflector technology such as represented by Ref 3.7-1. This instrument uses a
fully solid state sensor for monitoring the relative dynamic motion of several points in its
field of view. Developed for the Solar Array Experiment, the Retroreflector Field Tracker
is designed to characterize the motion of large flexible space structures in low orbit.
Twenty-three (23) reflective targets are tracked with a Charge Injector Device optical
tracker. Accuracy of tracking is limited by the resolution of the sensor with a 19 degree
field of view. The accuracy is on the order of a few millimeters for all of the targets.

Table 3.7-1 lists the techniques available for the control of large space structures.

Table 3.7-3 provides an evaluation of these alternatives.

38 References

[3.7-1] Specification Sheet for Retroreflector Field Tracker, Ball Aerospace Systems

Division, Boulder, Colorado.

63



64

8P €¥ = ON/O TVYNIWON

(uoneibajul ou)
ZH 0€ = HLAIMANVE 40O

)G) W GO0 = IANLINTdNY WNWIXYIN

ZH | = AONJNO3AH4 NOLLVHEIA

@

0t

0'¢

1

SpUO0I3S ‘auwil]

“(yredyny yum) Buisuss uoneIgIA 8inpniig ' (-9°¢ aInbi

90°0-

(Y]
[T}

(%]

— $0°0-

—20°0-

ﬁ. 000

— 200

— $0°0

900

sialaw ‘uollisod painseap



65

103 UONRIQIA BINoNnAS  g-9'¢ ainbiy

SPU0IaS ‘aull]

0'€ 02 o'l
1 1 1 A | Y 1 A 1 e 1 wOO-
lou3 juawainses|y juswaoe|dsiqg ﬁ
~ $0°0-
ﬁ c0'0-
wuw ¢ = ATNO 3SION alS
ww 0°S = NOILVIAIA AYVANVLS | 000
ww 9°0 = NVIN
gp €F = ON/Q TYNINON 200
(uoneibajul ou) I
ZH 0€ = HLAIMANVY4 4001
. - $0°0
wuw 0§ = 3aNLITdNY WNNIXVYIN
ZH | = AON3IND344 NOILVHSIA Juswaoe|dsiqg eni] I\
90°0

S$1919W‘10413 JUdwainsesy



66

"S9AIlBULBYY |04IU0) 8injonllg aoedg ebie “|-/°€ 8|qelL

OAHD/SHILINOYIT300V

3HNX3T4 3AILY13Y 40 SNOILVYAHISE0 vOILldO

S3IO0N3N0344 3AON

TVHNLONYLS NO LN3AN3Id3Q H1AIMaNVEa WNWININ
(ONIMOVH.L ANV TOHINOD 3ANLILLY OL HYTIWIS)
SVNNILNV I1dILTNN — 3SVYHJ 3AILY13Yd 3SI1034d

<4—— SHOSN3S VILH3NI

HINOVHL a3l
€ 4OLO3F1434-0H13

<4— Sd9



67

‘JusWwaINSes|\ 81nxa|4 8Injonug auloqadeds Joj ABojouyos] "z-/°€ 9jqel

(5041)
SHOSN3S
MO HOIH Q3an HOIH 2y
IVILH3NI
HINOVHL
ai3i4
HOIH Q3n a3an HOIH HOLOT 1434
0413y
Wi$® | 3ALY1aY
aan aan w 100" SdD
HOIH HOIH
ALIXTFTIANOD ,E._.__ms._mm 1800 ONVIWHO4H3d
® ® ® ® @




40 RELATIVE GPS NAVIGATION FOR SPACE TRAFFIC CONTROL

The Global Positioning System is perhaps the most accurate and efficient navigation
standard available for low earth orbits. It provides four dimensional navigation solutions
(position/time and velocity/frequency) directly in earth-centered, earth-fixed coordinates at
relatively high rates, precision, and accuracy. The technology to build these receivers for
terrestrial applications is becoming mature; programs to carry receivers into space have
been conducted successfully (GPSPAC, 1981) or are currently in progress (TOPEX,
1992). As such, it is the leading candidate for tracking and traffic control about the Space
Station.

There aré three different phases of space traffic control about the Space Station.
The first phase, with the weakest requirements, is non-rendezvous orbit and orbits outside
40 km. Autonomous GPS navigation with virtually any GPS receiver configuration is
sufficient for space vehicles to maintain the proper clearance for collision avoidance
purposes or pre-rendezvous at 40 km from the Space Station. The accuracy of GPS in
standalone mode depends on the receiver, but ranges from roughly 10 meters and .02
meter/sec for P-code receivers to 100 meters and .15 meter/sec for the lower accuracy C/A-
code. Both receivers will suffice for non-rendezvous orbits.

The second phase of space traffic control, which constituted the focus of this study,
is rendezvous control, from roughly 40 km to a hundred meters. The practical accuracy
requirement in this phase is to deliver the vehicle to the next phase, berthing or docking,
with sufficient accuracy to provide a considerable safety margin in the control of the
approaching vehicle (henceforth denoted simply the vehicle, as opposed to the Space
Station). Standalone C/A-code accuracy of 100 meters is unacceptable, and even the P-
code accuracy of 10 meters or better does not meet the requirements as the vehicle
approaches the final phase of rendezvous. Relative GPS, the differencing of the two GPS
solutions from the vehicle and the Space Station respectively, is the method proposed here

to meet the accuracy requirements.
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The third phase of flight brings the vehicle from 100 meters separation to the actual
berthing or docking event. Accuracy requirements in this phase are much higher,
potentially on the sub-meter level, and the incoming vehicle will be controlled manually.
Reaction times are relatively short and the navigation data must be highly reliable. Relative
GPS or phase interferometry is a candidate for use in this phase, but as will be expiained

later, presents a high risk at this stage of development in the Space Station program.

41 Relative GPS in Rendezvous Control

The advantage of relative GPS is that the many GPS navigation errors are locally
common biases.” Specifically, such errors as ionospheric delay error and position/time
error of the GPS SVs (Space Vehicles, the orbiting navigation signal transmitters) are
berfectly correlated at near distances and decorrelate slowly. Other errors, such as receiver
noise and multipath, are uniqué to the particular receiver. Over the 40 km distances
projected for rendezvous control, relative GPS reduces the effect of the locally common
bias errors to virtually nil, and, if multipath can be controlled, GPS navigation is extremely
accurate.

Improper implementation of the relative GPS can reduce the accuracy improvement
considerably. If the satellites used in the two GPS navigators are not the same, the locally
common bias errors are not fully canceled. If relative GPS is implemented by subtracting
positions and velocities of two independent navigation filters, there can also be problems
associated with the response to incorrect measurement models associated with ionospheric
effects and satellite switches. These are discussed in more detail in the sections below, as
well as distinctions between authorized (P-code) and unauthorized (C/A-code) receivers.

The criterion for judgment in determining the solution to these problems should be
twofold; accuracy and reliability is an obvious requirement, but also important is the
complexity of the implementation. Many of the possible solutions impose restrictive

requirements on the GPS receiver of the vehicle.
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4.1.1 Relative GPS Implementations

There are many methods of implementing relative GPS. The design options
encompass: whether the relative solution is computed aboard the vehicle or the Space
Station; whether filtering occurs before or after differencing the GPS data; and, if the
differencing occurs after filtering, i.e., there are two filters, to what extent are the two
filters coordinated.

The first issue, where the relative navigation solution is computed, is commonly
resolved in terrestrial applications by having a well-tuned high-rate navigation filter
onboard the approaching vehicle, that applies GPS ranging "corrections” computed by a
static reference station. The corrections have the net effect of causing the vehicle to
navigate in the reference station position/time coordinates rather than the GPS coordinates;
presumably, the two are fairly close. This system requires precise knowledge of the
reference station location; in space, it would require precise knowledge for the orbital
dynamics of the Space Station. A one-way datalink, from reference to vehicle, is required,
with data rates on the order of one hundred or more bits per second, that broadcast the
pseudoranges or computed corrections. If control of the approaching vehicle from the
reference station is desired, a two-way data link must be established with the position and
velocity computed by the vehicle sent back to the reference station. Data rates on the return
link will be determined by the controllability requirements on the vehicle. Although this
approach yields good results, the third approach (pseudodata method) is preferred, with
basically similar results.

The above system is practical when the differencing is being done before the
filtering, and there is a sophisticated navigation filter aboard the vehicle, perhaps with fast-
loop inertial measurement units integrated with the GPS. If the differencing occurs after
filtering, i.e., solutions from two standalone navigation filters are differenced, the relative
navigation technically can be done either aboard the vehicle, then transmitted to the Space

Station, or done aboard the Space Station. From the viewpoint of traffic control, the
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relative navigation (i.e., differencing) will be done aboard the Space Station. A one-way
data link is required in this case to send the position solution from the vehicle to the Space
Station, along with satellite constellation information and time tags. A return link may be
necessary if coordination of the satellite constellations is desired.

The third approach, denoted the pseudodata method, requires the vehicle to send
raw GPS data to the Space Station, where it is processed together with the GPS déta from
the Space Station receiver to yield a relative navigation solution directly. This approach has
many. advantages, among them the fact that the dynamics in the relative navigation frame of
the two vehicles is much lower than the dynamics of each in the earth-fixed frame that is the
natural GPS coordinate system. It is consequently much less sensitive to errors in high-
frequency gravity field modeling, allowing a lower-order gravity model than an equally
accurate standalone navigation filter, one of the advantages over the first approach
described above. Moreover, the dynamics of the vehicle relative to the Space Station can
be modeled in a single filter rather than in two separate filters - possibly mismatched in
ways that cause bias errors, as explained in Section 4.1.3. The data link can be one-way,
transmitting raw GPS data from vehicle to Space Station at a roughly a couple hundred bits
per second; a return link may be required to coordinate satellites if the vehicle receiver is not
all-in-view, and for communication of the traffic control commands.

The remaining two issues are : whether differencing occurs before the navigation
filter (implicit in the third method) or after the navigatioh filter (as in the second method);
and, if the second method is chosen, how closely the filters are coordinated. The
juxtaposition of differencing and filtering is a design issue, with potentially no appreciable
effect on accuracy provided it is designed properly. The issue of coordination will be
discussed in the following two sections, dealing with coordinated choice of GPS

navigation satellite constellations and filter models respectively.
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412 Coordinated Constellations

GPS navigation errors occur (and are eliminated) on a satellite-by-satellite basis, so
relative GPS navigation only brings full benefit if the Space Station and vehicle are using
the same satellite constellation. The possibility exists that the vehicle and the Space Station
may be running autonomous navigation filters with differing constellations. One or more
of the satellite measurements would be uncorrected, leading to a degradation of accuracy.

To gain a perspective on the possibility of different satellite constellations, a short
explanation of the GPS navigation procedure is appropriate. GPS is essentially a ranging
system; the GPS SV's are synchronized radiobeacons in known (computable) locations.
To fully measure its own position/time coordinates, the receiver must multilaterate using a
constellation of at least four satellites. The constellation is chosen from whichever satellites
are visible and, depending on time and location, there may be as few as four and as many
as ten. Many current receivers can track only four satellites at one time, usually the "best
four" according to a criterion that minimizes the geometric dilution of precision. If all
receivers use the same algorithm, the choice of satellites for nearby receivers will be the
same, but in practice there is no standard for satellite selection. One receiver may switch
constellations frequently, tracking the criterion very closely; a different receiver may be
optimized to not make constellation switches unless significant accuracy improvement can
be made. Some receivers compute the criterion rather infrequently, and constellation
switches are usually unsynchronized, even between receivers from the same manufacturer.
And, of course, some receivers will be computing overdetermined solutions using more
than four satellites.

The solution to this Babel of constellations in terrestrial applications of differential
GPS (similar to relative GPS, except one receiver is stationary and surveyed) is for the
stationary receiver to track all satellites in view and compute "measurement corrections” for
each satellite. The satellite measurements from the mobile receiver are then offset by the

appropriate corrections. As long as the mobile receiver constellation is a subset of the
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satellites in view at the reference receiver, all of the satellite measurements will be
corrected.

In the space environment, similar performance can be achieved if thé Space Station
is capable of measuring all satellites in view. The Space Station would then be prepared to
perform relative navigation on whichever satellites might be chosen by the receiver on the
vehicle. This scheme is least restrictive from the viewpoint of designing the receiver in the
vehicle. Because of the danger that satellites normally visible to the Space Station are
blocked by solar panels or other structures on the Space Station itself, steps should be
taken to avoid a mismatch of satellites due to poor visibility at the Space Station. To
. prevent uncoordinated satellite constellations, the navigation filters must have access to the
constellation being tracked at the Space Station. Space Station must also broadcast its
available constellation, from which the vehicle can choose a subset as its own constellation;
or the vehicle receiver can have more than four channels, preferably all-in-view. The
vehicle could then modify its choice of satellites to correspond with a subset of those
available at the Space Station.

The advantages of all-in-view satellite receivers extends beyond relative GPS
capability. Extra satellites can provide failure detection (at least five) and isolation (at least
six) should a satellite signal or channel have errors. Many current receiver designs,
commercial as well as military, have at least five channels for continuous reading of
satellites; TOPEX, a satellite-borne GPS receiver, has six channels; and some commercial
designs are coming with as many as ten or twelve channels, specifically for use as a
differential GPS reference station. The cost of extra channels on space-qualified receivers

may be a factor in determining the appropriate number.
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413 Coordination of Filters

Beyond coordination of the satellite constellation being used, the filter structures
themselves must be coordinated for maximum accuracy. Coordination can occur on many
levels: the filters can be jointly tuned; the filters can be identical; measurement “corrections”
can be generated on the Space Station and broadcast to the vehicle; or, at the highest level,
GPS measurements from both vehicle and Space Station can be entered into a single
relative navigation filter that will estimate the relative position and velocity directly without
necessarily estimating the absolute position and velocity of the vehicles. Again, using the
criterion of minimal impact on the receiver design of the vehicle, this last method (denoted
"pseudodata” method) is the leading candidate.

To understand the impact of independently tuned filters, an examination of the low-
orbit G_PS navigation filter is required. The output of this filter will be very smooth if the
GPS receiver measures carrier phase continuously or if the orbital/thrust model is accurate.
The former is characteristic of most multi-channel GPS receiver configurations currently
being produced, and has been examined in recent orbital studies under the name of non-
destruct Doppler measurement. The latter item encompasses the fidelity of the gravity
model and how accurately the thrust is measured by accelerometers; poor models will
decrease the lag in the vehicle relative to the lag in the Space Station filters, increasing

noise and at the same time responsiveness.

4.1.3.1 Continuous (Non-Destruct) Doppler Measurement

Receivers typically measure Doppler by sampling the output of a phase lock loop or
Costas loop, differencing with the previous phase reading and dividing by intervening the
time interval. This can be converted back to a delta-phase output by multiplying by the time
interval and gives an extremely accurate estimate of delta position over the time period. If
carrier lock is not lost, the deltarange relative to the satellite over long periods of time can

be determined to the accuracy of the ephemeris information. Although absolute range is
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impossible to determine from the carrier phase measurement, the very precise delta ranging
from the carrier combined with the absolute ranging from code combine to average noise
from the filter solution very quickly, inversely proportional to the square root of averaging
time.

The system would be quite ideal except for two issues: there are two phenomena for
which carrier behavior does not match code behavior. The first is multipath; from a
navigation point of view, multipath has a lesser effect on carrier than code, so designing the
filter to weight the carrier heavily ( as a continuous Doppler model will do) actually
improves performance. The net effect of continuous Doppler is to average through
multipath error in the code, which without the damping effect of the carrier exhibits roughly
sinusoidal behavior with periods of tens to upwards of a hundred seconds and amplitudes
of a few meters.

The second phenomenon is ionospheric delay, and in this area reliance on
continuous Doppler can degrade navigation. This has not been a serious problem in
terrestrial navigation, but in space the effect is worse because the ionosphere in view
changes so rapidly in ninety minute orbits. The major effect of ionosphere, due to total
electron content (TEC) along the ray path, is a delay in the code and an apparent advance in
the phase. Thus, as observed ionosphere becomes heavier (TEC grows) the ionospheric
delay increases but the carrier phase "delay" decreases. This effect is observable in
terrestrial locations, especially with static stations observing low elevation (rising or
setting) satellites. If a filter blindly models deltarange as measured by the carrier to be
equal to the deltarange as measured by the noisier code, the filtered pseudorange will be
biased from the true value as demonstrated in Figure 4.1.3.1-1. The solution to this
problem exists already in GPS. The ionospheric effect in this portion of the spectrum is
inversely proportional to the square of the frequency, and the GPS navigation signal is
broadcast synchronously on two frequencies. By comparing the relative delay between the

two signals, the absolute delay can be calculated. The advance on the carrier is equal and
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opposite to the delay on the code, so a similar operation on the carrier removes the phase
advance as well. In accordance with military policy, the code on the second frequency is
not generally available to unauthorized receivers, the so-called C/A only receivers available
to commercial users. The authorized receivers have two drawbacks: first, they are
classified hardware, but it is assumed that precautions on the Space Station will allow their
use; and secondly, they are in general more expensive because the P-code signal is ten
times faster than the C/A-code signal. If the Space Station and all berthing space vehicles
are not equipped with authorized receivers, lthe effect of ionosphere can be damaging under
a certain set of circumstances. These include high ionospheric density, such as might be
due to sunspot activity and low elevation satellites; single frequency receivers; and relative
navigation accomplished by differencing positions from highly damped, independent
navigation filters. This last is added because the position bias due to ionospheric effect will
depend upon the filter damping constants and the time at which each satellite comes into the
constellation at each receiver. The methods of resolving the problem of ionospheric bias
are can be listed as one or more of the following:
@® Use of a two frequency receiver. This can be either an authorized dual
frequency (P) code and carrier P-code rccéiver, or unauthorized single
(C/A) code with dual frequency carrier measurement. The latter are now
commercially available as geodetic survey receivers and allow compensation

of the carrier to match the effect of ionosphere on code.

® Change in the form of the navigation filters. This would entail either
addition of an ionospheric rate bias state or increase the process noise in the
filter. In highly damped form, the filter process noise matrix is rank four;

expansion to rank eight will loosen up the filter considerably.

@  Strictly coordinating the navigation filters. This is unduly restrictive on the

navigation filter design of the vehicle.
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@® Real-time navigation by pseudodata. The effects on the raw code and
carrier data are virtually identical for vehicle and Space Station; it disappears
when the measurements are differenced, before they enter the relative

navigation filter. This approach has the least impact on receiver design.

4.1.3.2 Independently Tuned Filters

The GPS navigation filter is subject to a number of error sources in standalone
mode that do not significantly affect performance on the 5-10 meter level. Typical of these
is a switch between satellite constellations. If the navigation filter is heavily damped, the
satellite switch does not cause an abrupt change in position but rather a smooth transition
over a long period of time. If the navigation filter is loosely tuned, the satellite switch may
cause an abrupt change in position. The abrupt change adjusts very quickly to the new
constellation, the damped response maintains a bias for a considerable period of time. The
Space Station navigation filter, to maintain maximum accuracy, must match the bias.

To illustrate the difficulty in defining a Space Station relative GPS navigation
system, consider two potential vehicles approaching the Space Station. The first has a
lightweight, inexpensive, sequential C/A-code receiver without continuous Doppler; the
second has a multichannel, C/A-code receiver with continuous Doppler. The response of
the two navigation filters to satellite switches and ionospheric effects will be completely
different. Compared to the latter, more sophisticated receiver, the former will be noisy but
will respond very quickly to satellite switches and probably have no appreciable effect due
to ionospheric mismodeling of the measurements. The latter will have a much less noisy
position history, and will have a damped impulse response to the ranging biases when
satellite constellations are switched; it will also have an ionospheric bias for newly risen
satellites. The accuracy requirements for approach and berthing or docking will be the
same for the two configurations, and clearly the Space Station must be able to handle both

navigation configurations. If relative navigation is achieved by differencing the state
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vectors, the Space Station navigation filter must match the vehicle's navigation filter in real-
time so that the characteristic biases, especially those in the latter configuration, will
difference out. The alternative is to perform the relative navigation on the measurement
level through the pseudodata formulation. This alternative is much less restrictive in terms

of design than trying to match the two independent filters.

414 Authorized Versus Unauthorized Receivers

In order to secure the system against unauthorized use of positioning for military
purposes, the receivers have been divided into two classes: unauthorized receivers, able to
track only C/A-code on a single frequency; and authorized receivers, able to track P-code
on two frequencies. The unauthorized receivers are thus subject to ionospheric modeling
errors, since ionospheric delay cannot be resolved as using a real-time empirical dual
frequency algorithm. The Department of defense has found it nccessary to deny accuracy
to C/A-code users by threatening degradation of the signal to a relatively high level, by
adding random, time varying biases of up to a hundred or more meters to the C/A ranging

signal. A
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- Differential GPS is used in terrestrial applications to defeat these error sources for

geometries similar to the relative GPS navigation zone surrounding the Space Station.
Differential GPS commonly performs its ranging corrections directly on the measurements,
similar to the pseudodata method. Experience has shown that differential C/A-code using
continuous Doppler yields virtually the same accuracy as differential P-code using
continuous Doppler over distances ranging a few tens of kilometers.

A difference does occur in relative navigation using differenced C/A-code position
solutions, however. This effect becomes evident unless the filters are carefully
coordinated, and stems from two sources. The first is the reaction of the two navigation

filters to large impulses, on the order of a hundred meters, caused by constellation



switches. The second is the biases caused when the two receivers are navigating from two

separate constellations, again with a hundred meters of bias.

4.1.5 Dual Frequency Receivers

Ionospheric effects were discussed in section 4.1.3.1. Dual frequency GPS
transmissions are implemented solely to measure these effects in real time. In differential
GPS, however, single frequency corrections are the exception rather than the rule. This is
for two reasons: first, the mismodeling effect of group advance/phase delay is minor in the
relatively slow-moving ionospheric conditions of terrestrial users; and second, two-
'frequency corrections are slightly noisier. In space, the ionosphere moves much more
quickly. To lessen error due to the ionosphere, one of the following three design options
should be taken: dual frequency receivers; carefully coordinated, tuned navigation filters; or

pseudodata corrections.

42 Phase Interferometry

Phase interferometry has been used in geodetic surveys to obtain centimeter-level
accuracy from differential GPS. Theoretically the same technique can be applied to relative
GPS. The object of phase interferometry is to measure relative carrier phase between the
two receivers — which can be done accurate to a few millimeters - and infer the unknown
integral number of wavelengths between the receivers by other means. In the case of GPS,
this is done by the technique of accumulated deltarange as measured by the carrier tracking
loops. This currently requires about twenty minutes of static data collection for terrestrial
survey applications, the time needed to gain observability through the change in satellite
geometry. In low orbits, the satellite geometry changes roughly eight times faster than it
does on the surface of the earth (ninety minute receiver orbits as opposed to twelve hour
GPS transmitter orbits), so the resolution of the integer wavelength ambiguity for phase

interferometry can be achieved much faster in space.
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This is all dependent on hyper-accurate relative motion models. In the geodetic
survey case, for instance, the relative motion model of the two points is well-known - they
are both bolted to the earth. In space, the relative motion depends upon whether the
reaction control system is operating, and if so how accurately the acceleration of the thrust
can be measured, and how accurately the relative gravitational field between the two
vehicles is modeled.

Once the integer ambiguity is resolved, relative GPS can track the relative motion of
the object using only the carrier tracking loops. Practically speaking, this system would
require the approaching vehicle and the Space Station to enter a special, well modeled phase
ambiguity acquisition mode at a separation of a kilometer or less for two to five minutes,
and then maintain carrier lock until docking.

Phase interferometry is, however, not reliable and robust enough to perform as the
docking positioning system in the Space Station environment. Its reliability depends on
clear view of the satellites, which is not guaranteed by the Space Station location of
antennas and docking procedures. It is also subject to multipath error; the Space Station
has many reflective surfaces that can create damaging multipath at both Space Station and
vehicle receivers. Lastly, the technology has not been developed to the point where it can
provide the inputs to a real-time control system. Although successfully used in commercial
surveying, GPS phase interferometry is currently limited to post-processing. Real-time
failure detection techniques are non-existent; in docking, with short reaction times, failures
of the navigation system must be identified immediately and with a reliability approaching
100%.

It is doubtful, given the current state of technology, that the accuracy of phase
interferometry can be used in docking procedures of the Space Station. The GPS code is
necessary to perform relative positioning reliably and robustly in space. Although reliance
on carrier (continuous Doppler) makes this method very precise, relative ranging still

carries with it small receiver-to-receiver code biases that prevent accuracies of much better
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than a meter. If the GPS receiver and antenna design is sufficiently multipath protected or
if multpath detection techniques are developed from dual frequency comparisons, if clear
view can be obtained for the Space Station and vehicle GPS antennas, and if a reliable

backup is provided, then phase interferometry might be available as the primary sensor.

43 Results

Simulation runs were performed using a TAU GPS Monte Carlo simulation
modified to accept low orbit trajectories. A single rendezvous trajectory was analyzed.
The range-to-go as a function of time is shown in Figure 4.3-1. Accuracy is roughly
equivalent (within the capabilities of GPS) for the methods of differencing carefully
coordinated navigation filters and the pseudodata method; this is because differencing, as a
linear operation, is commutative with the linear navigation filter. Accuracies degrade when
the filters are badly mismatched or the measurements are not coordinated.

The results presented here were taken from runs performed using identical eight
state filters on both Space Station and vehicle. The results are shown to highlight the
possible errors that arise from uncoordinated satellite selection with severe satellite bias
errors, as might occur if a GPS transmitter clock is in a degraded state or an unauthorized
receiver is used in Selective Availability conditions.

Four runs were performed. The results from each run are encapsulated in three
ﬁgures: a three dimensional relative navigation position error plot in ECEF coordinates; a
plot comparing RSS position error in conventional and relative navigation; and a plot
comparing RSS velocity error, conventional and relative.

The first run (Figures 4.3-2 through 4.3-4) used the pseudodata approach with
C/A-code receivers subject to Selective Availability errors of roughly sixty meters RSS.
Accuracy is in the two meter range, well within the requirements for rendezvous approach.

The second run (Figures 4.3-5 through 4.3-7) used differenced navigation

solutions from well-matched navigation filters and P-code receivers. As expected, due to
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the commutativity of filter and differencing, there is little difference between this and the
first method in terms of accuracy.

The third run (Figures 4.3-8 through 4.3-11) illustrates the potential for damage
when the filters are severely mismatched. In this case, pseudodata corrections were passed
through a heavily damped filter before combination with the vehicle measurements (both
using P-code receivers). This emulates the behavior of relative navigation between a
heavily damped Space Station navigation filter and a lightly damped vehicle navigation
filter; position errors are significantly higher than with the previous two runs, aﬁd marginal
as to whether the accuracy levels of rendezvous approach are being met.

The last run (Figures 4.3-12 through 4.3-13) highlights the effect of uncoordinated
satellite constellations. Each receiver in this case was a C/A-code receiver, capable of the
same relative navigationA accuracy over these distances a P-code receiver; Selective
Availability was invoked, adding a random bias of hundred meter standard deviation.
During the last five hundred seconds, a desirable satellite was removed from the view of
the Space Station but the approaching vehicle was not informed, resulting in a mismatch of

GPS constellations. Position error rose to an unacceptable level.

44 Summary
Relative navigation produces accuracy levels on the order of two meters provided
that the following conditions are met:
1. satellite constellations are coordinated; at any one time, navigation is performed
using at least four common GPS navigation satellites;
2. either
a. the pseudodata approach is implemented;
b. if differencing navigation filter position solutions is implemented, the

filters are matched to prevent biases due to unmatched damping of
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ionospheric effects and step function ranging errors due to constellation

switches.

Because ionospheric effects and Selective Availability do not affect P-code
receivers, the importance of filter tuning is not as great with P-code receivers. However,
accuracy can degrade to a marginal level even with P-code if the mismatch is serious.

Data link loading is roughly equivalent between the various implementations. The
deciding factor among them is the ease of implementation. In examining the
implementations for minimal impact in terms of the design of the receiver on the
approaching vehicle, the pseudodata approach, requiring only a code and carrier
measurement output port on the vehicle receiver, represents a relatively painless solution.
Furthermore, the pseudodata approach would be better adaptable to the many
configurations of vehicle feceivcr that may be encountered, from slow sequencing single
channel C/A-code to multichannel P-code. The pseudodata approach invokes a separate,
special purpose resident on the Space Station that does not interfere with nor place

restrictions on the autonomous navigation filter of the approaching vehicle.
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45 Comparison with Other Techniques (Spaceborne Traffic Control)

The alternate technology that is appropriate for spaceborne traffic control is a
rendezvous radar. A primary advantage of the radar is that it would accommodate the
requirements of noncooperative tracking. Accuracies sufficient for the OMYV mission, i.e.,
20 ft. (or 2% of range) and 0.4 ft. per second could be achieved with a GPS differential
system. However, such a system would require that both target and host vehicle carry
GPS receivers and that a data link communicate data between vehicles.

The autonomy of a radar makes it a viable consideration for the Space Station in
view of possible broad requirements for tracking noncooperative targets in a very busy "Air
'Trafﬁc Control” environment of the low altitude orbiting Space Station. However, the size
of the Space Station may prohibit any evasive action that would result from knowledge of
an impending collision with a noncooperative target.

Table 4.5-1 lists the techniques applicable for traffic control in space. Table 4.5-2

provides the comparison of these alternatives.
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50 TIME BASE - TIME TRANSFER
51 Overview

The potential for precise interpretation of electromagnetic radiation in space is
greatly enhanced with precise timebase information. The GPS system provides a mean for
achieving such synchronization on board the Space Station. Precise time synchronization
accuracy through GPS is dependent on differential performance. Although the timebase for
the GPS satellites is maintained to the accuracy level of 1 microsecond, the potential for
differential time accuracy based on two observers deriving their time from the same set of
GPS satellites is on the order of a few nanoseconds. The primary mode of navigation
using GPS involves the solution of 3 coordinates of position and time bias, using
pseudorange measurements from at least 4 appropriately selected satellites from the GPS
constellation. Thus, the precision of time determination is commensurate with the position
uncertainty divided by the speed of light.

Spaceborne time synchronization using atomic clocks is used by GPS. Thus, the
GPS high performance system is in effect servicing all the users with a common set of very
high accuracy clocks. Quartz crystal, Rubidium, and Cesium beam clocks have been
successfully flown in space. The quartz crystal clock is the least expensive and most
reliable clock and is in greatest use in many aerospace applications. The Rubidium
oscillator exhibits sensitivity to temperature and must be compensated with temperature —
controlled baseplate to achieve the best accuracy. NAVSTAR-8 uses a Rubidium clock and
its performance is reported in Ref. [5.1-1]. The cesium beam clock has also been flown in
space on NAVSTAR-9. Both of these clocks provide long-term accuracies at the level of

one part in 10!! or better.
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52 Technology Considerations

As part of our team's long involvement with the GPS program, we have kept
abreast of the development of the Time Transfer application. The choice here is between
high quality frequency standards and a GPS time transfer system. Satellite frequency
standards have progressed from the quartz oscillators, used in the Navy Satellite System
(NSS) satellites and early TIMATION launches, to rubidium clocks used in the NTS-1 of
NAVSTAR GPS to cesium clocks in NTS-2 and to hydrogen maser clocks projected in
NTS-3. Quartz oscillators typically have an accuracy of one part in 10° with a "short term"
stability of one part in 10!! for several minutes. The quartz oscillators used for the
TIMATION I launches had an accuracy of 3 parts in 10" per day, while those used for the
TIMATION II launches had an accuracy of 1 part 10'! per day. Rubidium clocks have an
accuracy of 5 to 10 parts in 1013 per day, while cesium clocks used in NTS-2 achieved 1 to
2 parts in 10'? per day and hydrogen maser 1 part in 10 per day. Cesium clocks require
frequency updating to maintain a specified accuracy. Since hydrogen maser clocks are
more accurate, they would maintain an accuracy equivalent or better than cesium clocks
over larger periods of time without updates. The previous discussion is addressed in more
depth in Reference [5.2-1]

The concept of using GPS as an accurate source of time information has been
discussed extensively in the literature. The principles involved in the Time Transfer
process using GPS are addressed by Van Dierendonck and Melton [5.2-2] and Yakos and
Hirt [5.2-3]. McLean and Hua [5.2-4] described such a time transfer system, the TTS-
502, developed by Stanford Telecommunications, Inc., and currently available on the
market.

Other systems have been developed and are currently available, e.g., the TRIMBLE
5000 A and the OSBORNE-TTR-5

In its basic mode of operation, the GPS provides a suitably equipped user listening

to four satellites, with position, velocity and time information with accuracies of 16 m,
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0.1m/sec and 100 nanoseconds, respectively. In the case of a stationary user, or of a user
whose position is known as function of time, only one satellite is required to solve for
time. Since the position of the GPS satellite is known as a function of time from the
received navigation message, the distance (as a function of time) from the GPS satellite to
the user can be computed.

The propagation delay to cover this distance at the speed of light is calculated next
(including ionospheric and tropospheric delays). The time of transmission is determined
by synchronizing the received code with a locally generated code and determining the
slewing required for the synchronization to occur. The GPS time is then determined by
adding the transmission time to the transmission delay. The calculation of the propagation
delay includes ionospheric and tropospheric delays, if applicable, as well as calibrated
hardware delays. In addition, since the GPS satellite clock is not exactly syn'chronized
with GPS time, the transmission time is further corrected by using the clock correction
parameters including in the satellite navigation message.

The time transfer operation just described requires only 1 channel, can be
performed using the C/A -code and provides an accuracy better than 100 nsec. The 100
nsec limitation is due to several inherent errors including those in ionospheric and
tropospheric delays estimates, as well as the ability to measure the pseudoranges (i.e., the
ability to pinpoint the maximum correlation between the transmitted and received codes).
The latter is limited by the "edges slope” of the C/A code chip (C/A has a frequency of
1.023 MHz ). The smaller the slope, the larger the uncertainty. If a better accuracy is
required, a more complex receiver, using the more precise P-code (10.23 MHz) can be
utilized. The use of the P-code allows tracking on both L1 and L2 frequencies, providing
for a better means of ionospheric delay corrections.

Yet another mode of operation is the so-called "common-mode- common view"
method, in which two receivers track the same satellite at the same time. One of the

receivers is a reference station where an additional high precision clock is available (e.g.,



National Bureau of Standards). Both receivers provide error estimates of their internal
clocks. The reference receiver estimated clock error is compared to the actual clock error as
determined from the high precision clock. This error in estimation is attributed to several
GPS inherent error sources including mis-modeled ionospheric delays, hardware delays
and GPS satellite ephemeris and clock errors. These errors are assumed common for both
receivers and the estimation error in the reference receiver is then applied to the user
receiver clock error estimate so that a better estimate is achieved.

As briefly mentioned earlier, some of the issues specific to the satellite application
include satellite altitude, ionospheric modeling, remote control and monitoring of the GPS
receiver, accuracy achievable, and cost. The GPS satellites transmit data towards the earth.
They are in 6-quasi-circular orbits at approximately 20,000 km altitude, and have a period
of 12 h. Itis clear that all space vehicles at higher altitudes than the GPS satellites will not
be able to use the system (the broadcast signals are directional). Also, the distances
between the user and the GPS satellites can vary considerably. It is also possible that in
one case no tropospheric delays and a single ionospheric delay computation will be
required and that in another both the tropospheric and ionospheric delays are to be
accounted. In this case ionospheric and tropospheric delays need further study. Another
issue is that of monitoring and control of the GPS receiver. Obviously, remote capabilities
have to be devised in conjunction with more autonofnous set operation as compared to an
"accessible" GPS receiver.

On the issue of accuracy, performance results were presented in Reference [5.2-1]
for several of the methods discussed above. They are provided in Table 5.2-1. A Time
Dilution of Precision (TDOP) of 1.68 was selected and multiplied by the R.S.S. of all error

sources (excluding the position error).
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83 Comparison with other Techniques (Time Base - Time Transfer)
Table 5.3-1 shows several time synchronization alternatives, GPS being one of

them. Table 5.3-2 shows the evaluation of these alternatives. As indicated in that table, the

GPS provides a medium cost and moderate complexity alternative with performance

accuracies of 1 x 10712,
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60 CONCLUSIONS

The results of this study lead to the following conclusions:

@® The primary application of GPS on the Space Station or other space vehicles
is for traffic control and time synchronization. For cooperative vehicles,
differential GPS is an attractive alternative to radar. Although requirements
for tracking noncooperative vehicles may suggest an active radar sensor, it
may not be practical to avoid a finite probability of collision, even with radar

tracking information on a non cooperative target.

@®  GPS provides an excellent method for distribution of a precise time base that

would be useful in bi-static radar applications.

® Attitude determination and structural monitoring using GPS would be
technologically attractive if costs could be reduced and if the effects of
multipath could be mitigated. However, current projections suggest that
optical and optical/inertial technologies are competitive for spaceborne attitude

determination and structural monitoring.
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SPACECRAFT APPLICATIONS
OF

ADVANCED GLOBAL POSITIONING SYSTEM TECHNOLOGY

I. Newton Durboraw, III

Motorola Inc.

This report summarizes the conclusions of a study by Motorola as
part of a Jjoint study for NASA Johnson Space Center with
Axiomatix and Tau Corporation. This portion of the study
performed under subcontract to Axiomatix (MOT 8707) addresses
hardware related issues concerning the application of GPS
technology and provides comparisons with alternative
instrumentation methods for specific functions required for an
advanced low earth orbit spacecraft.

The functions that have been identified for potential GPS
instrumentation are:

1) Attitude control and tracking.

2) Structural Control

3) Traffic Control

4) Time Base Definition (synchronization)

Each of these issues are addressed in the following section.
Each GPS approach will be briefly described along with a
discussion of hardware constraints related to fundamental GPS
measurements as well as the alternative techniques and their
limitations.

1.0 ATTITUDE TRACKING CONTROL:

Attitude measurement via GPS involves the precise
determination of baseline vectors between 3 or more
spatially diverse L band GPS antennas. The basic
measurement to be exploited is the carrier phase.
Measurement of relative carrier phase between multiple
antennas can be used in an interferometric sense to derive
attitude information. Since the position of each of the GPS
satellites is precisely known to the user and the satellites
are at a significant distance (ie. >20,000 Km.), the
direction to each of the satellites is precisely defined.
Thus, a relative phase measurement may be related to the
orientation of the baseline with respect to the vector
pointing to the GPS satellite.
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The direct measurement of the relative phase between
antennas is limited by uncertainties of signal propagation
within the hardware as well as basic environmental factors
such as the multipath effect. Hetrodyning of the GPS signal
to IF requires a distribution of a reference signal phase to
each of the antenna elements. Therefore, the variation of
this reference signal phase with temperature of the
spacecraft is a factor that must be reckoned with when
considering methods to resolve the carrier cycle ambiguity.
A technical approach to the problem involves the use of
simultaneous observations of the carrier phase from multiple
satellites at each of the antennas over some period of time,
during which the motion of the platform must be precisely
modeled. In essence, the reduction of signals to determine
the attitude of an array of antennas is equivalent to the
determination of the baselines between each of the antennas,
based on relative Doppler information contained in each of
observed satellite difference signatures derived from each
antenna respectively. Although this method is practical for
precise determination of baseline vectors in a terrestrial
environment, it is required to collect data over an
extended period to achieve the relative Doppler level of
accuracy that is required to resolve the carrier cycle
ambiguity. The primary limitation of this method is that
the relative motion of the antennas must be accurately
modeled during an extended observation period of several
tens of minutes.

Determination of baseline vectors in a stationary
environment has yielded accuracies that are 1 cm under
favorable conditions, using observation periods of 1 hour.
. At this 1level of accuracy, however, the influence of
multipath distortion of the signal becomes a dominant factor
and is difficult to circumvent due to the fact that the
effect is dependent on the relatively slowly changing
geometry of the satellites relative to the antenna
environment. With careful selection of antenna design, the
error can be further reduced to levels approaching the 1 mm
level. However, for terrestrial platforms, the effects of
multipath are likely to limit the performance at this level.
Space applications are somewhat differently affected by
multipath because of the changing geometry. However, on a
space platform, the time available for continuous
observation will necessarily be shorter because of the
platform movement in orbit.

The alternative method of attitude determination is to use a
star tracker such as represented by Ref 1. S8Such instruments
have been proven for space applications and can achieve
accuracies that are 2 order of magnitude better than those
projected for schemes using the GPS signals. This cost of a



star tracker is also competitive with projected costs for
multiple spaceborne GPS receivers to observe attitude.

RUC L CO :

Large space stations involving extendable panels, sections,
and modules are highly flexible and will likely exhibit very
low frequency and very 1lightly damped relative bending
motion. It is, therefore, desired to monitor the relative
motion so that active controls can be employed to damp the
bending motion. GPS relative phase measurements could be
used to monitor relative motion of distinct elements of the
structure. By placing antennas on those elements likely to
exhibit bending mode response, the bending flexure could be
inferred from the phase data. Since the measurements will
generally be harmonic, constant phase biases can be solved
for and will be of 1less importance in determining
appropriate damping control action. However, a slowly
changing bias over the time of 1 cycle of the bending motion
cannot be separated from the measurement of the bending mode
and will limit the ability to make the desired measurement.

An alternate technology for directly monitoring relative
structural motion is the laser/retro reflector technology
such as represented by Ref 2. This instrument uses a fully
solid state sensor for monitoring the relative dynamic
motion of several points in its field of view. Developed
for the Solar Array Experiment, the Retroreflector Field
Tracker is designed to characterize the motion of large
flexible space structures in low orbit. Twenty-three (23)
reflective targets are tracked with a Charge Injector Device
optical tracker. Accuracy of tracking is limited by the
resolution of the sensor and with a 19 degree field of view,
the accuracy is on the order of a few millimeters for all of
the targets.

TRAFFIC CONTROL:

The space station is expected to interface with many
platforms. Control of the rendezvous and docking phase is
critical. This area of the study includes an assessment of
technology that is associated with the navigation and
control of these platforms during the rendezvous and docking
maneuvers.

Differential GPS is a natural for spaceborne rendezvous and
docking. The requirements for power are reduced since no
active transmissions are required other than a low data rate
communication of the GPS state vector as reported by GPS to
the user. In terrestrial tests, GPS has been established as
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a proven technology for differential as well as autonomous
navigation. Commercial receivers such as the Motorola Eagle
(Ref 3) have demonstrated differential performance on the
order of 2-5 meters and less in a dynamic environment as
well as static. Under favorable conditions, the errors can
be under 1 meter. In a spaceborne mission, with appropriate
considerations of satellite visibility and multipath,
comparable performance levels may be expected.

The key to high performance in a differential GPS system is
the control of ‘non-common' error sources. Common errors
are those errors that affect both receivers equally. By
using measurements of pseudorange from 4 or more satellites
simultaneously, the position of a user can be established
with high precision relative the constellation that is being
tracked at the given time. However, the absolute position
is influenced by several error sources, among which are
uncertainties in the satellite orbit itself. If all users
are coordinated to track the same set of satellites, then
the non-common errors are greatly reduced and only those
errors associated with the receiver itself remain. Through
the use of carrier aiding such as employed by Motorola Eagle
and the TOPEX GPSDR receivers, the receiver-dependent errors
are largely eliminated.

The alternate technology that is appropriate for spaceborne
traffic control is a rendevous radar. A primary advantage
of the ‘fadar is that it would accommodate the requirements
of noncooperative tracking. Accuracies sufficient for the
OMV mission ie. 20 ft. 36 (or 2% of range) and 0.1 ft. per
second could be achieved with a GPS differential system.
However, such a system would require that both target and
host vehicle carry GPS receivers and that a data 1link
communicate data between vehicles. The autonomy of a radar
makes it a viable consideration for the space station in
view of possible broad requirements for tracking non
coocperative targets in a very busy "Air Traffic Control"
environment of the 1low altitude orbiting space station.
However, the size of the space station may prohibit any
evasive action that would result from knowledge of an
impending collision with a non cooperative target.

TIMEBASE:

The potential for precise interpretation of electromagnetic
radiation in space is greatly enhanced with precise timebase
information. The GPS system provides a means for achieving
such synchronization on board the space station. Precise
time synchronization accuracy through GPS is dependent on
differential performance. Although the timebase for the GPS
satellites is maintained to the accuracy 1level of 1
microsecond, the potential for differential time accuracy
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based on two observers deriving their time from the same set
of GPS satellites is on the order of a few nanoseconds. The
primary mode of navigation using GPS involves the solution
of 3 coordinates of position and time bias, using
pseudorange measurements from at least 4 appropriately
selected satellites from the GPS constellation. Thus the
precision of time determination is commensurate with the
position uncertainty divided by the speed of light.

Spaceborne time synchronization using Atomic clocks is used
by GPS. Thus the GPS high performance system is in effect
servicing all the users with a common set of very high
accuracy clocks. Quartz crystal, Rubidium, and Cesium beam
clocks have been successfully flown in space. The quartz
crystal clock is the least expensive and most reliable
clock and is in greatest use in many aerospace applications.
The Rubidium oscillator exhibits sensitivity to temperature
and must be compensated with a temperature- controlled
baseplate to achieve the best accuracy. NAVSTAR-8 uses a
Rubidium clock and its' performance is reported in Ref 4.
The Cesium beam clock has also been flown in space on
NAVSTAR-~9. Both of these clocks provide long-term
accuracies at the level of 1:10711 or better.

CONCLUSIONS:

The primary application of GPS on the Space Station is for
traffic control and time synchronization. For cooperative
vehicles, differential GPS is an attractive alternative to
radar. Although requirements for tracking non cooperative
vehicles may suggest an active radar sensor, it may not be
practical to avoid a finite probability of collision, even
with radar tracking information on a non cooperative target.
GPS provides an excellent method for distribution of a
precise time base that would be useful in bi-static radar
applications. Attitude determination and structural
monitoring using GPS would be technologically attractive if
costs could be reduced and if the effects of multipath could
be mitigated. However, current projections suggest that
optical and optical/inertial technologies are competitive
for spaceborne attitude determination and structural
monitoring.
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Final Report
Slide Presentation
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- The Application of GPS technology is of interest for spacecraft

planned for the 1990's. It is of particular interest to examine
the feasibility of 4 applications. of GPS technology. For this
study, the primary factors for consideration are performance,
cost, reliability, and complexity. Particular emphasis is to be
-given to competing technologies an hardware 1limitations that:
apply to the techniques.

The 4 applications include

1) Attitude Control

2) Large space structure control
3) Traffic Control

4) Timebase alternatives

Attitude control is motivated by high accuracy geodetic baseline
results that have been obtained on stationary platforms and
depends on being able to successfully resolve the carrier cycle
ambiguity in GPS phase observations. Primary limitations of such
technology include the effect of multipath caused by scattering
of the GPS signals from objects on the spacecraft. The effect of
multipath on code tracking is more severe than the effect on the
carrier tracking, however because of the extreme phase accuracy
that is generally required for attitude control, the effect will
be significant. Phase center stability on the antenna is related
to multipath and in fact difficult to consider as a separate
issue since it will depend on the entire antenna environment of
multipath reflectors. The effect of satellite clock variations
can be mitigated with the use of synchronous sampling of the GPS
observables and an algorithm that recognizes the distortion of
the observables due to satellite clock variation. Of course,
phase jitter of the receiver due to thermal noise is important
but can be minimized with good receiver design.

Star trackers provide the best alternative to GPS for attitude
monitoring and control. A typical instrument, a Large Field of
View Star Tracker built by Ball Aerospace Systems Division for
the space shuttle orbiter has a 10 x 10 field of view and an
accuracy of 1 arc minute and is estimated to cost about $1 meg.
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Related to attitude control is the need for stabilization which
can be accommodated using accurate inertial rate sensors such as
those which have been developed by Honeywell. The
Interferometric Fiber Optic Gyro (IFOG) ¢technology is
particularly interesting as a candidate for space application
because of it's high potential for reliability as well as
accuracy in a package that is very small, light weight and uses
very little power. A significant factor in comparison of this
technology with the ring laser gyro technology is that the IFOG
does not have any mechanical moving parts. Another important
factor for this technology is it's projected low cost.

Large Structure Control can also be addressed by GPS. Precise
Relative Phase measurements would be obtained from a system with

multiple antennas. The problem is similar to attitude control
and tracking in the sense that the ultimate measurement is a
vector baseline between the antennas. A minimum bandwidth

required is dictated by the structural modal frequencies which
are expected to be very low. Star trackers can again be used for
this application and the retroreflector field tracker is
particularly suited ¢to this application. Oon Dboard
instrumentation consists of a single active device as compared
with a GPS approach which would require at the minimum, multiple
antenna elements distributed over the structure to monitor the
mode of flexure of the structure. Finally, since the primary
requirement for structure control is for damping oscillatory
motion, it may be feasible to consider inertial sensors that
would measure relative rates at various points on the structure
and compare these rates to define effective control 1law for
damping the oscillatory motion.

In comparing the technologies for Structural Flexure measurement,
the primary factor that is noted is the cost advantage of the
IFOG technology. The retroreflector is also less expensive and
less complex than the GPS and is probably the most practical
technology for addressing this problem.

Traffic control can be addressed using either GPS or a Radar
system. The primary advantage of Radar is the application to non
cooperative vehicle tracking. Using GPS in a differential mode
provides the best accuracies but requires sensors in all space
craft and cooperation between the space craft, with state vectors
to be transmitted over a radio link. Accuracies of a differential
GPS system can be insensitive to planned methods of Selective
Availability and are expected to be in the range of 2-5 meters or
better.

Time synchronization of spacecraft may be important for certain
missions and can be accommodated using the GPS system if all
spacecraft synchronize their time to GPS time. The GPS system
uses high accuracy rubidium clocks. The major consideration in
the use of GPS for spacecraft time synchronization is that it
will provide a high level of accuracy with only a modest increase
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in the cost of a GPS receiver that will likely be on board the
spacecraft for positioning. '

In conclusion, GPS is best suited for traffic control and time
syncronization in the early 1990's. Attitude control to the
level of 1 mrad may be feasible technologically, but at a cost
penalty due to the fact that multiple antennas with associated
electronics must be included at a cost that will be substantially
more than the cost of alternative technology to perform the same
. function. The same is true for structure flexure monitoring
which appears to be more practical using optical techniques.



A-10

ADOTONHOIL SWALSAS

ONINOLLISOd TvaO 19 A3ONVAQV
40
SNOILVOIddV 14vHO3JVdS



A-11

ALDEINOD
AL@vN3Y )

1500
FONVIHOIHSd

3Sva3anil ‘(v

ADOTONHOAL TOHLNOD Jld4vHL (€
ONLLIJdNOO
SA TOHLNGOD 3HNALINHLS
30vdS 394V (@
SdD
ONDIOVHL
OGNV

IOHINOD Januuy (i



A-12

ADOIONHOIL ONIHNLYW (Q
ONISN3S 3aNLILLY FAILYI3Y (8

JON3H343H 31NT10SAY SA33N - ONISNIS 3ANLILLY VILHINI <€— OO

ADOTIONHI3AL NIAOH (q
INIWIHNSYIW 3aNLILLY 31N10SaY (8

ONDIOVHL A13i4 HV1S <o—— SUIMOVHLIHVLS

3SVHd -

SNOILVIHVA XOO0T1D 3LNIALYS -

AV13d 3SVHd 3ON3Y3I43Y -
ALINIGYLS H3LN3ID 3SVHd / HLVJILTNW -

SYNNILNV N33ML38 INNISvE JALLYIEH (Q
SVYNNILNV NIIML3E 3SVHJ AILVI3Y (e

VNNZLINV 31dILTINN - 3SVYHd 3AILVI3YH 3Si034d <+— Sd9

ONINIVHL ANV TOHLNOD 3aNLILLY



A-13

ONIMOVHL ANV TOHLNOD 3ANLILLY INHOE3DVdS HO4 ADOTONHOIL

QAHD
Sixe . 4y ._{0lLdO4d3ald
MO HOIH TRk TR CF AN——
-H31NI
SHIMOWVHL
a3n a3an WL $ peiw GQO°
HV1S
S1HVd 00S}
NNV © (34 YA 5€) e $ —_—_— .
a3an @EN
ALXTawoo/ ALaviiay 1S00 3d3d
® 9 () ® ®




A-14

OAHD/SHALINOHITEIIY €@ SHOSNIS TVLLHINI

3HNXITS IALUVI3H 4O SNOLLVAHISEO TVOULdO € SHIDIOVHIHVLS

SAIBN0D3HL 300N
TYHNLONULS NO INJAN3Id30 HLAIMANYE NANININ

(ONIMOVHL NV TOHLNOD 3ANLLLLY OL HYINIS)
SVNNILNV 3VdILINN - ISVHd BAUVIIH 3SID3Hd <e— SdO

TOHINOD HNLONULS FOVdS FOHVT



A-15

ANIWNIHNSVIN FHNXT T4 3HNLONYLS INHOEG3OVdS HOd4 ADOTONHOAL

(5041)
SHOSNIS
MOT HOIH MO HOIH 21vy
AVILH3INI
H3IMOVHL
Qa4
HOIH @En aan HOIH HOLOTEY
-OH.13y
JAILVI3Y
WL D W 100
aan aan Sdo
HOIH HOIH
AUXTTaNOO / ALNIBVIN3H 1800
® ® ® ® Y ®




A-16

AGNVE M -ONVE-X - LINJWIHNSYIN 3TONV/AONVH —— HVaWH

AOVHNOOVHIALIN | > <@— 3ISVHd + 3000 VO

371GV UVAV SWILSAS QIONVAQY TVHIAIS - (IVIINIHIIHIQ) <e— SO
TOHINOD OlddvHl
[ ) ) o 9 o ® [ ]



TOHLNOD Jl44vHl SINHOE3IVdS HOH4 ADOTONHOAL

(3UNLYN)
an

SWALSAS

FONSEE
TVILHIANI

(3unLvw)

Hvawvd

HOH

Sd9




A-1§

HISYIN
NIOOHAAH
WNIS3D
Jy | HO4 ot
0}-
H

WYL 1HOHS HO4 :E WLSAHD
WH3L 1HOHS HO4 318v.LINS ZLHVND

oo < Y | HOA oL >

bE-

‘ OLXE€E
WH3L 1HOHS HOd LL- SHOLVYTIOSO

S3LM3LVS SdO HO4 a3sn ¢ wniaignyd

ALIHO3LINI W3LSAS HOIH
SAHVANVLS JNIL 81 - WILSAS FONIHI43H ATHOM <4 Sd9

NOILVZINOHONAS JNLL



A-19

HOLVYTUISO TViSAHD
Z14VNO ALITYND HOIH

(SANOD3S) INILL ONIDVHIAY * |,

ot

>
=] HINO |
DO
1XEMI
“1Ava 1

-t

nwNIgIaN 1S00 MO

-~
"0

No
-
= JUNNIN L

0T IO Tdd ¥V ANV
S3LUTIILVS € ONISN NOILYOIAVN.
YIRS I

ot
€l

2
o
-

i

(3ONVIMVA NVTIV) “(4) &)

e/




NOLLVZINOHONAS 3NLL INHO830VdS HO4 ADOTONHOAL

HISYN
30UV ¢ HOIH HOM
NSOOHOAH
JOHV1 ¢ HOH HOH 3._.mwmmc
nliSies HOLVYTUDSO
MON HOH MO %, ‘b | visauo
- ZIHVND
Sw_uﬁ
MO 0 HOM 8@:8 ) HOLVYTIOSO
2L nnia|Ny
(o)
aan | o4 :
J1VHIAON WALSAS 2 bt Sd9
ALXTIINGO /A LIBEVINIY 4800
@ o ) ® Y a




A-21

JNILI3443 1SOD 38 OL SHVYIddV
ADOTONHIIL TYILDO VIA ONIHOLINOW 3HNXI T IHNLONYLS

¢ 1S00 €— 1w |
40 T3A3T101 319ISVY34 38 AVIN SdO HLIM ONINOVHL 3ANLULLY

8,066} A4V NI NOILVZINOHONAS
JNLL OGNV TOHINOD Ji1d4vH1 HO4 Q34INS 1S38 Sd9

SNOISNTONOD



APPENDIX B

SUPPORTING ANALYSIS FOR
DERIVATION OF CONE INTERSECTION



APPENDIX B
SUPPORTING ANALYSIS FOR DERIVATION OF CONE INTERSECTION

1.0 DERIVATION OF GPS/BASELINE CONE INTERSECTION
1.1  Introduction

The attitude of a baseline referenced to three GPS satellites can be derived by
solving for the intersections of three cones. Each cone represents the surface generated by
rotating the baseline through an angle defined by the phase difference of a GPS signal
between two poiﬁts on the baseline, as described in a prior section. This section presents
the derivation of the equation of a vector defined by the intersection of two cones. Solution
of a quadratic equation is involved, which is not unexpected, since the cones will generally
intersect at two vectors as shown in Figure 1.1-1. Solution involves using the three vector
equations given in Figure 1.1-1 to solve for the three unknown direction cosines of the

A
desired unit vector v.

12 Derivation of Cone Intersection

The solution for the unit vector C is based on the three vector equations
C . G = COS 0, C . ﬁ = COS Q,, and C . 3 = 1. The first two equations represent the two
cones of half angle a, and o, respectively, and the third defines 3 as a unit vector. If we

A A
break v * G, = cos a,;, down into its components, we have:

V181 + Vo8 + V383 = COS ;. 1)
Similarly,

v;h; + vohy + v3hy = cos o, and ()

Vi+vi+vi=1 3)

Equation (1) and (2) can be solved to eliminate v;, which gives:
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va(g2hy — g1hy) + va(gsh; — g1h3) = cos a;h; —cos o, g (C))

Let A = cosa;h; —-cos 0,8,

B = g3h; —g;h3, and

C = ghy —gihy.

Then we can define v, in terms of v; as

Vo = Aﬂ (5
2 C M
This will be used in a subsequent substitution.
Equation (1) can be rewritten as
1
Vi=g (cos o) — V,8) — V383), (6)
and Equation (3) can be rewritten as
2 2
vy = (1-v; -2 .
Eliminating v, and collecting terms, we have
2 2_1

l1-vy-v3== { (cos20yy — 2v,g, COS 0y — 2383 COS O + Vo8ovags + 2v§g§ + v§g§} )]

&
The next step is to substitute equation 5, linear in v, and v3, into the quadratic
equation (7). Collecting terms of v§, and v;, we get a quadratic of the form

AAV? + BBv3 + CC = 0. ®)

This notation is consistent with the variables as defined in the FORTRAN implementation.

The constants are defined as follows:
AA = (Bg,/C)? + (B2 + C?) (g,/C)?

BB = 2(Bg,/C - g;) (cos a; — Ag,/C)- 2AB(g,/C)?
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Figure 1.3-1a. ‘G-H Cones Intersecting at Two Points.

Unique Solution

Figure 1.3-1b. G-H cones Intersecting at One Point.

Solution with Negative
Radical Forced to zero

/

Figure 1.3-1c. Disjoint G-H Cones.



CC = cos af + (Ag,y/C)? - 2Agy(cos ,)/C - gf +(Ag)/C)? ,

with A, B, C as in equation (5).
After solving this quadratic for v3 using the standard form, equation (5) is used to
solve for v,, and equation (6) is solved to obtain v,. | |
The two solutions from the quadratic are stored for later comparison with the other
two pairs of solutions. The simulation picks the three closest solutions to form an average

estimate of the baseline attitude.

1.3 Degenerate Solutions

The normal solution for the cone intersection provides a pair of vectors representing
a true baseline and a pseudo, or virtual baseline. These are depicted in Figure 1.3-1a.
Mathematically, these are given by the aitemate signs of the radical in the standard solution
of a quadratic, v3 = (-BB * (BB - 4AACC)'2)/2AA. However, in the pathological case
having the baseline vector coplanar with the two vectors to the GPS satellites, the radical
will be zero, and there will be a single unique solution. This is depicted in Figure 1.3-1b.
A problem can arise in the presence of noise. If thé baseline vector is close to, or on, the

A A
plane defined by the two GPS vectors G and H, the noisy determination of a; and o, can

result in two cones which don't intersect, as shown in Figure 1.3-1c. In this case, the .

argument of the radical is negative and a real solution does not exist. We have chosen to
treat this case by setting the radical to zero if the argument is negative. The effect of this

substitution is minimal, since the argument of the radical is extremely small in these cases.
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