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ABSTRACT 

- .  
Low frequency combustion instability, known as chugging, is 

consistently experienced during shutdown in the fuel and oxidizer 

preburners of the Space Shuttle Main Engines. Such problems always 

occur during the helium purge of the residual oxidizer from the 

preburner manifolds during the shutdown sequence. 

and triggering mechanisms are analyzed and details in modeling the 

fuel preburner chug are presented in this thesis. 

chugging model, based on the foundation of previous models, capable of 

predicting the chug occurrence is discussed and the predicted results 

are presented and compared to experimental work performed by NASA. 

Possible causes 

A linearized 

Sensitivity parameters such as chamber pressure, fuel and oxidizer. 

temperatures and the effective bulk modulus of the liquid oxidizer are 

considered in analyzing the fuel preburner chug. 

program CHUGTEST is utilized to generate the stability boundary for 

each sensitivity study and the region for stable operation is 

identified . 

The computer 
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CHAPTER I 

INTRODUCTION 

' The Space Transportation System (STS), better known as the Space 

Shuttle, is propelled into orbit by two solid rocket boosters and 

three main engines (Fig. 1.1). 

have successfully completed twenty-four flights and several hundred 

test stand firings. The propellants utilized by these engines are 

cryogenic liquid hydrogen and liquid oxygen. 

for steady-state operation as well as programmed load changes from 

minimum power level (MPL) to full power level (FPL). There have, 

however, been some problems associated with the SSME during shutdown 

both in flight and on the test stand. 

engine oxidizer system is purged by helium prior to fuel cutoff. 

During the helium purge, the engines experience a low amplitude low 

frequency pressure pulsation (chugging) due to combustion instability 

in the fuel and oxidizer preburners. Since the thrust is essentially 

reduced to zero there have been no significant effects on the engine's 

performance. 

bearing loads and damage to the augmented spark ignitor (ASI) line. 

This problem may require frequent replacement of engine components and 

can potentially make the STS less cost effective. Therefore, to reduce 

The Space Shuttle Main Engines (SSME) 

The engines are stable 

In the shutdown sequence, the 

These pulsations have been linked to undesirable 

cost, NASA is sponsoring this research in an effort to reduce the 

maintenance costs of future SSME designs. 

1 
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Space Shuttle Main Engines Description 

Fig. 1.2 is a schematic of the propellant flow in the SSME show- 

ing the major equipment. 

preheat the hydrogen and supply power for the fuel and oxidizer pumps. 

Two preburners are used on each engine to 

Cryogenic li'quid hydrogen enters the engine from the external 

tank via a low pressure pump which supplies enough head to prevent 

cavitation of the three stage high pressure fuel pump. 

high pressure fuel pump the hydrogen leaves at approximately 7000 

Following the 

psia, at full power level, and is used to cool the nozzle, throat and 

main combustion chamber before entering the preburner at a temperature 

of 1027 K. 

is partially burned before entering the main combustion chamber. 

The majority of the fuel flows through the preburners and 

The oxidizer (liquid oxygen) follows a similar path but is not 

used for cooling purposes and enters the main combustion chamber 

directly. The pressure at the outlet of the single stage pump of the 

oxidizer preburner is approximately 4400 psia and is fed directly into 

the main combustion chamber operating at 3277 psia. A portion of the 

oxidizer is supplied to the preburner pump which supplies oxygen at 

6850 psia to the fuel and oxidizer preburners. 

The main engines supply a nominal thrust of 470,000 lbf at rated 

power level. Engine power is controlled by throttling the oxidizer 

flow to the two preburners via the fuel and oxidizer preburner 

oxidizer valves (FPOV and OPOV). 

turbopumps and hence reactant flow rate is controlled by the supply of 

oxygen to preburners 

The power available to the 

3 
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Under steady-state conditions the preburners are operating at 

very fuel rich conditions with an approximate equivalence ratio of 

six. Combustion is extinguished in the preburner and in the main 

combustion chamber by closing the OPOV in the oxidizer line. The 

closing of the OPOV causes the suspension of the oxidizer flow to the 

combustion chamber thus extinguishing combustion prior to fuel cutoff. 

The engines are throttled back prior to shutdown in flight 

operations due to maximum acceleration limitations of the shuttle. 

The ground test firings on the SSME are frequently shutdown from one 

hundred percent rated power level. Fig. 1.3 shows the shutdown 

sequence for a typical engine operation near one hundred percent of 

rated power level. The oxidizer preburner oxidizer valve (OPOV) is 

closed first. 

preburner oxidizer valve (FPOV) closes. 

from the oxidizer system once the two preburner oxidizer valves are 

closed. The only oxidizer available to the preburners is the 

residual trapped in the line and manifold volume between the valve and 

combustion chamber. This residual oxygen is cleared into the 

preburners by a helium purge. 

Shortly after the closure of the OPOV; the fuel 

The preburners are isolated 

Fig. 1.4 shows the purge and the augmented spark ignitor piping 

for the fuel preburner. 

oxidizer preburner. The check valve in the helium purge supply shown 

in Fig. 1.4 remains closed until the pressure downstream of the valve 

A similar arrangement exists for the 

drops to about 750 psia. The residual oxidizer is cleared from the 

AS1 line, the oxidizer valve and line and the oxidizer manifold into 

5 
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the preburner combustion chamber where combustion with the fuel takes 

place. 

tion, substantial fuel flow is maintained until after the purge is 

completed. 

Although the fuel flow rate varies due to pump speed varia- 

The pressure pulsation experienced during the helium purge of the 

oxidizer in the fuel preburner is called chugging based on the rela- 

tively low frequency (75--200 Hz) and its apparent cause which is a 

coupling between propellant feed rate and combustion generated 

pressure in the preburner. 

seconds after the cutoff command is given on ground test. 

tions for flight test data are not available; however, the situation 

should be similar to ground testing except that in flight cut-off 

usually occurs at lower power levels. It may appear from Fig. 1.3 

that the chug start correspond to the main oxidizer valve (MOV) 

closing, however, the preburners are completely isolated from the 

oxidizer system by the time MOV closes. 

Chugging usually begins about 2 . 3  to 2 . 5  

The condi- 

Problem Description and Method of Solution 

The SSME consistently experience a low frequency pressure pulsa- 

tion, called chugging, in both the fuel and oxidizer preburner combus- 

tion chambers during the helium purge following cut-off. The area of 

interest is shown in Fig. 1.5. The amplitude, frequency and duration 

of the instability appear to be dependent on shutdown conditions 

particularly the helium compressibility and fuel temperatures. 

chug occurs, only on shutdown of the SSME, during the helium purge 

The 
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of the fuel preburner oxidizer manifold. 

Since the chug occurs on shutdown, loss of performance on the 

SSME is of no major concern. The chug peak pressure never exceeds 

1000 psia in the combustion chamber designed for pressures in excess 

of 6000 psia. 

little attention. However, failure of the augmented spark ignitor 

line and turbopump bearings has been linked to the chug. 

Because of this fact, chugging has received very 

The primary objective of this research is to improve on analysis 

techniques for liquid propellant rocket instability in the fuel 

preburner of the SSME. 

ties of elimination were also studied. 

chamber pressure, fuel flow rate, oxidizer flow rate, and fuel and 

oxidizer temperatures were varied and their effect on the fuel 

preburner chug is presented in the following chapters. 

The triggering mechanism and the possibili- 

System variables such as 

Combustion instabilities, particularly in rocket engines, have 

been the subject of several previous investigations. The analysis 

presented by Crocco and Cheng [ 1 4 ]  and Harrje and Reardon [7] are more 

extensive in the analysis of combustion instabilities compared to 

earlier models. 

should be avoided during engine construction. 

of combustion instability analysis were linearized models based upon 

the work done by Crocco and Cheng. These models have shown that 

chugging is critically sensitive to combustion time delay and low 

Their models concentrated on design criteria that 

The early developments 

injector pressure drops. 

also considered as a principal contributor to the chug. 

The compressibility-of the feed system was 

A literature 

10 



search by the author showed that most chugging problems are analyzed 

using the one-dimensional lumped parameter model. The approach taken 

by J. R. Szuch [12 ]  in analyzing main combustion chamber chugging 

instabilities appeared to be the most effective of the techniques 

available. 

foundation for this work. 

The computer program written by Szuch was used as a 

The method was adapted to the SSME 

propellant flow Arrangement including the unchoked exit flow in the 

SSME fuel preburner. 

Following the analysis performed by Szuch 1121 the characteristic 

equation, derived from the non-linear differential equation modeling 

the propellant flow, describing the stability of a bipropellant rocket 

system is reduced to a quadratic equation. The quadratic formula, 

which is a closed-form solution, is used to solve the characteristic 

equation. A high accuracy solution is obtained as no iterative 

process is required. The two roots obtained are either real and 

distinct, equal or complex conjugates. The solution of the characte- 

ristic equation, utilizing critical system values, will result in the 

generation of a critical stability boundary. It is therefore 

possible to predict if the operating point of the fuel preburner is 

in the stable or unstable region. Only the complex roots with posi- 

tive real parts are sought. Complex roots with positive real parts 

indicate that the system is unstable; the imaginary part obtained 

provides the frequency of interest at the critical operating point. 

A chug analysis program was written for the fuel preburner of the 

SSME and implemented on the VAX 11/780 computer at the University of 

11 
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Tennessee. The program provides insight into the critical parameters 

affecting chugging and suggests ways to avoid operating conditions 

conducive to chugging. The code was verified by comparison to 

several experimental test cases which are discussed below. Program 

results in the form of stability diagrams will be analyzed and 

compared to data obtained from static firings performed under the 

direction of NASA engineers at Rocketdyne and National Space 

Technology Laboratory. 

12 



CHAPTER I1 

LITERATURE REVIEW 
- -  

A literature review of liquid propellant rocket instability was 

conducted by the author to gain some insight into the problems and 

work associated with combustion instabilities. 

of this research is devoted to low frsqcency instability analysis, a 

brief discussion on the different types of rocket instability is 

presented. 

Although the majority 

Instability refers to an uncontrolled pressure oscillation in the 

rocket combustion chamber. In extreme cases, characterized by an 

increase in amplitude with time, the combustion chamber may rupture or 

be severely damaged. 

frequency of the pressure oscillation. 

types of rocket instabilities; low, intermediate and high frequency 

referred to as chug, buzz and scream respectively. . These 

instabilities result from the coupling between the combustion of the 

propellant and the fluid dynamics of the system. 

instability involves a coupling between the combustion chamber 

pressure and the propellant flow rate. 

instability involves standing pressure waves in the feed line system. 

High frequency instability involves the occurrence of pressure waves 

in the combustion chamber. 

Rocket instabilities are characterized by the 

There are basically three 

Low frequency 

Intermediate frequency 

13 



One such type of instability, low frequency instability, which 

occurs during shutdown of the Space Shuttle Main Engines (SSME) is the 

principal focus to be discussed in this thesis. Chugging is 

characterized by the constructive coupling between the combustion 

energy release and the propellant feed process. 

frequency is generally less than 200 Hz, although there is no clear 

distinction in the cutoff frequency range between low and intermediate 

combustion instabilities. 

The chugging 

Fig. 2.1 shows the schematic of a mono-propellant rocket system. 

Propellant Tank p1 

A2 

Feed Line 
Combustion 
Chamber A2, l2, v2 

m 

:'x 
P L  
c, 

\ 1 
I 

Orifice In j ect ion A3 9 v3 L 1 

Figure 2 . 1  Schematic of mono-propellant rocket system. 

Assuming that the injector flow velocity (v ) decreases by a small 

amount, this will cause a decrease in the chamber pressure (Pc) which 
3 

14 



will increase the flow velocity. Shortly after the input flow 

This process 3 ’  increases, P will also increase thereby decreasing v 

continues and the pressure oscillation is known as chugging. The 

C 

amplitude could increase or decrease with time. If the amplitude 

increases with time, the system is unstable and continued chugging 

will cause severe damage and undesirable irregularity in the thrust of 

the rocket motor. 

Most of the research on chugging was done in the early 1950’s 

with the birth of the space program. The chugging phenomenon was 

observed by Summerfield [l] during a series of tests on a 1000 lbf 

thrust rocket motor. For mathematical simplicity, Summerfield 

analyzed the mono-propellant rocket system neglecting the inertia of 

the liquid propellant. Utilizing the concept of Crocco’s [2 ]  time 

lag theory, the governing equation was derived from the conservation 

of momentum and energy. 

equation was linearized by perturbation methods and expressed as: 

The resulting non-linear differential 

u” + Au’ + Bu + CL’ (c - c) = 0 (2.1) 

where v is the flow acceleration of the propellant, r is the combus- 

tion time lag and A, B and C are parameters evaluated at the operating 

conditions. 

a linear sum of the particular solutions as: 

The general solution of eq. (2.1) can be represented as 

( 2 . 2 )  
n = O  

15 



The roots of the characteristic equation ( 1 , % )  are obtained 

by substituting eq. ( 2 . 2 )  into eq. (2 .11 ,  grouping real and imaginary 

terms, and transforming into: 

2 2 x + a x  + b - y + ce-' c o s y  = 0 

--x (2x + a)y - ce sin y = 0 

(Real) ( 2 . 3 )  

(Imaginary) ( 2 . 4 )  

where a, b, c, x and Y ,  are system parameters expressed in terms of 

the combustion time lag. 

Plotting these equations on the x and.Y plane, shown in Fig. 

2 .2 ,  it is possible to locate the intersections of equations ( 2 . 3  and 

2 . 4 ) .  

any given values of A, B, C and Y . The solutions involving 

positive values of x lead to instability; while negative values of x 

represent stability. 

The behavior of the the rocket system can be determined for 

Figure 2 . 2  Approximate representation of equations ( 2 . 3  and 2.4). 

Source: Summerfield, M., "A Theory of Unstable Combustion in 
Liquid Propellant," ARS 21, 1951, pp. 108-114. 

16 



It is the objective of the designer to select appropriate values 

of A, B, and C such that these values are damped out. Therefore, it 

is possible to manipulate values of A ,  B, and C such-that solutions 

with positive values of x are impossible. 

condition for stability defined by Summerfield [l]  as: 

This leads to a sufficient 

* ’ *  
where C and L are the characteristic velocity and length 

respectively, l2 and m are the length of the feed line and propellant 

flow and AP is the pressure drop across the injector. 

From eq. (2.5) the following actions may be inferred for over- 

coming instability: 

1. increase the pressure difference between the supply tank and 

combustion chamber either by reducing the area of injector orifices or 

inserting resistance elements in feed lines 
* 

2.  increase L , which is the ratio of combustion chamber volume 
to throat area 

3 .  increase the length of the feed lines to the combustion 

chamber 

4. 

5. 

reduce the cross-sectional area of the propellant feed line 

reduce the combustion time lag ( F )  of the propellant either 

by changing to a more reactive propellant or adding a catalyst to the 

propellant 

17 



Summerfield [ l ]  noted that changing'the propellant from nitric 

acid--gasoline to nitric acid--aniline removed the instability. 

aniline, being self-igniting reduces the combustion time delay, con- 

firms that different propellants should be examined. 

The 

The analysis performed by Gunder and Friant [6] suggests ways to 

eliminate the chugging instability of a bipropellant rocket motor. 

The governing differential equation was derived from the equation of 

motion of the propellants. 

characteristic equation were proposed. The Nyquist stability 

method, which involves a conformal transformation, was chosen. 

Four different methods of solving the 

Gunder and Friant [6] showed the instability could be determined, 

by plotting the transformation of the governing differential equation 

in the f(z)-plane. 

unstable. In the plots shown below, Fig. 2 . 3  shows an unstable 

system, while the system shown in Fig. 2 . 4  is stable. The system 

represented in Fig. 2 . 4  is similar to that in Fig. 2 . 3  but was stabi- 

lized by changing certain parameters in the system, such as, 

decreasing the area of feed lines or increasing the pressure drop 

across the tank and chamber for the oxidizer and fuel. 

If the plot encircles the origin the system is 

Several authors including Summerfield and Gunder and Friant have 

approached the chugging instability of liquid propellant rocket with a 

simplified mathematical description of the combustion process to 

obtain a closed-form solution or a simplified differential equation 

for analog and digital computers. Webber [ 4 ]  presents a method of 

calculating low frequency unsteady combustor behavior based upon the 
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Figure 2.3 Nyquist diagram for unstable rocket system. 
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Figure 2.4 

REAL AXIS 

Nyquist diagram for stable rocket system. 

Source: Gunder, D. F., and Friant, D. R., "Stability of Flow in 
A Rocket Motor," Journal of Applied Mechanics, 17, 1950, pp. 327-333. 
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simultaneous integration of the differential equations describing: 

1. 

2 .  

the propellant flow in the feed system and the injectors and 

the evaporation and combustion rates of propellant droplets 

The model included a fuel and oxidizer supply system, an injector, a 

combustion chamber and a nozzle. The calculations are based upon the 

Euler marching technique for the calculated rate of change of.the 

system variables and the integrating time interval. 

In Webber's model, the time-varying injection rate of each 

propellant component is expressed as a function of chamber pressure. 

The lumped parameter approximation approach is used to obtain: 

r 1 

dt p c  1 / A  

for the liquid propellant flow incorporating only resistance and 

inertia terms, where 1 and A are the length and cross-sectional area 

of the feed lines, II% is a constant to approximate line losses and q 

is the volumetric flow rate; The skation is performed only if the 

feed line has varying cross-sectional area or multiple feed lines are 

used. The initial axial velocity of the droplet produced by the 

injected stream is: 

ux = K 2  u ( 2 . 7 )  J 

where the constant K 2  includes the velocity losses due to atomization 
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process and v is the velocity of the jet spray expressed as: 
j 

m 
v . =  - 

J pi l  (2.8) 

The atomization process is approximated by computing the time-varying 

mean diameter as a function of physical propellant properties and 

system geometry. 

(Em> empirically from: 
Webber calculates the mean diameter of the droplet 

7.99 [Splp$ D . 
J 

- 
D =  

. 39.37 # D . v . ] ~  + 195D,} 
J J  

where D is the injector orifice diameter in meters, p, 6 and P 

are viscosity, surface tension and density respectively. The 

respective units are defined in the list of symbols. 

j 

The evaporation rate of a stable propellant is dependent upon the 

heat transfer mechanism to the surface of the droplet and the 

molecular diffusion away from it. 

the surface to the interior of the droplet is significant, however, 

the assumption that heat transfer to the interior of the droplet is 

infinitely fast, due to small droplet size, simplifies the analysis. 

From this assumption the rate of evaporation of the propellant droplet 

is : 

The heat transfer mechanism from 

k = :Vu n k 5 rn LTIAH ( 2 .  l o )  

where Nu is,the Nusselt number and AH is the sum of sensible heat 

21 



and latent heat required to raise the droplet temperature from the 

injected temperature to the boiling point, and k is the thermal 

conductivity of the gas. The rate of efflux of gas from the chamber 

is expressed in terms of time-varying pressure, temperature and ther- 

mal properties in the combustion chamber. The exhaust gases are 

assumed to be ideal, well mixed and in thermochemical equlibrium. 

Two interesting results reported by Webber [ 4 ]  are shown i n  

Figures 2.5 and 2.6 below. Both plots were calculated for a 100 msec 

sequence of high-amplitude, 66 Hz, chugging instability. The 

integrating time interval used was 0.25 msec. Webber discovered that 

the numerical calculations appear to be negligibly influenced by the 

integrating time interval for the nominal values used. 

time interval of 0.5 msec was used the amplitude changed by only 2 

percent and the frequency changed by less than 3 percent. 

gram was tested in comparison with an experimental engine producing 

low frequency instability. 

frequencies were found to differ by not more than 7 percent with a 5 

percent agreement in amplitude. 

When a double 

The pro- 

The experimental and calculated 

Few researchers have analyzed chugging instability using 

different vaporization rates for the propellant. 

[8] postulated a model with different delay times (vaporization times) 

applied to the respective propellants. 

Wenzel and Szuch 

The difference between this 

model and previous 

analysis, the dead 

applied equally to 

models lies in the feed system. In the previous 

times for all the process were lumped together and 

both propellants. While it is true that mixing 
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Figure 2.5 Variation in chamber pressure during chugging. 

0 10 M 30.40 50 CO 70 80 90 1M) 
TIME (ms) 

Figure 2.6 Variation in fuel flow rate during chugging. 

Source: Webber, W. T., "Calculation of Low Frequency Unsteady 
Behavior of Liquid Rocket from Droplet Combustion Parameters," ARS 26, 
1956, pp. 26-39. 
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and reaction times are common, vaporization times associated with the 

individual propellants should be treated separately. The feed system 

in this model is assumed to be completely decoupled from the combus- 

tion chamber. 

two models. 

Figures 2.7  and 2 . 8  show the comparison between the 

The governing equation is derived from the conservation of mass 

and the Laplace transformation is used to obtain: 

C 
ap -a s 

m am* -a s 
(2 .11)  

e 

&? 

O = l +  e e 
01 

Assuming that the burned gas behaves ideally with constant gas 

residence time 

tions, the characteristic equation is reduced to: 

6g ) and incorporating further mathematical reduc- 

for implementation on a digital computer solving for engine stability. 

Here 0% is the gas mixing time, au,, and Guy' are the vaporization time of 

the respective propellants, Eg is the mixture ratio and a1 and bl are 

constants evaluated from steady (mean) operating conditions. 

This model indicates that stability may be achieved by 

manipulating the vaporization time, shown in Fig. 2.9, from 0.5 to 2.0 
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Figure 2.7 Block diagram for single vaporization rate model. 

*ox idant  Heating, mixing, ' W O ,  b 
and reaction t ime vaporization 

t ime 

Fuel injector 
Fuel injector %time 

Fuel 
vaporization 

gas residence t ime 

Figure 2.8 Block diagram for proposed model using different 
vaporization rates. 

Source: Wenzel, L. M., and Szuch, J. R., "Analysis of Chugging 
in Liquid Bipropellant Rocket Engines using Propellants with different 
Vaporization Rates," NASA TN--D--3080, 1965. 
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Figure 2.9 Effect of vaporization time on stability boundary. 

Source: Wenzel, L. M., and Szuch, J. R., "Analysis of Chugging 
in Liquid Bipropellant Rocket Engines using Propellants with different 
Vaporization Rates," NASA TN--D--3080, 1965. 

msec at a constant mixing time of 1.0 msec. If the operating condi- 

tion is as indicated, then increasing the oxidant vaporization time 

from some lower value up to 1.5 msec improved the stability. This 

behavior is contrary to that predicted by the single delay time model, 

since an increase in vaporization time is destabilizing. Further 

increase in vaporization time, however, shifts the curve upward resul- 

ting in unstable behavior. 

relatively short mixing time. 

The stability was achieved due to the 

As the mixing time was increased to 
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4.0 msec, increasing the oxidant vaporization time was destabilizing. 

There are limited experimental data to substantiate the behavior 

predicted by this model, however, this model should not be abandoned 

as more experimental data will becomes available. 

Barrere and Moutet. [ 3 ]  did experimental analyses on low frequency 

combustion instability with two objectives in mind: 

1. experimental determination of the influence of various 

parameters on an engine with low frequency instability, and 

2.  comparison of theoretical and experimental results 

They performed a series of experiments involving both a rectangular 

and a circular combustion chamber. Their analysis showed that the 

nature of the propellant, characteristic length of the combustion 

chamber and the mean pressure of the flame body are important para- 

meters in influencing the chugging instability. High injection 

pressure, mixture ratio or length of combustion chamber did not 

influence the instability significantly. 

obtained were consistent with Crocco's [21 theory, as long as the 

The experimental results 

chamber pressure takes on the same value as Crocco's theory. 

results were inconsistent with Crocco's theory as soon as the chamber 

pressure was altered. 

The 

Another attempt at eliminating combustion instability lies in the 

modification of the fuel supply line proposed by Li [SI. A suitable 

servo-mechanism is designed to control the fuel flow which is contro- 

lled by the pressure oscillation in the combustion chamber. In his 

analysis, Li treats the dynamic performance of the fuel supply system 

\ 
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as a first order system assuming an incompressible fuel supply. The 

- 

purpose of using the feedback system is to associate familiar techni- 

ques to stabilize the feedback system such as that shown in Figures 

Combustion 

2.10 and 2.11. 

Fuel 
Supply 1 Chamber 

- 
pc Stabilizer 

Fuel 

Supply 

Figure 2.11 Block diagram for Rocket System 

Combustion 

Chamber 
Combustion - L 

t 

Two methods are presented to improve the stability of the first 

order system. The first is to decrease the time constant so that at 

the unstable frequency the phase lag was reduced. 

is to increase the time constant so that at the unstable frequency the 

amplitude ratio will be reduced. 

phase lag associated with the second approach due to the increase in 

time constant. 

The other method 

There is an undesirable increasing 

Two types of stabilizers were proposed: 

1. flow rate actuated-type stabilizer, and 
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2. flow acceleration actuated stabilizer 

The construction of the flow rate actuated stabilizer, shown in 

Fig. 2.12,  uses a spring-loaded piston valve and a sensing nozzle to 

regulate the propellant flow. A pressure drop across the nozzle will 

produce a force, on the piston valve, that will open or close the 

valve port. The flow acceleration actuated stabilizer, shown in Fig. 

2.13, uses a spring-loaded piston valve to control two sets of ports. 

The piston has an annular cavity which allows the entire propellant 

flow to pass through. 

that the propellant flows perpendicular to the axial motion of the 

The inlet and outlet ports are arranged such 

piston. 

momentum of the propellant in the annular cavity. 

The movement of the piston is thus due to the change in 

The solution to the chugging instabilities with this approach is 

not as simple as it seems. There are problems associated with the 

operation of both stabilizers at the chugging frequency. Furthermore, 

this theory has not been verified experimentally. 

Some of the ideas presented by Harrje and Reardon [7] to 

eliminate low frequency instabilities include: 

1. increasing the pressure drop in the injector 

2. increasing the fluid inertance (i.e. longer l/d ratio in the 

injector or feed system) 

3 .  decreasing chamber volume 

4 .  changes in the time delay in the combustion of the fuel, 

such as vigorously mixing the recirculated hot gases with the incoming 

propellant to preheat the fuel, and 
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Figure 2.12 Proposed stabilizers -- Flow-Rate Actuated Type. 

Source: Li, Y. T., "Stabilization of Low Frequency Oscillations 
of Liquid Propellant Rocket with Fuel Line Stabilizer," ARS 26, Jan. 
1956, pp. 26-39. 

30 



5 .  increasing the damping process to dissipate the oscillatory 

energy in the combustion chamber or decreasing the coupling between 

the driving forces. 

The idea of decreasing the chamber volume, which seems to contra- 

dict Summerfield's work, is because Harrje and Reardon define the 

combustion time delay of the fuel as: 

where 

1 
c =  - 

=r . 

. 
(2.13) 

V f  1 

(2 .14)  

* 
Therefore decreasing the chamber volume is similar to decreasing L 

and increasing C and in essence agrees with Summerfield's theory. 

The model presented by J. R. Szuch [12] showed promise for 

analyzing the fuel preburner chug with minor modifications. 

model the governing equation is obtained from the conservation of mass 

applied to the combustion chamber with the ideal gas assumption and 

sonic nozzle exit. 

annulus area, analogous to injector pressure drop changes, and the 

results obtained were compared to experimental and analog data. The 

results obtained from the computer model compared very well with the 

In this 

The model was tested with varying fuel injector 

analog data and are presented in Fig. 2.14 below. 

In the literature review the author has discovered that most of 

the work and research done on rocket instability analysis involved 
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linearized steady-state models. 

SSME fuel preburner chug, however, it does not give any information on 

the magnitude of the chug amplitude which are transient and non- 

This approach is applicable to the 

'linear. The model presented by Szuch [12]  was selected and 

applicable for the SSME fuel preburner analysis. 

formulation and details of the analysis are presented in the following 

chapter. 

The mathematical 
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CHAPTER I11 

FUEL PREBURNER CHUG MODELING 

Analysis 

The model presented by Szuch 1121 for the analysis of combustion 

instabilities has been modified and is now capable of analyzing chug- 

ging instabilities in the fuel preburner of the Space Shuttle Main 

Engines (SSME). This chapter is thus devoted to the mathematical 

formulation used for modeling the fuel preburner chug. 

tory working model, capable of predicting fuel preburner pressure 

excursion, is presented in this chapter. Although this model 

analyzes the fuel preburner chug, it could also be applied to the 

oxidizer preburner with minor modifications. 

A satisfac- 

Although detailed analysis of the actual combustion process 

taking place in the fuel preburner is beyond the scope of the present 

work a few elementary assumptions allow analytical treatment. 

burnt gases in the fuel preburner can be considered as an ideal gas, 

and the flow is determined by the conservation laws of mass, momentum 

and energy. In the range of low frequencies pertaining to chugging, 

the propagation of the pressure waves is assumed to be instantaneous, 

thus, the following fundamental assumptions for chugging can be 

stated: 

1. 

The 

the gas pressure is uniform throughout the combustion chamber 

and oscillates about a mean or steady-state value 
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2.  the temperature of the gases is constant and uniform 

regardless of the pressure oscillations, but depends on stoichiometry 

3 .  the time lag (or delay) is uniform, that is, it has the same 

value for all the propellant elements, and 

4 .  the combustion of the propellant is infinitely fast once the 

droplet has evaporated gnd mixed, therefore chemical kinetics may be 

neglected. 

These four assumptions greatly simplify the analytical treatment 

of the combustion process; the introduction of assumptions (1) and 

(2 )  replace the momentum and energy equations which therefore need not 

be considered. 

the finite droplet evaporation time to collapse to a single 

characteristic time. 

The introduction of assumptions ( 3 )  and ( 4 )  allow 

With the combustion proceeding infinitely fast, 

a quasi-steady state process is assumed. 

These assumptions reduce the formulation for the dynamics of the 

combustion process in the fuel preburner to be essentially governed by 

the balance of mass, that is, the rate of burned gas produced must be 

equal to the sum of the rate of ejection of gas out of the fuel 

preburner through the high pressure fuel turbine and the rate of mass 

accumulated in the preburner. 

Derivation of the Characteristic Equation 

The combustion process of the fuel preburner during shutdown in 

the SSME is shown schematically in Fig. 3.1. Following shutdown, the 

oxidizer line is closed by a ball valve and the residual oxidizer is 
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P 

Fig. 3.1 Schematic of Fuel Preburner Combustion 

purged by the helium flow. 

mined by conditions upstream and downstream of the injector elements. 

The oxidizer vaporizes, mixes and reacts with a small fraction of the 

fuel to produce a hot gas consisting primarily of H 

time interval that exists between liquid propellant injection and 

conversion to vaporized propellant is referred to as the vaporization 

time delay. 

used in this model, is the time required for the conversion of 50 

percent of the liquid propellant to the vaporized state. 

The fuel and helium flow rates are deter- 

and H20. The 2 

The characteristic vaporization time delay ( u0 >, 

The gas 
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phase mixing time delay ( u v z )  is the time interval required for con- 

version of vaporized propellant to burned gases. These time delays 

( urn and uu ), which are functions of time, are assumed to be combined 

into a single characteristic time. The following equations, there- 

fore, relate the rate of change of burned products to the injected 

propellant flow rates. 

where m is the mass flow rate, and subscripts ob, fb, oi, and fi 

represent oxidizer burned, fuel burned, oxidizer injected and fuel 

injected respectively. 

Using a one-dimensional lumped parameter approach, Harrje and 

Reardon [7] state that the basic governing equation is obtained from 

the conservation of mass. The conservation of mass written for the 

fuel preburner assuming that all the reactants are burned yields: 

( 3 . 3 )  

where p is the gas density, V is the volume of the fuel preburner 
C 

combustion chamber; subscript e represents the exit flow. , The helium 

purge is included in the m term. Eq. ( 3 . 3 )  is based on the assump- 
ob 
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tion that the volume occupied by the liquid is very small compared to 

the total chamber volume, and is valid only for low frequencies [ 7 ] .  

The exit mass flow is given by [ 9 ] :  

( 3 . 4 )  

where C is an empirically determined coefficient which is a function 

of turbine speed; P and T are the pressure and temperature 

respectively. 

and hot gas manifold respectively. 

Subscripts c and hg represent the combustion chamber 

Since the gas density is a function of pressure and temperature, 

eq. ( 3 . 3 )  is non-linear and must be linearized to obtain the desired 

solution. Linearization of eq. ( 3 . 3 )  is performed by assuming a 

small perturbation in the system variables about a steady-state 

operating point. 

yields the following equation: 

Neglecting the products of perturbations 

where the curl superscripts are the perturbation quantities, 
- 

is the gas residence time, and 

rit = m  + m u O b = T i L  
1 ib ( 3 . 7 )  
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is the total mean mass flow of the exhaust gases. 

involved in acquiring eq. ( 3 . 5 )  from eq. ( 3 . 3 )  is found in Appendix A .  

Assuming that the gas behaves as an ideal gas, the first term on the 

left hand side of eq. ( 3 . 5 )  can be shown to be: 

The process 

Since the temperature perturbation varies, that is, the 

perturbation at the combustion front and the exit of the preburner is 

not the same, the mean temperature perturbation should be integrated 

over the entire preburner combustion chamber. However, with 

assumption (2) stated earlier the average chamber temperature remains 

relatively constant. 

eq. ( 3 . 8 )  goes to zero. 

Thus, the second term on the right hand side of 

Utilizing the ideal gas law in eq. ( 3 . 4 1 ,  the second term on the 

left hand side of eq. ( 3 . 5 )  may be expressed as: 

( 3 . 9 )  

where C1 is determined from input parameters, and is a function of the 

specific heat ratio of the combustion products and pressure ratio 

found in eq. ( 3 . 4 ) .  
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Equations (3.5), ( 3 . 8 1 ,  and (3.9) are combined to yield the 

following equation: 

(3.10) 

Assuming that Tc is the adiabatic flame temperature then clearly, 

T C = F ( @ , P  C 1 (3.11) 

for any given set of reactants where 4) is the equivalence ratio. 

Th.erefore, the last term in eq. (3.10) becomes: 

( 3 . 1 2 )  

since the temperature is a weak function of chamber pressure, the last 

term in eq. (3.12) is neglected. The equivalence ratio perturbation 

may be expressed in terms of the oxidizer and fuel mass flux perturba- 

tions as: 

(3.13) 
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which is analogous t o  eq. (5.2.1-7) i n  Harrje and Reardon [7] .  

Equations (3.1) ,  (3.2), (3.10), (3.12) and (3.13) a r e  combined 

yielding t h e  following equation which relates t h e  chamber pressure t o  

the in jec ted  propel lan t  flow rate. 

where c = (u + CJ ), is  t h e  combustion t i m e  delay, and 
. -  v in 

o and f 

transformation of eq. (3.14) is: 

r e f e r  t o  oxidizer  and f u e l  respect ively.  The Laplace 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The per turbat ion i n  t h e  in jec ted  propel lant  flow r a t e  is r e l a t ed  

t o  t h e  per turbat ion i n  t h e  chamber pressure a t  t h e  in j ec to r  face by: 
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(3.18) 

(3.19) 

where Z (s)  and Z (s)  are defined as t h e  l i nea r i zed  output impedance 

of t h e  oxid izer  and f u e l  feed system respect ively,  and FCi is the  

chamber pressure a t  t h e  in j ec to r .  face.  

0 f 

The determination of Zo(s) 

and Z (s)  w i l l  be presented i n  t h e  next sec t ion .  f 

The t o t a l  and s t a t i c  chamber pressure a t  t h e  in j ec to r  f ace  a r e  

r e l a t e d  by t h e i r  de f in i t i on  as: 

( 3 . 2 0 )  

where M is  t h e  Mach number and Y is  t h e  s p e c i f i c  hea t  r a t i o .  Sub- 

s c r i p t s  t and s represent  t h e  t o t a l  and s ta t ic  pressures respect ively.  

The s ta t ic  pressure i n  t h e  combustion chamber and a t  t h e  in j ec to r  

f ace  are wr i t t en  i n  t e r m s  of t h e  Mach number as: 

(3 .21 )  
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Assuming that M 

and ( 3 . 2 1 )  can be combined to yield the following pressure ratio ( K ) .  

is small, (i. e. a large chamber), equations ( 3 . 2 0 )  ci 

( 3 . 2 2 )  

Assuming that there is no l o s s  in the total chamber pressure, equa- 

tions ( 3 . 1 7 ) ,  ( 3 . 1 8 ) ,  (3 .19)  and (3 .22)  are combined to yield the 

following result: 

.- 
P =  C 

- I f s  
c P X K  - - r . s  P Y K  

egS+ci  + A e * + -  e 
Z" (8) Zf (SI 

(3 .23)  

The above equation relates the steady-state average chamber 

pressure to the perturbed chamber pressure in the system. 

existence of the chug is inferred by an unbounded pressure 

perturbation, that is, Pc( s) approaches infinity. 

obtained by setting the denominator of eq. ( 3 . 2 3 )  to zero resulting 

in : 

The 

.., 
This condition is 

(:3 .24 
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Eq. (3.24) is, therefore, the characteristic equation describing 

the stability of the bipropellant rocket system. Eq. 3.24 applies to 

the fuel preburner system when the proper choice of K, Pc’ x, Y, z, 
and C1 are made. 

Eq. (3.24) is solved only for complex roots having positive real 

Appearance of these roots indicates that parts (exponential growth). 

chugging is present and defines the stability boundary. The appear- 

ance of a negative root signifies that the system is stable. 

imaginary root defines the frequency at which the chug occurs. 

stability boundary (Fig. 3.2) generated for Pc = 4.4815E6 Pa (650 

psia) with To = Tf = 40 K (72  R) shows the operating point in the 

unstable region at a frequency of 121 Hz. 

Hz was selected and the stability program solved the characteristic 

equation for positive real complex roots. 

are found, the procedure is repeated with another selected frequency. 

The positive real part of the complex root obtained is related to the 

respective pressure drops ( A P  ./P and hPoi/Pc). The curve, 

therefore, signifies the boundary at which the positive real part 

exists. The region to the right of the boundary, outside the enve- 

lope, corresponds to stable operation, while the region within the 

envelope is unstable. The shape of the stability boundary is such 

that an increase in oxidizer or fuel pressure drop stabilizes the 

preburner. This type of modeling provides insights into the proba- 

The 

The 

A minimum frequency of 75 

If no non-negative roots 

fl c 

bility of instabilities, but provides no information on the limits of 

the chug amplitude. 
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Fig. 3.2 Stability Boundary for Fuel Preburner. 

Solution of Characteristic Equation 

The solution of the characteristic equation is performed by 

separating the output impedances Zo(s) and Zf(s) into their real and 

imaginary parts. Letting s = jo , the characteristic equation is 

44 



separated,  r e s u l t i n g  i n  t h e  following real and imaginary equations 

(3 .25  and 3 . 2 6 )  respect ively.  

where 

R! + iL t f  

0 0  

R! + 1' t f  

2 (jw) = Ru + j to  

2 Go)= R + J I f  f f 

( 3 . 2 5 )  

( 3 . 2 6 )  

( 3 . 2 7 )  

( 3 . 2 8 )  

For t h e  frequency range of i n t e r e s t ,  equations ( 3 . 2 5 )  and ( 3 . 2 6 )  a r e  

solved f o r  two c r i t i ca l  parameters R and R f .  The real pa r t s  of R and 
0 0 
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R 

resistances 2 P ' m  which are independent of the frequency. 

are selected because they can be related to the injector flow f 

It can be shown that equations ( 3 . 2 5 )  and ( 3 . 2 6 )  reduce to a 

quadratic equation relating the critical value of the real part of the 

oxidizer impedance R ' 
imaginary feed system impedances I and If'. The procedure, 

outlined in Appendix A, for the combination and reduction of equations 

(3 .25 )  and (3 .261,  will yield the following quadratic equation: 

for a specified critical frequency, to the 
0 ,  

0 

--- 
.- 

where 

( 3 . 3 0 )  

As shown in Appendix A, the solution of eq. ( 3 . 2 9 )  will be used to 

compute the critical real part of the fuel impedance R via: f 
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Ro' PcYK cos (w ' t t  + Io P c  I'K sin (WIT 1 + I P c X K  sin (a$) - 0'8 R ' I  + C1 Io[ [  
(3.31) f f  8 o f  Rf'.  = 

0'8 I + C1 RU' - Pc XK COS tw'to) 
8 0  

The solution of equations ( 3 . 2 9 )  and (3 .31 )  will be related 

physically to the injector element 

The imaginary variables I and I must be computed, at each specified 

critical frequency, prior to the solution of equations (3 .29 )  and 

( 3 . 3 1 ) .  The modeling of the feed system, injector element, and 

other system parameters as well as the computation of the operating 

point variables will be presented in the next section. 

and feed system being studied. 

0 f 

System Parameters Computation 

A Fortran 77 computer program based on a program for the 

analysis of chugging instabilities by Szuch [12]  was written for the 

fuel preburner of the SSME. 

the solution of the characteristic equation. The two roots procured 

will either be real and distinct, equal, or complex conjugates. 

Although an iterative solution is not required, the computer program 

is written to calculate the system variables at each specified 

frequency of interest. Thus, a critical frequency is selected and 

the characteristic equation is solved for Rot and 

superscripts ( I )  represent critical values. 

Rf' are then related to the critical oxidizer and fuel pressure drop 

ratios. The main function of the program is, therefore, to generate 

The quadratic formula is applicable for 

Rft, where the 

The solutions of Rot and 
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the stability boundary of the chug during the shutdown transient of 

the SSME for different parametric test cases. 

of study, the solutions of equations (3.29) and (3.31) require prior 

Regardless of the type 

calculations of the system variables at each operating point. 
. .  

The variables X and Y are computed directly using equations 

(3.15) and (3.16) respectively. 

rate m is the total flow rate of the exhaust gases leaving the e 

fuel preburner. 

The steady-state value of exit flow 

Assuming that complete combustion is taking place in 

the fuel preburner, the following reaction equation is applicable to 

the combustion process: 

The NASA SP-273 code by Gordon and McBride [ l o ]  is used, with an 
equivalence ratio ( @ )  of six, to calculate the combustion chamber 

temperature (Tc). 

approximately 1065 K which is too low a temperature to dissociate H2 

and H 0; hence the assumption of complete combustion is valid. The 

NASA code is also used to obtain a plot of T 

equivalence ratio from one to eight at the shutdown condition. 

The chamber temperature calculated is 

2 
verses. @ ,. with varying 

C 

A 

least squares curve fit is utilized to acquire a polynominal relation- 

ship between T and @ . The slope (dTc/d@) at the specified 

equivalence ratio can thus be calculated. 

The chamber pressure ratio (K) is computed using eq. (3.22). The 

C 

specific heat at constant pressure ( E  
products is procured from + ,  and the approximated empirical 

for each component of the 
P 
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polynomial expressed as [ l l ] :  

= 34.19 - 43.87 + 19.78 - 0.88 e CPH2* ( 3 . 3 3 )  

( 3 . 3 4 )  

Utilizing the mole fraction weighted average the specific heat ratio 

and the exit Mach number (Mc) can be solved from equations ( 3 . 3 5 )  and 

( 3 . 3 6 )  respectively. 

C 
P ovg 

Y =  - R  
Pclvg 

( 3 . 3 5 )  

( 3 . 3 6 )  

where R is the universal gas constant and the density is obtained 

from the weighted average. 

U 

The gas residence time is computed from its definition (eq. 3 . 6 ) .  

The vaporization time delay ( a U )  for the oxidizer is defined as the 

time required to vaporize 50 percent of the mass of the injected 

droplet. The average droplet velocity over this length is 

approximately equal to the injection velocity of the droplet as 

reported by Priem and Heidmann [13] .  Based on this information, the 
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vaporization time delay can be calculated from: 

(3.37) 

- -  

where 150 is the length required to vaporize SO percent of the 

injected mass droplet, and v 

propellant droplet. 

is the injection velocity of the 
iP 

The vaporization time delay was computed for the 

liquid oxidizer only. 

before injection into the combustion chamber, the vaporization is set 

Since the fuel is already completely vaporized 

to zero. 

The length required to vaporize 50 percent of the injected mass 

is computed utilizing: 

- 
T 0.4 r ] 1.45 { UlP l0.75 [ M 10.35 { 

0.66 

H J0.8 - - 1' - ('7.6z~1t)-~ 30.5 100. 3.26XlO cr 

P (3.38) Is = 0.0699 
C 

where r is the mean droplet radius in meters, M and H are the molecu- 

lar weight and heat of vaporization with units defined in kg/kg mole 

and J/kg respectively [ 121. 

The drop radius of the liquid oxidizer is required in computing 

15*. Experimental evidence has shown that mean oxidizer drop radius 

for a concentric element, with gaseous fuel injected through an annu- 

lus (shown in Fig 3 . 3 )  is proportional to the square-root of the injec- 

tion momentum ratio with a proportionality constant Kr of 0.118 [12] .  
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(3.39) 

where do is the oxidizer injector diameter. 

affected by the properties of the oxidizer at the boiling point 

temperature (90 K) . 

The drop radius is also 

This effect is represented. by: 

(3 .40)  

where p is the viscosity and 6 is the surface tension at 1 atm, 90 

K .  To calculate the drop radius, K must be modified to incorporate r 

this effect. 

expression; 

Therefore, with the modified value of Kr, the resulting 

6olio Po, 0.15 mo uo u.5 
r=0.118d [ [ 

O 602Po2Po 
(3.41) 

can be used for any liquid oxidizer. 

properties of the 'liquid oxidizer at the reference condition. 

units used for the above expression (eq. 3.41)  are defined in the list 

The subscripts 02 represent the 

The 

of symbols. 

The injection 

rifled on the insit 

of the oxidizer, 

e, produces a sw 

through the injectors which are 

rling effect which enhances the 

mixing of the oxidizer with the fuel. Therefore, eq. ( 3 . 4 1 )  is 

multiplied by 0.448 as recommended by Szuch. 
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The gas-phase mixing time delay ( a,,,) is obtained from published 

experimental data correlated by: 

1 o3 'lC + In - I,) 1 
I = G[ 

am 0 
C 

(3.42) 

where lc and ln are the chamber and nozzle lengths. 

no nozzle in the preburner, 1 

tive approach in computing urn. 

Since there is 

is neglected resulting in a conserva- n 

The exit gas velocity vc is computed 

from: 

(3.43) 

and G is the functional relation plotted in Fig. 3.4 below. 

Figure 3.4 Gas-phase mixing delay based on experimentally 
observed chugging frequencies. 

Source: Szuch J. R., "Digital Computer Program for Analysis of 
Chugging Instabilities," NASA TN--D--7026, Dec. 1970. 
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The imaginary feed system impedances, I and If, must be 
0 

computed, as well as the comparison of the critical real values, R ' 
and R f ' ,  with the operating point values. The computer program was 

0 

utilized to calculate I and I at the operating point, solving 

equations ( 3 . 2 9 )  and ( 3 . 3 1 )  to obtain Rot and Rf' at the specified 

frequency of interest. This calculation involves: 

0 f 

1. breaking the feed system into elements, each having an 

impedance with real and imaginary parts a and fI respectively. 

2.  manipulating these elements into series and parallel combina- 

tions, and 

3 .  reducing the combinations to a single feed system impedance. 

The series combination of Z. and Z. (i.e. Z = Z. + Z.) produces: 
1 J k 1 J  

' k = a i + " .  
J 

( 3 . 4 4 )  

( 3 . 4 5 )  

while the parallel combination of Zi +Z. {i.e. Zk = Z.Z./(Zi+Zj)] 

produces : 
J 1 J  

( 3 . 4 6 )  

( 3 . 4 7 )  
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Using a lumped parameter approach, the feed system can be divided 

T 

into the following elements: 

1. lines having only inertial pressure drop. The flow 

impedance therefore consists of a = O  , and fl = o U A  , where 1 is the 
line length and A the cross-sectional area of the line. 

analogous to an electrical inductance 

This is 

2.  orifices having only frictional pressure drop. The flow 

impedance therefore consists of ZAP/& , and @ = 0 ,  where 

and m are the steady-state pressure drop across the injector element 

and mass flow rate respectively. This is analogous to an electrical 

resistance 

3 .  Storage volumes have an impedance consisting of a = O  ~, and 
p = -Blopvg , where B is the 
volume. This is analogous to an electrical capacitance 

bulk modulus and V is the manifold 
g 

Fig. 3.5 shows the impedance representation for the oxidizer system 

Fig. 3 . 5  Impedance representation of the oxidizer system. 
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The above system is collapsed to the following equation utilizing 

the series and parallel combinations. 

( 3 . 4 8 )  

where a is the injector resistance ( 21p/&0 ), b is the injector tube 

inductance d .4  , and Zs and Zman are the suction line and manifold 
volume impedance respectively. 

The real and imaginary parts of the oxidizer feed system 

impedance are computed according to the following: 

R =2Aplri2., 

and 

P,,, (P?) + P, ‘P2,,,) 
I = w b +  

2 2  ‘P, + P,,) 

( 3 . 4 9 )  

(3.50) 

The imaginary part Io will be used to solve the characteristic 

equation and the real part: Ro will be compared to the critical value 

obtained from the solution of the characteristic equation. 

The same procedure holds for the fuel impedance Z,(s), although 

some simplifying assumptions are required to handle the system 

conveniently. Assuming steady-state conditions upstream, the fuel 

injector may be considered to be fed by a constant fuel flow rate. 

Since the fuel is completely vaporized, the isothermal compressibility 

must be considered in computing Z (s) .  With the above assumptions f 
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the following equation is utilized to compute the fuel flow rate 

through the injector element. 

[ Pfi2 - PCi2 f 
hfi = Cf 

T f  
( 3 . 5 1 )  

where Cf is the flow discharge coefficient. 

coefficient for the SSME fuel preburner injector is calculated from 

conditions at rated power level and found to be 0 .52 .  

The flow discharge 

The steady-state fuel injection velocity vf, which is required 

for the computation of the drop size, is computed from: 

Linearizing and taking the Laplace transformation of eq. (3 .51 )  

results in the following equation. 

( 3 . 5 2 )  

( 3 . 5 3 )  

The perturbations in the injection manifold pressure may be expressed 

as : 

(3 .54 )  
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where V is the fuel injector manifold volume. Combination of 

equations (3 .52 )  and ( 3 . 5 3 )  and letting s = ju , results in: 
f 

where 

P;i - P;i 

hf 
R f  = 

R T  

(3 .55)  

(3 .56)  

(3 .57 )  

The imaginary part, I,, is used in the solution of the 

characteristic 

critical value 

equation. 

I 

equation and the real part, Rf, will be compared to the 

obtained from the solution of the characteristic 

The critical values of the pressure upstream of the injector 

element tube and the corresponding ratios of pressure drop to chamber 

pressure are computed from: 

C! 
P ..' - P 

P 
1: 

P - ,  [$I = 
C 5 

(3 .58 )  

(3 .59 )  
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Calculation of Stability Boundary 

A computer program capable of generating stability limits over a 

range of operating conditions has been developed and applied to the 

fuel preburner of the SSME. 

earlier program by Szuch [12] ,  is written in Fortran 77 and implemen- 

The program, drawing extensively from an 

ted on the VAX 11/780 at the University of Tennessee Computing Center. 

The program solves the characteristic equation, utilizing the closed- 

form quadratic formula, for various sensitivity studies. This 

section will assist the reader in obtaining an overview of the compu- 

tation of the stability boundary. 

A range of possible chugging frequencies must be specified to 

initiate the program. 

frequency range for chugging instabilities is between 75 to 200 Hz. 

Frequencies higher than 200 Hz will be neglected. At the selected 

operating point and frequency of interest, the following computations 

are made by the computer program: 

It was found in the literature that the 

1. calculate the steady-state value of imaginary fuel impedance 

1 from eq. (3 .47 )  f 

2.  calculate the real and imaginary oxidizer impedance R and Io 
0 

from equations (3 .49  and 3.50)  

3 .  calculate the remaining variables in equations (3 .29  and 

3.31)  

4 .  solve eq. (3 .29 )  for Rot. Negative values of Ro' are 

neglected 

5 .  using the result from step ( 4 ) ,  calculate R from eq. f 
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( 3 . 3 1 ) .  Negative values of R ' are also neglected f 

6. convert results of R ' and Rf' to critical values of 
0 

injection pressure drop from equations (3.58 and 3.59) 

7. store results from step ( 6 )  including the frequency and 

repeat steps (1) to ( 6 )  

8. write out results from step (7) when frequency is out of 

specified range 

A sorting routine is incorporated into the program to write out 

the critical pressure drop ratios ( APO,/Pc) and ( APfi/Pc) in 

order of increasing ( AP /P ). fi, c 

The modified program is capable of producing sensitivity studies 

for variations in chamber pressure, fuel flow rate, oxidizer flow 

rate, fuel and oxidizer temperatures, and its affects on the 

instabilities are studied. The effects of these parameters on 

instability are presented in the following chapter. 
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CHAPTER IV 

MODEL APPLICATIONS AND RESULTS 

Verification of Numerical Analysis 

The computer program, presented in Appendix B, was verified by 

comparing the results obtained from the numerical procedure to 

experimental results provided by NASA and Rocketdyne. 

program input values for full power level are presented in Table 4.1. 

The required 

The model was tested with values at full power level (FPL) and predicted 

stable operation in the fuel preburner of the SSME (Fig 4.1). 

prediction conforms with experimental results since it was noted by 

NASA, during test stand firings and flight conditions, that the SSME is 

stable at steady-state conditions. 

This 

Table 4.1 Input values at FPL obtained from Rocketdyne 

Parameters Values 

. . . . . . . . . . . . . . . .  I Pc 40.403E6 Pa (5860 psia) i 
I I 

i To . . . . . . . . . . . . . . . .  118.8 K (214 R) 
i I 

Tf . . . . . . . . . . . . . . . .  157.8 K (284 R) 

m . . . . . . . . . . . . . . . .  37.72 Kg/sec (83.0 lbm/sec) 
mf . . . . . . . . . . . . . . . . .  36.36 Kg/sec (81.0 lbm/sec) 
0 

! . . . . . . . . . . . . . . . .  1105.5 K (1990 R) 
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Figure 4 . 1  Stable operation a t  f u l l  power l eve l  (FPL), 
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The analysis of the SSME fuel preburner chug during shutdown, 

presented in this thesis, is in agreement with the experimental 

results supplied. 

4 . 2 )  varies from 115 Hz to 145 Hz, 

The frequency for the fuel preburner chug (Fig. 

as determined by counting the 

peaks over a selected time segment. 

over the entire time interval is 125 Hz. 

predicted by the--nCdel differed by 10 percent from the mean value 

obtained experimentally. 

vative linearized approach taken in the analysis. 

frequencies are in good agreement at the two end regions of the chug, 

since the low amplitude chug is more linear at the start and finish. 

The frequency at the two end points is approximately 140 Hz. Figures 

4.2 and 4.3,  which are experimental results performed by NASA, show 

the chug frequency trace at the mean chugging pressure and the chamber 

pressure variation in the fuel preburner during shutdown respectively. 

These results, in conjunction with Figures 4.4 and 4.5, show the 

comparison between experimental and analytical predictions. 

In order to isolate the chug during experimental runs, the analog 

The mean frequency of the chug 

The chug frequency 

This disagreement was due to the conser- 

The predicted 

data were filtered to pass only frequencies on the range 70 < f < 200 

Hz and scanned visually for an amplitude surge representing the chug. 

When the surge was noticed the data were electronically plotted with 

pressure as a function of time. 

presented in Fig. 4.2 shows that at a mean chamber pressure of 

4.4815E6 Pa (650  psia) the chug starts at approximately 2.3 

The fuel preburner chug trace 

63 



m
 

*, D 
ni 

D 

w
 0 3 al 

4J 

al Fc 
7 M

 

64 



4 
i 

m
 

w
 0 

3 P) 
cr 

V
 

U
 

m
 

65 



Unstable 
Operation 

Operating 
Point 

Q 

Stable 
Operation 

.05 0:OS 0107 0:oa 0:09 ( 

OX-INJ PRESS DROP TO CHAM PRESS 
10 

Figure 4.4 I n s t a b i l i t y  of preburner. 
P = 4.4815E6, Pa, To = Tf = 120 K 

C 
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Figure 4.5 Stability of preburner with high oxidizer and fuel 
temperatures at maximum allowable pressure. 
P = 3.7902E6 Pa, T = Tf = 120 K . 

C 0 

67 



seconds after the shutdown command is issued and continues for about 

0.5 seconds before stabilizing out. 

The amplitude of the chug shown increases and then decreases with 

a pause at about 2.6 seconds before increasing again. 

menon experienced by the chug is still unclear and further investiga- 

tion is needed in this area on amplitude prediction. 

This pheno- 

Since the chug was noted experimentally to stable out at 

approximately 3.0 seconds after the shutdown command is given, Fig. 

4.3 shows the fuel preburner chamber pressure subsequently decreasing 

from 4.481536 Pa (650 psia) to about 6.8945E5 Pa (100 psia) after 3.9 

seconds. Therefore, it may be inferred that stable operation in the 

fuel preburner is prevalent in the region where the chamber pressure 

is below the mean chugging pressure of 4.4815E6 Pa (650 psia). 

The results obtained from the analytical solution, plotted in 

Figures 4.4 and 4.5, are in good agreement with the experimental 

results discussed above. 

chamber pressures from 3.447436 Pa (500 psia) to 5.860536 Pa (850 

psia). 

of the SSME is presented in Table 4.2. 

The model was tested with a set of varying 

The other required input conditions during the shutdown phase 

Figures 4.4 and 4.5 represent the nominal operating condition 

together with the critical pressure drop values ( 1 /P ) '  and 

( .lPoi/Pc)' and the frequency. 

is the critical value of the fuel injector pressure drop ( AP 

At pressures greater than or equal to 4.481536 Pa (650 psia), shown in 

Fig 4.4, the calculated operating point 

'fi c 

The only boundary point of interest 

/P ). fi c 

4Pfi/Pc = 1.98 signifying 
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Table 4.2 Input values at shutdown condition 

Parameters Values 

Pc . . . . . . . . . . . . . . . .  
To . . . . . . . . . . . . . . . .  

4.4815E6 Pa (650 psia) 

120.0 K (216 R) 
. .  

I Tf . . . . . . . . . . . . . . . .  120.0 K (216 R) 
m . . . . . . . . . . . . . . . .  13.45 Kg/sec (25.59 lbm/sec) I :o . . . . . . . . . . . . . . . .  I mf 33.90 Kg/sec (74.58 lbm/sec) I 
T . . . . . . . . . . . . . . . .  1065.0 K (1917 R) I C  

instability with a frequency of approximately 137 Hz. Fig 4.5 shows 

the marginal stability with an operating point, APfi/Pc of 2.49, in 

the fuel preburner at a chamber pressure of 3.790236 Pa (550 psia). 

Because the operating point is just below the minimum point of the 

stability boundary where A P . /P is 3.27, stable operation is fl c 

indicated. Therefore, it can be concluded from these results that 

the model predictions are in agreement with experimental techniques. 

Results of Sensitivity Study 

The onset of the chugs due to chamber pressure variations were 

The chamber pressure was analyzed utilizing the computer program. 

varied from 3.447436 Pa (500 psia) to 5.860536 Pa (850 psia) as input 

into the program. 

200 Hz, the stability boundary computation is performed with the lower 

frequency bound and is incremented by 0.1 Hz to calculate the required 

Since the chugging frequency ranges between 75 to 
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pressure drops. 

computing the fuel injector pressure drop and the oxidizer injector 

pressure drop at the critical frequency of interest. The stability 

, of the nominal operating point can thus be determined. 

A stability boundary was therefore generated by 

The model was used to generate stability curves for several 

parametric studies. These studies include chamber pressure varia- 

tions, oxidizer and fuel temperature variations and oxidizer and fuel 

flow rate variations. 

performed utilizing two different bulk moduli. 

in the model were for gaseous helium and liquid oxygen. 

is an inert gas the compressibility of helium may provide the 

necessary softness for the chug. Unless otherwise stated, the value 

of the helium bulk modulus was used in the model. These parametric 

studies were performed with a single variable parameter while others 

were held constant. 

The above parametric studies were also 

The bulk moduli used 

Since helium 

As indicated in Figures 4.4 and 4.5,  instability exists at 

pressures greater than 3.790236 Pa (550 psia) while stable operation 

is prevalent at pressures below 3.790236 Pa (550 psia). At pressures 

greater than 4.481536 Pa (650 psia) instability exists, however, there 

is an upper bound to the instability since the preburner is stable at 

full power level. 

When low oxidizer and fuel temperatures (T = 40 K, Tf = 40 K 

(72  R)) were utilized as inputs, with varying chamber pressure the 

system was inevitably unstable even at low pressures with a frequency 

of 115 Hz and 121 Hz, shown in Figures 4.6 and 4.7 respectively. 

0 

The 
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Figure 4.6 Unstable operation with low fuel and oxidizer 
temperatures at low chamber pressure. 
To = Tf = 40 K, Pc = 3.790236 Pa 
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Figure 4.7 Unstable operation in preburner with low oxidizer 
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T = Tf = 40 K ,  Pc = 4.4815E6 Pa 
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ratio of fuel injector pressure drop to chamber pressure ( 

of the operating point was never below the minimum point of the 

stability boundary. 

A P  . / P  ) 
fl c 

The effect of fuel and oxidizer temperatures on the stability of 

the system was also considered. 

(650 psia), which is the mean chugging pressure, the oxidizer 

temperature was subjected to a variation ranging from 40 K to 120 K 

while the fuel temperature was kept relatively low at 40 K. The 

variation of varying oxidizer temperature with low fuel temperature 

(Fig. 4.8) did not stabilize the fuel preburner system, however, it 

was noted that operation at high fuel and oxidizer temperatures (120 K 

and 100 K respectively) stabilized the system shown in Fig. 4.9. 

High oxidizer and fuel temperatures cause partial vaporization of the 

liquid oxidizer; hence smaller droplet radius. Vaporization and 

mixing times are thus decreased with the smaller droplet radius. 

stability of the system, probably due to the proper mixing of the 

reactants, could be achieved by increasing propellant temperatures 

even at the mean pressure where chugging is prevalent. 

At a chamber pressure of 4.4815E6 Pa 

The 

Since it is undesirable to work with high oxidizer temperatures, 

several test cases were run to determine if oxidizer temperatures 

could be reduced and yet maintain stability. It was noted that 

stability was achieved with higher fuel temperatures while other 

parameters remained constant. This result presented in Fig. 4.10 

shows the fuel temperature at 150 K while oxidizer temperature was 

lowered to 86 K. 
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Figure 4.9 Stable operation in preburner with high fuel and 
high oxidizer temperatures at mean chugging pressure. 
T = 100 K, Tf = 120 K, Pc = 4.481536 Pa 
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Figure 4.10 Stable operation in preburner with increasing fuel 
temperature and lower oxidizer temperature at mean 
chugging pressure. 
T = 85.7 K, Tf = 150 K, P 

0 C 
= 4.481536 Pa 
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At the nominal operating point, reduction of fuel flow rate is 

unlikely to inhibit the chug, since chugging exists at relatively high 

fuel flow rate (equivalence ratio = 6.0). 

being an inverse function of fuel flow rate, increases with fuel flow 

reduction. 

and hence increases the combustion instability. Figures 4.11 and 

4.12 show the operating point in the unstable region with fuel flow 

reduction at a frequency of 129.2 Hz and 136.3 Hz respectively. 

The mean droplet radius, 

This causes an increase in vaporiiation and mixing time 

The influence of varying the oxidizer flow rate on the chug was 

studied. Although there is no oxidizer feed during shutdown, as the 

FPOV is already closed, the helium flow rate is considered as the 

oxidizer flow since it clears the residual oxidizer from the lines and 

manifold. This is possible because the residual oxidizer flow rate 

is equivalent to that of helium using the appropriate density value. 

The model predicted that stability was achieved at low pressures with 

increased flow rates. 

The model was also tested with the bulk modulus of liquid oxygen 

at conditions where chugging exists. There were no stability bounda- 

ries generated for those conditions signifying stable operation. 

The frequency range of 75 to 200 Hz was tested with variations in the 

chamber pressure, oxidizer and fuel temperatures. The instability 

which was prevalent at previous operating conditions, with the bulk 

modulus of helium, was eliminated utilizing the bulk modulus of liquid 

oxygen. This shows that the chug depends not only on operating 
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Figure 4.11 Unstable operation in preburner with low fuel flow 
rate at mean chugging pressure, 
&, = 5 Kg/sec, Pc = 4.481536 Pa 
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79 



conditions but also on the helium purge conditions, specifically the 

compressibility of the helium. 

The following figures (Figures 4.13, 4.14 and 4.15)  show the 

variation of chugging frequency with oxidizer temperature, fuel flow 

rate and chamber pressure respectively. Fig. 4.13 shows that stable 

operation was achieved with oxidizer temperatures between 80 to 115 K. 

Temperatures below 80 K resulted in unstable operation at a frequency 

of 139 Hz. - F i g .  4.14 shows that the system was unstable with fuel 

flow variation at a frequency of 138 Hz. The two endpoints of the 

curve were arbitrary selected for this parametric study. Fig. 4.15 

shows that stable operation is permissible at low pressures. The 

chugging frequency increases somewhat linearly with increased, chamber 

pressure up to 5.75936 (830 psia). 

The preceding parametric studies reflected several intriguing 

results. Although the analysis in this model was simplified, never- 

theless, it provided the basic understanding to the occurrence of the 

SSME fuel preburner chug and the parameters to be investigated further 

for chug elimination. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

- -  

The objectives of this research were to identify the significant 

elements in triggering the onset of the chug and its' possible 

elimination. System variables such as chamber pressure, propellant 

temperatures and flow rates were varied and their effectsen the 

stability of the SSME fuel preburner chug analyzed. 

The first task was to review the literature in the area of low 

frequency instability as well as to solicit available computer models 

capable of analyzing the chug. The best available program was modi- 

fied to analyze the fuel preburner chug. The model presented in this 

thesis is not restricted to SSME preburners but may also be applied 

to liquid propellant rocket engines. This model proved to be 

valuable in meeting the required objectives. 

The model in this thesis assumes quasi-steady state conditions 

and was linearized to simplify the non-linear governing differential 

equation. The method of perturbations was used to linearize the 

governing differential equation. Chemical kinetics in the combustion 

process were assumed to be infinitely fast and were therefore 

neglected in the analysis. 

Although the model has been simplified and linearized, it is 

nevertheless capable ,of chug predictions and is in excellent agreement .. . 

with experimental results provided by Rocketdyne and NASA. The 
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predicted frequencies differing by less than ten percent of the 

measured value show that this model is effective in analyzing the SSME 

fuel preburner chug. 

The VAX 11/780 CPU time required for each sensitivity study was 

approximately 5 seconds. This extraordinarily short CPU time is 

beneficial as several different test cases could be performed with 

limited cost compared to experimental runs. 

Since the chug occurs during the helium purge of the oxidizer, 

the sensitivity studies were performed utilizing the bulk modulus of 

helium and repeated with the bulk modulus of the liquid oxidizer. 

The chugs did not exist when the relatively incompressible oxygen was 

considered. 

The results of these sensitivity studies are presented and 

discussed in detail in the previous chapter. Table 5.1 summarizes 

the results. Several intriguing results were revealed by the 

model. 

significant parameters such as fue1,temperatures and fuel flow 

rates. 

instability was suppressed at higher fuel temperatures. This 

explains why chugging is reduced at high cut-off power; hence high 

fuel temperature. It was also noted that at high fuel 

temperatures the oxidizer temperature could be reduced. Other 

parameters of interest such as oxidizer flow rates and bulk modulus 

have shown to influence the instability to some extent. 

The onset of the chugs were linked to a couple of 

The predicted results show that the fuel preburner 
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Table 5.1 Summary of parametric studies performed 

Variation of System 
Variables 

Comments 

At low fuel and oxidizer temperatures 
approximately 40 K (72R) the system was 
inherently unstable. 
with high fuel and oxidizer temperature 
T = Tf = 120 K (216 R) stability is 
aghieved with maximum pressure of 3.7902E6 
Pa (550 psia) 

pC 

At the other extreme 

TO 

Tf 

m 
0 

mf 

At the mean chugging pressure of 4.4815E6 
Pa (650 psia) low oxidizer temperature and 
high fuel temperature proved unsuitable for 
operation. However, with increased 
To = 100 K (180 R) stability is possible. 
Further increases in fuel temperature to 
150 K (270 R) showed that stability was 
achieved with lower oxidizer temperatures. 

At low fuel temperatures the chug was not 
inhibited at all with varying oxidizer 
temperatures even at low pressures where 
stability was prominent. 

High helium flow rates (analogous to 
oxidizer f1ow)showed that chugging was 
eliminated. 

Variation in fuel flow rate did not 
eliminate the chug. It was noted that 
since the MFV is not closed until after 
chugging ends, fuel variation would 
not eliminate the chug. 

Bulk Modulus When liquid oxygen bulk modulus value 
was used the system was inherently stable 
since no stability boundary was generated. 
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The modeling effort should be continued and supported in an 

attempt to understand the non-linear chugs. This model, being 

linearized is limited in the capability of predicting amplitude 

changes of the chug. 

NASA/Rocketdyne transient model into the analysis. 

The challenge now is to incorporate the 

This research has laid the foundation for continuing study of the 

Although this model was developed to analyze the SSME shutdown chug. 

fuel preburner chug it may be applied to the oxidizer preburner or 

other liquid propellant rocket engine. 

understanding of the chugging phenomenon as it was developed 

predominantly as a useful analysis tool for engine designs. 

This model will assist in the 
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DERIVATION OF EQUATIONS 
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In this appendix the reduction process involved in acquiring eq. 

(3.5) from eq. ( 3 . 3 )  as well as the general reduction of the charac- 

teristic equation will be presented. 

will be utilized to linearize any non-linear differential equations. 

The method of perturbations 

Eq. ( 3 . 3 )  is reproduced below: 

( 3 . 3 )  

Taking the perturbations of system variables and neglecting higher 

powers and products of perturbations results in the following 

equation. 

1 

Dividing both sides by the total propellant flow rate gives: 

which can be reduced easily to: 
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Combination and reduction of characteristic equation 

The characteristic equation, derived in chapter three, is 

presented below as: 

(3.24) 

Letting s = j w  I ,  Zo(s) = Rot + jIoy Z f ( s )  = R f '  + jIf and noting that 

e = cos(x) - isin(x), eq. (3.24) thus becomes: - ix .. 

P X K  cos ( W ' C ~ )  - jPcXK sin (w'too) 

R ' + j i  I +  -c1 - j w l e g  = 

Multiplying both sides of eq. (A3) by (R ' + jIo) and ( R f '  + j I f> and 

separating into the respective real.and imaginary parts the following 

equations are obtained: 

0 
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Imaginary Part 

Solving equations ( A 4  and A5) for Rf': 

Real Part 

r 1 

Imaginary Part 
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Equating equations (A6 and A7) and solving for R ' yields the 
characteristic equation in quadratic form. 

0 

P XKsin(w'c - WIT 1 + 
C f I 

(3 .29 )  
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

9: 

;k 

1 

DIIiENSION UPL(lOOO), ACRL(1000), UPH(100), ACRH(100), FL(1000), 
FH( 100) 
DIMENSION ACCL(lO),UPPL(lO), FFL(10), ACCH(10), UPPH(10), 
FFH( 10) 

REAL NUMER 
INTEGER ENO, ENF, PARAM 
OPEN (UNIT=20 , FILE= ' OUTCHUG. DAT ' , STATUS= ' OLD ' ) 
OPEN (UNIT=2lYFILE='PLOT21 .DAT' ,STATUS='OLD') 
OPEN (UNIT=22,FILE='PLOT22.DAT',STATUS='OLDf) 
OPEN (UNIT=23 ,FILE='PLOT23 .DAT' ,STATUS='OLD' ) 
OPEN (UNIT=24,FILE='PLOT24.DATfySTATUS='OLD') 
OPEN (UNIT=25,FlLE='PL0T25.DAT',STATUS='OLDf) 
OPEN (UNIT=26,FILE='PLOT26.DAT~ySTATUS=fOLD') 
OPEN (UNIT=27,FILE='PL0T27.DAT~,STATUS='OLDf) 
OPEN (UNIT=28,FILE='PLOT28.DAT',STATUS='OLDf) 

IOUT=20 
I0=21 
C1=-0.1072 
PI=4. "ATAN (1. ) 
FORMAT ( / / )  

C THE FOLLOWING DATA IS FOR HYDROGEN 
RF=4126. ! FUEL 
RHOF=20. ! FUEL 

FUEL 
GAS CONSTANT (J/kg C) 
DENSITY (kg/m3) 

C THE FOLLOWING DATA IS FOR CYROGENIC OXYGEN OXIDIZER 
TCR=154.5 ! CRITICAL TEMP (K) 
WTO=32. ! MOL. WT (kg/kg mole) 
HV=2.f3E5 ! HT. OF VAPORIZATION (J/kg) 
RHO=115 2 .  ! DENSITY (kg/m3) 
STs1.19E-2 ! SURF. TENSION (N/m) 
VISz3.0348E-4 ! VISCOSITY (N s/m2) 
RSTVC=( (1143. /RHO)>v(VIS/l. 9E-4)*(ST/l. 33E-2))*% 25 
WTT=(wTO/100. )"".35 ! MOL': WT COEFF USED IN EL50 
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HVT=(HV/3.26E5)" ' : .8  ! H T .  O F  VAP C O E F F  VSED I N  EL50 
P H I = 6 .  ! E Q U I V A L E S C E  R A T I O  
SWC=O .&48 ! S W R I L I N G  FACTOR 

C THE T Y P E  O F  PARAflETRIC STUDY I S  S E L E C T E D  A T  T H I S  P O I N T  
15 W R I T E  (5, 2 )  
2 FORNAT (1H , ' T Y P E  OF PARAYETRIC STUDY'? ' , / / ,3s, 1 CHA?lBER 

@ P R E S S U R E  , / ,3x, ' 2 O X I D I Z E R  FLOW RATE , / ,3s, 
@ ' 3  FljEL FLOW R A T E t , / , 3 x , ' 4  O X I D I Z E R  T E > l P E R A T U R E ' , / ,  
@ 3x, ' 5 F U E L  TEMPERATURE , / ,'/ ,3s, E S T E R  S E L E C T L O S  . . . . . ' ) 

READ (5, 5';) PARAE1 

C THE FOLLOWING I S  COMBUSTION CHA?lBER GEO?lETRY DATA OBTAINED 
C FROM NASA AND ROCKETDYNE 

C D I A = 0 . 2 6 5  ! CHA?lBER D I A Y E T E R  (m! 
ELC=O . l o8  ! C Y L .  CHAflBER LENGTH ( m j  
AC=P Ii':CDIAi'd:2 / 4 . ! COPlB CHAMB. S-AREA (m?)  
VC=AC?kELC ! CHA?lBER VOL ( m 3 j  

C THE FOLLOWING I S  S P E C I F I E D  I S J E C T O R  GEOMETRY 
. DO=?. 8956E-3 ! O S  I N J E C T O R  O R I F .  DIA ( m )  

E N E = 2 6 4 .  . ! RO. O F  E L E Y E S T S  
ENO=ENE ! NO O F  O S  E L E ? f E S T S  
ENF=ENE ! NO O F  F U E L  ELE?lE?;TS 
ELO=O .05 11 ! OX E L E X E S T  LESGTH 

C F O R  S I N G L E  O R I F I C E  I N J E C T O R ,  VO?l IS  O X I D I Z E R  I S J E C T O R  ? lASIFOLD 
C VOLUME. VOF I S  F U E L  MANIFOLD VOLUME 

CDO= . 5  
CDF= . 5  
SWC=. 448 
V O F = 6 . 5 5 E - 5  
ELLS=0.1061 
D S U = 0 . 0 4 4 5  
VOM=9 .34E  - 4 
A P F O = l .  329E -5 

! FLOW C O E F F  O S  I N J  E L E Y E S T  
! FLOW C O E F F  F U E L  IKJ ELE?fEST 
! CORRECTION FOR SWIRLER 
! F U E L  ISJ PIASIFOLD VOL ( m 3 )  
! S U C T I O N  L I N E  LEKGTH (rn) 
! S L ' C T I O S  L I X E  D I A  ( m )  
! OX ElANIFOLD VOL (m2) 
! F U E L  ANNULUS ( m ? )  

C A T  T H I S  P O I N T  A D E C I S I O N  I S  MADE WHETHER TO GESERATE BOL'SDARIES 
C A T  V A R I O U S  CHAMBER P R E S S U R E S ,  U S I N G  O P E R A T I N G  POIhT DELAYS OR 
C T O  GENERATE BOUNDARIES U S I N G  DELAY VALUES S E N S I T I V E  TO F U E L  
C ANNULUS AREA J J = O  DENOTES FORMER AND JJ=l DESOTES LATTER 

J= 1 
JJ=O 
MN= 1 
LI=O 
IL=O 
IF (JJ E Q  

! T Y P E  OF STUDY 
! LOWER THROTTLING LI?lIT 
! LOW F R E Q  S O L S  I K D E S  
! H I G H  FREQ S O L S  INDEX 

0)  MN=18 
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C THIS SECTION DIVIDES THE RANGE OF THE PARAMETRIC STUDY INTO 
C EIGHT EQUAL SEGMENTS 

3 
@ 

4 
@ 

5 
(3 

6 
(3 

7 
(3 

8 
(3 

9 
(3 

10 
(3 

11 

IF (PARAM .EQ. 1) THEN 
WRITE (5, 3) 
FORPIAT (1H ,'WHAT IS THE MINIMUM AND MAXIlSlUM PRESSURE RAEGE 
FOR STUDY?') 
READ (5, *) PC1, PC2 
COUNT=(PC2-PC1)/(FLOAT(MN)-l.) 
WRITE (5, 4 )  
FORMAT (1H ,'INPUT OXIDIZER AND FUEL FLOW RATE AND 
TEMPERATURE RESPECTIVELY') 
READ ( 5 ,  ;k)WO, WF, TO, TF 
GO TO 13 
ELSE IF (PARAM .EQ. 2) THEN 
WRITE ( 5 ,  5 )  
FORPlAT (1H ,'WHAT IS THE MINIMUM AND MAXIMUM OXIDIZER FLOW 
RATE RANGE FOR STUDY') 

COUNT=(WO2-WOl)/(FLOAT(MN)-l.) 
WRITE (5, 6) 
FORMAT (1H ,'INPUT CHAMBER PRESSURE, OXIDIZER AND FUEL 
TEMPERATURE FUEL FLOW RATE RESPECTIVELY') 
READ (5, f:) PC, TO, TF, WF 
GO TO 13 
ELSE IF (PARAM .EQ. 3) THEN 
WRITE (5, 7 )  
FORMAT (1H , 'WHAT IS THE MINIMUM AND MAXIMUM FUEL FLOW RATE 
RANGE FOR STUDY') 
READ (5, *) WF1, WF2 
COUNT=(WF2-WFl)/ (FLOAT(MN)-1. ) 
WRITE ( 5 ,  8 )  
FORMAT (1H 'INPUT CHAMBER PRESSURE, OXIDIZER AND FUEL 
TEMPERATURE AND OXIDIZER FLOW RATE') 
READ (5, *) PC, TO, TF, WO 
GO TO 13 
ELSE IF (PARAM .EQ. 4 )  THEN 
WRITE (5 , 9) '  
FORMAT (1H , 'WHAT IS THE MINIMUM AND MLYIMUM OXIDIZER 
TEMPERATURE RANGE FOR STUDY') 
READ (5, *) T01, TO2 
COUNT=(TO2-TOl)/(FLOAT(MN)-l.) 
WRITE ( 5 ,  10) 
FORMAT (1H ,'INPUT CHAMBER PRESSURE, OXIDIZER AND FUEL FLOW 
RATE AND FUEL TEMPERATURE') 
READ (5, ;k)PC, WO, WF, TF 
GO TO 13 
ELSE IF (PARAM .EQ. 5). THEN 
WRITE ( 5 ,  11) 
FORMAT (1H , 'WHAT IS THE MINIMUM AND MAXIMUM FUEL 

READ (5, f:) WO1, W02 
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TEflPERATURE RANGE FOR STUDY ' ) 
READ (5 ,  ;k)TFl,  TF2 
C O U K T = ( T F Z - T F l ) /  (FLOAT(MN)-1 . )  
WRITE (5 ,  1 2 )  
FORXAT ( 1 H  , ' I N P U T  CHAFlBER P R E S S U R E ,  O X I D I Z E R  AND F U E L  
FLOW RATE AND O X I D I Z E R  TEMPERATURE' )  
READ (5, i':)PC, WO, WF, TO 
END I F  
DO 90 I = l , M N  
I N D E X z I  - 1 
IF (PARAM . E Q  . 1) PC=PC l+COUNT*FLOAT( INDEX)  
IF  (PARAM . E Q .  Z)WO=WOl+COUNT"FLOAT( INDEX)  
IF (PARAM . E Q  . 3 ) WF=WF l+COUNT;':FLOAT ( INDEX)  
IF (PARAM . EQ . 4)TO=TO l+COUNT;tFLOAT ( INDEX)  
I F  (PARAM . E Q  . 5)TF=TFl+COUNT-::FLOAT ( I N D E X )  
OF=WO /WF ! MIXTURE R A T I O  
BO=PC ! BULK MODULUS (Pa) 
K=O ! VARIABLE FUEL AREA INDEX 
APF=APFO ! F U E L  ANNULUS AREA ( m 2 )  
AOV=PI*O .0279:k%92/4. ! C T R L  VAL AREA ( m 2 )  

- -  

- -- 

C COFlPUTE SLOPE O F  X AND Y FROM E Q U A T I O N S ' .  . . . . . . 

C THE S P E C I F I C  HEAT R A T I O  I S  USED T O  CALCULATE CHAMBER PRESSURE 
C AT T H E  I N J E C T O R  FACE 

T C = 1 0 6 5 .  ! COflBUSTION TEMP 
~e=122 .3  ! COMB PROD GAS CONST ( J / K g  K )  
GAMMA=O . ! S P E C I F I C  HEAT R A T I O  OF PRODUCTS 
CALL GAM ( T C ,  GAMMA) 
ACOUS=SQRT (GAMMA"RC;':TC) ! ACOUSTIC VEL E X I T  
WTOT= WO + WF 
RHOH2=PC"l.  E-6;Q. / (82 .06E-33 ' fTC*10  1 3 2 W . 0 3 )  
RHOH20=( 1. / 1.834) / (2.2+:2.54E - 2"2':3̂ 12, 
R H 0 1 = ( 5 . / 2 0 . ) ; k R H O H 2  + ( 1 . / 2 0 . ) * R H O H 2 0  
A E = 4 . 9 2 E - 2  
EMC=WTOT/ (AC0US;kRHO 1;':AE ) !MACH NO AT E X I T  

VELC=EMC"ACOUS - ! GAS VEL E X I T  
E X P  l=GAMMA/ (GAMMA - 1. ) 
PCI=PC"( 1. +GAMMA+:EMC;+"2) / (1. +(GAMMA- 1. ) / 2  .+fEMC":;*2) 

@ ik"EZ(P1 ! I N J .  P R E S S  

C CO?lPUTE V E L O C I T I E S  AND PRESSURE DROPS.  

14 VF=WF/ENF/ PCI:':RF;tTF/APF ! FUEL I N J E C T I O N  VEL 
P F = P C I W Q R T (  1. +VF";'Q/CDFf=k2/RF/TF) .! F U E L  I N J  MANIFOLD P R E S S  
VO=WO/ENO/RHO/ P I /DO':+:2*4. ! I N J  VEL O F  DROPLET 
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EMR=OF;WO/ V F  ! I N J  MONENTUM R A T I O  
D P  J= ( WO / E N 0  / CDO / P I /DO;':;': 2"4 . ) ;':;+Z / RHO / 2 . 

C DROP 
! O S  I N  J - OR I P R E S  S 

DPS=(WO/AOV)f=Y2/RHO/Z. ! P R E S S  DROP S U C T I O N  L I N E  
DPP=DPJ+DPS ! P R E S S  DROP VALVE T O  I N J  FACE 
PO=PCI+DPP ! OX MAN PRESSURE 

C T H E  FOLLOWING S E C T I O N  COHPUTES DROP S I Z E ,  BURNING LENGTH, 
C DELAY T I N E S .  

1 7  RMCTN=O .118f:DO"SWC':RSTVC~:SQRT (EMR) ! MEAN OX DROP RAD 
TT=( 1 . -TO/TCR);+". 4 ! TEMPERATURE C O E F F  . 
EL50=0.0699~~~~~(RMCTN/7.62E-5)~~~~1.45~+(V0/30.5)~~~~.75~~ 

@ WTTf:HVT/ (PC/2.07E6)+=+. 66 ! LENGTH FOR 50% PROPELLANT 

TAUV=EL5O/VO ! OX VAP TIME DELAY (sec) 
WTOT=WF+WO ! TOTAL PROPELLANT FLOW 

C VAPRO I ZED (rn ) 

C RATE (kg/sec) 

C 
c P O I N T  PRESSURE DROP R A T I O S .  

COMPUTE GAS R E S I D E N C E  TIME, GAS PHASE DELAY C O E F F  AND OPERATING 

20 THETAG=RHOF*VC/WTOT ! GAS R E S I D E N C E  TIME (sec) 
D P O = ( P O - P C I ) / P C  ! O X - I N J  O R 1  P R E S S  DROP TO CHAMB P R E S S  
D P F = ( P F - P C I ) / P C  ! F U E L - I N J  P R E S S  DROP T O  CHAMB P R E S S  
C O E F F X 1 .  E 3'; ( E L C  -EL5 0 ) /VELC ! GAS PHASE DELAY C O E F F  
TALTM=TM (COEFF)  ! GAS PHASE M I X I N G  AND RX TIME DELAY 
TAUT=TAUM+TA W ! TOTAL OX T I N E  DELAY 

C T H E  FOLLOWING S E C T I O N  COMPUTES L I N E A R I Z E D  R E S I S T A N C E S ,  
C INDUCTANCES,  CAPACITANCES AND G A I N S  

~G=((l.+(O.5~~(1.+PHI)/TC)aSLOPE)/WTOT)~~(PCI/PC) 
F G = ( 1 . - ( 0 . 5 ~ ~ ( P H I ~ + ( l . + P H I ) / T C ) " S L O P E ) / ~ O T ) ~ ~ ( P C I / P C )  
RE SF= ( PF;'"2 - P C  Is+%': 2 ) / ( P C  1 *WF ) 
ELJ=ELO;k4./ENO/PI/DO;k;+2 ! O X - I N J  ELEM INDUCTANCE ( l / m )  
ELSU=ELLSs':4. /PI/DSU;':>':2 ! S U C T I O N  L I N E  INDUCTANCE ( l / m )  
COM=- BO / ( RH0;':VOM ) ! OX I N J  MAN. C A P .  ( l / sec  m 2 )  
COF=VOF/RF/TF  ! F U E L  I N J  MAN. CAP ( l /sec m 2 )  

! L I N E A R I Z E D  F U E L  

C PARAtlETERS O F  I N T E R E S T  ARE WRITTEN OUT 

WRITE ( I O U T ,  21) 

'FTEMP' , 2 X ,  'OXTEMP' ,3X, ' TETAG'  ,5X, 'TAUM' ,5X, ' R A D I U S '  , 6 X ,  

WRITE ( I O U T ,  22)  

21 FORMAT (1H , 4 X , ' P C ' , l O X , ' P O '  , 1 0 X , ' P F ' , 7 X , ' M O '  , 6 X , ' M F t , 3 X ,  
@ 
@ ' D P O ' , ~ X , ' D P F ' )  

22 FORMAT ( 1 H  ,3X,'(Pa)',8X,'(Pa)',8X,'(Pa)',4~,'(Kg/s)',2x, 
@ '(Kg/s)',~x,'(K)',4x,'(K)',Sxy'(sec)',5xy'(sec)',6xy'(m)', 
@ 7 x , ' ( P a ) ' , 8 x , ' ( P a ) ' , / )  
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WRITE (IOUT, 23 )  PC, PO, PF, WO, WF, TF, TO, THETAG, TAUM, 
(3 RMCTN, DPO, DPF 

@ 2 S , F 5 . 1 , 2 S y E S . 2 , 2 X , E s . 2 , 2 5 , E 8 . ~ , 2 ~ , E l O . 4 , 2 S , E l O . 4 , / / )  
23 FOR?lAT ( 1 H  ,E10.4,2X,E10.4,2Y,E10.4,2S,F5.2,2Y,F5.2,2Y,F5.1,  

C THE FREQGEXCY BAXDS AND INCREHENT ARE SELECTED 
C AND THE SOLUTION OF THE CHARACTERISTIC EQUATION I S  INITIATED 

FREQ=74.9 
JN=O 
N=O 
NN=O 

27 FREQ=FREQ + .1 
I F  ((FREQ .GT. ZOO.)  .AND. (FREQ .LT. 300 . ) )  GO TO 28 
GO TO 29 

N l = N  
FREQ=300. 
JM=O 
N=O 
NN= 1 
GO TO 30 

28 I F  (N .EQ. 0 )  JN=l 

29 I F  (FREQ .GT. 300. )  GO TO 50 
30 W=6.2832?':FREQ ! ANGULAR FREQUENCY 

II=1 ! MULTIPLE OX SOLN INDEX 
Rx=o. ! CRIT. REAL PART OF OX INPEDANCE 
RXl=O . 
RX2=0. 
RRF=O . ! CRIT. REAL PART FUEL IPIPEDANCE 
RRF 1=0. 
RRF2=0. 

DPOCS=O. 
DPOC8=O. 

DPFl=O . 
DPF2=O. 

DPOC2zO. ! RATIO OF O X - I N J  PRESS DROP TO CHAMB PRESS 

DPFC=O . ! CRIT VAL OF FUEL-INJ PRESS DROP TO CHAMB PRESS 

C TERMS I N  THE CHARACTERISTIC EQUATION ARE EVALUATED AT THE 
C SPECIFIED FREQUENCY 

EMAGFZ- 1. /W/COF?':PF/PCI ! IMAG PART OF FUEL INPEDENCE 
THETAT=TAUT;':W 
THETAPf=TAUWW 
THETAV=TAW"W 
THETAL=EL J?yW 
ALPHAG=THETAG$':W 
Al=COS (THETAM) 
B l=S I N  (THETAM) 
A2=COS (THETAV) 
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B2=SIN(THETAV)  
A3=COS(THETAT)  
B 3 = S I N ( T H E T A T )  
F=ALPHAG"A 1 -C 1"B 1 

C THE SECOXD AlVD F I R S T  ORDER C O E F F  O F  THE C H A R A C T E R I S T I C  
C QUADRATIC EQUATION FOR C R I T I C A L  O S  REAL P A R T  
C ARE EVALUATED 

C THE FOLLOWING S E C T I O N  COMPUTES REAL AND IMAGINARY PARTS O F  THE 
C IMPEDANCES LOOKING UPSTREAM FOR A S I N G L E  O R I F I C E  C O N F I G .  

AXA=2. ;k ( P C  I - P O )  /WO ! R E A L  P A R T  OX-IMP (N s / m 2  kg) 
NUMER= ( ( C O M / W ) ~ ~  (ELS U;kW ) **2 + (ELSU2':W);k (COM/W ) ;':+:2) 
DENOM=(ELSU+:W + COM/W)+=':2 
BXA=NUMER/ DENOM 

32 EMAGO=THETAL+BXA ! IMAG PART OF OX IMPEDANCE 

C THE ZEROTH ORDER C O E F F I C I E N T  I N  THE QUADRATIC EQUATION F O R  
C C R I T I C A L  OX REAL P A R T  I S  EVALUATED. THE FOLLOWING S E C T I O N  
C SOLVES THE QUADRATIC AND RELATES SOLUTION TO THE PRESSURE 
C DROP R A T I O .  

C .  T H I S  S E C T I O N  S T A R T S  THE COMPUTATION O F  THE C R I T I C A L  
C REAL VALLTS O F  T H E  O X I D I Z E R  IMPEDANCE ( R o )  

IF (AG .NE. 0 . )  GO T O  33 
RY= -CG/BG 
RPC=LY-AXA ! C R I T  R E A L  PART O F  O X - I N J  IMP 
IF ( R P C  .LE. 0 . )  GO T O  27 

GO T O  38 

IF (ALPHA) 2 7 ,  34, 35 

RPC=RY - &XA 
IF  ( R P C  .LE. 0 . )  GO TO 27 
D P O C 2 = R P C W O / P C /  2 .  
GO T O  38 

RX%(-BG-SQRT(ALPHA))/2./AG 
R P C l = R X l - A X A  
RPC2zRX2-AXA 

DPOC2=RPC;':WO/PC/2. -. 
33 ALPHA=(BG;k;':2-4.;tAG;':CG) ! SQRT F A C T  I N  QUADRATIC E Q .  

34 RX=-BG/2 . /AG 

35 RXl={-BG+SQRT(ALPHA))/Z./AG ! C R I T  VAL REAL PART O X - I N J  
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IF  ( ( R P C 1  . L E .  0 . )  .AND. ( R P C 2  .LE. 0 . ) )  GO T O  27 
IF ( R P C 1  . L E .  0 . )  GO T O  36 
IF  ( R P C 2  .LE. 0 . )  GO T O  3 7  
I I=?. 
DPOC5=RPCl ;WO/PC/  2 .  
DPOC8=RPC2;kWO/PC/2. 
GO T O  39 

36 RPC=RPC2 
DPOC2=RPC;kWO/PC/2. 
RX=RX2 
GO T O  38 

37 RPC=RPC 1 
DPOC2=RPC;kWO/PC/2. 
RX=RXl 
GO T O  38 

C THE C R I T I C A L  F U E L  REAL P A R T  I S  DETERMINED U S I N G  OX SOLUTIONS.  
C THE RESULTS I S  RELATED T O  THE PRESSURE DROP 
C R A T I O  

38 ", . ... 
@ 

39 
@ 

40 
41 

42 

4 3  
44 

@ 
@ 

RRF= (FG"R,Y;kB 1"PC -FG;':EMAGO*A 1;':pC -XG"EMAGFaA3;kPC+ALpHAG;':E~lAGO;k 
EMAGF+EMAGF;kRXW 1 ) / (REkALPHAG -EMAGOkC 1 -XGf:B3;kPC ) 
IF ( R R F )  27 ,  27,  43 
R R F  1= (FG:kRX 19:B 1;':pC -FG;:EMAG@':A 1;kpC -XG;kENAGFaA3;':PC+ALPHAG;':E~AGO~~ 
EMAGF+EMAGF;':RXl*C 1) / (RX1;kALPHAG-EMAGOW 1 -XG*B3*PC) 
w 2 =  (F(?$RX2?kB 1+:pC -FGf:EMAGO*A1;kPC -,YG"EMAGF;kA3;kPC+ALP~G;':E~~AGO;': 
EMAGF+EMAGF;':RX2+:C 1 ) / (RX2;';ALPHAG -EMAGO:C 1 -XG"B 3;':PC ) 
IF ( R R F 1  . G T .  0 . )  GO TO 40 
RRFl=O . 
DPOC5=O. 
IF ( R R F 2  .LE. 0 . )  GO T O  41 
GO T O  42 
IF ( R R F 2  . G T .  0 . )  GO T O  42 
RRF2=O.  
DPOC8=O e 

D P F  1=( SQRT (PCI*"2+WF;kPC 1"RRF 1) - P C I  ) / P C  
D P F 2 = (  SQRT(PCI:k*2+WF;kPCI*RRF2) - P C I )  / P C  
GO T O  44 
DPFC= (SQRT (PC1;++:2+WF;':PCI"RRF) - P C I  ) / P C  
IF ( ( D P O C 2  .EQ. 0 . )  .AND. ( D P F C  . E Q .  0 . )  .AND. (DPOC5 . E Q .  0 . )  
.AND. ( D P F 1  . E Q .  0 . )  .AND. (DPOC8 . E Q .  0 . )  .AND. ( D P F 2  
.EQ. 0.))  GO TO 27 

C THE LOV AND H I G H  FREQUENCY SLOUTIONS ARE SORTED I N  
C ORDER O F  I N C R E A S I N G  F U E L  PRESSURE DROP R A T I O  

IF (NN.EQ.  1) GO TO 47 
IF ( D P F 1  . E Q .  0 . )  GO T O  45 
IF ( D P F 2  . E Q .  0 . )  GO TO 46 
N=X+ 1 
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45 

46 

47 

48 

49 

50 

51 

52 

UPL(N)=DPFl 
FL(N)=FREQ 
ACRL(N)=DPOC5 
N=N+ 1 
UPL(N)=DPF2 
FL (N ] =FREQ 
ACRL(N)=DPOC8 
GO TO 27 
N=N+l 
UPL(N)=DPF2 
FL(H)=FREQ 
ACRL (N)=DPOC 8 
GO TO 27 
N=N+ 1 
UPL(N)=DPFl 
FL(N)=FREQ 
ACRL(N)=DPOC5 
GO TO 27 
IF (DPF1 .EQ. 0.) GO TO 48 

N=N+ 1 
UPH(N)=DPFl 
FH (N) =FREQ 
ACRH (N)=DPOCS 
N=N+ 1 
UPH(N)=DPF2 
FH(N)=FREQ 
ACRH(N)=DPOC8 
GO TO 27 
N=N+ 1 
UPH(N)=DPF2 
FH(N)=FREQ 
ACRH(N)=DPOC8 
GO TO 27 
N=N+ 1 
UPH(N)=DPFl 
FH (N ) =FREQ 
ACRH (N) =DPOCS 
GO TO 27 
IF ((FREQ .GT. 300.) .AND. (N .EQ. 0)) J?l=1 
N2=N 
IF ((JN .EQ. 1) .AND. (JM .EQ. 1)) GO TO 78 
IF (JM .EQ. 1) GO TO 51 
IF (JhT .EQ. 1) GO TO 52 
IM=3 
-GO TO 53 
IM= 1 
GO TO 53 
IM=2 
GO TO 56 

IF (DPF2..EQ. 0.) GO TO 49 
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5 3  N1 l=N 1 - 1 
DO 55 IX=1, E11 
I X 1= IX+ 1 
DO 55 JX=IXl, N1 
IF (UPL(1X)-UPL(JY)) 5 5 , 5 5 , 5 4  

UPL(IX)=UPL(JS) 
UPL( JX)=TEMP 
TE?fP=ACRL (IX) 
ACRL(IX)=ACRL(JX) 
ACRL (JX) =TEMP 
TEPfP=FL (IX) 
FL(IX)=FL(JX) 
FL(JX)=TEMP 

IF (IPf .EQ. 1) GO TO 5 9  

DO 5 8  KX=1, N22 
KXl=KX+l 
DO 5 8  LX=KXl, N2 

5 4  TEMP=UPL (IX) 

55 CONTINUE 

56 N22zN2- 1 

IF (UPH(KX)-UPH(LY)) 58, 58, 57 
57 TENP=UPH (KX) 

UPH (KX)=UPH (LX) 
UPH (LX) =TEMP 
TEKP=ACRH (KX) 
ACRH(KX)=ACRH(LX) 
ACRH(LX)=TEMP 
TEMP=FH (KX) 
FH(KX)=FH(LX) 
FH(LX)=TEMP 

5 8  CONTINUE 

C THE VARIABLE AREA CASE (JJ=l) CALLS INTERPOLATION TO FIND 
C CRITICAL OX REAL PART AND FREQUENCY AT THE OPERATING FUEL 
C PRESSURE DROP RATIO. THE RESULT IS STORED. 
C THE THROTTLING CASE (JJ=O) CALLS FOR WRITING OUT SOLUTION 

5 9  IF ((JJ..EQ. 1) .AND. (IN .EQ. 1)) GO TO 6 0  
IF ((JJ .EQ. 1) .AND. (IM .EQ. 2 ) )  GO TO 6 2  
IF ((JJ .EQ. 1) .AND. (IM .EQ. 3 ) )  GO TO 6 4  
GO TO 6 8  

LI=LI+l 
NS=Nl- 1 
DO 61 L=l, NS 
IF (DPF .GT. UPL(L+l)) GO TO 6 1  
ACCL(LI)=ACRL(L!+(DPF-UPL(L))*(ACRL(L+l)-ACRL(L))/(UPL~L+l~- 

FFL(LI)=FL(L)+(DPF-UPL(L))a(FL(L+l)-FL(L))/(UPL(L+l)-UPL(L)) 

60 IF ((DPF .LT. UPL(1)) .OR. (DPF .GT. UPL(N1))) GO TO 79 

@ UPL(L)) 

UPPL(LI)=DPF 
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6 1  

62 

(3 

63 

6 4  

@ 

65 

66 

@ 

@ 

67  

GO TO 79 
CONTINUE 
LI=LI - 1 
GO TO 7 9  
IF ((DPF .LT. UPH(1)) .OR.  (DPF .GT. UPH(N2))) GO TO 7 9  
IL=I L+ 1 
NS=N:! - 1 
DO 63 Ply NS 
IF (DPF .GT. UPH(L+l)) GO TO 63 
ACCH(IL)=ACRH(L)+(DPF-UPH(L))~;(ACRH(L+l)-ACRH(L))/(UPH(L+l) 
-UPH (L) ) 
FFH(IL)=FH(L)+(DPF-UPH(L))~;(FH(L+l)-FH(L))/(UPH(L+l)-UPH(L)) 
UPPH(IL)=DPF 
GO TO 79 
CONTINUE 
IL=IL- 1 
GO TO 79 
IF ((DPF .LT. UPL(1)) .OR. (DPF .GT. UPL(N1))) GO TO 66 
LI=LI+l 
NS=N1- 1 
DO 65 L=l, NS 
IF (DPF .GT. UPL(L+l)) GO TO 65 
ACCL(LI)=ACRL(L)+(DPF-UPL(L))a(ACRL(L+l)-ACRL(L))/(UPL(L+l) 

FFL(LI)=FL(L)+(DPF-UPL(L))a(FL(L+l)-FL(L))/(UPL(L+l)-UPL(L)) 
UPPL(LI)=DPF 
GO TO 66 
CONTINUE 
LI=LI - 1 
IF ((DPF .LT. UPH(1)) .OR. (DPF .GT. UPH(N2))) GO TO 79 
I L=I L+ 1 
NS=N2 - 1 
DO 67 LJ=l, NS 
IF (DPF .GT. UPH(LJ4-1)) GO TO 67 
ACCH(IL)=ACRH(LJ)+(DPF-UPH(LJ))~:(ACRH(LJ+l)-ACRH(LJ))/ 
(UPH(LJ+l)-UPH(LJ)) 
FFH(IL)=FH(LJ)+(DPF-UPH(LJ))~:(FH(LJ+l)-FH(LJ))/(UPH(LJ+l) 
-UPH(LJ)) 
UPPH(IL)=DPF 
GO TO 79 
CONT I NUE 
IL=IL- 1 
GO TO 79 

-UPL (L) ) 

C WRITE OUT ORDERED SOLUTIONS 

68 WRITE (IOUT, 69) 
69 FORklAT (6X, ' FREQUENCY ' , 9 X  DELTAP FUEL/PC ,6X ' DELTAP OX/PC ' , 

@ 6x,'FREQUENCY',9xy'DELTAP FUEL/PCt;9x,'DELTAP OX/PC',/) 
IF (N1 .GT. 40 .OR. N1 .EQ. 40) ISTEP=40/2 
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IF (N1 .LT. 40) ISTEP=Nl 
WRITE (IOUT, 70) (FL(KL), UPL(KL), ACRL(KL), FL(KL+ISTEP), 

@ UPL(KL+ISTEP), ACRL(KL+ISTEP), KL=l, ISTEP) 
io FORYAT (2(8S,F5.1.2S,E20.3,25,E20.3)) 

WRITE (IOUT, 1) 
WRITE (IO, 71) (FL(IND), ACRL(IND), UPL(IND), DPO, DPF, 

62 IND=l, 4 0 )  
71 FORMAT (1H ,4X,F5.1,2X,E10.4,2Y,E10.4,2X,E10.4,2Y,E10.4) 

C VARIABLE AREA IS SPECIFIED 

78 IF (JJ .EQ.O) GO TO 89 
79 J=2 

K=K+ 1 
YY=K 
IF (YY .GT. 8.) GO TO 80 
IF (YY .EQ. 1.) GO TO 87 
APF=APF"YY / (YY - 1. ) 
GO TO 14 

C THE VARIABLE AREA VALUES OF CRITICAL OX REAL PART 
C AND FREQUENCY AT OPERATING FUEL PRESSURE DROP RATIOS ARE 
C CONVERTED TO PROPER VARIABLES FOR ORDERING AND WRITING 

80 IF ((IL .EQ. 0) .AND. (LI .EQ. 0)) GO TO 89 
IF (IL .EQ. 0) GO TO 83 
IF (LI .EQ. 0) GO TO 85 
DO 81 IZ=l, LI 

ACRL(IZ)=ACCL(IZ) 
FL(IZ)=FFL(IZ) 

Nl=LI 
IM=3 
J J=O 
DO 82 IZ=l, IL 
UPH(IZ)=UPPH(IZ) 
ACRH(IZ)=ACCH(IZ) 
FH (I Z ) =FFH ( I Z ) 

82 CONTINUE 
N2=IL 
GO TO 53 

83 DO 84 IZ=l, LI 

UPL(IZ)=UPPL(IZ) 

81 CONTINUE 

UPL(IZ)=UPPL(IZ) 
ACRL(IZ)=ACCL(IZ) 
FL(IZ)=FFL(IZ) 

N 1=LI 
IM=1 

84 CONTINUE 

JJ=O 
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85 

86 

87 

88 
89 
90 

92 

94 

GO TO 53 
DO 86 IZ=l, IL 
UPH(IZ)=UPPH(IZ) 
ACRH(IZ)=ACCH(IZ) 
FH (I Z )=FFH (I Z ) 
COKT I NUE 
N2=IL 
IM=2 
JJ=O 
GO TO 56 
APF=. 25;kAPF 
GO TO 14 
J=1 
IO=IO+l 
COhTINUE 
WRITE ( 5 ,  92) 
FORMAT (1H ,'ANOTHER STUDY?',//,3xY'l YES1,/,3x,'2 
READ (5, *) INPUT 
IF (INPUT .EQ. 1) THEN 
WRITE (IOUT, 94) 
FORNAT ( 1H1) 
GO TO 15 
END IF 
STOP 
END 

NO') 

FUNCTION TN (COEFF) 

DIMENSION S(7) , V(7) 
C THIS MAPS THE EMPIRICAL MIXING CURVE 

DATA S(l>/.5/,S(2>/l./yS(3)/1.5/,S(4)/1.8/,S(5)/2./,S(6) 
@ /2.2/ 

@ V(6)/1.9/ 
DO 1 I=l, 5 
IF ((S(1) .LE. COEFF) .AND. (COEFF .LT. S(I+l))) GO TO 2 

TM=1. E - 3:: (V ( I ) + (COEFF- S ( I ) );k (V ( I+1) -V ( I ) ) / ( S ( I+l ) - S ( I ) ) ) 
RETURN 
END 

DATA V(l)/.lS/,V(2)/.35/,V(3)/.7/,V(4)/1.075/,V(5)/1.4/, 

1 CONTINUE 
2 



SUBROUTINE GAP1 (TC, GAMWA) 
C THIS SUBROUTINE CO?lPUTES THE AVERAGE SPECIFIC HEAT RATIO OF THE 
C PRODUCTS USING THE EQUATIONS FOUND I N  VAN WYLEN. 

THETA=TC / 10 0 . 
R = l .  987 
C P H 2 = 1 3 . 5 0 5 - 1 6 7 . 9 6 ~ ~ T H E T A " ~ ~ ( - 0 . 7 5 ) + 2 7 8 . ~ 4 ~ ' ~ T H E T A ~ ~ ~ ~ ( - l ) - l 3 4 . 0 1  
*THETA;+;: ( - 1 .5 ) 
CPH20=34.19 -43.868JCTHETA;k" (0.25 )+19.7 78J:THETAJc+:( 0 .5  ) -0.88407 

@ 

@ %+THETA 
CPAVG= (5 . / 20. )%PH2 + ( 1. / 20 . )%PH20 
GAMMA=l. / (1. -R/CPAVG) 
RETURN 
END 
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