EVALUATION AND IMPROVEMENT OF LIQUID PROPELLANT ROCKET CHUGGING ANALYSIS TECHNIQUES: FINAL REPORT PART II

A STUDY OF LOW FREQUENCY COMBUSTION INSTABILITY IN ROCKET ENGINE PREBURNERS USING A HETEROGENEOUS STIRRED TANK REACTOR MODEL

PREPARED BY

Timothy A. Bartrand

and presented as a thesis for the Master of Science Degree
The University of Tennessee, Knoxville
August, 1987

Work supported by NASA GRANT NAG8-542
Principal Investigator: Paul E. George, II
EVALUATION AND IMPROVEMENT OF LIQUID PROPELLANT
ROCKET CHUGGING ANALYSIS TECHNIQUES: FINAL REPORT PART II

A STUDY OF LOW FREQUENCY COMBUSTION INSTABILITY
IN ROCKET ENGINE PREBURNERS USING A HETEROGENEOUS
STIRRED TANK REACTOR MODEL

PREPARED BY

Timothy A. Bartrand

and presented as a thesis for the Master of Science Degree
The University of Tennessee, Knoxville
August, 1987

Work supported by NASA GRANT NAG8-542
Principal Investigator: Paul E. George, II
ACKNOWLEDGEMENTS

I gratefully acknowledge the help that my advisor, Dr. P.E. George, has given me in research and the preparation of this thesis. His insights and the time he has spent helping me are greatly appreciated.

I also thank NASA, Marshall Space Flight Center, Huntsville, AL, for funding this research and Dave Seymour, of Marshal Space Flight Center, for the information he provided me on the space shuttle main engine shutdown.
ABSTRACT

During the shutdown of the space shuttle main engine, oxygen flow is shut off from the fuel preburner and helium is used to push the residual oxygen (between the oxidizer valve and the preburner combustion chamber) into the combustion chamber. During this process a low frequency combustion instability, or chug, occurs. This chug has resulted in damage to the engine's augmented spark igniter due to backflow of the contents of the preburner combustion chamber into the oxidizer feed system.

To determine possible causes and fixes for the chug, the fuel preburner was modelled as a heterogeneous stirred tank combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. Within the combustion chamber gases were assumed perfectly mixed. To account for liquid in the combustion chamber, a uniform droplet distribution was assumed to exist in the chamber, with the mean droplet diameter determined from an empirical relation. A computer program was written to integrate the resulting differential equations.

Because chamber contents were assumed perfectly mixed, the fuel preburner model erroneously predicted that combustion would not take place during shutdown. The combustion rate model was modified to assume that all liquid oxygen that vaporized instantaneously combusted with fuel. Using this combustion model, the effect of engine parameters on chamber pressure oscillations during the SSME shutdown was calculated. These studies showed that decreasing the
pressure downstream of the preburner's exit turbine, decreasing the fuel temperature, increasing the helium temperature and decreasing the length of the line connecting the helium storage tank to the helium check valve all had adverse effects on engine stability.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 THE SSME AND FUEL PREBURNER</td>
<td>1</td>
</tr>
<tr>
<td>1.2 SSME SHUTDOWN AND THE FUEL PREBURNER CHUG</td>
<td>4</td>
</tr>
<tr>
<td>1.3 MODELLING THE SSME FUEL PREBURNER AND FEED SYSTEM</td>
<td>9</td>
</tr>
<tr>
<td>II. LITERATURE SURVEY</td>
<td>12</td>
</tr>
<tr>
<td>2.1 OVERVIEW OF DIFFERENT INSTANCES OF COMBUSTION INSTABILITY, THEIR CAUSES AND EFFECTS</td>
<td>12</td>
</tr>
<tr>
<td>2.2 LOW FREQUENCY COMBUSTION INSTABILITY IN LIQUID BIPROPELLANT ROCKET ENGINES</td>
<td>17</td>
</tr>
<tr>
<td>2.3 CONTROLLING LOW FREQUENCY COMBUSTION INSTABILITY</td>
<td>24</td>
</tr>
<tr>
<td>2.4 THE SSME FUELSIDE PREBURNER CHUG</td>
<td>25</td>
</tr>
<tr>
<td>2.5 ROCKET ENGINE STABILITY PREDICTION MODELS</td>
<td>28</td>
</tr>
<tr>
<td>2.6 STIRRED TANK REACTOR MODELS</td>
<td>36</td>
</tr>
<tr>
<td>2.7 SUMMARY</td>
<td>41</td>
</tr>
<tr>
<td>III. MODELLING THE SSME FUEL PREBURNER</td>
<td>43</td>
</tr>
<tr>
<td>3.1 THE COMBUSTION CHAMBER</td>
<td>43</td>
</tr>
<tr>
<td>3.2 THE OXIDIZER FEED SYSTEM</td>
<td>52</td>
</tr>
<tr>
<td>3.3 THE EXIT TURBINE</td>
<td>57</td>
</tr>
<tr>
<td>3.4 SOLUTION OF THE GOVERNING EQUATIONS</td>
<td>58</td>
</tr>
<tr>
<td>IV. RESULTS</td>
<td>60</td>
</tr>
<tr>
<td>4.1 OPERATION OF THE FUELSIDE PREBURNER DURING THE SSME SHUTDOWN HELIUM PURGE</td>
<td>61</td>
</tr>
<tr>
<td>4.2 THE EFFECT OF HEAT TRANSFER RATE ON PREBURNER OPERATION</td>
<td>71</td>
</tr>
<tr>
<td>4.3 THE EFFECT OF DROPLET SIZE ON PREBURNER OPERATION</td>
<td>73</td>
</tr>
<tr>
<td>4.4 THE EFFECT OF THE OXIDIZER FEED SYSTEM ON PREBURNER OPERATION</td>
<td>78</td>
</tr>
<tr>
<td>4.5 THE EFFECT OF THE FUEL FEED SYSTEM ON PREBURNER OPERATION</td>
<td>79</td>
</tr>
<tr>
<td>4.6 THE EFFECT OF THE EXIT TURBINE ON PREBURNER OPERATION</td>
<td>87</td>
</tr>
<tr>
<td>4.7 THE EFFECT OF THE HELIUM PURGE ON PREBURNER OPERATION</td>
<td>90</td>
</tr>
<tr>
<td>4.8 PREBURNER OPERATION AT FULL POWER LEVEL</td>
<td>98</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Sequence of Events During the SSME Shutdown</td>
<td>7</td>
</tr>
<tr>
<td>4.1 Inputs to TRNCHG for the SSME Shutdown Simulation</td>
<td>64</td>
</tr>
<tr>
<td>4.2 Inputs to TRNCHG for Full Power Level</td>
<td>100</td>
</tr>
<tr>
<td>4.3 Summary of the Effects of Engine Parameters on Fuelside Preburner Operation</td>
<td>108</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Space Shuttle Main Engine Propellant Flow Schematic</td>
</tr>
<tr>
<td>1.2</td>
<td>Fuel Preburner Manifold and Feed System Schematic</td>
</tr>
<tr>
<td>1.3</td>
<td>Pressure Traces for the ssme Fuel Preburner Chug</td>
</tr>
<tr>
<td>2.1</td>
<td>Processes Involved in Flow Fluctuation Instabilities</td>
</tr>
<tr>
<td>2.2</td>
<td>Effect of Chamber Pressure on Chug Amplitude and Frequency</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic of Summerfield's Liquid Propellant Rocket System</td>
</tr>
<tr>
<td>2.4</td>
<td>Ideal Chemical Reactors</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic of the Fuelside Preburner Model</td>
</tr>
<tr>
<td>3.2</td>
<td>Conservation of Mass for the Gas Phase</td>
</tr>
<tr>
<td>3.3</td>
<td>Conservation of Mass for the Liquid Phase</td>
</tr>
<tr>
<td>3.4</td>
<td>Conservation of Species</td>
</tr>
<tr>
<td>3.5</td>
<td>Conservation of Energy</td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic of a Pipe Containing a Liquid/Vapor Interface</td>
</tr>
<tr>
<td>3.7</td>
<td>Schematic of a Pipe Node</td>
</tr>
<tr>
<td>4.1</td>
<td>Temperature v. Time for SSME Shutdown</td>
</tr>
<tr>
<td>4.2</td>
<td>Mole Number of Oxygen Vapor in the Combustion Chamber v. Time for SSME Shutdown</td>
</tr>
<tr>
<td>4.3</td>
<td>Chamber Pressure v. Time for the SSME Shutdown (Infinitely Fast Chemical Kinetics)</td>
</tr>
<tr>
<td>4.4</td>
<td>Oxidizer Mass Flow Rate v. Time For the SSME Shutdown (Infinitely Fast Chemical Kinetics)</td>
</tr>
<tr>
<td>4.5</td>
<td>Preburner Response to a Perturbation During Shutdown (Infinitely Fast Chemical Kinetics)</td>
</tr>
</tbody>
</table>

viii
4.6 Steady State Temperature v. Heat Transfer Rate 74
4.7 The Effect of Heat Transfer Rate on Chamber Pressure Oscillations 75
4.8 The Effect of Mean Droplet Diameter on Chamber Pressure Oscillations 76
4.9 The Effect of Mean Droplet Diameter on Oxidizer Mass Flow Rate 77
4.10 The Effect of Oxidizer Temperature on Chamber Pressure Oscillations 80
4.11 Pressure Oscillation Frequency v. LOX Temperature 81
4.12 Amplitude Ratio v. LOX Temperature 81
4.13 The Effect of Fuel Temperature on Chamber Pressure Oscillations 83
4.14 Pressure Oscillation Frequency v. Fuel Temperature 84
4.15 The Effect of Fuel Mass Flow Rate on Chamber Pressure Oscillations 85
4.16 Oxidizer Mass Flow Rate v. Fuel Mass Flow Rate 86
4.17 The Effect of The Pressure Downstream of the Exit Turbine on Chamber Pressure Oscillations 88
4.18 Amplitude Ratio v. Pressure Downstream of the Exit Turbine 89
4.19 The Effect of Helium Temperature on Chamber Pressure Oscillations 91
4.20 Pressure Oscillation Frequency v. Helium Temperature 92
4.21 Amplitude Ratio v. Helium Temperature 92
4.22 Chamber Pressure v. Time, No Helium Purge Line 94
4.23 The Effect of Helium Line Length on Chamber Pressure Oscillations 95
4.24 Pressure Oscillation Frequency v. Helium Line Length 96
4.25 Amplitude Ratio v. Helium Line Length 96
4.26 The Effect of Helium Line Diameter on Chamber Pressure Oscillations .. 97
4.27 Chamber Pressure v. Time at Full Power Level 101
4.28 Preburner Response to a Perturbation at Full Power Level 103
4.29 Unstable Preburner Operation (a) 104
4.30 Unstable Preburner Operation (b) 106
B.1 Flowchart For Program TRNCHG 136
B.2 Flowchart for the Calculation of Derivatives 137
LIST OF ABBREVIATIONS AND SYMBOLS

ABBREVIATIONS

CS : Control Surface
CV : Control Volume
FPOV : Fuel Preburner Oxidizer Valve
LOX : Liquid Oxygen
SSME : Space Shuttle Main Engine
STR : Stirred Tank Reactor
TSTR : Transient Stirred Tank Reactor

VARIABLES

A : Area (m²)

a₁, a₂, a₃ : Constants (dimensionless)
b : Constant (dimensionless)

C : Reaction Rate Coefficient (dimensionless)
c* : Characteristic Propellant Velocity (m/s)
cdm : Constant for finding mean droplet diameter (dimensionless)
cftp : Constant for finding mass flow rate through the exit turbine (dimensionless)

cp : Molar Specific Heat at Constant Pressure (J/kgmole·K)
D : Diameter (m)

E : Total Energy (Joules)
F : Force (N)

Ff : The Force on a Pipe due to Friction (N)
f : Constant Used to Find Ff (m⁻¹)
ΔH : Latent Heat of Vaporization (Joules)
h : Molar Enthalpy (J/kgmole)
k : Thermal Conductivity (W/m·K)
L : Pipe Length (m)
L*: Characteristic Combustion Chamber Length (m)
l : Length (m)
M : Molecular Weight (kg/kgmole)
Mg : Mass of Product Gases in the Combustion Chamber (kg)
m : Mass Flow Rate (kg/s)
Nj : Constant Exponent in a Reaction Rate Expression (dimensionless)
NN : Number of Nodes in the Oxidizer Feed System
NP : Number of Pipes in the Oxidizer Feed System
NRXN : Number of Elementary Chemical Reactions
NS : Number of Species in the Combustion Chamber
NSTRM : Number of Inlet Streams to the Combustion Chamber
n : Unit Vector
O/F : Ratio of the Oxidizer and Fuel Mass Flow Rates (dimensionless)
P : Pressure (Pa)
ΔP : Pressure Drop from the Storage Tank to the Combustion Chamber (Pa)
PHG : Hot Gas Pressure (Downstream of the Preburner Turbine) (Pa)
Q : Heat Transfer Rate out of the Combustion Chamber (J/s)
q : Volumetric Flow Rate (m³/s)
R : Gas Constant (J/kg·K)
R_g : Universal Gas Constant (J/kgmole·K)
Re : Reynolds Number (dimensionless)
r : Radius (m)
T : Temperature (K)
ΔT : Temperature Difference Between a Droplet and the Surrounding Gases (K)
t : Time (sec)
u : Molar Internal Energy (J/kgmole)
V : Volume (m^3)
v : Velocity (m/s)
α : Burning Rate Parameter, \(c \Delta T/\Delta H \) (dimensionless)
β : Density of Liquid in the Combustion Chamber (kg/m^3)
ε_{ss} : Convergence Criterion (kgmoles/kg)
\Gamma_i : Volumetric Rate of Production of Species i (kgmoles/m^3·s)
\Gamma_j : Volumetric Rate of Elementary Reaction j (kgmoles/m^3·s)
θ : Combustion Time Delay (sec)
\theta_g : Insensitive Combustion Time Delay (sec)
\theta_m : Mixing Time (sec)
\theta_v : Vaporization Time (sec)
λ_n, ω_n : Eigenvalues
μ_g : Viscosity of the Gases In the Combustion Chamber (N·s/m)
ϕ : Droplet Age in the Combustion Chamber (sec)
ρ : Density (kg/m^3)
σ : Mole Number (kgmoles/kg)
τ : Sensitive Time Lag (sec)
Ω : Vaporization Rate (kg/s)
\(\omega_v \) : Vaporization Rate per Droplet (kg/s/droplet)

SUBSCRIPTS

b : Burned
c : Combustion Chamber
e : Exit Flow
f : Fuel
i : Species i, Inlet Flow
j : Reaction j, Stream j
k : Pipe Node k
m : Mixing
o,ox : Oxidizer
t : Tank
v : Volumetric
l : Upstream
2 : Downstream

SUPERSCRIPTS

' : Forward Reaction
" : Reverse Reaction
* : Inlet
CHAPTER I

INTRODUCTION

For start-up and normal operation, the Space Shuttle Main Engine (SSME) fuel preburner maintains stable operation. During shutdown, however, both in ground test firings and actual use, the fuel and oxidizer preburners frequently undergo low frequency combustion instability, or chug. The chug is manifest as pressure oscillations in the preburners and their feed systems. These oscillations have resulted in undesirable turbopump bearing loads and have damaged the augmented spark igniter oxidizer supply piping due to backflow of fuel and oxidizer from the preburner combustion chamber into the feed system. This study is concerned with modelling the SSME fuel preburner and predicting its behavior during chug.

Following is an overview of the SSME and fuel preburner, an account of the engine shutdown process and a description of the model to be used.

1.1 THE SSME AND FUEL PREBURNER

Figure 1.1 shows a schematic of the SSME. Liquid hydrogen, stored at 19 K (34°F) and 0.21 MPa (30 psia), and liquid oxygen, stored at 90 K (164°F) and 0.69 MPa (100 psia), are the engine's propellants. Both the hydrogen and the oxygen enter the engine via low pressure pumps. These raise the pressure of the propellants to prevent cavitation in the subsequent pumps. After leaving the low
Figure 1.1: Space Shuttle Main Engine Propellant Flow Schematic
(From Sutton, 1986)
pressure pumps, the hydrogen and oxygen are pumped to high pressures by the turbopumps driven by the exit flow of the fuel and oxidizer preburners. At full power level the hydrogen leaves the fuel turbopump at 48.25 MPa (7000 psia) and the oxidizer leaves the oxidizer turbopump at 30.33 MPa (4400 psia).

Most of the oxygen (86% at full power level) flows directly to the main combustion chamber. The remainder flows to the two preburners. Upon leaving the high pressure pump, 76% (at full power level) of the hydrogen flows directly to the preburners. The remainder flows through the engine, cooling the preburner combustion chambers, the main combustion chamber and the nozzle.

The oxidizer and fuel preburners serve two purposes in the SSME: to drive the turbines which supply power to the high pressure pumps and to preheat the hydrogen for combustion in the main combustion chamber. At full power level, the fuel preburner operates at around 1090 K (1960°R) and 39.01 MPa (5660 psia) and the oxidizer preburner operates at around 830 K (1500°R) and 38.60 MPa (5600 psia). During the fuel preburner chug, the pressure in the fuel preburner varies around 4.48 MPa (650 psia). Actual average chamber temperature data is not available, but the Marshall Space Flight Center SSME transient model predicts mean temperatures between 440 K and 800 K (800°R and 1400°R) during the chug.

Injection of liquid oxygen and supercritical hydrogen into the fuel preburner is accomplished by means of 264 coaxial injectors. To cool the plate, hydrogen also is injected through small orifices.
across the face plate. At full power level, just before injection,
the hydrogen is at about 160 K (284°R) and 43.08 MPa (6250 psia) and
the oxygen is at about 120 K (214°R) and 48.4 MPa (7020 psia).

At full power level, the fuel preburner operates at an
equivalence ratio \(((\text{fuel}/\text{oxidizer})/(\text{fuel}/\text{oxidizer})_{\text{stoichiometric}}) \) of
about 8. Mass flow rates of hydrogen and oxygen into the fuel
preburner are 36.4 kg/s (80 lb/s) and 37.7 kg/s (83 lb/s),
respectively. Hot gases from the preburners exit the preburner
combustion chambers through turbines and enters the main combustion
chamber via the hot gas manifold and the main injection plate. In
the main combustion chamber the products from the two preburners are
burned with oxygen. The equivalence ratio in the main combustion
chamber is about 1.33.

1.2 SSME SHUTDOWN AND THE FUEL PREBURNER CHUG

When the SSME shuts down, it is important that combustion
ceases in the preburners and that oxidation does not begin in the
feed system, so a helium purge is used to push oxygen from the feed
system and preburners and assure that the system is above the rich
limits of combustion of hydrogen with oxygen. It is during the
helium purge that the fuel preburner chug takes place. Figure 1.2
shows the fuel preburner manifold. The helium purge orifice is a
small pipe that links the helium supply piping to the pipes that
reach the helium check valves. The helium check valves restrain the
Figure 1.2: Fuel Preburner Manifold and Feed System Schematic
(From Rockwell International Corp., Rocketdyne Div.)
helium until the pressure downstream of the valves drops below 5.17 MPa (750 psia).

Shutdown is accomplished and controlled by the closing of the oxidizer preburner oxidizer valve, the fuel preburner oxidizer valve, the main oxidizer valve and the main fuel valve and the opening of the helium purge check valves. Table 1.1 (adapted from George, 1984) gives the valve sequence and the resulting events during the SSME shutdown. Two points should be noted from Table 1.1. First, before chugging begins in the fuelside preburner, both the fuelside preburner oxidizer valve and the main oxidizer valve are closed; the fuelside preburner is isolated from the oxidizer feed system. Second, no valve openings or closings coincide with the onset or ending of chug. These points are further discussed in Chapter II.

When the fuelside preburner chug begins is dependent on the power level from which the engine is cut off and the diameter of the helium purge orifice. Pressure traces for typical fuelside preburner chugs for SSME test firings are found in Figure 1.3. These traces are plots of the deviation of the chamber pressure from the mean chamber pressure versus time. The traces were filtered to show only frequencies between 50 and 200 Hz. Figure 1.3 (a) is a pressure trace for a small helium purge orifice diameter (0.17 cm [0.068 inches]) and Figure 1.3 (b) is a trace for a large helium purge orifice diameter (0.74 cm [0.291 inches]). Using the small helium purge orifice resulted in a short chug whose amplitude is about 2.89
Table 1.1: Sequence of Events During the SSME Shutdown

<table>
<thead>
<tr>
<th>TIME AFTER CUTOFF (SEC)</th>
<th>EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>OXIDIZER PREBURNER OXIDIZER VALVE SEALS CLOSE OXIDIZER PREBURNER PRESSURE DROPS SMOOTHLY FROM 800 PSIA TO 500 PSIA</td>
</tr>
<tr>
<td>1.8</td>
<td>HELIUM CHECK VALVES OPEN, PUSHING OXIDIZER FROM THE OXIDIZER PREBURNER MANIFOLD INTO COMBUSTION CHAMBER OXIDIZER PREBURNER CHAMBER PRESSURE RISES TO 750 PSIA AND STABILIZES. HELIUM FLOW SUBSIDES AFTER THE INITIAL SPIKE</td>
</tr>
<tr>
<td>2.2</td>
<td>FUEL PREBURNER OXIDIZER VALVE SEALS CLOSE HELIUM FLOW RATE IMMEDIATELY RISES MAIN OXIDIZER VALVE CLOSES (AFTER THE FUEL PREBURNER OXIDIZER VALVE)</td>
</tr>
<tr>
<td>2.3</td>
<td>HELIUM FLOW STABILIZES, AS DO THE FUEL PREBURNER AND OXIDIZER PREBURNER CHAMBER PRESSURES FOR THE SMALL ORIFICE TESTS HELIUM FLOW RATE CONTINUES TO INCREASE FOR THE LARGE ORIFICE TESTS</td>
</tr>
<tr>
<td>2.3 - 2.5</td>
<td>CHUGGING BEGINS IN THE FUELSIDE PREBURNER; LARGE AMPLITUDE FOR THE LARGE ORIFICE AND SMALL AMPLITUDE FOR THE SMALL ORIFICE LOW LEVEL CHUGGING MAY ALSO BEGIN IN THE OXIDIZER PREBURNER</td>
</tr>
<tr>
<td>2.5</td>
<td>LARGE AMPLITUDE CHUG BEGINS FOR THE SMALL HELIUM PURGE ORIFICE TESTS A TEMPORARY REDUCTION IN THE AMPLITUDE OF THE THE FUELSIDE PREBURNER CHUG OCCURS DURING THE LARGE ORIFICE TESTS</td>
</tr>
<tr>
<td>3.0</td>
<td>CHUGGING ENDS</td>
</tr>
<tr>
<td>3.7</td>
<td>THE MAIN FUEL VALVE CLOSES</td>
</tr>
</tbody>
</table>
(a) Helium Purge Orifice = 0.068"

(b) Helium Purge Orifice = 0.291"

Figure 1.3: Pressure Traces for the SSME Fuel Preburner Chug
(From George, 1984)
(Pressure Traces Were Filtered to Show Only Frequencies Between 50 and 200 Hz)
MPa (420 psi). Using the large orifice resulted in a longer but less severe chug. About three seconds after cutoff the chug ends and the chamber pressure and temperature decrease smoothly. The main fuel valve closes after the purge is complete.

Because the chug takes place after the fuel preburner and its piping are isolated from the oxidizer feed system and before the main fuel valve is closed, George (1984) concluded that the chug was not directly related to or triggered by valve openings and closings and that it was associated with the oxidizer purge process. As helium replaces oxygen in the oxidizer feed system, the fluid in the pipes becomes more compressible and propellant feed rates to the preburners become more sensitive to chamber pressure. This effect is described in greater detail in Chapter II.

1.3 MODELLING THE SSME FUEL PREBURNER AND FEED SYSTEM

Because of high mass flow rates, very reactive propellants, high chamber pressure and the fact that combustion takes place on many diffusion flames surrounding droplets throughout the combustion chamber, combustion in a liquid propellant rocket engine can be considered to take place homogeneously through the combustion chamber (Summerfield, 1951). Consequently, the present study modelled the fuelside preburner combustion chamber as a stirred tank reactor; contents are considered well mixed and properties are considered uniform throughout the chamber. Liquid droplets were distributed evenly through the combustion chamber and all had the
same characteristic diameter. The heterogeneous stirred tank reactor is more fully described in Chapter III.

The governing equations for the combustion chamber were derived from the conservation of mass applied to the liquid in the combustion chamber, the conservation of mass applied to the gases in the combustion chamber, the conservation of species, the conservation of energy and the perfect gas law. Auxiliary relations used to obtain terms in the governing equations included empirical expressions for average droplet diameter, droplet evaporation rate, thermodynamic properties for the gases in the combustion chamber and elementary reaction rates. Exhaust mass flow rate from the preburner was given as a function of the ratio of the pressure downstream of the exit turbine to the combustion chamber pressure. At each time, combustion chamber pressure, temperature, density (excluding liquid mass, which is assumed to occupy negligible volume), liquid density (kg of liquid per unit volume of the combustion chamber) and mole number of each species (kgmoles of the species per total mass (kg) in the combustion chamber) were calculated.

In the feed system the effects of the compressibility of helium were important, as was the feed system geometry, so a multiple pipe, multiple node feed system containing distinct liquid and gaseous phases was used to predict the transient feed system behavior. Governing equations for the feed system included the conservation of momentum along each pipe and the conservation of mass at each node. Time dependent variables were the fluid velocity in each pipe, the
liquid/vapor interface position in each pipe and the density at each node.

The combustion chamber and feed system governing equations were solved numerically on a digital computer, integrating over time. Since the equations are stiff (i.e., characterized by widely differing time constants for the dependent variables (Pratt and Radhakrishnan, 1986)) steps were taken to make the equations solvable without using an excess of computer time. In addition to using an integration routine written for solving systems of stiff differential equations, a steady state approximation was made for the concentrations of radicals and atoms in the combustion chamber to facilitate the solution of the governing equations.

Derivation and solution of the governing equations is given in Chapter III.

Success of this model is determined by its ability to predict a chug as encountered in the SSME fuel preburner during shutdown and its ability to vary engine parameters and find a way in which the fuel preburner chug can be lessened in severity or eliminated.
2.1 OVERVIEW OF DIFFERENT INSTANCES OF COMBUSTION INSTABILITY, THEIR CAUSES AND EFFECTS.

The phenomenon of combustion instability exists to some degree in all combustion processes. The sputtering of a match, the crackling of a log on a fire and the flickering of a candle are all everyday examples of combustion instability. Such early scientists as Rayleigh and Faraday noted pressure oscillations as sound waves generated during the burning of substances in a tube. Rayleigh (1945) described these oscillations as

... vibrations maintained by heat, the heat being communicated to the mass of air confined in the sounding tube at a place where, in the course of vibration, the pressure varies.

He concluded that "In consequence of the variable pressure within the resonator, the issue of gas, and therefore, the development of heat, varies during vibration." This is an apt description of the processes involved in a periodic combustion instability.

Combustion instability can be classified in a number of different ways. First, it can be either periodic or random. An example of a periodic instability is a pressure wave travelling around a combustion chamber due to varying combustion rates. Spikes or pops (spontaneous explosions) in rocket combustion chambers are examples of random instability. Second, combustion instabilities are
either chamber, system or intrinsic instabilities (Williams, 1985). Chamber instabilities involve only the processes that occur within a combustion chamber, while system instabilities involve interaction between processes occurring in a combustion chamber with processes occurring elsewhere in the system, such as in propellant feed lines or at the combustion chamber exit. An intrinsic instability involves only the combustion process and occurs whether or not there is a combustion chamber. Finally, periodic combustion instability can be classified according to its frequency. In rocket motor combustion instability, there exist three fairly distinct instability frequency ranges. High frequency instabilities (normally greater than 1000 Hz) are chamber instabilities involving longitudinal, transverse or radial waves within the rocket combustion chamber. Low frequency instabilities (normally less than 300 Hz) are system instabilities which couple changes in the propellant feed rate with changes in combustion rate in the combustion chamber. Intermediate frequency instabilities (frequencies between 300 Hz and 1000 Hz) involve aspects of both system and chamber instabilities: waves propagate within the combustion chamber and also within the feed system. Periodic combustion instability is observed in ramjet engines and solid rocket engines as well as in monopropellant and bipropellant liquid rocket engines. Low frequency combustion instability in ramjet engines is a result of vortices in the combustion chamber and is very dependent upon chamber geometry (Yang and Culick, 1986). There are a number of parallels between liquid
rocket and solid rocket engine low frequency combustion

instabilities. Schoyer (1986) describes the physical processes

involved in solid rocket chugging as follows:

The basic idea is that due to oscillatory combustion there is a
fluctuating heat transfer into the propellant which
superimposes an oscillation on the steady state profile in the
pyrolyzing propellant. Because the solid propellant depends on
the (fluctuating) surface temperature, the pyrolysis rate will
also vary, causing a fluctuating mass flow into the combustion
chamber. If this fluctuating mass flow is more or less in phase
with the pressure fluctuations, the two effects may enhance
each other (causing resonance) and lead to oscillatory
combustion.

Just as heat transfer and pyrolysis provide gaseous reactants
in the burning of solid propellants, heat transfer and vaporization
provide the gaseous reactants in the burning of liquid propellants.
Combustion in solid and liquid rockets differs in two important
ways. First, combustion can be considered to take place on a single
planar flame front in a solid rocket combustion chamber, whereas
combustion in a liquid propellant combustion chamber involves many
diffusion flames that surround droplets. Second, the liquid
propellant feed rates must also be considered for a liquid rocket
engine.

As mentioned above, liquid rocket engines can undergo low,
intermediate and high frequency combustion instability. The physical
manifestations of these include noise, pressure and temperature
oscillations in the combustion chamber (longitudinal, radial and
transverse), changes or even reversals in the mass flow rate of the
feed system, increased rates of heat transfer to engine components,
decreased engine performance and possibly severe vibrational loads on engine components.

For a liquid rocket engine, the most destructive type of combustion instability is high frequency instability, sometimes called screech, scream or acoustic instability. Screech can result in vibrational loads on rocket components and, more importantly, increased rates of heat transfer to chamber walls. Lawhead and Combs (1963) observed burnout of the injector face of a liquid rocket combustion chamber between 200 and 300 msec after the beginning of screech. Penner and Datner (1955) stated that performance might be improved by screech, although this would not offset the negative effects of screech.

During screech oscillations of pressure and temperature usually take place only within the combustion chamber of a rocket motor, although oscillations can also occur in the feed system (Coultas, 1972). Upon a perturbation, thermodynamic properties and chemical composition can change in a part of the combustion chamber, leading to a local change in the rate of combustion (Crocco et al., 1960). This change initiates a wave which propagates through the combustion chamber. The wave can be linear (discrete) or nonlinear (coupled with other waves) and radial, longitudinal or circumferential. The propellant feed system is usually not directly involved in the propagation of pressure and temperature waves, but is important in that it determines the amount and distribution of reactants in the combustion chamber. The mass flow rate in the feed
system does not oscillate during screech because oscillations in the chamber take place at a higher frequency than those to which the feed system can respond.

Among possible sustaining mechanisms for screech are the physical delays associated with the combustion process (atomization, vaporization and reaction rate), the sensitivity of the rate of combustion to pressure and temperature changes and the "explosion" of liquid droplets which are heated to temperatures above their critical temperatures (Coultas, 1972). Reardon, McBride and Smith (1966) showed that spatial nonuniformities in propellant injection rates across the injector were also, at times, responsible for screech. Their work was verified by experiment.

To prevent destructive high frequency combustion instability, liquid propellant rockets may need baffles or liners to cause combustion chamber conditions (pressure, temperature, distribution of propellants) to be more uniform or to change the resonant frequency of the engine (Williams, 1985). A change in the propellant spray field can also prevent destructive scream (Coultas, 1972). Both of these fixes involve local control of combustion rates.

Less common in liquid rocket motors, intermediate frequency instability, or buzz, involves waves in the propellant feed system as well as spatial combustion chamber pressure variations (Coultas, 1972). Buzz differs from screech in that it involves lower frequency disturbances and oscillations in the feed system. It differs from low frequency instability in that spatial variations in pressure,
temperature and chemical composition exist in the combustion chamber. Buzz causes structural loads on engine components and standing waves in the feed system pipes and may initiate high frequency instability.

Scream involves pressure and temperature waves that propagate in the combustion chamber as a result of spatially varying rates of combustion. Buzz is characterized by standing waves in the propellant feed system and spatial variations in combustion rate in the combustion chamber. In contrast to scream and buzz, combustion chamber pressure can be considered uniform during low frequency instability, or chug. In chug, aggregate oscillations in chamber pressure couple with oscillations in propellant feed rate, resulting in loss of performance, structural loads and possible failure of engine parts. The coupling of oscillations in chamber pressure and propellant feed rate is a result of the time delay between the injection of propellants into the combustion chamber and their combustion. Chugging in liquid bipropellant rocket engines is further described in section 2.2.

2.2 LOW FREQUENCY COMBUSTION INSTABILITY IN LIQUID BIPROPELLANT ROCKET ENGINES

Chugging in liquid bipropellant rocket engines is characterized by pulsations in the rate of propellant injection into the combustion chamber and variations in combustion chamber pressure (Penner and Datner, 1955). These pulsations are generally taken to be the result of the time lag that exists between the injection of
liquid propellants into the combustor and their conversion to hot product gases, as proposed by Summerfield (1951). Because of the inertia of the propellant mass in the feed lines, mass flow rates into a combustion chamber are not immediately responsive to changes in chamber pressure. Because of the combustion time lag, combustion chamber temperature, pressure and composition are not immediately responsive to changes in propellant mass flow. When response delays in the feed system and combustion system become coupled, large amplitude chugs can result. Figure 2.1 shows the coupling of the feed system and combustion chamber for a chugging rocket engine.

Because the conversion of low temperature propellants to high temperature products in a liquid bipropellant rocket engine is such a complex process, it would be difficult for a chug model to incorporate all facets of the process. An effort must be made to determine the most important parts of the process. In the SSME fuelside preburner, liquid oxygen and gaseous hydrogen combust. This involves injection of the hydrogen and oxygen, atomization and vaporization of the oxygen, mixing of the gaseous hydrogen and oxygen vapor and chemical reaction of the gaseous species. In his study of screech in liquid bipropellant rockets, Priem (1966) took atomization, vaporization and chemical reaction as the most important processes in combustion instability. In the current study, the author will also take these three processes to be the most important parts of the combustion process and neglect other parts such as gas phase mixing and wall catalyzed reactions. Atomization,
Figure 2.1: Processes Involved in Flow Fluctuation Instabilities
(From Penner and Datner, 1955)
vaporization and chemical reaction and their effect on chugging are briefly described below.

The atomization of a propellant stream is primarily dependent upon the way the stream is injected into the combustion chamber. Propellants can be premixed or distinct upon injection and injection can be accomplished by parallel jets, impinging streams or coaxial streams. After injection, streams may be deflected by a splashplate. The SSME fuelside preburner employs coaxial injectors. Coaxial injectors are primarily used when one of the injected fluids is gaseous and the other is a liquid, since they are well adapted to mixing a gaseous stream with a liquid one (Dykema, 1972).

During atomization, streams break into ligaments which break into droplets. Droplets can either evaporate, shatter or interact with each other. Priem (1966) said that atomization rate is proportional to the mass of unatomized liquid in the combustion chamber and a less strong function of chamber density and axial velocity of the liquid propellant upon injection. The mass of unatomized propellant in the combustion chamber at a given instant is a function of the injection rate previous to that time, so a change in injection rate of propellant will affect the atomization rate only after a time delay.

Spatial injection droplet distribution has been shown to have a great effect on screech (Reardon et al., 1966), but does not greatly affect chugging, since it is aggregate chamber pressure oscillations and not spatial pressure oscillations that are able to couple with
the feed system. Webber (1972) showed that gross changes (for example, not including any small droplets in the droplet distribution in the combustion chamber) in the estimation of droplet sizes in a chug model drastically changed his predicted pressure oscillation amplitudes and frequencies.

The vaporization rate for a liquid propellant in a rocket engine combustion chamber is dependent on the atomization process (droplet size and surface area), the heat transfer rate to the droplet and the rate at which propellant diffuses away from the droplet. To prevent chug, the part of the combustion time delay associated with vaporization should be made as short as possible. In the SSME fuelside preburner, coaxial injectors inject high speed hydrogen around a jet of liquid oxygen. The greater the speed of the hydrogen, the more shear on the liquid oxygen jet, the finer the atomization, the greater the vaporization rate and the shorter the vaporization delay time. Higher chamber temperatures also result in greater rates of vaporization of liquid propellants due to greater rates of heat transfer to droplets. Another way to increase the vaporization rate is to increase the temperature of the liquid propellant. For higher temperature liquid propellants, less energy must be transferred to the droplets to raise their temperature and vaporize them.

Chemical reaction rates, or equivalently, propellant combinations, can greatly influence combustion stability in a rocket engine, though often chemical reaction rate is taken as a less
important factor (Priem, 1966, and Reardon, 1972). Reaction rate can be important if it is sufficiently slow and makes up a significant fraction of the combustion time delay. Summerfield (1951) suggested that chug could be eliminated in some engines through the use of either more reactive propellants or some sort of catalysis.

A number of experimental investigations have been conducted to determine how rocket design parameters such as combustion chamber pressure, propellant combination, injector pressure drop, chamber length, number of injectors, feed system mass flow rates and propellant mixture ratio influence chugging. The results of two papers will be highlighted below.

Both Barrere and Moutet (1956) and Heidmann et al. (1967) noted that higher chamber pressure leads to higher frequency but lower amplitude pressure oscillations (Figures 2.2(a) and 2.2(b)). Temperature and pressure oscillations were roughly in phase during chug (Barrere and Moutet).

As characteristic chamber length (usually defined as the chamber volume divided by the area of the exit nozzle throat) is increased, the range of stable operating conditions is decreased (Heidmann et al.) while the frequency of pressure oscillations decreases (Barrere and Moutet). Chambers of the same characteristic length but different volumes were studied by Barrere and Moutet. Both chambers exhibited roughly the same pressure oscillation frequency, with the smaller chamber undergoing oscillations of slightly higher amplitudes.
Figure 2.2: Effect of Chamber Pressure on Chug Amplitude and Frequency (Barrere and Moutet, 1956)
Increasing the number of jets (injectors) of a combustion chamber decreased the range of stable operating conditions (Heidmann et al.), presumably because of droplet and stream interactions driven by the pressure changes.

Changing the mixture ratio within a moderate range \(0.9 < \frac{m}{m_s} < 1.4\), where \(m\) is the fuel/oxidizer mixture ratio and \(m_s\) is the stoichiometric mixture ratio) had very little effect on chug frequencies for an engine whose propellants were nitric acid and furfurylic alcohol. The lowest amplitude pressure oscillations occurred for a stoichiometric mixture. This is due to a reduced combustion delay time, since collisions between appropriate molecules of reactants are most likely for a stoichiometric mixture.

2.3 CONTROLLING LOW FREQUENCY COMBUSTION INSTABILITY

Having described the processes involved in chugging, a number of methods for controlling chugging will be presented. First, combustion chamber geometry (characteristic length) can be changed. In many cases, as with the SSME, chug is encountered only after the engine has been built, so changing the chamber geometry is not a viable alternative. In addition, since chugging only occurs in the SSME during shutdown, extensive changes in chamber geometry is not merited.

Second, the pressure drop across the injectors can be increased. A larger pressure drop across the injectors means that a change in downstream (chamber) pressure will be a smaller fraction
of the upstream pressure (behind the injector) and will not effect feed system mass flow rates very much. Friction in the feed system and injectors damps oscillations in propellant flow. Any increase in the energy of the propellant stream will be reduced by the feed system and injector friction. Consequently, choosing an injector with much friction could result in a more stable engine. On the other hand, a greater pressure loss for the stream entering the combustion chamber would be the cost.

2.4 THE SSME FUELSIDE PREBURNER CHUG

There are a number of factors peculiar to the SSME fuelside preburner that contribute to the onset of chugging. First, as described in the introduction, the chug occurs during the SSME shutdown while helium progressively replaces liquid oxygen in the oxidizer feed system. The presence of helium in the oxidizer feed system makes the oxidizer mass flow rate more sensitive to changes in the chamber pressure than if there were no helium in the feed system. Gaseous helium is more compressible than liquid oxygen, so an increase in chamber pressure results in compression of the helium and a greater reduction in the oxidizer mass flow rate than if no helium were present. For a temperature and pressure near those at which the chug occurs (5.0 MPa and 100 K), the density and bulk modulus of oxygen are about 1000 kg/m3 (62.4 lbm/ft3) and 221 MPa (32,000 psia), respectively. For helium they are about 17 kg/m3 (1.06 lbm/ft3) and 12.4 MPa (1800 psia), respectively.
In the SSME fuelside preburner, liquid oxygen is burned at a low equivalence ratio (about 8.0 at rated power level) with hydrogen. Hydrogen has a very low critical temperature (33.3 K [60°R]) and pressure (1.29 MPa [188 psia]), so it enters the combustion chamber as a supercritical gas. The critical pressure of oxygen is about 5.09 MPa (738 psia), so during the SSME fuelside preburner chug, which takes place at pressures which vary around 4.83 MPa (700 psia), oxygen is a near critical liquid.

The conversion of gaseous hydrogen and oxygen to water vapor occurs as a chain reaction involving the radicals and atoms OH, O, H, HO₂ and H₂O₂ (Kuo, 1986). At high pressures, the radicals HO₂ and H₂O₂ dissociate and for high temperatures and high mass flow rates, reactions at the wall are not very important. Since the SSME fuelside preburner operates at high pressures, mass flow rates and temperatures, the following reactions can be considered to be the elementary steps in the overall conversion of H₂ and O₂ to water vapor:

\[\text{H}_2 + \text{O}_2 \rightarrow 2\text{OH} \]
\[\text{H}_2 + \text{M} \rightarrow 2\text{H} + \text{M} \]
\[\text{OH} + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{H} \]
\[\text{H} + \text{O}_2 \rightarrow \text{OH} + \text{O} \]
\[\text{O} + \text{H}_2 \rightarrow \text{OH} + \text{H} \]
\[\text{H} + \text{H} + \text{M} \rightarrow \text{H}_2 + \text{M} \]
\[\text{H} + \text{O} + \text{M} \rightarrow \text{OH} + \text{M} \]
\[\text{O} + \text{O} + \text{M} \rightarrow \text{O}_2 + \text{M} \]

26
H + OH + M \rightarrow H$_2$O + M

where M represents a third body, inert to the reaction. For a rocket engine combustion chamber, which operates at high temperatures and pressures, the atoms and radicals produced in the chain branching reactions will be consumed in the termination reaction nearly as soon as they are produced.

George (1984) observed during test firings of the SSME that using a 0.068 inch diameter helium purge orifice for the SSME fuelside preburner as opposed to a 0.291 inch orifice resulted in a 34% increase in maximum peak to peak amplitudes of pressure oscillations (from 335 psia) and a 38% decrease in chug duration (from 0.72 sec). Changing the purge orifice diameter did not substantially change the chug's center counted frequency (the average frequency at the chug's temporal center). The center counted frequency for the small and large orifices were 117 Hz and 117.5 Hz, respectively. Traces of pressure for small and large orifice engine test firings are shown in Figures 1.3(a) and 1.3(b) (page 8). Chug ending time was not affected by the change of the helium purge orifice diameter, but chug starting time was. Because of this, George ruled out oxygen depletion as the chug terminating mechanism. Helium flow rate and compressibility are evidently important in determining the character of the SSME fuelside preburner chug.

The only opening or closing of a valve that occurs near the chug's end is the closing of the main oxidizer valve. As described in Chapter I, during chug the fuelside preburner is isolated from
the oxidizer feed system, so valve openings and closings are probably not a concern in the SSME fuelside preburner chug. The valves that restrain the helium before the purge begins are poppet type valves that remain open even when the pressure drop across the valve is less than the cracking pressure (George, 1985). Therefore, helium purge valve clatter probably does contribute to the chug.

Because of the fuelside preburner turbine blade inertia, the exit mass flow rate does not respond immediately to a change in combustion chamber pressure. A relation for exit mass flow rate as a function of chamber pressure and temperature and pressure downstream of the turbine was given by Nguyen (1981) and is found in Chapter III.

Because of the above considerations, the model of the SSME fuelside preburner allows for the compressibility of helium in the piping system, a combustion time lag due to the atomization and vaporization times for oxygen and turbine blade inertia.

2.5 ROCKET ENGINE STABILITY PREDICTION MODELS

Most chug models have attempted to predict the domain of operating conditions within which a rocket engine can operate without undergoing destructive oscillations in pressure and temperature. By varying inputs such as combustion chamber pressure, injector pressure drop, combustion time delay or instability frequency to these models, stability boundaries for specific engines and general criteria for rocket engine stability can be found.
Figure 2.3 shows the rocket engine model used by Summerfield (1951). He related the rate of change of combustion chamber pressure with respect to time, \(t \), at a given instant, to the propellant injection rate at a time \(t-\theta \), using the equation:

\[
\frac{dP_c}{dt} = \frac{R T_c}{V} \rho_c A_2 v_2(t-\theta) - \frac{R T_c}{L^*c^*} p_c
\]

[2.2]

where \(T_c \) is the combustion chamber temperature (K), \(\rho_c \) is the combustion chamber density (kg/m\(^3\)), \(V \) is the combustion chamber volume (m\(^3\)), \(L^* \) is the characteristic chamber length (m), \(c^* \) is the characteristic propellant velocity (m/s), \(R \) is the gas constant for the gases in the combustion chamber (J/kg·K), \(A_2 \) is the area (m\(^2\)) at station 2 in Figure 2.3 and \(v_2(t-\theta) \) is the propellant velocity (m/s) at station 2 at time \(t-\theta \). This implies that a mass of propellant injected into the combustion chamber occupies negligible volume and does not react at all until \(\theta \) seconds later when it is converted to products instantaneously. \(\theta \) is the combustion time delay and can be a function of chamber pressure, temperature and composition and of propellant composition and velocity. Characteristic chamber length, \(L^* \), is defined as the volume of the chamber divided by the average cross sectional area. Summerfield defined the characteristic propellant velocity, \(c^* \), as

\[
c^* = f(\gamma) \sqrt{R T_c}
\]

where \(\gamma \) is the ratio of the specific heats in the chamber.
Figure: 2.3 Schematic of Summerfield's Liquid Propellant Rocket System (Summerfield, 1951)
Summerfield used conservation of energy for the control volume bounded by surfaces A_1 and A_2 along with continuity and equation [2.2]. Differentiating the result with respect to time and linearizing by saying that $v_2(t) - v_2(t-\theta)$ is small, gave an equation of the form

$$u''(t) + A u'(t) + B u(t) + C u(t-\theta) = 0 \quad [2.3]$$

where $u = d(v_2)/dt$. Solutions of [2.3] are of the form

$$u = \Sigma U_n \exp((\lambda_n + \omega_n)t) \quad [2.4]$$

Substituting [2.4] into [2.3], the values of λ_n and ω_n which satisfy [2.3] can be found.

Analyzing the eigenvalues of [2.3], Summerfield determined that the following condition must be met for a liquid rocket engine to be stable (i.e., to not undergo undamped pressure oscillations):

$$\frac{\frac{1}{2} m \cdot \frac{c^* L^* 2 \Delta P}{A_2}}{P_c \frac{A_2}{R T_c P_c}} > \Theta \quad [2.5]$$

where ΔP is the pressure difference between the propellant storage tank and the combustion chamber (psi) and l_2 is the length of the propellant feed line (Figure 2.3).

Inequality [2.5] indicates that an unstable rocket engine can be made stable by

1. increasing the feed system pipes length,
2. increasing the propellant feed mass flow rate,
3. increasing the pressure drop from the storage tank to the combustion chamber,
4. decreasing the combustion chamber pressure or
5. increasing the characteristic chamber length.

Evaluation of [2.5] with the appropriate SSME fuelside preburner shutdown values ($l_2 = 0.5 \text{ m} [1.64 \text{ ft}], \dot{m} = 33.91 \text{ kg/s}$ [74.8 lb/s], $P_C = 4.825 \text{ MPa} [700 \text{ psia}], A_2 = 0.0025 \text{ m}^2 [0.027 \text{ ft}^2]$, $c^* = 60 \text{ m/s} [197 \text{ ft/s}]$ [estimated from calculations by VanOverbeke and Claus, 1986], $L^* = 0.1 \text{ m} [0.328 \text{ ft}], R = 2080 \text{ J/kg-K} [0.497 \text{ Btu/lbm-°R}], \Delta P = 0.345 \text{ MPa} [50 \text{ psia}]$ and $T_C = 700 \text{ K} [1260°\text{R}]$) yields the stability criterion

$$\theta < 0.0014 \text{ s}$$

(i.e., the combustion time delay must be less than 440 μs).

Crocco (1951) began his stability analysis for a monopropellant rocket engine using conservation of mass in the combustion chamber. Assuming, like Summerfield, that propellants have negligible volume until burned and that the mass burned over the time interval dt is equal to the mass of propellant injected over the time interval $d(t-\theta)$, continuity for the combustion chamber can be written

$$\frac{dM}{dt} + \dot{m}_e(t) = (1 - \frac{d\theta}{dt}) \frac{dM}{dt} \dot{m}_i(t-\theta)$$

[2.6]
where \(\dot{m}_e \) and \(\dot{m}_i \) are the mass flow rates out of and into the combustion chamber and \(M_g \) is the mass of product gases in the combustion chamber.

Crocco divided the combustion delay time, \(\Theta \), into an insensitive part, \(\Theta_g \), which does not vary with small variations in chamber conditions and a sensitive part, \(\tau \).

\[
\Theta = \Theta_g + \tau \tag{2.7}
\]

\(\Theta_g \) can be given, for instance, by \(L/c^*/R\times T_c \). Crocco assumed that \(\tau \) obeys the relation

\[
\tau p^n_c = \text{const.} \tag{2.8}
\]

Using [2.8] and [2.7], Crocco nondimensionalized and linearized [2.6].

Applying the conservation of mass and momentum to the feed system, piping system behavior was seen to be dependent on three dimensionless groups: one involving the pressure drop across the injectors, the second involving the inertia of the propellant in the pipes and the third giving the relative elasticity of the pipes and the propellant within.

Using a version of [2.6] and the feed system equations, Crocco formulated a characteristic equation for a monopropellant rocket engine and found the stability boundaries that corresponded to various values of \(n \) in equation [2.8]. He concluded that using a varying time lag changed stability predictions, predicting a greater
range of stable operating conditions, but the changes were not
great.

Using an annular section of a liquid bipropellant rocket engine
combustion chamber, Priem determined the effect that atomization,
vaporization and chemical kinetics had on screech. Though this model
was for screech, the way that the combustion rate was modelled can
be extended to a chug model.

Priem calculated combustion rate in three different ways.
First, he assumed that chemical kinetics was the most important part
of the combustion process. Atomization and vaporization times were
assumed short enough that the propellants that were injected into
the combustion chamber were immediately available for chemical
reaction. In the second model vaporization was the controlling
process. Atomization was considered very fast, so the liquid
injected into the combustion chamber immediately assumed a given,
nonvarying droplet distribution profile. Chemical reaction time was
also considered negligible. Consequently, the combustion rate was
equal to the vaporization rate. Finally, the times required for
atomization and chemical reaction were considered very small and the
combustion rate was set equal to the atomization rate.

Using conservation of mass, energy and axial momentum, Priem
generated stability boundaries. The physical processes of
vaporization and atomization were shown to be more important than
chemical kinetics for screech. Stability was shown to be very
sensitive to the mass of unburned propellant in the combustion chamber. Priem confirmed his stability boundaries experimentally.

In a companion study to this one, Lim (1986) determined the stability boundaries of the SSME fuelside preburner during shutdown. Lim assumed

1. combustion chamber pressure is uniform and oscillates about a steady state value,
2. combustion chamber temperature is uniform,
3. the combustion delay time is the same for both propellants and
4. reaction rate is infinite and chemical kinetics can be ignored.

Like Summerfield, Lim assumed that the rate that propellants are burned is equal to their rate of injection at a previous time, t-θ, where

\[\theta = \theta_v + \theta_m \] \[2.9 \]

\(\theta_v \) corresponds to vaporization time and \(\theta_m \) to mixing time.

Conservation of mass was applied to the combustion chamber, leading to

\[\frac{d}{dt} (\rho_c V) = \dot{m}_{fb}(t-\theta) + \dot{m}_{ob}(t-\theta) - \dot{m}_e(t) \] \[2.10 \]

where \(\dot{m}_{fb} \) and \(\dot{m}_{ob} \) are fuel and oxidizer burning rates, respectively (determined by conditions at time, t-θ) and \(\dot{m}_e \) is the chamber exit mass flow at time t. The system variables \(\dot{m}_{fb}, \dot{m}_{ob}, \dot{m}_e \) and \(\rho_c \) were
expressed in terms of a steady state value plus a perturbation and substituted into [2.10] which was linearized. The resulting characteristic equation was solved and stability boundaries were generated.

In generating stability boundaries, Lim varied chamber pressure, fuel mass flow rate, oxidizer mass flow rate, fuel injection temperature and oxidizer injection temperature. Lim made the following conclusions from his stability boundaries.

1. The preburner system is generally more stable at lower chamber pressures.

2. For oxidizer and fuel temperatures of 40K, the system is inherently unstable. For oxidizer and fuel temperatures of 120 K, stability can be achieved only for $P_c < 3.79 \text{ MPa (550 psia)}$. Chugging could not be avoided for low fuel temperatures.

3. Fuel flow rates did not influence stability.

4. High oxidizer flow rates (or high helium purge rates) made the system stable.

2.6 STIRRED TANK REACTOR MODELS

A chemical reactor can be modeled as a batch reactor, a plug flow reactor or a stirred tank reactor (STR). In a batch reactor (Figure 2.4 (a)) reactants are fed into the reactor and left to react. After some time, the reactor is emptied. A plug flow reactor is shown in Figure 2.4 (b). Elements of fluid travel in an orderly
Figure 2.4: Ideal Chemical Reactors
way through the chamber with no element overtaking any other element (i.e., no mixing in the direction of the flow, but infinite radial mixing). A STR is a reactor for which contents are considered well mixed and properties of the contents are uniform throughout the combustion chamber (Figure 2.4 (c)). One ramification of the STR assumption is that some unburned reactants will always be present in the chamber outflow.

Webber (1972) used a heterogeneous STR to determine the transient behavior of a liquid rocket engine undergoing chug. His model included a simple feed system, injectors, a combustion chamber and a nozzle.

A lumped parameter approach was used for the feed system, resulting in the equation

\[\frac{dq}{dt} = \frac{P_t - P_c}{\rho \Sigma (l_n/A_n)} + \frac{f}{\rho c} \frac{1}{2} q \left| \frac{q}{P_c} \right| \]

where \(q \) is the volumetric flow rate (\(m^3/s \)) of the propellant, \(f \) is a coefficient chosen to approximate the sum of the turbulent line losses and the nozzle losses in the feed system (\(m^{-4} \)), \(l_n \) and \(A_n \) are the length (m) and area (\(m^2 \)) of pipe \(n \), respectively, \(P_t \) is the pressure in the propellant storage tank, \(P_c \) is the pressure in the combustion chamber and \(NP \) is the total number of pipes in the feed system.

Injector calculations included determination of the droplet size distribution and velocity upon injection. Relying heavily upon
empirical correlations, Webber found the droplet size distribution
and velocities associated with a self-impinging doublet injector.

In the combustion chamber, the liquid and gaseous states were
treated separately. Liquid propellants were divided into droplet
size groups whose diameters and velocities were followed over time.
Vaporization rate per droplet, ω_v (kg/sec per droplet), was given as

$$\omega_v = \left(\frac{\pi k}{c_p} D \right) \left(2 + 0.5 Re^{0.5}\right) \ln(1 + \alpha)$$

[2.12]

where k is the droplet thermal conductivity (W/m·K), c_p is the
specific heat of the vapor surrounding the droplet (J/kg·K) and D is
the droplet diameter (m). α is the burning rate parameter, given as

$$\alpha = c_p \frac{\Delta T}{\Delta H}$$

[2.13]

where c_p is the specific heat at constant pressure of the droplet
(J/kg·K), ΔT is the temperature difference between the droplet and
the surrounding gases (K) and ΔH is the droplet's latent heat of
vaporization (J/kg). Re is the droplet Reynolds number, given as:

$$Re = \frac{\rho D |v_g - v_{in}|}{\mu_g}$$

[2.14]

where v_g is the velocity of the gas in the chamber (m/s), v_{in} is the
injection velocity and μ_g is the gas viscosity (N·s/m²).
The gas state in the combustion chamber was considered well mixed and to be a perfect gas. Gas velocity was allowed to vary in the combustion chamber. Gas behavior was determined by conservation of mass in the combustion chamber, the perfect gas law and an expression for the expansion of gas through a choked nozzle.

Webber integrated his equations numerically using a fixed time step integration. The size of the time step was seen to be relatively unimportant. He was able to predict a 66 Hz chug whose maximum amplitude was about 200 psia for an average chamber pressure of 400 psia. From his study, Webber concluded that:

1. chug is sensitive to predicted temperature (he used empirical data to give chamber temperature as a function of stoichiometry) and
2. small variations in the droplet size distribution were not very important, but gross changes drastically changed the model's predictions.

Calculated frequencies were within 7% of experimental values and amplitudes were within 5%.

Courtney (1960) used a much simpler approach to determine combustion intensity (mass of propellant burned per volume per time in a combustion chamber) in a heterogeneous STR. He began with an assumed droplet size distribution and assumed steady state conditions and infinitely fast chemical kinetics. Droplet evaporation rate was given as:
\[\frac{dr}{d\phi} = \frac{k}{2r} \] \hspace{1cm} [2.15]

where \(k \) was assumed constant (but not explicitly given), \(r \) is the droplet radius and \(\phi \) is the droplet age in the combustion chamber. Overall evaporation rate was determined by integrating [2.15] for \(0 < r < r_{\text{max}} \). For a monodisperse spray, Courtney showed that combustion intensity is a strong function of droplet size; intensity increases rapidly with decreasing droplet size.

2.7 SUMMARY

Low frequency combustion instability in a liquid bipropellant rocket engine involves a coupling of oscillations in chamber pressure with oscillations in propellant flow rate. This coupling is possible because of the combustion time lag in the combustion chamber and the inertia of the propellant in the feed lines.

A number of models have predicted the domain of operating conditions in which a rocket engine will undergo stable operation. (Summerfield, Crocco, Lim and others). These models involve linearized equations from which either stability or instability of an engine can be predicted. In general, it has been shown from these models that higher propellant temperatures, lower chamber pressures and longer propellant feed lines lead to more stable rocket engines.

Other models have predicted either the steady state operation or transient behavior of rocket engines (Webber and Courtney). These
types of models generally involve nonlinear equations which are
solved over time numerically for variables such as chamber pressure
and temperature, droplet size distribution and combustion rate. The
advantage of these models is that amplitudes and frequencies of
oscillations in pressure, temperature and oxidizer mass flow rate
can be calculated. These models have shown the STR model to be
sufficient for modelling rocket engine combustion chambers
undergoing chug.

The author has modelled the SSME fuelside preburner as a
perfectly mixed reactor and has predicted its behavior during engine
shutdown. Derivations of the governing equations for this model are
found in Chapter III.
CHAPTER III

MODELLING THE SSME FUEL PREBURNER

The SSME fuel preburner is modelled as a multi-pipe, multi-node oxidizer feed system, a transient stirred tank reactor (TSTR) combustion chamber and an exit turbine, as shown in Figure 3.1. This approach is similar to that used by Webber (1972) and employs most of the same governing equations as those used by Pratt and Radhakrishnan (1986). Using a TSTR model allows the frequency and amplitude of oscillations in chamber pressure and oxidizer mass flow rate to be calculated. Using a multi-pipe, multi-node oxidizer feed system allows the position of a liquid/vapor interface in the feed system to be calculated at each integration time step.

The governing equations for the TSTR and oxidizer feed system are partially derived below and their solution is described. Full derivations are given in Appendix A.

The governing equations were solved on a digital computer. A program flowchart, listing and sample input and output files are found in Appendix B.

3.1 THE COMBUSTION CHAMBER

The TSTR model for the combustion chamber assumes that at any given time the combustion chamber can be considered a stirred tank reactor (properties and composition are uniform throughout the combustion chamber). With time, though, chamber composition and
Figure 3.1: Schematic of the Fuelside Preburner Model
properties are allowed to vary. Using a TSTR to model a chugging rocket combustion chamber is justified, in that oscillations in the combustion chamber have long periods in comparison to the amount of time it takes a disturbance to travel through the combustion chamber. Also, it is aggregate, not local changes in pressure in the chamber that are able to couple with oscillations in the propellant feed rate to produce a low frequency system instability.

The TSTR model was used because it is simple, requiring a minimal number of calculations to determine the conditions at each time, because it can accommodate heterogeneous combustion and because a coupling of oscillations in feed system propellant flow with chamber pressure oscillations is possible.

Heterogeneous combustion of liquid oxygen with gaseous hydrogen occurs within the fuel preburner combustion chamber. This is accommodated by the TSTR model by the imposition of a uniform oxidizer droplet distribution throughout the combustion chamber. Droplets were assumed to all have the same diameter and an equal number of droplets are found in any part of the combustion chamber volume. The instantaneous average droplet diameter \(D_m \) was calculated using a relation given by Hersch and Rice (1967). For a coaxial injector with gaseous hydrogen injected through an annulus around a central stream of liquid oxygen,

\[
D_m = c_{dm} \left(\frac{O}{\rho_j T_{H_2}} \right) \sqrt{\frac{M_{H_2}}{\rho_j T_{H_2}}} \frac{A_{H_2}}{R_g p_c} \tag{3.1}
\]
c_{dm} is a dimensionless constant equal to 0.485. \(O/F \) is the mass ratio of oxidizer flow to fuel flow, \(M_{H_2} \) is the molecular weight of hydrogen (kg/kgmole), \(A_{H_2} \) is the area of the anulus through which hydrogen is injected (m²), \(R_g \) is the universal gas constant (J/kgmole·K), \(\rho_j \) is the density of the oxygen jet (kg/m³), \(T_{H_2} \) is the temperature of the hydrogen on injection (K) and \(P_c \) is the chamber pressure (Pa). Equation [3.1] gives the mean droplet diameter of liquid oxygen droplets immediately after injection. In reality, the mean droplet diameter in the combustion chamber is less than that just after injection, however, equation [3.1] was used to give the mean droplet diameter throughout the chamber since no data were available for determination of the droplet distribution in the chamber. The effect that mean droplet diameter has on preburner operation is shown in Chapter IV.

The evaporation rate of a single droplet, \(\omega_v \) (kg/sec/droplet), was given by Webber (1972) in equation [2.12]. For an average liquid density of \(\beta \) (mass of liquid per unit volume of the combustion chamber), the total vaporization rate, \(\Omega \) (kg/s), including the contributions from all droplets, is

\[
\Omega = \frac{6 \beta V}{\rho_1 \pi D_m^3} \omega_v \quad [3.2]
\]

\(V \) is the combustion chamber volume (m³).

Combustion rate was calculated in two different ways. First, all the oxygen that vaporized was assumed to combust immediately
with hydrogen to form water vapor. This implies that diffusion of oxygen vapor into the chamber contents and chemical reaction both occur instantaneously. Since oxygen is consumed as soon as it vaporizes, its rate of production by combustion Γ_{O_2} (kgmoles/s) is equal to negative its rate of production by vaporization:

$$\Gamma_{O_2} = - \frac{\Omega}{M_{O_2}}$$ \hspace{1cm} [3.3]

From conservation of atoms,

$$\Gamma_{H_2} = 2 \Gamma_{O_2}$$
$$\Gamma_{H_2O} = - 2 \Gamma_{O_2}$$

For the second combustion model, atomization was assumed infinitely fast. Oxygen vaporized according to [2.12] then instantaneously mixed with the gaseous species in the combustion chamber. The production of water vapor from hydrogen and oxygen occurred via a chain reaction involving nine elementary reactions and the species H$_2$, O$_2$, H$_2$O, H, O and OH.

To aid in the solution of the governing equations, the very reactive species H, O and OH were assumed to be consumed as soon as they were produced. In other words, their mole numbers, σ_i (kgmoles of species i per total mass in the combustion chamber) were constant at any time:
This condition fixed the values of the α_{H}, α_{O} and σ_{OH} at each time step. A full derivation of reaction rate involving chemical kinetics is found in Appendix A.

The governing equations for the combustion chamber were derived from the conservation of mass for the gaseous and liquid contents of the combustion chamber, conservation of species, conservation of energy and the ideal gas relation.

Conservation of mass for the gaseous contents of the chamber is shown in Figure 3.2 and described analytically by equation [3.4].

\[
\frac{d\alpha_{H}}{dt} = \frac{d\alpha_{O}}{dt} = \frac{d\sigma_{OH}}{dt} = 0
\]

\[
\frac{d(p_{c}V)}{dt} = (\sum_{j=1}^{NSTRM} \cdot m_{jg}^{\ast}) - \cdot m_{g} + \Omega
\]

m_{g} is mass flow rate of gases out of the combustion chamber (kg/s),
\(\rho_c \) is combustion chamber density \((\text{kg/m}^3)\), \(t \) is time \((\text{s})\), \(V \) is volume \((\text{m}^3)\), \(\text{NSTRM} \) is the number of inlet streams to the TSTR, the subscript \(g \) denotes the gaseous state and superscript \(* \) denotes an inlet quantity.

Conservation of mass for the liquid contents of the chamber is shown in Figure 3.3 and described analytically by equation [3.5].

\[
\frac{d(V)}{dt} = \sum_{j=1}^{\text{NSTRM} \ast} m_j^l - \frac{\beta}{\rho_c^g} \tag{3.5}
\]

The subscript \(l \) denotes the liquid phase. Since the liquid density is uniform throughout the combustion chamber, the liquid outflow is given by \(\frac{\beta m^g}{\rho_c} \).

Conservation of species is shown in Figure 3.4 and described analytically by equation [3.6].
Figure 3.4: Conservation of Species

\[
\frac{d(\sigma_i \rho V)}{dt} = \sum_{j=1}^{\text{NSTRM}} \left(\sum_{i=1}^{\text{NS}} m_{ij} \right) \sigma_{ij} + \frac{\dot{M}}{m_i} + \Gamma_i, \quad i=1,2,3,...\text{NS} \quad [3.6]
\]

\(\sigma_i \) is the mole number of species \(i \) (kgmoles of \(i \) per kg in the combustion chamber), \(\text{NS} \) the number of species present in the combustion chamber and \(\Gamma_i \) the rate of production of species \(i \) by combustion (kgmoles/s).

Conservation of energy is shown in Figure 3.5 and described analytically by equation [3.7].

Figure 3.5: Conservation of Energy

\[
\dot{Q} = \sum_{i=1}^{\text{NS}} \sum_{j=1}^{\text{NSTRM}} \left(\sum_{j=1}^{\text{NSTRM}} \sum_{i=1}^{\text{NS}} m_{ij} \sigma_{ij} \right) h_{ij} \quad \text{NSTRM NS} \quad \sum_{i=1}^{\text{NS}} m_{ij} \sigma_{ij} \quad \text{NS} \quad [3.7]
\]
\[\frac{dE}{dt} = \sum_{i=1}^{NS} \sum_{j=1}^{NS} m_i^* s_i h_{ij} - \sum_{i=1}^{NS} m_i \sigma_i h_i - \dot{Q} \quad [3.7] \]

\(E \) is the total (chemical plus sensible) energy (Joules) in the combustion chamber, \(h_i \) is the molar enthalpy of species \(i \) (J/kgmole) and \(\dot{Q} \) is the heat transfer rate out of the combustion chamber (Joules/s).

Liquids in the chamber were assumed to occupy negligible volume. The volume occupied by liquid in the combustion chamber after a long time at a steady oxidizer mass flow rate of 5 kg/s and a chamber temperature of 1000K was calculated. At these conditions, the ratio of the volume occupied by liquid to the total chamber volume was 1 : 47,000. Gases were assumed to obey the ideal gas relation, which took the form

\[P_c = \rho_c \left(\sum_{i=1}^{NS} \sigma_i \right) R T_c \quad [3.8] \]

\(\sum_{i=1}^{NS} \sigma_i \) gives the average molecular weight of the chamber gases.

Equations [3.6], [3.7] and [3.8] were expressed in terms of the logarithmic variables \(\ln T_c \), \(\ln P_c \) and \(\ln \sigma_i, i=1,2,3,...NS \). This prohibited negative values and facilitated integration by altering the time constants associated with these variables. In their final form, the conservation of mass for the liquid phase, the conservation of species, the conservation of energy and the ideal gas relation are
\[
\frac{d\beta}{dt} = \left(\frac{\sum_{j=1}^{\text{NS}} m_{jv}}{\rho_c} \right) - \Omega_v - \frac{m_v}{\rho_c} \frac{\beta}{\text{NS}} \tag{3.9}
\]

\[
\frac{d(\ln \sigma_i)}{dt} = \frac{1}{\rho_c \sigma_i} \sum_{j=1}^{\text{NS}} N_{\text{STRM}}^* \left(\sigma_{ij} - \sigma_i \right) + \Gamma_{iv} \tag{3.10}
\]

\[
\text{for } i=1,2,3,...\text{NS}
\]

\[
\frac{d(\ln T_c)}{dt} = \left[\sum_{l=1}^{\text{NS}} N_{\text{STRM}}^* \right] \left(\frac{m_{jv} \sigma_{ij} \dot{h}_{ij} - m_{gv} \sigma_{iv} \dot{h}_{iv}}{i=1} \right) - \rho_c \sum_{i=1}^{\text{NS}} \sigma_i (\dot{c}_i) \tag{3.11}
\]

\[
\frac{d(\ln P_c)}{dt} = \frac{d(\ln T_c)}{dt} + \frac{1}{\rho_c} \frac{dP_c}{dt} + \frac{1}{\rho_c} \sum_{i=1}^{\text{NS}} \frac{d(\ln \sigma_i)}{dt} \tag{3.12}
\]

The superscript \(v \) denotes a volumetric quantity \((1/m^3) \), \(\dot{c}_i \) is the specific heat at constant pressure for species \(i \) \((J/kgmole\cdot K) \) and \(R_g \) is the universal gas constant \((J/kgmole\cdot K) \). The combustion chamber equations are derived in greater detail in Appendix A.

3.2 THE OXIDIZER FEED SYSTEM

Before shutdown begins, the fuel preburner oxidizer feed system is completely filled with liquid oxygen. During shutdown, gaseous
helium progressively replaces oxygen in the pipes. To create a feed system which was simple, yet responsive to changes in combustion chamber pressure and fluid compressibility in the pipes, the following assumptions were made.

1. Liquid oxygen is incompressible.
2. Helium behaves as a perfect gas.
3. Temperature is constant throughout the feed system.
4. Pipes have a characteristic cross sectional area; area is taken as constant throughout a given pipe.
5. There is no accumulation of mass at pipe nodes; the nodes have negligible volume.
6. If a pipe contains both the liquid and the gas phases, a distinct interface exists between them.
7. Fluid velocity is constant within a given pipe (i.e., if there is an interface in the pipe, the liquid, the vapor and the interface are all assumed to be moving at the same velocity.
8. Flow resistance in a pipe is lumped at the pipe exit, so the flow resistance for a pipe containing a liquid/vapor interface is the same as that for a pipe which contains only liquid, until all of the liquid is expelled.

Time dependent variables in the feed system include the fluid velocity in each pipe, the density at each pipe node and the position of the liquid/vapor interface in each pipe.

Figure 3.6 shows a pipe containing a liquid/vapor interface.
Figure 3.6: Schematic of a Pipe Containing a Liquid/Vapor Interface

\[V \text{ is volume (m}^3\text{), } L \text{ is pipe length (m), } v_1 \text{ and } v_2 \text{ are upstream and downstream velocities (m/s), respectively, } P_1 \text{ and } P_2 \text{ are upstream and downstream pressures (Pa), respectively, } A \text{ is pipe Area (m}^2\text{) and } F_\text{f} \text{ accounts for turbulent and shear head losses in the pipe.} \]

Subscripts 1 and g denote the liquid and gas phases, respectively.

Since pipe length is constant,

\[\frac{dL_2}{dt} = - \frac{dL_1}{dt} = v \quad [3.13] \]

Conservation of momentum, expressed in integral form, is

(White, 1979)
\[\sum F = \frac{\partial}{\partial t} \left(\iiint_{CV} \rho v dV \right) + \iint_{CS} \rho v (v \cdot n) \, dA \] \[3.14\]

\(\sum F \) is the sum of the longitudinal forces on the pipe. From Figure 3.6, one can see that

\[\sum F = (P_1 - P_2) \, A - F_f \] \[3.15\]

\(F_f \) is given as

\[F_f = f \, L \, \rho \, v^2 \, A \] \[3.16\]

where \(f \) is a constant \((1/m)\) corresponding to the longitudinal force that either the gas or the liquid within the pipe is exerting on the pipe. Recall that if any liquid is in the pipe, it is as though there is only liquid in the pipe.

Using equations [3.13], [3.15] and [3.16], equation [3.14] can be written

\[L \frac{d \rho_R}{dt} + L_1 \frac{d \rho_L}{dt} + \left(\frac{\rho_R L_R}{v} + \frac{\rho_L L_L}{v} \right) \frac{dv}{dt} = \frac{p_1 - p_2 - fL \rho v^2}{v} \] \[3.17\]

Equation [3.17] is applied to each pipe, leading to NP equations (NP is the number of pipes in the feed system).

Figure 3.7 shows a pipe node.
Figure 3.7: Schematic of a Pipe Node.

Since mass is not allowed to accumulate at the node, for NPN pipes connected at the node, conservation of mass for the node can be written

\[
\sum_{n=1}^{\text{NPN}} \left(\rho_n A_n v_n \right) = 0 \tag{3.18}
\]

Equivalently,

\[
\sum_{n=1}^{\text{NPN}} \frac{d}{dt} \left(\rho_n A_n v_n \right) = 0 \tag{3.19}
\]

Taking the derivative in [3.19] and assuming that the fluid in each pipe has the same density as the fluid in the others, equal to the density in the node, leads to
\[\frac{d \rho_n}{dt} = \sum_{n=1}^{NN} A_n \frac{v_n}{\rho_n} + \sum_{n=1}^{NN} A_n \frac{(dv_n/\ dt)}{\rho_n} = 0 \quad [3.20] \]

[3.20] is applied to NN nodes, where NN is the number of nodes in the oxidizer feed system. The piping system equations are derived in greater detail in Appendix A.

Equations [3.17] and [3.20] constitute NN+NP equations in the NN unknown nodal densities and the NP unknown pipe velocities. This set of equations is linear and, at each time step, can be solved for \(dv_n/\ dt \) \((n=1,2,3,... \ NP)\) and \(d\rho_k/\ dt \) \((k=1,2,3,... \ NN)\).

3.3 THE EXIT TURBINE

Hot product gases pass through a turbine when exiting the fuel preburner. The mass flow rate of the gases through the turbine is a function of the pressure downstream of the turbine (PHG) and the inertia of the turbine blades, as well as the pressure in the combustion chamber. An equation which gives the mass flow rate through the turbine was given in the Dynamic Balance Model for the SSME (Nguyen, 1981) as

\[m = c_{ftp} \left(\frac{P_c}{T_c} \right)^{0.5} \left[\left(\frac{PHG}{P_c} \right)^{1.43} - \left(\frac{PHG}{P_c} \right)^{1.71} \right]^{0.5} \quad [3.21] \]
The parameter \(c_{ftp} \) is an empirical function of turbine geometry and speed. For this model, \(c_{ftp} \) is assumed to be constant during the short time duration of the chug. This implies that turbine speed decreases slowly.

3.4 SOLUTION OF THE GOVERNING EQUATIONS

Equations [3.9], [3.10], [3.11], [3.12], [3.17] and [3.20] were integrated numerically to give the values of \(T_c, P_c, \sigma_i \) \((i=1,2,3,\ldots NS) \), \(\rho_k \) \((k=1,2,3,\ldots NN) \), \(v_j \) \((j=1,2,3,\ldots NP) \) and \(L_g \) (position of the liquid/vapor interface in pipe \(j \)) \((j=1,2,3,\ldots NP) \) over time. The TSTR equations are nonlinear in the reaction rate expressions and the expression that give thermodynamic properties. Since the set of equations is also stiff (involving widely varying time constants), the IMSL math subroutine DGEAR was used to integrate the equations. DGEAR finds approximations to the solution of ordinary differential equations of the form

\[
\ddot{y} = f(x,\dot{y})
\]

for given initial conditions. The function \(f(x,\dot{y}) \) was calculated in a user supplied subroutine which was declared external in the main program and was accessed by DGEAR for each time step in the integration. A number of different integration methods were available in the DGEAR package. For most executions, the stiffness methods of Gear were used. Where possible, initial conditions were chosen to agree with experimental data. In other cases, when
experimental data were not available, "steady state" conditions were used as initial conditions. The selection of initial conditions is further discussed in Chapter IV.

Flow charts showing the solution process, a listing of program TRNCHG which was developed to solve the governing equations using DGEAR, a sample input file and sample output files are found in Appendix B.
CHAPTER IV

RESULTS

In Chapter III a Transient Stirred Tank Reactor (TSTR) model was proposed for predicting the transient behavior of the SSME fuelside preburner during the helium purge of the engine shutdown. Fuel feed rate is assumed constant, while the oxidizer feed system is modelled as a series of pipes and nodes and an injector resistance. The exiting fluid from the combustion chamber, containing gaseous products, gaseous reactants and liquid droplets, passes through an exit turbine.

A computer program, TRNCHG (Appendix B), was written to numerically integrate the resulting differential equations. From the results of TRNCHG it was possible to calculate the amplitude and frequency of oscillations in combustion chamber pressure and oxidizer mass flow rate. A number of engine parameters were varied to determine the role they play in the fuelside preburner chug and to demonstrate the reliability of TRNCHG. The parameters that were varied include the rate of heat transfer from the walls of the combustion chamber to the contents of the chamber, the mean droplet diameter, the fuel mass flow rate, the fuel temperature, the liquid oxygen (LOX) temperature, the temperature of the helium, and the length of the helium purge line (the pipe connecting the helium storage tank to the helium check valve (Figure 3.1, p. 43)) and the diameter of the helium purge line.
This chapter is a summary of the results of TRNCHG. All marked data points in the figures that follow were generated mathematically and were marked either to differentiate between curves on the same graph or to specify calculation points on curves drawn using few data points.

4.1 OPERATION OF THE FUELSIDE PREBURNER DURING THE SSME SHUTDOWN HELIUM PURGE

As described in Chapter I, during the SSME shutdown, gaseous helium pushes liquid oxygen from the oxidizer feed system of the fuelside preburner and into the combustion chamber. As outlined in Table 1.1 (page 7), just before the helium purge of the fuelside preburner begins, the fuelside preburner oxidizer valve (FPOV) is closed, so the velocity of the LOX in the preburner oxidizer feed system was set at 0.001 m/s (it was not set equal to zero because of the numerical difficulties arising from setting the velocity equal to zero). It is possible that a small amount of LOX enters the preburner combustion chamber between the time that the FPOV is closed and the valve that restrains the helium is opened. This is due to the heating and expansion of LOX in the pipe connecting the FPOV to the preburner manifold.

The pressure throughout the combustion chamber, oxidizer feed system and helium supply piping was assumed uniform and equal to the cracking pressure of the helium check valve, 5.17 MPa (750 psia).
The NASA SSME transient model predicts that the temperature in the fuelside preburner decreases at a rate of about 50 K/s (90°R/s) (Seymour, 1986) at the beginning of shutdown. Without any heat transfer from the chamber walls, TRNCHG predicts that the fuelside preburner temperature falls at a rate of 280,000 K/s when the helium check valves first open. Because the rate at which TRNCHG predicts the chamber temperature decays was too high, a rate of heat transfer to the chamber contents of 6.5×10^7 J/s (6.2×10^4 Btu/s) was selected for the TRNCHG helium purge simulation. This value was chosen because it made the initial temperature gradient predicted by TRNCHG closer to that predicted by the SSME transient model yet did not fix the chamber temperature. The selection of heat transfer rate will be further discussed in section 4.2.

At the beginning of the fuelside preburner helium purge, the pressure downstream of the exit turbine (PHG) is 2.41 MPa (350 psia). By the time the helium purge is over, PHG is 1.03 MPa (150 psia). The average value of PHG, 1.72 MPa (250 psia), was used for the helium purge simulation. The exit mass flow rate coefficient, c_{ftp}, was calculated using equation [3.21] (page 56). c_{ftp} was algebraically isolated and calculated by setting the initial exit mass flow rate equal to the fuel mass flow rate (which is constant during shutdown) and setting the chamber pressure equal to the initial chamber pressure, 5.17 MPa (750 psia). c_{ftp} was assumed constant during the short time duration of the chug.
No data on helium temperature in the helium line were available, so the temperature of the helium purge was set equal to the oxidizer temperature, 120 K (216°R).

A summary of inputs to TRNCHG for the SSME shutdown is given in Table 4.1.

Figure 4.1 shows TRNCHG's prediction for combustion chamber temperature during the helium purge. Time equal to zero corresponds to the time that the helium check valves are opened for this graph and all graphs generated for the SSME shutdown simulation. Chamber temperature falls until it reaches a fairly constant value, around 400 K (720°R). The steady value that the temperature reached was determined largely by the rate of heat transfer to the chamber contents. With no heat transfer, the steady state temperature is 188 K (338°R). Figure 4.1 includes only the first 25 msec of TRNCHG's predictions although the program was run until the helium/LOX interface in the oxidizer feed system reached the combustion chamber. Figure 4.2 is a plot of the mole number of oxygen vapor (kg moles of oxygen vapor per mass (kg) in the combustion chamber) in the combustion chamber during shutdown versus time. The amount of oxygen vapor in the chamber rises sharply (from the program's minimum allowable value of 1.0×10^{-12} kg moles/kg) to a steady value around 5×10^{-3} kg moles/kg. The mole number of water vapor did not change significantly from the minimum allowable mole number.
Table 4.1: Inputs to TRNCHG for the SSME Shutdown Simulation

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE AT THE BEGINNING OF THE SSME SHUTDOWN SIMULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber Temperature</td>
<td>550 K (990°R)</td>
</tr>
<tr>
<td>Chamber Pressure</td>
<td>5.17 MPa (750 psia)</td>
</tr>
<tr>
<td>PHG</td>
<td>1.72 MPa (250 psia)</td>
</tr>
<tr>
<td>LOX Temperature</td>
<td>120 K (216°R)</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>160 K (288°R)</td>
</tr>
<tr>
<td>Helium Temperature</td>
<td>120 K (216°R)</td>
</tr>
<tr>
<td>Fuel Mass Flow Rate</td>
<td>21.0 kg/s (46.3 lbm/s)</td>
</tr>
<tr>
<td>Heat Transfer Rate</td>
<td>6.5×10^7 J/s (6.2×10^4 Btu/s)</td>
</tr>
<tr>
<td>Pipe Length from the Helium Storage Tank to the Check Valve</td>
<td>1.5 m (4.9 ft)</td>
</tr>
</tbody>
</table>
Figure 4.1: Temperature v. Time for SSME Shutdown
Figure 4.2: Mole Number of Oxygen Vapor in the Combustion Chamber v. Time for SSME Shutdown
As shown by Figures 4.1 and 4.2, TRNCHG predicts that ignition will not take place in the SSME fuelside preburner during the shutdown helium purge, contrary to the findings of test firings. There are two explanations for TRNCHG's incorrect prediction. First, using a TSTR model results in the overprediction of the equivalence ratio at which combustion takes place. In the heterogeneous stirred tank reactor, LOX vaporizes and the oxygen vapor is assumed to instantaneously mix with the gaseous contents of the combustion chamber. In actual droplet combustion, though, oxidizer and fuel burn on a diffusion flame surface around the droplet at a position where oxidizer and fuel meet in stoichiometric proportion. Thus, the TSTR model overpredicts the equivalence ratio at which combustion takes place; the mixture of gases is beyond the rich limits of combustion. Second, the kinetic mechanism and elementary reaction rate data used in TRNCHG may be inaccurate at the temperatures and pressures that are found in the preburner during the helium purge.

Since use of chemical kinetics in the calculation of combustion rate resulted in erroneous predictions, a second combustion model was used to predict preburner behavior during shutdown. All the LOX that was vaporized was assumed to immediately combust with hydrogen to form water vapor (i.e., chemical kinetics were assumed to be infinitely fast). Figure 4.3 shows TRNCHG's prediction of chamber pressure using this second combustion model and Figure 4.4 shows the predicted oxidizer mass flow rate. The symbols mark each third analytically generated data point. TRNCHG was allowed to run until
Figure A.3: Chamber Pressure v. Time for the SSME Shutdown (Infinitely Fast Chemical Kinetics)
Figure 4.4: Oxidizer Mass Flow Rate v. Time for the SSME Shutdown (Infinitely Fast Chemical Kinetics)
the helium/LOX interface entered the combustion chamber, but only
the first 25 msec of the run is shown in Figures 4.3 and 4.4, since
no oscillations took place after that time. The initial peak to peak
amplitude of the pressure oscillation is 1.4 MPa (200 psia) and the
frequency of the oscillation is 111 Hz. The amplitude and frequency
of pressure oscillations during an actual typical preburner chug are
2.41 MPa (350 psia) and 117 Hz, respectively. Oscillations in the
chamber pressure and oxidizer mass flow rate are about 1/5 cycle
more than 180° out of phase, due to the vaporization time delay.

To investigate the possibility that a disturbance in chamber
pressure (for example, due to a change in the oxidizer preburner
combustion chamber pressure) incites the fuelside preburner chug
when the helium/LOX interface has progressed nearly to the
combustion chamber, a perturbation was applied in TRNCHG at 50 msec.
The system was perturbed by changing the constant, c_{dm}, in the
expression for mean droplet diameter (equation [3.1], page 44). c_{dm}
was changed from 0.485 to 20.0 at time equal to 50 msec. After
2.5 msec the value of c_{dm} was returned to 0.485. While c_{dm} was equal
to 20.0, the vaporization rate decreased since the droplets were
larger and the ratio of the surface area of liquid to the mass of
liquid in the combustion chamber decreased. Because of the
subsequent decrease in the evaporation rate of the LOX, liquid
accumulated in the combustion chamber. When the value of c_{dm} was
returned to 0.485, the accumulated liquid burned quickly and the
chamber pressure rose sharply. The resulting chamber pressure
oscillations are shown in Figure 4.5. Once again, chamber pressure oscillations damped quickly.

Assuming infinitely fast chemical kinetics, TRNCHG did not predict sustained oscillations in chamber pressure. As described earlier, a number of the engine parameters used in this base case simulation of the SSME shutdown were selected as best guesses of the actual conditions that exist in the fuelside preburner during shutdown. To determine whether or not a change in engine parameters could incite a chug, engine parameters were varied, one at a time. In many cases a small change in an engine parameter had a large influence on preburner stability. Following is a summary of the predictions of TRNCHG when engine parameters were varied.

4.2 THE EFFECT OF HEAT TRANSFER RATE ON PREBURNER OPERATION

As discussed in section 4.1, in order for TRNCHG's prediction of initial temperature gradient to be equal to that predicted by the NASA SSME transient model, there must be heat transfer to the combustion chamber contents. Care had to be taken in choosing this rate of heat transfer, since data from which heat transfer rate could be calculated was not available and since heat transfer rate has such a large effect on the chamber temperature.

TRNCHG was executed using different rates of heat transfer and no oxidizer mass flow to find the temperature that the chamber contents would eventually reach. These steady state temperatures are
Figure 4.5: Preburner Response to a Perturbation During Shutdown
(Infinitely Fast Chemical Kinetics)
plotted against heat transfer rate in Figure 4.6. High heat transfer rates have the effect of fixing chamber temperatures; even in the absence of combustion, the chamber temperature will never fall below the steady state temperature for a given heat transfer rate.

Figure 4.7 is a plot of chamber pressure versus time for heat transfer rates of 0 J/s, 7.5x10^7 J/s and 1.0x10^8 J/s. For higher heat transfer rates there is less oscillation in the chamber pressure than for the lower rates. Frequency of the oscillations remains the same for all the rates of heat transfer.

4.3 THE EFFECT OF DROPLET SIZE ON PREBURNER OPERATION

Mean droplet diameter proved very important in determining the operation of the fuelside preburner. to vary the mean droplet diameter, the constant, \(c_{dm} \), in equation [4.1], was given the values 0.0485, 0.97, 1.94 and 3.88. These droplet coefficient values resulted in mean droplet diameters (averaged over the 25 msec shown in Figure 4.8) of 1.2 \(\mu \)m, 24.4\(\mu \)m, 63\(\mu \)m and 440\(\mu \)m, respectively. Note that changing \(c_{dm} \) changed the droplet diameter both directly and indirectly, since different values of \(c_{dm} \) lead to different values of average chamber pressure and oxidizer mass flow rate. Figure 4.8 shows predicted chamber pressure for the four values of the droplet coefficient and Figure 4.9 shows oxidizer mass flow rate. For \(c_{dm} \) below 1.0, pressure oscillations damp quickly. For \(c_{dm} \) greater than 1.0, oscillations become more sustained, until droplet size becomes
Figure 4.6: Steady State Temperature v. Heat Transfer Rate
Figure 4.7: The Effect of Heat Transfer Rate on Chamber Pressure Oscillations
Figure 4.8: The Effect of Mean Droplet Diameter on Chamber Pressure Oscillations
Figure 4.9: The Effect of Mean Droplet Diameter on Oxidizer Mass Flow Rate
so large that vaporization rate becomes very small (due to limited droplet surface area) and reaction blows off, as shown by the curve for $c_{dm} = 3.88$. For $c_{dm} = 0.0485$ the frequency of the pressure oscillation is 116 Hz. For $c_{dm} = 1.97$ the frequency is 83 Hz. For $c_{dm} = 1.97$ backflow of combustion chamber contents into the oxidizer feed system is predicted, as shown in Figure 4.9.

As seen in Figure 4.8, there is probably some critical mean droplet diameter (or equivalently, some critical combustion delay time) at which the fuelside preburner begins to undergo unstable operation. The critical diameter could be reached by changing the injector geometry or the fuel mass flow rate. The effect of fuel mass flow rate on the fuelside preburner is described in section 4.5. Since, in the absence of chemical kinetics, the value of c_{dm} determines the combustion time delay, c_{dm} could be raised to increase the combustion time delay and account for chemical kinetics. The exact amount that c_{dm} would have to be raised was not calculated by the author.

4.4 THE EFFECT OF THE OXIDIZER FEED SYSTEM ON PREBURNER OPERATION

TRNCHG was executed for LOX temperature equal to 90 K, 100 K, 120 K and 150 K (162°R, 180°R, 216°R and 270°R). All the other engine parameters were the same as those given in Table 4.1 (page 64). Decreasing the LOX temperature increases the LOX density and decreases the LOX vaporization rate in the combustion chamber.
Predicted chamber pressure is plotted against time in Figure 4.10. As predicted by Lim (1986), lower oxidizer temperatures resulted in less stable preburner operation (i.e., larger amplitude pressure oscillations that damped more slowly).

The frequency of chamber pressure oscillations is plotted against LOX temperature in Figure 4.11. As LOX temperature is decreased, oscillation frequency decreases slightly.

In this study, the term amplitude ratio refers to the ratio of the peak to peak amplitude of the second chamber pressure oscillation to the peak to peak amplitude of the first oscillation. It is used as a measure of the rate at which pressure oscillations damp out. Amplitude ratio is plotted against LOX temperature in Figure 4.12. The amplitude ratio rises linearly as LOX temperature is decreased from 150 K to 100 K. As LOX temperature is decreased below 100 K, the amplitude ratio increases more slowly.

4.5 THE EFFECT OF THE FUEL FEED SYSTEM ON PREBURNER OPERATION

Two fuel feed system parameters, the fuel temperature and the fuel mass flow rate, were varied in TRNCHG. As predicted by Lim (1986), lower fuel temperature led to sustained pressure oscillations. Contrary to Lim's predictions, fuel mass flow rate also influenced the preburner's stability.

TRNCHG was executed for fuel temperatures of 50 K, 100 K and 200 K (90°R, 180°R and 360°R). The resulting chamber pressure was
Figure 4.10: The Effect of Oxidizer Temperature on Chamber Pressure Oscillations
Figure 4.11: Pressure Oscillation Frequency v. LOX Temperature

Figure 4.12: Amplitude Ratio v. LOX Temperature
plotted against time in Figure 4.13. Lower fuel temperatures resulted in more slowly damped pressure oscillations of greater amplitude and lower frequency. Oscillation frequency is plotted against fuel temperature in Figure 4.14. Frequency does not change much with temperature until the temperature becomes less than about 120 K, where frequency decreases rapidly as fuel temperature is decreased.

In Figure 4.15, chamber pressure was plotted against time for executions of TRNCHG using fuel mass flow rates of 12 kg/s, 18 kg/s and 25 kg/s. So that the results of these executions were not obscured by heat transfer rate to the chamber contents, the heat transfer rate was assumed to be 0.0 J/s for these runs. The fuel mass flow rate did not effect the pressure oscillation frequency, but did influence the rate at which the oscillations damped. The average oxidizer mass flow rate is plotted against the fuel mass flow rate in Figure 4.16.

The average oxidizer mass flow rate rises almost linearly with fuel mass flow rate. For high mass flow rates (greater combustion chamber throughput), more energy is needed to heat the fuel that does not participate in combustion and hot product gases are quickly swept from the combustion chamber. This leads to lower chamber pressures which lead to higher oxidizer mass flow rates.

As mentioned above, Lim (1986) predicted that fuel mass flow rate is not important in the fuelside preburner chug. The unexpected behavior of chamber pressure oscillations as mass flow rate is
Figure 4.13: The Effect of Fuel Temperature on Chamber Pressure Oscillations
Figure 4.14: Pressure Oscillation Frequency v. Fuel Temperature
Figure 4.15: The Effect of Fuel Mass Flow Rate on Chamber Pressure Oscillations
Figure 4.16: Oxidizer Mass Flow Rate v. Fuel Mass Flow Rate
changed is attributed to oscillations in chamber temperature. Recall that the fuelside preburner operates very fuel rich and that the incoming fuel is quite cold (160 K [288°F]). For a high fuel mass flow rates, much of the energy liberated by combustion raises the temperature of the hydrogen (most of which does not participate in chemical reactions) to the chamber temperature; there is not enough energy to raise the temperature much above the chamber temperature and sustain oscillations. For a lower mass flow rate, less energy is needed to heat the incoming hydrogen to the chamber temperature, so an oscillation in chamber temperature and an oscillation in chamber pressure can be sustained.

4.6 THE EFFECT OF THE EXIT TURBINE ON PREBURNER OPERATION

During shutdown, the pressure downstream of the exit turbine, PHG, falls from 2.41 MPa (350 psia) to 1.03 MPa (150 psia). It is possible that this change plays a part in inciting the fuel preburner chug. Figure 4.17 contains plots of chamber pressure versus time for PHG equal to 1.03 MPa, 1.72 MPa and 2.41 MPa. Frequency of the pressure oscillations is the same for all three values of PHG. The rate at which the oscillations are damped is smaller for lower values of PHG, as shown in Figure 4.18. Although changing the pressure downstream of the exit turbine did not produce chugging by itself, this change probably plays a part in the onset of chug.
Figure 4.17: The Effect of the Pressure Downstream of the Exit Turbine on Chamber Pressure Oscillations
Figure 4.18: Amplitude Ratio v. Pressure Downstream of the Exit Turbine
4.7 THE EFFECT OF THE HELIUM PURGE ON PREBURNER OPERATION

At the onset of this research, it was thought that oscillations in helium density in the oxidizer feed system were at least partly responsible for the occurrence of the fuelside preburner chug. In section 4.1 it was shown that, even when the oxidizer feed system was almost completely filled with helium, a perturbation did not result in chug, so the presence of helium does not single-handedly bring about chug. To see what effect the presence of helium does have on fuel preburner operation, the temperature of the helium (assumed to be uniform and constant) and the helium purge line diameter and length were varied.

No data were available for the temperature of the helium at the helium check valve, so the temperature was initially assumed to be equal to the LOX temperature, 120 K (216°R). In Figure 4.19, chamber pressure is plotted against time for helium temperatures of 50 K, 150 K, 200 K and 300 K. Figure 4.20 shows the variation of the frequency of chamber pressure oscillations with helium temperature and Figure 4.21 shows the variation with helium temperature of the ratio of the peak to peak amplitudes of the second and first pressure oscillations. Higher helium temperatures lead to higher frequency pressure oscillations that damp more slowly. In the absence of helium, higher temperatures in the oxidizer feed system lead to more stable operation. Helium temperature reverses this
Figure 4.19: The Effect of Helium Temperature on Chamber Pressure Oscillations
Figure 4.20: Pressure Oscillation Frequency vs. Helium Temperature

Figure 4.21: Amplitude Ratio vs. Helium Temperature
trend. The presence of helium in the oxidizer feed system results in less stability for higher temperatures in the oxidizer feed system. The initial amplitude of pressure oscillations differed only slightly for the different helium temperatures.

As predicted by Summerfield (1951), shorter pipe lengths lead to chug. Figure 4.22 is a plot of chamber pressure versus time for the fuelside preburner for no helium purge line (i.e., for the helium tank mounted directly on the helium check valve). Execution of TRNCHG was halted after 8.3 msec because execution became very slow. For no helium line, the preburner undergoes undamped oscillations in chamber pressure and backflow of chamber contents into the oxidizer feed system.

Figure 4.23 is a plot of chamber pressure versus time for helium purge line lengths of 0.5 m and 2.0 m. Oscillation frequency and the ratio of the peak to peak amplitude of the second oscillation to that of the first are plotted against helium line length in Figures 4.24 and 4.25, respectively. Both the frequency and amplitude ratio rise sharply for helium line lengths below 0.5 m.

TRNCHG was executed using helium purge line diameters of 1.029 cm, 0.739 cm, 0.381 cm and 0.178 cm (0.4", 0.291", 0.381" and 0.15"). The resulting plots of chamber pressure versus time are found in Figure 4.26. For a helium purge line diameter of 0.178 cm, TRNCHG was unable to dependably calculate chamber pressure after about 5 msec because of numerical instability. The velocity of the
Figure A.22: Chamber Pressure v. Time, No Helium Purge Line
Figure 4.23: The Effect of Helium Line Length on Chamber Pressure Oscillations
Figure 4.24: Pressure Oscillation Frequency v. Helium Line Length

Figure 4.25: Amplitude Ratio v. Helium Line Length
Figure 4.26: The Effect of Helium Line Diameter on Chamber Pressure Oscillations
fluid in the purge line began to undergo undamped high frequency numerical oscillations. To try to prevent numerical instability, the maximum error allowable in the IMSL integration routine, DGEAR, was reduced and the number of pipes in TRNCHG that represented the purge line was increased. Both of these changes resulted in slightly longer periods of numerical stability accompanied by considerably longer CPU times. The CPU time necessary for TRNCHG to give an accurate solution for a small diameter helium purge line was deemed too high and only the limited solution shown in Figure 4.26 was generated for a helium purge line diameter equal to 0.178 cm.

From Figure 4.26, one can see that a larger diameter helium purge line results in higher frequency chamber pressure oscillations of greater amplitude and which damp more slowly. The average chamber pressure decreases with decreases helium purge line diameter. For a given helium line length, the greater the volume of helium in the line, the less stable the preburner.

4.8 PREBURNER OPERATION AT FULL POWER LEVEL

TRNCHG was used to simulate fuelside preburner operation at full power level (with no helium purge) both to validate the program and to determine the part that chemical kinetics play in the preburner chug. Care had to be taken in choosing TRNCHG's initial conditions, since poor choices resulted in large derivatives and numeric overflows. Species mole numbers and the initial mass of
liquid in the combustion chamber were set equal to the values they would reach in a transient stirred tank reactor, after a long period of time, at constant chamber pressure, chamber temperature and oxidizer and fuel mass flow rates. The oxidizer mass flow rate was set equal to the oxidizer mass flow rate that would be reached in the pipes after a long period of time at constant upstream and chamber pressures. A summary of inputs to TRNCHG for the full power level simulation is given in Table 4.2

TRNCHG was first run assuming infinitely fast chemical kinetics and was then run taking chemical kinetics into account (as described in Chapter III and Appendix A). Chamber pressure for these runs is plotted against time in Figure 4.27. Just as in actual operation, the preburner does not undergo sustained chug at full power level. The initial pressure oscillations are due to the choice of the initial values of chamber pressure and chamber temperature. The presence of chemical kinetics has a pronounced effect on chamber pressure and temperature: pressure oscillations damp more slowly and the temperature and pressure that the combustion chamber reaches after a long time are lower when chemical kinetics are considered. The frequency of the pressure oscillations for the run involving kinetics is 164 Hz.

A perturbation was applied to the preburner, at full power level, with chemical kinetics included, to see if chug could be incited by a large disturbance. At 30 msec, the mean droplet diameter coefficient, c_{dm}, of equation [4.1], was reduced from 0.485
Table 4.2: Inputs to TRNCHG for Full Power Level

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE AT THE BEGINNING OF THE FULL POWER LEVEL SIMULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber Temperature</td>
<td>1106 K (1991°F)</td>
</tr>
<tr>
<td>Chamber Pressure</td>
<td>38.0 MPa (5500 psia)</td>
</tr>
<tr>
<td>Mass of Liquid in the Chamber</td>
<td>2.71x10^-2 kg (5.01x10^-2 lbm)</td>
</tr>
<tr>
<td>Oxidizer Mass Flow Rate</td>
<td>32.08 kg/s (70.72 lbm/s)</td>
</tr>
<tr>
<td>Fuel Mass Flow Rate</td>
<td>34.40 kg/s (75.84 lbm/s)</td>
</tr>
<tr>
<td>Pipe Length</td>
<td>0.12 m (0.39 ft)</td>
</tr>
<tr>
<td>Mass Fractions:</td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>0.0</td>
</tr>
<tr>
<td>H2</td>
<td>5.40x10^-1</td>
</tr>
<tr>
<td>O2</td>
<td>6.59x10^-3</td>
</tr>
<tr>
<td>H2O</td>
<td>4.54x10^-1</td>
</tr>
<tr>
<td>H</td>
<td>5.76x10^-6</td>
</tr>
<tr>
<td>O</td>
<td>1.53x10^-7</td>
</tr>
<tr>
<td>OH</td>
<td>1.15x10^-7</td>
</tr>
</tbody>
</table>
Figure 4.27: Chamber Pressure v. Time at Full Power Level
to 0.364 for 0.5 msec, and then returned to 0.485. The resulting chamber pressure oscillation is shown in Figure 4.28. Initially, when c_{dm} is reduced, the mean droplet size becomes smaller and more oxygen vaporizes and is available for combustion. During this time the pressure rises. Next, when the amount of liquid in the chamber and the injection rate of LOX into the chamber become small, the combustion rate and pressure fall. The oxidizer mass flow rate then increases and the oscillation in chamber pressure continues. Within seven cycles, the peak to peak amplitude of the pressure oscillations is damped to 16% of its original value.

4.9 CONDITIONS THAT RESULT IN INSTABILITY

Aside from reducing the helium line length to zero, it was not possible to incite chug by varying just one engine parameter, so it is a combination of engine parameters that cause the fuelside preburner chug. TRNCHG was run with various combinations of engine parameters. The purpose of these runs was not to determine the domain of engine parameters that give rise to chugging, but to demonstrate that TRNCHG can predict chug and to show that only small deviations from the engine parameters used for the SSME shutdown simulation can result in chug. Two runs that resulted in instability are described below.

Figure 4.29 is a plot of chamber pressure v. time for hydrogen temperature equal to 120K, helium temperature equal to 200 K, PHG equal to 1.03 MPa, fuel mass flow rate equal to 18 kg/s and mean
Figure 4.28: Preburner Response to a Perturbation at Full Power Level
Figure 4.29: Unstable Preburner Operation (a)
droplet diameter coefficient equal to 0.585. All other engine parameters were the same as those listed in Table 4.1. Execution was halted after 49 msec because time for each integration step became too long. Using a mean droplet diameter of 0.485 and all other engine parameters the same as those described for Figure 4.29, TRNCHG predicted stable operation.

Figure 4.30 is a plot of chamber pressure versus time for hydrogen temperature equal to 70 K, fuel mass flow rate equal to 15 kg/s, heat transfer rate to the chamber contents equal to 8.5×10^7 J/s, PHG equal to 1.03 MPa and helium temperature equal to 200 K. All other engine parameters were the same as those listed in Table 4.1. This run was be made stable by lowering the helium temperature to 150 K.

4.10 SUMMARY OF RESULTS

The program TRNCHG, which was written to solve the governing equations derived in Chapter III for heterogeneous preburner operation, was supplied with the approximate conditions at the opening of the helium check valves and was executed. When chemical kinetics were allowed to proceed according to a chemical kinetic mechanism, the model erroneously predicted that ignition would not take place in the preburner. When chemical kinetics were assumed infinitely fast, the model predicted that a quickly damped pressure oscillation with a frequency of 111 Hz would take place immediately after the helium check valves were opened. An oscillation in
Figure 4.30: Unstable Preburner Operation (b)
oxidizer mass flow rate into the preburner combustion chamber was also predicted and it was about 1/5 cycle more than 180° out of phase with the pressure oscillation.

To determine their effect on engine stability, the following engine parameters were varied: heat transfer rate from the chamber walls, mean droplet diameter, oxidizer temperature, fuel temperature, fuel mass flow rate, pressure downstream of the fuel preburner exit turbine (fuel turbo-pump), helium temperature, helium line length and helium line diameter. It was found that small variations in a number of these parameters had a large effect on preburner operation. A summary of the effect that each of these parameters has on preburner operation is given in Table 4.3.

TRNCHG was also used to predict conditions in the fuel preburner at full power level. This was both to validate the model and to allow comparison of different reaction rate models. As expected, TRNCHG predicted stable operation at full power level. Assuming that rates of production of the species in the combustion chamber could be calculated using elementary reaction rates resulted in much more slowly damped oscillations in chamber pressure than assuming chemical kinetics were infinitely fast.

Finally, it was demonstrated that, after changing a small number of engine parameters by only a small amount, TRNCHG was able to predict unstable preburner operation.
Table 4.3: Summary of the Effects of Engine Parameters on Fuelside Preburner Operation

<table>
<thead>
<tr>
<th>ENGINE PARAMETER</th>
<th>BASE VALUE</th>
<th>RANGE OF VALUES USED IN TRNCHG</th>
<th>EFFECT ON PREBURNER OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Transfer Rate</td>
<td>Q = 6.5x10^7 J/s</td>
<td>0.0 J/s < Q < 1.0x10^9 J/s</td>
<td>Heat transfer rate had a large effect on average chamber pressure and temperature, but very little effect on the rate at which pressure oscillations damped.</td>
</tr>
<tr>
<td>Mean Droplet Diameter Coefficient</td>
<td>c_{dm} = 0.485</td>
<td>0.0485 < c_{dm} < 3.88</td>
<td>Higher values of c_{dm} lead to large amplitude pressure oscillations which damp more slowly and have lower frequencies. For some value of c_{dm} between 1.94 and 3.88, there is a critical value of c_{dm} for which the preburner is unstable. Above that value liquid droplets become too large and ignition does not occur.</td>
</tr>
<tr>
<td>LOX Temperature</td>
<td>T_{ox} = 120 K</td>
<td>90 K < T_{ox} < 150 K</td>
<td>Lower oxidizer temperatures lead to higher frequency chamber pressure oscillations which damp relatively quickly. The amplitude ratio for T_{ox} = 150 K is 54.4% of that for T_{ox} = 90 K.</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>T_{fuel} = 160 K</td>
<td>50 K < T_{fuel} < 200 K</td>
<td>Below 120 K fuel temperature has a large effect on preburner stability. The frequency of chamber pressure oscillations for T_{fuel} = 50 K is 68% of that for T_{fuel} = 150 K. Oscillations damp more slowly and have greater amplitudes for lower fuel temperatures</td>
</tr>
</tbody>
</table>
Table 4.3: (continued)

<table>
<thead>
<tr>
<th>ENGINE PARAMETER</th>
<th>EFFECT ON PREBURNER OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE VALUE</td>
<td></td>
</tr>
<tr>
<td>RANGE OF VALUES USED IN</td>
<td></td>
</tr>
<tr>
<td>TRNCHG</td>
<td></td>
</tr>
<tr>
<td>Fuel Mass Flow Rate</td>
<td>Decreasing the fuel mass flow rate caused chamber pressure oscillations to damp more slowly, but did not change the oscillation frequency. Higher fuel mass flow rates resulted in higher oxidizer mass flow rates.</td>
</tr>
<tr>
<td>$m_f = 21.0 \text{ kg/s}$</td>
<td></td>
</tr>
<tr>
<td>$12.0 < m_f < 25.0$</td>
<td></td>
</tr>
<tr>
<td>Pressure Downstream of the Exit Turbine</td>
<td>Decreasing the pressure downstream of the exit turbine resulted in more slowly damped chamber pressure oscillations, but did not change the frequency. The amplitude ratio for $\text{PHG} = 1.03 \text{ MPa}$ is 4.9 times that for $\text{PHG} = 2.41 \text{ MPa}$</td>
</tr>
<tr>
<td>$\text{PHG} = 1.72 \text{ MPa}$</td>
<td></td>
</tr>
<tr>
<td>$1.03 \text{ MPa} < \text{PHG} < 2.41 \text{ MPa}$</td>
<td></td>
</tr>
<tr>
<td>Helium Temperature</td>
<td>Changing the helium temperature changed both the amplitude ratio and the oscillation frequency; Higher helium temperatures lead to higher frequency pressure oscillations that damped more slowly. The frequency at 200 K is 1.3 times that at 120 K. The amplitude ratio at 200 K is 1.5 times that at 120 K.</td>
</tr>
<tr>
<td>$T_{\text{He}} = 120 \text{ K}$</td>
<td></td>
</tr>
<tr>
<td>$50 \text{ K} < T_{\text{He}} < 300 \text{ K}$</td>
<td></td>
</tr>
<tr>
<td>Helium Line Length</td>
<td>If the helium storage tank were mounted directly on the helium check valves, the fuelside preburner would be unstable. Longer helium line lengths lead to more stable operation. Above 1.5 m, increasing the helium line length had only a small effect on oscillation frequency or amplitude ratio.</td>
</tr>
<tr>
<td>$L_{\text{He}} = 1.5 \text{ m}$</td>
<td></td>
</tr>
<tr>
<td>$0.01 \text{ m} < L_{\text{He}} < 2.0 \text{ m}$</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.3: (continued)

<table>
<thead>
<tr>
<th>ENGINE PARAMETER</th>
<th>EFFECT ON PREBURNER OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELIUM LINE DIAMETER</td>
<td>Large helium line diameters volumes of helium in the line lead to higher chamber pressures and oscillations which have higher frequencies and damp more slowly. For the smallest helium line diameter, a full solution could not be generated because numerical instability was encountered.</td>
</tr>
<tr>
<td>$D_{He} = 0.739$ cm</td>
<td></td>
</tr>
<tr>
<td>0.173 cm $< D_{He} < 1.029$ cm</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER V

CONCLUSIONS

The objectives of this study were to evaluate the validity of the TSTR model for modelling a rocket engine combustion chamber, to predict the amplitude and frequency of the SSME fuelside preburner shutdown chug and to determine the processes and engine-parameters that give rise to the chug.

To meet the first two objectives the fuelside preburner was modelled as a heterogeneous TSTR combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. A computer program, TRNCHG, was written to integrate the resulting differential equations numerically. For full power level simulations TRNCHG predicted stability and executed without difficulty. For SSME engine shutdown conditions, chemical kinetics were assumed infinitely fast and TRNCHG predicted quickly damped chamber pressure and oxidizer mass flow rate oscillations.

To meet the third objective, engine parameters which had been shown in literature to influence the stability of liquid rocket engine combustion were varied. This procedure was quite successful, showing that small changes in some engine parameters resulted in large changes in preburner operation and pointing out two engine parameters that have a larger role in the SSME fuelside preburner chug than predicted by Lim's (1986) linearized model.
Three questions are answered in this chapter: which engine parameters are the key parameters in the SSME fuelside preburner chug? how could the preburner model be extended or modified? and how well does the fuelside preburner model work?

5.1 KEY ENGINE PARAMETERS AND THEIR EFFECT ON PREBURNER STABILITY

As stated in Chapter IV, it is probably a combination of factors that result in the fuelside preburner chug. The most important factors and their influence on the preburner chug, as predicted by the program TRNCHG, are given below.

1. Mean droplet diameter. Mean droplet diameter is a function of injector geometry, chamber pressure and the ratio of the oxidizer and fuel mass flow rates. As mean droplet diameter is increased, pressure oscillations in the combustion chamber damp more slowly. This is due to an increase in the combustion delay time (or decrease in the vaporization rate) associated with large droplets. For a sufficiently large droplet diameter, reaction blows off.

2. Pressure downstream of the exit turbine (PHG). During engine shutdown, PHG falls from 2.41 MPa to 1.03 MPa (350 psia to 150 psia). Pressure oscillations were shown to damp more slowly for lower values of PHG.

3. Fuel temperature. As described in Chapter I, fuel cools the
main combustion chamber and nozzle before being injected into the fuelside preburner combustion chamber. During shutdown, the fuel mass flow rate to the combustion chamber is less than at full power level, but the main combustion chamber and nozzle are also cooler, so the temperature of the fuel injected into the fuelside preburner may be lower during shutdown. Lower fuel temperatures result in a less stable fuelside preburner. When the fuel temperature is reduced below 120 K, pressure oscillation frequency decreases rapidly and the oscillations become less damped.

4. Fuel mass flow rate. Contrary to the predictions of Lim (1986), lower fuel mass flow rates were predicted to cause oscillations in chamber pressure to damp out more slowly. There are two reasons for this. First, for lower fuel mass flow rates there is less cold fuel to heat to the chamber temperature and more energy is available (from combustion) to sustain pressure oscillations. Second, the mean droplet diameter is a function of the fuel mass flow rate: as fuel mass flow rate decreases, the mean droplet diameter increases. As shown in figure 4.10 (page 75), as mean droplet diameter is increased, preburner operation becomes less stable.

5. Helium temperature. Changing the Helium temperature did not substantially change the amplitude of pressure oscillations, but did influence their frequency. Frequencies of pressure
oscillations for helium temperatures of 120 K and 300 K were 111 Hz and 175 Hz, respectively.

6. Helium purge line geometry. The length and diameter of the pipe connecting the helium storage tank to the helium check valve both have a strong influence on the preburner's operation during shutdown. As predicted by Summerfield (1951), as the length of the helium line was increased, the preburner became more stable. Above a helium purge line length of about 1.0m, a large change in pipe length is necessary to accomplish a small change in frequency or the rate at which oscillations damp out. It was not possible to obtain solutions from TRNCHG for small helium purge line diameters. In general, small helium purge line diameters lead to reduced chamber pressures and greater stability. For a given helium line length, the volume of helium between the helium storage tank and the combustion chamber is important in determining whether fuelside preburner will be stable.

Comparing the results generated by the non-linear model used in this study to the results generated by the linear model used by Lim (1986) to model the SSME fuelside preburner, the non-linear model showed the preburner's stability to be sensitive to engine parameters to which the linearized model predicted the preburner would be insensitive. One instance of the greater sensitivity of the non-linear model is that the inclusion of chemical kinetics in the calculation of reaction rates at full power level resulted in more
slowly damped pressure oscillations than for chemical kinetics being considered infinitely fast (figure 4.28, page 100). Lim assumed that chemical kinetics were infinitely fast. Reaction rate is a non-linear function of chamber temperature and the mole number of the species in the combustion chamber. A second instance in which the predictions of the non-linear and linearized models differ is in the effect that fuel mass flow rate has on chamber pressure oscillations. Lim stated that chug could not be eliminated by changing the mass flow rate. As shown in figure 4.18 (page 86), the non-linear model predicts a pronounced effect of fuel mass flow rate on the rate at which oscillations are damped. Chamber temperature, droplet vaporization rate and mean droplet diameter are all functions of the fuel mass flow rate.

Using a linearized model, Lim was able to predict the effect that a number of engine parameters had on the stability of the SSME fuelside preburner. The results of the linearized model were concise, required a relatively small amount of computer time and in most cases proved accurate. The non-linear model used in the current study was able to show that chemical kinetics and fuel mass flow rate play a greater role in determining whether or not the preburner undergoes stable operation than predicted by the linearized model. These predictions show that a non-linear model is necessary in a detailed study of chug and offset the greater computer time necessary to predict how the preburner operates.
5.2 POSSIBLE EXTENSIONS OF THIS RESEARCH

There are number of ways the fuelside preburner model could be changed to increase its accuracy and to enable it to be used to model different rocket engine phenomena.

To improve the accuracy of the fuelside preburner model, the oxidizer feed system could be more faithfully represented, adding pipes and an oxidizer manifold. A finer grid of pipes would also increase accuracy, although for most cases this is not necessary. Within the oxidizer feed system the compressibility of LOX could be taken into account.

In the combustion chamber, a droplet distribution, which, like Webber's (1972) could contain different sized droplets whose size is followed over time, could be added. Given temperature data for the combustion chamber walls, the rate of heat transfer from the combustion chamber walls to the chamber contents could be more accurately calculated.

Finally, if it were desired to study spatial variations in chamber pressure, temperature and composition, it would be possible to use multiple TSTR's to model the combustion chamber. TSTR's could be distributed longitudinally and radially throughout the combustion chamber. The exit mass flow rate from the face of one TSTR would be an inlet mass flow rate through the face of an adjacent TSTR. Such a scheme could prevent the mixture ratio from being overestimated.
severely in sections of the combustion chamber that contain many liquid droplets.

It is reiterated here that the above alterations of the TSTR model were not necessary in the study of the SSME fuelside preburner chug and are presented as ways in which the fuelside preburner model can be extended to be used in different applications.

5.3 EVALUATION OF THE FUELSIDE PREBURNER MODEL

The TSTR model of the fuelside preburner combustion chamber is simple, yet has been shown capable of predicting low frequency combustion instability. With the proper assumptions, the model can be used over a wide domain of operating conditions and engine parameters.

Among the strengths of the fuelside preburner model are,
1. the frequency of pressure oscillations in the preburner is predicted to within 6% of typical measured frequencies,
2. the effect that various engine parameters and combinations of these parameters has on preburner operation was shown,
3. the presence of liquid in the combustion chamber is included,
4. chemical kinetics may be included for high temperatures and pressures and
5. the fuel preburner is predicted to maintain stable operation at full power level.
The preburner model's weaknesses are

1. chemical kinetics are not modelled during the SSME shutdown,
2. solutions cannot be generated when the diameter of the pipe connecting the helium storage tank to the helium check valve is too small,
3. accurate initial conditions are required and
4. long CPU times are required to generate solutions when large derivatives are encountered (e.g., when backflow of combustion chamber contents into the oxidizer feed system occurs).

Despite the model's limitations, the objectives of this research were basically met. The TSTR model was able to predict transient conditions in a rocket engine preburner. The model predicted that, during the SSME shutdown the fuelside preburner would not undergo unstable operation, yet when key engine parameters were changed by a small amount instability resulted. It is also possible, as a worst case, that the inclusion of chemical kinetics in the model for shutdown would result in unstable preburner operation. The frequency of the SSME preburner chug was accurately predicted, but the amplitude was not, since sustained oscillations were not predicted by TRNCHG. Finally, the model not only showed the influence that engine parameters and processes have on chug, but also pointed out, contrary to the predictions of a linearized model, that fuel mass flow rate and chemical kinetics are important.

The program, TRNCHG, was written for the SSME fuelside preburner. However, by altering the oxidizer feed system
calculations and changing the way that exit mass flow rate is calculated, TRNCHG could be applied to many other rocket engine combustion chambers to study low frequency combustion instability. Using such a program has been shown valuable in an in-depth study of chug.
LIST OF REFERENCES

George, P.E., 1985, "Investigation and Modelling of Space Shuttle Main Engine Shutdown Transient Chugging," NASA/ASEE Summer Faculty Research Fellowship Program Report, Marshall Space Flight Center/ University of Alabama.

Seymour, D., 1986, personal correspondence.

Sutton, G.P., Rocket Propulsion Elements, John Wiley and Sons, N.Y.
VanOverbeke, T.J. and Claus, R.W., 1986, "SSME Fuelside Preburner Two-Dimensional Analysis," NASA Technical Memorandum 87299, Lewis Research Center, Cleveland, OH.

White, F.M., 1979, Fluid Mechanics, McGraw-Hill, N.Y.

APPENDIX A

COMBUSTION CHAMBER AND OXIDIZER FEED

SYSTEM DERIVATIVES
A.1 DERIVATION OF THE TSTR GOVERNING EQUATIONS

The conservation of mass for the gas and the liquid phases is fully derived in Chapter III. The conservation of species and energy for a TSTR and the ideal gas law as used in the present study are derived below.

The Conservation of Species

Equation [3.6] can be written

\[
\frac{d}{dt} \left(\rho_i \sigma_i \right) = \sum_{j=1}^{NS} \left(m_{jv} \sigma_{ij} \right) - m_{gv} \sigma_i + \Gamma_{iv} \tag{A.1}
\]

for \(i=1,2,3 \ldots NS \). The subscript \(v \) denotes a volumetric quantity.

The derivative in [A.1] is expanded, giving

\[
\rho_c \frac{d \sigma_i}{dt} + \sigma_i \frac{d \rho_c}{dt} = \sum_{j=1}^{NS} \left(m_{jv} \sigma_{ij} \right) - m_{gv} \sigma_i + \Gamma_{iv} \tag{A.2}
\]

From equation [3.4],

\[
\frac{d \rho_c}{dt} = \sum_{j=1}^{NS} \left(m_{jv} \sigma_{ij} \right) - m_{gv} \tag{A.3}
\]

[A.3] is substituted into [A.2] and the result is simplified, yielding
For any variable, \(x \),

\[
\frac{d(\ln x)}{dt} = \frac{1}{x} \frac{dx}{dt}
\]

[A.5] is applied to [A.4], giving the conservation of species for the TSTR in its final form:

\[
\frac{d(\ln \sigma_i)}{dt} = \frac{1}{\sigma_i \rho_c} \sum_{j=1}^{NS} \left[m_j \left(\sigma_{ij}^* - \sigma_i \right) \right] + \Gamma_{iv} \quad i=1, 2, 3 \ldots \text{NS}
\]

[A.6]

\textbf{Conservation of Energy}

Conservation of energy is given by equation [3.7] as

\[
\frac{dE}{dt} = \sum_{i=1}^{NS} \left[\sum_{j=1}^{NS} \left(m_j \sigma_{ij}^* h_{ij}^* \right) - \sum_{i=1}^{NS} \left(m_i \sigma_{i} h_{i} \right) - Q \right]
\]

[A.7]

assuming that changes in the kinetic and potential energies of the chamber contents are negligible,

\[
\frac{dE}{dt} = \frac{dU}{dt} = \frac{d}{dt} \left(\sum_{i=1}^{NS} \rho_i \sigma_i u_i \right)
\]

[A.8]

where \(E \) is the total energy (Joules) of the chamber contents, \(U \) is the internal energy (Joules) of the chamber contents and \(u_i \) is the
specific molar internal energy (J/kgmole) of species i. Expanding the derivative,

$$\frac{dE}{dt} = \frac{d\rho_c}{V} \sum_{i=1}^{\text{NS}} \rho_i u_i \sigma_i + \rho_c \sum_{i=1}^{\text{NS}} \frac{d\rho_i}{dt} u_i + \rho_c \sum_{i=1}^{\text{NS}} \frac{d\sigma_i}{dt} u_i$$ \hspace{1cm} [A.9]

Assuming that the contents of the chamber behave as a mixture of perfect gases and that their specific heats at constant pressure, $c_{pi} (J/kgmole \cdot K)$ do not vary,

$$\frac{du_i}{dt} = \frac{d}{dt} \left(h_i - R T_c \right) = \frac{dT_c}{dt} (c_{pi} - R)$$ \hspace{1cm} [A.10]

Using [A.10], [A.9] becomes

$$\frac{dE}{dt} = \frac{d\rho_c}{V} \sum_{i=1}^{\text{NS}} \rho_i u_i \sigma_i + \rho_c \sum_{i=1}^{\text{NS}} \frac{d\rho_i}{dt} u_i + \rho_c \sum_{i=1}^{\text{NS}} \frac{d\sigma_i}{dt} u_i$$

$$\rho_c \frac{d\sigma_i}{dt} u_i = \rho_c \sum_{i=1}^{\text{NS}} \left(c_{pi} - R \right)$$ \hspace{1cm} [A.11]

[A.11] is substituted into [A.7] and [A.5] is applied, giving

$$\frac{d(\ln T_c)}{dt} = \left[\sum_{i=1}^{\text{NS}} \sum_{j=1}^{\text{NS}} \sum_{m=1}^{\text{NS}} \sum_{l=1}^{\text{NS}} \frac{d\rho_c}{\rho_c} \left(\sum_{i=1}^{\text{NS}} \sigma_i u_i \right) \right] / \left[\frac{\dot{Q}}{V} \right]$$ \hspace{1cm} [A.12]
The Ideal Gas Law

For the combustion chamber, the ideal gas law can be written

\[P = \rho_c \sigma \frac{R}{m} \frac{T_c}{g} \]

where \(\sigma = \sum_{i=1}^{\NS} \sigma_i \). Alternatively,

\[\frac{dP}{dt} = \rho \frac{R}{m} \frac{T_c}{g} \frac{dT_c}{dt} + \rho \frac{R}{m} \frac{T_c}{g} \frac{d\sigma}{dt} \]

[A.13]

Equation [A.5] is applied to [A.13], giving

\[\frac{d(ln P)}{dt} = \frac{\sigma \frac{R}{m} \frac{T_c}{g} \frac{d\rho}{dt} + \rho \frac{R}{m} \frac{T_c}{g} \frac{dT_c}{dt} + \rho \frac{R}{m} \frac{T_c}{g} \frac{d\sigma}{dt}}{P_c} \]

[A.14]

or,

\[\frac{d(ln P)}{dt} = \frac{1}{\rho_c} \frac{d\rho_c}{dt} + \frac{1}{T_c} \frac{dT_c}{dt} + \frac{1}{\sigma_m} \frac{d\sigma_m}{dt} \]

[A.15]

A.2 DERIVATION OF THE REACTION RATE FROM ELEMENTARY KINETICS

The volumetric forward and reverse reaction rates for an elementary reaction, \(j \), can be written (Pratt and Wormeck, 1976)

\[R_j' = A_j T_c^{N_j} \exp\{-T_j'/T_c\} (\rho \sigma_m)^{N_j} \prod_{i=1}^{\NS} (\rho \sigma_i)^{\nu_{ij}} \]

[A.16]

\[R_j'' = A_j' T_c^{N_j'} \exp\{-T_j''/T_c\} (\rho \sigma_m)^{N_j'} \prod_{i=1}^{\NS} (\rho \sigma_i)^{\nu_{ij}''} \]

[A.17]
where \(A_j, N_j \) and \(T_{aj} \) are empirically determined coefficients, \(T_c \) is the combustion chamber temperature, \(\nu_{ij} \) is the stoichiometric coefficient of species \(i \) in reaction \(j \), \(\nu_m \) is the stoichiometric coefficient for a third body, and the superscripts ' and " denote forward and reverse reaction, respectively. The overall rate of production of species \(i \) by a chain of \(NRXN \) elementary reactions is

\[
R_{iv} = \sum_{j=1}^{NRXN} (\nu''_{ij} R''_{iv} - \nu'_{ij} R'_{iv}) \tag{A.18}
\]

The following elementary reactions made up the overall conversion of \(H_2 \) and \(O_2 \) to water vapor in the TSTR model of the SSME fuelside preburner:

\[
\begin{align*}
O_2 + H_2 & \rightleftharpoons OH + OH \\
OH + H_2 & \rightleftharpoons H_2O + H \\
O_2 + H & \rightleftharpoons OH + O \\
O + H_2 & \rightleftharpoons OH + H \\
O + H_2O & \rightleftharpoons OH + OH \\
H + H + M & \rightleftharpoons H_2 + M \\
O + O + M & \rightleftharpoons O_2 + M \\
O + H + M & \rightleftharpoons OH + M \\
H + OH + M & \rightleftharpoons H_2O + M
\end{align*}
\]

Because the atoms \(O \) and \(H \) and the radical \(OH \) are so reactive, they are consumed nearly as soon as they are produced, so their mole
numbers were assumed to be constant at any given time, or

\[
\frac{d\sigma_O}{dt} = \frac{d\sigma_H}{dt} = \frac{d\sigma_{OH}}{dt} = 0
\]

[A.19]

Using equation [A.19], equation [A.4] can be written for O, H and OH, giving

\[
f_H = \sum_{j=1}^{NSTRM} m_j^v (\sigma_{Hj} - \sigma_H) + R_{Hv} = 0
\]

\[
f_O = \sum_{j=1}^{NSTRM} m_j^v (\sigma_{Oj} - \sigma_O) + R_{Ov} = 0
\]

[A.20]

\[
f_{OH} = \sum_{j=1}^{NSTRM} m_j^v (\sigma_{OHj} - \sigma_{OH}) + R_{OHv} = 0
\]

Since there are no radicals present in the inlet streams,

\[
f_H = -\sigma_H (\sum m_j^v) + R_{Hv} = 0
\]

\[
f_O = -\sigma_O (\sum m_j^v) + R_{Ov} = 0
\]

[A.21]

\[
f_{OH} = -\sigma_{OH} (\sum m_j^v) + R_{OHv} = 0
\]

At each time, values for \(\sigma_H, \sigma_O, \sigma_{H0}, T_c, P_c\) and \(c\) are known (these are the combustion chamber variables which are being integrated), so equations [A.21] constitute three equations in the three unknown mole numbers \(\sigma_H, \sigma_O\) and \(\sigma_{OH}\).
The roots of equations [A.21] were found using a Newton iteration. The functions, \(f_i \), were expanded in a Taylor series about the assumed solution and second order and higher terms were truncated (George, 1982), giving

\[
f_i = f_{i,\text{old}} + \sum_{k=1}^{\text{NRAD}} \frac{\partial f_{i,\text{old}}}{\partial \sigma_k} \sigma_k \quad i=1,\text{NRAD} \quad [A.22]
\]

where NRAD is the number of species whose mole number is assumed constant at each time step (Nrad=3 for the SSME TSTR model). If the correct values of the radical mole numbers are chosen, \(f_i = 0 \) for \(i=1,\text{NRAD} \). [A.22] can then be written

\[
\sum_{k=1}^{\text{NRAD}} \frac{\partial f_i}{\partial \sigma_k} \Delta \sigma_k = -f_{i,\text{old}} \quad i=1,\text{NRAD}
\]

or,

\[
\begin{bmatrix}
\frac{\partial f_H}{\partial \sigma_H} & \frac{\partial f_H}{\partial \sigma_0} & \frac{\partial f_H}{\partial \sigma_{OH}} \\
\frac{\partial f_O}{\partial \sigma_H} & \frac{\partial f_O}{\partial \sigma_0} & \frac{\partial f_O}{\partial \sigma_{OH}} \\
\frac{\partial f_{OH}}{\partial \sigma_H} & \frac{\partial f_{OH}}{\partial \sigma_0} & \frac{\partial f_{OH}}{\partial \sigma_{OH}}
\end{bmatrix}
\begin{bmatrix}
\Delta \sigma_H \\
\Delta \sigma_O \\
\Delta \sigma_{OH}
\end{bmatrix}
= \begin{bmatrix}
-f_{H,\text{old}} \\
-f_{O,\text{old}} \\
-f_{OH,\text{old}}
\end{bmatrix} \quad [A.23]
\]

Equation [A.23] is solved for the correction variables \(\Delta \sigma_i \), \(i=1,\text{NRAD} \). New estimates for \(\sigma_i \), \(i=1,\text{NRAD} \), are

\[
\sigma_{i,\text{new}} = \sigma_{i,\text{old}} + \Delta \sigma_i \quad [A.24]
\]

The results of [A.24] are successively substituted into [A.23] until
the condition

$$\sigma_i < \varepsilon_{ss} \quad i=1, NRAD$$ \hspace{1cm} [A.25]

is met. \(\varepsilon_{ss} \) was set at 1.0x10^{-5} in the program TRNCHG.

When condition [A.25] was met, reaction rate for H\(_2\)O was calculated using the known values for mole numbers, temperature, pressure and density, the steady state values for the radical mole numbers and equations [A.16], [A.17] and [A.18]. By conservation of atoms,

$$R_{H_2}v = -R_{H_2}Ov$$
$$R_{O_2}v = 0.5 R_{H_2}Ov$$ \hspace{1cm} [A.26]

In all observed cases, the approximate values for \(R_{H_2}v \) and \(R_{O_2}v \) were close (within an estimated 5\%) of the values calculated directly using [A.16], [A.17] and [A.18].

A.3 DERIVATION OF THE OXIDIZER FEED SYSTEM EQUATIONS

In integral form, the conservation of linear momentum for a control volume is (White, 1979)

$$\Sigma F = \frac{\partial}{\partial t} \left(\int \int \int_{CV} \rho \,vdV \right) + \int \int \rho \,v \cdot n \, \text{d}A$$ \hspace{1cm} [A.27]

As shown in figure 3.6, using equations [3.15] and [3.16],

$$\Sigma F = (P_1 - P_2)A - fL\rho v^2A$$ \hspace{1cm} [A.28]
For a pipe containing a liquid/vapor interface, \([A.27]\) can be written

\[
(P_1 - P_2) A - f L \rho v^2 A = \frac{d}{dt} \left(\rho l v l + \rho g v g \right) + \rho l v^2 A - \rho g v^2 A \quad [A.29]
\]

Note that

\[
\frac{dl}{dt} = \frac{dl}{dt} = v \quad [A.30]
\]

Divide by \(A\) and group terms for \(dv /dt\).

\[
P_1 - P_2 - f L \rho v^2 = \left(\rho l v l + \rho g v g \right) \frac{dv}{dt} + 1 v \frac{d\rho}{dt} + 1 v \frac{d\rho}{dt} \quad [A.31]
\]

For each pipe node, \(k\), equation \([3.20]\) is written

\[
\rho_k \sum_{n=1}^{NP} A_n \left(\frac{dv}{dt} \right)_n + \left(\frac{d\rho}{dt} \right)_k \sum_{n=1}^{NP} A_n v_n = 0 \quad [A.32]
\]

Equations \([A.31]\) and \([A.32]\) constitute \(NN+NP\) linear equations in the \(NN+NP\) unknowns: \(dv /dt\), \(n=1,2,3 \ldots NP\), and \(d\rho /dt\), \(k=1,2,3, \ldots NN\). \([A.31]\) and \([A.32]\) can be expressed as the matrix equation \([A]\) \(\{X\} = \{B\}\) where matrix \([A]\) contains the coefficients of the unknowns, \(\{X\}\) contains the values of the unknowns and \(\{B\}\) contains \(P_1 - P_2 - f L \rho v^2\) for rows 1,2,3 \ldots NP and zero for rows \(NP+1, NP+2, \ldots NP+NN\). In the program written for this study, \(\{X\}\) was found via a call to IMSL subroutine LEQT1F.
APPENDIX B

FLOWCHARTS, PROGRAM LISTING AND SAMPLE INPUT
AND OUTPUT FILES FOR PROGRAM TRNCHG
Initialize variables and arrays
Read thermodynamic property and reaction rate data
[TSTR (main), subroutines BLKDATA and NPT]

Define the integration step
TM = Present time TMNXT = time following integration
TMEND = time at the termination of the run
STEP = integration step size (can be fixed or variable
[subroutines TSTR2 and DTSTR or DGEAR]

Calculate the derivatives of the system variables
(see figure A.2 for a flow chart of these calculations)
[subroutines CSLOPE, COMBRT, THERPS, RADSS AND RATES]

Calculate and update the values of the system variables
for TM = TM + STEP
[subroutine DTSTR or DGEAR]

Is TM = TMNXT ?

Output the values of the system variables to a plot file
and a text file
(files TSTR.PLT and TSTR.OUT)

Is TM = TMEND ?

STOP

Figure B.1: Flowchart for Program TRNCHG
CALL FROM INTEGRATION SUBROUTINE

Reset derivative array to zero
Calculate useful variables
[subroutine CSLOPE]

Calculate the evaporation rate of liquid oxygen
[subroutines COMBRT and THERPS]

Calculate the rate of production of each species according to a kinetic mechanism
[subroutines RADSS, RATES, COMBRT AND THERPS]

Are chemical kinetics considered?
yes

Assume all vaporized oxygen immediately reacts
Calculate the rate of production of each species
[subroutine COMBRT]

no

Calculate YPRIME for the species mole numbers, and combustion chamber temperature and pressure
[subroutine CSLOPE]

Set all piping system derivatives equal to zero
[subroutine CSLOPE]

Is oxidizer mass flow rate constant?
no

Calculate piping system variable derivatives
[subroutine PIPES]
yes

RETURN TO THE INTEGRATION SUBROUTINE

Figure B.2: Flowchart for the Calculation of Derivatives
TRANCHG:MAIN (AUGUST, 1987)

TRANCHG was written to predict the transient behavior of the Space Shuttle Main Engine Fuel Side Preburner during the shut-down helium purge. It is also capable of predicting engine behavior during operation at full power level.

Initial programming for TRANCHG was by Dr. P. George II, currently at Battelle Lab, Columbus, OH. Subsequent programming was by T. Bartrand, Master's Candidate, U. of Tennessee, Knoxville.

The preburner combustion chamber was modelled as a stirred tank reactor. Fuel mass flow rate was taken as constant. Oxidizer enters the combustion chamber via a multi-pipe multi-node feed system with a constant pressure at the furthest upstream node.

The TRANCHG system variables, which are integrated over time, fall into two categories: the chamber variables and the oxidizer feed system variables.

Chamber variables include:
- \(S_2(I) \): Mole number of species \(I \) (kg moles of \(I/\text{kg} \))
- \(T_K \): Temperature (K)
- \(P_A \): Pressure (Pa)
- \(D_{LIQ} \): Liquid density in the combustion chamber (kg/m\(^3\))

Feed system variables include:
- \(V(J) \): Velocity in pipes \(J \) (m/s)
- \(FVI(J) \): Position of the liquid/vapor interface in pipe \(J \) (% of the pipe length)
- \(RHO(K) \): Density at node \(K \) (kg/m\(^3\))
- \(FVI2 \): Position of the backflow interface in the last pipe. (% of the pipe length)

Execution of TRANCHG involves 11 subroutines (written for the program) and the use of two IMSL subroutines: DGEAR, for numerical integration of differential equations and LEQT1F, for solution of matrix equation \(A \times X = B \) for the vector \(X \). A listing of the subroutines used in the execution of TRANCHG and a brief explanation of the function that each performs follows.

COMMONSS: Common block included in most of the subroutines called in the execution of TRANCHG.

YCAL: Used to call the integration routine and call subroutine OUTPT.

NPT: Reads most of the necessary data for execution. Initializes variables, calculates thermodynamic properties and forms reaction rate expressions.

DTSTR: Runge-Kutta integration subroutine to be used in the absence of IMSL subroutine DGEAR. To select DTSTR the vari-

138
ABLE NDGEAR (NAMELIST ICONS) IS SET EQUAL TO 1. TO USE DGEAR
LET NDGEAR = 0.

CSLOPE: CALCULATES THE DERIVATIVES WITH RESPECT TO TIME FOR
THE SYSTEM VARIABLES ON A CALL FROM THE INTEGRATING ROUTINE.
CALLS SUBROUTINES COMBRT, PIPES AND THERPS.
THERPS: CALCULATES ENTHALPY, INTERNAL ENERGY AND SPECIFIC HEAT
AT CONSTANT PRESSURE FOR GASEOUS CONSTITUENTS WITHIN THE
COMBUSTION CHAMBER.
COMBRT: CALCULATES THE RATE OF PRODUCTION OF THE MAJOR SPECIES
IN THE COMBUSTION CHAMBER DUE TO VAPORIZATION AND COMBUSTION.
COMBRT CALLS BOTH RADSS AND THERPS.
PIPES: CALCULATES THE DERIVATIVES OF THE PIPING SYSTEM VARI-
ABLES ON A CALL FROM CSLOPE. ACCESSES IMSL SUBROUTINE LEQT1F.
INPUTS TO PIPES ARE FOUND IN NAMELIST INPIP AND COMMON BLOCK
PIPE.
RADSS: CALCULATES THE RATE OF PRODUCTION OF THE MAJOR SPECIES IN
THE COMBUSTION CHAMBER DUE TO COMBUSTION. ASSUMES THE MOLE
NUMBERS OF THE VERY REACTIVE SPECIES (ATOMS AND RADICALS) ARE
CONSTANT AT ANY TIME. RADSS ACCESSES IMSL SUBROUTINE LEQT1F
AND SUBROUTINE RATES.
RATES: CALCULATES THE RATE OF PRODUCTION OF RADICALS AND ATOMS
AND THE DERIVATIVE OF THESE RATES. RATE FOR A GIVEN SPECIES
IS FOUND BY SUMMING THE CONTRIBUTIONS TO RATE BY EACH ELEMEM-
TARY REACTION.
OUTPT: OUTPUTS VALUES TO THE TEXT FILE TSTR.OUT AND THE PLOT
FILE TSTR.PLT1 AND TSTR.PLT2 ON RETURN FROM THE INTEGRATION
SUBROUTINE OR IF THE EXECUTION MUST BE STOPPED

OUTPUT IS CONTROLLED BY THE PARAMETER NDEBUG. FOR NDEBUG(I) EQUAL
TO 1 THE OUTPUT OF OUTPUT GROUP I IS PRINTED IN THE APPROPRIATE
FILE. OTHERWISE NDEBUG(I) SHOULD EQUAL 0.

OUTPUT GROUPS ARE:

NDEBUG(1) --> PROBLEM PARAMETERS FROM NAMELISTS PARAM, ICONS,
SSRXN AND PIPES.
NDEBUG(2) --> THERMODYNAMIC PROPERTY DATA.
NDEBUG(3) --> REACTION RATE DATA.
NDEBUG(4) --> INITIAL CONDITIONS OF THE INLET STREAMS
AND IN THE COMBUSTION CHAMBER.
NDEBUG(5) --> INPUTS TO THE INTEGRATING ROUTINE.
NDEBUG(6) --> OUTPUTS FROM THE INTEGRATING ROUTINE TO
THE OUTPUT TEXT FILE (TSTR.OUT)
NDEBUG(7) --> OUTPUTS FROM THE INTEGRATING ROUTINE TO
THE OUTPUT PLOT FILE (TSTR.PLT)
NDEBUG(8) --> TERMS USED IN THE CALCULATION OF DERIVATIVES
TIVES IN SUBROUTINE CSLOPE.
NDEBUG(9) --> DERIVATIVE ESTIMATES AT THE END OF
SUBROUTINE CSLOPE.
NDEBUG(10) --> OUTPUTS VALUES OF TEMP, PRESS, AND MOLE NO. TO
NDEBUG(11) --> CONVERGENCE SUMMARY FOR SUBROUTINE RADSS
NDEBUG(12) --> SUMMARY OF THE DERIVATIVES CALCULATED IN
SUBROUTINE PIPES.
NDEBUG(13) --> OUTPUTS FROM SUBROUTINE RATES, INCLUDING
A LISTING OF THE RXNS WHOSE REACTION RATES
ARE SMALL AND SET EQUAL TO ZERO.
NDEBUG(14) --> OUTPUTS VALUES OF TIME, STEP, TEMPERATURE
AND MOLE NUMBERS OF THE MAJOR SPECIES TO
THE SCREEN ON RETURN TO YCAL FROM THE INTEG-
RATION SUBROUTINE.
NDEBUG(15) --> SUMMARY OF DERIVATIVE ESTIMATES, OLD AND
NEW SYSTEM VARIABLE VALUES FROM THE RUNGE -
KUTTA INTEGRATION SUBROUTINE DTSTR.

THREE SETS OF COMBUSTION CHAMBER CONSTITUENTS ARE
CONSIDERED IN TRNCHG:

(1) INLET STREAM CONSTITUENTS (REACTANTS) WHICH ARE
PRESENT IN SIGNIFICANT AMOUNTS IN THE COMBUSTION
CHAMBER,
(2) REACTION PRODUCTS WHICH ARE PRESENT IN SIGNIFICANT
AMOUNTS IN THE COMBUSTION CHAMBER AND
(3) RADICALS AND ATOMS, WHICH ARE CONSIDERED TO HAVE
SMALL CONCENTRATIONS RELATIVE TO REACTANTS AND
PRODUCTS AND WHOSE MOLE NUMBER IS TAKEN CONSTANT
AT ANY INSTANT OF TIME.

TRNCHG IS DOUBLE PRECISION FOR ALL REAL VARIABLES. THE MAXI-
MUM NUMBER OF SYSTEM VARIABLES IS 50, BUT CAN BE EASILY
INCREASED BY INCREASING THE DIMENSIONS OF ARRAYS YY, YPRIME,
WK AND IWK.

***** TRNCHG USES SI FOR ALL CALCULATIONS *****

INCLUDE 'INIT.FOR/LIST'
DIMENSION S2P(10),Y(50),IWK(50),WK(9000)
INCLUDE 'COMMONSS.FOR/LIST'

NAMELIST
* /RUNNO/ NMON,NDAY,NYR,NRUN,
* /PARAM/ VOL,Q,S2MIN,EMS,TKS,TMSD,RGMX,RHOGAS,RHOLIQ,
* RHOHZ,HAH2IN,AH2IN,FO2IN,FV12MN,DLIQMN,DMIN,DMC,
* CFTP,PHG,XPER,TEMPR,CVR,
* /INITE/ XMASS,TK,PA,DM,
* /INDX1/ NDEBUG,MCON,KINET,
* /ICONS/ METH,MITER,NDGEAR,IER,STEP,TMI,TMPRT,TMEND,
* INDEX,EPSI,
* /SSRRT/ EPSISS,RLX,RLX2,ITMAXS,IDGT,JER
* /INPIP/ V,FVI,RHO,FVI2,PL,AREA,RFLIQ,RFGAS,RFLHO,
* RFGHO,RFLV,RFGV,PS,CDIN,SM1MIN,
* /INDX2/ N1,N2,NP,NN,NHEO,NFVI

C DATA RGAS/ 8314.4 /,JJ/ 9 /,TENLN/ 2.302585093 /

C OPEN (UNIT=20,FILE='[BART.TSTR.WORK]TSTR.IN',READ ONLY,
* STATUS='OLD')
OPEN (UNIT=30,FILE='[BART.TSTR.WORK]TSTR.OUT',STATUS='OLD')
OPEN (UNIT=31,FILE='[BART.TSTR.WORK]TSTR.PLT1',STATUS='NEW')
OPEN (UNIT=32,FILE='[BART.TSTR.WORK]TSTR.PLT2',STATUS='NEW')

C --- READ AND WRITE PROBLEM PARAMETERS FROM NAMELISTS.
C
READ (20,RUNNO)
READ (20,PARAM)
READ (20,INITC)
READ (20,INDX1)
READ (20,ICONS)
READ (20,SSRRT)
READ (20,INPIP)
READ (20,INDX2)

C WRITE (30,1000) NMON,NDAY,NYR,NRUN

C IF (NDEBUG(1)) THEN
WRITE (30,1100) VOL,Q,S2MIN,XMASS,DM,DMIN,CFTP,PHG,
* NDEBUG
WRITE (30,1150) DMC,AH2IN,A02IN,MCON,KINET
WRITE (30,1200) METH,MITER,NDGEAR,IER,EPSI,STEP,TMI,
* TMRNT,TMEND,TMSD
WRITE (30,1300) EPSISS,RLX,ITMAXS,IDGT,JER
WRITE (30,1400) NP,NN,NHEO,NFVI,RFLIQ,RFGAS,RFLHO,
* RFGHO,RFLV,RFGV,CDIN,PS,FVI2
WRITE (30,1500) (I,N1(I),N2(I),AREA(I),PL(I),I=1,NP)
WRITE (30,1600) (I,V(I),FVI(I),I=1,NP)
WRITE (30,1700) (I,RHO(I),I=1,NN)
END IF
S2MLG = DLOG(S2MIN)
PAMAX = 1.0D+03 * PA

C --- ARATIO IS THE RATIO OF THE TOTAL AREA OF THE OXYGEN
C INJECTORS TO THE AREA OF THE LAST PIPE IN THE OXIDIZER
C FEED SYSTEM.

ARATIO = 264.0 * A02IN/AREA(NP)
ARATSQ = ARATIO*ARATIO
CALL NPT

C --- DEFINE THE ISIDE ARRAY. ISIDE(KK,LL) TELLS THE SIDE OF RXN LL ON WHICH SPECIE KK IS FOUND. IF KK ON THE LHS, ISIDE IS NEGATIVE. IF KK IS ON THE RHS, KK IS POSITIVE. IF KK APPEARS TWICE, ISIDE=2. IF KK APPEARS ONCE, ISIDE=1. FOR KK NOT PRESENT, ISIDE=0.

DO 120 LL=1,JJ
DO 110 KK=1,NSRATE
DO 100 MM=1,4
 IF(KK.EQ.ID(MM,LL)) THEN
 IF(MM.LE.2.AND.ID(1,LL).EQ.ID(2,LL)) THEN
 ISIDE(KK,LL) = -2
 ELSE IF(MM.LE.2) THEN
 ISIDE(KK,LL) = -1
 ELSE IF(ID(3,LL).EQ.ID(4,LL)) THEN
 ISIDE(KK,LL) = 2
 ELSE
 ISIDE(KK,LL) = 1
 END IF
 GO TO 110
END IF
100 CONTINUE
ISIDE(KK,LL) = 0
110 CONTINUE
120 CONTINUE

C --- WRITE THERMODYNAMIC AND REACTION RATE DATA TO THE OUTPUT TEXT FILE.

IF(NDEBUG(2)) THEN
 WRITE (30,1900) (I,ANAM(I),SMW(I),I=1,NS)
 WRITE (30,2000) (I,ANAM(I),SMW(I),I=NS+1,NSRATE)
 WRITE (30,2100) (ANAM(I),(Z(J),J=(I-1)*14+1,I*14),I=1,NSRATE)
END IF
IF(NDEBUG(3)) THEN
 WRITE (30,2200) (J,(ID(K,J),K=1,4),J=1,JJ)
 WRITE (30,2300) (J,(ISIDE(K,J),K=1,NSRATE),J=1,JJ)
 DO 125 J=1,JJ
 TM1 = BX(J)/TENLN
 TM2 = BX2(J)/TENLN
 WRITE (30,2450) J,MODR(J),TM1,TEN(J),TACT(J),TM2,
142
* TEN2(J),TACT2(J)

125 CONTINUE
END IF

C --- PUT MOLE NUMBER WITHIN THE PROBLEM DOMAIN
C (S2MIN < S2 < 1/SMW), SUMMARIZE INPUTS AND WRITE INITIAL
C CONDITIONS TO THE PLOT AND TEXT OUTPUT FILES.

SM = 0.0
DO 130 I=1,NS
 IF(S2(I).LT.S2MIN) S2(I) = S2MIN
 SM = SM + S2(I)
130 CONTINUE

C --- DEFINE USEFUL CONSTANTS

TKINV = 1.0/TK
SMINV = 1.0/SM
RGASIN = 1.0/RGAS
OMV = EMS(1)/VOL
FMV = EMS(2)/VOL
PMV = EMS(3)/VOL
EMV = OMV + FMV + PMV
RHOCC = PA*SMINV*RGASIN*TKINV

C --- WRITE INITIAL PIPE AND COMBUSTION CHAMBER CONDITIONS TO
C THE TEXT FILE AND THE PLOT FILE.

IF(NDEBUG(4)) THEN
 WRITE (30,2500) (I,ANAM(I),S2(I),ISTRM(I),S1(ISTRM(I),
 * I),AST(I),I=1,NSRATE)
 WRITE (30,2600) TK,PA,RHOCC,SM,VOL,(I,ANST(I),TKS(I),
 * EMS(I),SF(I),HS(I),SH(I),I=1,3)
END IF

C IF(NDEBUG(7)) THEN
 TMP = TMI*1.0D+03
 PAP = PA*1.0D-06
 IF(DM.LT.DMMIN) DM = DMMIN
 DMP = DM * 1.0D-06
 DLIQ = XMASS/VOL
 DO 140 I=1,NSRATE
 140 S2P(I) = S2(I)*1.0D+03
 WRITE (31,2700)
 WRITE (31,2800) TMP,(S2P(I),I=1,NSRATE)
 WRITE (32,2750)
 WRITE (32,2850) TMP,TK,PAP,EMS(1),DLIQ,DMP,VR
ENDIF

C --- SET PIPES INITIAL CONDITIONS AND INDICES. NOTE THAT
THE LOG VARIABLE FORM IS NOT USED IN THE FORMULATION
OF THE PIPING SYSTEM OF EQUATIONS.

NN NO. OF NODES
NP NO. OF PIPES
NHEO NO. OF PIPES THAT MAKE UP THE HELIUM PURGE
ORIFICE
NFV INDEX FOR THE PIPE THAT ACTS AS THE HELIUM
CHECK VALVE
NFVI INDEX FOR THE PIPE IN WHICH THE LIQUID/VAPOUR
INTERFACE IS LOCATED
NS4 --> NS5 INDICES FOR PIPE FLUID VELOCITIES.
NS6 --> NS7 INDICES FOR PIPE FLUID/VAPOUR INTERFACES.
NS8 --> NS9 INDICES FOR NODAL DENSITIES
NS10 INDEX OF THE SYSTEM VARIABLE THAT FOLLOWS THE
PROGRESS OF A LIQUID/VAPOUR INTERFACE THAT RE-
SULTS FROM BACKFLOW FROM THE COMBUSTION CHAM-
BER INTO THE OXIDIZER FEED SYSTEM.
NV TOTAL NUMBER OF DEPENDENT (SYSTEM) VARIABLES
WHICH MUST BE INTEGRATED.

NODE 1 IS THE FURTHEST UPSTREAM NODE. PRESSURE FOR NODE
1 IS TAKEN AS CONSTANT. NODE NN IS THE FURTHEST DOWN-
STREAM NODE. IT IS THE JUNCTION OF THE PIPING SYSTEM WITH
THE COMBUSTION CHAMBER. ONLY ONE UPSTREAM AND ONE DOWN-
STREAM BOUNDARY ARE PROGRAMMED.

PIPE 1 IS TAKEN AS THE FURTHEST UPSTREAM PIPE. PIPE NP IS
THE FURTHEST DOWNSTREAM PIPE, CONNECTED TO THE COMBUSTION
CHAMBER VIA NODE NN.

NS4 = NS3 + 1
NS5 = NS3 + NP
NS6 = NS5 + 1
NS7 = NS5 + NP
NS8 = NS7 + 1
NS9 = NS7 + NN
NS10 = NS9 + 1
NV = NS10
NPV = NHEO + 1

N AND NWK ARE THE DIMENSIONS OF THE SYSTEM VARIABLES USED
IN THE INTEGRATION.

N = NV
IF(METH.EQ.1) NMETH = NV*13
IF(METH.EQ.2) NMETH = NV*6
IF(MITER.EQ.1.OR.MITER.EQ.2) NMITER = NV*(NV+1)
IF(MITER.EQ.3) NMITER = NV
IF(MITER.EQ.-1.OR.MITER.EQ.-2) MITER=NV*(2*NLC+NUC+3)

144
IF(MITER.EQ.0) NMITER = 1
NWK = 4*NV + NMETH + NMITER

C --- YCAL CARRIES OUT THE INTEGRATION AND OUTPUTS RESULTS TO A
C PLOT FILE AND TEXT FILE ON RETURNS FROM THE INTEGRATION
C ROUTINE.
C
CALL YCAL(Y,WK,IWK,N,NWK)
C
STOP
C
1000 FORMAT(//2X,'***** TSTR OUTPUT TEXT FILE *****'/,
* 12X,I2,2X,I2,2X,I4/,12X,'RUN NUMBER',2X,I3,/,)
1100 FORMAT(2X,'****** SOLUTION PARAMETERS ******'/,
* 4X,'CC VOLUME = ',1PD9.2, ' M**3'/,
* 4X,'CC HEAT TRANS. RATE = ',1PD12.5, ' J/S'/,
* 4X,'MIN ALLOWABLE MOLE NO. = ',1PD12.5, ' KMOLE/KG'/,
* 4X,'INITIAL MASS OF LIQ IN THE COMB CHAMBER = ',1PD12.5,
* ' KG'/,4X,'INITIAL DROPLET DIAMETER = ',1PD12.5, ' M'/,
* 4X,'MIN ALLOWABLE DROPLET DIAMETER = ',1PD10.3, ' M'/,
* 4X,'EXIT TURBINE FLOW RATE CONSTANT = ',1PD10.3/,,
* 4X,'HOT GAS MANIFOLD PRESSURE = ',1PD10.3, ' PA'/,
* /4X,'NDEBUG (1 FOR PRINTING, 0 FOR SUPPRESSING OUTPUT)'*
* /,(8X,10(I1,2X)))
1150 FORMAT(/4X,'DROPLET DIAMETER COEFFICIENT = ',1PD11.4/,,
* 4X,'AREA OF HYDROGEN INJECTOR ANULUS = ',D11.4/,,
* 4X,'AREA OF THE OXIDIZER INJECTOR = ',1PD11.4/,4X,
* 'MCON (=0 FOR CONSTANT MASS FLOW; =1 FOR PIPING SYSTEM)'*,
* I1/,4X,'KINET (=0 FOR NO KINETICS; =1 FOR CALL TO RADSS)'
* *,I1)
1200 FORMAT(/4X,'INTEGRATION PARAMETERS:/,
* 6X,'MITER, METH, NDGEAR',2X,3(I1,3X)/,6X,'IER, EPSI',
* 2X,I3,2X,1PD9.2/,6X,'INPUT STEP SIZE = ',1PD9.2, ' SEC'/,
* 6X,'INITIAL TIME = ',D9.2, ' SEC'/,6X,'OUTPUT INTERVAL',
* 6X,'TIME SHUTDOWN BEGINS = ',D9.2)
1300 FORMAT(/4X,'FOR SS RATE APPROXIMATION:/',6X,
* 'CONVERGENCE CRITERION (MAX % CHANGE) = ',1PD9.2/,6X,
* 'RELAXATION PARAMETER = ',OPF10.5/,6X,'MAX NO ITERATIONS',
* ' = ',I7/,6X,'ERROR CHECK IDGT = ',I2/,
* 6X,'IMSL ERROR FLAG JER = ',I3)
1400 FORMAT(/4X,'OXIDIZER FEED SYSTEM INPUTS:/,
* 6X,'NO. OF PIPES',2X,I2,2X,'NO. OF NODES',2X,I2/,
* 6X,'NO. OF HELIUM ORIFICE PIPES',2X,I2/,
* 6X,'PIPE IN WHICH THE INTERFACE IS INITIALLY LOCATED',
* 2X,I2,6X,'RFLIQ FOR THE OX PIPES = ',1PD10.3/,
* 6X,'RFGAS FOR THE OX PIPES = ',D10.3/,
* 6X,'RFLIQ FOR THE HE ORIFICE = ',D10.3/,
* 6X,'RFGAS FOR THE HE ORIFICE = ',D10.3/,
* 6X,'RFLIQ FOR THE HE VALVE = ',D10.3/,
* 6X,'RF GAS FOR THE HE VALVE = ',D10.3/.
* 6X,'INJECTOR AND MANIFOLD CD = ',D10.3/.
* 6X,'UPSTREAM SOURCE PRESSURE = ',D12.5,' PA'/.
* 6X,'INITIAL BACKFLOW INTERFACE POSITION = ',1PD10.3)
2750 FORMAT(4X,'TIME',3X,'TEMPERATURE',X,'PRESSURE',X,'OX MDOT',
 * 2X,'LIQ DEN',4X,'DROP DIAM',2X,'VAP RATE',/3X,'(MSEC)',6X,
 * '(K)',6X,'(MPA)',4X,'(KG/S)',4X,'(KG/M3)',4X.'(MICRONS)',2X,
 * '(KG/M3 S)')
2850 FORMAT(2X,F8.3,2X,F8.2,X,F8.3,2X,F8.4,3X,1PD9.2,3X,
 * OFP8.3,3X,F8.2)
END
C FILE INIT: INITIALIZATIONS OF VARIABLES
C
IMPLICIT REAL*8 (A-H,P-Z)
IMPLICIT INTEGER*4 (I-O)
REAL*8 OMV
CHARACTER*4 ANAM(20),AST(20),ASTNST(10),ANST(10),ALIQ,AGAS
C
COMMONS.PROC

COMMON
* /CPARA/ SW(10), AS1, AS2, RATE(10), YPP(10), OMV, FMV, PMV,
 * EMV, SMEMV, RGAS, RGASIN, VOL, Q, S2MIN, S2MLG, SM, SMINV,
 * TMS, RGMX, ALIQ, AGAS, VR, RHOGAS, RHIQ, RHOH2, CPSUM,
 * AH2IN, AO2IN, VH2, DM, DMIN, DMC, CF1F, PHG, DP1N, RP1X,
 * DLIQMN, FVI2MN, XPAR, TLPER, PAMAX, CVR,
* /CSVAR/ S2(10), TK, TKINV, PA, RHOCC, RHINV, DLIQ, XMAS, S1(3,30), ISTRM(10), TKS(3), ENS(3), DHI(10),
* INST(10), HS(3), ANST, SH(3), SF(3),
* /CINT/ TMEND, TM, TMPN, STEP, EPSI, MTH, MITER, INDEX,
 * IER, NDGEAR,
* /CID1/ NDEBU(20), NREC, NPRED, NRAD, NSRAT, JJ, NSTRM,
 * NV, NS1, NS2, NS3, NS4, NS5, NS6, NS7, NS8, NS9, NS10, MCON,
 * KINET,
* /CRAT/ HD(4,20), ISIDE(10,20), MODR(20), BX(20), BX2(20),
 * TEN(20), TEN2(20), TACT(20), TACT2(20), ARR(10), RIP(10,10),
 * XI(20), X2(20),
* /CROP/ Z(200), H(10), CEP(10), U(10), S(10), DCP(10), H(10),
 * CP0(10), SO(10),
* /CSSR/ EPSISS, RLX, ITMXS, IDGT, JER,
* /CPIPE/ V(15), FV1(15), RH0(15), P(15), AREA(15), PL(15),
 * PS, FVI2, CDIN, SM1MIN, RFLQ, RGAS, RFLQ, RFC0, RFGH0, RFLHO,
* /CID2/ N1(15), N2(15), NN, NF, NHEO, NFVI, NFV
SUBROUTINE CSLOPE(N,T,Y,YPRIME)
C
CSLOPE CALCULATES THE DERIVATIVES WITH RESPECT TO TIME OF
THE SYSTEM VARIABLES.
C
N IS THE TOTAL NUMBER OF DEPENDENT VARIABLES.
C
YPRIME(1:NS) --> D(LOG(S2(I)))/DT
YPRIME(NS1) --> D(DLIQ)/DT
YPRIME(NS2) --> D(LOG(TK))/DT
YPRIME(NS3) --> D(LOG(PA))/DT
YPRIME(NS4:NS5) --> D(V(J))/DT
YPRIME(NS6:NS7) --> D(FVI(J))/DT
YPRIME(NS8:NS9) --> D(RHO(K))/DT
YPRIME(NS10) --> D(FVI2)/DT
C
SYSTEM VARIABLES INCLUDE COMBUSTION CHAMBER VARIABLES AND
FEED SYSTEM VARIABLES:
C
S2(I) IS MOLE NUMBER OF SPECIES I (KGMOL/I/KG TOTAL)
DLIQ IS THE COMBUSTION CHAMBER LIQUID DENSITY (KG/M**3)
TK IS COMBUSTION CHAMBER TEMPERATURE (K)
PA IS COMBUSTION CHAMBER PRESSURE (PA)
V(J) IS FLUID VELOCITY IN PIPE J.
FVI(J) IS POSITION OF THE LIQUID/VAPOR INTERFACE IN PIPE J.
RHO(K) IS DENSITY OF NODE K.
FVI2 IS THE POSITION OF THE BACKFLOW INTERFACE (FROM THE
COMBUSTION CHAMBER INTO THE OXIDIZER FEED SYSTEM.
C
OTHER VARIABLES:
C
OMV = VOLUMETRIC MASS FLOW RATE THROUGH THE OXIDIZER
FEED SYSTEM
FMV = VOLUMETRIC MASS FLOW RATE THROUGH THE FUEL FEED
SYSTEM (CONSTANT)
PMV = VOLUMETRIC MASS FLOW RATE OF HELIUM INTO THE
COMBUSTION CHAMBER.
EMV = EXIT VOLUMETRIC MASS FLOW RATE (THE THE EXIT
TURBINE
SM = AVERAGE MOLECULAR WEIGHT IN THE COMBUSTION CHAMBER
(DOES NO TAKE LIQUID SPECIES INTO ACCOUNT)
C
INCLUDE 'INIT.FOR/LIST'
C
DIMENSION Y(N),YPRIME(N),ALG(20)
C
INCLUDE 'COMMONSS.FOR/LIST'
C
--- RESET YPRIME ARRAY
C
150
DO 100 I=1,N
 100 YPRIME(I) = 0.0
C
C --- IF THE HELIUM/OXYGEN INTERFACE IS AT THE LAST NODE STOP
C EXECUTION
C
 IF(FVI(NP).GE.1.0) THEN
 WRITE (30,1000)
 CALL OUTPT(Y,TM,N,NSTEPS)
 STOP
 ENDIF

C --- COUNT ITERATIONS AT EACH TIME STEP
C
 IF(T.EQ.TMOLD) THEN
 ITER = ITER + 1
 ELSE
 ITER = 1
 TMOLD = T
 ENDIF

C --- COMPUTE MOLE NUMBERS. NO SPECIES MOLE NUMBER MAY EXCEED
C 1.0/SMW(I) (SMW(I) IS THE MOLECULAR WEIGHT OF SPECIES I)
C
 TMRAT = 0.0
 SM = 0.0
 DO 110 I=1,NS
 ALG(I) = DLOG(1.0/SMW(I))
 IF(Y(I).LT.ALG(I).AND.Y(I).GT.S2MLG) THEN
 S2(I) = DEXP(Y(I))
 ELSE IF(Y(I).GE.ALG(I)) THEN
 S2(I) = DEXP(ALG(I))
 Y(I) = ALG(I)
 ELSE
 S2(I) = S2MIN
 Y(I) = S2MLG
 ENDIF
 TMRAT = TMRAT + S2(I)*SMW(I)
 110 CONTINUE

C --- NORMALIZE MOLE NUMBERS
C
 DO 120 I=1,NS
 SM = SM + S2(I)
 S2(I) = S2(I)/TMRAT
 120 CONTINUE
 SMINV = 1./SM

C --- FIND TEMPERATURE, PRESSURE, DENSITY AND THE LIQUID DENSITY
C FOR THE COMBUSTION CHAMBER AND BACKFLOW INTERFACE POSITION.
DLIQ = Y(NS1)
IF(DLIQ.LT.DLIQMN) THEN
 DLIQ = DLIQMN
ENDIF
TK = DEXP(Y(NS2))
IF(TK.GT.1.0D+04) THEN
 TK = 1.0D+04
ELSE IF(TK.LT.1.0D+04) THEN
 TK = 90.0
ENDIF
PA = DEXP(Y(NS3))
IF(PA.GT.PAMAX) THEN
 PA = PAMAX
ELSE IF(PA.LT.1.0D+03) THEN
 PA = 1.0D+03
ENDIF
TKINV = 1.0 / TK
FVI2 = Y(NS10)
RHOCC = PA*RGASIN*SMINV*TKINV
IF(RHOCC.LT.0.01) RHOCC = 0.01
RHINV = 1.0/RHOCC

C --- FILL ARRAYS FOR V, RHO AND FVI
C
DO 130 I=1,NP
 V(I) = Y(NS3+I)
 FVI(I) = Y(NS5+I)
 CONTINUE
DO 140 I=1,NN
 RHO(I) = Y(NS7+I)
 CONTINUE

C --- DETERMINE MASS FLOW RATE IN THE OXIDIZER FEED SYSTEM AND
C RATE OF ENERGY INFLUX TO THE CHAMBER FROM THE OXIDIZER
C FEED SYSTEM.
C
IF(FVI(NP).LT.1.0) THEN
 PMV = 0.0
 SF(3) = 0.0
 SH(3) = 0.0
ELSE IF(V(NP).GT.0.0.AND.RHO(NN).GT.RGMX) THEN
 OMV = RHOILI * AREA(NP) * V(NP) / VOL
 SH(1) = OMV * HS(1) / SMW(3)
 SF(1) = 0.0
ELSE
 OMV = RHOCC * AREA(NP) * V(NP) / VOL
 SH(1) = 0.0
 SF(1) = 0.0
CALL THERPS(NS,TK)

152
DO 150 I=1,NS
 SH(1) = SH(1) + OMV*S2(I)*H(I)
150 CONTINUE
ENDIF
ELSE
 OMV = 0.0
 PMV = RHO(NN)*AREA(NP)*V(NP)/VOL
 SF(3) = PMV/SMW(1)
 SH(3) = SF(3)*HS(1)
ENDIF

C --- DETERMINE THE VOLUMETRIC EXIT MASS FLOW RATE (EMV)
C
PR = PHG/PA
PB = PR**1.4286 - PR**1.7143
IF(PB.LE.0.0) THEN
 EMV = 0.0
ELSE
 EMV = CFTP*DSQRT(PA*PB/TK)
ENDIF
EMV = EMV/VOL
IF (EMV.LT.0.0) EMV = 0.0

C --- COMBRT CALCULATES THE RATE OF PRODUCTION OF EACH SPECIES IN
C THE CHAMBER DUE TO COMBUSTION AND VAPORIZATION.
C
CALL COMBRT(T,Y,YPRIME)

C --- LOOPS TO CALCULATE YPRIMES C C --- YPP(I) ARE THE TERMS USED
C TO FIND D(TEMP)/D(TIME)
C
DO 160 IB = 1,10
160 YPP(IB) = 0.0

C --- CALL THERPS FOR THE SPECIFIC MOLAR INTERNAL ENERGY AND
C ENTHALPY FOR EACH SPECIES C
CALL THERPS(NS,TK)

C --- CONSERVATION OF MASS FOR THE GAS PHASE
C
IF(V(NP).GE.0.0.AND.RHO(NN).GE.RGMX) THEN
 SUMM = VR + FMV + PMV
ELSE
 SUMM = VR + OMV + FMV + PMV
ENDIF
RPX = SUMM - EMV

C --- OUTPUT VALUES TO THE SCREEN IF NDEBUG(10) = 1
C
IF(NDEBUG(10)) THEN
WRITE (6,1100) T,V(NP),TK,VR,DM,DLIQ
ENDIF
C
C --- CONSERVATION OF SPECIES
C
NOTE: IF THERE IS BACKFLOW INTO THE PIPES OR THERE IS
AN INTERFACE IN THE PIPES DUE TO BACKFLOW (FVI2>0.0),
OMV ACCOUNTS FOR THE INFLOW OR OUTFLOW OF CHAMBER CONTENTS.
CHAMBER GAS IN THE PIPES IS ASSUMED TO HAVE THE SAME
DENSITY AND TEMPERATURE AS THE CHAMBER CONTENTS.
C
DO 170 I=1,NS
IF(OMV.LT.O.O.AND.RHO(NN).LT.RGMX) THEN
 IF(ISTRM(I).GT.O) THEN
 YP = (SF(ISTRM(I))-(SUMM-OMV)*S2(I)+RATE(I))*RHINV
 ELSE
 YP = ((SUMM-OMV)*S2(I)+RATE(I))*RHINV
 ENDIF
ELSE
 IF(ISTRM(I).GT.O) THEN
 YP = (SF(ISTRM(I))-SUMM*S2(I)+RATE(I))*RHINV
 ELSE
 YP = (-SUMM*S2(I)+RATE(I))*RHINV
 ENDIF
ENDIF
YPRIME(I) = YP/S2(I)
IF(Y(I).GE.ALG(I).AND.YP.GT.O.O) THEN
 YPRIME(I) =0.0
 YP =0.0
ENDIF
YPP(4) = YPP(4) + EMV*S2(I)*H(I)
YPP(5) = YPP(5) + U(I)*S2(I)
YPP(6) = YPP(6) + U(I)*YP
YPP(8) = YPP(8) + S2(I)*(CP(I)-RGAS)
YPP(9) = YPP(9) + YP
170 CONTINUE
YPP(1) = SH(1)
YPP(2) = SH(2)
YPP(3) = SH(3)
YPP(5) = YPP(5)*RPX
YPP(6) = YPP(6)*RHOCC
YPP(7) = Q/VOL
YPP(8) = YPP(8)*RHOCC
C
C --- CONSERVATION OF ENERGY
C
TP = (YPP(1)+YPP(2)+YPP(3)-YPP(4)-YPP(5)-YPP(6)-YPP(7))/YPP(8)
YPP(8) = YPP(8) / TK
YPRIME(NS2) = TP/TK
C
154
C --- CONSERVATION OF MASS FOR THE LIQUID PHASE

IF(ASTNST(1).EQ.AGAS) THEN
 YPRIME(NS1) = 0.0
ELSE
 IF(V(NP).GE.0.0.AND.RHO(NN).GE.RGMAX) THEN
 YPRIME(NS1) = OMV-VR-EMV*DLIQ/RHOCC
 ELSE
 YPRIME(NS1) = -VR-(EMV-OMV)*DLIQ/RHOCC
 ENDIF
ENDIF

C --- THE IDEAL GAS LAW

YPRIME(NS3) = YPRIME(NS2) + RPX * RHINV + YPP(9) * SMINV

C --- SUBROUTINE PIPES DETERMINES YPRIME FOR THE PIPING SYSTEM
C DEPENDENT VARIABLES. PIPES IS CALLED IF MCON = 1. OTHERWISE
C OXIDIZER FEED RATE REMAINS CONSTANT
C
IF(MCON) CALL PIPES(Y,YPRIME,T)

C --- WRITE A SUMMARY OF THE TERMS USED TO CALCULATE DERIVATIVES
C
IF(NDEBUG(8).EQ.1) THEN
 WRITE(30,1200) T,ITER,TK,PA,RHOCC,EMV,DLIQ,VR,
 *(I,EMS(I),SF(I),SH(I),I=1,3)
 WRITE(30,1300) (IS,H(IS),U(IS),CP(IS),RATE(IS),IS=1,NS)
 WRITE(30,1400) ((IB,YPP(IB)),IB=1,9)
ENDIF

C --- WRITE A SUMMARY OF YPRIME VALUES CALCULATED IN CSLOPE
C
IF(NDEBUG(9).EQ.1) THEN
 WRITE(30,1500) T,ITER
 WRITE(30,1600)
 *NS1,DLIQ,Y(NS1),YPRIME(NS1),NS2,TK,Y(NS2),
 *YPRIME(NS2),NS3,PA,Y(NS3),YPRIME(NS3),NS10,
 *FVI2,YPRIME(NS10)
 WRITE(30,1700) (J,V(J),YPRIME(NS3+J),FVI(J),
 *YPRIME(NS5+J),J=1,NP)
 WRITE(30,1800) (K,RHO(K),YPRIME(K+NS7),K=1,NN)
ENDIF

C RETURN
C
1000 FORMAT(2X,'***** INTERFACE HAS REACHED THE LAST NODE ******/,
* 2X,'***** EXECUTION HALTED *****'//)
1100 FORMAT(X,'T ','1PD8.2,X,'V, TK, VR, DM, DLIQ ',',D8.1,X,
155
* OPF6.1,3(X,1PD8.1))

1200 FORMAT(/2X,'***** DEPENDENT VARIABLE DERIV. PARAMS *****'//,
 * 4X,'TIME = ',1PD12.5,2X,'ITERATION = ',I5/,4X,
 * 'TEMPERATURE = ',OPF15.4,2X,'PRESSURE = ',1PD12.5/,4X,
 * 'DENSITY = ',1PD12.5,2X,'EXIT VOLUMETRIC MASS FLOW = ',
 * 1PD12.5/,4X,'LIQ DENSITY = ',1PD12.5, (KG/M**3)'//,4X,
 * 'VAPORIZATION RATE = ',1PD11.4, 'KG/S M**3'//,4X,'STREAM',2X,
 * ' MASS FLOW ',2X,' MOLE FLOW ',2X,'ENTHALPY FLOW'/,14X,
 * '(KG/SEC)',2X,'(KGMOLE/SEC)',3X,'(JOULES/SEC)'//,
 * 3(7X,I1,4X,1PD11.4,2X,1PD11.4,2X,1PD11.4))

1300 FORMAT(/4X,'IN CSLOPE THERMO PROPS AND RXN RATES ARE:'//,
 * 4X,' I',2X,' H ',2X,' __ CP ',2X,' A ',/,(4X,I2,4(2X,1PD12.5)))

1400 FORMAT(/4X,'TEMPERATURE DERIVATIVE TERMS ARE:'//,
 * (4X,'YP(P(I),') = MPD12.5,2X,'YPP(I1,') = ',1PD12.5))

1500 FORMAT(//2X,'***** CSLOPE YPRIME ESTIMATES *****'//,
 * 4X,'TIME = ',1PD12.5,2X,'ITERATION = ',I5,/)

1600 FORMAT(4X,3H I ,2X,12H S2(I) ,2X,12H Y(l) ,2X,
 * 13H YPRIME(I) ,/)

1700 FORMAT(4X,I3,2X,1PD12.5,2X,1PD12.5,2X,1PD12.5)

1800 FORMAT(/4X,'PIPE',2X,' VELOC. (M/S) ',2X,'D(VELOC.)/D(T)',
 * 2X,'FL/V INTERFACE',2X,'D(FV)/D(TIME)'//,
 * (5X,I2,X,4(5X,1PD11.4)))

1900 FORMAT(/4X,'NODE',2X,'DENSITY (M**3)',2X,'D(RHO)/D(TIME)'//,
 * (5X,I2,X,2(5X,1PD11.4)))

C
SUBROUTINE COMBRT(TM,Y,YPRIME)

COMBRT FINDS THE RATE OF PRODUCTION OF EACH OF THE SPECIES IN
THE COMBUSTION CHAMBER DUE TO REACTION RATE AND VAPORIZATION.

INCLUDE 'INIT.FOR/LIST'

DIMENSION Y(NV),YPRIME(NV)

INCLUDE 'COMMONSS.FOR/LIST'

--- FIND THE VAPORIZATION RATE, VR (KG/M**3 S) AND YPRIME(NS1)

CPSUM = THE AVERAGE SPECIFIC HEAT AT CONSTANT PRESSURE FOR
THE COMBUSTION CHAMBER GASES.

XK = THERMAL CONDUCTIVITY OF HYDROGEN (LEAST SQUARES LINEAR
FIT FOR XK AS A FUNCTION ONLY OF TEMPERATURE)

XMU = VISCOSITY OF HYDROGEN (LEAST SQUARES LINEAR FIT FOR
XMU AS A FUNCTION ONLY OF TEMPERATURE)

DATA PI/3.141592654/

TAV = (TKS(1) + TK)/2.0
CALL THERPS(NS,TAV)
CPSUM = 0.0
DO 100 I=1,NS
CPSUM = CPSUM + CP(I)*S2(I)
100 CONTINUE
CALL THERPS(NS,TKS(1))
XK = 5.282D-02 + 4.117D-04*TAV
XMU = 5.0767D-06 + 1.4884D-08*TAV

(B) FIND THE AVERAGE DROPLET DIAMETER, DM (M), THE RATE OF
VAPORIZATION, VR (KG/M3 S), AND THE TOTAL NUMBER OF
DROPLETS IN THE COMBUSTION CHAMBER, XNDR.

THE EXPRESSION USED TO CALCULATE EVAPORATION RATE WAS
ADAPTED FROM WEBBER (1972) (J. OF THE ARS)

IF(ASTNST(1).EQ.AGAS) THEN
 VR = OMV
 GO TO 110
ENDIF
DM = DMC*OMV/PMV*DSQRT(SMW(2)*AH2IN*PA/RGAS/RHOLIQ/TKS(2))
IF(DM.LT.DMIN) DM = DMIN
DM3 = DM**3
REN = RHOCC*VH2*DM/XMU
ALPH = 1.0 + CVR * (TK-TKS(1))
IF(ALPH.GT.1.0) THEN
 VRD = PI*XK*DM*(2.0+0.5*REN**0.5)*DLOG(ALPH)/CPSUM
ELSE
ELSE
 VRD = 0.0
ENDIF
XNDR = 6.0*DLIQ*VOL/RHOLIQ/DM**3/PI
VR = 6.0*VRD*DLIQ/PI/RHOLIQ/DM**3
IF(VR.LE.0.0) THEN
 VR = 0.0
ENDIF
110 CONTINUE

C --- DETERMINE THE RATES OF PRODUCTION DUE TO COMBUSTION AND VAPORIZATION
C (A) IF KINET = 1, CHEMICAL KINETICS ARE CONSIDERED. REACTION RATE IS CALCULATED IN RADSS ASSUMING THAT ATOM AND RADICAL CONCENTRATIONS ARE STEADY STATE.
C (B) IF KINET = 0, ALL OXYGEN WHICH VAPORIZES IS ASSUMED TO IMMEDIATELY COMBUST.
C
IF(KINET.EQ.1) THEN
 CALL RADSS
 RATE(3) = RATE(3) + VR/SMW(3)
ELSE IF(KINET.EQ.0) THEN
 RATE(3) = 0.0
 RATE(4) = 2.0*VR/SMW(3)
 RATE(2) = -2.0*VR/SMW(3)
ELSE IF(KINET.EQ.2) THEN
 CALL RATES
 DO 200 I=1,NS
 RATE(I) = ARR(I)
 CONTINUE
 RATE(3) = RATE(3) + VR/SMW(3)
ENDIF

C IF(NDEBUG(15)) WRITE(30,1000) TM,TK,PA,DM,VRD,XNDR,REN,VR,
C (ANAM(I),RATE(I),I=1,NS)
C
C RETURN
C
1000 FORMAT(/,2X,'*** OUTPUT FROM COMBRT ***'/,4X,'AT TIME ',
* 1PD11.5/,
* 4X,'TEMPERATURE' = ',0PF10.3,' K '/,
* 4X,'PRESSURE' = ',1PD12.5,' PA'/,
* 4X,'DROPLET DIAMETER' = ',D12.5,' M '/,
* 4X,'DROPLET EVAPORATION RATE' = ',D12.5,' KG/S/DROPLET'/,
* 4X,'NO. OF DROPLETS' = ',D12.5,' DROPLETS'/
* 4X,'REYNOLDS NO. OF DROPS' = ',D12.5/,
* 4X,'TOTAL EVAPORATION RATE' = ',D12.5,' KG/M**3 S'/,
* 4X,'7HSPECIES,2X,'RATE OF PRODUCTION (KMOLES/M**3 S)'/'/,
* (5X,A4,5X,1PD12.5))
C
SUBROUTINE DTSTR(NV, CSLOPE, TM, STEP, Y, TMNXT, WK, NDEBUG)
C
C THIS IS A RUNGE-KUTTA FOURTH ORDER INTEGRATING SUBROUTINE
C WHICH ANSWERS A CALL MIMICKING A CALL TO IMSL SUBROUTINE
C DGEAR. THE PURPOSE OF DGEAERX IS TO ALLOW DEBUGGING OF
C THE TRANSIENT CHUGGING CODE AT MSFC, WHERE DGEAR IS NOT
C AVAILABLE.
C
C THE SIGNIFICANT VARIABLES ARE
C NV=NUMBER OF VARIABLES
C CSLOPE=NAME OF ROUTINE TO EVALUATE 1ST DERIVATIVE
C TM=INDEPENDENT VARIABLE
C STEP=DELTA TM
C Y=ARRAY OF INDEPENDENT VARIABLES
C SHOULD BE AN INTEGER
C TMNXT=ENDING TM -(TMNXT-TM)/STEP
C WK=WORK VECTOR OF 4*NV SIZE
C OTHERS ARE UNUSED DUMMY PARAMETERS
C
C IMPLICIT REAL*8 (A-H,P-Z)
DIMENSION Y(NV), WK(4,NV), YEND(100), F(100), NDEBUG(20)
C
C NSTEPS=(TMNXT-TM)/STEP
IF(NSTEPS.LE.0) NSTEPS=1
C
C DO 100 J=1,NSTEPS
C
C GET FIRST ESTIMATE OF THE DELTA X'S
C CALL CSLOPE (NV, TM, Y, F)
DO 10 I=1,NV
 WK(1,I)=STEP*F(I)
 YEND(I)=Y(I)+WK(1,I)*0.5
10 CONTINUE
C
C GET SECOND ESTIMATE (USING YEND)
C NE=2
TM2E=TM+STEP*0.5
CALL CSLOPE (NV, TM2E, YEND, F)
DO 20 I=1,NV
 WK(2,I)=STEP*F(I)
 YEND(I)=Y(I)+WK(2,I)*0.5
20 CONTINUE
C
C THIRD ESTIMATE
C
C
NE=3
CALL CSLOPE(NV,TM2E,YEND,F)
DO 30 I=1,NV
 WK(3,I)=STEP*F(I)
 YEND(I)=Y(I)+WK(3,I)
30 CONTINUE

C
C LAST ESTIMATE
C
NE=4
TM2E=TM+STEP
CALL CSLOPE(NV,TM2E,YEND,F)
DO 40 I=1,NV
 WK(4,I)=STEP*F(I)
40 CONTINUE

C
C COMPUTE Y'S AT TM + STEP BY WEIGHTED AVERAGE
C
DO 50 I=1,NV
 YEND(I)=Y(I)+(WK(1,I)+2*WK(2,I)+2*WK(3,I)+WK(4,I))/6.0
50 CONTINUE

C
C WRITE VALUES OF THE DERIVATIVE ESTIMATES AND "OLD" AND "NEW"
C
VALUE OF Y IF NDEBUG(15) = 1

IF(NDEBUG(15)) THEN
 WRITE(30,1000) TM,STEP
 WRITE(30,1100) (K,(WK(I,K),I=1,4),Y(K),YEND(K),K=1,NV)
ENDIF

C
C ADVANCE Y&TM FOR NEXT STEP
C
DO 60 I=1,NV
 Y(I)=YEND(I)
60 CONTINUE

TM=TM+STEP

C
C FORMATS
C
1000 FORMAT(/,2X,'**** DTSTR OUTPUT *****'/,
 * 6X,'TIME = ',1PD12.5,' SEC',2X,'STEP = ',D12.5,' SEC'/,
 * 4X,'INDEX',X,'ESTIMATE 1',X,'ESTIMATE 2',X,'ESTIMATE 3',
 * X,'ESTIMATE 4',X,' Y OLD ',X,' Y NEW '/)
 * X,D10.3)
SUBROUTINE NPT

--- DEFINITION OF INPUT VARIABLES.

ANAM(I) = HOLERITH NAME OF SPECIES I
S2(I) = MOLE NUMBER OF SPECIES I (KGMOLES OF I/KG (TOTAL))
XIN(I) = INLET MOLE FRACTION OF SPECIES I
XCC(I) = INITIAL MOLE FRACTION OF SPECIES I.
AST(I) = PHASE OF SPECIES I
ISTRM(I) = NUMBER OF THE INLET STREAM CONTAINING SPECIES I
INST(J) = NUMBER OF THE SPECIES CONTAINED IN REACTANT STREAM J
ANST(J) = HOLERITH NAME OF THE SPECIES IN STREAM J
ASTNST(J) = PHASE OF REACTANT STREAM J
DHF(J) = LATENT HEAT OF VAP. OF LIQUID IN STREAM J
HS(J) = ENTHALPY OF THE INCOMING FLUID IN STREAM J
TKS(J) = TEMPERATURE OF STREAM J (ASSUMED CONSTANT)
SF(J) = MOLE FLOW (KGMOLE/M^3 SEC) INTO THE CC
SH(J) = ENTHALPY FLOW (J/M^3 SEC) INTO THE CC

INCLUDE 'INIT.FOR/LIST'

CHARACTER** AXP(10),AXR(10),ASTP(10),DATA(12),ASTR(10),
* AT(7),CMNT,PHAZ,DT1,DT2,ATYP,AX,ASTX,BLANK,
* AREAC,APROD,ARADI,ACOMM,AREVE,AGLOB,AHETE,
* APYRO,ACGS,THIRD

DIMENSION SMWR(10),XIN(20),XCC(20),SMWP(10),XCCP(10),
* TX(50),TY(50)

INCLUDE 'COMMONSS.FOR/LIST'

DATA BLANK/ ' ',AREAC/'REAC'/,APROD/'PROD'/,ARADI/'RADI'/,
* S2/ 10*0.0/,S1/90*0.0/,XIN/20*0.0/,XCC/20*0.0/,.
* ISTRM/10*0/,NREAC/0/,NPROD/0/,NRAD1/0/,NS/0/,NSRATE/0/,.
* ALIQ/'L '/,AGAS/'G '/,LSI/ 1 /,ACOMP/'COMM'/,
* AREVE/'REVE'/'AGOB'/'GLOB'/,AHETE/'HETE'/,APYR0/'PYRO'/,
* ACGS/'CGS '/,THIRD/'M '/,XMAX/0.00125/,XMIN/0.0005/,
* TENLN/2.302585093/

--- READ RELEVANT SPECIES AND ASSIGN THEM AS REACTANT, PRODUCT OR RATE DETERMINING RADICAL.

READ(20,1000) ATYP,AX,SMWX,ISTRMX,XINX,XCCX,ASTX,DHFX,HNSTRM
IF(ATYP.EQ.BLANK) GO TO 110
IF(ATYP.EQ.AREAC) THEN
NREAC = NREAC + 1
ANAM(NREAC) = AX
ANST(ISTRMX) = AX
SMW(NREAC) = SMWX
ISTRM(NREAC) = ISTRMX
XIN(NREAC) = XINX
XCC(NREAC) = XCCX
AST(NREAC) = ASTX
ASTNST(ISTRMX) = ASTX
DHF(ISTRMX) = DHFX
HS(ISTRMX) = HNSTRM
INST(ISTRMX) = NREAC

ELSE IF(ATYP.EQ.APROD) THEN
NPROD = NPROD + 1
AXP(NPROD) = AX
SMWP(NPROD) = SMWX
XCCP(NPROD) = XCCX
ASTP(NPROD) = ASTX

ELSE
NRAD = NRAD + 1
AXR(NRAD) = AX
SMWR(NRAD) = SMWX
ASTR(NRAD) = ASTX
END IF
GO TO 100

110 CONTINUE

C --- PUT ALL SPECIES INTO THE S2 AND OTHER ASSOCIATED ARRAYS.
C ORDER IS: FIRST REACTANTS, SECOND PRODUCTS AND THIRD RADICALS.
C
NS = NREAC + NPROD
NSRATE = NS + NRAD
NS1 = NS + 1
NS2 = NS1 + 1
NS3 = NS1 + 2
DI 120 I=1,NPROD
II = NREAC + I
ANAM(II) = AXP(I)
SMW(II) = SMWP(I)
XCC(II) = XCCP(I)
AST(II) = ASTP(I)
120 CONTINUE

dI 130 I=1,NRAD
II = NS + I
ANAM(II) = AXR(I)
SMW(II) = SMWR(I)
AST(II) = ASTR(I)
130 CONTINUE

dI 140 I=1,NSRATE
S2(I) = XCC(I)/SMW(I)
140 CONTINUE

164
DO 150 I=1,NREAC
150 S1(ISTRM(I),I) = XIN(I)/SMW(I)

C --- DEFINE THE ONE DIMENSIONAL Z ARRAY WHICH HOLDS THE COEFFI-
C CIENTS OF THE POLYNOMIALS THAT GIVE THERMODYNAMIC PROPERTIES.
C
160 READ (20,1100) (DATA(I),I=1,3)
 DO 170 I=1,NSRATE
 IF(DATA(1).EQ.ANAM(I)) THEN
 READ (20,1200) (Z(J),J=(I-1)*14+1,I*14)
 GO TO 160
 ENDIF
 170 CONTINUE
 IF(DATA(1).EQ.BLANK) THEN
 READ (20,1350)
 GO TO 180
 ENDIF
 READ (20,1300)
 GO TO 160
180 CONTINUE

C --- SET INITIAL MOLE AND ENERGY FLOWS (SF AND SH)
C
 DO 190 J=1,3
 SF(J) = EMS(J)/VOL/SMW(INST(J))
 SH(J) = SF(J) * HS(J)
 190 CONTINUE

C --- READ AND DETERMINE CONSTANTS USED IN DETERMINING
C CHEMICAL REACTION RATES.
C
C --- READ MECHANISM/RATE DATA CARDS
C COLUMNS 13 THROUGH 48 OF THE MECHANISM CARD ARE USED
C AS A LABEL TO IDENTIFY THE KINETIC MECHANISM USED ON
C THE SOLUTION OUTPUT.
C
C THE VARIABLE DTI (COLUMNS 73/76) IS USED AS A FLAG:
C
C CGS ---> CGS UNITS, RATE CONSTANTS IN GM-MOLES, CM,
C SEC AND EACT IN (KCAL/GM-MOLE) OTHERWISE
C THE SI UNITS (KG-MOLES,M,SEC) ARE ASSUMED.
C COMM ---> COMMENT CARD, FIRST 48 CHARACTERS PRINTED
C REVE ---> REVERSE RATE DATA, IN SAME UNITS AS FORWARD
C DATA
C GLOB ---> GLOBAL RATE EXPRESSION DATA IN SI UNITS
C PYRO ---> HETEROGENEOUS PYROLYSIS REACTIONS
C HETE ---> HETEROGENEOUS CHAR REACTIONS
C
C THE HETEROGENEOUS REACTIONS ARE PROGRAMED IN CHAPTERS
C 1 & 2 OF SUBROUTINE CORRECT. BX(J), TEN(J), AND TACT(J)
C ARE READ AS BX(J), ALPHA(1 OR 2), AND TACT(J) FOR PYROLY-
C SIS AND BX(J), TEN(J) AND TACT(J) FOR THE CHAR REACTIONS.
C
C DT1 AND DT2 (COL 73/80) CAN HAVE ANYTHING (COMMENTS) IF
C ABOVE SIX WORDS ARE NOT REQUIRED.
C TACT IS ACTIVATION TEMPERATURE, = EACT/GASCON, DEG K
C
IF(NDEBUG(3)) WRITE (30,1500)
 DO 200 I=1,20
 TEN2(I)=0.
 BX2(I)=0.
 200 CONTINUE
C
JJ=1
NPYROL=0
NGLOB=0
NHETER=0
C
210 READ (20,1600) (DATA(I),I=1,12),BX(JJ),TEN(JJ),
* TACT(JJ),DT1,DT2
 IF (DATA(1).EQ.BLANK.AND.DTI.NE.ACOMM) GO TO 400
C
C --- CHECK FOR COMMENT CARD
C
IF (DTI.NE.ACOMM) GO TO 220
IF (NDEBUG(3)) WRITE (30,1700) (DATA(I),I=1,12)
 GO TO 210
C
C --- SCAN TO INSURE ALL REACTANTS IN SPECIES LIST
C
220 DO 240 IR=1,6
 I=2*IR-1
 IF (DATA(I).EQ.BLANK.OR.DATA(D.EQ.THIRD) GO TO 240
 DO 230 IS=1,NSRATE
 IF (DATA(I).EQ.ANAM(IS)) GO TO 240
 230 CONTINUE
 IF (NDEBUG(3).NE.1) GO TO 210
 WRITE (30,1800)
 WRITE (30,1900) (DATA(IDD),IDD=1,12)
 WRITE (30,2000) DATA(I)
 GO TO 210
240 CONTINUE
C
C --- CHECK FOR REVERSE RATE DATA. NOTE:
C
(1) ORDER OF CARDS MUST BE CORRECT
C (2) UNITS OF REVERSE DATA ASSUMED SAME AS FORWARD DATA
C
IF (DT1.NE.REVE) GO TO 250
 J = JJ-1

166
BX2(J) = BX(JJ)
TEN2(J) = TEN(JJ)
TACT2(J) = TACT(JJ)
IF (NDEBUG(3)) WRITE (30,2100) BX2(J),TEN2(J),*
TACT2(J),DT1,DT2

C

C --- CONVERT BX2 FOR INTERNAL CALCULATIONS
C
BX2(J) = BX2(J)*TENLN
IF (LSI) GO TO 210
BX2(J) = BX2(J)-TENLN*3.0
TACT2(J) = TACT2(J)*1000.0/1.987
IF (MODR(J).EQ.2) BX2(J) = BX2(J)-TENLN*3.0
GO TO 210

C

C --- CHECK FOR UNITS
C
250 LSI = 1
IF (DT1.EQ.ACGS) LSI = 0
IF (LSI.EQ.0) TACT(JJ)=TACT(JJ)*1000./1.987
IF (NDEBUG(3)) WRITE (30,2200) JJ,(DATA(I),I=1,12),*
DT1,DT2,BX(JJ),TEN(JJ),TACT(JJ)
IF (DT1.NE.APYRO) GO TO 260
NPYROL = NPYROL+1
IF (NPYROL.GT.2) WRITE (30,2300)
NHETER = NHETER+1
NGLOB = NGLOB+1
260 CONTINUE
IF (DT1.NE.AHETE) GO TO 270
NGLOB = NGLOB+1
NHETER = NHETER+1
270 CONTINUE
IF (DT1.EQ.AGLOB) NGLOB=NGLOB+1

C

C --- CONVERT BX FOR INTERNAL CALCULATIONS
C
BX(JJ) = BX(JJ)*TENLN

C

C --- ID(I,J) IS THE INDEX NUMBER OF THE I-TH DISTINCT SPECIES
C IN REACTION J ... I=1,4 AS NO DISTINCT THIRD BODIES ARE
C CONSIDERED
C
DO 280 I=1,4
280 ID(I,JJ) = 0

C

ND = 1
DO 330 N=1,6
K = N*2 - 1
IF (DATA(K).EQ.BLANK) GO TO 330
IF (DATA(K).NE.THIRD) GO TO 290
DATA(K) = BLANK
GO TO 330

290 CONTINUE
DO 300 I=1,NSRATE
 IF (DATA(K).NE.ANAM(I)) GO TO 300
 II = I
 GO TO 310
300 CONTINUE
IF (K.GT.3) GO TO 320
 ID(ND,JJ) = II
 ND = ND+1
 GO TO 330
320 IF (ND.EQ.2) ND = 3
 ID(ND,JJ) = II
 ND = ND+1
330 CONTINUE

C
C --- STORE THE TYPE OF REACTION...THREE TYPES
C MODR 1 ... A + B --> C + D
C MODR 2 ... AB + M --> A + B + M
C MODR 3 ... A + B + M --> AB + M
C
 MODR(JJ)=1
 IF (ID(2,JJ).EQ.0) MODR(JJ)=2
 IF (ID(4,JJ).EQ.0) MODR(JJ)=3

C --- THE FOLLOWING SECTION, UP TO STATEMENT 355 INCLUSIVE,
C MAY BE ELIMINATED IF REVERSE (AS WELL AS FORWARD) RATE
C DATA IS SUPPLIED FOR ** ALL ** REACTIONS.
C
C THIS SECTION CALCULATES REVERSE RATE CONSTANTS FROM
C EQUILIBRIUM CONSTANTS AND FORWARD RATE CONSTANTS FOR
C TWENTY POINTS OVER THE TEMPERATURE RANGE 1000K TO 4000K
C
 IF (DT1.EQ.AGLOB) GO TO 390
 IF (DT1.EQ.AHETE) GO TO 390
 IF (DT1.EQ.APYRO) GO TO 390
 DX=(XMAX-XMIN)/19.0
 SUMX=0.0
 SUMY=0.0
 IHCPS=2
 DO 360 N=1,20
 TX(N)=XMIN + DX*DFLOAT(N-1)
 SUMX=SUMX+TX(N)
 XTKINV=TX(N)
 XTK=1.0/XTKINV
 TLN=DLOG(XTK)
 CALL THERPS(NSRATE,XTK)
 RTKINV = 1./(XTK * RGAS)
360 CONTINUE
SUM1 = 0.0
DO 350 ND = 1, 4
 K = ID(ND, JJ)
 IF (K .EQ. 0) GO TO 350
 GF = HO(K) - SO(K)
 IF (ND.LT.3) SUM1 = SUM1 + GF
 IF (ND.GE.3) SUM1 = SUM1 - GF
350 CONTINUE
TM1 = 0.0
IF (ID(2, JJ).EQ.0) TM1 = TLN - 2.50034
IF (ID(4, JJ).EQ.0) TM1 = 2.50034 - TLN
C --- -2.50034 = LN(RGAS) RGAS IN UNITS ATM M**3/KGMOLE K HERE ONLY
C
TY(N) = TM1 - SUM1 + TEN(JJ) * TLN - TACT(JJ) * TINV + BX(JJ)
SUMY = SUMY + TY(N)
360 CONTINUE
XBAR = SUMX / 20.0
YBAR = SUMY / 20.0
SUMX = 0.0
SUM1 = 0.0
SUMY = 0.0
DO 370 N = 1, 20
 SUMX = SUMX + TY(N) * (TX(N) - XBAR)
 SUM1 = SUM1 + (TX(N) - XBAR)**2
 SUMY = SUMY + (TY(N) - YBAR)**2
370 CONTINUE
TEN2(JJ) = 0.0
TACT2(JJ) = -SUMX / SUM1
BX2(JJ) = (YBAR + TACT2(JJ) * XBAR) / TENLN
SUMX = 0.0
DO 380 N = 1, 20
 SUMX = SUMX + (TY(N) + TACT2(JJ) * TX(N) - TENLN * BX2(JJ))**2
380 CONTINUE
SUMY = DSQRT(1.0 - SUMX / SUMY)
SUMX = DSQRT(SUMX / 19.0)
DATAT = TACT2(JJ)
IF (LSI .NE. 1) DATAT = TACT2(JJ) * 1.987 * 0.001
IF (NDEBUG(3)) WRITE (30, 2400) SUMX, SUMY, BX2(JJ),
 TEN2(JJ), TACT2(JJ)
C --- CONVERT BX2 FOR INTERNAL CALCULATIONS
C
BX2(JJ) = BX2(JJ) * TENLN
C
390 JJ = JJ + 1
C --- CONVERT ALL RATE DATA TO SI UNITS
C
IF (LSI) GO TO 210
J = JJ-1
BX(J) =BX(J)-TENLN*3.0
BX2(J)=BX2(J)-TENLN*3.0
IF (MODR(J).EQ.2) BX2(J)=BX2(J)-TENLN*3.0
IF (MODR(J).EQ.3) BX(J)=BX(J)-TENLN*3.0
GO TO 210

C 400 JJ=JJ-1
NPYROP=NPYROL+1
NGLOBT=NGLOB+1
NHETRP=NHETER+1
C --- SET CONTACT INDEXES TO UNITY
C DO 410 J=1,JJ
 X1(J)=1.0
 X2(J)=1.0
410 CONTINUE
C --- RETURN TO TSTR
C RETURN

1000 FORMAT(A4,X,A4,X,F7.4,X,I1,X,1PD11.5,X,D11.5,X,A4,X,
 * D11.4,X,D11.4)
1100 FORMAT(3A4)
1200 FORMAT(5D15.8/,5D15.8/,4D15.8/)
1300 FORMAT(/)
1350 FORMAT(/)
1400 FORMAT((A4,5(X,1PD11.4)))'
1500 FORMAT(/2X,'***** REACTION RATE DATA FROM NPT *****'//)
1600 FORMAT(12A4,3F8.3,2A4)
1700 FORMAT(6X,3H**,12A4,3H**)
1800 FORMAT((/4X,26HFOLLOWING REACTION IGNORED)
1900 FORMAT(8X,6A4,5H---->,6X,6A4)
2000 FORMAT(4X,9REACTANT ,A4,26H NOT FOUND IN SPECIES LIST)
2100 FORMAT(/14X,17HREVERSE RATE DATA,28X,3F15.3,2A4)
2200 FORMAT(/4X,9REACTION ,I2,3X,6A4,5H---->,3X,6A4/,
 * 6X,14HDATA COMMENT: ,2A4/,6X,21HFWD RATE DATA : BX = ,
 * F10.3,X,7HTEN = ,F10.3,X,8HTACT = ,F10.3)
2300 FORMAT(2X,'***** TOO MANY PYROLYSIS REACTIONS *****')
2400 FORMAT(6X,33HCALCULATED REVERSE RATE CONSTANTS/,
 * 6X,16HSTD DEVIATION = ,1PD11.3,X,13HCORR COEFF = ,D11.3/,
 * 6X,21HREV RATE DATA : BX2 = ,0PF10.3,X,7HTEN2 = ,F10.3,X,
 * 8HTACT2 = ,F10.3)
2500 FORMAT(2X,'***** KINETIC REACTION RATE DATA IN SI UNITS '
 * '******'//,
 * 7X,1HJ,6X,4HMODR,12X,2HID,19X,2HBX,10X,3HTEN,9X,4HTACT,13X,
 * 3HBX2,9X,4HTEN2,9X,5HTACT2/)
2600 FORMAT((5X,I2,1H.,18,3X,4I5,2(3X,3F13.3)))
END
SUBROUTINE PIPES(Y,YPRIME,TM)

C
INCLUDE 'INIT.FOR/LIST'

C
DIMENSION Y(NV),YPRIME(NV),DV(15),DRH(15),FVIC(15),
* SUM1(15),SUM2(15),RF(15),ALEQ(50,50),BLEQ(50),
* WKAREA(IOO)

C
INCLUDE 'COMMONS.FOR/LIST'

C --- SHUTDOWN IS BEGUN BY SETTING THE DENSITY OF THE FURTHEST
UPSTREAM NODE IN THE PIPING SYSTEM EQUAL TO THE DENSITY
OF THE HELIUM AT THE HELIUM SOURCE PRESSURE AND TEMPERATURE. THIS IS DONE AT TIME = TMSD (TIME OF SHUTDOWN).

C
IF(TM.GT.TMSD) THEN
 RHO(1) = RHOGAS
 Y(NS8) = RHOGAS
ENDIF

C --- FIND THE LIQUID/VAPOR INTERFACE POSITION AND VELOCITY IN
EACH PIPE. NOTE:

C (1) POSITION IS FIXED USING POSITION AND NODAL DENSITIES
 (0.0 < FVI < 1.0).
C (2) IF A NODE HAS JUST BECOME GASEOUS (THE INTERFACE HAS
 JUST PASSED THROUGH) ITS DENSITY IS RECALCULATED USING
 THE PREVIOUS NODAL PRESSURE AND THE IDEAL GAS RELATION.
C (3) D(FVI(J))/DT IS EITHER ZERO (IF THERE IS NO INTERFACE
 IN THE PIPE) OF EQUAL TO THE FLUID VELOCITY IN THE PIPE.
C (4) AN INTERFACE CAN ENTER THE PIPE VIA BACKFLOW FROM THE
 COMBUSTION CHAMBER. THIS OCCURS WHEN THE VELOCITY IN THE
 LAST PIPE IS NEGATIVE. THE INTERFACE THAT RESULTS FROM
 BACKFLOW IS NEVER ALLOWED TO PROCEED PAST THE UPSTREAM
 NODE OF THE LAST PIPE.

DO 100 J=1,NP
ND1 = N1(J)
ND2 = N2(J)

IF(J.LE.NHEO) THEN
 RFLX = RFLHO
 RFGX = RFGHO
ELSE IF(J.EQ.NPV) THEN
 RFLX = RFLV
 RFGX = RFGV
ELSE

100 CONTINUE
RFLX = RFLIQ
RFGX = RFGAS
ENDIF

C --- BOTH PIPE NODES ARE GASEOUS
C
IF(RHO(ND1).LT.RGMX.AND.RHO(ND2).LT.RGMX) THEN
 YPRIME(NS5+J) = 0.0
 FVI(J) = 1.0
 FVIC(J) = 0.0
 RFJ = RFGX*PL(J)*V(J)*V(J)*RHO(ND2)
 RF(J) = DSIGN(RFJ,V(J))
 Y(NS5+J) = 1.0
C
--- ONLY THE UPSTREAM NODE IS GASEOUS. THREE CASES:
C
1) 0 < FVI < 1.0: THERE IS AN INTERFACE IN THE PIPE
C
2) FVI > 1.0: THE INTERFACE HAS JUST LEFT THE PIPE.
 THE DOWNSTREAM NODE IS MADE GASEOUS AND FVI IS SET
 AT 1.0.
C
3) FVI < 1.0: THE INTERFACE HAS RETURNED TO THE UP-
 STREAM PIPE. DENSITY OF NODE ND1 RETURNS TO THE
 CONSTANT LIQUID DENSITY (RHOLIQ). FVI IS RESET TO
 0.0 AND FVI AND ITS VELOCITY ARE RECALCULATED FOR
 THE UPSTREAM PIPE.
C
ELSE IF(RHO(ND1).LT.RGMX) THEN
C
THE INTERFACE HAS JUST LEFT THE PIPE
C
IF(FVI(J).GE.1.0) THEN
 YPRIME(NS5+J) = 0.0
 FVI(J) = 1.0
 FVIC(J) = 0.0
 RFJ = RFGX*PL(J)*V(J)*V(J)*RHO(ND2)
 RF(J) = DSIGN(RFJ,V(J))
 Y(NS5+J) = 1.0
 RHO(ND2) = P(ND2)*SMW(1)/RGAS/TKS(3)
 Y(NS7+ND2) = RHO(ND2)
C
THE INTERFACE IS MOVING WITHIN THE PIPE
C
ELSE IF(FVI(J).GE.0.0) THEN
 NFVI = J
 YPRIME(NS5+J) = V(J)/PL(J)
 FVIC(J) = 1.0 - FVI(J)
 RFJ = PL(J)*V(J)*V(J)*(FVI(J)*RFGX*RHO(ND1) +
 FVIC(J)*RFLX*RHO(ND2))
 RF(J) = DSIGN(RFJ,V(J))
C
THE INTERFACE IS RETURNING UPSTREAM

172
ELSE IF (FVI(J).LT.0.0) THEN
 IF (J.EQ.1) THEN
 FVI(J) = 0.0
 YPRIME(NS5+J) = 0.0
 FVIC(J) = 1.0
 RFJ = PL(J)*V(J)*V(J)*RHOLIQ*RFLX
 RF(J) = DSIGN(RFJ,V(J))
 ELSE
 FVI(J-1) = 1.0 + FVI(J)
 FVIC(J-1) = 1.0 - FVI(J-1)
 RFJ = PL(J-1)*V(J-1)*V(J-1)*(FVI(J-1)*RFGX*
 RHO(ND1-1)+FVIC(J-1)*RFLX*RHO(ND1))
 RF(J-1) = DSIGN(RFJ,V(J-1))
 Y(NS5+J-1) = FVI(J-1)
 YPRIME(NS5+J-1) = V(J-1)/PL(J-1)
 RHO(ND1) = RHOLIQ
 Y(NS7+ND1) = RHOLIQ
 FVI(J) = 0.0
 FVIC(J) = 1.0
 RFJ = PL(J)*V(J)*V(J)*RFLX*RHOLIQ
 RF(J) = DSIGN(RFJ,V(J))
 Y(NS5+J) = 0.0
 YPRIME(NS5+J) = 0.0
 ENDIF
 ENDIF

C --- BOTH NODES ARE LIQUID
C
ELSE
 YPRIME(NS5+J) = 0.0
 FVI(J) = 0.0
 FVIC(J) = 1.0
 RFJ = PL(J)*V(J)*V(J)*RFLX*RHOLIQ
 RF(J) = DSIGN(RFJ,V(J))
ENDIF
100 CONTINUE
C
C --- IF THE VELOCITY OF THE FURTHEST DOWNSTREAM PIPE (NP) IS
C NEGATIVE, AN INTERFACE PASSES INTO THE PIPE. THE SYSTEM
C VARIABLE Y(NS10)=FVI2 FOLLOWS THE PROGRESS OF THE INTER-
C FACE UPSTREAM IN THE SAME WAY FVI(J) FOLLOWS THE OXYGEN/
C HELIUM INTERFACE. NOTE:
C (1) THE INTERFACE THAT ENTERS THE PIPES FROM THE COMBUS-
C TION CHAMBER CAN ONLY GO AS FAR AS THE UPSTREAM NODE
C OF THE FURTHEST DOWNSTREAM PIPE.
C (2) FVI2 IS VIEWED BACKWORD: AS THE INTERFACE GOES UP THE
C PIPE, FVI2 RANGES FROM 0 TO 0.9999.
IF((V(NP).LE.0.0).OR.(RHO(NN).LE.RGMX).OR.
*(FVI2.GT.FVI2MN)) THEN
 IF(FVI2.GT.1.0) THEN
 FVI2 = 0.9999
 YPRIME(NS10) = 0.0
 RHO(NN) = RHOCC
 Y(NS7+NN) = RHOCC
 ELSE IF(FVI2.GT.FVI2MN.OR.V(NP).LT.0.0) THEN
 YPRIME(NS10) = -V(NP)/PL(NP)
 RHO(NN) = RHOCC
 Y(NS7+NN) = RHOCC
 ELSE IF(FVI(NP).GE.1.0) THEN
 FVI2 = 0.0
 Y(NS10) = 0.0
 YPRIME(NS10) = 0.0
 RHO(NN) = PA*RGASIN/TKS(3)/SMW(1)
 Y(NS7+NN) = RHO(NN)
 ELSE
 FVI2 = 0.0
 YPRIME(NS10) = 0.0
 RHO(NN) = RHOLIQ
 Y(NS7+NN) = RHOLIQ
 ENDIF
 ELSE
 YPRIME(NS10) = 0.0
 ENDIF

C --- FIND PRESSURE AT EACH NODE.

C
C (1) IF A NODE IS GASEOUS, PRESSURE IS FOUND USING THE
C PERFECT GAS RELATION.
C (2) IF A NODE IS LIQUID, PRESSURE IS FOUND BY CALCULATING
C THE PRESSURE LOSSES FROM UPSTREAM PIPES AND
C SUBTRACTING FROM FURTHEST UPSTREAM PRESSURE.
C (3) SOURCE NODE PRESSURES ARE FIXED. PRESSURE AT NODE
C NN (WHICH CONNECTS THE PIPING SYSTEM TO THE COMBUSTION
C CHAMBER) IS ALSO FIXED.
C
P(1) = PS
XDPIN = 0.5*QMV*QMV*VOL*VOL/(AO2IN*AO2IN*264.0*264.0*CDIN*CDIN)

IF(FWI(NP).LT.1.0) THEN
 IF(FVI2.GT.FVI2MN.OR.V(NP).LT.0.0) THEN
 DPIN = XDPIN / RHOCC
 ELSE
 DPIN = XDPIN / RHOLIQ
 ENDIF
ELSE
 DPIN = XDPIN / RHOGAS
ENDIF
DPIN = DSIGN(DPIN, V(NP))
P(NN) = PA + DPIN
DO 110 J=2,NP
 ND1 = N1(J)
 IF(RHO(ND1).LT.RGMX) THEN
 P(ND1) = RHO(ND1) * RGAS * TKS(3) / SMW(1)
 ELSE
 SRF = 0.0
 RHLSM = 0.0
 DO 120 JX=J-1,NP
 SRF = SRF + RF(JX)*AREA(JX)
 RHLSM = RHLSM + RHOLIQ * FVIC(JX) * PL(JX)
 CONTINUE
 RHLSM = RHLSM + FVI2*PL(NP)*(RHOCC-RHOLIQ) +
 FVI(J)*PL(J)*RHO(ND1)
 DELP1 = P(ND1-1) - P(NN)
 IF(DABS(SRF).LT.1.0D-04) THEN
 P(ND1) = P(ND1-1)
 ELSE
 P(ND1) = P(ND1-1) - RF(J-1)*AREA(J-1)*DELP1/SRF
 ENDIF
 DELP2 = P(ND1) - P(NN)
 DELPP = DELP2/DFLOAT(NN-ND1)
 DO 130 KX = ND1+1,NN-1
 P(KX) = P(KX-1) - DELPP
 CONTINUE
 ENDIF
110 CONTINUE
140 CONTINUE

C --- THE EQUATIONS FOR DRH(K) AND DV(J) ARE LINEAR FOR THE
C DERIVATIVES. A MATRIX EQUATION IS SET UP WITH THE COEF-
C FICIENTS OF DRH AND DV IN MATRIX ALEQ AND THE RHS IN
C VECTOR BLEQ. IMSL SUBROUTINE LEQT1F IS CALLED TO SOLVE
C THE MATRIX EQUATION [ALEQ]*{D> = {BLEQ}. VALUES FOR DV
C AND DRH ARE RETURNED IN BLEQ.
C
C --- CALCULATE THE COEFFICIENTS ALEQ(NP+K,NP+K) = SUM1(K)
C
C --- RESET SUM1
C
DO 150 K=1,NN
150 SUM1(K) = 0.0
C
C --- CALCULATE SUM1
C
DO 160 J=1,NP
 SUM1(N1(J)) = SUM1(N1(J)) - AREA(J)*V(J)
 SUM1(N2(J)) = SUM1(N2(J)) + AREA(J)*V(J)
160 CONTINUE
160 CONTINUE
DO 161 K=1,NN
 IF(DABS(SUM1(K)).LT.SM1MIN) SUM1(K)=DSIGN(SM1MIN, * SUM1(K))
161 CONTINUE
C
C --- RESET ALEQ AND BLEQ
C
NVP = NN + NP
DO 170 I=1,NVP
 BLEQ(I) = 0.0
DO 180 J=1,NVP
 ALEQ(I,J) = 0.0
180 CONTINUE
170 CONTINUE
C
C --- FILL ALEQ AND BLEQ
C
MLIQ = 0
DO 190 J=1,NP-1
 ND1 = N1(J)
 ND2 = N2(J)
C
C --- BOTH NODES ARE GASEOUS
C
 IF(RHO(ND2).LT.RGMX) THEN
 ALEQ(J,J) = 0.5*PL(J)*(RHO(ND1) + RHO(ND2))
 ALEQ(J,NP+ND1) = 0.5 * PL(J) * V(J)
 ALEQ(J,NP+NN) = PL(NP) * FVI2 * V(NP)
 BLEQ(J) = P(ND1) - P(ND2) - RF(J)
 ALEQ(NP+ND1,NP+ND1) = SUM1(ND1)
 ALEQ(NP+ND1,J) = - RHO(ND1) * AREA(J)
 ALEQ(NP+ND2,J) = RHO(ND2) * AREA(J)
C
C --- ONLY THE UPSTREAM NODE IS GASEOUS
C
 ELSE IF(MLIQ.LT.1) THEN
 MLIQ = 1
 JHE = J
 ALEQ(J,J) = RHLSM
 ALEQ(J,NP+ND1) = PL(J) * FVI(J) * V(J)
 ALEQ(J,NP+NN) = PL(NP) * FVI2 * V(NP)
 BLEQ(J) = P(ND1)-AREA(NP)*P(NN)/AREA(J)-SRF/AREA(J)- * RHO(LQ)*V(J)*V(J)-RHO(NN)*V(NP)*V(NP)*AREA(NP)/ * AREA(J)
 ALEQ(NP+ND1,NP+ND1) = SUM1(ND1)
 ALEQ(NP+ND1,J) = - RHO(ND1) * AREA(J)
C
C --- BOTH NODES ARE LIQUID
C
ELSE
 ALEQ(J,J) = 1.0
 ALEQ(J,J-1) = -AREA(J-1)/AREA(J)
 ALEQ(NP+ND1,NP+ND1) = 1.0
ENDIF
190 CONTINUE

C
C --- THE FURTHEST DOWNSTREAM PIPE IS HANDLED SEPARATELY BECAUSE
C OF THE POSSIBILITY OF A BACKFLOW INTERFACE.
C
C --- THE UPSTREAM NODE IS LIQUID
C
IF(RHO(NN-1).GT.RGMX) THEN
 ALEQ(NP,NP) = 1.0
 ALEQ(NP,NP-1) = -AREA(NP-1)/AREA(NP)
 ALEQ(NP+NN-1,NP+NN-1) = 1.0
 ALEQ(NP+NN,NP+NN) = 1.0
C
C --- THE FURTHEST DOWNSTREAM NODE IS LIQUID
C
IF(FVI2.LE.0.0) THEN
 BLEQ(NP+NN) = 0.0
C
C --- A BACKFLOW INTERFACE EXISTS
C
ELSE
 BLEQ(NP+NN) = RPX
ENDIF
C
C --- BOTH NODES ARE HELIUM
C
ELSE IF(FVI(NP).GE.1.0) THEN
 ALEQ(NP,NP) = 0.5*PL(NP)*(RHO(NN-1) + RHO(NN))
 ALEQ(NP,NP+NN-1) = 0.5 * PL(NP) * V(NP)
 BLEQ(NP) = P(NN-1) - P(NN) - RF(NP)
 ALEQ(NP+NN-1,NP+NN-1) = SUM1(NN-1)
 ALEQ(NP+NN-1,NP) = -RHO(NN-1) * AREA(NP)
 ALEQ(NP+NN,NP+NN) = 1.0
 BLEQ(NP+NN) = YPRIME(NS3) * RHO(NN)
C
C --- AN HELIUM/OXYGEN INTERFACE EXISTS IN THE PIPE
C
ELSE IF(FVI2.LE.0.0) THEN
 ALEQ(NP,NP)=PL(NP)*((RHO(NN-1)*FVI(NP) + RHOLIQ*FVIC(NP))
 ALEQ(NP,NP+NN-1) = PL(NP) * V(NP) * FVI(NP)
 BLEQ(NP) = P(NN-1) - P(NN) - RF(NP)
 ALEQ(NP+NN-1,NP+NN-1) = SUM1(NN-1)
 ALEQ(NP+NN-1,NP) = -RHO(NN-1) * AREA(NP)
 ALEQ(NP+NN,NP+NN) = 1.0

177
--- TWO INTERFACES EXIST IN THE LAST PIPE (BACKFLOW AND HE/OX)

ELSE

\[
\text{ALEQ}(NP, NP) = PL(NP) \times (RHO(NN-1) \times FVI(NP) + (FVIC(NP) - FVI2) \times RHOLIQ + RHOC \times FVI2)
\]

\[
\text{ALEQ}(NP, NP+NN-1) = PL(NP) \times FVI2 \times V(NP)
\]

\[
\text{ALEQ}(NP+NN-1, NP+NN-1) = \text{SUM1}(NN-1)
\]

\[
\text{BLEQ}(NP+NN-1, NP) = -RHO(NN-1) \times \text{AREA}(NP)
\]

\[
\text{ALEQ}(NP+NN, NP+NN) = 1.0
\]

\[
\text{BLEQ}(NP+NN) = \text{YPRIME}(NS3) \times RHOC
\]

ENDIF

\[
\text{ALEQ}(NP+1, NP+1) = 1.0
\]

\[
\text{ALEQ}(NP+1, 1) = 0.0
\]

IERP = 10

CALL LEQT1F(ALEQ, 1, NVP, 50, BLEQ, 0, WKAREA, IERP)

IF(IER.GT.IOO) THEN

WRITE (30,1300) IERP, TM, TK, PA, RHOC, FVI2, YPRIME(NS10)

WRITE (30,1310) (J, FVI(J), YPRIME(NS5-J), V(J), DV(J), J-1, NP)

WRITE (30,1320) (K, RHO(K), P(K), DRH(K), K=1, NN)

STOP

ENDIF

DO 800 J=1, NP

DV(J) = BLEQ(J)

YPRIME(NS3+J) = DV(J)

800 CONTINUE

DO 900 K=1, NN

DRH(K) = BLEQ(NP+K)

YPRIME(NS7+K) = DRH(K)

900 CONTINUE

IF(NDEBUG(12)) THEN

WRITE (30,1400) FVI2, YPRIME(NS10), SRF

WRITE (30,1500) (J, V(J), DV(J), RF(J), J=1, NP)

WRITE (30,1600) (K, RHO(K), DRH(K), P(K), K=1, NN)

ENDIF

RETURN

1000 FORMAT//(2X,'***** OUTPUT FROM SUBROUTINE PIPES *****')

1300 FORMAT//(2X,'***** CONVERGENCE OF PIPING SYSTEM FAILED',
 ' ', ' ')

1310 FORMAT//(4X,'LEQT1F RETURNED WITH IER = ', I4,
 ' ', ' ', 'EXECUTION HALTED',/,'4X,'TIME = ', 1PD11.4,
 ' 4X,'CHAMBER TEMPERATURE = ',0PF10.2,' K',/
 ' 4X,'CHAMBER PRESSURE = ',1PD11.4,' PA',/
 ' 4X,'CHAMBER DENSITY = ',D11.4,' KG/M**3',/
 ' 4X,'FVI2 = ',D11.4,'
 ' 4X,'YPRIME(FVI2) = ',D11.4)

1310 FORMAT//(4X,4HPipe, 5X, 3HFVI, 4X, 9HD(FVI)/DT, 2X, 8HVELOCITY,
 ' 5X, 7HD(V)/DT//,(6X, I1, 2X, 1PD10.3, X, 1PD10.3, X, 1PD10.3, X,
* 1PD10.3))
1320 FORMAT(/4X,4HNODE,3X,7HDENSITY,3X,8HPRESSURE,4X,
* 9HD(RHO)/DT/,(6X,I1,2X,1PD10.3,X,1PD10.3,X,1PD10.3))
1400 FORMAT(/4X'PIPES DERIVATIVE ESTIMATE SUMMARY'/,
* 4X,'POSITION OF THE BACKFLOW INTERFACE (FVI2) = ',
* 1PD11.4,'D(FVI2)/DT = ',D11.4,'SRF = ',
* D11.4)
1500 FORMAT(/4X,'PIPE',2X,' V ',2X,' D(V)/DT ',2X,
* ' RF '/,(5X,I2,3X,1PD11.4,2X,D11.4,2X,D11.4))
1600 FORMAT(/4X,'NODE',2X,' RHO ',2X,' D(RHO)/DT ',2X,
* ' P '/,(5X,I2,3X,1PD11.4,2X,D11.4,2X,D11.4))
END
SUBROUTINE RADSS

C INCLUDE 'INIT.FOR/LIST'
DIMENSION G1(20), BLEQ(10), WKAREA(10), ALEQ(10,10), S2I(10)
C INCLUDE 'COMMONSS.FOR/LIST'
C
ITER = 0
C
SMNS = 0.0
DO 100 I=1, NS
 SMNS = SMNS + S2(I)
100 CONTINUE
DO 110 I=NS1, NSRATE
 S2I(I) = S2(I)
110 CONTINUE
C
C — DEFINE THE G1 ARRAY: G1(I) = MASS INFLOW OF SPECIES I FROM
C THE PIPES.
C
G1(2) = FMV / SMW(2)
G1(3) = OMV / SMW(3)
C
C — ITERATION BEGINS
C
120 CALL RATES
ICHK = 0
ITER = ITER + 1
DO 140 I=NS1, NSRATE
 BLEQ(I-NS) = - G1(I) - ARR(I) + EMV * S2(I)
 DO 130 K=NS1, NSRATE
 ALEQ(I-NS,K-NS) = RIP(I,K)
130 CONTINUE
 ALEQ(I-NS,I-NS) = ALEQ(I-NS,I-NS) - EMV
140 CONTINUE
C
C — LEQT1F SOLVES THE MATRIX EQUATION: [ALEQ]{DS2}={BLEQ} AND
C RETURNS THE ANSWER IN THE VECTOR {BLEQ}.
C
CALL LEQT1F(ALEQ,1,NRAD,10,BLEQ,IDGT,WKAREA,JER)
C
C — INCREMENT ALL S2 BY DS2 AND KEEP THE RESULT WITHIN THE BOUNDS
C (S2MIN < S2(I) < 1.0/SMW(I))
C
SM = SMNS
DO 150 I=NS1, NSRATE
 ALG = 1.0/SMW(I)
 SCHK = DABS(BLEQ(I-NS)/S2(I))
 IF(SCHK.GT.EPSISS) ICHK = 1
 S2(I) = S2(I) + RLX*BLEQ(I-NS)
150 CONTINUE
IF(S2(I).LT.S2MIN) S2(I) = S2MIN
IF(S2(I).GT.ALG) S2(I) = ALG
SM = SM + S2(I)
150 CONTINUE
SMINV = 1.0/SM
C
C --- STOP THE ITERATION IF ITERATION COUNTER ITER IS GREATER
C THAN ITMAXS. IF THE SPECIES MOLE NUMBERS FALL BELOW THE
C MINIMUM ALLOWABLE MOLE NUMBER THE ITERATION CANNOT CON-
C VERGE. IF THIS TAKES PLACE THE MOLE NUMBERS ARE SET TO
C MINIMUM ALLOWABLE MOLE NUMBER AND EXECUTION IS ALLOWED
C TO CONTINUE.
C
IF(ITER.GT.ITMAXS) THEN
 ISTOP = 0
 S2CHK = S2MIN*100.0
 DO 160 I = NS1,NSRATE
 IF(S2(I).LE.S2CHK) THEN
 ISTOP = 1
 S2(I) = S2MIN
 ENDIF
160 CONTINUE
IF (ISTOP.EQ.1) GO TO 170
WRITE (30,1000) ITMAXS,TM,TK,PA,RHOCC,DLIQ,VR
WRITE (30,1100) (ANAM(I),S2(I),I=1,NS)
WRITE (30,1200) (ANAM(I),S2(I),BLEQ(I-NS),I=NS1,NSRATE)
WRITE (30,1300)
STOP
ENDIF
C
C --- IF ICHK = 1 THE CONVERGENCE CRITERION WAS NOT MET
C
IF(ICHK) GO TO 120
C
C --- CALCULATE THE RATE OF PRODUCTION OF THE PRODUCTS AND INFER
C THE RATE OF CONSUMPTION OF THE REACTANTS FROM THE CONSERVATION
C OF ATOMS
C
170 RATE(4) = ARR(4)
RATE(2) = -RATE(4)
RATE(3) = -RATE(4)*0.5
RATE(1) = 0.0
C
C --- OUTPUT FOR NDEBUG(11) = 1
C
IF(NDEBUG(11)) THEN
 WRITE (30,1400) ITER,RLX,EPSISS
 WRITE (30,1500) TK,PA,RHOCC,OMV,PMV,PMV
STOP
WRITE (30,1600)
WRITE (30,1700) (ANAM(I), S2I(I), I=NS1, NSRATE)
WRITE (30,1800)
WRITE (30,1900) (ANAM(I), S2(I), ARR(I), RATE(I), I=1, NSRATE)
ENDIF
C
RETURN
C
1000 FORMAT(/2X,'***** IN RADSS, ITMAX = ',17,' EXCEEDED *****'//,
 * 4X,'RADICAL MOLE NUMBER ITERATION DID NOT CONVERGE FOR:'//,
 * 4X,'TIME = ',1PD11.4,' SEC'//,
 * 4X,'CC TEMPERATURE = ',OPF10.3,' K'//,
 * 4X,'CC PRESSURE = ',1PD11.4,' PA'//,
 * 4X,'CC DENSITY = ',D11.4,' KG/M**3'//,
 * 4X,'SS DENSITY = ',D11.4,' KG/M**3'//,
 * 4X,'CC LIQUID DENSITY = ',D11.4,' KG/M**3'//,
 * 4X,'CC VAPOR. RATE = ',D11.4,' KG/M**3 SEC'//)
1100 FORMAT(4X,'MAJOR SPECIES MOLE NUMBER (KGMOLES/KG)'//,
 * (8X,A4,13X,D11.4))
1200 FORMAT(/4X,'SPECIES MOLE NUMBER (KGMOLES/KG) INCREMENT'//,
 * (5X,A4,7X,D11.4,13X,D11.4))
1300 FORMAT(/2X,'***** EXECUTION HALTED *****')
1400 FORMAT(/2X,'***** OUTPUT FROM SSRATE *****'//,
 * 4X,'SSRATE SUCCEEDED AFTER ',I4,' ITERATIONS.'//,
 * 4X,'RELAXATION FACTOR = ',1PD8.2,//,
 * 4X,'PERCENT TOLERANCE = ',D8.2)
1500 FORMAT(4X,'TEMPERATURE = ',F8.2,//,
 * 4X,'PRESSURE = ',1PD12.4,//,
 * 4X,'DENSITY = ',D12.4,//,
 * 4X,'OMV, FMV, PMV = ',3(D12.4,2X))
1600 FORMAT(/4X,'SPECIES',2X,'INITIAL MOLE NO.'//)
1700 FORMAT(5X,A4,3X,D12.5)
1800 FORMAT(/4X,'CONVERGED SOLUTION:'//,
 * 4X,'SPECIES',2X,'EFFECTIVE S2',2X,'SS RXN RATE ',2X,
 * 'EFFECTIVE RXN RATE',12X,'KGMOLE(I)/KG',X,'KGMOLE/M**3*SEC',X,
 * 'KGMOLE/M**3*SEC')//)
1900 FORMAT(5X,A4,3X,1PD12.5,2X,D12.5,2X,D12.5)
SUBROUTINE RATES
C
C --- CALCULATES RATE OF PRODUCTION OF EACH SPECIES, ARR(I),
C AND THE DERIVATIVE OF THE RATE OF PRODUCTION OF EACH
C SPECIES, I, WITH RESPECT TO THE MOLE NUMBER OF EACH
C SPECIES, K, RIP(I,K).
C
INCLUDE 'INIT.FOR/LIST'
C
DIMENSION RFP(20,20),RRP(20,20),RF2(20),RR(20)
C
INCLUDE 'COMMONSS.FOR/LIST'
C
DATA BIG/46.051/
C
C --- DETERMINE DENSITY AND OFTEN USED CONSTANTS
C
TLN = DLOG(TK)
TKSQ = TK * TK
TKSQIN = 1.0/TKSQ
RHSM = PA * RGASIN * TKINV
RHOP = RHSM * SMINV
RHSQ = RHOP * RHOP
RHINV = 1.0 / RHOP
C
C --- FIND THE FORWARD AND REVERSE RATES OF EACH OF THE ELEMENTARY
C REACTIONS, J, FOR J=1,JJ (JJ = NO. OF ELEM RXNS)
C
DO 10 J=1,JJ
 RF2(J) = 0.0
 RR(J) = 0.0
 I = ID(1,J)
 K = ID(2,J)
 M = ID(3,J)
 N = ID(4,J)
 MODE = MODR(J)
 R1 = 0.0
 R2 = 0.0
 TX1 = TACT(J)*TKINV - BX(J) - TEN(J)*TLN
 TX2 = TACT2(J)*TKINV - BX2(J) - TEN2(J)*TLN
 R1 = DEXP(-TX1)
 R2 = DEXP(-TX2)
C
C --- SECTION FOR FORWARD REACTION RATES
C
IF(DABS(TX1).GT.BIG) THEN
 IF(NDEBUG(13))WRITE(30,1000) ITER,J
 GO TO 50
ENDIF
C
183
R1 = R1 * X1(J)
IF(MODE=2) 20,30,40
20 RF2(J) = R1 * S2(I) * RHSQ * S2(K)
 GO TO 60
30 RF2(J) = R1 * RHSM * S2(I) * RHOP
 GO TO 60
40 RF2(J) = R1 * RHSM * S2(I) * RHOP
 IF(K.NE.0) RF2(J) = RF2(J) * S2(K) * RHOP
 GO TO 60
50 RF2(J) = 0.0
60 CONTINUE
C
C --- SECTION FOR REVERSE RATES
C
IF(DABS(TX2).GT.BIG) THEN
 IF(NDEBUG(13)) WRITE(30,1100) ITER, J
 GO TO 100
ENDIF
R2 = X2(J) * R2
IF(MODE=2) 70,80,90
70 RR(J) = R2 * S2(M) * RHSQ * S2(N)
 GO TO 10
80 RR(J) = R2 * RSM * S2(M) * RHSQ * S2(N)
 GO TO 10
90 RR(J) = R2 * RSM * RHOP * S2(M)
 GO TO 10
100 RR(J) = 0.0
10 CONTINUE
C
C --- FIND THE RATE OF PRODUCTION OF EACH SPECIES I, ARR(I).
C
DO 110 I=1,NSRATE
 ARR(I) = 0.0
 DO 120 J=1,JJ
 ARR(I) = ARR(I)+DFLOAT(ISIDE(I,J))*(RF2(J)-RR(J))
120 CONTINUE
110 CONTINUE
C
C --- FIND THE DERIVATIVES OF THE FWD AND REV RXN RATES OF EACH
C ELEMENTARY RXN WITH RESPECT TO EACH MOLE NO. (I.E.
C RFP(J,K)=D(RF2(J))/D(S2(K)) AND RRP(J,K)=D(RR(J))/D(S2(K))
C
DO 130 J=1,JJ
 DO 140 K=1,NSRATE
 RFP(J,K)=0.0
 RRP(J,K)=0.0
 IF(ISIDE(K,J).LT.0)
 RFP(J,K)=-DFLOAT(ISIDE(K,J))*RF2(J)/S2(K)
 IF(ISIDE(K,J).GT.0)
 RRP(J,K)=DFLOAT(ISIDE(K,J))*RR(J)/S2(K)
130 CONTINUE
140 CONTINUE

C --- FIND THE DERIVATIVE OF THE RATE OF PRODUCTION OF EACH SPECIES
C WITH RESPECT TO THE MOLE NO. OF EACH SPECIES
(RIP(I,K)=D(ARR(I))/D(S2(K))

DO 150 I=1,NSRATE
 DO 160 K=1,NSRATE
 RIP(I,K) = 0.0
 DO 170 J=1,JJ
 RIP(I,K) = RIP(I,K)+DFLOAT(ISIDE(I,J))*(RFP(J,K)-RRP(J,K))
 170 CONTINUE
 160 CONTINUE
150 CONTINUE
RETURN

1000 FORMAT(4X,'IN RATES, FOR ITERATION ',I4,'FWD RATE = 0 FOR J = ',I2)
1100 FORMAT(4X,'IN RATES, FOR ITERATION ',I4,'REV RATE = 0 FOR J = ',I2)
END
SUBROUTINE YCAL(Y,WK,IWK,N,NWK)
C
C TSTR2 RUNS THE CALLING OF THE INTEGRATION ROUTINE AND
C THE OUTPUTTING OF DATA TO THE OUTPUT AND PLOT FILES
C
INCLUDE 'INIT.FOR/LIST'
C
REAL*4 SDUMMY(4)
C
EXTERNAL CSLOPE
C
DIMENSION Y(N),IWK(N),WK(NWK),WK2(4,100),S2P(10),CHG(50)
C
INCLUDE 'COMMONSS.FOR/LIST'
COMMON / GEAR / DUMMY(48),SDUMMY,IDUMMY(38)
C
C --- PUT MOLE NUMBERS, TEMPERATURE AND DENSITY INTO LOG VARIABLE
C FORM AND INSERT THEM INTO THE VECTOR Y. DENSITY OF LIQUID IN
C THE COMBUSTION CHAMBER IS LEFT IN NON-LOG FORM.
C
DO 100 I=1,NS
 100 Y(I) = DLOG(S2(I))
Y(NS1) = XMASS/VOL
Y(NS2) = DLOG(TK)
Y(NS3) = DLOG(PA)
VH2 = EMS(2)/AH2IN/RHOH2/264.0
C
C --- PLACE THE PIPING SYSTEM VARIABLES INTO THE VECTOR Y.
C
DO 110 I=1,NP
 Y(NS3+I) = V(I)
 Y(NS5+I) = 0.0
 IF(N2(I).EQ.NN) OMV = OMV + RHO(NN)*AREA(I)*V(I)
 110 CONTINUE
DO 120 I=1,NN
 Y(NS7+I) = RHO(I)
 120 CONTINUE
C
C --- GET GOOD INTITIAL ESTIMATES FOR ATOM AND RADICAL MOLE
C NUMBERS VIA A CALL TO RADSS
C
IF(KINET.EQ.1) THEN
 CALL RADSS
ENDIF
C
C --- BEGIN THE INTEGRATION LOOP
C
NSTEPS = JIDINT((TMEND-TMI)/TMPRNT)
DO 150 NX = 1,NSTEPS
 TMNXT = TMNXT + TMPRNT
 150 CONTINUE
IF(TMNX.GT.TMEND) TMNX = TMEND
IF(NDEBUG(5)) WRITE (30,1000) NX,NSTEPS,TM,TMNX
IF(NDGEAR) THEN
 CALL DTSTR(N,CSLOPE,TM,STEP,Y,TMNX,WK2,NDEBUG)
ELSE
 CALL DGEAR (N,CSLOPE,CHGJ,TM,STEP,Y,TMNX,EPSI,METH,
 MITER,INDEX,IKW,WK,IER)
 IF(IER.GE.128) THEN
 WRITE (30,1100) IER,TM
 DO 140 I=1,NV
 CHG(I) = WK(IDUMMY(11)+I)/WK(I)
 WRITE (30,1200) (I,Y(I),CHG(I),I=1,NV)
 CALL OUTPT(Y,TM,N,NSTEPS)
 STOP
 END IF
END IF
IF (NDEBUG(14))
 WRITE (6,1300) TM,STEP,TK,PA,RHOCC,(V(J),J=1,3),
 (RHO(K),K=1,3),(FVI(J),J=NP-2,NP),V(NP),FVI2,
 (S2(I),I=1,4)
C --- ON RETURN FROM THE INTEGRATION ROUTINE OUTPUT DEPENDENT
C VARIABLES AND SIGNIFICANT PROBLEM PARAMETERS TO THE TEXT
C AND PLOT OUTPUT FILES.
C
CALL OUTPT(Y,TM,N,NSTEPS)
IF(TM.GT.TMPER.AND.IPER.LT.1) THEN
 IPER = 1
 DMCX = DMC
 DMC = XPER * DMC
ELSE IF(TM.GT.TMPER.AND.IPER.LE.5) THEN
 IPER = IPER + 1
ELSE IF(IPER.GT.5) THEN
 DMC = DMCX
ENDIF
150 CONTINUE
C
RETURN
1000 FORMAT(/2X,'***** INTEGRATING ROUTINE CALLED *****'/,
 4X,'CALL FOR STEP ',I7,' OUT OF ',I12,' STEPS'/,
 4X,'STEP BEGINS AT TIME = ',1PD12.5,
 4X,' AND ENDS AT TIME = ',1PD12.5)
1100 FORMAT(2X,'***** ERROR CONDITION ON RETURN FROM DGEAR
 *****'/,
 4X,'EXECUTION STOPPED. IER = ',I4,X,'TIME = ',1PD12.5/,
 2X,'VARIABLE',2X,'VALUE AT HALT',2X,'RELATIVE CHANGE'/)
1200 FORMAT(5X,12.5,1PD12.5,4X,12.5)
1300 FORMAT(/2X,'ON RETURN TO YCAL: TIME = ',1PD8.2,' STEP = ',D8.2/,
 2X,'TEMP = ',PF10.2,X,'PRESS = ',1PD8.2,X,'DENS = ',D8.2/,
 187
* 2X,'V(1:3) = ',3D9.2/
* 2X,'RHO(1:3) = ',3D9.2/
* 2X,'FVI(NP-2:NP) = ',3D9.2/
* 2X,'V(NP) = ',D9.2,2X,'FVI2 = ',D9.2/
* 2X,'S2(1:4) = ',4D9.2)
END
SUBROUTINE THERPS(NS,XTK)

C THERPS CALCULATES THE SPECIFIC MOLAR INTERNAL ENERGY,
C ENTHALPY AND SPECIFIC HEAT AT CONSTANT PRESSURE FOR EACH
C SPECIES, I=1,NS.

C
C H(I) = ENTHALPY (J/KGMOLE)
C U(I) = INTERNAL ENERGY (J/KGMOLE)
C CP(I) = SPECIFIC HEAT AT CONSTANT PRESSURE (J/KGMOLE/K)

C THERPS IS MODELLED AFTER SUBROUTINE HCPS USED BY DR. PAUL
C GEORGE II (PHD DISSERTATION, PURDUE UNIVERSITY, 1982).

C

IMPLICIT REAL*8 (A-H,P-Z)
IMPLICIT INTEGER*4 (I-O)

DIMENSION H1(20),H2(20),H01(20),H02(20),CP1(20),CP2(20),
* CP01(20),CP02(20),S1(20),S2(20),S01(20),S02(20),U1(20),
* U2(20)

COMMON
* / CPROP / Z(200),H(10),CP(10),U(10),S(10),DCP(10),HO(10),
* CP0(10),SO(10)

DATA ICIT/14/,RGAS/8314.4/
IT=0
IF (XTK.LT.950.0) THEN
 IT=7
ELSE IF(XTK.GT.1050.0) THEN
 IT = 0
ELSE
 GO TO 70
ENDIF

XTKSQ=XTK**2
XTKCU=XTKSQ*XTK
XTK4=XTKCU*XTK
XTKINV=1./XTK
XTLN=DLOG(XTK)
RTK=RGAS*XTK

C --- H(I), U(I), CP(I), DCP(I) REQUIRED

DO 60 I=1,NS
 K=IT+ICIT*(I-1)
 CP1X=Z(K+1)
 CP2X=XTK*Z(K+2)
 CP3X=XTKSQ*Z(K+3)
 CP4X=XTKCU*Z(K+4)
 60

189
CP5X=XTK4*Z(K+5)
H0(I)=0.2*CP5X+0.25*CP4X+0.33333333*CP3X+0.5*CP2X+CP1X
* +XTKINV*Z(K+6)
SO(I)=0.25*CP5X+0.33333333*CP4X+0.5*CP3X+CP2X+CP1X*XTLN
CPO(I) = CP1X + CP2X + CP3X + CP4X + CP5X
H(I) = H0(I) * RTK
U(I) = H(I) - RTK
S(I) = SO(I) * RGAS
CP(I) = CPO(I)*RGAS
60 CONTINUE
C
RETURN
C
70 XTKSQ=XTK**2
XTKCU=XTKCU*XTK
XTK4=XTKCU*XTK
XTKINV=1./XTK
XTLN=DLOG(XTK)
RTK=RGAS*XTK
C
C ---- H(I), U(I), CP(I), DCP(I) REQUIRED
C
DO 80 ITK = 1, 2
IT = 0
IF(ITK.EQ.2) IT = 7
DO 90 I=1,NS
K=IT+ICIT*(I-1)
CP1X=Z(K+1)
CP2X=XTK*Z(K+2)
CP3X=XTKSQ*Z(K+3)
CP4X=XTKCU*Z(K+4)
CP5X=XTK4*Z(K+5)
H0(I)=0.2*CP5X+0.25*CP4X+0.33333333*CP3X+0.5*CP2X+CP1X
* +XTKINV*Z(K+6)
SO(I)=0.25*CP5X+0.33333333*CP4X+0.5*CP3X+CP2X+CP1X*XTLN
CPO(I) = CP1X + CP2X + CP3X + CP4X + CP5X
H(I) = H0(I) * RTK
U(I) = H(I) - RTK
S(I) = SO(I) * RGAS
CP(I) = CPO(I)*RGAS
IF(ITK.EQ.1) THEN
H01(I) = H0(I)
S01(I) = SO(I)
CPO1(I) = CPO(I)
H1(I) = H(I)
CP1(I) = CP(I)
U1(I) = U(I)
S1(I) = S(I)
ELSE
H02(I) = H0(I)
190
S02(I) = S0(I)
CP02(I) = CP0(I)
H2(I) = H(I)
CP2(I) = CP(I)
U2(I) = U(I)
S2(I) = S(I)

ENDIF

90 CONTINUE

80 CONTINUE

FR1 = (XTK - 950.0)/100.0
FR2 = (1050.0 - XTK)/100.0

DO 100 I=1,NS

HO(I) = FR1*HO1(I) + FR2*HO2(I)
S0(I) = FR1*S01(I) + FR2*S02(I)
CP0(I) = FR1*CP01(I) + FR2*CP02(I)
H(I) = FR1*H1(I) + FR2*H2(I)
U(I) = FR1*U1(I) + FR2*U2(I)
CP(I) = FR1*CP1(I) + FR2*CP2(I)

100 CONTINUE

C RETURN

C END
INPUT FILE TSTR.IN

&RUNNO NMON=06,NDAY=11,NYR=1987,NRUN=1 &END

&PARAM VOL=0.013,Q=-5.5D+07,S2MIN=1.0D-18,EMS=0.0,
18.00,0.0,TKS=120.0,120.0,200.0,TMSD=0.003+03,
RGNX=65.5,RHOGAS=12.4435,RHOLIQ=990.70,RHOH2=9.86784,
AH2IN=1.329D-05,A02IN=1.09682D-05,FV12MN=1.0D-08,
DLIQMN=1.0D-07,DMIN=1.5D-06,DMC=0.585,CPTP=0.96738,
PHG=1.03395D+06,TMPF=5.0D+02,XPER=20.0,CVR=1.23045D-02
&END

&INITC XMASS=1.00D-15,TK=550.00,PA=5.16964D+06,
DM=1.0D-07 &END

&INDX1 NDEBUG=0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
MCON=1,KINET=0 &END

&ICONS METH=2,MITER=2,NDGEAR=0,IER=10,STEP=1.0D-12,
TIM=0.0,TMPRTN=5.0D-04,TMEND=1.0D-01,INDEX=1,
EPSI=1.0D-05 &END

&SSRKT EPSISS=1.0D-06,ITMAXS=25,JDGEAR=0,IER=10 &END

&INPFL V=9,0.001,FVI=5,0.0,0.0,RHOGAS=6,12.4435,
AREA=5,2.9085D-05,&0.202683D-03,RFIL=0.030294,
RFGS=0.182725,RFLO=0.836663,RFDE=1.14483,
RFHV=1.72000D+04,RFVG=1.82725D+04,PS=5.16964D+06,
CDIN=0.50,SM1MIN=0.0D-08 &END

&INDX2 N1=1,2,3,4,5,6,7,8,9,N2=2,3,4,5,6,7,8,9,10,
NP=9,NN=10,NHEO=5,RFVI=6 &END

REAC HE 4.0026 3 1.00000D+00 0.00000D+00 0.00000D+00 G 0.00000D+00 -3.5416D+06
REAC H2 2.0160 2 1.00000D+00 9.99999D-01 L 0.0000D+00 -3.1432D+06
REAC O2 32.0000 1 1.00000D+00 1.00000D-09 L 2.0000D+05 -2.7300D+05
PROD H2O 18.0160 0 0.00000D+00 1.00000D-09 G 0.0000D+00 0.0000D+00
RADI H 1.0080 0 0.00000D+00 0.00000D+00 G 0.0000D+00 0.0000D+00
RADI O 16.0000 0 0.00000D+00 0.00000D-08 G 0.0000D+00 0.0000D+00
RADI OH 17.0080 0 0.00000D+00 0.00000D-08 G 0.0000D+00 0.0000D+00

HE L 5/66HE 1.00 0.00 0.00 0.0 G 300.000 5000.000
0.2500000D+01 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.0000000D+00
0.74537498D+03 0.91534888D+00 0.43660006E+01 0.0000000D+00 0.0000000D+00
0.0000000D+00 0.0000000D+00 0.0000000D+00
0.0000000D+00 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.0000000D+00
27080 37.0000 982 0.20000D+00 298.0 1200.0 6000.0 HE 5

AR L 5/66AR 1 G 300.000 5000.000
0.2500000E+01 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
-0.74537502E+03 0.43660006E+01 0.25000000E+01 0.0000000E+00 0.0000000E+00
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0 3.4180 124.000 300.0 1200.0 5000.0
CH4 J 3/61C 1H 400.000 0G 300.000 5000.000
0.15027072E+01 0.10416798E-01-0.39781522E-05 0.67777899E-09 0.4283706E-11
-0.9978708E-04 0.10707143E-02 0.38261932E-01 0.39794581E-02 0.24558340E-04
-0.2273292E-07 0.69626957E-11-0.1044950E-05 0.86690073E 00
0.3 8.220 137.0000

CH3 J 6/69C 1H 3 0 0G 300.000 5000.000
192
2.84003270E+00	6.08690860E-03	-2.17403380E-06	3.60425760E-10	-2.27253000E-14	2
1.64498130E+04	5.50567105E+00	3.46661500E+00	3.83018450E-03	1.01168020E-06	3
-1.88592360E-09	6.68031820E-13	1.63131040E-12	3.32182750E+03	4.03515416E+00	4

3.61363839E+00	3.26359808E-03	-1.29355163E-06	2.38238548E-10	-1.64668247E-14	2
1.64498130E-10	4.07467474E+00	2.20831318E-03	1.28146161E-05	3	
-1.88592360E-09	6.68031820E-13	1.63131040E+04	2.41721920E+00	4	

| 1.64498130E+04 | 5.50567105E+00 | 3.46661500E+00 | 3.83018450E-03 | 1.01168020E-06 | 3 |
| -1.88592360E-09 | 6.68031820E-13 | 1.63131040E+04 | 2.41721920E+00 | 4 |

5.23759870E+00	7.99608790E-03	-3.96765581E-06	8.31862800E-10	-6.26533814E-14	2
1.06662525E+03	5.89948723E+00	2.04832571E+00	1.15498951E-02	-3.75331995E-06	3
2.54155659E+13	1.69432993E-24	2.63296164E+00	1.27359089E+01	4	

0.29840696E+01	0.14891390E-02	-0.57899684E-06	0.10364577E-09	0.69353550E-14	2
-0.14245228E+05	0.36479156E+00	0.17100928E+00	0.16190996E+02	0.36923594E+00	3
-0.20319674E+08	0.23953344E+12	0.14353310E+05	0.29553531E+01	4	

0.24370813E+01	0.13233886E-03	-0.90907747E-07	0.22864058E-10	-0.13762921E+14	2
0.56128586E+05	0.45211115E+01	0.25000000E+01	0.31078153E+08	0.83216099E+11	3
-0.94278291E+14	0.38108037E-17	0.56106977E+05	0.41806431E+01	4	

<p>| 0.24370813E+01 | 0.13233886E-03 | -0.90907747E-07 | 0.22864058E-10 | -0.13762921E+14 | 2 |
| 0.56128586E+05 | 0.45211115E+01 | 0.25000000E+01 | 0.31078153E+08 | 0.83216099E+11 | 3 |
| -0.94278291E+14 | 0.38108037E-17 | 0.56106977E+05 | 0.41806431E+01 | 4 |</p>
<table>
<thead>
<tr>
<th>Compound</th>
<th>J</th>
<th>H</th>
<th>G</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH3</td>
<td>J/65N</td>
<td>1.H</td>
<td>3.00</td>
<td>0.00</td>
<td>0.G</td>
<td>300.00</td>
<td>5000.00</td>
<td></td>
</tr>
<tr>
<td>C2H6</td>
<td>C</td>
<td>2H</td>
<td>6</td>
<td>0</td>
<td>0.G</td>
<td>300.00</td>
<td>5000.00</td>
<td></td>
</tr>
<tr>
<td>C2H4</td>
<td>C</td>
<td>2H</td>
<td>4</td>
<td>G</td>
<td>300.00</td>
<td>5000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3H8</td>
<td>C</td>
<td>3H</td>
<td>8</td>
<td>0</td>
<td>G</td>
<td>300.00</td>
<td>5000.00</td>
<td></td>
</tr>
<tr>
<td>C6H6</td>
<td>C</td>
<td>6H</td>
<td>6</td>
<td>0</td>
<td>G</td>
<td>300.00</td>
<td>5000.00</td>
<td></td>
</tr>
<tr>
<td>C8H18</td>
<td>C</td>
<td>8H</td>
<td>18</td>
<td>0</td>
<td>G</td>
<td>300.00</td>
<td>5000.00</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>J</td>
<td>3/61H</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>G</td>
<td>300.00</td>
<td>5000.00</td>
</tr>
<tr>
<td>H2O</td>
<td>J</td>
<td>3/61H</td>
<td>20</td>
<td>100</td>
<td>0.00</td>
<td>G</td>
<td>300.00</td>
<td>5000.00</td>
</tr>
<tr>
<td>Species</td>
<td>J</td>
<td>N</td>
<td>O</td>
<td>H2O</td>
<td>NO</td>
<td>OH</td>
<td>O2</td>
<td>H2</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1.2000</td>
<td>2.7100</td>
<td>506.0000</td>
<td>298.0</td>
<td>1200.0</td>
<td>6000.0</td>
<td>H2O</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>J 3/64H</td>
<td>10</td>
<td>200</td>
<td>000</td>
<td>OG</td>
<td>300.000</td>
<td>5000.000</td>
<td>1</td>
</tr>
<tr>
<td>0.37866280E01</td>
<td>0.27885404E-02-0.1016870E-05</td>
<td>0.17183946E-09-0.11021852E-13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.11888500E04</td>
<td>0.4814761E11</td>
<td>0.35094850E1</td>
<td>0.11499670E02</td>
<td>0.58784529E-05</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.77795191E-08</td>
<td>0.29607883E-11</td>
<td>0.13803331E-04</td>
<td>0.68276325E0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3.4700</td>
<td>107.000</td>
<td>298.0</td>
<td>1200.0</td>
<td>6000.0</td>
<td>H2O</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H2O2</td>
<td>L 2/69H</td>
<td>20</td>
<td>20</td>
<td>000</td>
<td>OG</td>
<td>300.000</td>
<td>5000.000</td>
<td>1</td>
</tr>
<tr>
<td>0.45731667E01</td>
<td>0.4361363E-02-0.14746888E-05</td>
<td>0.23489034E-10-0.14316536E-13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.18006961E-05</td>
<td>0.50113696E0</td>
<td>0.33887536E1</td>
<td>0.65692260E-02-0.14850126E-06</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.46258055E-08</td>
<td>0.24715147E11-0.17663147E-05</td>
<td>0.67853631E0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2H6</td>
<td>O2</td>
<td>C2H4</td>
<td>H2</td>
<td>14.41</td>
<td>0.0</td>
<td>25000.000.000</td>
<td>195</td>
<td></td>
</tr>
</tbody>
</table>
C3H8 O2 C2H4 H2 14.41 0.0 25000.GLOBAL
C3H18 O2 C2H4 H2 14.41 0.0 25000.GLOBAL
C2H4 O2 CO H2 12.57 0.0 25200.GLOBAL
C6H6 O2 CO H2 7.720 1.0 19650.GLOBAL
FUEL OIL O2 CO H2 7.720 1.0 19650.GLOBAL
H2O(L) H2O 13.90 0.0 25900.SUNBERG
O2 H2 OH OH 11.903 0.0 22661.PRATT
OH H2 H2O H 11.439 0.0 5187. PRATT
O2 H OH O 11.677 0.0 8712. PRATT
O H2 OH H 9.352 0.0 3903. PRATT
O H2O OH OH 11.095 0.0 9115. PRATT
H H M H2 M 12.699 -1.15 0.0 PRATT
O O M O2 M 9.672 -0.278 0000 PRATT
O H M OH M 10.627 -0.0 -1400. PRATT
H OH M H2O M 10.778 -0.00 -252.0 PRATT
H O2 M HO2 M 9.186 0.0 503.5 WALD7
CO OH H CO2 8.336 0.0 300. PRATT
CO O M CO2 M 8.000 0.0 1259. PRATT
CO2 O CO O2 10.279 0.0 27268.PRATT
CH4 O CH3 OH 13.300 0.0 9.000 GGS
CH4 H CH3 H2 14.1 0.0 11.900 GGS
CH4 OH CH3 H2O 13.500 0.0 5.000 GGS
CH3 CHO CH4 CO 11.5 0.50 0.0 GGS
CH3 CH20 CH3O CH4 10.00 0.5 6.000 GGS
CH3 O CH20 H 14.41 0.0 2.000 GGS
CH3 OH CH20 H2 12.6 0.0 0.0 GGS
CH3 H M CH4 M 26.86 -3.0 0.0 GGS
CH3 O2 CH3O O 13.380 0.0 28.810 GGS
CH3O M CH20 H M 13.700 0.0 21.000 GGS
CH20 M CH3O H M 16.700 0.0 72.000 GGS
CH20 O CH3O OH 13.700 0.0 4.600 GGS
CH20 H CH3O H2 13.130 0.0 3.760 GGS
CH2O OH CH3O H2O 10.5 1.0 0.0 GGS
CHO M CO H M 14.160 0.0 19.000 GGS
CHO H CO H2 14.300 0.0 0.0 GGS
CHO OH CO H2O 14.000 0.0 0.0 GGS
CHO O CO OH 14.000 0.0 0.0 GGS
***** TSTR OUTPUT TEXT FILE *****
6 11 1987
RUN NUMBER 1

***** SOLUTION PARAMETERS *****

CC VOLUME = 1.30D-02 M^3
CC HEAT TRANS. RATE = -6.50000D+07 J/S
MIN ALLOWABLE MOLE NO. = 1.00000D-18 KGMOLE/KG
INITIAL MASS OF LIQ IN THE COMB CHAMBER = 1.00000D-15 KG
INITIAL DROPLET DIAMETER = 1.00000D-07 M
MIN ALLOWABLE DROPLET DIAMETER = 5.000D-07 M
EXIT TURBINE FLOW RATE CONSTANT = 9.233D-01
HOT GAS MANIFOLD PRESSURE = 1.723D+06 PA

NDEBUG (1 FOR PRINTING, 0 FOR SUPRESSING OUTPUT)
 1 1 1 1 1 1 1 0 0 0
 0 0 0 1 0 0 0 0 0 0

DROPLET DIAMETER COEFFICIENT = 4.85000D-01
AREA OF HYDROGEN INJECTOR ANULUS = 1.3290D-05
AREA OF THE OXIDIZER INJECTOR = 1.0968D-05
MCON (=0 FOR CONSTANT MASS FLOW; =1 FOR PIPING SYSTEM) 1
KINET (=0 FOR NO KINETICS; =1 FOR CALL TO RADSS) 0

INTEGRATION PARAMETERS:
 MITER, METH, NDGEAR 2 2 0
 IER, EPSI 10 5.00D-07
 INPUT STEP SIZE = 1.00D-12 SEC
 INITIAL TIME = 0.00D+00 SEC
 OUTPUT INTERVAL = 5.00D-04 SEC
 FINAL TIME = 1.00D-01 SEC
 TIME SHUTDOWN BEGINS = 0.00D+00

FOR SS RATE APPROXIMATION:
 CONVERGENCE CRITERION (MAX % CHANGE) = 1.00D-06
 MAX NO ITERATIONS = 25
 ERROR CHECK IDGT = 0
 IMSL ERROR FLAG JER = 10

OXIDIZER FEED SYSTEM INPUTS:
 NO. OF PIPES 11 NO. OF NODES 12
 NO. OF HELIUM ORIFICE PIPES 7
 PIPE IN WHICH THE INTERFACE IS INITIALLY LOCATED 8
 RFLIQ FOR THE OX PIPES = 1.303D-01
 RFGAS FOR THE OX PIPES = 1.827D-01

197
RFLIQ FOR THE HE ORIFICE = 1.367D-01
RFGAS FOR THE HE ORIFICE = 5.283D-01
RFLIQ FOR THE HE VALVE = 1.720D+04
RFGAS FOR THE HE VALVE = 1.827D+03
injector and manifold cd = 5.000D-01
upstream source pressure = 5.16964D+06 PA
initial backflow interface position = 0.000D+00

Pipe geometry:

<table>
<thead>
<tr>
<th>pipe node 1</th>
<th>node 2</th>
<th>area (m²)</th>
<th>length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>8.1073D-05</td>
<td>0.30000</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8.1073D-05</td>
<td>0.30000</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8.1073D-05</td>
<td>0.30000</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8.1073D-05</td>
<td>0.30000</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8.1073D-05</td>
<td>0.30000</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8.1073D-05</td>
<td>0.30000</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8.1073D-05</td>
<td>0.30000</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>2.0268D-03</td>
<td>0.00500</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>2.0268D-03</td>
<td>0.04000</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>2.0268D-03</td>
<td>0.04000</td>
</tr>
</tbody>
</table>

Pipe initial conditions:

<table>
<thead>
<tr>
<th>pipe velocity (m/sec)</th>
<th>liquid/vap int. position (% length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000D-03 1.0000D+00</td>
</tr>
<tr>
<td>2</td>
<td>1.0000D-03 1.0000D+00</td>
</tr>
<tr>
<td>3</td>
<td>1.0000D-03 1.0000D+00</td>
</tr>
<tr>
<td>4</td>
<td>1.0000D-03 1.0000D+00</td>
</tr>
<tr>
<td>5</td>
<td>1.0000D-03 1.0000D+00</td>
</tr>
<tr>
<td>6</td>
<td>1.0000D-03 1.0000D+00</td>
</tr>
<tr>
<td>7</td>
<td>1.0000D-03 1.0000D+00</td>
</tr>
<tr>
<td>8</td>
<td>1.0000D-03 0.0000D+00</td>
</tr>
<tr>
<td>9</td>
<td>1.0000D-03 0.0000D+00</td>
</tr>
<tr>
<td>10</td>
<td>1.0000D-03 0.0000D+00</td>
</tr>
</tbody>
</table>

Initial modal densities:

<table>
<thead>
<tr>
<th>node</th>
<th>density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0739D+01</td>
</tr>
<tr>
<td>2</td>
<td>2.0739D+01</td>
</tr>
<tr>
<td>3</td>
<td>2.0739D+01</td>
</tr>
<tr>
<td>4</td>
<td>2.0739D+01</td>
</tr>
<tr>
<td>5</td>
<td>2.0739D+01</td>
</tr>
<tr>
<td>6</td>
<td>2.0739D+01</td>
</tr>
<tr>
<td>7</td>
<td>2.0739D+01</td>
</tr>
<tr>
<td>8</td>
<td>2.0739D+01</td>
</tr>
<tr>
<td>9</td>
<td>9.9070D+02</td>
</tr>
<tr>
<td>10</td>
<td>9.9070D+02</td>
</tr>
<tr>
<td>11</td>
<td>9.9070D+02</td>
</tr>
</tbody>
</table>

198
*** REACTION RATE DATA FROM NPT ***

FOLLOWING REACTION IGNORED
C3H8 O2 ----> C2H4 H2
REACTANT C3H8 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
C8H18 O2 ----> C2H4 H2
REACTANT C8H18 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
C2H4 O2 ----> CO H2
REACTANT C2H4 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
C6H6 O2 ----> CO H2
REACTANT C6H6 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
FUEL OIL O2 ----> CO H2
REACTANT FUEL NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
H2O(L) ----> H2O
REACTANT H2O(L) NOT FOUND IN SPECIES LIST

REACTION 1 O2 H2 ----> OH OH
DATA COMMENT: PRATT
FWD RATE DATA: BX = 11.903 TEN = 0.000 TACT = 22661.000
CALCULATED REVERSE RATE CONSTANTS
STD DEVIATION = 2.428D+00 CORR COEFF = 9.475D-01
REV RATE DATA : BX2 = 19.489 TEN2 = 0.000 TACT2 = 30793.276

REACTION 2 OH H2 ----> H2O H
DATA COMMENT: PRATT
FWD RATE DATA: BX = 11.439 TEN = 0.000 TACT = 5187.000
CALCULATED REVERSE RATE CONSTANTS
STD DEVIATION = 4.078D-01 CORR COEFF = 9.939D-01
REV RATE DATA : BX2 = 14.133 TEN2 = 0.000 TACT2 = 15784.008

REACTION 3 O2 H ----> OH O
DATA COMMENT: PRATT
FWD RATE DATA: BX = 11.677 TEN = 0.000 TACT = 8712.000
CALCULATED REVERSE RATE CONSTANTS
STD DEVIATION = 1.892D+00 CORR COEFF = 8.664D-01

199
REACTANT H02 NOT FOUND IN SPECIES LIST
<table>
<thead>
<tr>
<th>NODE</th>
<th>DENSITY (KG/M^3)</th>
<th>PRESSURE (PA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0739D+01</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>2</td>
<td>2.0253D+01</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>3</td>
<td>1.9775D+01</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>4</td>
<td>1.9306D+01</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>5</td>
<td>1.8845D+01</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>6</td>
<td>1.8395D+01</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>7</td>
<td>1.7954D+01</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>8</td>
<td>1.7522D+01</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>9</td>
<td>9.9070D+02</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>10</td>
<td>9.9070D+02</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>11</td>
<td>9.9070D+02</td>
<td>1.0000D+00</td>
</tr>
<tr>
<td>12</td>
<td>9.9070D+02</td>
<td>1.0000D+00</td>
</tr>
</tbody>
</table>

NODAL DENSITIES AND PRESSURES:

<table>
<thead>
<tr>
<th>NODE</th>
<th>DENSITY (KG/M^3)</th>
<th>PRESSURE (PA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0739D+01</td>
<td>5.1696D+06</td>
</tr>
<tr>
<td>2</td>
<td>2.0253D+01</td>
<td>5.0484D+06</td>
</tr>
<tr>
<td>3</td>
<td>1.9775D+01</td>
<td>4.9292D+06</td>
</tr>
<tr>
<td>4</td>
<td>1.9306D+01</td>
<td>4.8123D+06</td>
</tr>
<tr>
<td>5</td>
<td>1.8845D+01</td>
<td>4.6976D+06</td>
</tr>
<tr>
<td>6</td>
<td>1.8395D+01</td>
<td>4.5853D+06</td>
</tr>
<tr>
<td>7</td>
<td>1.7954D+01</td>
<td>4.4753D+06</td>
</tr>
<tr>
<td>8</td>
<td>1.7522D+01</td>
<td>4.3677D+06</td>
</tr>
<tr>
<td>9</td>
<td>9.9070D+02</td>
<td>4.2120D+06</td>
</tr>
<tr>
<td>10</td>
<td>9.9070D+02</td>
<td>4.2119D+06</td>
</tr>
<tr>
<td>11</td>
<td>9.9070D+02</td>
<td>4.2119D+06</td>
</tr>
<tr>
<td>12</td>
<td>9.9070D+02</td>
<td>4.2119D+06</td>
</tr>
</tbody>
</table>
***** INTEGRATING ROUTINE CALLED *****

CALL FOR STEP 3 OUT OF 200 STEPS
STEP BEGINS AT TIME = 1.00000D-03 AND ENDS AT TIME = 1.50000D-03

***** CC AND INLET CONDTNS ON RETURN *****
***** FROM THE INTEGRATING SUBROUTINE *****

TIME FOLLOWING INTEGRATION = 1.50000D-03 SEC
FINAL STEP SIZE = 1.75435D-05 SEC
ERROR FLAG, IER = 0

SPECIES NAME S2 (KGMOLE/KG) ISTRM S1 (KGMOLE/KG) STATE
1 HE 1.00944D-18 3 2.49838D-01 G
2 H2 4.82805D-01 2 4.96032D-01 G
3 O2 1.03397D-11 1 3.12500D-02 L
4 H2O 1.48005D-03 0 0.00000D+00 G
5 H 1.00000D-18 0 0.00000D+00 G
6 O 1.00000D-18 0 0.00000D+00 G
7 OH 1.00000D-18 0 0.00000D+00 G

DENSITY OF LIQUID IN THE CC = 5.07032D-03 KG
BACKFLOW INTERFACE POSITION = 0.00000D+00
CC TEMPERATURE = 465.0223 K
CC PRESSURE = 4.21058D+06 PA
CC DENSITY = 2.24873D+00 KG/M**3
AVG. MOL. WT. = 4.84285D-01 KG/KGMOLE
CC VOLUME = 1.30000D-02 M**3
OMV, FMV, PMV, EMV = 1.350D+02 1.615D+03 0.000D+00 1.694D+03 KG/M3/S
UPSTREAM PRESSURE = 5.1696D+06 PA
INJECTOR PRESSURE DROP = 7.4206D+02 PA

PIPE CONDITIONS:

PIPE VELOCITY (M/SEC) LIQUID/VAP INT. POSITION (% LENGTH)
SPECIES NAME S2 (KGMOLE/KG) ISTRM S1 (KGMOLE/KG) STATE
1 HE 1.00027D-18 3 2.49838D-01 G
2 H2 4.90960D-01 2 4.96032D-01 G
3 O2 1.51292D-11 1 3.12500D-02 L
4 H2O 5.67428D-04 0 0.00000D+00 G
5 H 1.00000D-18 0 0.00000D+00 G
6 OH 1.00000D-18 0 0.00000D+00 G

DENSITY OF LIQUID IN THE CC = 1.11943D-03 KG
BACKFLOW INTERFACE POSITION = 0.00000D+00
CC TEMPERATURE = 467.4076 K
CC PRESSURE = 4.28538D+06 PA
CC DENSITY = 2.24344D+00 KG/M**3
AVG. MOL. WT. = 4.91528D-01 KG/KGMOLE
CC VOLUME = 1.30000D-02 M**3
OMV, PMV, EMV, ENV = 7.201D+01 1.615D+03 0.0000D+00 1.698D+03 KG/M3/S
UPSTREAM PRESSURE = 5.1696D+06 PA
INJECTOR PRESSURE DROP = 2.1102D+02 PA

STREAM TEMP (K) MDOT (KG/SEC) SF (KGMOLE/SEC) SH (JOULES/SEC)
1 120.000 9.36176D-01 0.000000D+00 -6.143656D+05
2 160.000 2.10000D+01 8.01282D+02 -2.518590D+09
3 120.000 0.000000D+00 0.000000D+00 0.000000D+00

PIPE CONDITIONS:

PIPE VELOCITY (M/SEC) LIQUID/VAP INT. POSITION (% LENGTH)
1 1.1627D+01 1.00000D+00
2 1.1627D+01 1.00000D+00
3 1.1627D+01 1.00000D+00
4 1.1627D+01 1.00000D+00
5 1.1627D+01 1.00000D+00
6 1.1627D+01 1.00000D+00
7 1.1627D+01 1.00000D+00
8 4.6623D-01 3.3539D-02
9 4.6623D-01 0.00000D+00
10 4.6623D-01 0.00000D+00
11 4.6623D-01 0.00000D+00

NODAL DENSITIES AND PRESSURES:

NODE DENSITY (KG/M**3) PRESSURE (PA)
1 2.0739D+01 5.1696D+06
2 2.0260D+01 5.0501D+06
3 1.9793D+01 4.9339D+06
4 1.9340D+01 4.8210D+06
<table>
<thead>
<tr>
<th>STREAM</th>
<th>TEMP (K)</th>
<th>MDOT (KG/SEC)</th>
<th>SF (KGMOLE/SEC)</th>
<th>SH (JOULES/SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120.000</td>
<td>2.71235D-01</td>
<td>0.000000D+00</td>
<td>-1.779982D+05</td>
</tr>
<tr>
<td>2</td>
<td>160.000</td>
<td>2.10000D+01</td>
<td>8.012821D+02</td>
<td>-2.518590D+09</td>
</tr>
<tr>
<td>3</td>
<td>120.000</td>
<td>0.000000D+00</td>
<td>0.000000D+00</td>
<td>0.000000D+00</td>
</tr>
</tbody>
</table>

PIPE CONDITIONS:

<table>
<thead>
<tr>
<th>PIPE VELOCITY (M/SEC)</th>
<th>LIQUID/VAP INT. POSITION (% LENGTH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3503D+00 1.0000D+00</td>
</tr>
<tr>
<td>2</td>
<td>3.3503D+00 1.0000D+00</td>
</tr>
<tr>
<td>3</td>
<td>3.3503D+00 1.0000D+00</td>
</tr>
<tr>
<td>4</td>
<td>3.3503D+00 1.0000D+00</td>
</tr>
<tr>
<td>5</td>
<td>3.3503D+00 1.0000D+00</td>
</tr>
<tr>
<td>6</td>
<td>3.3503D+00 1.0000D+00</td>
</tr>
<tr>
<td>7</td>
<td>3.3503D+00 1.0000D+00</td>
</tr>
<tr>
<td>8</td>
<td>1.3508D-01 4.6974D-03</td>
</tr>
<tr>
<td>9</td>
<td>1.3508D-01 0.0000D+00</td>
</tr>
<tr>
<td>10</td>
<td>1.3508D-01 0.0000D+00</td>
</tr>
<tr>
<td>11</td>
<td>1.3508D-01 0.0000D+00</td>
</tr>
</tbody>
</table>

NODAL DENSITIES AND PRESSURES:

<table>
<thead>
<tr>
<th>NODE</th>
<th>DENSITY (KG/M**3)</th>
<th>PRESSURE (PA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0739D+01</td>
<td>5.1696D+06</td>
</tr>
<tr>
<td>2</td>
<td>2.0427D+01</td>
<td>5.0918D+06</td>
</tr>
<tr>
<td>3</td>
<td>2.0121D+01</td>
<td>5.0156D+06</td>
</tr>
<tr>
<td>4</td>
<td>1.9822D+01</td>
<td>4.9410D+06</td>
</tr>
<tr>
<td>5</td>
<td>1.9529D+01</td>
<td>4.8681D+06</td>
</tr>
<tr>
<td>6</td>
<td>1.9243D+01</td>
<td>4.7967D+06</td>
</tr>
<tr>
<td>7</td>
<td>1.8962D+01</td>
<td>4.7268D+06</td>
</tr>
<tr>
<td>8</td>
<td>1.8688D+01</td>
<td>4.6583D+06</td>
</tr>
<tr>
<td>9</td>
<td>9.9070D+02</td>
<td>4.5941D+06</td>
</tr>
<tr>
<td>10</td>
<td>9.9070D+02</td>
<td>4.5941D+06</td>
</tr>
<tr>
<td>11</td>
<td>9.9070D+02</td>
<td>4.5941D+06</td>
</tr>
<tr>
<td>12</td>
<td>9.9070D+02</td>
<td>4.5941D+06</td>
</tr>
</tbody>
</table>

***** INTEGRATING ROUTINE CALLED *****

CALL FOR STEP 2 OUT OF 200 STEPS
STEP BEGINS AT TIME = 5.00000D-04 AND ENDS AT TIME = 1.00000D-03

***** CC AND INLET CONDTNS ON RETURN *****
***** FROM THE INTEGRATING SUBROUTINE *****

TIME FOLLOWING INTEGRATION = 1.00000D-03 SEC
FINAL STEP SIZE = 1.02457D-05 SEC
ERROR FLAG, IER = 0

204
CC TEMPERATURE = 550.000 K
CC PRESSURE = 5.1696D+06 PA
CC DENSITY = 2.27907D+00 KG/M**3
AVG. MOL. WT. = 4.96031D-01 KG/KGMOLE
CC VOLUME = 1.30000D-02 M**3

STREAM NAME TEMP (K) MDOT (KG/SEC) SF (KGMOLE/SEC) HS (J/KGMOLE) SH (J/SEC)
1 02 120.00 0.00000D+00 0.00000D+00 -2.73000D+05 0.00000D+00
2 H2 160.00 2.10000D+01 8.01282D+02 -3.14320D+06 -2.51859D+09
3 HE 120.00 0.00000D+00 0.00000D+00 -3.54160D+06 0.00000D+00

***** INTEGRATING ROUTINE CALLED *****

CALL FOR STEP 1 OUT OF 200 STEPS
STEP BEGINS AT TIME = 0.00000D+00 AND ENDS AT TIME = 5.00000D-04

***** CC AND INLET CONDTNS ON RETURN *****
FROM THE INTEGRATING SUBROUTINE *****

TIME FOLLOWING INTEGRATION = 5.00000D-04 SEC
FINAL STEP SIZE = 3.17799D-06 SEC
ERROR FLAG, IER = 0

SPECIES NAME S2 (KGMOLE/KG) ISTRM S1 (KGMOLE/KG) STATE
1 HE 1.00146D-18 3 2.49838D-01 G
2 H2 4.95236D-01 2 4.96032D-01 G
3 O2 2.18638D-11 1 3.12500D-02 L
4 H2O 8.90040D-05 0 0.00000D+00 G
5 H 1.00000D-18 0 0.00000D+00 G
6 O 1.00000D-18 0 0.00000D+00 G
7 OH 1.00000D-18 0 0.00000D+00 G

DENSITY OF LIQUID IN THE CC = 4.84393D-05 KG
BACKFLOW INTERFACE POSITION = 0.00000D+00
CC TEMPERATURE = 493.6106 K
CC PRESSURE = 4.59581D+06 PA
CC DENSITY = 2.26077D+00 KG/M**3
AVG. MOL. WT. = 4.95325D-01 KG/KGMOLE
CC VOLUME = 1.30000D-02 M**3
OMV, FMV, PMV, ENV = 2.086D+01 1.615D+03 0.000D+00 1.681D+03 KG/M3/S
UPSTREAM PRESSURE = 5.1696D+06 PA
INJECTOR PRESSURE DROP = 1.7713D+01 PA
ISIDE ARRAY

<table>
<thead>
<tr>
<th>RXN</th>
<th>ISIDE(K,RXN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 -1 -1 0 0 0 2</td>
</tr>
<tr>
<td>2</td>
<td>0 -1 0 1 1 0 -1</td>
</tr>
<tr>
<td>3</td>
<td>0 0 -1 0 -1 1 1</td>
</tr>
<tr>
<td>4</td>
<td>0 -1 0 0 1 -1 1</td>
</tr>
<tr>
<td>5</td>
<td>0 0 0 -1 0 -1 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 0 0 -2 0 0</td>
</tr>
<tr>
<td>7</td>
<td>0 0 1 0 0 -2 0</td>
</tr>
<tr>
<td>8</td>
<td>0 0 0 0 -1 -1 1</td>
</tr>
<tr>
<td>9</td>
<td>0 0 0 1 -1 0 -1</td>
</tr>
</tbody>
</table>

REACTION RATE DATA IN SI UNITS

<table>
<thead>
<tr>
<th>RXN</th>
<th>MODE</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FWD</td>
<td>11.903</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>19.489</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>FWD</td>
<td>11.439</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>14.133</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>FWD</td>
<td>11.677</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>17.639</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>FWD</td>
<td>9.352</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>10.976</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>FWD</td>
<td>11.095</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>10.025</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>FWD</td>
<td>12.699</td>
<td>-1.150</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>11.955</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>FWD</td>
<td>9.672</td>
<td>-0.278</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>7.667</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>FWD</td>
<td>10.627</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>15.564</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>FWD</td>
<td>10.778</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>REV</td>
<td>16.785</td>
<td>0.000</td>
</tr>
</tbody>
</table>

******** CC AND INLET INITIAL CONDITIONS *********

<table>
<thead>
<tr>
<th>SPECIE</th>
<th>NAME</th>
<th>S2 (KGMOLE/KG)</th>
<th>ISTRM</th>
<th>S1 (KGMOLE/KG)</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HE</td>
<td>1.00000D-18</td>
<td>3</td>
<td>2.69838D-01</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>H2</td>
<td>4.96031D-01</td>
<td>2</td>
<td>4.96032D-01</td>
<td>G</td>
</tr>
<tr>
<td>3</td>
<td>O2</td>
<td>3.12500D-11</td>
<td>1</td>
<td>3.12500D-02</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>H2O</td>
<td>5.55062D-11</td>
<td>0</td>
<td>0.00000D+00</td>
<td>G</td>
</tr>
</tbody>
</table>
"Z" ARRAY OF THERMO PROPERTY POLYNOMIAL COEFFICIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE</td>
<td>2.500000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00</td>
</tr>
<tr>
<td></td>
<td>-7.45375D+02 9.15349D+01 2.500000D+00 0.000000D+00 0.000000D+00</td>
</tr>
<tr>
<td></td>
<td>0.000000D+00 0.000000D+00 -7.45375D+02 9.15349D+01</td>
</tr>
<tr>
<td>H2</td>
<td>3.10019D+00 5.11195D+00 5.26442D+00 -3.49100D-11 3.69483D-15</td>
</tr>
<tr>
<td></td>
<td>-8.77380D+02 -1.96294D+00 3.05744D+00 2.67652D-03 -5.80991D-06</td>
</tr>
<tr>
<td></td>
<td>5.52103D-09 -1.81227D-12 -9.88904D+00 9.29970D+00</td>
</tr>
<tr>
<td>O2</td>
<td>3.62195D+00 7.36183D-04 -1.96522D-07 3.62016D-11 -2.89456D-15</td>
</tr>
<tr>
<td></td>
<td>-1.20198D+03 3.61509D+00 3.62560D+00 -1.87822D-03 7.05545D-06</td>
</tr>
<tr>
<td></td>
<td>-6.76351D-09 2.15560D-12 -1.04752D+03 4.30528D+00</td>
</tr>
<tr>
<td>H2O</td>
<td>2.71676D+00 2.94514D-03 -8.02244D-07 1.02267D-10 -4.82721D-15</td>
</tr>
<tr>
<td></td>
<td>-2.99058D+04 6.63057D+00 4.07013D+00 -1.10845D+03 4.15212D-06</td>
</tr>
<tr>
<td></td>
<td>-2.96374D-09 8.07021D-13 -3.02797D+04 -3.22700D+01</td>
</tr>
<tr>
<td>H</td>
<td>2.500000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00</td>
</tr>
<tr>
<td></td>
<td>2.54744D+04 -4.59898D-01 2.500000D+00 0.000000D+00 0.000000D+00</td>
</tr>
<tr>
<td></td>
<td>0.000000D+00 0.000000D+00 2.54744D+04 -4.59898D-01</td>
</tr>
<tr>
<td>O</td>
<td>2.53430D+00 -1.24782D-05 -1.25627D-08 6.90299D+12 -6.37971D-16</td>
</tr>
<tr>
<td></td>
<td>2.92311D+04 4.96286D+00 3.03094D+00 -2.25259D+03 3.98245D-06</td>
</tr>
<tr>
<td></td>
<td>-3.26049D-09 1.01520D-12 2.91365D+04 2.60993D+00</td>
</tr>
<tr>
<td>OH</td>
<td>2.91312D+00 9.54182D-04 -1.90843D-07 1.27308D-11 2.48039D-16</td>
</tr>
<tr>
<td></td>
<td>3.96671D+03 5.42897D+00 3.83655D+00 -1.07020D+03 9.48498D-07</td>
</tr>
<tr>
<td></td>
<td>2.08436D-10 -2.33843D-13 3.67158D+03 4.98053D-01</td>
</tr>
</tbody>
</table>

REACTION RATE INDICES AND DATA

<table>
<thead>
<tr>
<th>REACTION INDICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXN (J)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

207
CH30 M \rightarrow CH20 H M
REACTANT CH30 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH20 M \rightarrow CHO H M
REACTANT CH20 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH20 O \rightarrow CHO OH
REACTANT CH20 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH20 H \rightarrow CHO H2
REACTANT CH20 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH20 OH \rightarrow CHO H2O
REACTANT CH20 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CHO M \rightarrow CO H M
REACTANT CHO NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CHO H \rightarrow CO H2
REACTANT CHO NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CHO OH \rightarrow CO H2O
REACTANT CHO NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CHO O \rightarrow CO OH
REACTANT CHO NOT FOUND IN SPECIES LIST

***** SPECIES PROPERTIES *****

MAJOR CONSTITUENTS:
INDEX NAME MOLEC. WT.
1 HE 4.0026D+00
2 H2 2.0160D+00
3 O2 3.2000D+01
4 H2O 1.8016D+01

RATE DETERMINING RADICALS
INDEX NAME MOLEC. WT.
5 H 1.0080D+00
6 O 1.6000D+01
7 OH 1.7008D+01
FOLLOWING REACTION IGNORED
CO OH ----> H CO2
REACTANT CO NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CO O M ----> CO2 M
REACTANT CO NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CO2 O ----> CO O2
REACTANT CO2 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH4 O ----> CH3 OH
REACTANT CH4 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH4 H ----> CH3 H2
REACTANT CH4 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH4 OH ----> CH3 H2O
REACTANT CH4 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH3 CHO ----> CH4 CO
REACTANT CH3 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH3 CH2O ----> CH3 CH4
REACTANT CH3 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH3 CH2O ----> CH2O CH4
REACTANT CH3 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH3 O ----> CH2O H
REACTANT CH3 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH3 OH ----> CH2O H2
REACTANT CH3 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH3 H M ----> CH4 M
REACTANT CH3 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
CH3 O2 ----> CH3O O
REACTANT CH3 NOT FOUND IN SPECIES LIST

FOLLOWING REACTION IGNORED
OUTPUT FROM TSTR.PLT1

<table>
<thead>
<tr>
<th>TIME (MSEC)</th>
<th>MOLE NUMBER (KGMOL/KG @ 1.0D+06)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.00D-15 4.96D+02 3.13D-08 5.55D-08</td>
</tr>
<tr>
<td>0.500</td>
<td>1.00D-15 4.95D+02 2.19D-08 8.90D-02</td>
</tr>
<tr>
<td>1.000</td>
<td>1.00D-15 4.91D+02 1.51D-08 5.67D-01</td>
</tr>
<tr>
<td>1.500</td>
<td>1.01D-15 4.83D+02 1.03D-08 1.48D+00</td>
</tr>
<tr>
<td>2.000</td>
<td>1.00D-15 4.72D+02 7.01D-09 2.65D+00</td>
</tr>
<tr>
<td>2.500</td>
<td>1.01D-15 4.61D+02 4.75D-09 3.88D+00</td>
</tr>
<tr>
<td>3.000</td>
<td>1.01D-15 4.52D+02 3.24D-09 4.98D+00</td>
</tr>
<tr>
<td>3.500</td>
<td>1.01D-15 4.44D+02 2.23D-09 5.86D+00</td>
</tr>
<tr>
<td>4.000</td>
<td>1.02D-15 4.38D+02 1.56D-09 6.47D+00</td>
</tr>
<tr>
<td>4.500</td>
<td>1.01D-15 4.36D+02 1.11D-09 6.77D+00</td>
</tr>
<tr>
<td>5.000</td>
<td>1.01D-15 4.35D+02 7.98D-10 6.78D+00</td>
</tr>
<tr>
<td>5.500</td>
<td>1.00D-15 4.38D+02 5.83D-10 6.52D+00</td>
</tr>
<tr>
<td>6.000</td>
<td>1.01D-15 4.42D+02 4.31D-10 6.03D+00</td>
</tr>
<tr>
<td>6.500</td>
<td>1.00D-15 4.48D+02 3.21D-10 5.41D+00</td>
</tr>
<tr>
<td>7.000</td>
<td>1.00D-15 4.54D+02 2.40D-10 4.73D+00</td>
</tr>
<tr>
<td>7.500</td>
<td>1.00D-15 4.59D+02 1.79D-10 4.11D+00</td>
</tr>
<tr>
<td>8.000</td>
<td>1.00D-15 4.64D+02 1.33D-10 3.63D+00</td>
</tr>
<tr>
<td>8.500</td>
<td>1.00D-15 4.66D+02 9.83D-11 3.34D+00</td>
</tr>
<tr>
<td>9.000</td>
<td>1.01D-15 4.67D+02 7.21D-11 3.27D+00</td>
</tr>
<tr>
<td>9.500</td>
<td>1.00D-15 4.66D+02 5.25D-11 3.41D+00</td>
</tr>
<tr>
<td>10.000</td>
<td>1.01D-15 4.63D+02 3.80D-11 3.69D+00</td>
</tr>
<tr>
<td>10.500</td>
<td>1.01D-15 4.60D+02 2.74D-11 4.05D+00</td>
</tr>
<tr>
<td>11.000</td>
<td>1.01D-15 4.57D+02 1.98D-11 4.42D+00</td>
</tr>
<tr>
<td>11.500</td>
<td>1.01D-15 4.54D+02 1.43D-11 4.74D+00</td>
</tr>
<tr>
<td>12.000</td>
<td>1.00D-15 4.52D+02 1.03D-11 4.98D+00</td>
</tr>
<tr>
<td>12.500</td>
<td>1.01D-15 4.50D+02 7.53D-12 5.10D+00</td>
</tr>
<tr>
<td>13.000</td>
<td>1.01D-15 4.50D+02 5.50D-12 5.11D+00</td>
</tr>
<tr>
<td>13.500</td>
<td>1.00D-15 4.51D+02 4.03D-12 5.01D+00</td>
</tr>
<tr>
<td>14.000</td>
<td>1.00D-15 4.53D+02 2.97D-12 4.84D+00</td>
</tr>
<tr>
<td>14.500</td>
<td>1.01D-15 4.55D+02 2.19D-12 4.62D+00</td>
</tr>
<tr>
<td>15.000</td>
<td>1.00D-15 4.57D+02 1.62D-12 4.40D+00</td>
</tr>
<tr>
<td>15.500</td>
<td>1.01D-15 4.58D+02 1.19D-12 4.20D+00</td>
</tr>
<tr>
<td>16.000</td>
<td>1.00D-15 4.60D+02 8.76D-13 4.07D+00</td>
</tr>
<tr>
<td>16.500</td>
<td>1.00D-15 4.60D+02 6.43D-13 4.00D+00</td>
</tr>
<tr>
<td>17.000</td>
<td>1.01D-15 4.60D+02 4.71D-13 4.01D+00</td>
</tr>
<tr>
<td>17.500</td>
<td>1.00D-15 4.60D+02 3.44D-13 4.08D+00</td>
</tr>
<tr>
<td>18.000</td>
<td>1.01D-15 4.59D+02 2.50D-13 4.19D+00</td>
</tr>
<tr>
<td>18.500</td>
<td>1.00D-15 4.57D+02 1.82D-13 4.32D+00</td>
</tr>
<tr>
<td>19.000</td>
<td>1.00D-15 4.56D+02 1.33D-13 4.45D+00</td>
</tr>
<tr>
<td>19.500</td>
<td>1.00D-15 4.55D+02 9.67D-14 4.56D+00</td>
</tr>
<tr>
<td>20.000</td>
<td>1.00D-15 4.55D+02 7.06D-14 4.63D+00</td>
</tr>
<tr>
<td>20.500</td>
<td>1.01D-15 4.54D+02 5.16D-14 4.66D+00</td>
</tr>
<tr>
<td>21.000</td>
<td>1.01D-15 4.54D+02 3.77D-14 4.65D+00</td>
</tr>
<tr>
<td>21.500</td>
<td>1.01D-15 4.55D+02 2.77D-14 4.60D+00</td>
</tr>
<tr>
<td>22.000</td>
<td>1.01D-15 4.56D+02 2.03D-14 4.53D+00</td>
</tr>
<tr>
<td>22.500</td>
<td>1.01D-15 4.56D+02 1.49D-14 4.45D+00</td>
</tr>
<tr>
<td>Time (s)</td>
<td>Value 1</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>23.000</td>
<td>1.00D-15</td>
</tr>
<tr>
<td>23.500</td>
<td>1.01D-15</td>
</tr>
<tr>
<td>24.000</td>
<td>1.00D-15</td>
</tr>
<tr>
<td>24.500</td>
<td>1.00D-15</td>
</tr>
<tr>
<td>25.000</td>
<td>1.01D-15</td>
</tr>
</tbody>
</table>
OUTPUT FROM TSTR.PLT2

<table>
<thead>
<tr>
<th>TIME (MSEC)</th>
<th>TEMPERATURE (K)</th>
<th>PRESSURE (MPA)</th>
<th>OX MDOT (KG/S)</th>
<th>LIQ DEN (KG/M3)</th>
<th>DROP DIAM (MICRONS)</th>
<th>VAP RATE (KG/M3 S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>550.00</td>
<td>5.170</td>
<td>0.0000</td>
<td>7.69D-14</td>
<td>0.500</td>
<td>0.00</td>
</tr>
<tr>
<td>0.500</td>
<td>493.61</td>
<td>4.596</td>
<td>0.2712</td>
<td>4.84D-05</td>
<td>1.914</td>
<td>20.35</td>
</tr>
<tr>
<td>1.000</td>
<td>467.41</td>
<td>4.285</td>
<td>0.9362</td>
<td>1.12D-03</td>
<td>6.382</td>
<td>65.55</td>
</tr>
<tr>
<td>1.500</td>
<td>465.02</td>
<td>4.211</td>
<td>1.7556</td>
<td>5.07D-03</td>
<td>11.863</td>
<td>119.96</td>
</tr>
<tr>
<td>2.000</td>
<td>477.70</td>
<td>4.308</td>
<td>2.4446</td>
<td>1.15D-02</td>
<td>16.710</td>
<td>165.78</td>
</tr>
<tr>
<td>2.500</td>
<td>497.47</td>
<td>4.515</td>
<td>2.9397</td>
<td>1.79D-02</td>
<td>20.582</td>
<td>202.48</td>
</tr>
<tr>
<td>3.000</td>
<td>518.24</td>
<td>4.780</td>
<td>3.1864</td>
<td>2.19D-02</td>
<td>22.964</td>
<td>225.56</td>
</tr>
<tr>
<td>3.500</td>
<td>535.86</td>
<td>5.063</td>
<td>3.2084</td>
<td>2.26D-02</td>
<td>23.795</td>
<td>234.25</td>
</tr>
<tr>
<td>4.000</td>
<td>547.72</td>
<td>5.328</td>
<td>3.0371</td>
<td>2.02D-02</td>
<td>23.114</td>
<td>228.56</td>
</tr>
<tr>
<td>4.500</td>
<td>552.48</td>
<td>5.541</td>
<td>2.7347</td>
<td>1.59D-02</td>
<td>21.207</td>
<td>210.73</td>
</tr>
<tr>
<td>5.000</td>
<td>549.80</td>
<td>5.679</td>
<td>2.3266</td>
<td>1.09D-02</td>
<td>18.262</td>
<td>182.44</td>
</tr>
<tr>
<td>5.500</td>
<td>540.22</td>
<td>5.726</td>
<td>1.8799</td>
<td>6.44D-03</td>
<td>14.813</td>
<td>148.46</td>
</tr>
<tr>
<td>6.000</td>
<td>525.28</td>
<td>5.679</td>
<td>1.4397</td>
<td>3.53D-03</td>
<td>11.296</td>
<td>113.41</td>
</tr>
<tr>
<td>6.500</td>
<td>507.36</td>
<td>5.555</td>
<td>1.0855</td>
<td>1.68D-03</td>
<td>8.423</td>
<td>84.80</td>
</tr>
<tr>
<td>7.000</td>
<td>489.16</td>
<td>5.382</td>
<td>0.8521</td>
<td>9.15D-04</td>
<td>6.508</td>
<td>65.86</td>
</tr>
<tr>
<td>7.500</td>
<td>473.24</td>
<td>5.196</td>
<td>0.7644</td>
<td>6.99D-04</td>
<td>5.736</td>
<td>58.41</td>
</tr>
<tr>
<td>8.000</td>
<td>461.60</td>
<td>5.028</td>
<td>0.8243</td>
<td>8.46D-04</td>
<td>6.086</td>
<td>62.20</td>
</tr>
<tr>
<td>8.500</td>
<td>455.41</td>
<td>4.905</td>
<td>1.0086</td>
<td>1.40D-03</td>
<td>7.354</td>
<td>75.07</td>
</tr>
<tr>
<td>9.000</td>
<td>454.85</td>
<td>4.838</td>
<td>1.2706</td>
<td>2.47D-03</td>
<td>9.202</td>
<td>93.38</td>
</tr>
<tr>
<td>9.500</td>
<td>459.14</td>
<td>4.830</td>
<td>1.5540</td>
<td>4.06D-03</td>
<td>11.246</td>
<td>113.27</td>
</tr>
<tr>
<td>10.000</td>
<td>466.86</td>
<td>4.871</td>
<td>1.8115</td>
<td>5.93D-03</td>
<td>13.166</td>
<td>131.76</td>
</tr>
<tr>
<td>10.500</td>
<td>476.31</td>
<td>4.949</td>
<td>2.0109</td>
<td>7.62D-03</td>
<td>16.734</td>
<td>146.86</td>
</tr>
<tr>
<td>11.000</td>
<td>485.81</td>
<td>5.047</td>
<td>2.1227</td>
<td>8.72D-03</td>
<td>15.707</td>
<td>156.37</td>
</tr>
<tr>
<td>11.500</td>
<td>493.91</td>
<td>5.151</td>
<td>2.1455</td>
<td>8.98D-03</td>
<td>16.039</td>
<td>159.79</td>
</tr>
<tr>
<td>12.000</td>
<td>499.56</td>
<td>5.243</td>
<td>2.0899</td>
<td>8.44D-03</td>
<td>15.758</td>
<td>157.29</td>
</tr>
<tr>
<td>12.500</td>
<td>502.19</td>
<td>5.311</td>
<td>1.9692</td>
<td>7.35D-03</td>
<td>16.947</td>
<td>149.53</td>
</tr>
<tr>
<td>13.000</td>
<td>501.76</td>
<td>5.369</td>
<td>1.8173</td>
<td>6.04D-03</td>
<td>13.840</td>
<td>138.74</td>
</tr>
<tr>
<td>13.500</td>
<td>498.68</td>
<td>5.352</td>
<td>1.6559</td>
<td>4.80D-03</td>
<td>12.615</td>
<td>126.72</td>
</tr>
<tr>
<td>14.000</td>
<td>493.71</td>
<td>5.325</td>
<td>1.5095</td>
<td>3.82D-03</td>
<td>11.470</td>
<td>115.43</td>
</tr>
<tr>
<td>14.500</td>
<td>487.85</td>
<td>5.275</td>
<td>1.3982</td>
<td>3.17D-03</td>
<td>10.574</td>
<td>106.59</td>
</tr>
<tr>
<td>15.000</td>
<td>482.09</td>
<td>5.213</td>
<td>1.3378</td>
<td>2.83D-03</td>
<td>10.058</td>
<td>101.52</td>
</tr>
<tr>
<td>15.500</td>
<td>477.31</td>
<td>5.150</td>
<td>1.3287</td>
<td>2.79D-03</td>
<td>9.929</td>
<td>100.29</td>
</tr>
<tr>
<td>16.000</td>
<td>474.12</td>
<td>5.096</td>
<td>1.3684</td>
<td>2.99D-03</td>
<td>10.172</td>
<td>102.73</td>
</tr>
<tr>
<td>16.500</td>
<td>472.83</td>
<td>5.059</td>
<td>1.4435</td>
<td>3.42D-03</td>
<td>10.692</td>
<td>107.84</td>
</tr>
<tr>
<td>17.000</td>
<td>473.38</td>
<td>5.042</td>
<td>1.5411</td>
<td>4.00D-03</td>
<td>11.395</td>
<td>114.72</td>
</tr>
<tr>
<td>17.500</td>
<td>475.46</td>
<td>5.065</td>
<td>1.6382</td>
<td>4.66D-03</td>
<td>12.117</td>
<td>121.76</td>
</tr>
<tr>
<td>18.000</td>
<td>478.54</td>
<td>5.065</td>
<td>1.7237</td>
<td>5.27D-03</td>
<td>12.774</td>
<td>128.15</td>
</tr>
<tr>
<td>18.500</td>
<td>482.02</td>
<td>5.096</td>
<td>1.7833</td>
<td>5.73D-03</td>
<td>13.257</td>
<td>132.84</td>
</tr>
<tr>
<td>19.000</td>
<td>485.32</td>
<td>5.133</td>
<td>1.8125</td>
<td>5.97D-03</td>
<td>13.522</td>
<td>135.46</td>
</tr>
<tr>
<td>19.500</td>
<td>487.95</td>
<td>5.169</td>
<td>1.8108</td>
<td>5.95D-03</td>
<td>13.556</td>
<td>135.82</td>
</tr>
<tr>
<td>20.000</td>
<td>489.61</td>
<td>5.199</td>
<td>1.7825</td>
<td>5.73D-03</td>
<td>13.383</td>
<td>134.17</td>
</tr>
<tr>
<td>20.500</td>
<td>490.15</td>
<td>5.219</td>
<td>1.7334</td>
<td>5.37D-03</td>
<td>13.041</td>
<td>130.83</td>
</tr>
<tr>
<td>21.000</td>
<td>489.64</td>
<td>5.227</td>
<td>1.6764</td>
<td>4.94D-03</td>
<td>12.621</td>
<td>126.75</td>
</tr>
<tr>
<td>21.500</td>
<td>488.27</td>
<td>5.224</td>
<td>1.6207</td>
<td>4.54D-03</td>
<td>12.197</td>
<td>122.60</td>
</tr>
<tr>
<td>Value</td>
<td>Column 1</td>
<td>Column 2</td>
<td>Column 3</td>
<td>Column 4</td>
<td>Column 5</td>
<td>Column 6</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>22.000</td>
<td>486.36</td>
<td>5.211</td>
<td>1.5724</td>
<td>4.22E-03</td>
<td>11.819</td>
<td>118.88</td>
</tr>
<tr>
<td>22.500</td>
<td>484.28</td>
<td>5.191</td>
<td>1.5397</td>
<td>4.01E-03</td>
<td>11.551</td>
<td>116.24</td>
</tr>
<tr>
<td>23.000</td>
<td>482.36</td>
<td>5.169</td>
<td>1.5259</td>
<td>3.92E-03</td>
<td>11.423</td>
<td>114.99</td>
</tr>
<tr>
<td>23.500</td>
<td>480.88</td>
<td>5.148</td>
<td>1.5302</td>
<td>3.94E-03</td>
<td>11.432</td>
<td>115.07</td>
</tr>
<tr>
<td>24.000</td>
<td>480.02</td>
<td>5.131</td>
<td>1.5495</td>
<td>4.07E-03</td>
<td>11.558</td>
<td>116.31</td>
</tr>
<tr>
<td>24.500</td>
<td>479.83</td>
<td>5.120</td>
<td>1.5800</td>
<td>4.27E-03</td>
<td>11.773</td>
<td>118.41</td>
</tr>
<tr>
<td>25.000</td>
<td>480.25</td>
<td>5.117</td>
<td>1.6153</td>
<td>4.50E-03</td>
<td>12.032</td>
<td>120.95</td>
</tr>
</tbody>
</table>
VITA

Timothy A. Bartrand was born in [Redacted] on [Redacted]. In June, 1979, he received a diploma from Rogers High School, Wyoming, Michigan and in August, 1979, began studies at the University of Notre Dame, Notre Dame, Indiana. He received a Bachelor of Science degree in Aerospace Engineering from Notre Dame in May, 1983.

In June, 1983, Mr. Bartrand joined the United States Peace Corps and, after an intensive language, technical and cross cultural training, taught secondary school Mathematics and Physics in Bachuo Akagbe, a rural village in the Southwest Province of Cameroon.

After completing his Peace Corps service, Mr. Bartrand began study toward a Master of Science degree in Mechanical Engineering at the University of Tennessee, Knoxville. This degree will be awarded in December, 1987.

The author will work toward a Ph.D. in Mechanical Engineering at Purdue University, beginning in August, 1987.