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1. INTRODUCTION

Advanced composite materials, especially graphite/epoxy, are being

applied to airplane structures in order to improve performance and "save

weight. An important consideration in composite design is the residual

strength of a structure containing holes, delaminations or interlaminar damage

when subjected to compressive loads. While elastic behavior of composites has

been studied extensively in recent years, the viscoelastic response of these

materials is not well understood. Recent studies by several investigators

have revealed the importance of viscoelastic effects in polymer-based

composites [1-4]. The viscoelastic effect is particularly significant at

elevated temperature/moisture conditions since the matrix material is strongly

affected by the environment.

The solution of viscoelastic problems in composites has been limited to

special cases which can be solved by classical lamination theory [2-4]. In

this report, a finite element procedure is presented for calculating

time-dependent stresses and strains in composite structures with general

configurations and complicated boundary conditions. Using this procedure the

in-plane and interlaminar stress distributions and histories in notched and

unnotched composites have been obtained for mechanical and thermal loads.

Both two-dimensional and three-dimensional viscoelastic problems are analyzed.

The effects of layup orientation and load spectrum on creep response and

stress relaxation have also been studied.



2. CONSTITUTIVE EQUATIONS FOR ANISOTROPIC VISCOELASTIC MATERIALS

Consider a linear anisotropic viscoelastic material subjected to both

mechanical and thermal loads. Using the contracted notation for the stresses

and strains, the constitutive relations may be written in the following

integral form [5]:

= / C.-(T,t-T) -«i dT (1)
-CD «

with e, = e.- e.*
J J J

In the above, a. and e. are the stress and the total strain components along
' J

the principal material directions (123 axes). C. . are the relaxation modul i ,

T is temperature and t is time, e.* is the thermal strain component in the
J

stress-free state and can be expressed as a function of the coefficient of

thermal expansion o and the stress-free temperature T* by

e * = /T a (T) dT (2)
J y* J

In this study the cy is assumed to be independent of time and temperature,

that is, e.*= «. AT with AT = T - T*.
J J

The basic viscoelastic properties C. . can be determined from the

experimental characterization of a unidirectional composite at various

temperatures over a long period of time. However, this technique is quite

time consuming and an alternate technique based on the time/temperature

superposition is frequently used to minimize the test time required for

polymer based composites. The alternate technique consists of testing a

series of specimens at higher temperatures. The test results are plotted and



the resulting curves are then shifted horizontally (and sometimes also

vertically) with respect to a reference temperature to obtain the master

relaxation curves for the C. . components. The amount the curves are shifted

is termed the shift factor <j»-jj. Materials whose viscoelastic properties can

be characterized using this procedure are referred to as thermorheol ogically

simple materials. For this special class of materials the relaxation

functions C.. in the principal material directions may be represented in the
' J

following form

Cij(T,t) = Cij(T0, «ij) (3)

where T0 is the referen.ee temperature for the master curves and
 ?ij is the

reduced time. The reduced time is related to the shift factor <!>ij(T) by

?ij(t) = / +1J (T(s)) ds (4)
o

As in the elastic case the relaxation functions TT-jj along the load

directions xyz (Fig. 1) can be obtained from the C-jj of the principal material

directions (123) by the use of tensor transformations. With the transformed TJ-jj,

the viscoelastic constitutive equation for an anisotropic material along the xyz

coordinates becomes

where C.:(T) = / <b..(T(s)) ds (6)
1 J n ' J



3. VARIATIONAL THEOREM FOR LINEAR THERMO-VISCOELASTICITY

A variational theorem for linear viscoelastic materials is given by

Christensen [6] and is extended here to include nonisothermal effects. For an

anisotropic material the functional T can be defined as

S=t T=t-S , _ SE^T) SeJs) . 3e.(t) 3e.(s)

* = Vs_ „ 'T_ „ {? Cij^^-5-1) TT ir - VT't-s-O — JT } dtdsdv

(7 )

- / / ~ T.(t-s) -|i(s) ds dA
Sa s = -- 1 ds

where V is the volume domain, u-j is the displacement, and SCT is the portion of

boundary where the traction T-j is prescribed.

Taking the first variation of TT and letting 6ir = 0 along with the

commutative relations of Stieltjes convolution yields

6, = ;s-t { / ai(t-s) iifî I dv - / Ti(t-s) -î Ua dA } ds = o (8)
s=-» V ds Sa

 ds

The solution to the quasi-static thermo-viscoelastic boundary value problem is

found by extremizing the functional ir [6,7]. This variational method will be

used in the following finite element formulation.



4. FINITE ELEMENT FORMULATION

Consider a symmetric laminate with arbitrary ply orientations subjected

to both mechanical and thermal loads. It is assumed that the prescribed

temperature is uniform throughout the laminate at any time instant and that

the applied surface traction is separable function of position and time.

These assumptions allow the displacement solutions to be expressed as the

product of two separate functions, one involving only spatial coordinates and

the other involving only spatial coordinates and the other involving the time

variable.

In the finite element development, 4-node quadrilateral 2-D elements and

8-node 3-D solid elements are considered. Using an isoparametric formulation

the displacement fields within an element are interpolated as

{ u } = [ N ] { q } (9)

where { q } is a nodal displacement vector whose components are a function of

time only. The strains {E} can be obtained by the differentiation of the

displacement field in Eq. (9) and are expressed as

I e } = E B ] { q } (10)

Use of Eqs. (9) and (10) and the variational theorem discussed in Eq. (8)

leads to the following equilibrium equation for an element

' 'dt dfl + /„ N, T, /+ ^;Fcr km k( l>

where fl is the volume of the element.



Note that the first term on the right hand side of Eq. (11) is the force

vector due to thermal loading and the second term is the reactive force

vector. When Eq. (11) is assembled the reactive force vector vanishes

everywhere except on the boundary where the traction is prescribed.

Before proceeding further, the following abbreviations for C-jj of a

unidirectional ply are defined as

cl = GH, C2 = Ci2, GS = Ci3, €4 = C22, ^ = C23,
(12)

C6 = C33» C7 = C44» C8 = C55, Cg =

These nine relaxation functions are expanded in terms of exponential

series so that the integral equation (11) may be easily calculated [3,7]. The

exponential series is

NT
Ci(t) = Cio + I Cia) exp (-t/A1u) (13)

u=l

where A-ju is the relaxation time obtained from the master curve. The TTij with

respect to the xyz axes can be obtained with the use of tensor transformation.

The results are

îj(t) - I nijr CP(t) (14)
r=l

where ^-jp is the component of the transformation coefficient matrix for each

layer. Note that ^^r is symmetric with respect to indices i and j. The full

expressions for nijr are given in Appendix A.

From Eq. (11) the equation for the element stiffness matrix kmn of an

element is



kmn (t-f) - /fl B1m C^ (T. t - T) Bjn dn

9 NT
= I ( kmnr.o + X kmnr,<u exp [-(cr - Cp)/A rJ } (15)
r=l u»=l

where kmnr>a) is

kmnr,a> = Cru) /fl B1m ri^-p Bjn dn (16)

Similar to the elastic case, the element stiffness matrix and force vector are

assembled over the whole domain to yield the following global equation for the

displacement un(t):

Kmn U) un(0) + / Kmn (c - O
 T dr = Ft) + FU) (17)

0 OT

where
9 NT

KmnU - ?') = |x { Kmnr.o "̂ Jj Kmnr.oi exp[-(cr - cr')/APU] } (18)

and m, n = 1, 2, 3 ..... NOT, NOT = total number of degrees of freedom.

In the above, Kmnr.u is associated with the global stiffness matrix,

Fm
t(t) is the component of the global residual force vector due to thermal

load and Fm
r(t) is the component of the global force vector due to the

prescribed tractions.

A direct integration of Eq. (17) requires enormous computer storage space

for the stiffness matrices and the displacement vectors of previous times and

is not feasible in most problems of practical interest. To overcome the

storage limitations and reduce computing time, a numerical scheme similar to

that employed by Taylor et al . [7] for an isotropic material is used. Eq.

(17) can then be replaced by a summation of the integrations over a series of

time intervals At. Within each subinterval of time the dependent variables

un(t) may be approximated by a linear variation. That is,

7



a , a j . f o r t j . j . t . t j (19)

where Aun(tj) = un(tj) - un(tj_i). (20)

Using the above approximation for the derivatives of un(t), Eq. (17) at

t = tp becomes

P ti 9 ' NT
If I (Kmnr,o + I Kmnr.« exP C-(c r,p - ^/VcJ} dt

0=1 t.i r=l K

(21)

9 NT
= Fmt(tp) + Fm

r(tp) - I {Kmnr,o
 + I Kmnr.u exp(-?P p/X r u)} un(0)

r=l u=l

where ? f j p = ?
r(tp).

Finally Eq. (21) leads to a set of .algebraic equations

9 NT
I {Kmnr.o + I Kmnr>(1) h ra )(Atp)} Aun(tp) = Fmt(tp) + Fmr(tp)

r=l <a=l
(22)

9 9 NT
- I Kmnr,o un(tp-l) - I I 9mr,u>(tp)

r=l r=l u=l

where

i - ?'r)/
xr<J dT (23)

j£U exp(-cr>p/Xru) un(0)

(24)

,u exp[-(?r,p -.
J -^

If the temperature is constant within the time interval Atj, hrw(Atj) can

be evaluated exactly as follows



Watj) = Void - exp(-AcP f . j /x r u ) ] /Ac r j (25)

where A?rJ = ?rj - ^^.^ (26)

If the temperature is not constant during Atj, the shift factor

corresponding to the specific temperature variation within the time interval

can be used to obtain the reduced time from Eq. (4), from which h ra)(Atj) can

be determined numerically.

Using Eq. (24), a general recursive expression can be derived for p > 1.

The recursive formula is

9mr,oj(tp) = exp(-Ac r>p /X r o j)[gmr ja )(tp_i) + Kmnrja, h ru(Atp_i) Aun( tp_i) ] (27)

with

a>(t0) = °» WAt0) = 1, and Aun(t0) = un(0).

The residual thermal force vector can be updated using a numerical

algorithm similar to that used for the stiffness matrix. The element residual

thermal force vector represented by the first term on the right-hand side of Eq.

(11) is expressed as

t 9 NT
fmt(t) = /r / Bim I n1jr (Cro + I Cru) expC-Up - 5f:) /A r u3} a

"^ r=l aj=l J

9 NT
exp[-(cr - ?p)/Xra)] -dT (28)

r=l -00

where

fmrto = /fl Bim K'jr C ra> ^j) d« (29)

The "ctj are the coefficients of thermal expansion along the xyz axes.

These force vectors can be assembled to obtain the global residual thermal

force vector Fm
t(t) in Eq. (21).



For the non-isothermal case, the solution procedure is to descretize

temperature histories so that the temperature change occurs only in elastic

time step A-A1 (At = 0) with the temperature remaining constant during the

subsequent viscoelastic time step A'-B (See Fig. 2). Within the time step

A-A1, the reduced time is not changed and hrtl)(Atj) = 1. During the

viscoelastic time step A'-B, the difference in the reduced time A?r(tj) is

determined from the time difference Atj multiplied by the corresponding shift

factor. Eq. (25) is then used to calculate hra)(Atj).

After Eq. (22) is solved for Aun, the nodal displacements at current time

tp are obtained from the relation un(tp) = un(tp_i) + Aun(tp). Once the

displacements are found, the strain field can be determined. Finally, the

viscoelastic constitutive relations in Eq. (5) are used to calculate the

stresses.

It is noted that the above formulation is valid for general 3-D

viscoelastic problems. In the special case of a 2-D analysis, the "C-jj matrix

of each layer is reduced toTJ-jj and is averaged through the laminate thickness

to obtain the extensional stiffness matrix A-JJ. Also note that the

approximation of the dependent variables un(t) by a linear Lagrangian

interpolation function may cause significant error accumulations since the

solution at the current time is affected by the previous solutions. Such

error is expected to grow as the number of solution iterations increases. In

order to minimize the error accumulation, higher order interpolation functions

are needed. However, such a formulation becomes extremely complex and

cumbersome since more than one set of previous solutions are required to

obtain the current solutions.

10



5. NUMERICAL RESULTS FOR THE TIME-DEPENDENT RESPONSE

Numerical results on time-dependent stress/strain fields are obtained for

graphite/epoxy composites using the formulation derived in the previous

sections. Elastic material properties used in the analysis are those typical

of graphite/epoxy composites as shown in Table 1. With these engineering

material constants, the elastic stiffness matrix [C-jj(O)] can be obtained.

Viscoelastic relaxation functions C-jj(t) are then generated by multiplying the

elastic stiffness C-jj(O) by specific time varying functions. In this study,

the C is assumed to be independent of time and temperature while other

relaxation functions are assumed to have the same time-varying function f(t).

The function f(t) is taken from Flaggs and Grossman's experimental curve

[3,8] and is expressed in terms of an exponential series containing 11 terms

(See Table 2). The shift factors corresponding to various temperatures as

given in [8] are the same for all C-jj(t) master curves. The stress free

temperature for the graphite/epoxy laminate is assumed to be 350°F. The shift

factors at various temperatures are shown in Table 3.

5.1 Unnotched Laminates

The first analysis is to verify the accuracy of the present approach by

comparing solutions with the incremental classical lamination theory (CLT)

[2]. The case studied is a (0/45/90/-45)s quasi-isotropic laminate (1 in.

wide by 2 in. long) subjected to thermal loads. The mesh pattern used in the

finite element solution consists of 50 4-node square elements with a total of

132 degrees of freedom (Fig. 3a). The compliance function $22(t) and $66(t)

at T = 75°F are given below:

S22 = 0.7143 x ID'6 + 0.00385 x 10"6 t°-33 (psi)"1

S66 = 1.1111 x ID'6 + 0.00680 x 10"6 tO-31 (psi)"1

11



where t is in minutes. Other constants are assumed to be independent of time,

i.e. EU = 18 x 10 psi and vi2= 0.34. The normalized master curves Q22(t)

represented by the exponential series and the power law are illustrated in

Fig. 4.

Using these material properties the stress and strain histories have

been calculated for two loading conditions. Case I involves an instantaneous

change of temperature from 350°F to 75°F at time t = 0 with the temperature

held at 75°F thereafter. Case II is a sudden temperature change from 350°F to

160°F at t = 0 with the temperature kept at 160°F afterwards. The in-plane

strains ex obtained for Case I are shown in Fig. 5. It is seen that the

present finite element solution agrees well with the incremental solution from

the CLT approach, the maximum discrepancy being 1.5%. Note that the strain ex

decreases with time. After 1.2096 x 10 seconds (two weeks), the magnitude of

the strain decreases by 10.5% in Case I (AT = -275° F and T = 75°) and 42.7%

in Case II (AT = -190° F and T = 160°F). The viscoelastic stress ax in the 0°

layer of the (0/45/90/-45)s laminate, normalized with respect to the initial

thermal stress at time t = 0, is shown in Fig. 6 for both cases of loading.

The initial thermal stress ox(0) in the 0° layer is -5380 psi for AT = -275°F

(Case I) and -3717 psi for AT = -190°F (Case II). It is noted that while the

elastic solution is linearly proportional to the temperature change, the

stress in a viscoelastic analysis relaxes with time in different proportions

(see Fig. 6); at the completion of 336 hours the thermal stress crx relaxes

11.9% in Case Moading and 48.4% in Case II. The difference in the amount of

stress relaxed is due to the fact that relaxation moduli TJ-jj depend on both

the current temperature and time. The relaxation moduli decrease more

significantly with time at the higher temperature (T = 160°F, Case.II) than at

the lower temperature (T = 75°F, Case I). Comparison of these results also

12



shows the nonlinear effect of temperature on stress relaxation.

Figure 7 depicts the laminate strain history normalized with respect to

the initial strain at time t = 0. The initial strain values are

ex = -4.56 x 10'4 in/in for Case I loading and ex = -3.15 x 10'
4 in/in for

Case II. It is interesting to note that in both cases the magnitude of

laminate strain ex decreases rather than increases with time. After t = 1.2E6

sec. (two weeks) the magnitude of laminate strain in Case I (AT = -275°F and

TO = 75°F) decreases 10.5%, while the laminate strain in Case II (AT = -190°F

and T0 = 160°F) decreases 42.7%.

The effects of different temperature spectrums on stress relaxation and

creep strains for (45/-45)s graphite/epoxy laminates were also investigated.

Two conceivable temperature histories are shown in Fig. 8. The dotted line

(Path A) in the figure denotes that the laminate is cooled down slowly in a

stepwise fashion from T = 350°F at t = 0 to room temperature T = 75°F at t =

98 days. The temperature variations are composed of a series of elastic .steps

(At =0) and isothermal processes (constant temperature). The solid line

(Path B) indicates that the laminate is cooled down suddenly from T = 350°F to

room temperature at t = 0, after which it is subjected to a cyclic temperature

variation. The residual stresses and strains in the 45° layer associated with

these two temperature histories are presented in Fig. 9 and Fig. 10,

respectively. Although the laminate eventually reaches the same temperature

(75°F) after 98 days, the residual thermal stress and strain are much greater

in magnitude for the cyclic temperature history (Path B). The sum of thermal

stresses induced during all elastic step changes of temperature (At = 0) is

equal to the elastic thermal stress due to the net temperature change from the

stress-free temperature (350°F) to room temperature (75°F). That is, in the

13



Path A spectrum the sum of stresses T
xv shown by OA. + A,A, + AAC + A.A_ +

** 1 2 3 H 5 6 7

A 8 A g + A1QAn + A1 2A1 3 is equal to the stress T
Xy denoted by OB^ In Path B

loading, the amount of stress txy represented by OBl - B2B3 + B^Bg - B B? +

B0B0 - B..B,, + B,0B., is equal to OB,. However, the temperatures at which
o 3 l u l l 1 2 1 3 1

the stress relaxation occurs are different. At high temperature the rate of

stress .relaxation is high, hence the laminate undergoes more relaxation in

Path A spectrum. For example, during the first time interval the stress T
Xy

relaxes from Aj to A in Path A spectrum while TXy relaxes a smaller amount

from B: to B in the Path B spectrum. Thus, the stress histories depend

strongly on the specific load spectrum applied.

Another example considered is the time-dependent response of a symmetric

laminate at room temperature (75°F) when subjected to mechanical loads. The

history of mechanical loading is plotted in Fig. 11. The average stress

applied is equal to 1,728 psi initially and is held constant until t = 24

hours, after which the laminate is unloaded elastically. The creep and

recovery behavior for the three different laminates, (0/90)s, (45/-45)s, and

(0/45/90/-45)s layups, are plotted in Fig. 12. As expected, the (45/-45)s

1ayup exhibits the most significant creep response among these three

laminates. The initial in-plane strains ex along the loading direction are

equal to 0.564 x 10'3 for the (45/-45)s laminate, 0.24 x 10~
3 for the

(0/45/90/-45)s laminate and 0.177 x 10'3 for the (0/90)s laminate. After 24

hours the strain ex increases by 10.75% in (45/-45)s laminate, 1.16% in the

(0/45/90/-45)s laminate and 0.5% in the (0/90)s laminate. When the load is

released in the elastic step (At = 0) at t = 24 hours the strain ex is

suddenly reduced to 0.607 x 10~4 in the (45/-45)s laminate, to 0.279 x 10~
5 in

the (0/45/90/-45)s laminate and to 0.849 x 10'6 in the (0/90)s laminate^ Note

that the creep recovery rate of the (45/-45)s laminate is also much higher

14



than the other two laminates.

It must be noted that a sufficiently small time interval is usually

required in order to obtain accurate solutions to Eq. (22). The number of

time steps needed generally depends on the shape of the applied load spectrum

and more time steps are required for a complex load history. A criterion used

for choosing the proper time step size is to compare the creep response of a

unidirectional laminate due to a unit step stress with the time variation of

the components in the compliance matrix. For instance, if a unit step stress
a
x is applied the resulting creep strain ex(t) roust be equal to the compliance

component "S"n(t). In all of the above analyses, 12 time steps with variable

interval At were used. Typically the At value is set to 100 sec. at t = 0 and

increases with time to a maximum of 4.3 x 10^ seconds.

5.2 Notched Composites

The geometry considered for a notched composite is a 1 in. wide by 2 in.

long laminate with a circular hole of diameter 0.25 in. at the center. Since

there are no viscoelastic solutions available for comparison with this case,

the accuracy of the finite element solution is estimated based on the elastic

results at time t = 0. To compare the elastic solutions, three finite element

mesh geometries were used. The resulting elastic stress concentration factors

are given in Table 4. All three solutions compare well with the solution by

Nuismer and Whitney [10], indicating the adequacy of the mesh geometry. As a

result (of this congruity) an intermediate mesh pattern with 670 degrees of

freedom is used for the following viscoelastic analysis (see Fig. 3b for

mesh geometry).

A uniform stress of 0X = 20,000 psi is applied at the remote boundary of

15



the laminate at a constant temperature of 122° F. Any residual thermal stress

which may exist in the laminate at the completion of the curing process is

neglected. The in-plane circumferential strains e,), at the hole edge are

plotted in Fig. 13 as a function of <fr for the (45/0/-45/90)s laminate over a

time period of 10^ seconds. Similar results are shown in Fig. 14 for a

(45/_45)s laminate. In both cases, the magnitude of the circumferential

strains e^ increases with time. At t = 0, the circumferential strain e$ at $

* 90° is 0.897 x 10'2 for the (0/45/90/-45)s laminate and 0.155 x 10'
1 for the

(45/-45)s laminate. As expected the strain e^ in the (45/-45) layup increases

at a much higher rate (51.3%) than the strain in the quasi-isotropic

1 aminate.

The relaxation of stresses in graphite/epoxy laminates subjected to a

uniform strain ex = 0.003 in./in. is also studied. The stress averaged

through the thickness is obtained as a function of time. The average

circumferential stress a«j, is shown in Fig. 15 for a (45/0/-45/90)s laminate

and in Fig. 16 for a (45/-45)s laminate. In the (45/0/-45/90)s laminate, the

maximum circumferential stress 0$ occurs at <fr = 90°. This stress decreases

from an initial value of 65328 psi to 63584 psi at t = 105 sec. to 61205 psi

after 10^ seconds. In the (45/-45)s layup, the stress distribution is

somewhat different from the quasi-isotropic case as can be seen in Fig. 16.

For the (45/-45)s laminate the maximum circumferential stress occurs at about

<J> = 60° rather than <j> = 90°. At <fr = 60°, the stress cr^ relaxes from a maximum

value of 27271 psi to 24102 psi after 105 seconds and eventually to 19472 psi

after 10& seconds. Additionally, the location of the maximum stress

concentration moves slightly from <J> = 60° as time elapses. As before, the

(45/-45)s laminate exhibits a much higher stress relaxation rate than the

quasi-isotropic layup.

16



5.3 Three-Dimensional Viscoelastic Results

A. Verification Studies

Since there is no 3-D viscoelastic solution available for a laminate with

a circular hole, the two verification studies are limited to elastic case. In

the first study, a 2 in. by 2 in. by 0.1 in. thick isotropic plate with a

circular hole of 0.25 in. in diameter is analyzed. A uniform stress CTX of 1

psi is applied along the boundary at x = ± 1 in. The material properties are

E = 30 x 10 psi and v = 0.336. The finite element mesh pattern used has 10

((^-direction) by 9 (r-direction) by 6 (z-direction) mesh divisions with a

total of 2310 degrees of freedom. The resulting circumferential stresses °^

at z = 0.025 in. are plotted in Figure 17. Also shown in the figure are the

corresponding 2-D results. It is seen that these two solutions are in good

agreement with the maximum error being 3% at <)> = 90°.

The second study analyzes a (90/0)s boron/epoxy laminate with a circular

hole in the center. The plate dimensions and the finite element mesh geometry

are identical with those shown for the isotropic plate. In order to compare

the solution material properties given in [11] are used. A uniaxial average

stress ax of 1 psi is applied at a remote boundary. The resulting in-plane

tangential stresses in the 0° ply are shown in Fig. 18 along with those

obtained in [11-13]. The stresses in the 90° ply are also shown in Fig. 19.

Good agreement between the present and the other solutions is observed. Fig.

20 compares the normal stress orz in the mid-plane from various solutions

[11,13,14]. On a relative basis, there are more discrepancies in the crz

stress distribution than the CT(J) stress among these solutions. Higher stresses

are obtained in [11] by the use of special hybrid elements around a circular

hole. On the other hand, the solution in [13] uses a boundary layer method

17



and is significantly different from others [11,12] near <fr = 90°. In any case,

some experimental studies remain to be done in order to verify the accuracy of

the 3-D analytical results.

B. Viscoelastic Response of Cross-Ply Laminates

The time-dependent 3-D stresses around a circular hole in graphite/epoxy

(0/90)s and (90/0)s laminates are analyzed. A uniform displacement of ux =

0.005 in is prescribed along the remote boundary x = ± 1.0 in. Due to

symmetry, only one-eighth of the laminate is considered in the analysis. As

shown in Fig. 21, this model contains 440 3-D solid elements with 2010 degrees

of freedom. The material properties given in Table 1 are used. The

viscoelastic response in the 140°F environment is investigated over a time

period up to 1 year (3.15 x 10 seconds). The distributions of interlaminar

normal and shear stresses around the hole edge are obtained as a function of

time.

Fig. 22 shows the normal stress oz around a hole in the midplane (z = 0)

of the (0/90)s laminate. The maximum az which occurs approximately at <|> = 36°

relaxes by 28% after one year. For the (90/0)s laminate the az distributions

are completely different as shown in Fig. 23; the maximum stress in the

(90/0)s layup occurs at <J> = 90°. Furthermore, the magnitude of az in the

(90/0)s is one order higher than that of the (0/90)s laminate. Thus, the

normal CT
Z stress is strongly dependent on the laminate stacking sequence.

The interlaminar normal stress at the interface (z/h = 1.0) of the

(0/90)s laminate is shown in Fig. 24. For an applied strain of 0.005 in/in,

the maximum elastic stress az at the 0/90 interface is about 3700 psi which is

close to 75% of the static ultimate strength of a matrix material. As a

18



result, del ami nation at this interface is expected to occur as the loading is

increased. The az distribution at the interface in the (90/0)s layup is shown

in Fig. 25. In the (90/0)s layup the interface stress oz is also large but it

is smaller than the corresponding midplane stress. In both (0/90)s and

(90/0)s laminates, the inter!aminar stress
 a

z is in tension and can cause

delaminations between plies.

The interlaminar shear stresses TZ(J) at the interface in both (0/90)s and

(90/0)s laminates are shown in Figs. 26 and 27. Approximately opposite

distributions are observed for the interlaminar shear stress in these two

laminates.

The effects of time and temperature on the stress relaxation in a

cross-ply laminate is illustrated in Fig. 28. The maximum interlaminar normal

stress at 4> = 90° in the (0/90)s laminate is plotted as a function of time at

70°F and 140°F. In this figure, the stress oz has been normalized with

respect to its elastic solution at time t = 0. Similar curves are shown in

Fig. 29 for the (90/0) laminate. After 1 year the maximum stress relaxes 48%

in the (0/90)s laminate and 37% in the (90/0)s laminate. The normalized

interlaminar shear stress at <t> = 54° is shown in Fig. 30. Less relaxation is

observed for the TZ<J, stress than for the
 a
z stress.

C. (45/-45)s Laminates

In (45/-45)s laminates the conditions of symmetry used for the (0/90)s

layup are no longer valid. However, other symmetric and antisymmetric

conditions in displacements and stresses can be utilized so that only a

quarter of the plate is sufficient for the analysis [15], Fig. 31 shows a

typical finite element model for the (45/-45)s laminate which has 512 solid
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elements with 2310 degrees of freedom. The boundary conditions and material

properties are the same as those used for a (0/90)s laminate.

The normal stress az
 a^ the midplane is shown in Fig. 32 for T = 140°F.

It is noted that the az is distributed between a tensile stress of 4750 psi

and a compressive stress of 4200 psi with the maximum stress occuring at <J> =

78.8°. At <|> = 33.8° and -56.2° the stress values appear to be independent of

time. Fig. 33 illustrates the interlaminar shear stress distribution at the

45/-4S interface. For the applied strain of 0.005 in/in the maximum value of
T
z<j> at <t> = 90° is 8840 psi which is large enough to initiate delamination.

The inplane circumferential stress in the -45° ply is shown in Fig. 34. As

can be seen in these figures the (45/-45)s layup exhibits much stronger

viscoelastic effect than a cross-ply laminate.

D. Quasi-isotropic Laminates

Three-dimensional analyses are also performed for a quasi-isotropic

(45/0/-45/90)s laminate with a circular hole at T = 140°F. A quarter of the

laminate including 1025 elements and 4158 degrees of freedom is used in the

analysis. The finite element mesh pattern used is similar to that shown in

Fig. 31 except there are 8 subdivisions in the thickness (z) directions. An

average ox-stress of 1 psi is applied to the laminate edges x = ± 1 in. This

condition results in a ax of 2.296 psi, 0.763 psi, and 0.178 psi in the 0, 45

(or -45) and 90 plys, respectively. These ply stresses are used as boundary

conditions for the problem.

The circumferential strains e^ around the hole (r/a = 1.04) in each ply

are shown in Fig. 35. The ply strain is also compared with the 2-D results

from Section 5.2. The strain e$ is fairly uniform throughout the laminate
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thickness. The time-dependence of the e<j> strain in the 90° layer is shown in

Fig. 36. A maximum of 14.6% increase in ̂  is obtained after one year. It is

interesting to note that the e$ distribution in each layer is almost symmetric

about the centerline 4> = 0. This suggests that additional symmetry conditions

can be imposed in the finite element model, i.e. only one eighth of the

laminate is sufficient for the calculation of e<j, in a quasi-isotropic

1aminate.

The transverse strain ez distributions are plotted in Fig. 37 for the

90-ply (z/h = 0.75) and in Fig. 38 for the 0-ply (z/h = 2.75). These

distributions are quite different from the e<j, results; the transverse strain
e
z is not symmetric with respect to <J> = 0. Furthermore, the amount of strain

increase in the 0-ply is relatively large. An explanation for this behavior

is that during creep the 45 and 90 plies lose stiffness since the material

properties degrade most in these layers. This yields much higher strains in

the 45 and 90 plies than in the 0-ply. However, due to the compatibility

condition between adjacent layers additional interlaminar shear stresses are

built up and are added to the 0-ply. As a result, the actual loads increase

in the 0-ply during creep resulting in a much larger strain than would be

obtained for a unidirectional composite. This load transferring mechanism is

illustrated in Fig. 39 in which the in-plane stress ox near the remote

boundary x = 1.0 is shown at two different times. The crx stress increases 10%

in the 0-ply but decreases 15.6% in the 45-ply and 32% in the 90-ply after one

year.

Figure 40 depicts the interlaminar shear strain YZ<J, in the -45 ply around

a circular hole. This distribution is a mirror image of that in the +45 ply.

Over a period of one year the rate of increase in shear strain is 60% at
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$ = +62° in the -45° ply. The high creep strain rate is due to the fact that

the GY70/339 material used in the analysis has strong time-dependent

properties.

E. Matrix Dominated Laminates

The last example analyzed is a (90/-45/90-45)s laminate whose properties

are dominated by the matrix material. The boundary conditions applied are crx

= 0.389 psi in the 90-ply and ax = 1.621 psi in both 45 and -45 plies. These

conditions yield an average stress ax of 1 psi across the laminate thickness.

Results of strains &$ in each ply of the (90/-45/90-45)s laminate at T =

140°F are compared with the corresponding 2-D solution in Fig. 41. The strain

component £$, ez, and Y<J>Z in the 90 layer (z/h = 3.75) are plotted in Figs.

42, 43, and 44, respectively. As expected, much higher creep rate is observed

in a matrix dominated layup than in a quasi-isotropic laminate. Specifically,

the maximum strain e^ increases 50% in the (90/-45/90/45)s layup as compared

to 14.6% in the (45/0/-45/90)s layup over a time period of one year. As

before, such a large creep rate is due to the material properties assumed in

the analysis.
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6. CONCLUSION

The time dependent behavior of composite materials has been described by

an anisotropic thermo-viscoelastic constitutive model. A numerical procedure

has been developed for the solution of time-dependent stresses and strains in

composite laminates containing geometric discontinuities and complicated

boundary conditions. Using this procedure, the stress and strain

distributions around a circular hole in graphite/epoxy composites have been

obtained as a function of time for both mechanical and thermal loads. The

effects of layup orientation and load spectrum on deformation histories have

been demonstrated. The results show that the present method gives the

accurate and efficient numerical solutions of complex anisotropic

thermoviscoelastic boundary value problems.
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APPENDIX A

1. For the two dimensional analysis,

^ ^ < t 2 2 - 2 2
"111- m ' n i i 2 = n » "ni= 2mn • n iu= 4m n

22 22 "» , ** / i 2 2

O O O " 5 0 9

n , n 132= -mn , n133= mn (n - m ) , n= 2 mn (n - m )

2 2 / , 2 2
n »

n231= mn 3 , ri232= -m3n , ri233= mn (m2- n2) , n2 3 l f= 2 mn (m - n2)

2 2 2 2 o 2 2 , 2 2 2
n331= m " - n = m n • n = " 2

and all other n-j j r = 0 (1,j = 1, 2, 3, and r = 1, 2, 3, 4).

2. For the three-dimensional analysis ,

nui" m" ' n i i2= 2 m 2 n 2 • nm" n" • n i i9 = 4 m 2 n 2

2 2 « t , « t 2 2 / | 2 2n121= m n , n = m + n , n = m n , n = - 4 m n

= m ' n!35 = ' n!61= m" ' n!62= ^(

= -mn3 , n1 6 g= -2mn(m 2-n 2) , n£ 2 1= n1* , n'222= 2m V

= n 3 m , n = mn(m 2 -n 2 ) , n J = -m3n , n = 2 m n ( m 2 - n 2 )

'336= 1 » n363= mn • n365=

= n
2 , r - - m n , = m n , n = n 2

m n , ng62= -<zm n ,

and all other r\ r̂ = o (i,j = 1,2, ... 6, and r = 1,2, ... 9).
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Table 1 Graphite/Epoxy Material Properties

Constant

En

E22' E33

G12» G13» G23

V12> V13> V23

°1

V "3

Value

18 x 106 psi

1.4 x 106 psi

0.9 x 106 psi

0.34
K o

0.2 x 10- / F
C 0

16.0 x 10- / F

Table 2 Coefficients of Normalized Time-Varying Function
Used in the Viscoelastic Analysis

10
f(t) = f0 + I fi exp(-t/Xi)

1=1

1

0
1
2
3
4
5
6
7
8
9
10

f,
0.06698253
0.0729459
0.0696426
0.150514
0.148508
0.146757
0.102892
0.114155
0.071036
0.0484272
0.00813977

8.174141919E+15
4.976486103E+14
1.477467149E+13
4.761315266E+11
1.799163029E+10
5.253922053E+08
1.846670914E+07
5.288067476E+05
1.494783951E+04
5.516602214E+02
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Table 3 Shift Factors for Various Temperatures

Temperature ( F)

75
104
122
140
160
212
250

Shift Factor

1.0
8.9125
7.9433E+1
1.5849E+3
6.6069E+4
6.3096E+11
l.OOOOE+18

.Table 4 Elastic Stress Concentration Factors (S.C.F.)

S.C.F.

No. of Elements

No. of DOF's

Coarse
Mesh

3.2470

110

268

Intermediate
Mesh

3.2625

297

670

Fine
Mesh Ref. [10]*

3.2514 3.2292

570

1246

*The solution has been corrected for the finite width effect.
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Fig. 1 Coordinate systems for a unidirectional composite

A 1 B

Fig. 2 Discretization of temperature history
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Fig. 3a Finite element mesh pattern for a unnotched laminate (2-D)

Fig. 3b Finite element mesh pattern for a notched laminate (2-D)
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Fig. 17 Comparison of the 3-D and 2-D solutions
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Fig. 18 Elastic a§ stresses in the 0° layer of a (90/0)s boron/epoxy laminate
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Fig. 19 Elastic o<j) stresses in the 90° layer of a (90/0)s boron/epoxy laminate
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Fig. 20 Comparison of <5Z stresses obtained from various solutions
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Fig. 21 Finite element mesh pattern used for cross-ply laminates
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Fig. 22 Interlaminar normal stress oz at the mid-plane in a (0/90)s laminate
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Fig. 23 Interlaminar normal stress GZ at the mid-plane in a (90/0)s laminate
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Fig. 24 Interlaminar normal stress az at the interface in a (0/90)s laminate
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Fig. 25 Interlaminar normal stress oz at the interface in a (90/0)s laminate
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Fig. 26 Interlaminar shear stress TZ(K at the interface in a (0/90)s laminate
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Fig. 27 Interlaminar shear stress Tz<j) at the interface in a (90/0)s laminate
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Fig. 28 History of the interlaminar normal stress at the interface of a (0/90)s laminate
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Fig. 29 History of the interlaminar normal stress at the interface of a (90/0)s laminate
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Fig. 31 Finite element mesh pattern for a (45/-45)s laminate
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Fig. 32 Interlaminar normal stress az at the mid-plane in a (45/-45)s laminate
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Fig. 33 Interlaminar shear stress tz at the interface in a (45/-45)s laminate
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Fig. 34 Circumferential stress G(() in the -45° ply of the (45/-45)s laminate
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Fig. 35 Comparison of elastic ply strains e<() with the 2-D solution for a (45/0/-45/90)s laminate
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Fig. 36 Circumferential strain e<j> in the 90° ply of a (45/0/-45/90)s laminate
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Fig. 37 Transverse strain ez in the 90° ply of a (45/0/-45/90)s laminate
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Fig. 38 Transverse strain ez in the 0° ply of a (45/0/-45/90)s laminate
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Fig. 39 Through-the-thickness stress distributions (x/L = 0.9, y/W = 0.125 )

65



o t=0 sec

t=105 sec

a t=3.15xl07 sec

-0.6

-100 -75 -50 -25 0 25 75 100

({) (degrees)

Fig. 40 Transverse shear strain Yz<h in the -45° ply of a (45/0/-45/90)s laminate
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Fig. 41 Comparison of elastic ply strains e<j> with the 2-D solution for a (90/-45/90/45)s laminate
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Fig. 42 Circumferential strain e<j, in the 90° ply of a (90/-45/90/45)s laminate
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Fig. 43 Transverse strain ez in the 90° ply of a (90/-45/90/45)s laminate
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Fig. 44 Transverse shear strain yz in the 90° ply of a (90/-45/90/45)s laminate
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