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SUMMARY

The viscous/inviscid interaction over transonic airfoils with and without
suction is studied. The streamline angle at the edge of the boundary layer is
used to couple the viscous and inviscid flows. The potential flow equations
are solved for the inviscid flow field. In the shock region, the Euler
equations are solved using the method of integral relations. For this, the
potential flow solution is used as the initial and boundary conditions. An
integral method is used to solve the laminar boundary-layer equations. Since
both methods are integral methods, a continuous interaction is allowed between
the outer inviscid flow region and the inner viscous flow region.

To avoid the Goldstein singularity near the separation point the laminar
boundary-layer equations are derived in an inverse form to obtain solutions
for the flows with small separations. The displacement thickness distribution
is specified instead of the usual pressure distribution to solve the boundary-
layer equations. The Euler equations are solved for the inviscid flow using
the finite volume technique and the coupling is achieved by a surface
transpiration model. A method is developed to apply a minimum amount of
suction that is required to have an attached flow on the airfoil. The suction
parameter is varied based on the velocity profile parameter and the suction
distribution obtained 1is considered to be close to the optimum value. The
turbulent boundary Tayer equations are derived using the bi-logarithmic wall
law for mass transfer. The solution method is similar to the laminar inverse
boundary-layer approach. The results are found to be in good agreement with
available experimental data and with the results of other computational
methods.
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Chapter 1
INTRODUCTION

Transonic flows are the flows in which the local flow speed 1is
close to the local sgged of sound. These flows occur 1in nozzles, over
propellers and turbine blades, around blunt bodies flying supersonically
and near airplanes which fly close to the Mach number of one. The
interest 1n transonic flow started due to the problems encountered 1in
the attempts to design efficient commercial aircraft which fly close to
but below speed of sound.

The most distinguishing feature of transonic flows is their mixed
flow character. The acceleration of the initially subsonic flow over
the forward portion of an airfoil i1s sufficient to provide an embedded
region of supersonic flow adjacent to the airfoil surface. Thas
supersonlc region is terminated by a shock wave that recompresses the
flow.

The qualitative behavior of 1lift and drag coefficients (C and

2

*
C as functions of free stream Mach number Mg 1s discussed in [1].

a)
The critical Mach number Mcr is the value of M°° for whach an

embedded supersonic region first appears. As the Mach number 1ncreases

*The numbers in brackets indicate references.



beyond Mcr' the supersonic region grows, 1ncreasing the strength and
extent of the terminating shock; C!. also 1increases and Ca esscntially
'remalns .constant. As Hw increases beyond My- the drag rise Mach
number, shock and viscous influences cause a rapid increase 1in drag and,
eventually, a decrease in 1laft. Therefore, the optimum cruise Mach
number 1s for the value of M_ Just above My-

The main objectives for fighter type aircraft are high lift at low
drag level, high thrust-to-drag ratio for acceleration, and high load
factors for maneuvers. These features make the analysis of transonic
flow fields one of the most studied in fluid dynamics. To improve these
factors 1limiting the performance of aircraft, detailed studies
(comprising both wind tunnel testing and fluid dynamic computations)
have to be performed. The high cost of transonic wind tunnel test time
severely limits the number of configurations that can be considered 1in
the search for the optimum design, Considerable attention has been
directed i1n recent years in developing theoretical models for the design
of aerodynamic bodies to supplement wind tunnel simulations. Theoreti-
cal methods reduce the cost of wind tunnel testing and also provide a
data base to check errors due to wind tunnel wall ainterference, in-
correct Reynolds number scaling, model and sting deflections under
load, A natural approach to the computation of transonic viscous-
inviscid interaction 1s to use the Reynolds averaged WNavier-Stokes
equations as a global solution procedure. However according to present
trends (2], 1t could be a long time before computers will attain the
power required to perform the routine engineering calculations using the

Navier-Stokes equations. An alternative 1s to use a zonal solution

method to compute the transonic viscous-inviscid interaction. This



method 1involves solving different numerical algorithms tfor various
regions of the flow. An advantage of zonal methods 1s that saimpler
equations are used 1n regions where permissible and, consequently,
computer requlirements are reduced. A disadvantage of zonal methods 1s
that information must be exchanged at zonal boundaries or zonal overlap
regions, which can cause convergence and stability problems.

The first major breakthrough to solve the governing nonlinear
partial differential egquations was made by Magnus and Yoshihara [3].
They presented a method to solve the steady supercritical planar flows
over lifting airfoils using the finite-difference technique. Steady-
state solutions were obtained as the asymptotic flow for large times.
Mathematically, the description of steady transonic flows requires the
solution of "mixed equations,"” which are elliptic 1n subsonic regions
and hyperbolic in supersonic regions. The problem 1i1s nonlinear, and
solutions generally contain discontinuities representing shock waves.
Murman and Cole [1) presented a governing steady transonic small
disturbance potential equation using a mixed finite-difference system.
They used central difference formulas i1n the subsonic region, where the
governing equation 1s elliptic and upwind difference formulas in the
supersonic reqgion, where 1t 1is hyperbolic, Krupp and Murman ([4]
extended this method to 1lifting airfoils. These 1initial successes
started a new field of study, the computational transonic aerodynamics.

After the approach suggested by Murman and Cole [1] for solution to
the transonic flow problems there was considerable research interest to
solve potential flow equations using different techniques. Lomax et al.
(5], Xlunker and Neuman {6], Schmidt et al. (7], Albone et al. (8], and

van der Vooren et al. {9) have used various forms of the transonic small



disturbance equations with the aim of improving the solutions. There 1s
also a parallel effort to solve the exact potential equation.
‘Garabedian et al. [10] solved the full equation for velocity potential
using a relaxation technique similar to Murman's transonic small
perturbation method. 1In this method the central difference scheme for
subsonic flow 1s replaced by a ‘'retarded' differencing scheme for
supersonic flow., Jameson [11), Arlinger [12]), Baker [13}, and Caughey
and Jameson [14] have obtained results for two-dimensional and axially
symmetric flows. Jameson [15) solved the transonic full potential flow
equation using a ‘'rotated' differencing scheme to confirm with the local
stream direction. Carlson [16] solved the full, inviscid perturbation
potential equation 1n a Cartesian system, The second-order partial
differential equation 1s replaced with a nonconservative system of
finite difference equations whach includes Jameson's rotated
differencing scheme at the supersonic points. Using a stream function
approach, Hafez and Lovell [17]) solved the transonic inviscid flow
equations. Also numerous techniques were developed to improve the
efficiency of the basic algoraithms. Ballhaus et al. [18] developed
implicit approximate factorization algorithms for steady-state transonic
flow problems to accelerate convergence. South and Brandt [19) used a
multigrid method to achieve this goal. A hybrid Poisson solver/
successive line over relaxation (SLOR) scheme proposed by Jameson [20]
substantially increased the computational efficiency over the
conventional SLOR scheme.

The comparison between the solutions using the potential flow
equatjons and experimental data 1s not very good in the mid to upper

transonic regions. This is because of ¢the isentropic assumption



inherent in these formulations. Recently, 1t was also discovered that
these solutions are not unique; for certain angles of attack and Mach
numbers, the full potential flow equation yields multiple solutions.
Also, large negative or positive lift 1s predicted even for symmetric
airfoils at zero angle of attack. Steinhoff and Jameson [21] noted that
the nonuniqueness 1s not because of the discretization error, but
because of the governing partial differential equation 1tself. Several
1nvestigators studied the occurrence and behavior of this anomaly, and
concluded that 1t shows up 1n the conservative formulation of the
partial differential equation ([22-24), but not in the nonconservative
formulation. This suggests that the anomaly 1s associated with the
approximate treatment of shock waves within the potential formulation
since this 4is the main difference between the conservative and
nonconservative formulations.

The solution of Euler equations do not show the anomalous behavior
as exhibited by the potential solutions. However, the cost of computa-
tions 1is higher. For flows i1n the upper transonic range 1t 1s necessary
to solve the Euler equations because of the rotational nature of the
flow. The comparison between the Euler and potential solutions 1is found
to be excellent in the lower transonic or subsonic range. Using Euler
equations in the whole flow field or in the shock region should improve
the results., Euler equations can be solved either by using the method
of integral relations (MIR) or by the finite-difference technique. The
method of 1integral relations has been used by Holt and Masson [25],
Melnik and 1Ives [26)}, Sato [27), and Tai [28] to solve the Euler
equations. This method 1s valid for transonic flows with moderate to

strong shocks. The disadvantage of MIR 1s that the solution procedure



requires man-machine 1interactions because of the multiple 1iterative
processes 1nvolved. Liepmann [29]) and Ackeret et al. [30] investigated
the phenomenon of the transonic viscous-inviscid 1nteraction. Their
experiments showed that the shock and the boundary 1layer 1interact
strongly with each other. This phenomenon 1s of great complexity
because the behavior of the boundary 1layer depends mainly on the
Reynolds number, whereas, the conditions 1n a wave are praimarily
dependent on the Mach number. The pressure disturbances caused by the
shock propagate upstream through the subsonic portion of the boundary
layer causing the flow to separate ahead of the shock.

Bauer et al. [31,32] aincorporated the Nash and Macdonald [33)
turbulent boundary-layer method into the 1inviscid Garabedian method
[10]. The viscous-inviscid 1interaction was taken 1into account using a
solid displacement model. Collyer and Lock ({34-36] used the lag
entrainment method of Green et al. [37] to calculate the turbulent
boundary layer. The surface transpiration model was used to represent
the displacement effect of the boundary 1layer and wakes on the
equivalent 1inviscid flow. This method has an advantage over the
previous method in that the computational grid needs to be generated
only once. Melnik [38] used a 'multi deck' model near the trailing-edge
region, based on the asymptotic theory of turbulent shear flows in the
limit of infinite Reynolds number. The matching between the 1inviscid
and viscous solutions is achieved using the surface transpiration model.

Klineberg and Steger [39] treated the viscous-inviscid 1interaction
by using a boundary-layer integral approach combined with a finite-
difference relaxation technique for the small disturbance equations.

Inviscid and viscous flows are treated separately even for strong



interactions, Brilliant and Adamson [40) used the method of matched
asymptotic expansions for an 1incident shock 1nteracting with an
unseparated laminar boundary layer in transonic flow. Tai [41) coupled
the inviscid transonic solution obtained by using the method of 1integral
relations with the integral method developed originally by Lees and
Reeves [42) and refined by Klineberg and Lees (43] for compressaible,
attached and separated laminar boundary layers.

All of the methods discussed above are direct methods where the
external pressure distribution 1s prescribed and the boundary-layer
quantities are calculated. These methods exhibit the Goldstein
singularity near the separation and are limited to attached flow
conditions. As demonstrated by Goldstein (44], the boundary layer
growth rate becomes infinite when the shear stress gradient is infinite
causing a singqularity at the point of separation. This was confirmed by
Klineberg and Steger [45], Werle and Davis [46], and Pletcher and Dancey
{47). It is also posssible to get nonunique solutions from direct
boundary-layer solutions. For non-saimilar flows this problem was noted
by Murphy and King [48]. Catherall and Mangler [49]) pointed out that
this does not limit the validity of Prandtl's boundary-layer equations
past separation., Using an inverse approach where the boundary-layer
thickness distribution is specified, this problem could be avoided.
Many of the recent researchers have used 1inverse boundary-layer
equations to calculate separated flows. Carter [50] showed that the
inverse boundary-layer solutions compare well with the Navier-Stokes
solution. Cebeci et al. [51] used a nonlinear eigenfunction formula-
tion, and Klineberg et al. [45] and Horton [52]) specified shear stress

in their calculations to obtain regular solutions.



The high cost and time requirements and the resources available for
conducting experiments either in the wind tunnel or in flight warrant
the need for an approximate suction distribution from a reliable
numerical method. Also, the solution procedure should be faster and
efficient to perform the routine calculations on any desired airfoil.
It 1s essential to have an idea about the suction quantities or the
velocities to maintain full chord laminar flow to reduce viscous drag.
This will lead to a better design of Natural Laminar Flow (NLF) or
Laminar Flow Controlled (LFC) airfoils. The computational procedure
should include both the laminar and turbulent boundary-layer models with
a transition criteria. In the viscous-inviscid interaction near the
shock and the trailing edge, the wake curvature effect have to be
considered. The specific objectives of the present study, therefore,
are to develop a computational method which would consider laminar as
well as turbulent attached boundary-layer interaction for the flow over
transonic airfoils, and to develop a method to obtain the suction
distribution for maintaining attached flow on the airfoil.

In Chap. 2 governing equations for the inviscid flow as well as the
direct and inverse boundary layer equations are presented. Method of
solution to solve these equations 1s discussed in Chap. 3. Also, the
interaction models to couple the outer inviscid flow with the inner
viscous flow are presented. Results are obtained for several airfoils
using the direct and the inverse boundary-layer approaches for laminar
and turbulent flows. These are compared with the available experaimental

as well as other numerical results in Chap. 4.



Chapter 2

THEORETICAL FORMULATION

2.1 Basic Formulation for Inviscid/Viscous Interaction

The mixed flow field over an airfoil in the transonic range 1s
1llustrated in Fig. 2.1. Except in the shock region the potential flow
eguation 1s solved by a finite-difference relaxation technique. Euler
equations are solved in the shock region. In Sec. 2.1.1 the governing
equations for the inviscid flow are presented. The direct boundary-
layer equations are derived in Sec. 2.1.2 and the corresponding initial

conditions are given in Sec. 2.1.3.

2.1.1 Inviscid Flow

Under the assumption of 1inviscid and irrotational flow the

transonic potential flow equation is given by [53]

2 2
(a2 - )0 - 20, 6 6, + (4% - &) =0 (2.1)

where ¢ 1s the velocity potential.

Introducaing a perturbation potential of the form

$=xV cos a+ yV sina+ V_ ¢ (2.2)
(-] (-] «
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Equation (2.1) can be written as

2
(a2 -u )¢ - 2uvd + (a2 - vz)o =0 (2.3)
XX Xy vy

where u = Ox and v = Oy are the velocity components, and

2 2 Y = 1y 2 2 2

a’ =a_ - (——2——)[\1 + Vv - vm] (2.4)
Equation (2.3) has the form locally, either of a wave equation (hyper-
bolic type) representing supersonic flow (‘bx > 1), or of a Laplace
equation (elliptic type) representing the subsonic flow (¢x < 1). The

nonlinear term, uvoxy allows the transition from one type to another.

The boundary conditions for inviscid flow are qiven as

ay .-
C:x )body (u )body (2.5a)
r o, -1
¢= - tan (B tan(f- ) (2.5b)

where circulation T 1is determined by the change in potential across

the Kutta-Joukowski cut at the trailing edge (TE), i.e.,

r=(e ,-9¢ ) (2.5¢)

y=0 y=0 TE
The potential flow equation 1s rearranged in rotated coordinates
parallel and perpendicular to the local velocity. This rearrangement
permits coordinate stretching in the physical plane and avoids computa-

tional problems in the supersonic region. Several methods are available
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[32,54) to solve the potential Eq. (2.3) subjected to the boundary

condition, Eq. (2.5).
. The isentropic assumption inherent in the potential flow eguation,
Eq. (2.3), 1s not valid in the case of moderate to strong shocks across
which the increase in entropy cannot be neglected. Therefore, in the

shock region it 1is necessary to solve the Euler equations for the

inviscid €flow solution. The Euler equations are expressed in vector

form as
A +B =0 (2.6a)
X Y
where
pu pv
A=3jpu + p|; B-= puv
2
pav pv +p
and
1 2 2
cp T +/p (u” + v7) = constant (2.6b)
S, - 8§
- oY 21 2.6
P p exp( Cv ) { c)

2.1.2 Viscous Flow

The governing equations for a steady, two-dimensional compressible

laminar boundary layer in coordinates parallel and normal to the surface

are
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Continuity:
3 pu) alov)
25 an =0 (2.7)
s-momentum:
du v _ 8 1 93 &
Mot P *3s *Re (u on (2.8)

n-momentum:

2. (2.9)
on
Energy:
Cp T-tb@(uz + v2) = 0 (2.10)
Equation of state:
p = (RT (2.11)

Illingworth [55] and Stewartson [56) have shown that for an
adiabatic surface and for a fluid with a Prandtl number of unity, the
compressible boundary-layer equation can be transformed into an

incompressible form. By applying the Stewartson transformation,

o
o

s na_ p

e e e e p
E=] ——ds; n=] ——+-an (2.11a)
0 ao Pco 0 am pee pe

[

n p

Puy 2= 2 3 e e p
U = (a“/ae)u; V= (P—-)(—a—-) u—a;f -p—-? o dn
e e 0 o @ e
(2.11b)
*3 0 v

e e —— e e el AN .
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Egs. (2.7) - (2.9) are reduced to the incompressible form as
U v
T3 an 0 (2.12)
du 2
U U e 13U
u 3E+ v an v, ac e an2 (2.13)

In order to avoid the semi-empirical features inherent in the methods

such as Crocco-Lees [57), a moment of momentum equation is used 1in

addition to Egs. (2.12) and (2.13). Upon multiplying Egq. (2.13) by U,

one finds

4au 2
2 U ou e 1 9 U
U =+ Uv——-=U0 + U
oL an e d¢ Re anz

(2.14)

The governing partial differential equations, Egs. (2.12) - (2.14),
are integrated across the boundary layer resulting in three ordinary

differential equations. These equations can be written in the matraix

form as
* o—
pu— - — 1 +
F 6* 6i tA ffi rlL' “e tan 6 - Zﬂ
i M ds m 1 4 U
e e
6*
L s S D] an gleg LV
1 M ds M U
e e Re e
6'
A 3 I T
1 dH M ds M U
e e Re e
- —nf Su—m @ = o
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where

*
0 § c]
1 1,00 1
R A O
6 Ug "an’m0 8
1 1
* 4§
26 1 au.2
R=—=] GGn)" @
U 0
e
1 4+ m
F=H+ A
m
e
6.‘I. v
1 U ©
Z=—,f —— dn, Re , =— ¢
§ 0 Ue 8 Ve 1
1 1
2
M -1

For a given velocity profile %—, the integrals in R and Z can be
evaluated and the system of Eg. ?2.15) can be solved simultaneously.
Lees and Reeves [42] have shown that the solutions of the Falkner-
Skan (58] equation for similar flows including reversed flow profiles
calculated by Stewartson [59] can be used to determine J, @, H, R,

and 2 as functions of a single parameter ‘a‘'. This is referred to as

the velocity profile parameter and 1s given by

B(U/Ue)

a ="+
a(“/Gi)nﬂo

=;099f"(0), 0<a <4
* for attached profile
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a=(161—) 3 ' 0 <a <1
iu 0 0.99 for separated profile
Ue
U
a = (6—) = (£, 0 <a<0.46
e dividing for wake reversed profile
streamline
U
a = (57) = £ o 0 <a <1
e n=0 for wake forward profile

The quantity f 1s obtained from the solution of the Falkner-Skan

equation

£+ £f" + b(1 - f'z) =0 (2.16)

subjected to the boundary conditions

£(0) =0
£'(0) = 0

1i £f'{(g) =1
1m; 4

These relations for ‘'a' are valid not only in the case where there is
no mass transfer at the wall, but also in cases with mass transfer
provided £ 18 obtained by solving Eq. (2.16) with the boundary
conditions

£(0) = ¢

£'(0) =0

lim f'(=) = 1
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Considering € to be a small perturbation, Eq. (2.16) can be written as
2
R ] - J = .
(£, + ef,)'"" + (£ + e )(f, + e )" + b(1 - (£, + &£,)'7) =0 (2.17)

and the boundary conditions as

£,(0) + e£,(0) = ¢ (2.17a)
f1'(0) + efé(O) = 0 (2.17b)
lzmc”(f;(c) + e:fé(z;)) =1 (2.17¢)

For small perturbations, the t—:o equation is expressed as
£+ £ £ + b1 - £29) =0 (2.18)
1 1 1 1
f1(0) =0

fl.(O) =0

and

hmcw f_‘(;) = 1

1
The € equation can be expressed

1e " " [ - .
f2 + f2 f1 + f1 f2 + 2bf1 fz 0 (2.19)

and the boundary conditions are
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L}
-

fz(O)

[
©

f2(0)

1
o

lim;4¢ fé(C) =

Equation (2.18) is the Falkner-Skan eguation and Eg. (2.19) 1is the
auxiliary equation governing fz.

Solutions to the Falkner-Skan equation are available 1in the
literature for different pressure gradients. But to evaluate the
suction quantities, very accurate solutions to the Falkner-Skan egquation
and the auxiliary equation due to suction are needed. Therefore, these
equations subjected to the respective boundary conditions are solved by
using the state variable approach of Forbrich {60]. A solution accurate
to sixth decimal place can be obtained using this method.

The integral quantities wused in Eq. (2.15) consists of the

perturbed and unperturbed parts. The unperturbed integral gquantities

are,

. %.99

H = i ({ £1(1 - £1)ag (2.20a)
i
; %0.99 R

3, = £100 - £7%)az (2.20b)
8, 0

L
0, = 511 f‘(o) (2.20¢)



where

81 = g

1
z, = [f1(c0.99) - f1(0)]

1

%0.99
(- f;) dg

The perturbed integral quantities are

All these quantities are expressed as polynomials in ‘a,'

*
6§.(1 + b)
i

L - -
K {0+ a(5,(0) g9 - 1) -3/

*
- fz(c)o'gg) + 48 /

[+ p) + (£, (D) o9

+ f;(o) - fz(;)

*
£5(0)8, - £7(0) (£,(0)) o9 - 1)

%0.99

0

[£,2)0.99 = 1]

£ £ 4g
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(2.204)

(2.20e)

- 1)

(2.20f)

0.99]

(2.20q)

(2.20h)

(2.20i)

(2.203)

For any

combination of the velocity profile parameter and the suction parameter,
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the total quantities can be evaluated as H = H1 + cHz, J = J1 + 532,

etc.

Now the system of Egs. (2.15) can be expressed as

a a a
as 1 12 13
as = B: d2 a, a23 (2.21)
9 23, 35
a4 d, 2,3
da 1
ds ~ an | 221 d, 3y, (2.22)
D o
1 da a d a
31 3 33
a a d
av, 1 12 1
_e_21_ .2
d& "o, 321 3y 9 (2.23)
a d
%3 32 3

where aij' d3 and D1 are given in Appendix A.

In the usual boundary-layer calculations, the pressure distribution
along the airfoil 1s computed using an inviscid method, and the
boundary-layer quantities are evaluated. Since the solution of the
viscous and inviscid equations 1s not simultaneous, mass transfer
between these two regions is not allowed and only the momentum and

moment of momentum equations are used.



For a specified pressure distribution, Eq.

21

(2.15) reduces to

d M v § (2H + 1) dM
H 6 —* g — 2, v _ 1 e
ds M * U m ds
e REG e e
= . (2.24)
®
;5 &aaf|an gle _m o Ve 357
1 dH ds M_Re U M ds
e e
6l
| JL _ _1
This may be rewritten as
* b
as, 2 %2
ds =i§ . . (2.25)
3 32
da ; 2 b,
as - S an . . (2.26)
2 da 31 3
where
a1 322
D =
2 a a
N 32
dMe
b,=d,- 233
due
by =4,y 23333

These equations have a singularity at the separation point.

If suction

1s not applied before the flow separates, the denominator becomes zero
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and the boundary-layer equations canndt be applied past separation
point. This formulation, termed as the weak interaction formulation,

.should be applied only in the attached flow region.

2.1.3 1Initial Condirtions

To avoid the stagnation point singularity the calculations are
started away from the leading edge. Klineberg and Steger [61], Tai
{28], and Ram et al. [62] assumed that the flow is locally similar to
derive the 1initial conditions. Although this assumption i1s valid for
only thin airfoils, i1t was found by Ta:i [28] that these conditions can
be applied also to blunt airfoils to obtain converged solutions.

For a locally similar flow, 2.0 and Eq. (2.26) reduces to

ds
b
821 2
=0
234 by
or
a - b a =0
21 3 2 A
or
® *
HBER +v—"'=382°-° +v_m- 61(2H+1)dMe _361JdMe
M U M U M ds M ds
e Re ¥ e e Re * e e e
[ $
1 i
(2.27)
dMe
Upon substituting for re from Eq. (2.27) into Eq. (2.25), there is

obtained
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where
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L]
d61 R + 2HR - 3JQ (1 + H - 33) vu)
ds = + 31 - 1) 6_ (2.27a)
J(1 - H)Reé* e
i
*
6' d61 .
e K, Gi + K, (2.27b)
K = (' + H - 37) Zg
1 J(1 - H) U,

_ (R + 2HR - 3J9Q)
2 J(1 - H)Rec

An 1integration of Eq. (2.27b) with respect to S gives

or

»

From Eq. (2.27), one finds

Starting with
are computed
initial value

hand side to

8 K, .
—=--—= (K, 6 +K,)] =5
K, Kf 1T 2 T
*
[(s1 K, - K, tn (K 6: + )], = [k sl (2.28)
1/2

- JO - HR 1
1 J(1 - H)Re dMm
c e

ds

an initial value of ‘'a', the velocity profile quantities
and both sides of Eg. (2.28) are evaluated. Then the
of 'a' is updated depending upon the ratio of the right-

the left-hand side. This 1teration process 1s continued

until there is no appreciable change in the velocaity profile parameter

*
‘a'. The initial displacement thickness 61 is calculated for this

value of ‘a‘'.
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2.2 Laminar Inverse Boundary-Layer Interactions

' The transformed Euler equations are presented in Sec. 2.2.1 to
solve for the entire inviscid flow. In Sec. 2.2.2 the boundary-layer
equations are written in an inverse form to avoid the Goldstein

singularity past the separation point and the corresponding initial

conditions are derived in Sec. 2.2.3.

2.2.1 Invaiscid Flow

In the direct boundary-layer computations, Euler equations are
solved only in the shock and wake regions. Because of the multiple
interative process involved 1in solving the two different types of
equations for the inviscid flow solution, the computational procedure is
difficult. It is convenient to solve the Euler equations in the entire
inviscid flow region especially when the weak interaction equations are
solved in the boundary layer.

For numerical calculations Egs. (2.6) are transformed into general

coordinates using the transformation

R(x,y)

w
"

= S(x,y)

]
I

This results in

R S

where



A = (R A+ R B)/J
R X Yy o]
BS = (sx A+ sy B)/Jc
J =(R S -R S
c X y y x

2.2.2 1Inverse Boundary-Layer Equations

In the wusual boundary-layer method the boundary-layer quantities
are calculated for a specified pressure distribution. These methods,
termed as direct methods, exhibit the Goldstein singularity near the
separation. The flow past separation cannot be calculated because of
this singularaity. However, this behavior does not limit the validity of
the Prandtl equations. In an 1inverse boundary-layer method the
boundary-layer thickness 1s specified and the pressure distribution 1is
evaluated. An 1ntegral method 1s used to solve the inverse boundary-
layer equations in the present approach. For a known boundary-layer
thickness distraibution, the viscous governing equations, Egs. (2.15),

reduce to

P — po— - r. -
* *
5* 61(2H+ 1) an Biiz ; +‘_,Ln ) Hdﬁl
M ds M Re U ds
e e * e
S,
i
(2.30a)
* = d6*
gar 2T o |7 e g Y, 2
1 dH M ds M_Re _ U ds
e e s e
Ln -y do J d 1 o

This is written in a compact form as
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a a L] K
22 23 ds 3
= (2.30b)
dMe
' 232 33 ]| @ Ky
dGI d6;
where K3 = d2 - H ds and K4 = d3 - J 3s ° From Eg. (2.30b) a1t
follows that
da ; Y
-d—sg :—d_ﬂ . . (2.31)
3 da 4 33
aM_ 3 K
—— = e .3
s D3 ] . (2.32)
32 4

where D Equations (2.31) and (2.32) can be

3" %5 %33 7 %53 %30

expressed i1n an alternate form as

* * .
BM_ 6, 5 dé
da ! = 1 11
ds aH | 2 (390 - R(2H + 1) ) + S ds (o(20 + 1) - 33H)
D_- M~ Re e
3 da e 8 *
. (2.33)
d B 6 as
M -
s D, | M, Re , ( Q H) + 8 % (u an J) (2.34)
§
1
where
*
612 dJ
03 = (3J - (2H + 1) 'é;)

e
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The inverse boundary-layer equations, Eqgs. (2.33) and (2.34), are
checked for singularities for both the attached and separated flow
conditions. However, for extensive regions of separation, these

equations are not valid,

2.2.3 1Initial Conditions

Assuming the flow to be locally similar near the leading edge,
da

i.e., s - 0, Eq. (2.33) reduces to
*
M dﬁl
e~ (39 -R2H+ )+ = (O -HW) =0
e *
[
1
or
% e K. /K (2.35)
ds M_Re _ 5/%g )
6
1
where
Ks = 330 - R(2H + 1)
K6=J(H—1)
*
as
Upon substituting for a;i in Eq. (2.34), there is obtained
dMm M K
e ® 4aJ 1 © 4aJ -3
as ), R-og)*3re (Ban- )% P4 (2.36)
6, Re ) * 6
i * 1 [
S, 1
i
where
daJd
D, = 33 - (2H + 1) an
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Since the velocity profile parameter and the profile quantities are

locally constant, Eq. (2.36) can be integrated to obtain

BM A K
ot dJ 1 o0 aJ 5
Mo=19]—= R-og)+wm (Hgr-3)% D4 050 (2.37)
§ Re , 8
1 )
8
1
A substitution for Me in Eq. (2.35), results in
ds; a3 ag
& (R - 055ke + (B - Ik, = kD, (2.38)
i
Solving for the velocity profile parameter ‘a', which satisfies Eq.

(2.38), gives the initial value for ‘'a' and for that value the initial

Mach number is calculated from Eq. (2.35).

2.3 Turbulent Inverse Boundary-Layer Interaction

The governing equations for a compressible, turbulent boundary

layer in coordinates parallel and normal to the surface are [63)

Continuity:
() , 3lev) _ (2.39)
9s on
Momentum:
2u 4% LI 2
Mt W= ket o v ecm (B ) (2.40)
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By applying the Stewartson transformation Egs. (2.39) and (2.40) are

reduced to the incompressible form as

Continuity:

U + Vv =20 (2.41)
14 n

Momentum:
1
+ — L]
ng VUr|= Ue(Ue); + Re_ (8, Un)n (2.42)
The ainput quantities are transformed to the incompressible form and
after the boundary-layer calculations, the results are transformed back

into the compressible plane.

2,3.,1 Inverse Boundary-Layer Integral Method

The governing partial differential equations are integrated across

the boundary layer as

8 6
Ju dan+ [v an=o0 (2.43a)
o ° o "
or
8
]u; dn=v -V, (2.43b)
0
IG[UU +w_-u () -——2L (g —@-)]d—o (2.44)
o 4 n e e g Re_3n ‘"1 3n n= '

A substitution for V from Egq. (2.41) in Eq. (2.44) gives

8 n
1
(]) [ch' un({ U dn- U lu) - Re_ (8, u) Jn=0  (2.45)
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As i1n the laminar boundary-layer problem, a moment of momentum equation

is used to obtain the closure relationship.

Velocity Profile

The velocity profile expression similar to Kuhn and Nielson [64])
has been used to eliminate the n dependence of the integral equations

and this is given by

+
S = 2.5 (1 + M)+ 50 - (3390 + 5.1)e 037"
1
{2.46)
1 + 2
+5 08[1 - cos (I %)] + v [2.5 (1 + ) +5.1]
The parameter UT 1s the fraiction velocity and is given by
b&
U = ('ru/|'rm|)(|1m|/p) (2.47)

Equation (2.46) consists of an inner part, consisting of a laminar
sublayer and the law of the wall function, and an outer part, a wake
function. The last term in Eg. (2.46) includes the effect of mass

transfer.

Eddy Viscosity

The eddy viscosity model used is similar to that used by Tai [63].
The expressions for the eddy viscosity are as follows:

For attached flow, inner layer
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cle

0.4
1 u_ U 2
B, =1+ 0.0533{e - (1 + 0.41 =+ 0.5(0.41 )7} (2.48)
1 T
For attached flow, outer layer
*
- (8 /1,)(dp/ag) /15
L] L4 *
81 - 0.013 + 0.0038e — Ue s Re_ (2.49)
[+ +5.5(3))
For separated flow, inner layer
B, = 1 + 0.018U_ nre_[1 - Gi—)z] (2.50)
1 e @ Ue

For separated flow, outer layer

*
0.013Ue § Re

SR 5.5(2)°]

(2.51)

. u . .
A substitution of Tl from Eq. (2.46) into the governing equations,
T

with UB eliminated by evaluating U at the edge of the boundary

layer, results in three ordinary differential equations:

Biv B2 M3 e B,

x = .
Ay, A, Ay (641, B, (2.52)
Ryy A3y By (U, By

where Ai] and BJ are as given in the Appendix B.

The direct boundary-layer calculation corresponds to specifying

Ue and solvang for ¢é* and UT. The inverse boundary-layer solution

corresponds to specifying é* and solving for U, and UT. Equation
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(2.52) 1s reduced to the inverse form after rearranging the terms as

= (2.53)

where CJ are as given in the Appendix B.

2.3.2 1Initial Condirtions

The 1initial values for the viscous variables are evaluated, based
on the Schlichting's skin-friction formula [65] for incompressible flow

modified to include pressure gradient, as

g m/m+1
o = 1;44 k(m+:; f Z.4+0.24/m 4R (2.54)

v |Imre /™ 0

e a«®
and

1.24+0.24/m
v =22 — (2.55)
0

where m = 4 and k = 0.0128. Starting with the 2inviscid edge

velocity, both sides of Eq. (2.54) are evaluated until the required

convergence condition 1s satisfied. For this value of Ue, the

frictional velocity UT is calculated using Eq. (2.55).
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Chapter 3

METHOD OF SOLUTION

The numerical procedures used to solve the direct and 1inverse

boundary-layer equations are presented in this chapter.

3.1 Direct Boundary-Layer Interaction

In the direct approach the pressure distribution from the invasciad
flow 1s specified and the boundary-layer quantities are evaluated. The
inviscid flow over an airfoil 1s obtained by solving the potential flow
equation 1n the entire flow field except in the shock region. 1In the
shock region the Euler equations are solved using the information from
the potential flow. This method 1s referred to as the hybrid method,

In Sec. 3.1.1 the solution method to solve the potential flow
equation and the Euler equations 1s discussed. A survey of the
available viscous-inviscid interaction methods and the present method to
achieve a continuous interaction between the 1nviscid and the viscous
flow are presented in Sec. 3.1.2. Also, the description of the solution

procedure for both flows 1s given.

3.1.1 Solution of Inviscid Flow Equations

The transonic potential flow eguation, BEg. (2.3), subjected to the

boundary condition, Egq. (2.5), 1s solved by the finite~difference
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relaxation scheme developed by Carlson [16]. In this method the
governing equation 1s replaced by a nonconservative system of finite-
§1ffereqce egquations and the system of equations are solved by a column
relaxation technique. This procedure 1s adopted in this study because

the difference equations are solved on a Cartesian grad.

Solution of Euler Equations in the Shock Region

It 1s necessary to solve the Euler equations in the shock region
because of the rotational nature of the flow. It 1s also important to
have a continuous ainteraction between the ainviscid and viscous flows.
In order to achieve this, the solution methods should be of the same
type for both flows. For this reason the method of integral relations
(MIR) 1s adopted to solve the Euler equations. Melnik and Ives [26],
Holt and Mason [25), Sato [27)}, Tai [28)}, and Ram et al. [62] have used
this method to solve the transonic inviscid flow equations for various
flow conditaions. Another advantage of using the MIR 1s 1ts small
computational requirement.

The governing partial differential equations are reduced to
ordinary differential equations by integrating Eq. (2.6) from the edge
of the boundary layer to each strip boundary (Fig. 3.1) at some X
location. In order to perform the 1integration, the integrand 1is
approximated by an interpolation polynomial. For example, A 1n Eq.
(2.6) can be approximated by

N

k
A= ] a (x)My-y) (3.1)
k=0 k e



Line 3 (potential flow solution specified)
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A 2-2-strip scheme

N The solution along line 2
of set (e,2,3) provides
Potential boundary condition for set (e, 1,2)
flow {A Line 2

solution T
specified
+L Line 1

Fig. 3.1 1Integration scheme for the method of integral

relation in the shock region.



36

Using a second-order approximation for Eq. (2.6) the method can be
implemented with three strips for desired accuracy. This process 1s
,1llustrated in Fig. 3.1. The 1integration domain 1s divided into two
effective regions, which are denoted by strip boundaries (e, 1, 2)
and (e, 2, 3). The base boundary e is set at the edge of the
boundary layer. The flow conditions are specificed by the potential
flow solution on the uppermost boundary 3. First, the MIR 1s applied to
determine the flow conditions along the boundary 2. Then, 1t is applied
to the i1nner part of the flow field (e, 1, 2).

The resulting ordinary differential equations for the ainvascid
external flow, reduced by means of the 2-2 strip integration scheme,

associated with MIR, along the strip boundaries are

e
—d—x--g Fe (302)
dVe
-—dx = Ge (303)
c - UZ _ Vi 1/(y=-1)
pe = —T—r— (3.4)
_ Y
Pe = P, (3.5)
au
N F (3.6)
dx J
av
—Ll =g (3.7)
dx 3

2 2] 1/(y-1)
(C-1)P . /p ) -U =V,
o, = t2r 23 3 3 (3.8)

3 _ Y
(c 1)(P2/p2 ;
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Y Y
P = p'(p .9
] "3(2/"2)3 (3.9)

where Fe, Ge' F and GJ are given in Ref. 41.

b

3.1.2 Shock/Boundary Layer Interaction and Viscous-Invaiscid Coupling

In the transonic flow regime the interaction between the boundary
layer and the external flow is more important than in the subsonic or
supersonic regimes. Also, the Reynolds number has a large effect on the
aerodynamic characteristics as confirmed by Loving [66] through
experiments in flight and in the wind tunnel.

Experiments by Liepmann [29]) and Ackeret et al. [30] indicated that
the pressure rise in the boundary layer is much more gradual than in the
external inviscid flow. When a normal shock impinges on the boundary
layer, the disturbance propagates upstream through the subsonic portion
of the boundary layer diffusing within a few boundary-layer thicknesses
depending on the strength of the shock. If the pressure gradient 1is
large enough, the flow may separate ahead of the shock. The pressure
rise diverges the streamlines 1in the subsonic region generating
conmpression waves in the supersonic region. In the case of the laminar
boundary layer, the foot of the shock 1s thus smeared and a lambda shock
appears. However, this does not necessarily happen 1in the case of the
turbulent boundary layer because 1t can wundergo a larger adverse
pressure gradient than a laminar boundary layer. The displacement
thickness increases considerably for a laminar boundary layer as
compared to a turbulent boundary layer due to the shock. Also, the
Reynolds number has a large effect on the laminar interaction but there

is almost no effect on the turbulent boundary-layer interaction.



After the shock the laminar boundary layer remains separated all
along the airfoil due to the adverse pressure gradients encountered.
éreferabiy, the coupling method should allow the downstream influence on
the upstream. These types of viscous-inviscid coupling methods are
termed strong interaction coupling methods and others are termed weak
interaction coupling methods.

Melnik [38) and LeBalleur ([67) gave the recent state-of-art on the
coupling of thin shear layer equations with the 1inviscid potential
equations. In Bavitz's [68)] method the effect of the wake 1s not
included and an empirical correction near the trailing edge 1s used.
Collyer and Lock [36]) included the effect of a wake in their calcula-
tions in the form of a normal velocity jump. However, they did not take
the shock-boundary-layer interaction into consideration. Melnik et al.
{38) have considered the trailing-edge modelling but their method 1is for
airfoils without any separation; also, the shock-boundary-layer
interaction 1s not taken into account.

Nandaman et al. [69] used Inger's [70] non-symptotic multi-deck
analysis to predict a realistic pressure calculation in the shock
region. They have used a solid displacement model with smoothing for
interaction and the effect of a wake 1s not considered. Also thear
method is applicable to airfoils without separation.

Wai and Yoshihara [71) considered an empirical model in the shock
region to deal with separation. The interaction process 1s of semi-
implicit nature. Updating the mesh periodically the curvature effect of
the wake 1s taken 1into account by LeBalleur {67). The interaction is
acheived through a surface transpiration model. Klineberg and Lees {43)

used the streaml:ine angle at the edge of the boundary layer as a common
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variable to allow for the continuous interaction between the boundary
layer and the inviscid flow for supersonic external flow. Tai [41), and
Ram et al. [62]) successfully employed this method for transonic flow.
In the present study, this 1interaction model 1s wused in the hybrad
approach where both the viscous and inviscid solutions are obtained by
using the i1ntegral methods. This facilitates a simultaneous 1interaction
between the inner boundary layer and the outer inviscid flow. The

common variable 1s given by the relation

0= 51n-1 —E (3.10)

where Ve 1 1s the normal velocity component from the inviscid solution
and Me v 2e.v 1s the magnitude of velocity f£from the viscous
’ ’

solution. The mass transfer between the two regions 1s allowed using

the continuity equation

o)
(o]

* 4
= tan O + (6 - &) as !.n(pe Ue) (3.11)

o))
©n

where Ue' the horizantal component of velocity at the boundary-layer

edge 1s determined by the equation,
2,1
u = [(M_a 32 - v ]/2 (3.12)
e e e e

The strong interaction formulation can be applied to the attached,
as well as separated laminar boundary layers. When it is applied to the
attached flows, the boundary layer separates in a short distance. If

the usual weak interaction formulation 1s applied, 1t is noted that the
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separation occurs only at the shock. However, the strong interaction
formulation i1nvolves another iteration process to determine the location
of the shock 1influence point. In the forward portion of the airfoil,

the weak 1nteraction equations are sufficient ¢to account for the

interaction,

Solution Procedure

The transonic full potential equation 1s solved by the finite-
difference scheme developed by Carlson [16]. The shock location and the
extent of the supersonic region 1s obtained from the Mach chart. This
information 1s important to locate the shock influence point and to
choose the strip boundaries to solve the Euler equations in the shock
region.

The initial daisplacement thickness and the velocity profile
parameter are calculated using the procedure given in Sec. 2.2. In the
forward portion of the airfoil the interaction between the boundary
layer and the inviscid flow 1is considered to be weak. Therefore, the
weak interaction formulation i1s applied to calculate the boundary-layer
thickness and velocity profile parameter for a given pressure distribu-
tion. The numerical integration of the boundary-layer equations 1s

performed by a fourth-order Runge-Kutta method until the shock influence

point is reached.

Location of the Shock Influence Point

To determine the shock 1influence point the strong interaction
calculations are initiated at a number 1locations ahead of the shock.

The shock 1location is determined from the inviscid solution. The
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displacement thickness (6;) and the velocity profile parameter ‘a®
are kept continuous when the switch 1s made from the weak interaction to
strong interaction formulation. Also the velocity gradient at the edge
of the boundary layer should be continuous to achieve convergence for
the i1nfluence point. This 1s done by adjusting the streamline angle at
the boundary-layer edge.

In the invascid flow region Euler equations are solved using the
method of 1integral relations. The potential flow solution is taken as
the inmitial condition along the vertical 1line and as the boundary
condition along the outermost strap. The 1inviscid, as well as the
viscous solutions, are obtained simultaneously.

Usually the flow 1s separated shortly after the strong interaction
equations are applied. If suction 1s not applied to keep the flow
attached, the boundary-layer quantities are calculated based on the
separated profiles. The 1integration continues downstream through the
trailing edge and into the wake. At the trailing edge 1t is important
to check the velocity gradient and adjust the streamline angle before
continuing the calculation into the wake.

The downstream boundary condition 1s satisfied for the correct
shock 1influence point. The upper and lower surfaces are treated
separately to compute the displacement thickness distributions. The
velocity discontinuity at the trailing edge should be zero to satisfy
the Kutta condition. This 18 checked by comparing the static pressures
at the trailing edge from the upper and 1lower surfaces. The
displacement thickness distribution 1s underrelaxed using a procedure

discribed i1n Sec. 2.6.
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The airfoil 1s updated by adding the displacement thickness to the
original airfoil coordinates and the 1inviscid flow 1s computed for the
updated airfoil with a new circulation accounting for the pressure
difference near the trailing edge. With the new inviscid potential flow
solution and the location of the shock, the procedure 1s repeated. This
overall 1teration process 1s continued until a specified convergence

criteria on the displacement thickness 1s satisfied.,

3.2 Inverse Boundary-Layer Interaction

In the inverse approach the boundary-layer thickness distribution
1s specified to avoid the separation point singularity. Semi-inverse
coupling 1s used to couple the outer inviscid flow and the inner viscous
flow. The solution method to solve the Euler equations in the entire
flow field 1s presented in Sec. 3.2.1. The coupling method and the

solution procedure for either a laminar boundary layer or a turbulent

boundary layer are given 1in Sec. 3.2.2.

3.2.1 Solution of Euler Eguations Using Finite-Volume Approach

The 1inviscid flow equations, Egs. (2.29), are solved using the
finite-volume approach developed by Jameson et al. [72]. The
discretization procedure decouples the spatial and time terms using the
method of lines. The computational domain 1s divided i1nto quadrilateral
cells as shown in the Fig. 3.2, and a system of ordinary differential
equations is obtained by applying Eq. (2.29) to each of these cells

separately. This resulting system of equations is solved by the Runge-

Kutta time stepping scheme. _



1

Fi1g. 3.2 Computational grid for solving Euler

equations by finite-volume approach.
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The Runge-~Kutta scheme has the advantage of allowing explicit time
steps greater than a Courant number of one at the expense of evaluating
Aadditional functions at different stages. Whitfield et al. [73] has
done some numerical experiments to find an optimum Courant number to
perform the calculations. In this study, a four-stage Runge-Kutta
scheme (with a Courant number of 2.8) 1s used; this  1s suggested in
[74].

To suppress the oscillations near the shock and the stagnation
points some external dissipation 1s added. The dissipative terms are a
mixed blend of second-and fourth-order terms which are of third-order in
smooth regions of flow and of first-order in the shock region.

The convergence to steady state 1s accelarated by using a local
time step (determined by the 1local Courant number) and by adding a
forcing term that depends on the difference between the local and free
stream values of total enthalpy. The four th-order dissipative terms are

needed to eliminate nonlinear instabilities when accelerating

convergence using a local time step.

3.2.2 Viscous-Inviscid Interaction Using Semi-Inverse Coupling

When the Euler equations are used to compute the inviscid flow
field the coupling requires momentum and enthalpy sources in addition to
the mass sources., Johnston and Sockol [75], and Murman and Bussing [76]
pointed out this information at about the same tame. Thomas [74]
followed the approach of Johnston and Sockol to achieve the viscous-
inviscid interaction. Thomas modified the normal momentum relation by
Rizzi {771 to include surface porosity for the pressure on the surface.
In the present study the matching conditions are derived for the case

with suction following Johnston and Sockol {75].
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Coupling Method

The matching procedure adopted here 1s similar to that proposed by
Johnston and Sockol {[75] and 1s discussed here very briefly. The
1nviscid and the viscous solutions are matched on the surface.

The Euler equations for steady two-dimensional flow can be wraitten

as
oF G
e - = .1
=t 3y 0 (3.13)
where
pu B pv -
2
pu” + p puv
F = ; G = 5 (3.14)
pav v+ p
_g(e + El L_v(e + p)

The steady Navier-Stokes equations can be written as

-a£+ﬁ= 0- (3.15)
ox oy

In the defect formulation to be presented, the components of f and
g are not needed. Integrating Egs. (3.13) and (3.15) from y =0 to

y = §, one obtains

3 §
GG-GO=--5;I F dy (3.16)
0
3 8
96 - go = - ﬁof f dy (3.17)

By noting that, outside the boundary layer, the G and g vectors

coincide, one can combine Egs. (3.16) and (3.17) to obtain



46

§
3
Go = 99 * o [ (f - Play (3.18)
0
, Now representing the Navier-Stokes solution by a composite function of

the type

f = fc =F+f -F (3.19)

where fb is the boundary-layer solution, Eq. (3.18) reduces to

3
FN
G = (900 - o g (F, - £, )dy (3.20)

It should be noted that only the value of F at the wall is needed and
specific variation of F in the boundary layer is not necessary.

From Eq. (3.14) we can evaluate the values of the vector G. The

first term of G 1s expressed as
)
(ov), = (g v )+ [ [(pu) - g u )y (3.21)
o~ % o T o~ % %

Using the definition of displacement thickness Eq. (3.21) can be written

as

d * (3.22)
Cov)y = or [(ow) 6 ]+ (o v ), .
The second term of the vector G is written as
9 6 2 2
oy = (o, v, 00 = T + 3 [ oo + 20 = (a, of + 2, ) ey

By considering the pressure from the boundary-layer solution to be equal

to the pressure from Euler solution and using the definition for the
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momentum thickness, Eq. (3.22) can be written as

d *
(puv) = - 15 + = [(pu)o(d + 0] (3.23)

To evaluate the third term of G the pressure at the wall was
determined by Thomas [74] wusing the Rizzi's normal momentum relation
{77]. The surface porosity term was 1included 1i1n this analysis.
Different interpolation relations to obtain pressure on the body from
the adjacent cells are suggested by Thomas [74}. 1In thais study some of
these relations are used to check the convergence rate and the accuracy

of the results. The fourth term of vector G can be written as

(te + PIV) = [(e + PIv - ut]

(3.24)
6

+.%(.g {[te + p)u]o - [te + p)u]b}dy

With the approximation that the total enthalpy from the boundary layer

is equal to the Euler solution value, Egq. (3.24) becomes

d *
[te + pIv], = [te + PIV] + Hy o= [(pn) ) 6]

d L]
- <. 3.
pvH, = (pH V), + Hy == [(pu) ) 6] (3.25)
This 1s an identity. As can be noted from (3.22) and (3.23), only the

wall values are needed from the Euler solution and they can be obtained

easlly once the boundary-layer solution is obtained.
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Wake Relation

In the wake the boundary-layer quantities are evaluated along the
wake center 1line for upper and lower surfaces separately. The
difference 1n the mass, momentum, and energy fluxes is applied as the
boundary condition to the inviscid flow. In this study, neither the
wake curvature effect nor the strong interaction near the trailing edge
are taken 1into consideration. The computational mesh needs to be

recomputed periodically to take the curvature effect into account.

Viscous-Inviscid Coupling

The viscous-inviscid interaction is achieved through a semi-inverse
coupling. This technique was developed by Carter [78] for subsonic
flows and has been used for transonic flows by Whitfield et al. [73]), Le
Balleur [67), and Thomas {[74]). The inviscid algorithm is advanced 100
time steps to obtain an approximate pressure distribution around the
airfoil. Then the inverse boundary-layer equations are solved using a
specified displacement thickness distraibution. Initially, this
distribution is that of a flat plate. The velocity at the edge of the
boundary layer is calculated at all the grid points on the airfoil and
along the wake center line. Then the semi-inverse coupling compares the
velocities at the edge of the boundary layer obtained from viscous and
inviscid solutions. Then the initial distribution of the boundary-layer

thickness is updated using the relation

u
¢ * e,v
(s )new = (§ )old[1 + m(;;‘:-- 1)] (3.26)
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wvhere LR 1s the boundary-layer edge velocity computed from the
.

inverse intergral method, R the edge velocity from the inviscad
’

solution, and w is a relaxation parameter.

By using the new boundary-layer thickness distribution, the
boundary condition to the inviscid flow 1s computed by Egqs. (3.22) -
(3.25). Then, the inviscid algorithm 1is advanced in time with this new
boundary condition near the wall. The inverse boundary-layer equations
are solved after every 20 inviscid cycles from then on and the boundary
conditions are updated. When there 1s no appreciable change in the lift
or the boundary-layer thickness distribution, the solution is considered

to be converged and the calculations are ended.

Suction

The reduction in drag is an order of magnitude from the turbulent
boundary layer to laminar boundary layer. Therefore, large extents of
laminar flow are desirable to increase the aircraft performance.

The laminar boundary layer cannot undergo large adverse pressure
gradients and the flow separates resulting in rapid thickening of the
boundary layer; this increases the drag. To avoid this undesirable
effect, suction can be applied before the flow separation point to keep

the flow attached all along the airfoil.

Location of Suction

The velocity profile parameter ‘a’ is proportional to the
velocity gradient near the wall. The value of ‘a’ is zero at
separation. A specified amount of suction is applied when the value

of ta' falls below certain value depending on the airfoil under
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consideration. The value of the suction parameter is increased at the
next location 1f the value of ‘al is still below the specified
value, wWhen there is a negative pressure gradient or when the value
of ‘a’ is higher than a specified value, the suction parameter is
decreased.

With the above procedure, the flow separation is avoided and
attached flow condition is maintained all along the airfoil. The amount

of suction thus calculated 1is close to the minimum amount.
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Chapter 4

RESULTS AND DISCUSSION

Results have been obtained for different airfoils by employing the
direct and inverse boundary-layer procedures for laminar and turbulent
flows. Specific results were obtained for various cases with and with-
out suction in the boundary layer. Results of calculations for the 6%
circular arc and LFC-73-06-135 airfoils are presented 1n Sec. 4.1l.
These results were obtained for laminar flows using the direct boundary-
layer equations. 1In Sec. 4.2 results are presented for the King Cobra
airfoil and the modified NACA 66-012 airfoil. The flow conditions are
selected such that the results can be compared with the experimental
data. Also results for DESB-154 and LFC-73-06-135 airfoils are
presented for attached flow conditions. Results for the laminar inverse
boundary-layer equations coupled with the Euler equations are presented
1n Sec. 4.3 for the NACA-0012 airfoil and the RAE-2822 airfoil. Using
the same approach, results were calculated for the turbulent boundary-

layer flows with and without suction; these are presented in Sec. 4.4.

4.1 Laminar Direct Boundary-Layer Solutions Without Suction

Results of calculations at supercritical freestream Mach numbers

are presented for a 6% circular arc and LFC-73-06-135 airfoils. Flow
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conditions were chosen to enable comparisons with available experimental
data.

The viscous results were calculated in terms of boundary-layer
quantities 1n a transformed incompressible plane. Figure 4.1 gives the
boundary~layer displacement thickness throughout a 6% circular arc
airfoil at M_ = 0.868 and Re = 6.9 x 104, which agrees very well
with similar results reported elsewhere {79]. The thickening of the
boundary layer in the forward portion follows a similar trend as that
found by Schubauer, using the Karman-Polhausen method [80); however, the
present method gives a far more realistic 6* daistribution pattern in
the rear portion.

The corresponding distribution of the boundary-layer shape factor
H and the velocity profile parameter, a, are presented 1n Figs. 4.2 and
4.3, respectively. The boundary layer is practically, but not exactly,
of Blasius type in the leading-edge region and varies slightly through-
out the forward portion of the airfoil. It remains unseparated through
the embedded supersonic region although the viscous-inviscid interaction
becomes strong after x = 0.395, The separation point is found when
a = 0 which corresponds to zero shear stress at the wall.

The boundary layer remains separated over the rear of the airfoil
where small adverse pressure gradients are generated by continuous
compression of the outer subsonic flow. This is a physical feature of
the transonic viscous-inviscid interaction since by compression the flow
ought to return almost to the free-stream value downstream. After the
trailing edge there is a wake reversed flow and then a forward flow to

match the downstream conditions. The location of the rear stagnation

point agrees well with that found by Klineberg and Steger (39], and by
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Fig. 4.1

Boundary-layer displacement thickness for a 6% circular

arc airfoil at M°° = 0,868 and Re = 6,9 x 104.
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Fig. 4.2 Boundary-layer shape factor H for a 6% circular
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arc airfoil at M, = 0.868 and Re = 6,9 x 104.
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Velocity profile parameter for a 6% circular arc

airfoil at M_= 0.868 and Re = 6.9 x 10°.
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Tayr [79) under similar flow conditions. Computed results for the 6%
circular arc airfoil compare very well with the laminar experimental
'data of Collins and Krupp [(81) as presented in Fig. 4.4, not only in
pressure distribution but also 1in separation point, The small
difference in free-stream Mach number and Reynolds number between theory
and experiment was selected deliberately to offset wind-tunnel inter-
ference effects [82].

There 1s no referenceable experimental data available at the
present time for supercraitical airfoils for which the boundary layer
remains laminar over most of the aairfoil. Of course, plenty of
experimental data are available for many airfoils with turbulent
boundary layers. For this reason it was decided to compare the theo-
retical predictions of the present method to that of some other existing
methods, such as Carlson's TRANSEP [83), to judge 1ts reliability and
accuracy. Based on the experience with the ongoing swept supercritical
LFC airfoil experiment in the Langley 8-Foot Transonic Pressure Tunnel
(84), 1t 1s expected that the flow will remain laminar over an extensive
chordwise length of the LFC-73-06-135 airfoirl for M= 0.75, Rec =
8 x 106, and a= -0.090. Therefore, this airfoil and these flow
conditions were chosen to calculate viscous results using both TRANSEP
and the present method, along with the inviscid results using Carlson's
TRANDES [85]. Figures 4.5 and 4.6 show the pressure distribution
obtained from these three methods. The viscous results obtained from
these two methods are in very good agreement with each other except for
a few deviations which were expected. For example, the cp values for
the upper surface obtained from TRANSEP are slightly lower (1.e., more

negative) than those from the present method in the region lying between
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Fige 4.4 Pressure distribution over a 6% circular arc airfoil

at M= 0.868, a = Oo, and Re = 6,9 x 104.
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F1g. 4.5 Pressure distribution on the upper surface of a swept

supercritical LFC-73-06-135 airfoil at M_ = 0.750,

o 6
a= -0.09 , and Re = 8 x 10 .
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Fig. 4.6 Pressure distribution on the lower surface of a swept

supercritical LFC-73-06-135 airfoil at M°° = 0.750,

a= -0.090, and Re = 8 x 106.
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39% through 76% of the chordwise length. The starting position of the
adverse pressure dgradient 1i1s located at 50% and 46% of the chord,
'respectively, as predicted by TRANSEP and the present method. The
present method predicts flow separation at x = 0.665, whereas the flow
remains attached over the airfoil according to TRANSEP. Because of the
strong interaction formulation modeled i1n the present method, the flow
separates, whereas it remains attached due to weak interaction formula-
tion modeled in TRANSEP. Also, the displacement thickness of the
laminar boundary layer increases more rapidly through the shock than
that of turbulent boundary layer ([86] and this may cause laminar
separation. The pressure rises more rapidly for turbulent than for
laminar boundary layers [87,88]}. From 80% of the chord to the trailing
edge, the cp values predicted by TRANSEP are higher (i.e., more
positive) than those obtained from the present method. This is true
because the boundary layer over the last 20% of the chord 1s definitely
turbulent, whereas in the present method the boundary layer over the
entire chord length always remains laminar. Thus, the theoretical
results calculated from this method conform very well to the findings of

[86-88].

4.2 Lanminar Direct Boundary-Layer Solutions With Suction

Results of calculations are presented for modified NACA 66-012
(89], DESB 154 [90], Xing Cobra [91), and LFC-73-06-135 [92] airfoils.
The airfoil NACA 66-012 was chosen to enable comparison of the calcu-

lated result with experimental data available from (89]1. The DESB 154
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and King Cobra airfoils retain laminar flow over an extensive chordwise
length (approximately 70% and 65%, respectively). These two alrfoils
were chosen because of extensive laminar flow which will be more
appropriate to test the accuracy and reliability of the present method.
Furthermore, experimental data available for a King Cobra airfoil for
the no suction case permits comparison of the computed results under
similar conditions. Since the method has been developed for super-
critical airfoils, LFC-73-06-135 airfoil designed at NASA Langley was
selected for comparison.

The viscous results were calculated 1in terms of boundary-layer
quantities in a transformed incompressible plane. Figure 4.7 gives the
boundary-layer displacement thickness on the upper surface of a natural
laminar flow airfoil (DESB 154 at M_= 0.4, Re = 10 x 106, and g =
-0.970) for different values of the suction parameter €., It was found
that € = 0.015 was the minimum amount of suction that kept the flow
attached all the way to the trailing edge. The suction was started at
65% of the chord length and was maintained up to the trailing edge. It
should be pointed out here that the flow separates at about 70% of the
chord length for the same flow conditions if the suction 1s not applied,
l.e,, €= 0, as shown by the present theoretical computations as well as
by those in ([90]. It is further seen that the thickening of the
boundary layer and hence, the overall viscous effects can be controlled
easily by varying the magnitude of the suction parameter €.

The corresponding distribution of the velocity profile parameter
a 1s presented in Fig. 4.8. There are minimal fluctuations ain 1its
values until the point of separation (in the absence of suction) is

approached when it suddenly increases and remains high or drops down
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depending on the amount of suction applied. The lowest wvalue, a = O,
occurs at the point of separation and corresponds to zero shear stress
at the wall.

Figure 4.9 shows the pressure distribution over a DESB 154 airfoal
obtained by wusing the Carlson's TRANDES (Inviscid) method and the
present method with suction. These theoretical results compare very
well as expected. The Cp values for the upper surface obtained from
the TRANDES (Inviscid), when there 18 no boundary layer, are slightly
lower (i.e., more negative) than those from the present method with
suction, when there 1s a very thin boundary layer. The point of sudden
rise (1.e., more positive) in Cp value occurs at 0.71c and 0.68c,
respectively.

Figures 4.10 and 4.11 give the pressure distribution over the King
Cobra airfoil without and with suction, respectively. The computed
results in Fig. 4.10 compare very well with the experimental data
reported in (91), not only in pressure distribution but also in
separation point. The suction for the King Cobra airfoil was started at
60% of the chord length and was maintained up to the trailing edge. It
should be mentioned here that the flow separates at about 65% of the
chord length for the same flow conditions if the suction is not applied,
1.e., €= 0, as shown by the theoretical computations as well as
experimental data.

Figure 4.12 shows the pressure distribution over a swept LFC
airfoil (modified NACA 66-012) obtained from the present method with

suction. The computed results compare very well with the experimental

data, also with suction, reported in [89].
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Fig. 4.9 Pressure distribution on the upper and lower surfaces ot
DESB 154 airfoil at Mm = 0.4, Re = 10 x 106, a= -0.970,

e = 0.015.
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Fig. 4.10 Pressure distribution over King Cobra airfoil at

M_= 04, a=1% Re=10x10° and €= oO.

66



Fig. 4.11

Present method
O O O Experiment

0.5

1.0

—
5L < e
1 1 1 ]

I I I B
0.0 02 04 06 08 10

x/C

Pressure distribution on the upper and lower surfaces ot

King Cobra airfoil at Mw = 0.4, Re = 10 x 106, a= 10,

C!. = 0.199, €= 0.002 for upper surface obtained from the

present program.



Present method
-0.4 — O O O Experiment
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and .003 < ¢ < .015.
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There does not exist any computational method which solves strong
inviscid-laminar viscous 1interactions by solving Euler equations in the
shock-dominated region and where the boundary layer 1s optimally sucked
such that boundary-layer instability and separation do not occur. The
pressure distributions over the LFC-73-06-135 supercritical airfoil
calculated from Carlson's TRANDES (Inviscid) and the present method are
compared to show the effect of suction and the formulation of the
viscous-inviscid model. The flow conditions were chosen to assure the
existence of a shock on the upper surface of the airfoil. In the
inviscid analysis, Fig. 4.13, the shock appears at 77% of the chord
length. 1In the inviscid-viscous analysis with suction, Fig. 4.14, the
shock becomes much weaker, moves upstream to 0.63c and the boundary
layer remains attached. Figure 4.15 shows that Cp values calculated
from the present method are consistently higher (i1.e., more positive) by
as much as up to 24.3%. This is expected due to effect of viscosity and
the change of entropy across the shock which are accounted for in the
present method. The results mentioned here for LFC-73-06-~135 airfoil are
in agreement with the findings of the swept supercritical LFC airfoil
experiments conducted in the Langley 8-Foot Transonic Pressure Tunnel

[93].
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4.3 Inverse Laminar Boundary-Layer Solutions

Results are presented in Fig. 4.16 for an RAE-2822 airfoil at
subcritical condition. The free stream Mach number i1s 0.6 and the angle
of attack 1s 2.57°. The 1inviscid flow calculations are performed by
solving the unsteady Euler equations [72}. The viscous-inviscad
interaction was started very close to the leading edge. A small amount
of suction was required to keep the flow from separating near the
leading edge. The pressure peak near the nose causes early transition
to turbulent flow if suction 1s not applied. After the pressure
minimum, the flow 1s continuously decelerated to match the downstream
flow of the airfoil. The laminar flow 1s stable in this region and the
flow remains attached all the way to the trailing edge. There 1is no
need to apply suction after the nose peak. The boundary layer 1is
thicker than in the case of a turbulent flow and the Cp values, are
less negative along the airfoil.

Figure 4.17 1illustrates results for the supercritical conditions.
The free stream Mach number is 0.73 and the corrected angle of attack 1is
2.78°, This case corresponds to case 9 of the experiments conducted by
Cook et al. {94). 1In the experiments, the flow was tripped very close
to the leading edge to produce a turbulent boundary layer. For laminar
boundary layers the flow would separate at about 45% of the chord
length. The suction was applied before the separation point to keep the
flow attached. The amount of suction applied depends upon the velocaty
profile parameter a., The value of the suction parameter 1s increased
or decreased based on whether the value of a 1s below or above a

specified limit. This was an effort to apply only the minimum suction
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Fig. 4.16 Pressure distribution on the upper surface of RAE-2822
supercritical airfoil at M_= 0.6, a= 2.570, and

Re = 6.5 x 106u



75

— INVISCID FLOW
O TURBULENT FLOW

-4
(THOMAS)
0 LAMINAR FLOW
-2 (PRESENT)

Fig. 4.17 Pressure distribution on the upper surface of RAE-2822

supercritical airfoil at M_ = 0.73, a= 2.780, and

Re = 6.5 x 106.
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required rather than an arbitrary amount. The strength of the shock 1is
reduced and moved forward because of the laminar boundary layer as
‘compared to the inviscid flow calculations.

For NACA-00l12 airfoil extensive experiments were conducted by
Harris for subcritical to supercritical Mach numbers and for different
values of the angle of attack (95]. However, in all these experiments
the boundary layer has been tripped close to the nose to produce a
turbulent boundary layer flow. Present results for transonic laminar
flow are compared with these experimental data for a qualitative com-
parison. Results presented in Fig., 4.18 are for a Mach number of 0.758
and an angle of attack of 3.06°. The laminar viscous-inviscid 1inter-
action was started just ahead of the stagnation point at about 1% of the
chord length on both the upper and lower surfaces. The location of the
shock foot 1s at about 52% of the chord length according to the inviscad
flow results. From the viscous-inviscid interaction calculations, 1t 1is
noted at about 48% of the chord length. The suction was applied at
47.48% to maintain the laminar attached flow. A large amount of suction
was required up to about 55% of the chord and after the shock, a rela-
tively small amount of suction was sufficient to keep the flow attached.
In the experiments the turbulent flow was separated at 34% of the chord,
the shock strength was reduced considerably and moved forward in com-
parison with the present results. The suction was applied to produce a
turbulent, attached boundary layer flow over this airfoil under similar
conditions and those results are presented in the next section. The Cp
values of both the experimental investigation and the present method are
close to the inviscid results ain the rear part of the airfoil where the

flow has to match the subcritical conditions in the downstream region.
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Results are presented in Fig. 4.19 for an NACA-0012 airfoirl at high
angle of attack conditions. The free stream Mach number 1s 0.601 and
‘the Reyholds number based on the chord length 1s three million, A
correction to the angle of attack was applied to compare the results
with the experaiments [95)., It 1s evident from the Fig. 4.19 that there
1s a pressure peak in the forward portion of the airfoil and there 1s a
pressure rise at about 17-20% of the chord. The experimental values are
closer to the 1inviscid flow results in the peak reqgion and the pressure
rise region except near the end of the shock. The viscous-inviscid
interaction was started at about 1% of the chord. Suction was applied
to maintain laminar attached flow. After the shock not much suction 1is
required, In comparison to the 1invascid flow, the shock strength 1is
reduced and the pressure wiggle 1s reproduced at the end of the shock.
The coefficient of 1lift 1s 0.761 as compared to the turbulent value of

0.847.

4.4 Turbulent Boundary-Layer Results With Suction

Results are presented in Fig. 4.20 for the RAE-2822 airfoil at
subcritical conditions. The free stream Mach number 1s 0.6 and the
angle of attack as 2.57°. A correction to the angle of attack 1s made
following the suggestions of Cook et al. [{94]. The results are compared
with the experimental data of Cook et al. {94] and with the theoretical
results of Thomas (74). The Reynolds number based on the chord length

is 6.5 mi1llion. The viscous-inviscid i1nteraction was started at about

15% of the chord on the lower surface and at 18% of the chord on the
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Fig. 4.20 Pressure distribution on the upper surface of RAE-2822

supercritical airfoil at M_ = 0.600, a = 2.570, and

Re = 6.5 X 106.
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upper surface. 1In the experiment the boundary layer has been tripped at
these locations. The initial displacement thickness values correspond
to the experimental data. The calculations were performed on a C-type
mesh wusing 128 points along the airfoil and 30 points away from the
airfoil. The boundary layer was 1iterated for every 20 cycles of the
inviscid calculations (after the first 100 cycles). In the forward
portion of the airfoil, where there 1s a pressure peak, results obtained
from the present calculations agree closely with the experimental
values. The turbulent flow remains attached until the trailing edge and
there 1s no suction applied in this case. The lift coefficient, C!.'
values were found to be 0.71 and 0.65 for inviscid and turbulent flows,
respectively., The results for the RAE-2822 airfoil for supercritical
conditions are 1i1llustrated in Fig. 4.21. The free stream Mach number 1s
0.73, the corrected angle of attack is 2.78°%, and the Reynolds number
based on the chord length is 6.5 million. These conditions correspond
to case 9 of Ref. 94. These calculations were also obtained using a C-
type mesh with 128 x 30 points. The grid was highly stretched away
from the airfoil until the change in the lift coefficient was small
[74). The 1inviscid 1lift coefficient showed no appreciable change after
600 time steps. The extent of reduction in the maximum residual 1s of
fourth-order. After the first 100 time steps the boundary layer was
interacted for every five time steps. Although this aincreases the
computational time, the results were more accurate. Because of frequent
updating, the viscous-inviscid 1interaction process 1is closer to the
strong interaction conditions. The interaction was started at about 18%

of the chord with the initial displacement thickness values from the

experiment (94). For comparison, the equilibrium dissipation model of
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Fig. 4.21 Pressure distribution on the upper surface of RAE-2822
supercritical airfoil at M _ = 0.73, a= 2.780, and
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Thomas [74] was used. The pressure coefficient values are compared 1in
Fig. 4.21. In the forward portion of the airfoil the pressure
coefficient values are slightly lower with the present model. In this
area results using the equilibrium dissipation model of Thomas [74) are
closer to the experimental data. The agreement between the results of
the two methods i1s very good except close to the shock foot. The Cp
values are underpredicted near the shock and in the rearward portion of
the airfoil. The lift coefficient values are found to be 0.97,0.90 and
0.91 for the 1inviscid, equilibrium dissipation, and present methods,
respectively.

Results are presented for a supercritical case with separation at
about 60% of the chord in Fig. 4.22. This case corresponds to case 10
of Ref. [94]. The free stream Mach number is 0.75 and the Reynolds
number of the flow is 6.2 million. The corrected angle of attack is
2.81°. The viscous-inviscid interaction calculations were started at
about 18% of the chord on the upper surface and at 15.5% on the lower
surface. The boundary layer has been tripped to become turbulent at
these points in the experiment. The present results are compared with
the experimental data of Cook et al. [94]. The pressure distribution in
Fig. 4.22 indicates that the agreement with the experiment is good in
the acceleration zone where the boundary layer as thin. In the
experiment the flow separation was observed near the foot of the shock
between 62-72% of the chord length, In the present method suction was
applied near the shock foot to keep turbulent attached flow conditions
on the airfoil. The displacement thickness values are compared in Fig.
4.23. Because of suction, the displacement thickness does not increase

as rapidly as the experimental values in the pressure rise area. 1In the
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Fig. 4.23 Displacement thickness distribution on the upper surface of
RAE-2822 supercritical airfoil at MQ = 0.75, a= 2.810,

and Re = 6.2 x 106.
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experiment the wake 1s much thicker due to turbulent separation compared
to the turbulent attached flow results by the present method. Because
of this reason the Cp values are higher near the trailing edge.

The upper surface pressure distribution is presented in Fig. 4.24
for the NACA-0012 airfoil at subcritical conditions. The free stream
Mach number 1s 0.601 and the corrected angle of attack based on the
linear theory 1is 3.19° [95). The Reynolds number of the flow 1s three
mi1llion. The results are compared with the experimental data of Harrais
[95). 1In the experiments the flow was tripped at about 5% of the chord
length. The boundary-layer interaction was started corresponding to the
experimental data. The numerical results obtained in this study and by
Thomas {74) agree closely with the experimental data. However, better
agreement 1s noted between the experiment and the present method in the
forward portion of the airfoil. 1In the rearward portion, the pressure
distribution 1s very close to the inviscid case.

The pressure coefficient results are presented in Fig. 4.25 for a
free stream Mach number of 0.758 and for an angle of attack of 3.06°.
Suction was applied at about 30% of the chord to keep the flow from
being separated. In the experaiment there was no attempt to apply any
suction. The flow might have separated at about 35% of the chord and
reattached after the shock. For the above conditions, the computer
program using the equilibrium dissipation model failed to produce any
results because of the extensive separation of the flow. Also the
present method does not work if the suction is not applied before the
separation occurs. The agreement between experiment and the present
method is good up to about 30% of the chord. The turbulent boundary

layer thickens rapidly after that point. The flow 1is separated and the



-1.6—

-1.4

-1.2

- INVISCID FLOW

O TURBULENT FLOW (THOMAS)
¢ TURBULENT FLOW (PRESENT)

Fig. 4.24

Pressure distribution on the upper surface of NACA-0012

o 6
airfoil at M_ = 0.601, o= 3.19, and Re = 3.0 x 10 .

837



— INVISCID FLOW

-1.0 }— O EXPERIMENT (HARRIS)
0 TURBULENT FLOW

(PRESENT)

Fig. 4.25 Pressure distribution on the upper surface of NACA-0012

airfoil at M_= 0,758, a = 3.06°, and Re = 3.0 x 106.

(&)



89

shock front 1s moved towards the leading edge and also, as observed in
the case of laminar flow, the strength of the shock is reduced. By
applying the suction before the separation point, the flow separation
was delayed by about 20% of the chord. The pressure rise is much more
gradual that a1t would be 1n the case without the suction. After the

shock the computational results are close to the experimental data.
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Chapter 5

CONCLUSIONS

The viscous/inviscid interaction over transonic airfoils with and
without suction 1s studied. Two approaches are considered to achieve
the coupling between the viscous and inviscid flows. The first approach
1s a direct approach and 1s referred to as the hybrid method. In the
second approach the entire inviscid flow field 1s ainvestigated by
solving the Euler equations using finite volume technique. The viscous
flow 1s coupled to the inviscid flow using surface transpiration
condition.

The interaction process in the hybrid method 1is continuous, and
since all the dependent variables are calculated simultaneously, the
convergence 1s faster and the solutions are more accurate. Using thas
method, flow over a 6% thick circular arc airfoil at Mn = 0,868 and
a = 0o is studied. In the forward portion of the airfoil it was
sufficient to apply weak interaction formulation and the strong inter-
action equations are applied near and downstream of the shock. The
separation was predicted at 70% of the chord and 1is in complete agree-
ment with the experimental data of Collins and Krupp [(81}. The pressure
distribution calculations using laminar separated velocity profiles show

a good agreement with the experimental values {[81].
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To avoid the Goldstein singularity near the separation point, the
boundary-layer equations and the initial conditions are derived in an
“nverse  form to obtain regular solutions for the flows with small
separations. It 1s important to apply minimum amount of suction that 1is
required to have attached flow on the airfoil. A method 1s developed to
achieve this by varying the suction parameter based on the velocity
profile parameter wvalue. The suction distribution thus obtained ais
considered to be close to the optimum value. At subcritical conditions
the present solutions are compared with the experimental data [89-91)
and the agreement is excellent for NACA 66-~012, DESB 154 and KING COBRA
airfoils. These comparisons for subcritical airfoils establish
confidence in the suction velocity profiles that are obtained using the
small perturbation theory and the state variable approach of Forbrich
[60].

Results are obtained for RAE-2822 and NACA-0012 airfoils at super-
critical conditions. These results indicate that a small amount of
suction is required to avoid flow separation near the pressure peak at
the leading edge. Most of the suction requirement is to maintain
attached flow conditions in the rear part of the airfoil or near the
shock. Application of larger amount of suction than required was found
to have destabilizing effect on the boundary 1layer. Laminar® flow
separation reduced the shock strength considerably and shock is moved
forward in comparison to the laminar attached flow with suction.

The results from the present study are in good agreement with the
theoretical as well as the experimental data for attached flow condi-
tions with turbulent boundary layer. At supercritical conditions the

boundary layer tends to separate and application of suction has been
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consldered to maintain attached flow. Although the eddy viscosity model
used 1s valid for both attached and separated flow conditions, the flow
separation calculations could not be performed satisfactorily, perhaps
due to the presence of suction. If the experimental data is available
for turbulent separated flow with suction, the present method could be
extended to separated flow conditions. For laminar as well as turbulent
boundary layers the displacement thickness 1s small compared to the
corresponding separated flow conditions and the wake thickness 1s much
smaller. The strong ainteraction near the trailing edge has to be
considered 1f the flow separates near the shock.

The boundary-layer integral method coupled with the method of
integral relations gives a computationally inexpensive solution for
transonic laminar viscous-inviscid 1interaction over airfoils. However,
this method requires man-machine interaction and the solution can not be
obtained in one computer run. The inverse boundary-layer approach
obtains the flow solution as well as the suction distribution to keep
the attached flow on the airfoil in one run. However, the boundary
layer equations are not of strong interaction type. Since the shock
influence point has to be determined in an aiterative process the
computational requirement is very high. The vectorized version of the
Euler solver for the inviscid flow could be used in a further study to
include the shock influence point iteration so that the strong interac-

tion model is incorporated.
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LAMINAR BOUNDARY-LAYER EQUATIONS WITH SUCTION
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The laminar boundary-layer equations (2.15) can be expressed as
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TURBULENT BOUNDARY-LAYER EQUATIONS WITH SUCTION
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turbulent boundary-layer equations are given by Equation (2.52)
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