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By 
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SUMMARY 

The viscous/inviscid interaction over transonic airfoils with and without 
suction is studied. The streamline angle at the edge of the boundary layer is 
used to couple the viscous and inviscid flows. The potential flow equations 
are solved for the inviscid flow field. In the shock region, the Euler 
equations are solved using the method of integral relations. For this, the 
potential flow solution is used as the initial and boundary conditions. An 
integral method is used to solve the laminar boundary-layer equations. Slnce 
both methods are integral methods, a continuous interaction is allowed between 
the outer inviscid flow region and the inner viscous flow region. 

To avoid the Goldstein singularity near the separation point the laminar 
boundary-layer equations are derived in an inverse form to obtain solutions 
for the flows with small separations. The displacement thickness distribution 
is specified instead of the usual pressure distribution to solve the boundary­
layer equations. The Euler equations are solved for the inviscid flow using 
the flnite voluMe technique and the coupling is achieved by a surface 
transpiration model. A method is developed to apply a minimum amount of 
suction that is required to have an attached flow on the airfoil. The suction 
parameter is varied based on the velocity proflle parameter and the suction 
dlstribution obtained is considered to be close to the optimum value. The 
turbulent boundary layer equations are derived using the bi-logarithmic wall 
law for mass transfer. The solution method is similar to the laminar inverse 
boundary-l ayer approach. The results are found to be in good agreement with 
available experimental data and with the results of other computational 
methods. 

IGraduate Research Assistant (ICAM Fello\lJ), Dept. of Mechanical Engineering 
and Mechanics; present affiliation, Analytical Services and Materials, Inc., 
Hampton, Virginia 23666. 

2Eminent Professor, Dept. of Mechanical Engineering and Mechanics; Director of 
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Chapter , 

INTRODUCTION 

Transon1c flows are the flows 1n Wh1Ch the local flow speed 1S 

close to the local speed of sound. These flows occur 1n nozzles, over 

propellers and turb1ne blades, around blunt bod1es flying superson1cally 

and near a1rplanes Wh1Ch fly close to the Mach number of one. The 

1nterest 1n transon1C flow started due to the problems encountered 1.n 

the attempts to design eff1cient commerC1.al a1rcraft wh1ch fly close to 

but below speed of sound. 

The most d1st1ngu1sh1ng feature of transon1C flows is the1r m1xed 

flow character. The accelerat1.on of the 1n1 t1ally subson1c flow over 

the forward port10n of an a1rfoil 1.S suff1.c1ent to prov1de an embedded 

reg10n of superson1c flow adJacent to the a1rfo1l surface. Th1s 

supersonl.c reg10n is terminated by a shock wave that recompresses the 

flow. 

The quaIl tatl.ve behavl.or of hft and drag coefhc1ents and 

* as funct10ns of free stream Mach number M 1.5 discussed in [1] • .. 
The crl. t1cal Mach number M 

cr is the value of M for Wh1Ch an .. 
embedded superson1c region fl.rst appears. As the Mach number 1ncreases 

* The numbers in brackets indicate references. 
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beyond Mcr ' the supersonl.c regl.on grows, l.nCreaslng the strength and 

extent ot the terml.natl.ng shock; C
t 

also l.ncreases and Cd esscntlally 

remal.ns constant. As H... lncreases beyond Md , the drag r1se Mach 

number, shock and VlSCOUS lnfluences cause a rapld lncrease 1n drag and, 

eventually, a decrease l.n llft. Therefore, the opt1mum crU1se Mach 

number l.S for the value of M.. Just above Md' 

The maln obJect1ves for fl.ghter type al.rcraft are h1gh 11ft at low 

drag level, hl.gh thrust-to-drag ratlo for acceleratl.on, and hlgh load 

factors for maneuvers. These features make the analysl.s of transonlC 

flow fl.elds one of the most studl.ed l.n fluld dynamlcs. To l.mprove these 

factors the performance of al.rcraft, detal1ed studl.es 

(comprlslng both wlnd tunnel testl.ng and fluld dynaml.c computatl.ons) 

have to be performed. The hlgh cost of transonic wl.nd tunnel test tl.me 

severely ll.ml ts the number of conflguratl.ons that can be cons1dered In 

the search for the optlmum desl.gn. Consl.derable attentl.on has been 

dlrected l.n recent years In developlng theoretlcal models for the deslgn 

of aerodynaml.c bodies to supplement wlnd tunnel sl.mulatl.ons. Theoretl.­

cal methods reduce the cost of wl.nd tunnel testlng and also provlde a 

data base to check errors due to wlnd tunnel wall lnterference, in­

correct Reynolds number scallng, model and stl.ng deflectl.ons under 

load. A natural approach to the computatl.on of transonlC V1SCOUS-

l.nvlscl.d l.nteraction lS to use the Reynolds averaged Navler-Stokes 

equatl.ons as a global solutl.on procedure. However accordl.ng to present 

trends (2), It could be a long tlme before computers Wl.ll attal.n the 

power requl.red to perform the routlne englneerlng calculatlons uSl.ng the 

Na Vl.er-S tokes equa tl0ns. An alternatlve lS to use a zonal solutl.on 

method to compute the transonic V1SCOUS-lnviscid interactlon. Th18 



3 

method lnvolves solvlng dlfferent numerlcal algor1thms tor varlOUS 

reg10ns of the flow. An advantage of zonal methods 1S that slmpler 

equat10ns are used 1n reg10ns where perm1ss1ble and, consequently, 

computer requl.rements are reduced. A d1sadvantage of zonal methods 1S 

that l.nfOrmatlon must be exchanged at zonal boundar1es or zonal overlap 

reg10ns, wh1ch can cause convergence and stabll1ty problems. 

The f1rst maJor breakthrough to solve the govern1ng nonllnear 

part1al dl.fferent1al equat10ns was made by Magnus and Yosh1hara [3]. 

They presented a method to solve the steady supercr1 t1cal planar flows 

over ll.ftl.ng al.rfOlls uSl.ng the fl.nl.te-dl.fference technl.que. Steady-

state Solutlons were obtal.ned as the asymptotl.c flow for large tl.mes. 

Ma thema tl.cally, the deSCrl.ptlon of steady transonl.C flows requl.res the 

solutl.on of "m1xed equatl.ons," whl.ch are elll.ptl.c l.n subsonl.c regl.ons 

and hyperboll.c in supersonl.C regl.ons. The problem l.S nonll.near, and 

solutl.ons generally contal.n dl.scontl.nU1 tl.es representl.ng shock waves. 

Murman and Cole [1] presented a governl.ng steady transonic small 

d1sturbance potentl.al equat10n USl.ng a m1xed fl.n1 te-d1fference system. 

They used central dl.fference formulas l.n the subsonl.c regl.on, where the 

governlng equatl.on l.S elll.ptl.c and upwlnd dl.fference formulas l.n the 

supersonic regl.on, where l.t l.S hyperboll.c. 

extended this method to ll.ftl.ng al.rfol.ls. 

Krupp and Murman [4] 

These 1nl. tl.al successes 

started a new fl.eld of study, the computatl.onal transonlC aerodynaml.cs. 

After the approach suggested by Murman and Cole [1] for solutl.on to 

the transonl.C flow problems there was cons1derable research l.nterest to 

solve potentlal flow equatl.ons USl.ng dl.fferent techniques. Lomax et ale 

[5], Klunker and Neuman [6], Schml.dt et ale [7], Albone et ale (8], and 

Van der Vooren et ale {9] have used varlOUS forms of the transonic small 
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d~sturbance equat~ons w~th the a~m ot ~mprov~ng the solut~on~. There ~s 

also a parallel effort to solve the exact potent~al equat~on. 

,Garabed1an et ale [10] solved the full equat~on for veloc~ty potent~al 

uS1ng a relaxat10n techn1que s1m1lar to Murman's transon1C small 

perturbat10n method. In th1S method the central d1fference scheme for 

subson1C flow 1S replaced by a 'retarded' d1fferenc1ng scheme for 

superson1C flow. Jameson [11], Ar11nger [12], Baker [13], and Caughey 

and Jameson [14] have obta1ned results for two-d1mens10nal and aX1ally 

symmetr1c flows. Jameson [15] solved the transon1C full potential flow 

equation US1ng a 'rotated' d1fferenc1ng scheme to conf1rm w1th the local 

stream d1rect10n. Carlson [16] solved the full, 1nv1sc1d perturba t10n 

potent1al equatl.on 1n a Cartesl.an system. The second-order partl.al 

differentl.al equatl.on l.S replaced w1th a nonconservat1ve system of 

hnite d1fference equat10ns wh1ch l.ncludes Jameson's rotated 

dl.fferencl.ng scheme at the superson1c pOl.nts. Using a stream functl.on 

approach, Hafez and Lovell [17] solved the transon1C 1nVl.SC1d flow 

equations. Also numerous techn1ques were developed to l.mprove the 

efficl.ency of the basic algor1 thms. Ballhaus et a1. [18] developed 

l.mpllclt approxlmate factorl.Zatlon algorl.thms for steady-state transon1c 

flow problems to accelerate convergence. 

multigrid method to achleve thl.s goal. 

South and Brandt [19] used a 

A hybrld POlsson solver/ 

successl.ve hne over relaxatl.on (SLOR) scheme proposed by Jameson (20] 

substant1ally increased the computat1onal efhciency over the 

convent10nal SLOR scheme. 

The compar1son between the solutl.ons uSlng the potentlal flow 

equations and experl.mental data 1S not very good 1n the m1d to upper 

transonic regions. ThlS is because of the isentropic assumption 
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l.nherent l.n these formu la tl.ons. Recently, l.t was also dl.scovcred that 

these solutl.ons are not unl.que; tor certal.n angles of attack and Mach 

numbers, the full potentl.al flow equatl.on Yl.elds multl.ple solutl.ons. 

Also, large negatl.ve or POSl. tl.ve hft l.S predl.cted even for symmetrl.c 

al.rfol.ls at zero angle of attack. Stel.nhoff and Jameson (21] noted that 

the nonun1queness 15 not because of the discret1zatl.On error, but 

because of the govern1ng part1al d1fferent1al equatlon ltself. Several 

1nvest1gators studled the occurrence and behavlor of this anomaly, and 

concluded that 1t shows up 1n the conservat1ve formulat1on of the 

part1al d1fferent1al equatlon (22-24], but not In the nonconservat1ve 

formula t1on. Th1S sugges ts that the anomaly lS aSSOC1a ted Wl th the 

apprOXl.mate treatment of shock waves w1thln the potentlal formulat1on 

Slnce thlS is the maln difference between the conservatlve and 

nonconservatlve formulatl.ons. 

The solutl.on of EUler equat10ns do not show the anomalous behav10r 

as exhlb1ted by the potentlal Solutlons. However, the cost of computa­

t10ns lS higher. For flows 1n the upper transonic range 1t lS necessary 

to solve the Euler equatlons because of the rotat1onal nature of the 

flow. The compar1son between the Euler and potent1al Solutlons lS found 

to be excellent 1n the lower transonlC or subsonlc range. US1ng Euler 

equat10ns 1n the whole flow f1eld or 1n the shock reglon should 1m prove 

the resul ts. Euler equat10ns can be solved e1ther by using the method 

of 1ntegral relat10ns (MIR) or by the flnlte-difference technique. The 

method of 1ntegral relat10ns has been used by Holt and Masson [25), 

Meln1k and Ives (26], Sato (27), and Tai [28] to solve the Euler 

equat1ons. Thls method 15 val1d for transonic flows W1 th moderate to 

strong shocks. The disadvantage of MIR 18 that the solution procedure 
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requ1res man-mach1ne 1nteract10ns because of the mult1ple 1terat1ve 

processes 1nvolved. L1epmann [29J and Ackeret et ale [30J 1nvest1gated 

the phenomenon of the transonl.C Vl.Scous-l.nvl.sc1d l.nteractl.on. 

experiments showed that the shock and the boundary layer l.nteract 

strongly Wl.th each other. Thl.s phenomenon l.S of great complexl.ty 

because the behav10r of the boundary layer depends ma1nly on the 

Reynolds number, whereas, the cond1t10ns 1n a wave are pr1mar1ly 

dependent on the Mach number. The pressure d1sturbances caused by the 

shock propagate upstream through the subson1c port10n of the boundary 

layer caus1ng the flow to separate ahead of the shock. 

Bauer et ale (31,32] 1ncorporated the Nash and Macdonald [33] 

turbulent boundary-layer method l.nto the 1nv1sc1d Garabedl.an method 

[10]. The v1scous-1nvl.sc1d 1nteractl.on was taken 1nto account uS1ng a 

so11d dl.splacement model. Collyer and Lock (34-36] used the lag 

entra1nment method of Green et a1. [37] to calculate the turbulent 

boundary layer. The surface transp1rat10n model was used to represent 

the d1splacement effect of the boundary layer and wakes on the 

equivalent 1nvisc1d flow. Th1S method has an advantage over the 

prev10us method in that the computat10nal gr1d needs to be generated 

only once. Meln1k (38] used a 'mult1 deck' model near the tra111ng-edge 

reg10n, based on the asymptotic theory of turbulent shear flows 1n the 

11m1 t of 1nf1n1 te Reynolds number. The match1ng between the 1nv1scid 

and V1SCOUS solut10ns 1S achieved using the surface transpirat10n model. 

Klineberg and steger [39] treated the V1scoUS-1nvl.scl.d l.nteractl.on 

by uS1ng a boundary-layer 1ntegral approach combl.ned W1 th a fl.ni te­

difference relaxat10n technique for the small d1sturbance equat10ns. 

Inviscid and viscous flows are treated separately even for strong 
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1nteract10ns. Br 1ll1ant and Adamson [ 40) used the me thod of rna tched 

asymptot1c expans10ns for an 1nc1dent shock 1nteract1ng w1th an 

unseparated laminar boundary layer 1n transon1C flow. Ta1 [41] coupled 

the inv1sc1d transonic solut10n obta1ned by uS1ng the method of 1ntegral 

relations W1 th the integral method developed or1g1nally by Lees and 

Reeves [42] and refined by Klineberg and Lees (43] for compress1ble, 

attached and separated lam1nar boundary layers. 

All of the methods d1scussed above are d1rect methods where the 

external pressure d1stribut10n 15 prescr1bed and the boundary-layer 

quant1ties are calculated. These methods exh1b1t the Goldste1n 

s1ngularity near the separat10n and are 11mited to attached flow 

condl.tions. As demonstrated by Goldste1n [44], the boundary layer 

growth rate becomes inf1n1te when the shear stress grad1ent is l.nfl.nl.te 

causing a sl.ngularity at the pol.nt of separatl.on. Thl.s was confl.rmed by 

Kl1neberg and Steger (45), Werle and DaV1S (46), and Pletcher and Dancey 

[47 J • It is also posssible to get nonun1que solut10ns from dl.rect 

boundary-layer solutions. For non-s1m1lar flows thl.s problem was noted 

by Murphy and Kl.ng (48). Catherall and Mangler (49) po1nted out that 

th1s does not l1m1t the validity of Prandtl ' s boundary-layer equat10ns 

past separation. Using an inverse approach where the boundary-layer 

th1ckness d1strl.bution is spec1f1ed, thl.S problem could be avol.ded. 

Many of the recent researchers have used 1nverse boundary-layer 

equations to calculate separated flows. Carter [50] showed that the 

inverse boundary-layer solut10ns compare well with the Navier-Stokes 

solutl.on. Cebeci et al. [51) used a nonl1near e1genfunct10n formula-

tion, and Klineberg et ale [45] and Horton [52) specl.fied shear stress 

in their calculations to obtain regular solutions. 
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The h1gh cost and t1me requ1rements and the resources ava1lable for 

conduct1ng exper1ments e1 ther 1n the w1nd tunnel or 1n fl1ght warrant 

, the need for an approx1mate suct10n d1str1but1on from a rel1able 

numerical method. Also, the solutl.on procedure should be faster and 

effl.cl.ent to perform the routlne calculations on any desl.red al.rfol.l. 

It l.S essentl.al to have an idea about the 8uctl.On quantl. tl.es or the 

velocities to maintain full chord laml.nar flO';o1 to reduce Vl.SCOUS drag. 

Thl.s wl.ll lead to a better desl.gn of Natural Laml.nar Flow (NLF) or 

Lam1nar F10';01 Controlled (LFC) airfol.ls. The computatl.onal procedure 

should l.nclude both the laml.nar and turbulent boundary-layer models w1th 

a transition crl. terl.a. In the Vl.Scous-l.nviscid l.nteractl.on near the 

shock and the tral.1ing edge, the wake curvature effect have to be 

considered. The specifl.c obj ectl. ves of the present study, therefore, 

are to develop a computational method which would consl.der laml.nar as 

well as turbulent attached boundary-layer l.nteractl.on for the f10';01 over 

transonic al.rfoils, and to develop a method to obtain the suctl.on 

dl.strl.butl.on for mal.ntal.nl.ng attached f10';01 on the al.rfol.1. 

In Chap. 2 governl.ng equatl.ons for the l.nviscl.d flow as well as the 

dl.rect and inverse boundary layer equatl.ons are presented. Method of 

solution to solve these equatl.ons lS d1scussed in Chap. 3. Also, the 

interactl.on models to couple the outer l.nviscid flO';o1 with the lnner 

viscous flow are presented. Results are obtained for several alrfoils 

using the direct and the l.nverse boundary-layer approaches for laminar 

and turbulent flows. These are compared w1th the available experl.mental 

as well as other numerl.cal results l.n Chap. 4. 



Chapter 2 

THIDRETICAL FORMULATION 

2.1 Basic FOraulation for Inviscid/V1SCOUS Interaction 

The ml.xed flow fl.eld over an airfoil l.n the transonl.c range l.5 

l.llustrated in Fl.g. 2.1. Except 1.n the shock region the potentl.a1 flow 

equatl.on l.S solved by a f1.nl. te-d1.fference re1axatl.on technl.que. Euler 

equa tl.ons are solved in the shock regl.on. In Sec. 2.1.1 the governl.ng 

equatl.ons for the 1.nvl.scl.d flow are presented. The direct boundary-

layer equatl.ons are derl.ved in Sec. 2.1.2 and the correspondl.ng l.nl.tl.a1 

condl.tions are gl.ven 1n Sec. 2.1.3. 

2.1.1 InV1.5C1.d Flow 

Under the assumption of 1.nvl.scl.d and irrotationa1 flow the 

transonic potent1.al flow equatl.on l.5 given by [53] 

(2.1 ) 

where , l.5 the ve locl. ty potentl.al. 

Introducl.ng a perturbatl.on potentl.al of the form 

t 1& xV cos a + yV sin a + V , m m _ (2.2) 
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Equat10n (2.1) can be wr1tten as 

(2.3) 

where u = t and v = t are the veloc1 ty components, and 
x y 

a2 
:::I a: _ (Y; 1) [u2 + v2 _ v:l 

Equat10n (2.3) has the form locally, e1 ther of a wave equa t10n (hyper-

bo11c type) represent1ng superson1c flow ( t > 1), or of a Laplace 
x 

equat10n (ell1pt1c type) represent1ng the subson1c flow (t < 1). The 
x 

nonl1near term, uvt allows the transit10n from one type to another. 
xy 

The boundary conditions for lnvisc1d flow are g1ven as 

(2.5a) 

t = ~1f tan-
1 (8 tan( e - a») (2.5b) 

where circulatl.on r is determl.ned by the change in potent1al across 

the Kutta-Joukowski cut at the tral.ling edge (TE), i.e., 

r .. (t 
+ y=o 

- t _) (2.5c) 
y=O TE 

The potential flow equation 1S rearranged in rotated coord1nates 

parallel and perpendicular to the local velocl. ty. This rearrangement 

permits coordl.nate stretchl.ng 1n the phys1cal plane and avoids computa-

tional problems in the supersonic region. Several methods are available 



12 

[32,54] to solve the potent~al Eq. (2.3) subJected to the boundary 

condit~on, Eq. (2.5). 

The isentrop~c assumption inherent in the potent~al flow equat~on, 

Eq. (2.3), ~s not val~d ~n the case of moderate to strong shocks across 

which the increase in entropy cannot be neglected. Therefore, ~n the 

shock region it is necessary to solve the Euler equat~ons for the 

inviscid flow solution. The Euler equat~ons are expressed in vector 

form as 

where 

and 

A + B = 0 
x y 

1 2 2 
CpT + 12 (u + v ) = 

52 - 5 
P - P Y exp ( C 1) 

v 

constant 

2.1.2 Viscous Flow 

(2.6a) 

(2.6b) 

(2.6c) 

The governing equations for a steady, two-dimensional compressible 

lam~nar boundary layer in coordinates parallel and normal to the surface 

are 



Contlnuity: 

s-momentum: 

n-momentum: 

Energy: 

Equatlon of state: 

a(p.,t) 

as 
a( pv) 

+ an 

~= 0 an 

o 

2 2 
C T + 1/2 (u + v ) = 0 

p 

p = pRT 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Illingworth [55] and Stewartson [56] have shown that for an 

adiabatic surface and for a fluid with a Prandtl number of unlty, the 

compressible boundary-layer equation can be transformed lnto an 

incompresslble form. By applying the Stewartson transformation, 

saP 
t = f ~ ~ ds· a P , o ...... 

(2.11a) 

u 
Pan p a 

(~)(~)2 u 1-.. f .....!. ~ L dn (a ... /ae )UI v... P a as 0 pap 
e e ...... e 

(2.11b) 

+ 
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Eqs. (2.7) - (2.9) are reduced to the 1ncompress1ble form as 

au av 
- + - = 0 at an (2.12) 

(2.13) 

In order to avoid the sem1-emp1rl.cal features 1nherent 1n the methods 

such as Crocco-Lees [57], a moment of momentum equat10n is used 1n 

add1t10n to Eqs. (2.12) and (2.13). Upon multiplY1ng Eq. (2.13) by u, 

one f1nds 

(2.14) 

The govern1ng partial d1fferent1al equations, Eqs. (2.12) - (2.14), 

are integrated across the boundary layer result1ng in three ord1nary 

d1fferent1al equations. These equat10ns can be written in the matr1x 

form as 

F 

* H 6 
1 

dJ * J 6 
dH 1 

It 

6 f 
i A 
M 

e 

* 6. (2H + 
1 

M e 

* 36 J 
1 

M 
e 

1) 

It 

d6. 
1 

ds 

dH 
ds 

dM 
e 

ds 

.. 

L 
m 

e 

+ m 
__ ~e tan e 

+ m eo 

V M 
8~st- w +-

M U 
e Re * e 

6 
1 

M V 
eoR w s---+ 

U M 
Re * e e 

6 
1 

v 
w 

U e 

(2.15) 



where 

* e 1. 
J = *, 

6 1. 

* 6 
2 61.' 1.., f (~)2 

R 0= ~ 0 an 
e 

, + m 
F=H+-__ e_ 

z 1 

* f 
6 0 1. 

6 
1. 

m 
e 

U U dn, 
e 

dn 

Re 
* 0 1. 

e 
H = -l:. 

* 6 1. 

V ... 
- co 

V ... 

2 

* 
1. 

m 
( .l±.l e) ll::l 

fA = 2 + Y-l ..,-:;:;- H + y-l + 

M - 1 e 
m (l+m ) Z 

e e e 
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U 
For a given velocity profile U' the 1.ntegrals in Rand Z can be 

e 
evaluated and the system of Eq. (2.15) can be solved s1.multaneously. 

Lees and Reeves (42) have shown that the solut1.ons of the Falkner-

Skan [58) equation for similar flows 1.ncluding reversed flow profiles 

calculated by Stewartson [59) can be used to determine J, Q, H, R, 

and Z as functions of a s1.ngle parameter 'a'. This is referred to as 

the velocity profile parameter and 1.S given by 

iHu/u ) 
e o < a < 4 

for attached profile 



Ib 

(11.-) 
( t) f' =0 

0 ( , a = .. , ( a 
lSi U 

0 
to•99 for separated proble -. 

U 
e 

a .. (~ ) = (f' ) f=O' 0 ( a ( 0.46 
e dlvldlng for wake reversed prof1.le 

streamline 

(UU ) a = = ( f ' ) t=O' 
e n=0 

o ( a ( , 
for wake forward profile 

The quantity f lS obtained from the solutlon of the Falkner-Skan 

equatl.on 

fIt' + ff" + b(l _ f,2) o (2.16) 

subjected to the boundary conditions 

f(O) = 0 

fICO) = 0 

lim f' ( 1;) .. 1 
l,;~ 

These relations for 'a' are valid not only in the case where there is 

no mass transfer at the wall, but also l.n cases Wl. th mass transfer 

provided f 

conditions 

1.5 obtained by solving Eq. (2.16) with the boundary 

f(O) .. £ 

fICO) = 0 

lim f'( ... ) .. 1 
t~ 
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Cons~der~ng £ to be a small perturbat~on, Eq. (2.16) can be wr~tten as 

and the boundary conditions as 

£ (0) + a (0) ... £ 
1 2 

(2.17a) 

£'(0) + a'(O). 0 
1 2 

(2.17b) 

(2.17c) 

For small perturbations, the 
o 

£ equation is expressed as 

£ ' " + £ f" + b (1 - £,2) .. 0 
1 1 1 1 

(2.1S) 

£~ (0) = 0 

and 

lim f'(I;)'" 1 
1;- 1 

The 
1 

£ equation can be expressed 

fe"~ + f f" + f f" + 2bf £1. 0 
2 2112 12 

(2.19) 

and the boundary conditions are 



f'(O) = 0 
2 

lilll f
2
1 (r;) = 0 

7.;-

Equat10n (2.18) is the Falkner-Skan equation and Eq. (2.19) l.S the 

auxl.ll.ary equation governing f 2 • 

Solutl.ons to the Falkner-Skan equatl.on are available l.n the 

ll.terature for dl.fferent pressure gradl.ents. But to evaluate the 

8uctl.On quantitl.es, very accurate solutions to the Falkner-Skan equatl.on 

and the auxl.liary equation due to suction are needed. Therefore, these 

equatl.ons subjected to the respectl.ve boundary conditions are solved by 

using the state variable approach of Forbrl.ch [60]. A solution accurate 

to sixth decimal place can be obtained using this method. 

The integral quantities used in Eq. (2.15) consists of the 

perturbed and unperturbed parts. The unperturbed integral quanti tl.es 

are, 

fl(1 - fl)d7.; 
1 1 

(2.20a) 

(2.20b) 

(2.20c) 
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(2.20d) 

(2. 20e) 

where 
1;0.99 

* '\1 - f (1 - f~) dl; 
o 

The perturbed integral quantit1es are 

(2.20f) 

(2.209) 

(2.20h) 

R1 * 1;0.99 

R2 .. 6~ (1 - f 2 ( 1;)0.99) + 461 t f~ fi dl; (2.20i) 

1 

(2 .20j) 

All these quanti ties are expressed as polynomials in • a. • For any 

combination of the velocity profile parameter and the suction parameter, 
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the total quanti ties can be evaluated as H ~ H, + £H
2

, J - J, + GJ 2 ' 

etc. 

where 

NoV the system of Eqs. (2.'5) can be expressed as 

a .. , d 
1) ) 

and 

dcS· 
1 --= 

ds 

da 
-3: 

ds 

dM 
e --= 

ds 

o , 

d a'2 a'3 , , 
d

2 
a

22 
a

23 0, 

d
3 

a
32 

a
33 

a, , d, an 

d
2 a 2 , a

23 dH o • 
da , 

d
3 a 3 , a

33 

a" a'2 d, 

-'- d
2 a 2 , a

22 0, 
a a

32 
d

3 3' 

are given 1n Append1x A. 

(2.2' ) 

(2.22) 

(2.23) 

In the usual boundary-layer calculat10ns, the pressure distribution 

along the airf011 16 computed uS1ng an inviscid method, and the 

boundary-layer quant1 ties are evaluated. Since the solution of the 

viscous and inviscid equations 1S not s1multaneous, mass transfer 

between these two regions 1S not allowed and only the momentum and 

moment of momentum equations are used. 
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For a spec1f1ed pressure d1stribut10n, Eq. (2.'5) reduces to 

* * 
* 

do M .. ~ V o (2H + , ) dM 
H 0 1 

B +~ 1 e 
1. ds M * U m ds e Reo e e 

1. 
(2.24) 

* 
* dJ dH M 

CD R V 30 J dM 
~ 1 ~ J 0 B---+ 1 dH ds M Re * U M ds 

e IS e e 
1 

Th1S may be rewr1.tten as 

* b
2 

a
22 do. 

-'-1. (2.25) --"" ds D2 b
3 

a
32 

da 1 
a

21 
b

2 
-= (2.26) 
ds D dH b3 2 da a 31 

where 

a
21 

a
22 

D2 
a

31 
a

32 

dM 
b

2 d -
e 

= a 23 2 ds 

dM 
b

3 d -
e 

= a 33 3 ds 

These equations have a singularity at the separation point. If suction 

1.S not applied before the flow separates, the denominator becomes zero 
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and the boundary-layer equat10ns cannot be app11ed past separat10n 

p01nt. This formulat10n, termed as the weak interaction formulat10n, 

,should be applied only 1n the attached flow region. 

2.1.3 In1t1al Cond1tions 

To avo1d the stagnat10n point s1ngularity the calculat10ns are 

started away from the leadl.ng edge. Kll.neberg and Steger [61J, Ta1 

[28], and Ram et al. [62] assumed that the flow is locally s1ml.lar to 

deri ve the l.ni tial cond1 t10ns. 11.1 though this assumptl.on l.S vall.d for 

only thl.n al.rfoils, 1t was found by Tal. [28J that these condl.tions can 

be appll.ed also to blunt airfol.ls to obtal.n converged solutions. 

or 

or 

H 

For a locally siml.lar flow, da = 0 and Eq. (2.26) reduces to 
ds 

= 0 

a b - b a = 0 
21 3 2 31 

* * M V M V 6.(2H+1) dM 36 J dM 
co R III a ~--2- ~ 1 e 1 e a--- +- .. J + 

M 
Re * U M U M ds M ds 

e e e Re * e e e 
6 6

i l. 

(2.27) 

Upon substl. tuting for 
dM 

e 
ds 

from Eq. (2.27) into Eq. (2.25), there is 

obta1ned 
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* do V 
l. R + 2HR - 3JQ + (1 + H - 3J) ...J!! 

ds~ J(l-H) 0 
J (1 - H) Re 0 ~ e 

(2.27a) 

l. 

or 

(2.27b) 

where 

( , + H - 3J) V 

Kl 
w 

= 
J( 1 - H) U 

e 

(R + 2HR - 3JQ) 
K2 = J( 1 H)Re - c 

An l.ntegration of Eq. (2.27b) Wl.th respect to S gl.ves 

or 

From Eq. (2.27), one f1.nds 

starting with an inl.tial value of 'a', the veloc1.ty prof1.le quantities 

are computed and both sides of Eq. (2.28) are evaluated. Then the 

initial value of 'a' is updated depending upon the ratio of the right-

hand side to the left-hand S1.de. Th1.s 1. tera tl.on process 1.S con tl.nued 

until there is no appreciable change 1.n the veloc1. ty prof1.le parameter 

* 'a' • The initial d1.splacement tlll.ckness c5 is calculated for this 
1. 

value of 'a' • 
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2.2 Laminar Inverse Boundary-Layer Interactions 

The transformed Euler equa t10ns are presented in Sec. 2.2.' to 

sol ve for the entire inv1.scid flow. In Sec. 2.2.2 the boundary-layer 

equations are wr1.tten in an inverse form to avoid the Goldste1n 

singularity past the separat10n po1nt and the corresponding in1.t1.al 

conditions are der1.ved in Sec. 2.2.3. 

2.2.1 Inv1.scid Flow 

In the direct boundary-layer computations, Euler equations are 

solved only in the shock and wake regions. Because of the mul t1ple 

interative process involved 1.n solving the two different types of 

equations for the inviscl.d flow solutl.on, the computat1.onal procedure is 

d1.fficult. It is convenl.ent to solve the Euler equations in the entire 

inviscid flow region especially when the weak interaction equations are 

solved in the boundary layer. 

For numerical calculations Eqs. (2.6) are transformed 1.nto general 

coordinates using the transformation 

R = R{x,y) 

S = S(x,y) 

This results in 

A + B "" 0 
R S 

(2.29) 

where 



A 
R 

(R A + R B)/oJ 
x y c 

(S A + S B)j.J 
x y c 

oJ = (R S - R S ) 
c x y y x 

2.2.2 Inverse Boundary-Layer Equat10ns 

In the usual boundary-layer method the boundary-layer quant1tl.eS 

are calculated for a spec1fied pressure d1strl.but1on. These me thods , 

termed as d1rect methods, exhl.b1t the Goldste1n s1ngular1ty near the 

separatl.on. The flow past separat10n cannot be calculated because of 

thl.S s1ngularl.ty. However, th1S behavl.or does not l1m1t the val1d1ty of 

the Prandtl equat10ns. In an 1nverse boundary-layer method the 

boundary-layer th1ckness 1S specifl.ed and the pressure d1str1butl.on 1S 

evaluated. An l.ntegral method 15 used to solve the l.nverse boundary-

layer equatl.ons l.n the present approach. For a known boundary-layer 

thickness dl.str1butl.on, the Vl.SCOUS govern1ng equat10ns, Eqs. (2.15), 

reduce to 

* * 
* 

o (2H + 1) 
dH M ... ...2.- V do 

l. +J H __ 1 
0 

ds S M Re l. M U ds 
e e * e O. 

1 
(2.30a) 

* = * 
* dJ 30. J dM M V do 

1 e .. R --.!!! J __ l. 
6 B---+ 
l. dH M ds M Re * U ds 

e e 0 e 
1 

This is wrl.tten in a compact form as 
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dH 
a

22 
8

23 ds K3 
I: (2.30b) 

dM 
a

32 
a

33 
~ 

K4 ds 

d6* d6* 
where K = d -

H __ l. 
and K4 = d -

J __ l. 
3 2 ds 3 ds 

From Eq. (2.30b) l.t 

follows that 

da 
K3 

a
23

\ -I: 

ds o • dH 
K4 3 da 

a
33 

(2.31 ) 

(2.32) 

where Equatl.ons (2.31) and (2.32) can be 

expressed l.n an alternate form as 

da 
ds = 

where 

* * 6 d6 
(3JQ - R(2H + 1») + Ml. dSl. (J(2H + 1) -

e 

*2 
6 

0
3 

.. M l. (3J - (2H + 1) :~) 
e 

(2.34) 
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The 1.nverse boundary-layer equat1.ons, Eqs. (2.33) and (2.34), are 

checked for s1.ngular1.t1.es for both the attached and separated flow 

cond1.tions. However, for extenS1.ve reg1.ons of separat1.on, these 

equations are not valid. 

2.2.3 Initial Conditions 

Assuming the flow to be locally s1.m1.lar near the leading edge, 

da 
i.e., ds = 0, Eq. (2.33) reduces to 

or 

where 

M Re * 
e 6 

1. 

Upon substitut1.ng for 

where 

* dIS 
(3JQ - R (2H + 1») + dB 1. (J (1 - H») = 0 

K5 = 3JQ - R(2H + 1) 

* d6 
l. 

CiS 1.n Eq. (2.34), there is obtained 

( 
dJ 

H dH -

dJ 
04 a 3J - (2H + 1) dH 

(2.35) 

(2.36) 
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5l.nce the velocity profl.le parameter and the profl.le quantl. tl.es are 

locally constant, Eq. (2.36) can be l.ntegrated to obtaln 

dJ 
(H dH -

A substltutl.On for Me in Eq. (2.35), results in 

(2.37) 

(2.38) 

Solving for the velocity proflle parameter la I, which satl.sfl.es Eq. 

(2.38), gives the initial value for la l and for that value the lnitlal 

Mach number is calculated from Eq. (2.35). 

2.3 Turbulent Inverse Boundary-Layer Interaction 

The governing equatl.ons for a compressible, turbulent boundary 

layer in coordinates parallel and normal to the surface are [63] 

Continuity: 

Momentum: 

_3",-,( ~'--'-) + 
as 

a( pv) 

an = 0 

pu au + pv ~ = -k .se. + a ( B au ) as an ds pVc an 1 an 
... GO 

(2.39) 

(2.40) 



29 

By applY1ng the Stewartson transformat10n Eqs. (2.39) and (2.40) are 

reduced to the 1ncompressible form as 

Continui ty: 

u + V = 0 
1; n 

(2.4' ) 

Momentum: 

, 
UU r + VU ... U (U) + - (8, U ) 

.. T\ e e 1; Re CD n n 
(2.42) 

The l.nput quantl. ties are transformed to the incompressible form and 

after the boundary-layer calculatl.ons, the results are transformed back 

into the compressible plane. 

2.3.' Inverse Boundary-Layer Integral Method 

The governl.ng partl.al differential equations are integrated across 

the boundary layer as 

6 6 
f U dn + f V dn = 0 
o 1; 0 Tl 

or 
6 

f U dTl = V - V o 1; II) e 

6 a au f [UU + VU - U (U) - -Re - (8 - )]dTl = 0 o 1; nee 1; CD aTl 1 an 

A substl.tution for V from Eq. (2.41) in Eq. (2.44) gl.ves 

6 n 
J [UU - u J U r dTl - U (U ) 
o I; Tl O " eel; 

1 --Re 
CD 

(B, U ) ]d Tl C 0 
Tl Tl 

(2.43a) 

(2.43b) 

(2.44) 

(2.45) 
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As 1n the laminar boundary-layer problem, a moment of momentum equat10n 

is used to obtain the closure relat1onship. 

Veloc1ty Profile 

The veloc1 ty prof1le expression sim1lar to Kuhn and N1elson [64] 

has been used to el1minate the n dependence of the integral equat10ns 

and this is given by 

u 
-: 

U 
't 

+ 
2.5 R.n (1 + Tl +) + 5.1 - (3.39 Tl + + 5.1) e -0.37 Tl 

The parameter U 
't 

1S the fr1ction velocity and is given by 

(2.46) 

(2.47) 

Equat10n (2.46) consists of an inner part, consisting of a lam1nar 

sub layer and the law of the wall funct10n, and an outer part, a wake 

function. The last term in Eq. (2.46) includes the effect of mass 

transfer. 

Eddy V1SCOS1ty 

The eddy ~scosity model used is similar to that used by Ta1 (63). 

The expressions for the eddy v1scosity are as follows: 

For attached flow, inner layer 



U 

0.41 U 

B1 1 + 0.OS33{e 't _ (1 + 0.41.!L+ 
U 

0.5 0.41 ( Uu )2)} 
't 

For attached flow, outer layer 

* -(6 l't )(dp/dl;)/1S 
..:::0~.~0~'..:::3~+~0~ • ..:::0..:::0..:::3..:::8..:::e _______ w __________ _ B ",,-

1 [1+5.5(~)6] 

For separated flow, inner layer 

U 
e 

B1 "" 1 + 0.018U
e 

T\R.e
CD

[1 _ (~ )2] 

For separated flow, outer layer 

* o Re 
00 

0.013U 
e B "" --------------

1 [1 + 5.5(~)6) 

e 

't 

* 6 Re 

jl 

(2.48) 

(2.49) 
CD 

(2.50) 

(2.51) 

A subs ti tu tl.on of 
U 

U 
from Eq. (2.46) into the governl.ng equations, 

T 

w~th el~m~nated by evaluatl.ng U at the edge of the boundary 

layer, results ~n three ord~nary dl.fferent~al equatl.ons: 

= (2.52) 

where and are as given in the Appendix B. 

The dl.rect boundary-layer calculatl.on corresponds to spec~fying 

and sol v~ng for 6* and U. The 1nverse boundary-layer Solut10n 
T 

corresponds to specifying 6* and solving for and U. 
T 

Equation 
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(2.52) ~s reduced to the ~nverse form after rearrang~ng the terms as 

:::] [::~::] = [::] 
(2.53) 

where are as g~ven ~n the Append1x B. 

2.3.2 In1t1al Cond1t10ns 

The 1nit1al values for the V1SCOUS var1ables are evaluated, based 

on the Sch11chting's sk1n-fr1ct10n formula [65] for 1ncompress1ble flow 

modified to include pressure grad~ent, as 

and 

6* = ~ [k(m+l) 0/ Ue3.4+0.24/m dR]m/m+1 
u3 •4 m Re 1/ m 

e ... 

u = 
T 

0.122 
0.1 

Re 
III 

U1.24+0.24/m 
e 

(2.54) 

(2.55) 

where and k = 0.0128. Start1ng wi th the 1nv1sc1d edge 

velocity, both S1des of Eq. (2.54) are evaluated until the requ1red 

convergence condit10n 1S satisf1ed. For th1s value of the 

frictional veloc1ty U is calculated uS1ng Eq. (2.55). 
T 
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Chapter 3 

METHOD OF SOLUTION 

The numerlcal procedures used to solve the dlrect and lnverse 

boundary-layer equatlons are presented 1n thls chapter. 

3.1 Direct Boundary-Layer Interaction 

In the dlrect approach the pressure distrlbution from the lnv~scld 

flow 1S spec1f1ed and the boundary-layer quant1t1es are evaluated. The 

lnvisc1d flow over an alrfo11 1S obta1ned by solv1ng the potent1al flow 

equat~on ~n the ent1re flow f1eld except 1n the shock reg1on. In the 

shock region the Euler equations are solved using the lnformat1on from 

the potential flow. ThlS method ~s referred to as the hybr1d method. 

In Sec. 3.1.1 the solut1on method to solve the potent1al flow 

equat10n and the Euler equat10ns ~s d1scussed. A survey of the 

ava1lable V1Scous-1nv1sc1d 1nteract1on methods and the present method to 

ach1eve a continuous interact10n between the 1nvisc1d and the V1SCOUS 

flow are presented 1n Sec. 3.1.2. Also, the descr1pt1on of the solution 

procedure for both flows 1S glven. 

3.1.1 Solut1on of Inv1sc1d Flow Equat10ns 

The transon1C potent1al flow equat1on, DI. (2.3), subJected to the 

boundary cond1tion, Eq. (2.5), 1S solved by the finite-dlfference 
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relaxatlon scheme developed by Carlson [16]. In thlS method the 

governlng equatlon lS replaced by a nonconservatlve system of flnl te-

dlfference equatlons and the system of equatlons are solved by a column 

relaxatl.on technl.que. Thl.s procedure l.S adopted l.n thl.S study because 

the dl.fference equatl.ons are solved on a Cartesl.an grl.d. 

Solutl.on of Euler Equations in the Shock Regl.on 

It lS necessary to solve the Euler equatl.ons l.n the shock reg1.on 

because of the rotat1.onal nature of the flow. It 1.S also 1.mportant to 

have a contlnuous lnteractlon between the l.nV1SCld and V1SCOUS flows. 

In order to achleve thlS, the solutl.on methods should be of the same 

type for both flows. For thlS reason the method of 1.ntegral relatlons 

(MIR) lS adopted to solve the Euler equatlons. Meln1.k and Ives [26], 

Holt and Mason [25], Sato [27], Tal [28], and Ram et ale [62J have used 

thl.S method to solve the transom.c invlscid flow equatlons for varlOUS 

flow condltlons. Another advantage of uSlng the MIR lS 1 ts small 

computatlonal requlrement. 

The governlng part1.al dlfferential equatlons are reduced to 

ordlnary dlfferential equations by lntegrating Eq. (2.6) from the edge 

of the boundary layer to each strlp boundary (Flg. 3.1) at some x 

locatlon. In order to perform the l.ntegratlon, the lntegrand lS 

approxlma ted by an lnterpola tion polynom1.al. 

(2.6) can be approxlmated by 

N 
A = I ak(x)(y - Ye)k 

k=O 

For example, A 1.n Eq. 

(3.1 ) 



Potential 
flow 

solution 
specified 

, , 

Li ne 3 (potential flow sol ution specified) 
A 2-2-strip scheme 
The solution along line 2 
of set (e, 2,3) provides 
boundary condition for set (e, 1,2) 

Line 2 

Line 1 

~ line e ---- ------.... ~----. -- -----

Fig. 3.1 Integration scheme for the method of 1ntegral 

relation in the shock region. 
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USlng a second-order approxlmatlon for Eq. (2.6) the method can be 

l.mplemented with three strl.ps for deslred accuracy. ThlS process l.S 

l.llustrflted 1n F1g. 3.1. The 1ntegrat1on domal.n l.S dl.V1ded lnto two 

effectl. ve regl.ons, which are denoted by strl.p boundarl.es (e, 1, 2) 

and (e, 2, 3). The base bound a ry e is set at the edge of the 

boundary layer. The flow condltl.OnS are specl.ficed by the potentl.al 

flow solut1on on the uppermost boundary 3. F1rst, the MIR lS appll.ed to 

determ1ne the flow conditl.ons along the boundary 2. Then, 1t is applled 

to the lnner part of the flow fleld (e, 1, 2). 

The resulting ordinary dl.fferentl.al equations for the 1nvlscid 

external flow, reduced by means of the 2-2 strlp lntegratlon scheme, 

assoc1ated with MIR, along the strlp boundarl.es are 

dU 
e 

F --= 
dx e 

dV 
e 

G --= 
dx e 

p -= 
e 

[c 

p 
e 

dU 
--2 = F 
dx J 

dV 
--20: G 
dx J 

- U 
2 
e 

C - 1 

v!J 1/( y-1I 

_ V~] 1/( y-l) 
J 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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j e e 
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(3.9) 

are glven 1n Ref. 41. 

3.1.2 Shock/Boundary Layer Interact10n and V1scous-Inv1sc1d Couplln~ 

In the transon1C flow reg1me the 1nteract10n between the boundary 

layer and the external flow is more 1mportant than 1n the subsonlc or 

superson1c reglmes. Also, the Reynolds number has a large effect on the 

aerodynamlc characterist1cs as conf1rmed by Lov1ng (66) through 

experlments 1n fl1ght and 1n the w1nd tunnel. 

Exper1ments by L1epmann [29] and Ackeret et ale [30] ind1cated that 

the pressure rise 1n the boundary layer 1S much more gradual than 1n the 

external invisc1d flow. When a normal shock 1mp1nges on the boundary 

layer, the d1sturbance propagates upstream through the subsonic portion 

of the boundary layer d1ffus1ng wlthln a few boundary-layer thicknesses 

depend1ng on the strength of the shock. If the pressure grad1ent 1S 

large enough, the flow may separate ahead of the shock. The pressure 

r1se dlverges the streaml1nes 1n the subsonic reg10n generat1ng 

compression waves 1n the supersonlc reg10n. In the case of the lam1nar 

boundary layer, the foot of the shock 1S thus smeared and a lambda shock 

appears. However, this does not necessarily happen 1n the case of the 

turbulent boundary layer because 1t can undergo a larger adverse 

pressure grad1ent than a lamlnar boundary layer. The dlsplacement 

thickness increases considerably for a lamlnar boundary layer as 

compared to a turbulent boundary layer due to the shock. Also, the 

Reynolds number has a large effect on the lam1nar lnteraction but there 

is almost no effect on the turbulent boundary-layer interaction. 



After the shock the lamlnar boundary layer remalns separated all 

along the alrfoll due to the adverse pressure gradlents encountered. 

Preferably, the coupllng method should allow the downstream lnfluence on 

the ups tream. These types of vlscous-lnvlscld coupllng methods are 

termed strong lnteractl.on coupling methods and others are termed weak 

l.nteractl.on coupll.ng methods. 

Melnl.k [38] and LeBalleur (67] gave the recent state-of-art on the 

coupll.ng of thl.n shear layer equatl.ons Wl. th the lnvl.scl.d potentlal 

equatl.ons. In BaVl. tz' s [68] method the effect of the wake l.S not 

l.ncluded and an empl.rl.cal correctl.on near the tral.ll.ng edge l.S used. 

Collyer and Lock [36] l.ncluded the effect of a wake l.n thel.r calcula­

tl.ons in the form of a normal velocl.ty Jump. However, they dl.d not take 

the shock-boundary-layer l.nteractl.on l.nto consl.deration. Melnl.k et ale 

[38) have consldered the tral.llng-edge modelll.ng but thelr method lS for 

al.rfoils Wl. thou t any separatl.on; also, the shock-boundary-layer 

interactl.on 1S not taken lnto account. 

Nandaman et al. [69) used Inger's (70] non-symptotlc mul tl-deck 

analysl.s to predl.ct a reall.stic pressure calculatl.on l.n the shock 

regl.on. They have used a soll.d dlsplacement model Wl. th smoothl.ng for 

1nteractl.on and the effect of a wake 1S not consldered. 

method is applicable to airfoils wl.thout separatl.on. 

Also the1.r 

Wal. and Yoshl.hara (71] considered an emp1.rl.cal model 1.n the shock 

region to deal Wl. th separatl.on. The l.nteractl.on process 1.S of seml.-

1mpll.cit nature. Updat1ng the mesh perl.odically the curvature effect of 

the wake 1.S taken 1.nto account by LeBalleur (67). The 1.nteraction is 

acheived through a surface transpl.ration model. Kl1.neberg and Lees (43) 

used the streaml1ne angle at the edge of the boundary layer as a common 
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van.able to allow for the contl.nuous l.nteractl.on between the boundary 

layer and the l.nvl.scl.d flow for supersonl.c external flow. Tal. (41), and 

Ram et al. (62) successfully employed thl.s method for transon1C flow. 

In the present study, thl.S l.nteractl.on model l.S used 1n the hybrl.d 

approach where both the Vl.SCOUS and l.nvl.scl.d solutl.ons are obtal.ned by 

USl.ng the l.ntegral methods. Thl.s facl.ll.tates a sl.multaneous l.nteractl.on 

between the inner boundary layer and the outer l.nvl.scl.d flow. The 

common varl.able l.S given by the relatl.on 

-1 e = Sl.n 
V 

e,l. 
M a 
e,v e,v 

- e (3.10) 

where V l.S the normal velocl.ty component from the l.nvl.scl.d solutl.on e,l. 

and M a 
e,v e,v 

lS the magn1tude of veloclty from the viscous 

Solutlon. The mass transfer between the two regl.ons l.S allowed uSlng 

the contlnulty equat10n 

* d6 --= 
ds 

tan e (3.11) 

where U
e

, the horlzantal component of velocity at the boundary-layer 

edge l.S determ1ned by the equatl.on, 

u = [( M a ) 2 _ v2 ] 1/2 
e e e e 

(3.12) 

The strong interactl.on formulation can be appll.ed to the attached, 

as well as separated laml.nar boundary layers. When it l.S appll.ed to the 

attached flows, the boundary layer separates 1n a short distance. If 

the usual weak lnteraction formulat1on 1S applied, 1t is noted that the 
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separat10n occurs only at the shock. However, the strong 1nteractlon 

formulatlon lnvolves another lteratlon process to determlne the locatIon 

of the shock lnfluence p01nt. In the forward port10n of the a1rfo1l, , 

the weak 1nteract10n equat10ns are suff1c1ent to account for the 

lnteract1on. 

Solut1on Procedure 

The transon1C full potent1al equat10n 15 solved by the f1n1te-

dIfference scheme developed by Carlson [16]. The shock locat10n and the 

extent of the supersonic reglon 15 obta1ned from the Mach chart. ThIs 

Informat10n 15 1mportant to locate the shock 1nfluence p01nt and to 

choose the str1p boundar1es to solve the Euler equat10ns 1n the shock 

reg10n. 

The inItial dlsplacement th1ckness and the veloclty prof1le 

parameter are calculated uSlng the procedure gIven In Sec. 2.2. In the 

forward portl.on of the alrfol.l the 1nteractl.on between the boundary 

layer and the 1nvisc1d flow 1S cons1dered to be weak. Therefore, the 

weak interaction formulatlon 15 appl1ed to calculate the boundary-layer 

thickness and velocl.ty proflle parameter for a glven pressure d1strl.bu-

tlon. The numerlcal integratlon of the boundary-layer equat10ns 15 

performed by a fourth-order Runge-Kutta method unt1l the shock Influence 

pOlnt is reached. 

Location of the Shock Influence Point 

To determl.ne the shock Influence polnt the strong Interactl.on 

calculations are initiated at a number locatl.ons ahead of the shock. 

The shock locatl.on is determined from the InVl.SCld solution. The 
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and the veloc1.ty prof1.le parameter 'a' 

are kept cont1.nuous when the SW1.tch 1.5 made from the weak 1.nteract1.on to 

strong interact1.on formulat1.on. Also the veloc1.ty grad1.ent at the edge 

of the boundary layer should be cont1.nuous to ach1.eve convergence for 

the 1nfluence p01nt. Th1S 1S done by adJust1ng the streaml1ne angle at 

the boundary-layer edge. 

In the inv1scl.d flow reg10n Euler equatl.ons are solved uS1ng the 

method of 1ntegral relat10ns. The potent1al flow solut10n is taken as 

the 1n1t1al condit10n along the vert1.cal line and as the boundary 

cond1tion along the outermost str1.p. The 1.nv1sc1d, as well as the 

V1SCOUS solutions, are obta1ned s1multaneously. 

Usually the flow 1S separated shortly after the strong 1nteract10n 

equations are appl1ed. If suctl.on l.S not appll.ed to keep the flow 

attached, the boundary-layer quantl.tl.es are calculated based on the 

separated prof1les. The l.ntegratl.on contl.nues downstream through the 

tral.11ng edge and into the wake. At the tra1ling edge 1t is important 

to check the velocl.ty gradl.ent and adJust the streaml1ne angle before 

continuing the calculation into the wake. 

The downstream boundary condl.tl.on 1S satisfied for the correct 

shock 1nfluence pOl.nt. The upper and lower surfaces are treated 

separately to compute the displacement tll1ckness distr1butions. The 

velocity d1scontl.nu1ty at the tra111ng edge should be zero to satisfy 

the Kutta condl. tion. Thl.s 19 checked by comparing the static pressu,res 

at the trail1ng edge from the upper and lower surfaces. The 

dl.splacement th1ckness d1str1bution l.S underrelaxed US1ng a procedure 

discribed 1n Sec. 2.6. 
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The alrfoLl lS updated by addlng the dlsplacement thlckness to the 

oriqlnal alrfoll coordlnates and the lnvlscld flow lS computed for the 

,updated, alrfoll wlth a new clrculatlon accountlng for the pressure 

difference near the tralllng edge. Wlth the new lnviscld potentlal flow 

Solutl0n and the locatlon of the shock, the procedure lS repeated. ThlS 

overall lteratl0n process lS contlnued untll a speclf1ed convergence 

crlterla on the dlsplacement thlckness lS satisfled. 

3.2 Inverse Boundary-Layer Interaction 

In the lnverse approach the boundary-layer thlckness dlstrlbutlon 

1S speclf1ed to avo1d the separatl0n polnt singularity. Seml-lnverse 

coupllng lS used to couple the outer 1nvlsc1d flow and the lnner V1SCOUS 

flow. The solutl.on method to solve the Euler equatl0ns In the entlre 

flow held l.S presented In Sec. 3.2.1. The coupl1ng method and the 

solutl.on procedure for el ther a lam1nar boundary layer or a turbulent 

boundary layer are gl.ven l.n Sec. 3.2.2. 

3.2.1 Solutlon of Euler Equatl0ns USlng Finite-Volume Approach 

The lnviscid flow equatl0ns, Eqs. (2.29), are solved uSlng the 

f1nite-volume approach developed by Jameson et ale [72] • The 

d1.scretizat1.on procedure decouples the spatial and t1me terms uSlng the 

method of llnes. The computational domain 1.S d1v1ded 1nto quadr1.lateral 

cells as shown 1n the F1g. 3.2, and a system of ord1nary differentlal 

equations is obta1ned by applying Eq. (2.29) to each of these cells 

separately. This resulting system of equations i& solved by the Runge-

Kutta time stepping scheme. _ 



Flg. 3.2 Computatlonal grld for solvlng Euler 

equatl0ns by flnlte-volume approach. 
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The Runge-Kutta scheme has the advantage of allow1ng exp11c1t t1me 

steps greater than a Courant number of one at the expense of evaluat1ng 

,add1 t10nal funct10ns at different stages. Wh1theld et ale [73] has 

done some numerical experiments to f1nd an opt1mum Courant number to 

perform the calculat10ns. In th1s study, a four-stage Runge-Kutta 

scheme (w1th a Courant number of 2.8) 1S used1 th1s 1S suggested in 

[74] • 

To suppress the osc1llatl.ons near the shock and the stagnation 

p01nts some external dl.SS1pat10n l.S added. The d1ss1pat1ve terms are a 

m1xed blend of second-and fourth-order terms wh1ch are of th1rd-order 1n 

smooth regions of flow and of f1rst-order 1n the shock reg10n. 

The convergence to steady state 1S accelarated by uS1ng a local 

time step (determined by the local Courant number) and by add1ng a 

forcing term that depends on the dl.fference between the local and free 

stream values of total enthalpy. The fo~rth-order d1ss1pative terms are 

needed to el1minate nonlinear 1nstab1l1t1es when accelerat1ng 

convergence using a local t1me step. 

3.2.2 V1scous-Inviscl.d Interact10n US1ng Sem1-Inverse Coupl1ng 

When the Euler equations are used to compute the inv1sc1d flow 

fl.eld the coupling reqUl.res momentum and enthalpy sources in addl.t10n to 

the mass sources. Johnston and Sockol [75], and Murman and Bussl.ng [76] 

pointed out this information at about the same t1me. Thomas [74] 

followed the approach of Johnston and Sockol to achieve the Vl.SCOUS-

invl.scl.d l.nteraction. Thomas modl.fied the normal momentum relation by 

Rl.zzi (77) to l.nclude surface porosl. ty for the pressure on the surface. 

In the present study the matching conditions are derl.ved for the case 

with suction following Johnston and Sockol (75). 
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Couph.ng Method 

The match1ng procedure adopted here lS slm1lar to that proposed by 

Johnston and Sockol (75) and lS dlscussed here very brlefly. The 

lnvlscld and the V1SCOUS solutions are matched on the surface. 

The Euler equatlons for steady two-d1menslonal flow can be wrltten 

as 

aF de; 
-+ 

ay 
0 

ax 

where 

pu pIl 

2 
pu + p puv 

F = G = 
2 

puv pIl + 

u(e + p) vee + 

The steady Navler-Stokes equatlons can be wrltten as 

af 
-+ 
ax 
~ = 0 
ay 

. 

l 
I 

:J 

In the defect formulatlon to be presented, the components of 

(3.13) 

(3.14) 

(3.15) 

f and 

9 are not needed. Integratlng Eqs. (3.13) and (3.15) from y = 0 to 

y = 6, one obtains 

a IS 
ax f F dy 

o 

a IS 
9 - 9 co - f f dy 6 0 ax o 

By noting that, outslde the boundary layer, the G and 9 

coincide, one can combine Egs. (3.16) and (3.17) to obtaln 

(3.16) 

(3.17) 

vectors 



a 6 
go + ax f (f - F) dy 

o 
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(3.18) 

, Now representl.ng the Navl.er-Stoxes solutl.on by a composl.te functl.on of 

the type 

f = f = F + f - F 
c b 0 

(3.19) 

where fb is the boundary-layer solutl.on, Eq. (3.18) reduces to 

(3.20) 

It should be noted that only the value of F at the wall is needed and 

specl.fl.c varl.ation of F in the boundary layer is not necessary. 

From Eq. (3.14) we can evaluate the values of the vector G. The 

first term of G l.S expressed as 

(3.21) 

USl.ng the defl.nitl.on of displacement th~ckness Eq. (3.21) can be wr~tten 

as 

(3.22) 

The second term of the vector G is written as 

By considering the pressure from the boundary-layer solutl.on to be equal 

to the pressure from Euler solution and using the defini tion for the 



momentum th1ckness, Eq. (3.22) can be wr1tten as 

( puv) 
o 
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(3.23) 

To evaluate the th1rd term of G the pressure at the wall was 

determ1ned by Thomas [741 uS1ng the Rizz1's normal momentum relat10n 

[771. The surface porosity term was 1ncluded 1n th1S analys1s. 

D1fferent interpolat10n relat10ns to obta1n pressure on the body from 

the adJacent cells are suggested by Thomas [74). In th1s study some of 

these relat10ns are used to check the convergence rate and the accuracy 

of the results. The fourth term of vector G can be wr1tten as 

(e + P)v)o = [(e + p)v - ut]b 

a ~ 
+ a; f {[ (e + p)u]o - [(e + P)u]b}ely 

o 

(3.24) 

W1th the approx1mation that the total enthalpy from the boundary layer 

is equal to the Euler solut10n value, Eq. (3.24) becomes 

[(e + p)v]o 
d * 

= [( e + p) v]b + HO dx [( ~) 0 ~ ] 

d * 
PVHO = (pH v)b + HO dx [(~)O 6 ] (3.25) 

Th1s 1S an 1dent1ty. As can be noted from (3.22) and (3.23), only the 

wall values are needed from the Euler solut10n and they can be obta1ned 

eas1ly once the boundary-layer solution is obtained. 
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Wake Relation 

In the wake the boundary-layer quanti ties are evaluated along the 

~ake center line for upper and lower surfaces separately. The 

difference 1n the mass, momentum, and energy fluxes is app11ed as the 

boundary condi tion to the invisc1d flow. In this study, ne1 ther the 

wake curvature effect nor the strong 1nteract10n near the tra1l1ng edge 

are taken 1nto cons1deration. The computational mesh needs to be 

recomputed per10dically to take the curvature effect 1nto account. 

V1scous-Inv1scid Coupling 

The v1scous-1nvisc1d interaction is ach1eved through a sem1-1nverse 

coup11ng. Th1s technique was developed by Carter [78] for subsonic 

flows and has been used for transon1C flows by Whitfield et a1. [73), Le 

Balleur (67), and Thomas (74). The inviscid algorithm is advanced 100 

time steps to obtain an approximate pressure distribut10n around the 

airfoil. Then the inverse boundary-layer equations are solved using a 

spec1fied displacement thickness distr1bution. Ini tially, this 

distribution is that of a flat plate. The veloc1ty at the edge of the 

boundary layer is calculated at all the gr1d points on the a1rf01l and 

along the wake center line. Then the semi-1nverse coupling compares the 

veloci ties at the edge of the boundary layer obta1ned from viscous and 

inviscid solutions. Then the initial d1stribution of the boundary-layer 

thickness is updated using the relation 

• • ue v 
~) (~) [ •.• (-..:::..L..:... )] 

(u new - U old 1 + w U - 1 
e,i 

(3.26) 
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where u e,v l.S the boundary-layer edge velocl. ty computed from the 

l.nverse intergral method, u . e,l. l.S the edge velocl. ty from the l.nvl.scl.d 

solutl.on, and w is a relaxation parameter. 

By uSl.ng the new boundary-layer thl.ckness dl.strl.bution, the 

boundary conditl.on to the invl.scl.d flow l.S computed by Eqs. (3.22) -

(3.25) • Then, the inviscl.d algorl. thm l.S advanced in tl.me wi th thl.S new 

boundary conditl.on near the wall. The l.nverse boundary-layer equatl.ons 

are solved after every 20 l.nvl.scl.d cycles from then on and the boundary 

condl.tions are updated. When there l.S no apprecl.able change l.n the lift 

or the boundary-layer thickness dl.strl.bution, the solution is considered 

to be converged and the calculations are ended. 

Suctl.on 

The reductl.on in drag is an order of magnitude from the turbulent 

boundary layer to laml.nar boundary layer. Therefore, large extents of 

laminar flow are desirable to l.ncrease the aircraft performance. 

The laminar boundary layer cannot undergo large adverse pressure 

grad1ents and the flow separates resulting in rapid thl.ckenJ.ng of the 

boundary layer, this increases the drag. To avo1d this undesirable 

effect, suction can be appll.ed before the flow separatl.on pol.nt to keep 

the flow attached all along the al.rfol.l. 

Location of Suction 

The velocl.ty profile parameter 'a' is proportional to the 

velocity gradient near the wall. The value of 'a' is zero at 

separation. A specified amount of suction is appl1ed when the value 

of • a' falls below certal.n value depending on the airfoil under 
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cons~derat~on. The value of the suctl.on parameter is increased at the 

next location ~f the value of 'a' is st111 below the specl.fied 

. value. When there is a negative pressure gradient or when the value 

of 'a' is higher than a specifl.ed value, the suctl.on parameter is 

decreased. 

With the above procedure, the flow separation is avo~ded and 

attached flow condit~on is maintained all along the airfo~l. The amount 

of suctl.on thus calculated 1.5 close to the ml.n~mum amount. 



Chapter 4 

RESULTS AND DISCUSSION 

Results have been obta1ned for d1fferent a1rfo11s by emploY1ng the 

d1rect and 1nverse boundary-layer procedures for lam1nar and turbulent 

flows. Spec1flc results were obtalned for varlOUS cases with and wlth­

out suctl.on l.n the boundary layer. Results of calculations for the 6\ 

cl.rcular arc and LFC-73-06-l35 alrfolls are presented l.n Sec. 4.1. 

These results were obtal.ned for lam1nar flows using the dl.rect boundary-

layer equa tl.ons. In Sec. 4.2 results are presented for the K1.ng Cobra 

airfoll and the modl.bed NACA 66-012 a1rfoll. The flow cond1 t10ns are 

selected such that the results can be compared Wl th the experl.mental 

data. Also results for DESB-l54 and LFC-73-06-l35 al.rfol.ls are 

presented for attached flow condl.tl.ons. Results for the lamlnar l.nverse 

boundary-layer equatl.ons coupled Wl th the Euler equatl.ons are presented 

1n Sec. 4.3 for the NACA-OOl2 airfol.l and the RAE-2822 a1rfo11. Using 

the same approach, results were calculated for the turbulent boundary­

layer flows Wlth and w1.thout suctl.on; these are presented 1.n Sec. 4.4. 

4.1 Laminar Direct Boundary-Layer Solutions Without suction 

Results of calculat10ns at supercrl.t1cal freestream Mach numbers 

are presented for a 6\ circular arc and LFC-73-06-135 airfoils. Flow 
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cond1t1ons were chosen to enable compar1sons w1th ava1lable exper1mental 

data. 

The V1SCOUS results were calculated 1n terms of boundary-layer 

quant1ties 1n a transformed incompress1ble plane. Flgure 4.1 glves the 

boundary-layer d1splacement th1ckness throughout a 6% c1rcular arc 

M = 0.868 and Re 
co 

4 
= 6.9 x 10 , Wh1Ch agrees very well .. 

wlth slmllar results reported elsewhere [79]. The th1cken1ng of the 

boundary layer 1n the forward portlon follows a Slmilar trend as that 

found by Schubauer, uSlng the Karman-Polhausen method [80); however, the 

* present method g1 ves a far more real1stic IS dlstrlbut10n pattern in 

the rear portion. 

The correspond1ng d1strlbutlon of the boundary-layer shape factor 

H and the veloclty profile parameter, a, are presented ln FlgS. 4.2 and 

4.3, respectlvely. The boundary layer lS practlcally, but not exactly, 

of Blasius type in the leading-edge reglon and varles Sllghtly through-

out the forward portlon of the airfoil. It remalns unseparated through 

the embedded supersonlc region although the V1Scous-lnvlscld lnteractlon 

becomes strong after x .. 0.395. The separatlon polnt is found when 

a = 0 WhlCh corresponds to zero shear stress at the wall. 

The boundary layer remalns separated over the rear of the a1rfoll 

where small adverse pressure gradlents are generated by continuous 

compresslon of the outer subsonic flow. ThlS is a physical feature of 

the transonlC viscous-inviscid interactlon Slnce by compresslon the flow 

ought to return almost to the free-stream value downstream. After the 

trailing edge there is a wake reversed flow and then a forward flow to 

rna tch the downs tream condl tions • The locatlon of the rear stagnation 

point agrees well with that found by Klineberg and Steger [39], and by 
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Ta1 [79] under s1m1lar flow cond1t10ns. computed results for the 6% 

clrcular arc alrfoll compare very well Wl. th the lamlnar experlmental 

'data of' Colllns and Krupp [81] as presented l.n Flg. 4.4, not only l.n 

pressure dlstrlbutl.on but also l.n separatl.on pol.nt. The small 

dlfference in free-stream Mach number and Reynolds number between theory 

and experl.ment was selected dell.berately to offset wl.nd-tunnel l.nter-

ference effects [82]. 

There lS no referenceable experl.mental data aval.lable at the 

present tl.me for supercrl tlcal airfolls for whl.ch the boundary layer 

remalns lamlnar over most of the alrfoll. Of course, plenty of 

experlmental data are available for many airfolls wlth turbulent 

boundary layers. For thlS reason it was declded to compare the theo-

retlcal predlctlons of the present method to that of some other existlng 

methods, such as Carlson's TRANSEP [83], to Judge l.ts rell.abl.ll.ty and 

accuracy. Based on the experlence wlth the ong01ng swept supercrl.tl.cal 

LFC alrfoil experiment In the Langley 8-Foot Transonl.c Pressure Tunnel 

[84], l.t lS expected that the flow wlll remal.n laml.nar over an extenSl.ve 

chordwlse length of the LFC-73-06-135 alrfol1 for M = 0.75, Re = 
CD c 

6 
8 x 10 , and 

o 
a = -0.09 • Therefore, thls alrfoll and these flow 

condl. tlons were chosen to calculate viscous results uSl.ng both TRANSEP 

and the present method, along with the l.nviscld results uSlng Carlson's 

TRANDES [85). Figures 4.5 and 4.6 show the pressure dl.strl.bution 

obtal.ned from these three methods. The VlSCOUS results obtalned from 

these two methods are in very good agreement with each other except for 

a few deviations which were expected. For example, the c values for 
p 

the upper surface obtained from TRANSEP are slightly lower (1. e., more 

negative) than those from the present method in the region lying between 
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39" through 76" of the chordw1se length. The startJ.ng pos1t1on of the 

adverse pressure gradJ.ent 1.5 located at 50' and 46\ of the chord, 

'respectively, as pred1cted by TRANSEP and the present method. The 

present method predJ.cts flow separatJ.on at x = 0.665, whereas the flow 

remaJ.ns attached over the aJ.rf011 accord long to TRANSEP. Because of the 

strong 1nteractJ.on formulat10n modeled 1n the present method, the flow 

separates, whereas lot rema1ns attached due to weak interactJ.on formula-

t10n modeled in TRANSEP. Also, the d1sp1acement th1ckness of the 

lam1nar boundary layer increases more rap1dly through the shock than 

that of turbulent boundary layer [86] and thl.s may cause laml.nar 

separa tl.on. The pressure rl.ses more rap1dly for turbulent than for 

laml.nar boundary layers (87,88]. From 80\ of the chord to the tral.ll.ng 

edge, the c 
p 

values predl.cted by TRANSEP are hl.gher (1. e. , more 

posl.tive) than those obtal.ned from the present method. Thl.s is true 

because the boundary layer over the last 20\ of the chord l.S defl.n1tely 

turbulent, whereas l.n the present method the boundary layer over the 

entl.re chord length always remal.ns 1aml.nar. Thus, the theoretl.cal 

results calculated from this method conform very well to the findl.ngs of 

(86-88]. 

4.2 Laminar Direct Boundary-Layer Solutions With Suction 

Results of calculations are presented for modl.fl.ed NACA 66-012 

[89], DESB 154 [90), King Cobra (91], and LFC-73-06-135 (92) aufol.ls. 

The al.rfol.1 NACA 66-012 was chosen to enable comparison of the calcu­

lated result wl.th experimental data available from (89]. The DESB 154 



and Klng Cobra alrfoll~ retaln lamlnar flow over an extenslve chordwlse 

length (approxlmately 70\ and 65\, respectlvely). These two alrfolls 

were chosen because of extenslve lamlnar flow whlch wlll he more 

approprlate to test the accuracy and rellablllty of the present method. 

Furthermore, experlmental data avallable for a Klng Cobra alrfoll for 

the no suctlon case perml ts comparlson of the computed results under 

simllar condltlons. Slnce the method has been developed for super-

cr1 t1cal a1rfolls, LFC-73-06-135 alrfol.l des1gned at NASA Langley was 

selected for comparlson. 

The VlSCOUS results were calculated In terms of boundary-layer 

quantltles In a transformed lncompresslble plane. Flgure 4.7 glves the 

boundary-layer dlsplacement thlckness on the upper surface of a natural 

lamlnar flow alrfoll (DESB 154 at M = 0.4, Re = 10 x 106 , and 
CD 

a = 
o 

-0.97) for dlfferent values of the suction parameter E. It was found 

that £ = 0.015 was the mlnlmum amount of suctlon that kept the flow 

attached all the way to the tralllng edge. The suctlon was started at 

65% of the chord length and was malntalned up to the tralllng edge. It 

should be pC)lnted out here that the flow separates at about 70\ of the 

chord length for the same flow condltlons if the suctlon lS not appll.ed, 

l.e., £ = 0, as shown by the present theoretlcal computatlons as well as 

by those in (90). It is further seen that the thlckem.ng of the 

boundary layer and hence, the overall V1SCOUS effects can be controlled 

easily by varYlng the magnitude of the suctlon parameter E. 

The corresponding dlstrlbutlon of the velocl ty proflle parameter 

a 1S presented 1.n F1.g. 4.8. There are m1n1mal fluctuatlons 1.n 1.ts 

values until the point of separat1.on (In the absence of suctlon) 1.S 

approached when it suddenly increases and remalns high or drops down 
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dependl.ng on the amount of suctl.on appll.ed. The lowest value, a = 0, 

occurs at the pcnnt of separatl.on and corresponds to zero shear stress 

kt the wall. 

Fl.gure 4.9 shows the pressure dl.strl.butl.on over a DESB 154 al.rfOll 

obtal.ned by uSlng the Carlson's TRANDES (Invl.scl.d) method and the 

present method Wl. th suctl.on. These theoretl.cal results compare very 

well as expected. The Cp values for the upper surface obtained from 

the TRANDES (Invl.scl.d), when there l.S no boundary layer, are sll.ghtly 

lower (i.e., more negatl. ve) than those from the present method with 

suctl.on, when there l.S a very thin boundary layer. The pol.nt of sudden 

rise (l.. e., more POSl. tl. ve) in 

respecti vely. 

C 
P 

value occurs at 0.71c and 0.G8c, 

Fl.gures 4.10 and 4.11 gl.ve the pressure dl.stribution over the Kl.ng 

Cobra airfoil without and Wl. th suction, respectl. vely. The computed 

results in Fl.g. 4.10 compare very well wl.th the experl.mental data 

reported in [91], not only l.n pressure distrl.bution but also l.n 

separatl.on point. The suctl.on for the Kl.ng Cobra airfoil was started at 

60\ of the chord length and was maintal.ned up to the tral.ll.ng edge. It 

should be mentl.oned here that the flow separates at about 65\ of the 

chord length for the same flow condl.tl.ons if the suction is not appll.ed, 

l..e., £ = 0, as shown by the theoretical computatl.ons as well as 

experl.mental data. 

Fl.gure 4.12 shows the pressure dl.strl.butl.on over a swept LFC 

al.rfol.l (modl.fl.ed NACA 66-012) obtal.ned from the present method Wl. th 

suctl.on. The computed results compare very well W1 th the experl.mental 

data, also Wl.th suctl.on, reported in [89]. 
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There does not eX1st any computat10nal method Wh1Ch solves strong 

1nV1sc1d-Iam1nar V1SCOUS 1nteract10ns by solv1ng Euler equat10ns 1n the 

shock-dom1nated reg10n and where the boundary layer 1S opt1mally sucked 

such that boundary-layer 1nstabil1ty and separatl.on do not occur. The 

pressure d1str1butions over the LFC-73-06-135 supercr1t1cal a1rfo1l 

calculated from Carlson's TRANDES (Inviscid) and the present method are 

compared to show the effect of suction and the formulat10n of the 

V1SCOUS-l.nVl.SC1d model. The flow condi t10ns were chosen to assure the 

eXl.stence of a shock on the upper surface of the al.rfol.l. In the 

1nvl.scl.d analysls, Flg. 4.13, the shock appears at 77\ of the chord 

length. In the 1nvlscld-viscous analys1s Wl. th suctlon, F1g. 4.' 4, the 

shock becomes much weaker, moves upstream to O.63c and the boundary 

layer rema1ns attached. F1gure 4.15 shows that C values calculated 
p 

from the present method are conslstently higher (l.e., more posl.tive) by 

as much as up to 24.3\. Th1S is expected due to effect of V1SCOS1ty and 

the change of entropy across the shock Wh1Ch are accounted for 1n the 

present method. The results ment10ned here for LFC-73-06-135 al.rf011 are 

1n agreement with the bndings of the swept supercrl tlcal LFC a1rfo1l 

exper1ments conducted in the Langley a-Foot Transonic Pressure Tunnel 

[93] • 
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4.3 Inverse Laalnar Boundary-Layer Solutl0n5 

Results are presented 1n F1g. 4.16 for an RAE-2822 a1.rfo1.l at 

subcr1tical condit10n. The free stream Mach number 1S 0.6 and the angle 

of attack 1S 2.570 • The lnv1sc1d flow calculat10ns are performed by 

solv1ng the unsteady Euler equat10ns [72J. The V1Scous-1nvlsc1d 

interaction was started very close to the leadlng edge. A small amount 

of suct10n was requlred to keep the flow from separat1ng near the 

leadlng edge. The pressure peak near the nose causes early tranS1 t10n 

to turbulent flow if suctlon 1S not applled. After the pressure 

mlnlmum, the flow lS continuously decelerated to match the downstream 

flow of the alrfo1l. The lam1nar flow 1S stable 1n this reg10n and the 

flow rema1ns attached all the way to the tra1ling edge. There 1S no 

need to apply suction after the nose peak. The boundary layer 1S 

th1cker than in the case of a turbulent flow and the C values, are p 

less negatlve along the alrfoil. 

F1gure 4.17 1llustrates results for the superCrl. t1cal cond1 t1ons. 

The free stream Mach number is 0.73 and the corrected angle of attack 1S 

2.780 • Th1S case corresponds to case 9 of the exper1ments conducted by 

Cook et ale {94J. In the exper1ments, the flow was tr1pped very close 

to the leadlng edge to produce a turbulent boundary layer. For lamlnar 

boundary layers the flow would separate at about 45% of the chord 

length. The suction was applied before the separatlon polnt to keep the 

flow attached. The amount of suction appl1ed depends upon the veloc1ty 

prof1le parameter a. The value of the suct10n parameter 15 1ncreased 

or decreased based on whether the value of a 1S below or above a 

speclfled Ilmit. This was an effort to apply only the mlnlmum suctlon 
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requ1red rather than an arb1trary amount. The strength of the shock 15 

reduced and moved forward because of the lam1nar boundary layer as 

'compared to the 1nvisc1d flow calculat10ns. 

For NACA-OOl2 a1rfo11 exten51ve exper1ments were conducted by 

Harr1S for subcr1 t1cal to supercr1 tical Mach numbers and for d1fferent 

values of the angle of attack (95). However, in all these exper1ments 

the boundary layer has been tr1pped close to the nose to produce a 

turbulent boundary layer flow. Present results for transon1C lam1nar 

flow are compared with these exper1mental data for a qua11tat1ve com­

par1son. Results presented in F1g. 4.'8 are for a Mach number of 0.758 

and an angle of attack of 3.060 • The lam1nar V1.scous-inv1.sc1.d 1.nter­

act1.on was started just ahead of the stagnation po1nt at about " of the 

chord length on both the upper and lower surfaces. The location of the 

shock foot 1.S at about 52' of the chord length according to the 1nvisc1.d 

flow results. From the viscous-inv1.sc1.d 1.nteraction calculat10ns, 1.t 1.S 

noted at about 48\ of the chord length. The suct1.on was appl1.ed at 

47.48\ to mainta1n the lam1nar attached flow. A large amount of suction 

was requ1.red up to about 55' of the chord and after the shock, a rela­

tively small amount of suct1.on was sufficient to keep the flow attached. 

In the exper1.ments the turbulent flow was separated at 34\ of the chord, 

the shock strength was reduced considerably and moved forward in com­

par1.son with the present results. The suct10n was appl1.ed to produce a 

turbulent, attached boundary layer flow over this airfoil under s1m11ar 

condit1ons and those results are presented in the next sect1.on. The 

values of both the experl.mental l.nvestigation and the present method are 

close to the 1nvisc1d results 1.n the rear part of the a1rfo11 where the 

flow has to match the subcritical conditions in the downstream region. 
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Results are presented 1n F1g. 4.19 for an NACA-0012 a1rfoll at h1gh 

angle of attack cond1tlons. The free stream Mach number lS 0.601 and 

~he Reyholds number based on the chord length lS three mllll.on. A 

correctlon to the angle of attack was appl1ed to compare the results 

w1th the exper1ments [95). It 1S eV1dent from the F1g. 4.19 that there 

1S a pressure peak in the forward portlon of the alrfoll and there 15 a 

pressure rlse at about 17-20% of the chord. The experlmental values are 

closer to the l.nvl.sc1d flow results 1n the peak regl.on and the pressure 

n.se regl.on except near the end of the shock. The vlscous-lnv1scld 

l.nteractlon was started at about 1 % of the chord. Suctl.on was appll.ed 

to malntal.n laml.nar attached flow. After the shock not much suctl.on 1S 

requ1.red. In compar1son to the lnvl.scl.d flow, the shock strength 1.S 

reduced and the pressure wl.ggle l.S reproduced at the end of the shock. 

The coeff1.cl.ent of 11ft 1.S 0.761 as compared to the turbulent value of 

0.847. 

4.4 TUrbulent Boundary-Layer Results With Suction 

Results are presented l.n Fl.g. 4.20 for the RAE-2822 airfo1l at 

subcri tl.cal condl. tl.ons. The free stream Mach number 1.S 0.6 and the 

angle of attack l.S 2.57°. A correctl.on to the angle of attack 1.S made 

following the suggest1.ons of Cook et ale [94). The results are compared 

with the experl.mental data of Cook et ale [94] and wl.th the theoret1cal 

results of Thomas [74]. The Reynolds number based on the chord length 

is 6.5 m1.ll1.on. The Vl.Scous-1.nv1sc1d 1nteract1on was started at about 

15\ of the chord on the lower surface and at 18\ of the chord on the 
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upper surface. In the experlment the boundary layer has been trlpped at 

these loca tlons . The lnl tlal dlsplacement thlckness values correspond 

to the experl.mental data. The calculatl.ons were performed on a C-type 

mesh uSl.ng 128 p<nnts along the alrfol.l and 30 pol.nts away from the 

al.rfol.l. The boundary layer was 1 terated for every 20 cycles of the 

lnvlscld calculatlons (after the hrst 100 cycles). In the forward 

portlon of the airfoll, where there 1S a pressure peak, results obta1ned 

from the present calculations agree closely wlth the exper1mental 

values. The turbulent flow rema1ns attached until the trall1ng edge and 

there lS no suctl0n applied ln thls case. The hft coefflclent, C l' 

values were found to be 0.71 and 0.65 for lnv1scid and turbulent flows, 

respectlvely. The results for the RAE-2822 alrfo1.l for supercrl tlcal 

conditl0ns are lllustrated ln Fig. 4.21. The free stream Mach number loS 

0.73, the corrected angle of attack is 2.780 , and the Reynolds number 

based on the chord length is 6.5 ml.lllon. These condlt1.0nS correspond 

to case 9 of Ref. 94. These calculat1.ons were also obtalned uS1ng a C-

type mesh W1. th 128 x 30 pOlnts. The gnd was highly stretched away 

from the alrfol.l until the change 1n the hft coeff1clent was small 

(74). The 1nvlSCld 11ft coefficient showed no apprec1able change after 

600 tl.me steps. The extent of reduct10n l.n the maX1.mum resl.dual loS of 

fourth-order. After the hrst 100 tlme steps the boundary layer was 

interacted for every five orne steps. Although th1.S lncreases the 

computatl0nal t1me, the results were more accurate. Because of frequent 

updatl.ng, the vlscous-inv1scld l.nteraction process lS closer to the 

strong 1nteractl.on conditl0ns. The interactl0n was started at about 18% 

of the chord W1 th the in1 tial d1splacement thlckness values from the 

experiment (94]. For compar1son, the equilibrlum dlsslpat10n model of 
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Thomas [74] was used. The pressure coeffl.cl.ent values are compared l.n 

Fl.g. 4.21. In the forward portl.on of the al.rfol.l the pressure 

coeffl.cl.ent values are slightly lower Wl.th the present model. In this 

area results USl.ng the equl.11brl.um d1SSl.pation model of Thomas [74] are 

closer to the experl.mental data. The agreement between the results of 

the two methods l.S very good except close to the shock foot. The 

values are underpredl.cted near the shock and l.n the rearward portl.on of 

the airf01l. The ll.ft coeffl.c1ent values are found to be 0.97,0.90 and 

0.91 for the 1nvisc1d, equ1librium d1ss1pat10n, and present methods, 

respectively. 

Resul ts are presented for a supercr1 tl.cal case Wl. th separa tl.on at 

about 60% of the chord l.n F1g. 4.22. This case corresponds to case 10 

of Ref. [94]. The free stream Mach number is 0.75 and the Reynolds 

number of the flow l.S 6.2 m11l10n. The corrected angle of attack is 

The v1scous-invl.SC1d interact10n calculatl.ons were started at 

about 18\ of the chord on the upper surface and at 15.5\ on the lower 

surface. The boundary layer has been trl.pped to become turbulent at 

these pOl.nts l.n the exper1ment. The present results are compared with 

the experimental data of Cook et ale [941. The pressure dl.stribution l.n 

Fig. 4.22 indicates that the agreement w1th the experl.ment is good in 

the acceleratl.on zone where the boundary layer l.S thin. In the 

experiment the flow separat10n was observed near the foot of the shock 

between 62-72\ of the chord length. In the present method suction was 

applied near the shock foot to keep turbulent attached flow condl. tions 

on the airfoil. The displacement thickness values are compared l.n Fig. 

4.23. Because of suction, the d1splacement thl.ckness does not l.ncrease 

as rapidly as the experimental values in the pressure rl.se area. In the 
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exper~ment the wake 1S much th1cker due to turbulent separat10n compared 

to the turbulent attached flow resul t<; by the present method. Because 

of th1S reason the C values are h1gher near the tra~llng edge. 
p 

The upper surface pressure d1str1but1on is presented 1n F1g. 4.24 

for the NACA-0012 airfo1l at 5ubcrlt1cal cond1t10ns. The free stream 

Mach number 1S 0.601 and the corrected angle of attack based on the 

linear theory 15 3.190 (95). The Reynolds number of the flow 1S three 

m11110n. The results are compared Wl.th the exper1mental data of Harr1S 

(95). In the expen.ments the flow was tr1pped at about 5% of the chord 

length. The boundary-layer 1nteract10n was started correspond1ng to the 

exper1mental data. The numerlcal results obtained 1n this study and by 

Thomas (74) agree closely W1 th the experimental data. However, better 

agreement 1S noted between the experlment and the present method ln the 

forward portion of the airfo~l. In the rearward portion, the pressure 

dlstribution 15 very close to the inVl.SCld case. 

The pressure coefflcient results are presented ln Fig. 4.25 for a 

o free stream Mach number of 0.758 and for an angle of attack of 3.06 • 

Suctlon was appll.ed at about 30\ of the chord to keep the flow from 

bel.ng separated. In the experlment there was no attempt to apply any 

suct10n. The flow might have separated at about 35% of the chord and 

reattached after the shock. For the above condl tions, the compu ter 

program uSlng the equillbrium dl.SSl.patlon model falled to produce any 

results because of the extenSl.ve separation of the flow. Al.,o the 

present method does not work if the suction is not appll.ed before the 

separation occurs. The agreement between experiment and the present 

method is good up to about 30\ of the chord. The turbulent boundary 

layer thickens rapidly after that pOl.nt. The flow lS separated and the 
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shock front l.S moved towards the leadl.ng edge and also, as observed l.n 

the case of laml.nar flow, the strength of the shock is reduced. By 

'applYl.ng the suction before the separatl.on pOl.nt, the flow separatl.on 

was delayed by about 20% of the chord. The pressure rise is much more 

gradual that l. t would be l.n the case without the suctl.on. After the 

shock the computatl.onal results are close to the experimental data. 
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Chapter 5 

CONCLUSIONS 

The Vl.Scous/l.nvl.scl.d interactl.on over transonl.C al.rfol.ls Wl. th and 

Wl. thout suction l.S studl.ed. Two approaches are consl.dered to achl.eve 

the coupll.ng between the Vl.SCOUS and l.nvl.scld flows. The first approach 

l.S a dlrect approach and l.S referred to as the hybrl.d method. In the 

second approach the entlre lnvl.scl.d flow fl.eld l.S l.nvestl.gated by 

solvl.ng the Euler equat10ns uSl.ng f1nl. te volume technlque. The Vl.SCOUS 

flow l.S coupled to the inVl.SC1d flow uS1ng surface transp1ratl.On 

COndl.tlon. 

The l.nteract10n process ln the hybr1d method 15 contl.nuous I and 

since all the dependent variables are calculated slmultaneously, the 

convergence lS faster and the solutl.ons are more accurate. US1ng thlS 

method, flow over a 6% thick c1rcular arc a1rfoil at M = 0.868 and • 
o 

a = 0 is stud1ed. In the forward port1on of the a1rfol.l 1 twas 

suffl.cient to apply ...-eak interactl.on formulat10n and the strong l.nter-

action equat10ns are appl1ed near and downstream of the shock. The 

separat10n was predl.cted at 70% of the chord and 1S 1n complete agree-

ment w1th the exper1mental data of Colll.ns and Krupp [81). The pressure 

d1stributl.on calculat10ns US1ng laml.nar separated velocl.ty profl.les show 

a good agreement wlth the experimental values (81). 
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To avol.d the Goldsteln sl.ngulari ty near the separatl.on pOl.nt, the 

boundary-layer equa tl.ons and the l.nl. tl.al condl. tions are derl. ved l.n an 

~nverse . form to obtain regular solutl.ons for the flows Wl.th small 

separatl.ons. It 1.S important to apply m1.n1mUm amount of suct1.on that l.S 

requl.red to have attached flow on the a1.rfo1l. A method 1.S developed to 

ach1eve th1.S by varying the suct1.on parameter based on the velocl. ty 

profl.le parameter value. The suction dl.strl.butl.on thus obtained 1S 

considered to be close to the optl.mum value. At subcn. tical condl. tl.ons 

the present solutions are compared Wl.th the experl.mental data [89-91) 

and the agreement is excellent for NACA 66-012, CESB 154 and KING COBRA 

al.rfol.ls. These comparl.sons for subcrl.tl.cal al.rfol.ls establish 

confidence l.n the suction velocl. ty profiles that are obtal.ned USl.ng the 

small perturbat1.on theory and the state varl.able approach of Forbrich 

[60]. 

Results are obtained for RAE-2822 and NACA-0012 al.rf01ls at super-

cri tical condi tl.ons. These results l.ndicate that a small amount of 

suction is requ1red to avoid flow separat10n near the pressure peak at 

the lead1ng edge. Most of the suct10n requirement is to ma1nta1n 

attached flow cond1 tions in the rear part of the a1rfol.l or near the 

shock. Application of larger amount of suction than requ1red was found 

to have destab1.liz1ng effect on the boundary layer. Lam1nar t flow 

separation reduced the shock strength considerably and shock is moved 

forward l.n comparison to the lam1nar attached flow Wl.th suct10n. 

The results frOlll the present study are l.n good agreement W1 th the 

theoretical as well as the experimental data for attached flow condi­

tions with turbulent boundary layer. At supercr1 t1cal cond1 tl.ons the 

boundary layer tends to separate and apph.cation of suct10n has been 
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cons1dered to ma1nta1n attached flow. Although the eddy V1SCOS1ty model 

used 15 valid for both attached and separated flow cond1tions, the flow 

separat10n calculations could not be performed sat1sfactor1ly, perhaps 

due to the presence of suct10n. If the experimental data is available 

for turbulent separated flow W1 th suct10n, the present method could be 

extended to separated flow conditions. For lam1nar as well as turbulent 

boundary layers the d15placement thlckness lS small compared to the 

corresponding separated flow condl tlons and the wake thlckness 18 much 

smaller. The strong l.nteractl.on near the tral.ll.ng edge has to be 

cons1dered l.f the flow separates near the shock. 

The boundary-layer l.ntegral method coupled Wl.th the method of 

1ntegral relatlons glves a computat10nally l.neXpenslve Solutlon for 

transonlC lamlnar viscous-invlscld lnteraction over airfoils. However, 

this method requl.res man-machlne lnteract10n and the solut10n can not be 

obtained in one computer run. The inverse boundary-layer approach 

obtal.ns the flow solution as well as the suction dlstrl.bution to keep 

the attached flow on the airfoll l.n one run. However, the boundary 

layer equations are not of strong interactl.on type. Slnce the shock 

influence pOl.nt has to be determl.ned in an l.terative process the 

computatlonal requirement is very high. The vectorized verSlon of the 

Euler solver for the l.nvi8cid flow could be used in a further study to 

include the shock l.nfluence point iteration so that the strong l.nterac­

tion model is l.ncorporated. 
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Appendl.x A 

LAMINAR OOUNDARY-LAYER ~ATIONS WITH SUCTION 

The laminar boundary-layer equat1.ons (2.15) can be expressed as 
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Appendix B 

"lURBULENT OOUNDARY-LAYER fJ2UATIONS WITH SUCTION 

The turbulent boundary-layer equat10ns are g1ven by Equat10n (2.52) 

as 
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log C6 + 5.1) V 
w 

+ 2.5 log C6 - (3.39 DELP + 5.1 )e-
C5 

+ 5.1 J/O 

5.0(2.5 log C7 + 5.1) lu 1 V 
'[ w 

+ C7 v 

0.37 (3.39 + 5.1 
3.39 ) -C5 /u / - 0:37 e '[ 

+ v 

2.5 /u / 0.5 C~ • U. ] or 
+ C7 + 

v 

[ 0.5 
5.0(2.5 log C6 + 5.1) C9 

U (el 6 - T\11) [ + C6 or 

V 
w 
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3.39) -C5 
+ 0.37(3.39 DELP + 5.1 - ~37 e C9 6 

+ 2.5 C9] / 
C6 1f 

2 
+ 0.5[(2.5 log C6 + 5.1) v w 

-C5 ] + 2.5 log C6 - (3.39 DELP + S.1)e + 5.1 

+ 1.7811 C8 u2 1u I]v ne T T W 

C8 2 ] + e [0.3423 U
T 

(nU,. + v) log C7 

+ 1.2543 n Iu 13
+ e

CS
(0.3560 nu2 1u 1- 5.277 VU

2
) 

T T T T 

7.305 e (0.8556 e U log C7 -C8 [ C8 v2 U2 I I 2 
T T 

_ 1.7797 Y'lA
CS v U

4
]V .... ,. W 

+ 0.3423 e
C8 J U

2 
T 

vlu I 
I U I log ( ;) + 1) 

,. nU 
T 
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- 0.3423 e
C8 

V
2 

U
2 Iu 110g(v lu I> 
T T T 

+ e
C8

[(0.6845 } U
2
t 

10g(U > + (0.3423 log n - 5.277) v
2 u2

) lu I 
T T T 

- 0.3423 nv u4
] 

t 

dU l 
SECOND = do U - t U

t
[-0.5", Cl 

(_e-C5
(3.39 DELP + 5.1) + (2.5 log C6 + 5.1)2 Vw 

+ 2.5 log C6 + 5.1 ]/0 

U V 
+ 5.0 ~ (2.5 log C7 5.1) 

V C7 

0.37 U 
+ __ --=-t (3.39 ETAP + 1.71 )e-C8 

V 

2.5 U 

+ V C7 t] 

0.5 ",U 

Cli {e -CS u3 04 e 
U ['.2543 Cl + 0 t t 



3 
+ [C2 C3 (-26.01 V + 5.l) + Cl v (26.01 V + 5.1) 

w w 

- 25.5 C3 V - 2.5 C3]6 
w 

+ C2 C4 (-26.01 V - 5.1)] 
w 

-C5 2 2 
+ e log C6 [Cl v U (38.0 V + 2.5) ~ 

'( W 
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+ C2 C3 (-25.5 V - 2.5) + Cl V
3

(25.5 V + 2.5) - 12.5 C3 V ]6 
w w w 

+ C2 C4 (-25.5 V - 2.5)] 
w 

C5 2 2 
+ e log C6 [6.25 Cl v U V 

'( W 

3 
+ (6.25 Cl v V - 6.25 C2 C3 V )6 - 6.25 C2 C4 V ] 

w w w 

+ [3.39 nv 'If U
2

(C2 + 0.2487) - 9.993 Cl v
2 

U ]~2 
'( '( 

) 
+ [8.49 C2 C) + 1.503 C) - 5.1 Cl v ]~ 



2 
[ ( 2 • 5 log C6 + 5. 1 ) V + 2. 5 log C6 

w 

-C5 
- (3.39 DELP + 5.1)e + 5.1)/6 

5.0 (2.5 log C7 + 5.1)U V 
't w 

+ 
C7 v 

0.37 U 
-C8 't 

+ (3.39 ETAP + 5.1)e 
v 

3.39 U 
-C8 "[ 

e 
v 

2.5 U 0.5 'If Ue l 6 C1 U dU 
\I C7 't] + 

- ntr + + 6 , 'If dU S 

5.0 U V 6(2.5 log C6 + 5.1) 

FOURTH .. U't[+0.S(C2 - ,)][ t w V Iu I C6 ] 
't 

+ 0.37 U 
t 

-C5 
6(3.39 DELP+ 5.1le /(vlu I) 

't 

- 3. 39 C9 6 e -C5 + 2.5 ~: 6 

+ 
5 .0 C9 n( 2 .5 log C7 + 5. 1 ) V 

w 
C7 

-C8 + 0.37 C9 n( 3 • 39 ETAP + 5. 1 ) e 

- 3.39 C9 n -C8 
e 

2.5 n C9 
+ C7 
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2 
- 0.5 (1 - C2) [V (2.5 log C6 + 5.1) 

w 

-C5 
+ 2.5 log C6 - (3. 39 C6 + 5. 1 ) e + 5. 1 ] 

1 11 

+ (2.5 log C7 + 5.1)2 V + 2.5 C7 - (3.39 ETAP + 5.1)e-
C8 

+ 5.1 
w 

2 
FIFTH = U [0.5 mr Cl [V (2.5 log C6 + 5.1) 

T w 

-C8 2 
+ 2.5 log C6 - (3.39 DELP + 5.1)e + 5.1)/6 

- o. 5 (1 - C2) ][ 5 .0 I U I V (2.5 log C6 + 5. 1 ) / ( V C6) 
T W 

2.5 IU I 
+ 0.37 IU 1(3.39 DELP + 4.1)e-

C8/\I+ T ] 
T v~ 

SIXTH = 0.5 (1 - C2) 

where 

ETAP - U Tl/ v 
T 

DELP .. U 6/ \I 
T 

Cl = Sl.ncr~) 

C2 a cos (1f~) 

0.5 TI'I1U Cl 
e 



C3 
2 

nv nU 

3 
C4 = nv 11 

T 

cs = 0.37 DELP 

C6 = DELP + 1 

C7 = ETAP + 1 

C8 0.37 ETAP 
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