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SUMMARY
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Adaptive Remeshing Method for Finite Element Thermal Analysis," were pre-

sented at the June 27-29, 1988, meeting of the AJAA Thermophysics, Plasma-

dynamics and Lasers Conference, San Antonio, Texas. The papers describe

research work supported under NASA/Langley Research Grant NSG 1321, and are

submitted in fulfillment of the progress report requirement on the grant,

for the period ended February 29, 1988.

Professor, Department of Mechanical Engineering and Mechanics, Old Dominion
University, Norfolk, Virginia 23529.

2Research Associate, Department of Mechanical Engineering and Mechanics, Old
Dominion University, Norfolk, Virginia 23529.

3Graduate Research Assistant, Department of Mechanical Engineering and
Mechanics, Old Dominion University, Norfolk, Virginia 23529.
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ABSTRACT

The use of an adaptive mesh refinement
procedure for analyzing high speed compressible flows
with strong inviscid-viscous interactions is described.
The adaptation procedure which uses both quadrilateral
and triangular elements, is implemented with the multi-
step Galerkin-Runge Kutta scheme. Elements that lie in
regions of strong gradients are refined based on inviscid
and viscous indicators to obtain better definition of flow
features. The effectiveness of the finite element
procedure is demonstrated by modelling Mach 11.7 flow
over a 15 degree ramp. Numerical results are compared
with predictions of the strong interaction theory and
experimental data. The influence of factors such as
mesh spacing and numerical dissipation on the
accuracy of computed results is discussed.

NOMENCLATURE

A element area

C Chapman-Rubesin parameter eq. (33)

Cf skin friction coefficient

CH heat transfer coefficient, Stanton number

Cp pressure coefficient

C1 C4 Runge-Kutta constants

dl • d2 artifical dissipation fluxes

EI , E2 flux components

e element error

pa advective flux

pv viscous flux

Fh heat flux
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G growth factor, eq.(35)

i unit vector defining velocity change, eq. (7)

It. 12 components of unit normal vector

M Mach number

[M] mass matrix

[N] element interpolation function

n unit vector normal to surface

n x. n y components of unit vector n

qn heat flux normal to surface

p pressure

Pr Prandtl number

R global nodal residual

r coordinate index , eq. (10)

Re Reynolds number

S solution domain boundary

T temperature

T x, Ty surface tractions

t time

t unit vector normal to i

U typical conservation variable

u, v velocity components in coordinate
directions

xi, X2 coordinate directions

Y maximum element error

p key variable for refinement

a threshold value for refinement
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M-2, H4

TW

X

Ax, Ay

Subscripts

aw

d

i

j

o
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w

element refinement indicator eq. (3)

Courant number

threshold value for derefinement, grid
stretching parameter

Kronecker delta

ratio of specific heats

dissipation constants

shearing stress

interaction parameter, eq. (33)

grid spacings in coordinate directions

adiabatic wall

dynamic conditions

summation index

index for nodes

total conditions

reservoir conditions

wall quantities

freestream conditions

Superscripts

k index for multistep scheme

n time step

INTRODUCTION

The potential role of computational fluid dynamics
(CFD) in the design and analysis of high speed vehicles
is being clearly defined by the national aerospace
plane, which is envisaged to have applications at flight
speeds exceeding Mach 25. Computational techniques
that provide good understanding of the flow features and
accurate estimates of aerothermal loads is essential in
the design of such vehicles since ground based facilities
cannot simulate the entire flight envelope. Description of
the complex inviscid-viscous interactions with vehicle
surfaces is possible with the full Navier-Stokes
equations. At the Aerothermal Loads Branch at NASA
Lang ley Research Center, finite element methodology
is being developed for integrated fluid-thermal-structural

analysis which can accurately predict the heating rates,
pressure loads and the thermal/structural response.

Compressible flows may contain discontinuities
such as shocks as well as regions of high gradients
such as boundary layers and shear layers which need to
be adequately resolved. Since these flow phenomena
occur over small distance scales which are not known
apriori, the computational mesh needs to be adapted to
model such high gradient regions without the use of an
excessive number of elements in low gradient regions.
Adaptive mesh refinement procedures can be used
effectively to resolve details in the flow region and
minimize elements elsewhere. Such procedures lead to
highly unstructured meshes. Since finite element
methods are characterized by their ease in handling
completely unstructured meshes and their ability to
include mesh refinement procedures these methods are
pursued. Explicit finite element schemes have also
demonstrated their capacity to produce good results for
a variety of flow situations and configurations1'4-

The purpose of this paper is to describe the
application of an adaptive refinement procedure to
predict viscous compressible flow features. Adaptive
mesh refinement procedures for compressible high
speed flows are of recent origin. Mesh refinement
procedures for triangular finite element meshes were
initially detailed by Zienkewicz, Lohner, and Morgan^,
and the application of these procedures to steady6, and
transient' compressible flow problems has been
demonstrated extensively. Adaptive procedures for
finite element meshes with quadrilateral elements have
been developed by Oden et. al& and by Shapiro and
Murman9. A mesh regeneration scheme developed by
Peraire, et. al.10 has found application in generating
meshes comprised of triangles (in 20) and tetrahedrons
(in 3D) for inviscid flows.

Most of the research in adaptive finite element
methods has been in inviscid flows. Application of
adaptive procedures to model complicated high speed
viscous flows are virtually non-existent. A notable
exception has been the recent effort to use an upwind
finite element formulation11 and unstructured triangular
grids to detail complex flows resulting from shock
interaction on a cylindrical leading edge.

The present study extends the adaptive
refinement procedure and finite element formulation of
reference 12 to predict inviscid and viscous flow details
for hypersonic flows with strong inviscid-viscous
interactions.

MESH ADAPTATION

The classical finite element mesh refinement
scheme is the addition of elements in regions of high
gradients. Elements that lie in these regions are divided
into smaller ones by a subdivision process. Both
triangular and quadrilateral elements can be enriched
by adding a central node and/or midside nodes. Figure
1(a) illustrates a triangular mesh that has been locally
enriched to capture an oblique shock. For a typical
quadrilateral element such a subdivision can result in



the generation of four smaller elements with the
possibility of the presence of midside nodes not being
connected to neighboring elements. These midside
nodes are sometimes called "hanging nodes." Figure
1 (b) illustrates a mesh with hanging nodes. The solution
algorithm must be modified to account for hanging
nodes, typically by introducing constraint equations.
One way to avoid these unconnected nodes is to
transition from a crude quad mesh to a fine one using
triangular elements. Figure 1(c) shows this type of
refinement which needs no special constraint equations
and the procedure provides a "natural" way to transition
between meshes of different density. Automation of the
adaptive procedure is accomplished with refinement
indicators.

Refinement Indicators

The rationale for using refinement indicators is
that, while it is possible to predict the location and
strength of shocks, boundary layers, etc. for some simple
flow situations, the analyst in general will not have prior
knowledge of the location of regions containing sharp
changes in flow variables. The decision to refine a
particular region of the mesh can be based on either
a-priori or a-posteriori error estimates. The procedure
adopted in this paper is to complete an analysis on a
given mesh and then refine the mesh at a certain stage
in the analysis. The refinement at this stage is based on
inviscid and viscous "error" indicators computed on the
initial mesh. The new mesh is used for the subsequent
analysis and then further refinements are performed if
needed.

The aim of the adaptive mesh refinement is the
minimization of maximum errors that occur in the finite
element domain. The mesh requirement is then

minimize (max ej) 1 < j < n 0)

where i denotes the element number, n the number of
elements in the domain and ej the error in the i-th
element. An optimal mesh then satisfies the equal
distribution condition,

e. = constant (2)

which indicates that the error measure is uniformly
distributed for all elements of the finite element mesh.
The adaptive mesh refinement procedure is designed to
add elements in appropriate regions to satisfy Eq. (2).
Since the solution is not known a-priori, an
approximation to the error measure is computed using
the finite element solution. If "p" is considered the key
variable representative of overall solution behavior, then
an error measure for inviscid refinement is given by

(3)
j.k-1.2

where 0jk are scaled second derivatives with a typical
term 612 defined as

812"V
U1

Here nd is the number of nodes in element i, and the
comma implies partial differentiation. The first term in the
denominator of equation (4) scales the second
derivative of the key variable to ensure that shocks of
different strengths are adapted equally. This prevents
the strongest shock from being overdefined at the
expense of capturing weaker shocks. The coefficient e in
the second term is used to smooth the indicator in
regions of oscillations.

The procedure adopted in this paper is to refine
all elements that satisfy the criterion

e,>oY

and derefine all elements that satisfy

(5)

(6)

where a and P are preset threshold constants and Y the
maximum element error over the entire domain. The key
variable used for the inviscid refinement is typically
pressure or density and a and p are usually 0.2 and 0.1
respectively.

The refinement indicator for viscous regions is
based on a variation of the explicit dissipation scheme
detailed in reference 13. It uses the notion that near the
wall the velocity changes within the boundary layer are
maximum in the direction normal to the predominant
velocity component. Unit vector i defines the change in
the value of the velocity vector V and is given by,

(7)

where V2 = (u2 + v2). The expression for element error
is given by

di (8)

where unit vector t is defined normal to i and is
illustrated in figure 2. As with the inviscid indicator,
elements with errors above a preset tolerance value are
refined while those with errors below the threshold are
derefined.

Adaptive Procedure

The starting point of the adaptive procedure is a
"skeleton" mesh or base mesh which contains only a few
elements. The skeleton mesh, which consists of
quadrilateral elements, needs to be completely
structured to begin the adaptive procedure. A structured
mesh implies that each interior node in the domain is
surrounded by the same number of elements. Prior to
the first analysis, the mesh refinement program does an



overall refinement where each element of the "skeleton*
mesh is subdivided into four quad elements. This
procedure is repeated a few times until the nodal density
of the resulting mesh is deemed sufficient to obtain a
solution which captures the main details of the flow field.

Refinement indicators are computed based on the
solution obtained on this 'initial" mesh and elements that
need to be refined or derefined are identified. All
elements in the mesh that have indicators above the
preset refinement threshold value are enriched while
those elements that have values below the threshold
derefinement value are coarsened. The refinement
strategy used is such that at each mesh change, only
one level of refinement or derefinement is permitted. On
refinement of a typical element, the "sub-elements" that
result could be all quads, or a combination of quads and
triangles. The number and type of the resulting "sub-
elements" depends on the refinement level of elements
that surround this element.

Figure 3 shows the elements that result in a
typical refinement and coarsening procedure. Figure
3(a) shows the original mesh where elements B, C, and
D are to be refined. The mesh that results is seen in Rg.
3(b). If on this refined mesh, element group C, which
includes "sub-elements" C1, C2, C3, and C4, needs to
be coarsened, the mesh that results after derefinement
appears in Rg. 3(c).

Boundary Layer Refinement

In addition to the refinement based on error
indicators detailed in earlier sections, the facility to
generate layers of structured quad elements at the wall
is also included within the framework of the analysis
program. This technique is developed to ensure a high
density of nodes at the no-slip boundaries to resolve
the thin laminar hypersonic boundary layer. The
program divides the elements located at the wall into
a specified number of sub-elements and elements thus
generated can be refined and coarsened at successive
refinement levels. The nodal coordinates of these new
elements are defined such that the mesh generated is
stretched normal to the wall. The location of the nodes
along normal lines at each wall location is obtained
from the expression of Roberts14,

5.=

x= (9)AxS.
j = 1,nnew

y= yw + Ay6.

where nnew is the number of new elements that result
from the subdivision. Ax and Ay the grid spacings in the
coordinate direction, p the grid stretching parameter,
and r the coordinate index given by,

where j is the index locating the node from the wall in
the normal direction. The nodal unknowns for the new
grid points at each wall location is linearly interpolated
from the nodal values of the parent element. The
meshing procedure clusters more nodes near the wall
as p approaches unity.

FINFTE ELEMENT FORMULATION

The explicit multistep Galerkin-Runge Kutta
formulation used in reference 12 for inviscid flow is
extended to model the compressible Navier-Stokes
equations. The solution algorithm is applied to the flow
equations in conservation form

IVI (11)

where U is the vector of variables and Ej the flux
vectors. The flux vectors can be written as

(12)

where Fa , pv and F^ represent the advective, viscous
and heat fluxes respectively. The vectors of conservation
variables and fluxes are given by

FY =

f '

^VY

(13)

where p is the density, ui the velocity components in the
coordinate directions, p the thermodynamic pressure, e
the total energy, q the heat fluxes, TJJ the viscous stress
components and 5,j the Kronecker delta. The shear
stresses and heat fluxes are given by,

(14)

where \n and X are the coefficients of viscosity, k the
thermal conductivity and T the temperature. Other
constitutive relations employed include:

r = j /nnew (10)

e = CVT + (u2+v2)/2

p = pRT

(15)



where Cv is the specific heat at constant volume and R
the gas constant. The coefficients of viscosity are related
by Stokes hypothesis

x-f. (16)

and n is assumed a function of temperature and
obtained by Sutherland's law. The thermal conductivity
is computed from the Prandtl number Pr which is
assumed constant along with constant specific heats.
Equation (11) is solved subject to proper initial and
boundary conditions which include: (a) specification of
conservation variables on the inflow plane, (b)
imposition of no-slip conditions and specified
temperatures on aerodynamic surfaces, and (c) outflow
surface integrals provided by the finite element
formulation.

Galerkln-Runge Kutta Algorithm

The system of conservation laws shown in Eq.
(11) can be written as,

(17)

Application of the method of weighted residuals results
in the finite element equations,

(18)

where [N] is the element weighting and interpolation
function and A the domain of interest. Integrating by
parts on the RHS terms yields,

[M] {^-} = /{N.j} [N] dA {E,} -J{N} [N] dS [l,EJ (19)

where the fluxes Ej are interpolated the same way as the
conservation variables'.

The time marching scheme is similar to the multi-
step time integration scheme which appears in
reference 9 and can be written as,

U<k)=Un+ck [rrJ- R (UM) + D] k=1 ,..,41 ' lMa iv J (20)ii

un+1=u(4)

where the dissipation operator D can be written as,

(21)

and D2 and 04 are second and fourth difference
dissipation terms which may be "frozen" for each
timestep.

The second difference artificial dissipation term is
needed to stabilize solutions in the presence of sharp
gradients. This dissipation operator is given by,

and

d. = KU, (i not summed ) (22)

where kj control the amount of dissipation added and
are given by,

I P.. I ( i not summed ) (23)

where u.2 is the second difference dissipation constant
and p the pressure. The first derivatives of pressure are
calculated as element quantities and nodal second
derivatives are then obtained from the relation,

lp,xxdA !

where the comma implies differentiation.

(24)

The linear fourth difference operator is needed to
damp out spurious oscillations and provide background
dissipation and is given by,

(25)

The fourth differences are evaluated by repeated
application of a 9-point Laplacian stencil. Typical values
of the dissipation constants na and H4 are 1/10 and
1/200 respectively.

Calculation of Wall Coefficients

Heat transfer, skin friction and pressure
coefficients are essential for design considerations since
they provide a direct measure of the severity of
aerodynamic loads on flight surfaces. Experimental
measurements for hypersonic flow behavior yield
surface distributions for pressure loads, heat transfer
rates and skin friction coefficients. Accurate computation
of the wail coefficients in the finite element
methodology is essential since their comparison with
experimental data forms the basis for code validation.

The heat transfer and shear stress coefficients
are related to the gradients of temperature and fluid
velocity at the surface. With a structured computational
grid it is possible to calculate derivatives at the wall by
simple differencing techniques and obtain results of
desired accuracy. For completely unstructured finite



element meshes the calculation of wall derivatives by
differencing is rather complicated. Computation of heat
fluxes and shear stresses at the wall is possible in the
finite element context by using the "consistent*
calculations. These calculations, introduced in
reference 13, use equation (19) as the basis for
computing wall coefficients.

The finite element equations (eq. 19) can be written as

J.i}[N]dA{E}-J{N}[N]dS[l.Ejs] (26)

At steady state the transient terms approach zero,
implying

J{N} [N] dS [ IE J =J{N,.} [N] dA {E.) (27)

The x and y momentum equations for elements on the
surface reduces to.

(28)

.. - (e + p/p)J

J
{N}[N]dS{T}

where Tx and Ty are the surface tractions and RX and
Ry the residuals for an element. These equations are
assembled for all the elements that lie on the surface.
Diagonalizing the matrices defined by the surface
integrals in equation (28) yields an explicit procedure for
obtaining nodal values for the surface tractions. The
surface tractions are related to the stress tensor by the
relation,

{ n } (29)

where TJJ are components of the stress tensor and nx

and ny are components of the unit vector n, normal to
the surface. The wall shearing stress is then given by,

(30)

Considering the energy equation for elements that lie on
the surface, at steady state the finite element equations
can be written as,

J{N}[N]dS{qn} (31)

where qn is the nodal heat flux for an element.
Diagonalizing the coefficient matrix and assembling the
element equations yields nodal values of the heat flux
on the surface. The coefficients of heat transfer (C(H).
skin friction (Cf), and pressure (Cp) are computed from
the relations,

(32)

where p« , p« and
the wall pressure.

are freestream values and p* is

COMPUTATIONAL RESULTS

The ability of the adaptive finite element
procedure to predict flow details for viscous flows is
illustrated by modelling the hypersonic flow over a ramp.
This problem has special interest due to its application
in the design of control surfaces for high speed vehicles
such as the aerospace plane. Theoretical estimates and
experimental results are available to gauge the
accuracy of the finite element calculations.

Flow Description

The problem considered is illustrated
schematically in Figure 4. Inflow at Mach 11.68 interacts
with the leading edge producing a shock due to the
boundary layer displacement effect. The boundary layer
does not have enough momentum to overcome the
adverse pressure gradient generated by the ramp
resulting in flow separation and recirculation near the
corner. The separated boundary layer then reattaches
downstream of the corner with the surface pressure
rising through the separated and reattachment regions.
The compression fan generated in the separation zone
eventually coalesces downstream to form the induced
shock. This shock interacts with the leading edge shock
to produce a resultant shock, an expansion fan and a
shear layer or slip line.

The interaction between the inner viscous shear
layer and the outer inviscid flow can be categorized
based on the nature of coupling. At the leading edge of
the plate the induced shock and the boundary layer are
essentially of the same order and the effects of the
interaction can be reasonably predicted by various
interaction theories. At the corner the separation results
upstream of the induced shock due to the coupling
between the shock and the thickening of the boundary
layer due to compression. This type of interaction
necessitates the need for solution of the full Navier-
Stokes equations.

Strong Interaction Theory

Near the sharp leading edge the displacement
thickness increases from zero and the flow turning
outside of the boundary layer causes compression and
a leading-edge shock. The strength of the shock
depends on the incident Mach number and has a strong
effect on the growth of the boundary layer at the leading
edge. Very near the leading edge, the pressure at the
edge of the boundary layer is very high compared to the
freestream pressure marking the region of "strong*



interaction. Downstream of the leading edge the
interaction between the inviscid and viscous flow
"weakens" and the wall pressure expands to freestream.

From laminar boundary layer theory the
appropriate similarity parameter for the shock-boundary
layer interaction is the Lees-Probstein parameter X
given by

(33)

where C is the Chapman-Rubesin compressibility
parameter, M_ the freestream Mach number, and Rex
the local Reynolds number. The effects of the coupling
between the leading-edge shock and the boundary
layer have been predicted by various strong 15,16 and
weak17 interaction theories. The complete interaction
theory of Bertram and Blackstock18 unifies the strong
and weak interaction theories by bridging their limits of
applicability. The assumptions used in the development
of these interaction theories include:

(a) the flow is hypersonic (M«»1)
(b) no gas dissociation
(c) Prandtl number constant
(d) vorticity effects due to the curved leading edge

shock are negligible, and
(e) pressure distibution is assumed to vary

exponentially with distance from the leading

The complete theory relates the surface pressure
to the interaction parameter X as follows,

P n „, A 3 /Y(Y+1) ry

pT=0-83+TV~2~~ GX

where G is the growth factor defined as,

(34)

(v-H T
G = 1.648 •—• {=r̂  + 0.352] (35)

aw

and Taw is the adiabatic wall temperature given by

(36)

for laminar flows. The variation of heat transfer
coefficient with surface temperature in the strong-
interaction region is tabulated by LJ and Nagamatsu1^ .
For Y = 1.4, variation of CH with wall temperature Tw is
given by

CH[Rex/X]1/2 (37)

where the constant C-| depends on Tw and the ratio of
specific heats and is obtained from reference 19.

Experimental Measurements

The experimental studies used for validation of
the finite element approach were conducted in the
Calspan 48-inch shock tunnel. These experiments20

have generated heat transfer, surface pressure and skin
friction measurements for hypersonic conditions ranging
from Mach 11.5 to Mach 18.9.

The Calspan shock tunnel consists of a shock
tube driver, followed by a conical expansion section and
a contoured nozzle to produce uniform axial flow in the
test section. The tunnel is started by rupturing a double
diaphragm which causes expansion of the air in the high
pressure driver section. A normal shock is generated
with the high temperature and high pressure air
between the normal shock and the driver-driven
interface. When the shock front strikes the end of the
driven section it leaves a region of stagnant high
pressure air. This air is then expanded through a
contoured nozzle to desired freestream conditions.

Skin friction transducers, thin-film resistance
thermometers and pressure transducers mounted at
suitable locations obtain skin friction, heat transfer, and
surface pressure measurements. Details of the
experimental setup are found in reference 20.

The flow parameters used in the numerical
computations correspond to the nominal test conditions
for hypersonic flow over a ramp presented in reference
20 and given below

Moo

Re<»
Tres
Pd

11.68

2989 R
0.3589 psia

The experimental data to be used for comparisons will
consist of measurements obtained for two sets of tunnel
runs21 . These measurements correspond to runs 19
and 21, and flow conditions for these runs are as follows

Run 19

Moo

Tres
Pd

11.7
1.734E+05/ft
2911 R
0.3458 psia

Run 21

Moo =

Reoo =
Tres =
Pd =

11.64
1.644E+05/ft
3105R
0.369 psia

The measurements of runs 19 and 21 yield surface
heating rates, pressures and skin-friction. The
coefficients of pressure and skin-friction are obtained by
dividing experimental values by the freestream dynamic
pressure. The coefficient of heat-transfer is obtained
from the heat flux at the wall by the relation,

(38)

where TW, the wall temperature, assumed to be the
same for both runs, is obtained from reference 20 and
the specific heat is assumed constant.



Computational Strategy

The hypersonic flow over a ramp results in
inviscid-viscous interactions that have distinctly different
character in various regions of the domain. Near the
leading edge, the mesh needs to be well refined and
uniform to capture the gradients in both the streamwise
and normal directions. Away from the leading edge, the
flow is basically the development of the viscous
boundary layer and mesh spacings at the surface in the
normal direction are of concern. At the corner, the
coupling between the inviscid and viscous regions
necessitate the need for adequate refinement to capture
the separated and attached regions of flow.

The adaptive finite element approach was
implemented on the NAS Cray-2 supercomputer. The
analysis is started on an initial mesh and iterations are
performed until the L2 norm of the residuals of the
conservation variables dropped over three orders of
magnitude. The mesh is then refined/coarsened based
on the inviscid and viscous error indicators. On the final
mesh, convergence is monitored by observing changes
in the residuals of the conservation variables, the heat
flux on the surface and variations in pressure values
near the surface at the outflow plane. A local time-
stepping procedure that is based on the CFL and
viscous stability requirements is used to accelerate
convergence to steady-state and details of this
procedure are found in reference 13. Typical
computational speeds on the scalar code were about
2.E-04 CPUs/timestep/node and vectorization efforts
are underway to enhance this speed.

An initial analysis of the complete flow domain
resulted in inaccurate descriptions of the heating rates
and surface pressures. This analysis indicated the need
for the finite element mesh to have more elements at
critical locations of the flow, such as, at the sharp
leading edge and the corner to obtain satisfactory
correlation with experimental data. The analysis
described herein divides the flow domain into three
regions. The three regions are shown in figure 5 and
are categorized as : (a) the sharp leading edge section,
(b) the flat plate section, and, (c) the ramp section.

Sharp Leading Edge

The finite element mesh that results after multiple
refinements/derefinements depends a greal deal on the
"skeleton* mesh used to start the adaptation procedure.
A judicious selection of the skeleton mesh models the
physics of the flow better and minimizes the number of
elements used in the analysis. The skeleton mesh used
to model the sharp leading edge is shown in Rg. 6. The
skeleton mesh was designed such that on refinement,
aspect ratios of unity exist right at the leading edge and
higher aspect ratios prevail downstream of the leading
edge. The mesh obtained after three refinements on the
initial mesh is shown in Fig. 7(a) and contains 7245
nodes and 7235 elements (5781 quads and 1454
triangles). Density contours for the leading edge section
of mesh in figure 7(b) show good definition of the
leading edge shock and smooth variation of density
within the boundary layer. At the leading edge, the
boundary layer displacement effect causes the density

at the wall to increase by an order of magnitude and
then to drop off quite rapidly away from the leading

Details of the finite element mesh very near the
sharp leading edge ( box A in figure 7(a)) is shown in
figure 8(a) and the density contours on this section of the
mesh appear in figure 8(b). It is interesting to note the
"wiggles" that appear in the contours at x=0.005 where
the element aspect ratio jumps by a factor of 20 in the
flow direction. The effect of this jump is also seen in
figure 9 in the distribution of the wall pressures near the
leading edge.

A region of the mesh where the element aspect
ratios change considerably normal to the flow direction
is at y = 0.005. This jump is inherited from the macro-
elements that constitute the skeleton mesh in figure 6.
The effect of the aspect ratio jump in the normal direction
is best seen by focusing in on the region at the exit
plane (x=0.1) defined by box B in figure 7(a). The finite
element mesh at the outflow plane is shown in figure
10(a) and the distribution of pressure along y at x=0.1 is
plotted in figure 10(b). The presence of oscillations near
the wall and at mesh transitions is very evident in this
distribution. The bigger "wiggle" occurs where the
element aspect ratio in the normal direction changes
abruptly by a factor of ten. The analysis was repeated
with both the second and fourth order dissipation turned
off for elements located close to the wall and away from
the vicinity of the sharp leading edge. This was possible
using arrays that contain information about element
neighbors. The distribution of pressure at the exit with no
explicit dissipation close to the wall in shown in figure
10(c). The pressure jump at the wall is absent and
pressure levels within the boundary layer are higher.
However, the oscillations caused by the aspect ratio
jumps are still present. The distribution of pressure at the
exit, shown in figure 11, indicates the presence of
pressure gradients normal to the wall even at regions
close to the wall. Pressure, being derived from the
conservation variables, appears to be more sensitive to
mesh transitions than, say, density, the distribution of
which is plotted in figure 12, exhibiting a smaller kink at
y-0.005.

The surface pressure and heat transfer coefficient
obtained from this analysis are compared to predictions
by the interaction theories in figure 13. The results
compare favorably, especially the heat transfer
coefficient. Pressure levels close to the leading edge
are well behaved and do not exhibit the "inverse spike*
reported by other researchers^?. The maximum
deviation in pressure levels is seen to be near the
leading edge.

It is instructive to take a quick look at the flow
physics close to the leading edge. As seen in Figure 14,
very close to the leading edge the flow is near free
molecular flow and can be modelled only on the basis of
kinetic theory. The transitional layer has mixed kinetic
and continuum properties. The merged layer which lies
a little downstream of the transition layer can be
described by the Navier-Stokes equations but needs
velocity slip and temperature jump conditions at the
wal|23. Downstream of the merged layer, where a



distinct invistid layer develops between the shock and
the viscous layer, is the interaction region. The Navier-
Stokes equations with no-slip boundary conditions do
not accurately model the physics of the flow up to this
interaction region. So the accuracy of the finite element
calculations very close to the leading edge is less than
perfect and discrepancies on comparison with the
strong interaction theories is not unexpected.

Flat Plate Section

Profiles of the conservation variables obtained at
the exit of the leading edge section are used as inflow
conditions to the flat plate section.

The skeleton mesh used to model the second
section of the problem, the flat plate region, is shown in
figure 15. After three overall refinements the elements at
the wall were divided into 10 sub-elements according to
equation (9). The grid parameter p was set to be 1.02
and the subdivision yields elements with aspect ratios
over 200 at the wall. The finite element mesh that results
after three refinements on this initial mesh contains 8483
nodes and 8593 elements (5151 quads and 3442
triangles) and is shown in figure 16(a). Density contours
on this mesh in figure 16(b) show the mesh capturing
the leading edge shock and growth of the boundary
layer along the plate. Details of the finite element mesh
near the inflow (box A in figure 16(a)) and the density
contours on this section of the mesh appear in figures
17(a) and 17(b). Density profiles at the inflow and the
exit of the flat plate section, shown in figure 18, illustrate
growth of the boundary layer and weakening of the
leading edge shock as the flow traverses the plate.

A comparison of the density profiles at the
outflow of the leading edge and at inflow to the flat plate
section in figure 19 indicates the adequacy of nodal
distribution in the normal direction. Linear interpolation
is used at the inflow of the flat plate section which tends
to dampen some of the oscillations present at the exit of
the leading edge section as illustrated by the pressure
profiles in figure 20. It is to be noted that these
oscillations become fixed at the inflow planes, and
hence will influence subsequent analyses.

As with the leading edge section, profiles on the
exit plane (x=0.7) of the flat plate section are used to
define the inflow boundary of the ramp section.

Ramp Section

The skeleton mesh used for modelling the ramp
section of the flow domain is shown in figure 21. After
three overall refinements on this skeleton mesh a layer
of structured quadrilateral elements were generated at
the wall. Each element at the wall was divided into ten
sub-elements with a stretching factor of 1.03. The mesh
that results after three refinements on this initial mesh is
shown in figure 22(a). Density contours obtained on this
mesh appear in figure 22(b) and salient characteristics
of the flow such as the leading edge, induced and
resultant shocks are all seen to be well captured. The
ability of the adaptive refinement procedure to locate
regions of high gradients is exhibited by taking a closer
look at the mesh in the ramp comer (box A in figure

22(a)). The mesh in figure 23(a) and density contours
on this mesh in figure 23(b) illustrate capture of the
leading edge shock and compression of flow that results
in the induced shock downstream of this region. The fine
mesh at the surface is needed to model separation and
subsequent reattachment of the boundary layer in the
vicinity of the corner. Explicit dissipation terms for
elements that are located close to the surface were
zeroed out to ensure accurate computation of surface
quantities.

Details of the flowfield, especially the coupling
between the inviscid and viscous regions of flow, are
best described by profiles of select variables at specified
axial locations. Figure 24 indicates the various x-stations
wherein the variation in y direction of quantities such as
pressure and temperature are studied. Locations
indicated by A, B, C and D are used to describe flow
details in the domain up to the comer while locations E
to H detail flow characteristics up the ramp.

The distribution of pressure normal to the surface
at locations A to D is shown in figure 25. As the flow
moves from the inlet toward the comer, the presence of
the adverse pressure gradient due to the ramp is clearly
seen. Fluid in the vicinity of the comer cannot overcome
the effects of the pressure gradient as well as the skin
friction at the wall and flow separation results. The
separated boundary layer becomes a free shear layer
outside of the recirculation region. Pressure profiles in
figure 25 and velocity profiles in figure 26 illustrate this
effect. The boundary layer separation is clearly seen by
reversal in flow direction of the u-velocity profiles. The
distribution of temperature at various x-stations in figure
27 shows evidence of increase in boundary layer
thickness as the flow approaches the ramp corner.
Gradients of the temperature profiles at the surface
indicate the decrease in heat transfer rates from location
A to location D.

Characteristics of the flow up the ramp are
described by the distributions at locations E to H.
Pressure profiles at E, F, and G in figure 28 indicate the
strengthening of the induced shock and the change in
location of the leading edge shock relative to the
surface. The distribution of pressure at exit of the ramp
(location H) shows the resultant shock which is derived
from the interaction of the leading edge shock with the
induced shock. A weak expansion fan also results from
this interaction, the effect of which is seen by the small
drop in surface pressures at location H relative to that
at G. The distribution of density in figure 29 indicates the
thinning of the boundary layer as the flow moves up the
ramp. This reduction in thickness of the boundary layer
is also seen in figure 30 which shows u-velocity profiles
at various x-stations. The presence of the recirculation
is seen by the flow reversal close to the surface at
station E. At the exit from the ramp section, the boundary
layer profile is fully developed and downstream of this
region the interaction between the inviscid and viscous
regions of the flowfield is negligible. Temperature
profiles at locations up the ramp, shown in figure 31,
reflect the thinning' of the boundary layer. The largest
gradient in temperature at the surface is seen to be at
location G indicating the approximate location of peak
heating rates.
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Heat flux, skin friction and pressure coefficients
for the ramp surface obtained from the finite element
approach are compared to experimental observations
of Holden21. As mentioned earlier, flow conditions used
in the finite element analysis were conditions
representative of runs 19 and 21 in the Calspan tunnel.
Figure 32 compares the finite element predictions for
heat transfer coefficient to those obtained from tunnel
runs. Heat transfer coefficients computed from the finite
element scheme compare well with both the
experimental runs for locations upto the corner as well
as halfway up the ramp. Heating rates measured near
the exit of the ramp for run 19 are about twice that of
both run 21 and numerical predictions. The finite
element predictions seem to compare better with
experimental data of run 21 as seen by figure 33. The
heat transfer coefficients match quite well at the
separation and reattachment regions and the values of
the peak heating rate are in excellent agreement. The
main discrepancies seem to be location of the peak heat
rate, which for the analysis is shifted to the left, and a
steeper drop in heating rates downstream of this
location.

Skin friction coefficients calculated from the finite
element approach are compared to those measured in
tunnel runs 19 and 21 in figure 34. Levels of the skin
friction coefficient compare well with the experimental
data for regions unaffected by the recirculation while the
size of the recirculation region is underpredicted by the
finite element approach. Both experimental runs
measure flow separation at around x=15" while the finite
element predictions locate separation at x=16". The
location of the reattachment point from run 21 is x=20.3"
and the finite element procedure locates this point at
x=19.3". Unsteadiness of the recirculation bubble, which
could account for the discrepancies in the finite element
predictions, was not considered in this analysis.

A comparison of surface pressure coefficients
using the finite element approach with data from
experimental runs 19 and 21 appears in figure 35.
Pressure levels predicted by the analysis is seen to be
lower at the inflow and recirculation regions. The rise in
pressure up the ramp is much more rapid with the final
surface pressure falling midway between pressure
levels of runs 19 and 21. The experimental data shows
sharp peaks in pressure coefficients near the exit while
the finite element approach indicates a gradual
downward trend. This implies that the interaction
between the leading edge shock and induced shock is
stronger than that predicted by the finite element
approach. The pressure rise for Mach 11.7 inviscid flow
over a 15° ramp is about 17.5 and the finite element
analysis yields a peak pressure rise of over 22.

Refinement Indicators Revisited

The finite element meshes for analyzing flow over
the ramp were obtained by multiple refinements on the
initial meshes, using the inviscid indicator, with pressure
as the key variable, and boundary layer indicator.
Proper selections of the key variable and values of a
and p", the refinement and derefinement thresholds,

impact heavily on the quality of the resulting finite
element mesh. The effect of refinement and threshold
parameters on the finite element mesh for the ramp
section merits investigation. Meshes that result from
refinements are evaluated by comparing nodal
distribution in the y-direction for some specified x-
station.

Four cases of interest, obtained by varying the
adaptation parameters are described below.

Case 1: Key variable - pressure, o=.15, p=.1, viscous
refinement indicator off.

Case 2: Key variable - pressure, o=.15, p=.1, viscous
o=.15.

Case 3: Key variable - density, o=.15, |J=.1, viscous
refinement indicator off.

Case 4: Key variable • density, a,(3=.1, viscous
refinement indicator off.

The pressure profile at location A (figure 24) in
the flat portion of the ramp for the initial mesh is seen in
figure 36. For both case 1 and case 2, the use of
pressure as the key variable causes the leading edge
shock to be refined. The profile reflecting case 2 also
shows nodes being added inside the boundary layer.
The location of these new nodes are seen in figure 37
from the u-velocity profiles. The viscous indicator is seen
to add elements where the velocity profile is essentially
linear.

The use of density as the key variable (case 3)
indicated by the profile in figure 36 shows refinements at
the shock and the boundary layer. Elements within the
boundary layer are refined due to sharp changes in the
density profile as seen in figure 38. The effect of
lowering the refinement threshold is shown in figure 39
where the pressure profile that results from case 4 is
compared to that of case 3. More elements at the
leading edge shock are refined for case 4 and the
pressure profile is very similar to that obtained using
pressure as the key variable and the viscous indicator
(case 2) in figure 36.

The profiles in figures 36-39 illustrate the
inadequacy of using equation (4) with pressure as the
key variable to capture details of the boundary layer.
The use of density as the key variable with appropriate
threshold values causes refinements at the shock as
well as within the boundary layer. The use of the viscous
indicator equation (8) leads to excessive refinements
within the boundary layer, where the velocity profile is
essentially linear.

Oscillations in pressure close to the wall is
observed in figures 36 and 39. The pressure levels of
the added nodes are higher than the values at the
adjacent nodes. The inaccuracy is due to pressure
being derived from conservation variables while
conservation variables at a new node are obtained by
averaging variables at adjacent nodes. A time history of
pressure at such a typical node in figure 40 shows the
nodal pressure dropping down to the right levels within
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200 iterations on this mesh. A procedure based on
interpolating primitive variables at each refinement level
was also tried. This scheme eliminates inaccurate
pressures at new nodes within the boundary layer but
shows minimal improvements on convergence rates.
Interpolation techniques are being investigated to
eliminate this inaccuracy and help increase
convergence rates.

CONCLUDING REMARKS

An adaptive finite element procedure that uses
both triangles and quadrilateral elements is coupled
with a multi-step Galerkin-Runge Kutta algorithm to
model laminar hypersonic compressible flows. The finite
element mesh is adapted in regions of high gradients by
the use of inviscid and viscous refinement indicators.
The facility to add in layers of structured quadrilateral
elements at the wall for better representation of the
boundary layer is included within the framework of the
program.

The ability of the adaptive finite element
procedure to capture details of compressible flow with
strong-inviscid viscous interactions is demonstrated by
modelling the Mach 11.7 flow over a ramp. To ensure
adequate resolution of complex flow features, the flow
domain is split up into three sub-regions: (a) the sharp
leading edge, (b) the flat plate region, and (c) the ramp
section.

The accuracy of the finite element solution at the
sharp leading edge section is evaluated by comparison
with predictions of strong interaction theories. The
complete theory of Bertram and Blackstock yield
estimates for surface pressure distributions while the
heat-transfer coefficient is obtained from the strong
interaction theory of Li and Nagamatsu. Good
correlations between the finite element predictions and
the strong interaction theories are obtained for the
leading edge section.

The finite element mesh for the ramp
section captures the physics of the complicated viscous-
inviscid interactions at the corner. Surface coefficients of
heat transfer, skin friction and pressure obtained from
the finite element calculations compare well with the
experimental measurements of Holden. The effect of the
leading edge shock on the surface is seen by the peak
in heating rates up near the exit section of the ramp.

Smooth mesh transitions within the boundary
layer is seen to be important to model the flow behavior
without any localized "wiggles" in the solution.
Elimination of all explicit dissipation within the boundary
layer is essential to obtain accurate predictions of heat
transfer, skin friction and pressure coefficients. The
refinement indicator used to key in on the boundary
layer needs to be modified to ignore enrichment at
regions where the velocity profiles are linear. The ability
to pick out elements that lie in locations of flow reversals
is also needed for flow domains that include separation
and reattachment regions. A refinement procedure that
puts in an excessive number of elements at the surface

is to be avoided since this leads to increased
computational effort and slower convergence rates.

The study highlights some of the complexities
involved in modelling compressible viscous flow
problems, especially, high speed flows with strong
shock-boundary layer interactions. The physics of the
flow as well as surface coefficients obtained from the
adaptive finite element approach compare favorably
with theoretical and experimental data. This trend is
encouraging and the procedure indicates good potential
for accurate aerothermal load predictions in the design
of high speed vehicles.
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(a) Triangular enrichment
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(b) Quad enrichment

(c) Quad enrichment with triangular
transition

Fig. 1 Mesh Enrichment using quadrilateral and
triangular elements.
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Fig. 2 Velocity profile at wall and unit vector defining
change of velocity.
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Fig. 3 Example of adaptation procedure using
triangular transition elements.
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Fig. 4 Hypersonic flow over a 15° ramp.

Fig. 5 Subdivision of hypersonic flow domain.
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Fig. 7 Finite element mesh and density contours
for sharp leading edge.
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(b) Density contours

Rg. 7 Finite element mesh and density contours
for sharp leading edge.
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Rg. 10 Rnite element mesh and pressure
distribution at the exit plane of sharp
leading edge.
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Rg. 8 Rnite element mesh in the vicinity of the
leading edge.
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Fig. 14 Hypersonic flow detail at sharp leading
edge.
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Fig. 13 Comparison of pressure and heat transfer
coefficients for the sharp leading edge.
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Fig. 15 Skeleton mesh for flat plate section.

(a) Finite element mesh

Fig. 16 Finite element mesh and density
contours for flat plate section.

15



(b) Density contours

Fig. 16 Finite element mesh and density
contours for flat plate section.
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(a) Finite element mesh at inflow

(b) Density contours at inflow section

Fig. 17 Detailed mesh at inflow for flat plate
section.
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Fig. 18 Comparison of inlet and exit profiles of
flat plate section.
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Fig. 19 Density profiles at exit of the leading
edge and inflow to the flat plate section.
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Fig. 20 Effect of interpolation procedure on
pressure profiles at inflow to flat plate
section.
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Fig. 21 Skeleton mesh for ramp section. x- 1.3

(a) Finite element mesh
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(a) Finite element mesh
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Fig. 23 Mesh detail at comer of ramp.

(b) Density contours

Fig. 22 Finite element mesh and density contours for
ramp section Fig. 24 Locations of profile stations along the ramp.
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Fig. 25 Pressure distribution at locations on flat portion
of ramp.

Fig. 28 Pressure profiles at .locations up the ramp.
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Fig. 26 Velocity profiles at locations on flat portion of
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Fig. 29 Density profiles at locations up the ramp.
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Fig. 27 Temperature distribution at locations on flat
portion of ramp.

Fig. 30 Velocity profiles at locations up the ramp.
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Fig. 32 Comparison of heat transfer coefficients on the
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Fig. 35 Comparison of surface pressure coefficients on
ramp surface.
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