NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
USER'S GUIDE

ENGINEERING DATA COMPRENDIUM

Human Perception and Performance
Human Perception and Performance

Edited by

Kenneth R. Boff
Human Engineering Division
Armstrong Aerospace Medical Research Laboratory

Janet E. Lincoln
University of Dayton Research Institute

Harry G. Armstrong Aerospace Medical Research Laboratory
Wright-Patterson Air Force Base, Ohio, 1988

Integrated Perceptual Information for Designers Program
Further information on the Compendium may be obtained from:

Human Engineering Division
Harry G. Armstrong Aerospace Medical Research Laboratory
Wright-Patterson Air Force Base, OH 45433
USA

Companion volume to the Engineering Data Compendium:

Handbook of Perception and Human Performance, edited by
K.R. Boff, L. Kaufman, and J.P. Thomas (New York: John
Wiley and Sons, 1986). Volumes I and II.

Library of Congress Cataloging in Publication Data:

Engineering data compendium.

Includes bibliographies and indexes.
1. Human engineering—Tables. 2. Perception—
I. Boff, Kenneth R. II. Lincoln, Janet E.
TA166.E54 1988 620.8'/2 87-19560
"Engineers have been aware of the desirability of designing equipment to meet the requirements of the human operator, but in most cases have lacked the scientific data necessary for accomplishing this aim."

In honored memory of

PAUL M. FITTS

We dedicate this work to the past and future achievements of the organization he founded

The Human Engineering Division
Armstrong Aerospace Medical Research Laboratory
Technical Staff

Editorial

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anita Cochran</td>
<td>Senior Copy Editor</td>
</tr>
<tr>
<td></td>
<td>Director, Quality Control</td>
</tr>
<tr>
<td>Stevie Hardyal</td>
<td>Copy Editor</td>
</tr>
<tr>
<td>University of Dayton Research Institute</td>
<td></td>
</tr>
<tr>
<td>Barbara Palmer</td>
<td>Senior Technical Editor</td>
</tr>
<tr>
<td>Herschel Self</td>
<td>Visual Sciences Editor</td>
</tr>
<tr>
<td></td>
<td>User’s Guide Development</td>
</tr>
<tr>
<td></td>
<td>Armstrong Aerospace Medical Research Laboratory</td>
</tr>
<tr>
<td>Patrick Hess</td>
<td>Bill Harper</td>
</tr>
<tr>
<td>Kirsten Means</td>
<td>Assistant Copy Editors</td>
</tr>
<tr>
<td>Armstrong Aerospace Medical Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>University of Dayton Research Institute</td>
<td></td>
</tr>
</tbody>
</table>

Special Projects

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward A. Martin</td>
<td>Engineering Technical Advisor</td>
</tr>
<tr>
<td></td>
<td>Air Force Deputy for Engineering</td>
</tr>
<tr>
<td>Jeffrey A. Landis</td>
<td>Senior Technical Auditor, Glossary Development</td>
</tr>
<tr>
<td></td>
<td>User’s Guide Development</td>
</tr>
<tr>
<td>Michele Glikison</td>
<td>Permissions</td>
</tr>
<tr>
<td>University of Dayton Research Institute</td>
<td></td>
</tr>
<tr>
<td>Mark Jones</td>
<td>Document Auditor</td>
</tr>
<tr>
<td></td>
<td>General Support</td>
</tr>
<tr>
<td>Maggie Hewitt</td>
<td>Peer Review Coordinator</td>
</tr>
<tr>
<td></td>
<td>Figure Drafting Auditor</td>
</tr>
<tr>
<td></td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td></td>
<td>Dayton, OH</td>
</tr>
<tr>
<td>John Spravka</td>
<td>Technical Auditor</td>
</tr>
<tr>
<td></td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td></td>
<td>Dayton, OH</td>
</tr>
<tr>
<td>Sarah Osgood</td>
<td>User’s Guide Development</td>
</tr>
<tr>
<td></td>
<td>Systems Research Laboratories</td>
</tr>
<tr>
<td></td>
<td>Dayton, Ohio</td>
</tr>
</tbody>
</table>

Management

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen Pettus</td>
<td>Project/Staff</td>
</tr>
<tr>
<td>Anita Cochran</td>
<td>Project/Staff</td>
</tr>
<tr>
<td>University of Dayton Research Institute</td>
<td></td>
</tr>
<tr>
<td>Gian Cacioppo</td>
<td>Project/Staff</td>
</tr>
<tr>
<td>University of Dayton Research Institute</td>
<td></td>
</tr>
<tr>
<td>Judy Williams</td>
<td>Project/Staff</td>
</tr>
<tr>
<td>Kathy Martin</td>
<td>Project/Staff</td>
</tr>
<tr>
<td>Patricia Browne</td>
<td>Project/Staff</td>
</tr>
<tr>
<td>Compendium Development</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Dayton, OH</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Chuck Semple</td>
<td>Project/Staff</td>
</tr>
<tr>
<td></td>
<td>Essex Corp.</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA</td>
</tr>
</tbody>
</table>

Design

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dale Fox</td>
<td>Director of Design</td>
</tr>
<tr>
<td>Systems Research Laboratories</td>
<td></td>
</tr>
<tr>
<td>Dayton, OH</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Bethann Thompson</td>
<td>Project Designer</td>
</tr>
<tr>
<td>Systems Research Laboratories</td>
<td></td>
</tr>
<tr>
<td>Dayton, OH</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Ken Miracle</td>
<td>Cover Art</td>
</tr>
<tr>
<td>Systems Research Laboratories</td>
<td></td>
</tr>
<tr>
<td>Dayton, OH</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Dana Breidenbach</td>
<td>Entry Design</td>
</tr>
<tr>
<td></td>
<td>Graphic Design Works</td>
</tr>
<tr>
<td></td>
<td>Yellow Springs, OH</td>
</tr>
</tbody>
</table>

Drafting, Composition and Production

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Research Laboratories</td>
<td></td>
</tr>
<tr>
<td>Dayton, OH</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>University of Dayton Research Institute</td>
<td></td>
</tr>
<tr>
<td>Figures & Illustrations</td>
<td></td>
</tr>
<tr>
<td>Chuck Good</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Steve Mikel</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Henry Bowman</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Harian Typographic</td>
<td>Dayton, OH</td>
</tr>
<tr>
<td>Entry Composition & Typesetting</td>
<td></td>
</tr>
<tr>
<td>Ed Bratka</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Harry Blacker</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Suanne Lang</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Scott Bratka</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Jeff Murray</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Lou Sena Aldridge</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Larry Campbell</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Dottie Moore</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Bruce Brown</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Ron Easterday</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Paul Fugate</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Jim Redick</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Kramer Graphics, Inc.</td>
<td>Dayton, OH</td>
</tr>
<tr>
<td>Table Composition & Typesetting</td>
<td></td>
</tr>
<tr>
<td>Anthony Ashland</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Monica Gorman</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Sara Mitchell</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Kim Perry</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Andrea Snell</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Ed Szymczak</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Kelly Kramer</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Specialised Printing</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Services, Limited</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Printing</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Derek Smith</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Mike Richards</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
</tbody>
</table>

Administrative Support

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacAulay-Brown, Inc.</td>
<td>Dayton, OH</td>
</tr>
<tr>
<td>Word Processing</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Pamela Coleman</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Terry Hieber</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Bernice Stewart</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Sandra Suttles</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Michelle Warren</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Armstrong Aerospace Medical Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Secretarial Assistance</td>
<td>Tanya Ellifritt</td>
</tr>
<tr>
<td>Logistics Control</td>
<td>Kristen Morton</td>
</tr>
<tr>
<td>Dale Schimmel</td>
<td>Al Chapin</td>
</tr>
<tr>
<td>University of Dayton Research Institute</td>
<td></td>
</tr>
<tr>
<td>Administrative Assistance</td>
<td>Jean Scheer</td>
</tr>
<tr>
<td>Pendragon Press</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Stuyvesant, NY</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
<tr>
<td>Secretarial Assistance</td>
<td>Nanette Maxim</td>
</tr>
<tr>
<td>Susan Baum</td>
<td>MacAulay-Brown, Inc.</td>
</tr>
</tbody>
</table>
Contents

Acknowledgments for the User's Guide xi
About the Engineering Data Compendium 1
How to Use the Engineering Data Compendium 5
Contents for Volume I 11
Contents for Volume II 17
Contents for Volume III 23
Glossary 29
Design Checklist 45
Index 77
Acknowledgments for the User's Guide

The Engineering Data Compendium was developed through the joint efforts of an extraordinary group of individuals whose contributions toward achieving the project's ambitious objectives are detailed in the Acknowledgments at the front of the data volumes of the Compendium. We wish, in addition, to acknowledge the select group who contributed in a special way to the preparation of this User's Guide.

In particular, we are indebted to Herschel Self (Armstrong Aerospace Medical Research Laboratory) for his tireless efforts in aiding the development of the design checklist. His assignment was to assess and document the relationship of Compendium data to design-related issues by identifying specific human performance questions for which answers might be derived from individual Compendium entries. Over a period of several years, Hersch authored many thousands of questions based on an in-depth review of entry content. These questions were then edited and sorted into meaningful categories linked to an equipment-related taxonomy. Accomplishing this task required detailed scrutiny and extensive technical support by Herschel Self, by Ed Martin, Engineering Technical Advisor for the project, by Barbara Palmer and Sarah Osgood of Systems Research Laboratories, and by Anita Cochran, Jeffrey Landis, and Patrick Hess of the University of Dayton Research Institute.

Compilation of the master index was an excruciating task requiring the identification, sorting, and structuring of over 10,000 index entries. This work was invaluably aided by the effort of Barbara Palmer, Systems Research Laboratories, and by the early contributions of Patricia Browne, MacAulay-Brown, Inc.

The final style and appearance of the User's Guide was the work of the Systems Research Laboratories' Corporate Graphics/Pho'o Lab under the guidance of Dale Fox, director of Design for the IPID project. Major contributions to this effort were made by Bethann Thompson and Clarence Randall, Jr.

Support for preparation of the User's Guide followed a somewhat different track than that for the Compendium data volumes. Indispensable to the successful development of the User's Guide has been the active, uncompromising support of Charles Bates, Jr., Director of the Fitts Human Engineering Division of the Armstrong Aerospace Medical Research Laboratory. We also wish to express our gratitude to NATO's Advisory Group for Aerospace Research and Development (AGARD) and its Technical Director, Irving C. Statler, for supporting the production of this User's Guide. For expediting NATO participation, we are indebted to George Hart, Technical Information Panel Executive, and Major John Winship, Canadian Forces, Aerospace Medical Panel Executive.

Once again, we are compelled to acknowledge the tolerance and understanding support of our spouses, Judy Boff and Bob Kessler, which played a critical role in the successful completion of this project. Finally, it is our profound hope and expectation that the task we have begun in developing the first volumes of this Compendium will continue and flourish with future revisions and expansions in scope of coverage.

KENNETH R. BOFF
Armstrong Aerospace Medical Research Laboratory
Wright-Patterson Air Force Base, Ohio

JANET E. LINCOLN
University of Dayton Research Institute
Dayton, Ohio, and Stuyvesant, New York
About the Engineering Data Compendium

Claims and Disclaimers

The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective of this effort was to develop a workable strategy for (a) identifying and distilling information of potential value to system design from the existing research literature, and (b) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present volumes of the Engineering Data Compendium represent the first implementation of this strategy.

Ultimately, the success of this effort depends critically on the reception given to these initial volumes by both the R&D and design communities. To ensure the technical credibility of the present work and the feasibility of extending the treatment to other topical domains, it is essential that the R&D community be comfortable with this selection and representation of research findings. Of equal or greater importance, the functional utility of the Compendium must be fully demonstrated in design practice. Feedback from these user communities regarding working experience with the Compendium will shape future refinements to the project's basic strategy as well as revisions of the present Compendium. As one means of facilitating the interaction that is so vital to the continued success of the project, reader service cards have been provided at the back of the User's Guide on which users are encouraged to comment regarding the value of the Compendium in their work and improvements that would increase its utility and applicability.

Though the existing volumes provide system designers with a wealth of relevant human performance and perceptual data, coverage does not extend to all topics of potential value, nor is the depth of treatment uniform across subject areas. The Compendium was originally conceived as a demonstration project, and its scope paralleled that of the Handbook of Perception and Human Performance (edited by K. Boff, L. Kaufman, and J. Thomas, 1986). Because of concerns over limitations of the Handbook, we selectively and somewhat arbitrarily extended the treatment to include selected topics (vibration and large-amplitude motion, target acquisition, warnings and attentional directors, person-computer dialogue, etc.) that rounded out the coverage we felt was essential for the Compendium. In addition, during the development of the Compendium, we continually modified the scope and depth of treatment of different subject areas based on the many suggestions of outside peer reviewers.

In general, the depth of treatment for any given topic area was determined by the availability of useful data and by the editorial necessity to limit coverage within reasonable bounds. Data were chosen through a multi-step process of evaluation and review by subject-matter experts, human factors specialists, and design engineers (see Preface and Acknowledgments in Volumes I-III for a detailed description of this development stage). No doubt some data were overlooked or misunderstood in this process. In a few instances, the paucity of entries in a given topic area occurs partly as an artifact of the organizational scheme of the Compendium. For example, relatively few entries are included in Section 4.0, “Information Storage and Retrieval,” in part because entries dealing with memory and learning in the context of specific human perception and performance functions are distributed throughout the Compendium. It was not appropriate to repeat these entries in Section 4.0. However, neither was it appropriate to exclude the topics of memory and learning entirely from this section. We recognize that our treatment of these topics is by no means complete. Indeed, entire volumes may eventually be set aside for the subjects of memory and learning. Therefore, in these and other areas of the Compendium, we decided to include a few key entries as place holders, with the intention of fleshing out these areas in future editions.

Though we spared no effort in our attempts to ensure accuracy, in any project of this scale, errors and omissions are bound to slip through. The reader service cards at the back of this Guide may be used to communicate suggestions and concerns regarding entry content. We would be equally interested in hearing about specific circumstances in which the Compendium proved particularly valuable to you.

We urge you, as a Compendium user, to register your copy of the Compendium using the card provided; this will help us keep you informed about updates, revisions, and related products that may be of interest.

Entry Format

One of the major innovations of the Compendium is the development of a specialized format for presenting complex technical information on human perception and performance to designers with little or no knowledge in the given subject area. The format evolved over several years through the study of past efforts in the area, critical thinking on the problem, discussions with sponsors and consultants, and feedback from members of the user population. We attempted, in addition, to devise a typographic style and layout that would complement the organizational format and enhance the usability of the material.

General Specifications

Information in the Engineering Data Compendium is organized as a series of brief entries dealing with narrow, well-defined topics. There are eight different classes of entry, based on the general type of information each contains. Most entries present basic research data regarding human perceptual and performance characteristics.

The general specifications for individual Compendium entries are given below:

Length: two printed pages

Layout: single spread of two facing pages

Writing style: clear, concise style to minimize length; technical terminology is avoided when possible

Format: series of modular text elements (subsections) containing specific classes of information

Claims and Disclaimers

The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective of this effort was to develop a workable strategy for (a) identifying and distilling information of potential value to system design from the existing research literature, and (b) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present volumes of the Engineering Data Compendium represent the first implementation of this strategy.

Ultimately, the success of this effort depends critically on the reception given to these initial volumes by both the R&D and design communities. To ensure the technical credibility of the present work and the feasibility of extending the treatment to other topical domains, it is essential that the R&D community be comfortable with this selection and representation of research findings. Of equal or greater importance, the functional utility of the Compendium must be fully demonstrated in design practice. Feedback from these user communities regarding working experience with the Compendium will shape future refinements to the project's basic strategy as well as revisions of the present Compendium. As one means of facilitating the interaction that is so vital to the continued success of the project, reader service cards have been provided at the back of the User's Guide on which users are encouraged to comment regarding the value of the Compendium in their work and improvements that would increase its utility and applicability.

Though the existing volumes provide system designers with a wealth of relevant human performance and perceptual data, coverage does not extend to all topics of potential value, nor is the depth of treatment uniform across subject areas. The Compendium was originally conceived as a demonstration project, and its scope paralleled that of the Handbook of Perception and Human Performance (edited by K. Boff, L. Kaufman, and J. Thomas, 1986). Because of concerns over limitations of the Handbook, we selectively and somewhat arbitrarily extended the treatment to include selected topics (vibration and large-amplitude motion, target acquisition, warnings and attentional directors, person-computer dialogue, etc.) that rounded out the coverage we felt was essential for the Compendium. In addition, during the development of the Compendium, we continually modified the scope and depth of treatment of different subject areas based on the many suggestions of outside peer reviewers.

In general, the depth of treatment for any given topic area was determined by the availability of useful data and by the editorial necessity to limit coverage within reasonable bounds. Data were chosen through a multi-step process of evaluation and review by subject-matter experts, human factors specialists, and design engineers (see Preface and Acknowledgments in Volumes I-III for a detailed description of this development stage). No doubt some data were overlooked or misunderstood in this process. In a few instances, the paucity of entries in a given topic area occurs partly as an artifact of the organizational scheme of the Compendium. For example, relatively few entries are included in Section 4.0, “Information Storage and Retrieval,” in part because entries dealing with memory and learning in the context of specific human perception and performance functions are distributed throughout the Compendium. It was not appropriate to repeat these entries in Section 4.0. However, neither was it appropriate to exclude the topics of memory and learning entirely from this section. We recognize that our treatment of these topics is by no means complete. Indeed, entire volumes may eventually be set aside for the subjects of memory and learning. Therefore, in these and other areas of the Compendium, we decided to include a few key entries as place holders, with the intention of fleshing out these areas in future editions.

Though we spared no effort in our attempts to ensure accuracy, in any project of this scale, errors and omissions are bound to slip through. The reader service cards at the back of this Guide may be used to communicate suggestions and concerns regarding entry content. We would be equally interested in hearing about specific circumstances in which the Compendium proved particularly valuable to you.

We urge you, as a Compendium user, to register your copy of the Compendium using the card provided; this will help us keep you informed about updates, revisions, and related products that may be of interest.

Entry Format

One of the major innovations of the Compendium is the development of a specialized format for presenting complex technical information on human perception and performance to designers with little or no knowledge in the given subject area. The format evolved over several years through the study of past efforts in the area, critical thinking on the problem, discussions with sponsors and consultants, and feedback from members of the user population. We attempted, in addition, to devise a typographic style and layout that would complement the organizational format and enhance the usability of the material.

General Specifications

Information in the Engineering Data Compendium is organized as a series of brief entries dealing with narrow, well-defined topics. There are eight different classes of entry, based on the general type of information each contains. Most entries present basic research data regarding human perceptual and performance characteristics.

The general specifications for individual Compendium entries are given below:

Length: two printed pages

Layout: single spread of two facing pages

Writing style: clear, concise style to minimize length; technical terminology is avoided when possible

Format: series of modular text elements (subsections) containing specific classes of information
Type of Information: Eight classes of information are included in the Engineering Data Compendium:

1. Basic and parametric data (e.g., dynamic range of the visual system, spatial and temporal contrast sensitivity functions, physical response constants of the vestibular system, receiver operating characteristic curves).

2. Models and quantitative laws (e.g., CIE spaces, probability summation, operator control models). A model or law had to meet two criteria to be included: (a) it had to provide a way of interpolating or extrapolating existing data and relating them to a specific application, either to answer a design question directly or to specify the research needed to answer the question; and (b) it had to have a well-defined and well-documented domain of reliable application.

3. Principles and nonquantitative or nonprecise formulations that express important characteristics of or trends in perception and performance (e.g., Gestalt grouping principles, interrelationship between size and distance judgments, depth and distance cues).

4. Phenomena that are inherently qualitative or that are general and pervasive, although quantitatively described in specific instances (e.g., simultaneous brightness contrast, visual illusions, motion aftereffects).

5. Summary tables consolidating data derived from a body of studies related to a certain aspect of sensation, perception, or performance (e.g., table showing different acuity limits as measured with Landolt rings, grating patterns, etc.; table summarizing the effects of various factors known to affect stereocuity).

6. Background information necessary for understanding and interpreting data entries and models (such as rudimentary anatomy and physiology of sensory systems, specialized units of measurement or measurement techniques; specific examples are anatomy of the ear, geometry of retinal image disparity, colorimetry techniques).

7. Section introductions to topical areas that describe the topic and set out its scope, explain general methods used in the given area of study, note general constraints regarding the application of data in the area, and provide references for further general information.

8. Tutorials containing expository material on general topics such as psychophysical methods, signal detection theory, etc., included both to help the user fully understand and evaluate the material in the Compendium, and to support research and evaluation studies in engineering development.

To make pertinent information more accessible to the user, graphic modes of presentation are used wherever possible. The Compendium contains over 2000 figures and tables, including data graphs, models, schematics, demonstrations of perceptual phenomena, and descriptions of methods and techniques. Other features of the Compendium include indicators of data reliability, caveats to data application, and the use of standardized units of measurement (Système International).

Each Compendium entry is subdivided into a series of standard elements that convey specific types of information about the entry topic, such as areas of application, constraints in applying the data under different circumstances, etc. The particular subsections included in a given entry vary depending upon entry category. However, the type of information contained in each subsection is consistent across entries, so that users can readily locate the particular item of information they need.

Individual entry subsections vary in style as well. Some are discursive paragraphs, others are series of bulleted items, etc., depending on the specific content.

Graphic Design

The typographical design of entries for the Engineering Data Compendium had four goals:

1. To conserve space while preserving readability.
2. To signal the important elements in the entry so that they can be located and perceived rapidly.
3. To differentiate entry subsections visually to make it easy for readers to pick out information of interest and skip information irrelevant to their particular needs.
4. To present a pleasing overall appearance that is balanced, consistent, and cohesive.

Based on empirically validated design principles for promoting the readability of textual material, a graphic design was developed that fulfills these aims and enhances the usability of the Compendium.

In the current design, page arrangement signals at a glance what is important and what is less so. Figures generally appear at the top of the first page immediately following the title. The bold rule under figures and tables emphasizes the importance of this graphic and tabular information. The grid system which provides for either two or four columns within subsections also aids in differentiating material of greater and less import. Major discussion of the entry topic and information of general interest appear in the larger-type, two-column format. Text printed in the smaller type and four-column format is more technical information provided for the interested user. Two features of the design make it easy to scan an entry: (1) subsections are clearly separated from one another by rules that cross the entire page; and (2) subsections are signalled by large headings in bold type.

A key element in promoting efficient communication of complicated information is to reduce the complexity of its presentation. Design guidelines incorporated into the entry design to simplify the presentation and enhance readability include:

1. Use of a limited number of type sizes and a limited number of weights and styles within a typeface family. This avoids the visual chaos that ensues when too many text elements compete for the user's eye.
2. Manipulation of weights and sizes of type to selectively emphasize or de-emphasize entry text elements. Optimum boldness enhances visibility and readability (Ref. 1).
3. Use of lower-case letters with initial capitals for titles and headings. Text set in this fashion is read more quickly than similar material set in all capitals (Ref. 2).
4. Establishing typeset line length at approximately one and one-half to two alphabet widths. Readability is reduced when lines are significantly shorter or longer (Refs. 3, 4, 5).
5. Use of ragged (unjustified) rather than even (justified) right-hand margins. Irregularities of word spacing that occur with justified text, particularly in narrow columns of type, can result in poorer reading comprehension than with unjustified text (Ref. 6).
6. Control of white space to create optimal visual scanning patterns.
References

How to Use the Engineering Data Compendium

Any data compendium is only as useful as the strategies for accessing the information it contains. This "how-to" guide describes the features incorporated into the Engineering Data Compendium to enable you, the user, to locate relevant information quickly and easily.

The perceptual and performance information contained in the Compendium is organized into a series of short entries dealing with narrow, well-defined topics. Within each individual entry, information is further subdivided into a set of standardized text modules or subsections.

The first part of this guide describes how the Compendium is structured and how you can locate the specific Compendium entry containing the information you need. The second part of the guide explains where within an individual entry you will find a specific item of information.

How to Locate Information in the Compendium

The Compendium consists of 12 main sections subdivided into more than 75 different topic areas. Each topic area contains a number of individual Compendium entries treating narrow subjects within that broader topic.

A numbering scheme has been developed that reflects this organization and makes apparent the relative position of any given entry within the Compendium. This scheme uses a decimal number of up to 4 digits to identify a particular section, topic area, or entry. The digit to the left of the decimal point identifies the Compendium section; the first digit to the right of the decimal represents the topic area number within that section; and the last two digits identify the individual entry within that topic area. For example:

- 5.0 Spatial Awareness
- 5.9 Depth Perception
- 5.918 Factors Affecting Stereoaucity

Here, "5.0 Spatial Awareness" is the fifth of the 12 major subject area divisions of the Compendium; "5.9 Depth Perception" is the ninth topic area within this section; and "5.918 Factors Affecting Stereoaucity" is entry no. 18 in topic area 5.9.

Each data volume of the Compendium contains 3 to 5 major subject area sections. These sections can be located easily in the Compendium by means of labeled tabbed dividers. The section title and topic area are also repeated at the top of each individual entry.

You can locate a specific entry several different ways. These are described below, along with an example of how you might employ each if you were interested in locating information on the legibility of displays under vibration conditions.

Volume Table of Contents

At the front of each data volume of the Compendium is a Table of Contents listing each main section in that volume as well as individual topic areas under that section. The Table of Contents thus provides a quick overview of the information contained in the volume and can be used to identify the broad subject area in which a particular item of information is likely to be found. For example, if you are interested in display legibility during vibration, you would scan the contents to locate section "10.0 Effects of Environmental Stressors," and then find the subsection "10.4 Vibration." You can then browse through section 10.4 to see which entries may be of interest, or you can consult the detailed Table of Contents at the beginning of section 10.0.

Sectional Table of Contents

At the beginning of each Compendium section is a detailed Table of Contents listing each entry in that section by topic area. This sectional Table of Contents is printed on a tabbed card immediately following the tabbed divider for that section. If you desire information on display legibility during vibration, you would scan the Table of Contents for section "10.0 Effects of Environmental Stressors," to locate topic area "10.4 Vibration." Under this topic area, the Table of Contents lists several entries on the subject of interest, such as "10.414 Display Legibility: Effect of Character Spacing."

Complete Table of Contents

A cumulative, detailed Table of Contents listing every entry in the Compendium by section and topic area can be found at the front of the User's Guide.

Tabbed Divider Cards

The section of the Compendium containing the information of interest can be located quickly by means of the tabbed dividers imprinted with section titles (for sections 1.0, 5.0, and 7.0, tabbed dividers are also provided for topic area divisions). For quick access to the group of entries dealing with display legibility under vibration, you would locate the tab labeled, "10.0 Effects of Environmental Stressors."

Logic Diagrams

Printed on the tabbed divider card for each Compendium section is a schematic diagram showing the relationship among the entries in that section and referencing specific entries by number. To locate information on a given topic, such as display reading during vibration, you would find the box in the diagram that relates most closely to the topic of interest and consult the entries cited in the box. In the logic diagram for section "10.0 Effects of Environmental Stressors," the box marked "Effect of Vibration on Performance" lists a number of individual entries where information on display legibility during vibration might be found.

Design Checklist

The User's Guide contains a design checklist to aid in identifying and accessing human factors data relevant to specific equipment needs. The checklist takes the form of questions focusing on specific aspects of human performance that should be considered in the design of control and display system components. The questions are grouped according to a hierarchy of equipment-related issues and are indexed to the specific Compendium entries that provide information on the given topic. The checklist questions pertinent to a given design issue can be located from the contents listing at the beginning of the checklist. For example, the contents subsection "1.f Vibration" under the heading "1.A. Visual displays" cites the pages containing design questions relevant to display legibility during vibration.
How to Locate Information in Individual Compendium Entries

Each entry in the Engineering Data Compendium is a self-contained treatment of a specific narrow topic. In almost all cases, the complete entry is contained on two facing pages of the Compendium.

There are eight categories of entry, classified according to content. The majority of entries present basic/parametric data. Other entry classes include tables summarizing a body of data in a given topic area, models and quantitative laws, principles and nonquantitative laws, perceptual phenomena and demonstrations, background information, tutorials on technical topics, and introductions to topical areas.

Compendium entries generally feature a figure or table, with supporting text presented as a set of modular elements or subsections. This modular format has been adopted to promote uniformity of presentation and usability of the data. There are ten standard entry subsections. Not every subsection will appear in each entry—some are pertinent only for particular categories of entry and will not be used in other entry classes. When specific subsections are present, however, they are consistent in content from entry to entry to allow confident access to the type of information desired.

The content and function of each of the standard subsections are described below. The figure on pages 8 and 9 illustrates these sections for an entry presenting basic perceptual data.

Title
The title provides a concise description of the entry content.

Key Terms
This section lists terms that relate to the topic discussed in the entry. Along with key words in the entry title, these key terms can be used to verify entry content and serve as access terms in an index search for related information.

General Description
In entries presenting basic data, this section summarizes the general findings, conclusions, and trends in the data. For entries presenting perceptual/performance models, laws, or principles, it provides a precise description or definition and indicates the general purpose for which the model, law, or principles was developed.

Key Term Indices
The Key Terms section of each Compendium entry lists terms relating to the topic discussed in the entry. At the beginning of each major Compendium section is an alphabetical index of these key terms referenced to the appropriate entries. The index is printed on a tabbed card following the tabbed divider for that section. Information on specific topics within the given section can be located by looking up the relevant terms. For example, the entries listed under display vibration or legibility in the Key Terms index for section 10.0 will direct you to entries discussing the effects of vibration on display legibility.

General Index
The User’s Guide contains a high-resolution index in which you can look up selected terms to locate information on a particular topic. Following each index listing is the number of the Compendium entry or entries containing information on the given topic. On looking up the terms vibration and display legibility, for example, you will be directed to entries 10.411 to 10.416, which deal with display legibility under vibration conditions.

Applications
This section describes general areas of application for the information in the entry; specific types of displays, control systems, task environments, etc., for which the information might be useful; and, where pertinent, general procedures for application.

Methods
Entries presenting basic data contain a Methods section that describes how the data were collected. The section is divided into the following two subsections.

Test Conditions. This subsection specifies the physical and psychophysical characteristics of the stimulus and the conditions under which the testing was carried out.

All measurements are given in units of the Système International (SI). When units in the original data source did not conform to the SI, measurements have been converted to SI units. Values in the original units are given in parentheses after the first such conversion. For example, specification of target diameter as "15.24 cm (6 in.)" indicates that size was given in inches in the original data source and has been converted to SI units for the Compendium.

Experimental Procedure. This subsection lists, in order: (1) the experimental method, paradigm, and design (such as method of constant stimuli, two-alternative forced-choice paradigm, randomized design); (2) the stimulus dimensions that were varied (independent variable); (3) the response or effect measured (dependent variable); (4) the subject’s task; and (5) the number and characteristics of subjects. Other pertinent procedural details may also be included.

Unless otherwise specified, subjects are assumed to have normal vision, normal hearing, etc., and no prior practice on the experimental task. Results represent data averaged across all subjects and all trials within a given condition unless indicated otherwise.

Experimental Results
When an entry reports findings of a research study, it contains an Experimental Results section that provides a more detailed discussion of the data than the General Description. The Experimental Results includes graphic or tabular presentation of the data, an enumeration of the major findings.
and trends in the data, and an indication of their meaning or significance.

When statistical tests have been used to assess the effects of an experimental manipulation or treatment, the significance level (p value) may be reported in the Experimental Results section. The significance level indicates the probability that differences between experimental groups occurred by chance alone (rather than because of experimental manipulation); for example, a level of p < 0.01 indicates that the difference in the measured variable observed between groups would occur by chance less than 1% of the time if in fact the groups did not differ.

Variability. This subsection indicates how performance or sensitivity differed from subject to subject (between-subject variability) or from session to session for the same subject (within-subject variability). Generally, variability is expressed in terms of the standard deviation from the mean or the standard error of the mean. The Variability subsection also cites any statistical test performed to evaluate the significance of the experimental findings.

Repeatability/Comparison with Other Studies. This subsection describes the findings of other studies that conducted similar research and suggests reasons for any discrepant results.

Empirical Validation
This section is found in entries that treat a model, law, or principle. It includes a description of the methods used in empirical tests of the model, law, or principles and reports the results and scope of the validation studies.

Constraints
This section describes features or limitations of the information in the entry that may affect its application; stimulus or subject characteristics, environmental conditions, etc., that may influence the results or effect reported; criteria that must be met for proper application; and limits on the class of response, stimulus, task environment, etc., to which the information can be applied.

Key References
This section provides full bibliographical data for several reference sources that contain more detailed information on the entry topic. The original source of the data, model, etc., presented in the entry is marked with an asterisk. References are listed alphabetically and numbered consecutively.

Cross References
This section cites Compendium entries that treat related topics or provide pertinent background information useful in understanding or interpreting the information in the entry. Also listed are sections of the *Handbook of Perception and Human Performance*, companion volume to the Compendium, where fuller technical treatment of the topic may be found. (See K. Boff, L. Kaufman, and J. Thomas, eds., *Handbook of Perception and Human Performance*. Vol. I: Sensory Processes and Perception and Vol. II: Cognitive Processes and Performance. New York: John Wiley and Sons, 1986).

Other Text Reference Aids
Four other reference aids can also help you derive maximum benefit from the material and locate additional information on the topic of interest.

1. **Page headings.** Headings located at the top of entry pages help to pinpoint the relative position of the entry in the Compendium. At the top of the left page is the number and title of the topic area of which the entry is a part. At the top of the right page is the number and title of the section—-the broad subject area under which the entry falls.

2. **Glossary terms.** Each major Compendium section contains its own Glossary, located on the third tabbed card following the section divider. An expanded, cumulative Glossary is also found in the User's Guide. All terms printed in bold type in the entry text are defined in the sectional glossaries. Some additional technical terms not boldfaced in the entries (for example, specialized measurement units, experimental methods, statistical terms) as well as common abbreviations are also defined in the sectional glossaries or in the cumulative Glossary.

3. **Text cross references.** Other Compendium entries dealing with a specific topic mentioned in the entry text may be referenced by number in the text body using the following type of notation:

(CRef. 3.216)

A full citation for the given cross-reference (number and title of the entry to which reference is made) can be found in the Cross References section at the end of the entry.

4. **Text reference citations.** Sources supporting a particular point or providing additional information may be cited by number in the body of the text, e.g.,

(Ref. 1)

Full bibliographic information for the reference source can be found in the citation of the same number in the Key References section at the end of the entry.

Selective Search
The modular construction of the entry allows you to focus on the information of interest at a depth commensurate with your needs by selectively reviewing specific entry subsections. For example, the General Description section provides a concise summary of the information contained in the entry. In some cases, this summary alone may satisfy your need regarding the given topic. In other cases, you will wish to continue to other entry sections, such as the Experimental Results, that expand and deepen the discussion.

The Methods sections describing data-collection procedures is included for the benefit of those who require a more detailed examination of the experimental data for replication or analysis, or a close comparison of original testing conditions with the application environment. If you do not require this level of technical detail, you may skip this entry section. Similarly, the Key References and Cross References sections are provided for those who wish to pursue further the topic of the entry.
5.11 Adaptation of Space Perception

5.1110 Adaptation to Visual Tilt: Acquisition and Decay

![Graph showing adaptation to visual tilt](image)

Key Terms
- Altered visual orientations
- Intercocular transfer
- Prismatic rotation
- Tilt adaptation
- Visual field rotation

General Description
Observers who wear prisms that tilt the visual field adapt rapidly to the distortion. Tilt adaptation reaches a peak after 12.15 min of prism exposure and is higher for 30-deg than for 20-deg tilt rotation. When prisms are removed, adaptation declines to a low level after 15 min in the dark. If only one eye is exposed to the rotating prisms, post-exposure judgments of target verticality show no adaptation effects regardless of which eye is exposed—exposed or unexposed.

Applications
- Environments subject to optical distortion.

Methods
- Test Conditions
 - Prism exposure
 - Prism occlusion
 - Prism duration

Experimental Procedure
- Adaptation is determined separately for exposed and unexposed eyes.
- Observer's task involves judging target verticality for each of the four prism exposure durations and prism occlusion conditions.

Experimental Results
- Adaptation to visual field rotation is significantly greater for 30-deg tilt (mean = 5.83 deg) than for 20-deg tilt (mean = 2.71 deg). (Mean scores are for both eyes combined.)

Figure 1. Mean level of adaptation to 30 and 20 deg of optical tilt in the exposed (right) and unexposed (left) eye as a function of exposure time while prisms are worn, and decay time in the dark after prism removal. Adaptation is measured as the amount by which observers' post-exposure verticality judgments depart from apparent vertical as measured before prism exposure. (From Ref. 2)

Terms related to entry topic
- Physical and psychophysical characteristics of stimulus, conditions for data collection
- Major experimental findings and trends in the data, and their significance

Condise summary of entry topic
- Adaptation of space perception to visual tilt acquisition and decay.

Concise summary of entry topic
- Adaptation of space perception to visual tilt acquisition and decay.

General and specific areas of application of entry content
- Adaptation of space perception to visual tilt acquisition and decay.

Methods used in collecting data presented
- Adaptation of space perception to visual tilt acquisition and decay.

Physical and psychophysical characteristics of stimulus, conditions for data collection
- Adaptation of space perception to visual tilt acquisition and decay.

Experimental method and design, stimulus and response variables, subject's task, subject characteristics
- Adaptation of space perception to visual tilt acquisition and decay.
Performance differences within and between subjects

Findings of other studies conducting similar research

Citation of source in Key References

Cross-reference to pertinent Compendium entry

Features or limitations of the data that affect their application

Sources of more detailed information on entry topic

Compendium entries on related topics

Primary source of the data in this entry

Constraints
- Adaptation will decay completely; performance will return to preadaptation levels if the observer is exposed to normal conditions.
- Even when priors are not worn, viewing a physically tilted edge for a few minutes will lead to a small but reliable reduction in its perceived tilt.

Key References

Cross References
5. 1136 Factors affecting adaptation to visual tilt
6. 1137 Adaptation to visual tilt of rotation magnitude

Handbook of perception and human performance, Ch. 24, Sect 3.2

Spatial Awareness

Decay
- Decay of adaptation is more rapid for 20 deg than for 30 deg tilt.
- Decay is not complete for either tilt magnitude after 50 min.
- The smooth curves in Fig. 1 are negatively accelerated exponential growth functions of the form: adaptation level = ai * e**(-t/tau), where ai is the large asymptote of adaptation and tau estimates the rate at which adaptation approaches the asymptote as a function of exposure time. Curves were fit by the method of least squares for both left (occluded) and right exposed eye.

Variability
- The decay per unit of time, tau, is the asymptote of decay. Curves were fit by method of least squares as in Fig. 1.
- Standard error of estimate was 0.28 (for 10 parameters and 32 data points).

Repeatability/Comparison with Other Studies
- Many factors influence adaptation to prism-induced tilt of the visual field and should be considered when comparing these results under different conditions (Ref. 1).
- Adaptation to visual tilt varies greatly from individual to individual.

Performance

Error
- Few subjects (one in each tilt magnitude group) failed to show at least 1 deg of adaptation after 40 min of exposure and were replaced. One observer showed unusually large negative values (anti-adaptive shift) in left eye during tests of decay.

Adaptation
- Adaptation will decay completely; performance will return to preadaptation levels if the observer is exposed to normal conditions.
- Even when priors are not worn, viewing a physically tilted edge for a few minutes will lead to a small but reliable reduction in its perceived tilt.

Features or limitations of the data that affect their application

Cross-reference to pertinent Compendium entry

Sources of more detailed information on entry topic

Compendium entries on related topics

Primary source of the data in this entry

Findings of other studies conducting similar research

Citation of source in Key References
1.0 Visual Acquisition of Information

1.1 Measurement of Light

1.101 Range of Visible Energy in the Electromagnetic Radiation Spectrum
1.102 Spectral Distribution of Radiant Energy
1.103 Range of Light Intensities Confronting the Eye
1.104 Measurement of Radiant and Luminous Energy
1.105 Image Luminance with Optical Viewers
1.106 Conversion of Scene Luminance to Retinal Illuminance
1.107 Color Temperature
1.108 Spectral Transmittance and Reflectance
1.109 Photometric Techniques for Measuring Spectral Sensitivity
1.110 Luminous Efficiency (Spectral Sensitivity)
1.111 Luminous Efficiency: Effect of Pupil Entry Angle

1.2 Optics of the Eye

1.201 Anatomy of the Human Eye
1.202 Transmissivity of the Ocular Media
1.203 The Eye as an Optical Instrument
1.204 Spherical Refractive Errors
1.205 Astigmatism
1.206 Effect of Lenses on the Visual Image
1.207 Eye Center of Rotation and Rotation Limits
1.208 Interpupillary Distance
1.209 Visual Optics
1.210 Optical Constants of the Eye
1.211 Spherical Aberration
1.212 Axial Chromatic Aberration
1.213 Diffraction of Light in Optical Systems
1.214 The Point-Spread Function of the Eye
1.215 The Line-Spread Function of the Eye
1.216 Width of the Line-Spread Function: Effect of Visual Field Location and Eye Focus
1.217 Retinal Light Distribution for an Extended Source
1.218 Fourier Description of the Eye's Imaging Property
1.219 Modulation Transfer Function of Optical Systems
1.220 Modulation Transfer Function of the Eye for Defocused Imagery
1.221 Image Quality and Depth of Focus
1.222 Visual Accommodation
1.223 Resting Position of Accommodation
1.224 Normal Variation in Accommodation
1.225 Normal Variation in Accommodation: Similarity in the Two Eyes
1.226 Visual Accommodation: Effect of Luminance Level and Target Structure
1.227 Eye Focus in Dim Illumination (Night Myopia)
1.228 Accommodation: Effect of Dark Focus, Luminance Level, and Target Distance

1.229 Accommodation: Effect of Oscillatory Changes in Target Distance
1.230 Accommodation: Effect of Abrupt Changes in Target Distance
1.231 Relation Between Accommodation and Convergence
1.232 Monocular Versus Binocular Pupil Size
1.233 Pupil Size: Effect of Luminance Level
1.234 Pupil Size: Effect of Target Distance
1.235 The Normal Achromatic Visual Field
1.236 The Lateral Achromatic Visual Field: Age and Sex Differences
1.237 Normal Visual Fields for Color
1.238 Visual Field Coordinate Systems
1.239 Visual Effects of Empty-Field (Ganzfeld) Viewing
1.240 Visual Angle and Retinal Size

1.3 Sensitivity to Light

1.301 Scotopic and Photopic (Rod and Cone) Vision
1.302 Spectral Sensitivity
1.303 Equal-Brightness and Equal-Lightness Contours for Targets of Different Colors (Spectral Content)
1.304 Equal-Brightness Contours for Lights of Different Colors (Wavelengths) at Different Levels of Adapting Luminance
1.305 Factors Affecting Sensitivity to Light
1.306 Absolute Sensitivity to Light: Effect of Visual Field Location
1.307 Absolute Sensitivity to Light: Effect of Target Area and Visual Field Location
1.308 Spatial Summation of Light Energy
1.309 Afterimages

1.4 Adaptation: Changes in Sensitivity

1.401 Brightness Difference Threshold: Effect of Background Luminance
1.402 Brightness Difference Threshold: Effect of Background Luminance and Duration of Luminance Increment
1.403 Brightness Difference Threshold: Effect of Background Luminance and Target Size
1.404 Intensity Difference Threshold: Effect of Luminance Increment Versus Decrement
1.405 Time Course of Light Adaptation
1.406 Factors Affecting Dark Adaptation
1.407 Dark Adaptation: Effect of Wavelength
1.408 Dark Adaptation: Effect of Target Size
1.409 Dark Adaptation: Effect of Spatial and Temporal Summation
1.410 Visual Resolution During Dark Adaptation
1.411 Dark Adaptation Following Exposure to Light of Varying Intensity
1.412 Dark Adaptation Following Exposure to Light Fields of Varying Size
1.413 Dark Adaptation Following Exposure to Light of Varying Duration

1.5 Sensitivity to Temporal Variations
1.501 Factors Affecting Sensitivity to Flicker
1.502 Flicker Sensitivity: Effect of Background Luminance
1.503 Flicker Sensitivity: Effect of Flicker Frequency and Luminance Level
1.504 Flicker Sensitivity: Effect of Dark Adaptation for Targets at Different Visual Field Locations
1.505 Flicker Sensitivity: Effect of Type of Target and Luminance Level
1.506 Flicker Sensitivity: Effect of Target Size and Surround
1.507 Flicker Sensitivity: Effect of Target Size
1.508 Flicker Sensitivity: Effect of Target Spatial Frequency
1.509 Flicker Perception Versus Pattern Perception in Temporally Modulated Targets
1.510 Detection and Discrimination of Flicker Rate
1.511 Factors Affecting Sensitivity to Brief (Pulsed) Targets
1.512 Time-Intensity Trade-Offs in Detection of Brief Targets: Effect of Duration, Target Intensity, and Background Luminance
1.513 Model of Temporal Sensitivity

1.6 Spatial Sensitivity
1.601 Luminance Description of Visual Patterns
1.602 Measurement of Visual Acuity
1.603 Factors Affecting Visual Acuity
1.604 Visual Acuity: Effect of Luminance Level
1.605 Visual Acuity: Effect of Target and Background Luminance and Contrast
1.606 Visual Acuity: Effect of Illuminant Wavelength
1.607 Vernier Acuity and Orientation Sensitivity: Effect of Adjacent Contours
1.608 Two-Dot Vernier Acuity: Effect of Dot Separation
1.609 Visual Acuity: Difference Thresholds for Spatial Separation
1.610 Vernier Acuity: Offset Discrimination Between Sequentially Presented Target Segments
1.611 Visual Acuity: Effect of Target Location in the Visual Field at Photopic Illumination Levels
1.612 Visual Acuity: Effect of Target Location in the Visual Field at Scotopic Illumination Levels
1.613 Visual Acuity: Effect of Exposure Time
1.614 Visual Acuity: Effect of Pupil Size
1.615 Visual Acuity: Effect of Viewing Distance
1.616 Visual Acuity: Effect of Viewing Distance and Luminance Level
1.617 Visual Acuity with Target Motion: Effect of Target Velocity and Target Versus Observer Movement
1.618 Visual Acuity with Target Motion: Effect of Target Velocity and Orientation
1.619 Visual Acuity with Target Motion: Effect of Direction of Movement and Luminance Level
1.620 Visual Acuity with Target Motion: Effect of Direction of Movement and Target Orientation
1.621 Visual Acuity with Target Motion: Effect of Anticipation Time and Exposure Time
1.622 Visual Acuity with Target Motion: Effect of Practice
1.623 Visual Acuity and Contrast Sensitivity: Effect of Age
1.624 Factors Affecting Detection of Spatial Targets
1.625 Target Detection: Effect of Target Spatial Dimensions
1.626 Target Detection: Effect of Prior Exposure (Adaptation) to a Target of the Same or Different Size
1.627 Target Detection: Effect of Spatial Uncertainty
1.628 Factors Affecting Contrast Sensitivity for Spatial Patterns
1.629 Contrast Sensitivity: Effect of Field Size
1.630 Contrast Sensitivity: Effect of Spatial Frequency Composition
1.631 Contrast Sensitivity: Effect of Number of Luminance Modulation Cycles and Luminance Level
1.632 Contrast Sensitivity: Effect of Luminance Level (Foveal Vision)
1.633 Contrast Sensitivity: Effect of Luminance Level (Peripheral Vision)
1.634 Contrast Sensitivity: Effect of Target Orientation
1.635 Contrast Sensitivity: Effect of Target Visual Field Location for Bar Patterns of Varying Size
1.636 Contrast Sensitivity: Effect of Visual Field Location for Circular Targets of Varying Size
1.637 Contrast Sensitivity: Effect of Target Motion
1.638 Contrast Sensitivity: Effect of Pupil Size
1.639 Contrast Sensitivity: Effect of Focus Errors
1.640 Contrast Sensitivity: Effect of Viewing Distance and Noise Masking
1.641 Contrast Sensitivity: Effect of Edge Sharpness
1.642 Contrast Sensitivity: Effect of Border Gradient
1.643 Contrast Sensitivity: Effect of Target Shape and Illumination Level
1.644 Contrast Sensitivity for Snellen Letters
1.645 Contrast Sensitivity for a Large Population Sample
1.646 Contrast Discrimination
1.647 Contrast Matching
1.648 Spatial Frequency (Size) Discrimination
1.649 Spatial Frequency (Size) Discrimination: Effect of Contrast
1.650 Spatial Frequency (Size) Masking
1.651 Spatial Frequency (Size) Adaptation
1.652 Orientation-Selective Effects on Contrast Sensitivity
1.653 Threshold Models of Visual Target Detection
1.654 Continuous-Function Models of Visual Target Detection
1.655 Vector Models of Visual Identification
1.656 Psychophysical Methods
1.657 Psychometric Functions
Color Vision

1.7 Target Procedures Used to Study Color Perception
1.701 Color Mixture and Color Matching
1.702 Colorimetric Purity and Excitation Purity
1.703 Chromaticity Discrimination
1.704 Factors Affecting Color Discrimination and Color Matching
1.705 Descriptive Attributes of Color Appearance
1.706 Hue and Chroma: Shifts Under Daylight and Incandescent Light
1.707 Fluoresce or Color Glow
1.708 Brightness Constancy
1.709 Brightness Induction
1.710 Simultaneous Brightness Contrast: Effect of Perceptual Organization
1.711 Model of Brightness Contrast
1.712 Mach Bands
1.713 Phantom Colors
1.714 Color Assimilation
1.715 Color Specification and the CIE System of Colorimetry
1.716 Color-Order Systems
1.717 Color-Order Systems: Munsell System
1.718 Color-Order Systems: Optical Society of America System
1.719 Congenital Color Defects

Binocular Vision

1.8 Advantage of Binocular over Monocular Vision
1.801 Monocular Versus Binocular Contrast Sensitivity
1.802 Binocular Combination of Brightness and Contrast
1.803 Binocular Suppression and Rivalry
1.804 Spatial Extent of Binocular Suppression
1.805 Extent of Binocular Suppression
1.806 Time Course of Binocular Suppression and Rivalry
1.807 Visual Sensitivity and Performance During Binocular Suppression
1.808 Convergence Angle
1.809 Phoria
1.810 Incidence of Lateral and Vertical Phorias
1.811 Eye Signature: Discrimination of Which Eye Is Stimulated
1.812 Binocular Displays
1.813 Alignment and Adjustment Tolerances for Binocular Instruments
1.814 Probability Summation

Eye Movements

1.9 Anatomy and Mechanics of Eye Movements
1.901 Muscular Control of the Eyes
1.902 Coordinate Systems for Describing Eye Movements
1.903 Methods of Measuring Eye Movements
Section 2.0 Auditory Acquisition of Information

2.1 Measurement of Sound

- **2.101** Sound Propagation
- **2.102** Physical Parameters and Spectral Analysis of Sound
- **2.103** Measurement of Sound Amplitude
- **2.104** Calibration Procedures and Instruments for Measuring Sound
- **2.105** Noise and Distortion

2.2 Physiology of the Ear

- **2.201** Anatomy and Physiology of the Ear
- **2.202** Acoustic Reflex

2.3 Detection

- **2.301** Factors Affecting Auditory Sensitivity in Quiet
- **2.302** Auditory Sensitivity in Quiet: Effect of Frequency
- **2.303** Auditory Sensitivity in Quiet: Effect of Age
- **2.304** Auditory Sensitivity in Quiet: Underwater Listening
- **2.305** Auditory Sensitivity in Quiet and in Noise: Effect of Binaural Versus Monaural Listening
- **2.306** Factors Affecting Auditory Sensitivity in the Presence of Masking Noise
- **2.307** Auditory Sensitivity in Noise: Broad-Band Noise Masking
- **2.308** Auditory Sensitivity in Noise: Narrow-Band Noise Masking
- **2.309** Auditory Sensitivity in Noise: Pure-Tone Masking
- **2.310** Auditory Sensitivity in Noise: Effect of Bandwidth of Multitone Signals
- **2.311** Auditory Sensitivity in Noise: Effect of Signal Duration
- **2.312** Auditory Sensitivity in Noise: Nonsimultaneous Masking
- **2.313** Auditory Sensitivity in Noise: Interaural Masking
- **2.314** Binaural Reduction of Masking: Effect of Signal Frequency and Listening Conditions
- **2.315** Binaural Reduction of Masking: Effect of Interaural Phase Differences

2.4 Discrimination

- **2.401** Intensity Discrimination of Random Noise and "Square-Wave" Noise

2.5 Temporal Resolution

- **2.501** Sensitivity to Amplitude Modulation of Broad-Band Noise
- **2.502** Detection of Gaps in Continuous Noise
- **2.503** Discrimination of Event Duration
- **2.504** Perceived Event Duration: Effect of Complexity and Familiarity

2.6 Loudness

- **2.601** Factors Influencing Loudness
- **2.602** Effect of Sound Pressure Level on Loudness
- **2.603** Effect of Frequency on the Loudness of Pure Tones
- **2.604** Effect of Bandwidth on the Loudness of Two-Tone Complexes
- **2.605** Effect of Bandwidth on the Loudness of Broad-Band and Moderate-Band Noise
- **2.606** Effect of Bandwidth and Intensity Level on the Loudness of Continuous Noise
- **2.607** Effect of Duration on the Loudness of Narrow-Band Noise
- **2.608** Monaural Versus Binaural Loudness
- **2.609** Effect of Interaural Phase on the Loudness of Masked Tones
- **2.610** Loudness of Intermittent Stimuli
- **2.611** Loudness Reduction Under Masking by Broad-Band Noise and Narrow-Band Noise
- **2.612** Loudness Adaptation
- **2.613** Loudness Discomfort Level

2.7 Pitch

- **2.701** Factors Affecting Pitch
- **2.702** Effect of Frequency on Pitch
- **2.703** Effect of an Interfering Stimulus on the Pitch of Pure Tones
- **2.704** Pitch Recognition with Interpolated Tones
- **2.705** Effect of Amplitude Envelope on the Pitch of Pure Tones
- **2.706** Binaural Pitch Disparity (Diplacusis)
- **2.707** Pitch Shift Following Adaptation to a Tone
- **2.708** Pitch Discrimination Under Simultaneous Masking
- **2.709** Pitch Discrimination Under Nonsimultaneous Masking
- **2.710** Nontonal Pitch
Section 3.0 Acquision of information by other senses

3.1 Cutaneous Sensitivity 712

- 3.101 Cutaneous Sensitivity
- 3.102 Patterns of Tactile Sensory Innervation Over the Body
- 3.103 Tactile Sensory Innervation of the Skin
- 3.104 Types of Cutaneous Mechanoreceptors
- 3.105 Apparatus for Static and Vibratory (Mechanical) Stimulation of the Skin
- 3.106 Pressure and Vibration Sensitivity
- 3.107 Vibrotactile Stimulation: Detectability of Tactile Pulses of Varying Duration
- 3.108 Vibrotactile Stimulation: Effect of Frequency and Type of Spatial Surround
- 3.109 Vibrotactile Stimulation: Detectability of Intensity Differences
- 3.110 Vibrotactile Stimulation: Detectability of Intensity Differences in the Presence of Spatial Masking
- 3.111 Vibrotactile Stimulation: Perceived Magnitude
- 3.112 Vibrotactile Stimulation: Perceived Magnitude as a Function of Number of Active Vibrators
- 3.113 Vibrotactile Stimulation: Summation of Perceived Magnitude
- 3.114 Vibrotactile Stimulation: Enhancement of Perceived Magnitude
- 3.115 Tactile Localization and Two-Point Discrimination
- 3.116 Vibrotactile Stimulation: Effect of Adaptation on Detectability and Perceived Magnitude
- 3.117 Vibrotactile Stimulation: Detectability in the Presence of Masking
- 3.118 Tactile and Auditory Localization: Effect of Interstimulus-Onset Interval
- 3.119 Tactile, Auditory, and Visual Shifts in Perceived Target Location Due to Stimulus Interactions
- 3.120 Apparent Movement of Vibrotactile and Electrocutaneous Stimuli
- 3.121 Sensitivity to Warmth: Effect of Stimulation Area and Body Site
- 3.122 Detectability of Warmth and Cold: Effect of Rate of Change in Temperature
- 3.123 Sensitivity to Warmth and Cold: Effect of Adaptation Temperature
- 3.124 Perceived Coolness and Warmth: Effect of Intensity and Duration of Stimulation

3.2 Vestibular Sensitivity 766

- 3.201 The Vestibular System
- 3.202 Dynamics of the Otolith Organs
- 3.203 Dynamics of the Semicircular Canals
- 3.204 Synergism of Body Rotation and Head Tilt
- 3.205 Methods for Investigating the Effects of Rotation
- 3.206 Methods for Investigating Linear Acceleration
- 3.207 Threshold for Linear Acceleration
- 3.208 Threshold for Angular Acceleration
- 3.209 Long-Term Adaptability of the Vestibular System
- 3.210 Vestibular Illusions

3.3 Kinesthesia 788

- 3.301 Kinesthesia
- 3.302 Measurement of Position Sense
- 3.303 Factors Affecting Sense of Position and Movement of Body Parts
- 3.304 Passive Movement Detectability for Different Joints
- 3.305 Detectability of Passive Movements of Finger, Elbow, and Shoulder Joints
- 3.306 Detectability of Passive Rotation of the Hip
- 3.307 Detectability of Finger Movement
- 3.308 Perception of Head Position
- 3.309 Accuracy of Horizontal Arm Positioning: Effect of Direction and Angular Placement
- 3.310 Perception of Arm Position: Effect of Duration and Location of a Previously Held Arm Position
- 3.311 Perception of Arm Position: Effect of Active Versus Passive Movement
- 3.312 Perception of Arm Position: Effect of Active Versus Passive Movement and Practice
- 3.313 Position Matching of Elbow Angle and Arm Orientation
- 3.314 Perception of Elbow Angle
- 3.315 Illusory Motion of the Elbow with Muscle Vibration
<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.316</td>
<td>Perception of Shoulder (Arm) Position</td>
</tr>
<tr>
<td>3.317</td>
<td>Memory for Shoulder (Arm) Position</td>
</tr>
<tr>
<td>3.318</td>
<td>Perception of Finger Displacement</td>
</tr>
<tr>
<td>3.319</td>
<td>Perception of Knee Position</td>
</tr>
<tr>
<td>3.320</td>
<td>Perception of Ankle (Foot) Position</td>
</tr>
<tr>
<td>3.321</td>
<td>Kinesthetic Aftereffects</td>
</tr>
<tr>
<td>3.322</td>
<td>Models for the Encoding of Joint Angle</td>
</tr>
<tr>
<td>3.323</td>
<td>Heaviness: Effect of Arm Fatigue</td>
</tr>
<tr>
<td>3.324</td>
<td>Heaviness: Effects of Anesthesia or Electrocutaneous Stimulation of the Fingers</td>
</tr>
<tr>
<td>3.325</td>
<td>Perception of Effort and Force; Effect of Muscle Vibration and Anesthesia</td>
</tr>
<tr>
<td>3.326</td>
<td>Tonic Neck Reflex: Influence on Weight Lifting</td>
</tr>
</tbody>
</table>
5.1009 Spatial Localization in the Presence of Intersensory Conflict: Effect of Cognitive and Response Factors
5.1010 Cross-Modal Versus Intra-Modal Perception of Distance and Location
5.1011 Orientation Perception in the Presence of Visual-Proprioceptive Conflict
5.1012 Speeding of Reaction Time by Bisensory Stimulation
5.1013 Visual Prepotency in a Choice Reaction Time Task
5.1014 Speeding of Choice Reaction Time by Intersensory Accessory Stimulation
5.1015 Speeding of Reaction Time by Intersensory Warning Signals
5.1016 Intermodal and Cross-Modal Spatial Pattern Recognition
5.1017 Discrimination and Reproduction of Temporal Patterns: Comparison of Audition, Vision, and Touch
5.1018 Temporal Pattern Recognition with Unimodal versus Multimodal Presentation
5.1019 Duration Perception with Auditory, Visual, and Bisensory Stimuli
5.1020 Perception of Temporal Rate: Auditory-Visual Interactions
5.1021 Detection of Auditory-Visual Asynchrony
5.1022 Order Perception with Heteromodal Stimulus Sequences

Section 6.0 Perceptual Organization

6.001 Perceptual Organization

6.1 Perceptual Dimensions

6.101 Classification of Major Perceptual Dimensions

6.2 Categorization

6.201 Levels of Semantic Categories
6.202 Categorization: Effect of Exemplar Typicality
6.203 Representation and Retention of Visual Prototypes

6.3 Visual Perceptual Organization

6.301 Principles of Gestalt Grouping and Figure-Ground Organization
6.302 Gestalt Grouping Information: Effect of Low-Pass Spatial Filtering
6.303 Simplicity and Likelihood Principles
6.304 Role of Reference Frames in Perception
6.305 Anorthoscopic Perception
6.306 Reversible or Multistable Figures

5.1106 Recovery from Adaptation to Prismatic Displacement of the Visual Field: Effect of Practice
5.1107 Adaptation to Prismatic Displacement of the Visual Field: Effect of Feedback Delay
5.1108 Adaptation to Prismatic Displacement of the Visual Field: Effect of Feedback Conditions
5.1109 Adaptation to Prismatic Displacement of the Visual Field: Effect of Response Conditions
5.1110 Adaptation to Prismatic Displacement of the Visual Field: Cognitive/Learning Effects
5.1111 Recovery from Adaptation to Prismatic Displacement of the Visual Field: Effects of Prior Prism Exposure
5.1112 Effects of Adaptation to Prismatic Displacement of the Visual Field
5.1114 Factors Affecting Adaptation to Visual Tilt
5.1115 Adaptation to Visual Tilt: Acquisition and Decay Rate
5.1116 Adaptation to Visual Tilt: Effect of Rotation Magnitude
5.1117 Adaptation to Visual Tilt: Effect of Constant Versus Incremental Tilt
5.1118 Adaptation to Tilt and Displacement: Acquisition Rate, Magnitude, and Decay Time
5.1119 Factors Affecting Adaptation to Loss of Visual Position Constancy
5.1120 Adaptation to Distortions of Depth and Distance
5.1121 Adaptation to Distortions of Size
5.1122 Factors Affecting Adaptation to Visual Distortions of Form
5.1123 Effect of Underwater Environments on Perception
5.1124 Underwater Visual Adaptation: Effect of Experience
5.1125 Adaptation After Prolonged Exposure to an Underwater Environment
5.1126 Adaptation to Rearrangement of Auditory Space
5.1127 Pattern Processing: Effect of Pattern Complexity
<table>
<thead>
<tr>
<th>Section 7.0</th>
<th>Attention and Allocation of Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Human Performance Reliability</td>
<td>7.14 Probability of Correctly Operating Continuous Controls While Monitoring and Tracking Dynamic Displays</td>
</tr>
<tr>
<td>7.101 Error Classification and Analysis</td>
<td>7.115 Error Probability in Responding to Annunciator Displays</td>
</tr>
<tr>
<td>7.102 Human Reliability Analysis</td>
<td>7.116 Error Probability in Reading and Recording Information</td>
</tr>
<tr>
<td>7.103 Technique for Human Error Rate Prediction (THERP)</td>
<td>7.117 Probability of Failure to Detect in Periodic Scanning of Displays</td>
</tr>
<tr>
<td>7.104 Human Performance Data and Sources</td>
<td>7.2 Attention and Mental Resources</td>
</tr>
<tr>
<td>7.105 Time and Accuracy in Monitoring Radar-Type Display Scopes</td>
<td>7.201 Contrasting Models of Attention: Undifferentiated Versus Differentiated Capacity</td>
</tr>
<tr>
<td>7.106 Time and Accuracy in Responding to Discrete Indicator Lights</td>
<td>7.202 Multiple-Resources Model</td>
</tr>
<tr>
<td>7.107 Probability of Correctly Responding to Annunciators and Discrete Status Lights</td>
<td>7.203 Method of Analyzing Multiple Resource Allocation</td>
</tr>
<tr>
<td>7.108 Probability of Correctly Reading Meters</td>
<td>7.204 Evidence for Undifferentiated and Differentiated Attentional Resources</td>
</tr>
<tr>
<td>7.109 Probability of Correctly Reading CRT or Large-Screen Projected Displays</td>
<td>7.205 Performance Operating Characteristic</td>
</tr>
<tr>
<td>7.110 Probability of Correctly Monitoring Multi-Channel Displays</td>
<td>7.206 Divided Versus Selective Attention: Effect on Auditory Recognition Accuracy</td>
</tr>
<tr>
<td>7.111 Probability of Correctly Activating a Discrete Control While Reading a Discrete Display</td>
<td>7.207 Auditory Shadowing and Secondary Task Performance: Evidence for the Multiple-Channel Model of Attention</td>
</tr>
<tr>
<td>7.112 Probability of Correctly Activating Discrete Controls While Reading a Meter or Other Dynamic Display</td>
<td>7.208 Multiple-Channel Model of Attention</td>
</tr>
</tbody>
</table>
7.208 Auditory Shadowing: Effect of Message Semantic and Syntactic Structure
7.209 Factors Influencing Performance in Selective Listening Tasks
7.210 Selective Listening: Effect of the Location of Sound Sources
7.211 Selective Listening: Effect of Message Frequency Spectrum
7.212 Selective Listening: Effect of Age
7.213 Divided Attention: Factors Influencing Performance on Auditory Tasks
7.214 Auditory Divided Attention: Signal Detection Across Two Channels
7.215 Divided Attention: Effect of Mixed Modalities
7.216 Auditory Divided Attention: Effect of Practice
7.217 Divided Attention: Effect of Age
7.218 Visual Attention Switching Without Eye Movements
7.219 Division of Attention Among Spatial Locations
7.220 Concurrent Visual Search
7.221 Attentional and Decision-Making Factors in Component and Compound Tasks

7.3 Monitoring Behavior and Supervisory Control
7.301 Monitoring and Supervisory Control
7.302 Sampling Behavior During Process-Control Monitoring
7.303 Hierarchically Structured Control Models
7.304 Fault Detection and Response with Different Levels of Automation
7.305 Time Required to Detect, Diagnose, and Repair Faults
7.306 Training of Operators for Supervisory Control
7.307 Allocation of Decisions Between Human and Computer
7.308 Sharing of Knowledge and Control Between Supervisor and Computer
7.309 General Model of Supervisory Control
7.310 Optimal Estimation Model
7.311 Application of Optimal Control Theory to Monitoring Performance
7.312 Comparison of Different Research Settings for Study of Supervisory Control
7.313 Eye Fixations and Eye Movements During Display Monitoring
7.314 Factors Affecting Monitoring Performance
7.315 Effect of Display Size on Visual Fixation
7.316 Models of Observer Monitoring Performance
7.317 Senders' Periodic Sampling Model of Display Monitoring
7.318 Markov Model for Eye Transitions During Display Monitoring
7.319 Queuing Model of Display Monitoring

7.4 Vigilance
7.401 Vigilance
7.402 Methods of Measuring Vigilance, Monitoring, and Search
7.403 Decline in Rate of Correct Detection of Signals Over Time (Vigilance Decrement)
7.404 Reaction Time Patterns in Vigilance Performance
7.405 Application of Signal Detection Theory to Vigilance
7.406 Characteristics of the Signal that Affect Vigilance, Monitoring, and Search
7.407 Effect of Signal Target Location on Visual Search
7.408 Effect of Signal Discriminability on Vigilance Performance
7.409 Simultaneous Versus Independent Visual and Auditory Monitoring
7.410 Maintenance of Vigilance Level by Adaptive Changes in Signal Detectability
7.411 Characteristics of the Task that Affect Vigilance, Monitoring, and Search
7.412 Vigilance for Sequential Events
7.413 Characteristics of the Observer that Affect Vigilance, Monitoring, and Search
7.414 Effect of Practice on Vigilance
7.415 Effect of Instruction on Vigilance
7.416 Effects of Different Training Methods on Vigilance
7.417 Effect of Boredom on Detection Efficiency
7.418 Sex Differences in Vigilance Performance
7.419 Intertask Correlations in Vigilance Performance
7.420 Signal Detection Theory

7.5 Visual Search
7.501 Factors Affecting Visual Search with Monochrome Displays
7.502 Visual Search Rates with Eye Movements
7.503 Effect of Head and Eye Movement on Target Acquisition
7.504 Role of Saccadic Eye Movements in Search
7.505 Eye Movements During Visual Search and Pattern Perception
7.506 Search Time: Effects of Target Conspicuity and Fixation Eye Movements
7.507 Search Time and Detection Rate: Effect of Accommodative Aids
7.508 Visual Search Rates Without Eye Movements
7.509 Search Time for Single Disks: Effect of Target Characteristics
7.510 Search Time: Effect of Target Luminance, Size, and Contrast
7.511 Search Time and Eye Fixations: Effects of Symbol Color, Size, and Shape
7.512 Search Time: Effect of Number of Targets and Target Complexity
7.513 Search Time: Effect of Number of Colors and Information Density
7.514 Effect of Irrelevant Stimuli on Search Performance
7.515 Processing of Nontarget Items in Visual Search
7.516 Target Acquisition in Distractor Target Arrays
7.517 Search Time: Effect of Number of Background Characters and Display Density
7.518 Search Time: Effect of Target Surround Density
7.519 Search Time: Effect of Color Coding
7.520 Controlled and Automatic Visual Search
7.521 Effect of Target Lag and Sequential Expectancy on Search Time
7.522 Visual Search for Moving and Static Targets
7.523 Target Counting: Effects of Grouping
7.524 Visual Search for Multiple Targets
7.525 Target Acquisition in Real-World Scenes
7.526 Detection of Objects and Events in Real-World Scenes

7.6 Target Acquisition 1603
7.601 Atmospheric Conditions and Visual Effects
7.602 Nomographic Charts for Daylight and Overcast Sky Conditions
7.603 Sighting Range for Targets Detected Against Horizon
7.604 Effect of Number of Displayed Gray Levels on Target Acquisition
7.605 Heap's Visual Carpet
7.606 Foveal and Peripheral Threshold Contrasts Predicted by Five Different Models
7.607 Mathematical Modeling of Air-to-Ground Target Acquisition
7.608 Multiple Regression Model of Target Acquisition
7.609 Koopman's Empirical Frequency-of-Seeing Curve
7.610 Threshold "Detection Lobe" Curve
7.611 Prediction of Aircraft Detectability
7.612 Correlation Between Performance on Visual Tests and Flying Performance
7.613 Effect of Alerted and Unalerted Search on Target Acquisition
7.614 Factors Affecting Target Acquisition on Television

7.7 Workload Characteristics 1635
7.701 Criteria for Selection of Workload Assessment Techniques
7.702 Sensitivity Requirements and Choice of a Workload Assessment Technique
7.703 Diagonistic in the Choice of a Workload Assessment Technique
7.704 Measurements Used in Workload Assessment
7.705 Cooper-Harper Aircraft Handling Characteristics Scale as a Subjective Measure of Workload
7.706 Cooper-Harper Aircraft Handling Ratings as a Function of Secondary Task Instability
7.707 Cooper-Harper Scale Modified for System Workload Assessment
7.708 Stockholm 9-Point Scale for Subjective Workload Assessment
7.709 Stockholm 11-Point Scale for Subjective Workload Assessment
7.710 Workload Assessment Using Magnitude Estimation Techniques
7.711 Mission Operability Assessment Technique (MOAT)
7.712 Subjective Workload Assessment Technique (SWAT)
7.713 Subjective Workload Assessment Technique (SWAT) Ratings as a Function of Task Difficulty
7.714 Comparison of Normalized Subjective Workload Assessment Technique (SWAT) Ratings and Normalized Mean Error Scores in a Memory Task
7.715 Subjective Workload Evaluation Techniques: Limitations and Guidelines
7.716 Primary Task Measures for Workload Assessment
7.717 Use of the Loading-Task Paradigm in Workload Assessment
7.718 Use of the Subsidiary Task Paradigm in Workload Assessment
7.719 Major Classes of Secondary Task
7.720 Choice of Secondary Task: Application of a Multiple-Resources Model
7.721 Guidelines for the Use of Secondary Task Measures in Workload Assessment
7.722 Use of Adaptive-Task Techniques to Counter Primary Task Intrusion in Workload Assessment
7.723 Use of Embedded Secondary Tasks in Workload Assessment
7.724 Transient Cortical Evoked Responses as a Physiological Measure in Workload Assessment
7.725 Use of the P300 Spike with a Secondary Task
7.726 Use of Transient Cortical Evoked Response in the Primary Task Situation
7.727 Resource Reciprocity Between Primary and Secondary Tasks Reflected in P300 Spike Amplitude
7.728 Pupil Diameter as an Indicator of Workload
7.729 Surface Electromyography as an Index of Physical Workload

7.8 Motivation and Personality 1699
7.801 Effect of Incentives on Performance
7.802 Situational Stress: Effects of Personality Type and Threat
7.803 Effect of Anxiety on Performance
7.804 Effect of Stress on Performance for Introverts and Extroverts

7.9 Decision-Making Skill 1709
7.901 Characteristics of Humans as Decision Makers
Section 9.0 Operator Motor Control

9.1 Reaction Time 1842
9.101 Reaction Time Tasks and Variability
9.102 Simple Reaction Time to Visual Targets of Different Luminances
9.103 Simple Reaction Time: Effect of Target Spatial Frequency (Size) and Contrast
9.104 Attentional Limitations in Reaction Time Tasks
9.105 Speed-Accuracy Tradeoffs
9.106 Reaction Time: Effect of Uncertainty
9.107 Serial Reaction Time: Effect of Signal Spacing
9.108 Factors Affecting Simple Reaction Time
9.109 Simple Reaction Time to Visual Targets
9.110 Factors Affecting Choice Reaction Time
9.111 Choice Reaction Time: Effect of Number of Alternatives
9.112 Choice Reaction Time: Effect of Probability of Alternatives
9.113 Choice Reaction Time: Effect of Stimulus Probability and Response-Stimulus Interval
9.114 Choice Reaction Time: Effect of Warning Interval on Error
9.115 Choice Reaction Time: Effect of Stimulus-Response Compatibility on Error
9.116 Choice Reaction Time: Effect of Stimulus-Response Compatibility
9.117 Choice Reaction Time: Detection of Targets Amid Irrelevant Stimuli
9.118 Choice Reaction Time in the Presence of Conflicting Information
9.119 Choice Reaction Time: Effects of Practice
9.120 Reaction Time for Coupled Manual and Vocal Response: Effect of Stimulus Probability
9.121 Interaction Among Multiple Stimuli and Responses
9.122 Interference Between Concurrent Tasks: Effect of Response Mode Similarity

9.2 Target-Directed Movement 1888
9.201 Fitts' Law: Movement Time as a Function of Distance and Accuracy
9.202 One- Versus Two-Handed Reaching: Effect of Target Distance and Width
9.203 Fitts' Law: Movement and Reaction Time as a Function of Target Distance and Size
9.204 Blind Positioning: Effect of Prior Target Exposure
9.205 Control Movements: Effect of Direction
9.207 Control Movement Times Underwater and on Land
9.208 Blind Positioning Accuracy: Effect of Target Location
9.209 Restricted Blind-Positioning: Effect of Distance and Direction
9.210 Time and Accuracy of Fast Control Movements

9.3 Movement Sequences 1910
9.301 Maximum Tapping Speed: Effect of Age and Sex
9.302 Tapping Rate, Typing Speed, and Handwriting Speed
9.303 Typing Speed and Accuracy
9.305 Coordination of Hand Movements on Timed Tasks
9.306 Step Cycle Times for Walking and Running
9.307 Hand and Voice Coordination

9.4 Motor Learning 1924
9.401 Model of the Effects of Practice on Task Performance
9.402 Motor Skill Development with Massed Versus Distributed Practice
9.403 Response Chunking in the Training of Complex Motor Skills
9.404 Effect of Knowledge of Results on Motor Learning

9.5 Manual Control and Tracking 1932
9.502 Response of a Gain Element with Pure Time Delay
9.503 Response of a Pure Integrator Element
9.504 Bode Plot Representation of a Gain Element with Pure Time Delay
9.505 Response of a Pure Differentiator Element
9.506 System Feedback: Open- and Closed-Loop Transfer Functions
9.507 Phase Margin: A Measure of Stability
9.508 Components of the Manual Control Loop Considering the Human Operator as an Element in the Control System
9.509 The Kappa-Tau Space
9.510 Error, System Control Criteria, and Human Limitations in Error Control
9.512 Modeling of the Human Operator: The Optimal Control Model
9.513 Display Gain
9.514 Optimal Gain Levels in Target Acquisition
9.515 Optimal Gain Levels in Continuous Control Tasks
9.516 Effect of Transmission Lag (Pure Time Delay) in Continuous Tracking with Zero-Order Dynamics
9.517 Temporal Mismatch of Motion and Visual Displays: Effect on Continuous Tracking with Simulated Aircraft Dynamics
9.518 Joint Effects of First-Order Exponential Lag and Gain on Target Tracking Performance
9.519 Control Order
9.520 Effects of System Order and Aiding on Tracking Performance
9.521 Effects of Control Aiding, Input Frequency, and Display Type on Tracking of a Random Input
9.522 Effect of System Lag on Perceived Task Difficulty
9.523 Varying Parameters of the Crossover Model
9.524 "Bang-Bang" Time-Optimal Tracking with Higher-Order Systems
9.525 Display Augmentation
9.526 Augmentation of Control Dynamics
9.527 Inherently Unstable Dynamics: The Critical Tracking Task
Section 10.0 Effects of Environmental Stressors

10.1 Stress

10.1.1 Theories of Arousal and Stress
10.1.2 Environmental Stress, Fatigue, and Circadian Rhythms
10.1.3 Classification of Factors Influencing the Stress State
10.1.4 Arousal Level: Effect on Performance

10.2 Measurement of Stress and Fatigue

10.2.1 Types of Tasks Used in Measuring the Effects of Stress, Fatigue, and Environmental Factors on Performance
10.2.2 Effects of Different Stressors on Performance

10.3 Noise

10.3.1 Noise Bursts: Effect on Task Performance
10.3.2 Continuous Broadband Noise: Effect on Task Performance
10.3.3 Continuous Broadband Noise: Effect on Vigilance Performance as a Function of Number of Monitored Sources
10.3.4 Continuous Noise: Effect on a Dual Vigilance Task
10.3.5 Continuous Open-Field White Noise: Effect on Speed/Accuracy Tradeoffs in Serial Response Tasks
10.3.6 Continuous Noise: Effect on Performance for Different Age Groups
10.3.7 Continuous Noise: Effect on Sampling of Signal Sources
10.3.8 Continuous Noise: Effect on Incidental Learning
10.3.9 Continuous Noise: Effect on Performance of a Letter-Transformation Task with Varying Memory Load
10.3.10 Continuous Broadband Noise: Performance-Related Aftereffects of Exposure
10.3.11 Factors Affecting the Temporary Threshold Shift
10.3.12 Temporary Threshold Shift and Recovery Time: Effect of Noise Intensity
10.3.13 Temporary Threshold Shift: Effect of Noise Spectrum
10.3.14 Noise-Induced Hearing Loss
10.3.15 Factors Affecting Noise-Induced Permanent Threshold Shift
10.3.16 Prediction and Prevention of Hearing Loss

10.4 Vibration

10.4.1 Vibration and Display Perception
10.4.2 Vibration Measurement and Representation
10.4.3 Vibration Characteristics of Fixed-Wing Aircraft
10.4.4 Vibration Characteristics of Rotary-Wing Aircraft
10.4.5 Vibration Characteristics of On- and Off-Road Vehicles

10.4.6 Factors Affecting Vibration Transmission Through the Body
10.4.7 Transmission of Vertical Seat Vibration to the Head
10.4.8 Transmission of Horizontal Seat Vibration to the Head
10.4.9 Factors Affecting Human Performance During Vibration
10.4.10 Minimum Amplitudes of Vibration Affecting Vision
10.4.11 Display Legibility: Effects of Vibration Frequency
10.4.12 Visual Performance: Effect of Random Multiple-Frequency and Multiple-Axis Vibration
10.4.13 Display Legibility During Vibration: Effect of Character Subtense
10.4.14 Display Legibility During Vibration: Effect of Character Spacing
10.4.15 Display Legibility During Vibration: Effect of Character Font During Whole-Body Vibration
10.4.16 Display Legibility During Vibration: Effect of Luminance Contrast
10.4.17 Visual Performance During Whole-Body Vibration: Effects of Viewing Distance and Display Collimation
10.4.18 Transmission of Vibration to the Eyes
10.4.19 Transmission of Vibration to Helmets
10.4.20 Perception of Information on Helmet-Mounted Displays During Vibration
10.4.21 Model for Predicting the Effects of Vibration on Manual Control Performance
10.4.22 Manual Control Performance: Effects of System Dynamics and Vibration Frequency
10.4.23 Continuous Manual Control Performance: Interactive Effects of Control Gain, Control Type, and Vibration
10.4.24 Data Entry Performance During Vibration
10.4.25 Manual Control Performance: Effects of Vertical Z-Axis Oscillatory Motion at Frequencies Below 1 Hz
10.4.26 Factors Affecting Incidence of Motion Sickness Caused by Low-Frequency Vibration
10.4.27 Vibration Perception Thresholds
10.4.28 Effect of Vibration Magnitude on Discomfort
10.4.29 Model for Predicting the Discomfort of Seated Occupants of Vehicles
10.4.30 Effects of Severe Vibration
10.4.31 Transmission of Vibration ThroughSeats
10.4.32 Comparison of the Vibration Isolation Effectiveness of Seats
10.433 Vibration Exposure Duration: Effect on Visual Performance
10.434 Vibration Exposure Duration: Effect on Manual Control Performance
10.435 Spatial Filtering Descriptions of Vibration-Induced Visual Disruption
10.5 Lighting 2138
10.501 Glare: Effect on Visibility
10.6 Temperature and Humidity 2140
10.601 Heat: Effect of Exposure Duration on Task Performance
10.602 Cold: Effect on Performance
10.7 Cyclical Variations 2144
10.701 Characteristics of Biological Rhythms
10.702 Circadian Variation in Body Temperature
10.703 Cyclical Patterns of Sleep
10.704 Time of Day: Effect on Memory
10.705 Time of Day; Effect on Short-Term Memory and Speeded Decision Making
10.706 Time of Day: Effect on Speeded Decision Making
10.707 Circadian Variation in Work Efficiency
10.708 Incentive and Introverted/Extroverted Personality: Effect on the Diurnal Rhythm of Performance
10.709 Ultradian Rhythms
10.710 Adaptation of Circadian Rhythms to Altered Schedules
10.711 Circadian Variation in Vigilance Performance and Body Temperature for Individuals with Different Work Shift Preferences
10.712 Schedule Shift: Effect on Performance
10.713 Rapid Time-Zone Shifts: Effect on Performance and Body Temperature
10.714 Sleep/Wake and Body Temperature Cycles During Isolation from External Time References

10.8 Fatigue 2176
10.801 Fatigue: Effect on Performance
10.802 Sleep Deprivation: Effect on Performance and Memory
10.803 Sleep Deprivation: Effect on Reaction Time in a Two-Choice Task
10.804 Sleep Deprivation: Effect on Serial Responding
10.805 Five-Choice Serial Response Task: Effect of Different Stressors on Performance
10.806 Sleep Deprivation: Effect on Performance of a Dual Task
10.807 Sleep Deprivation: Use of Physiological Indicators to Predict Performance Decrement
10.808 Sleep Deprivation: Effect on Circadian Rhythm
10.809 Partial Deprivation of Sleep: Effect on Performance
10.810 Selective Sleep Deprivation: Effect on Memory
10.811 Partial Sleep Deprivation: Effect on Vigilance and Cognitive Performance

10.9 Acceleration 2200
10.901 Sustained Acceleration (+Gz): Effect on Visual Performance
10.902 Acceleration of Body Rotation: Effect on Visual Acuity
10.903 Sustained Acceleration (+Gz): Effect on Contrast Discrimination
10.904 Sustained Acceleration (+Gz): Effect on Target Detection
10.905 Sustained Acceleration (+Gz): Effect on Dial Reading Errors
10.906 Sustained Acceleration: (+Gz): Effect on Vision and Consciousness

10.10 Gravity 2212
10.1001 Techniques for Body Self-Rotation Without Surface Contact in Micro-Gravitational Environments

Section 11.0 Display Interfaces

11.1 Visual Display Image Quality 2216
11.101 Judged Image Quality on CRT Displays: Effect of Bandwidth and Image Motion
11.102 Electro-Luminescent Displays: Minimum and Preferred Symbol Luminances
11.103 Display Surround Luminance and Subjective Visual Comfort
11.104 Recognition of Vehicular Targets on CRT Displays
11.105 CRT-Image Motion: Effect on Target Identification
11.106 CRT-Image Motion: Effect on Target Detection Performance
11.107 Visual Simulation of Aircraft Silhouettes: Contrast and Resolution Requirements
11.108 Television Display Resolution: Effect on Time and Accuracy for Symbol Identification
11.109 CRT Symbol Size, Viewing Angle, and Vertical Resolution: Effect on Identification Accuracy
11.110 CRT Scan Line Orientation: Effect on Symbol Legibility
11.111 CRT Symbol Size and Resolution: Effect on Legibility
11.112 CRT Symbol Size and Stroke Width: Effect on Legibility
11.113 CRT Symbol Spacing: Effect on Identification Accuracy
11.114 Display Element Size: Effect on Reading and Search Times
11.115 Dot Matrix Displays: Effect of Inter-Pixel Spacing on Character Identification
11.116 Dot Matrix Displays: Effect of Pixel Size-Spacing Ratio on Symbol Reading Time
11.117 Dot Matrix Displays: Effect of Matrix Size on Speed and Accuracy of Symbol Identification
11.118 Dot Matrix Displays: Effect of Symbol Size and Viewing Distance on Recognition
11.119 Estimation of the Number of Perceptible Gray Levels
11.120 Perceived Flicker for CRT Phosphors of Varying Persistence
11.121 CRT-Image Unsteadiness: Effect on Judged Picture Quality
11.122 Flicker Thresholds for Various Cathode Ray Tube Phosphors
11.123 Colored Light-Emitting Diodes: Use of Red or Green in High Ambient Illumination
11.124 Dial Scale Reading Times: Effects of Brightness Contrast and Color Contrast
11.125 Effects on Instrument Reading Performance; Pointer, Background, and Panel Lighting Colors
11.126 Color Misregistration: Effect on Symbol Identification

11.2 Visual Information Portrayal

11.201 Color-Coded Versus Monochrome Displays
11.202 Redundant Coding: Use of Color in Conjunction with Other Codes
11.203 Use of Color Coding: Effect of Display Density
11.204 Use of Color Coding: Effect of Visual Field Location
11.205 Use of Color Coding: Effect of Symbol Luminance, Illumination Level, and Hue
11.206 Color Coding: Compatible and Non-Compatible Control/Display Arrangements
11.207 Display Element Shape: Effect on Reading and Search Times
11.208 Dot-Matrix Versus Stroke-Written Symbols: Effect on Recognition
11.209 Alphanumeric Font and Display Legibility
11.210 Time and Accuracy in Reading Linear Scales
11.211 Scale Divisions: Reading to the Nearest Scale Mark
11.212 Scale Divisions: Straight Scale Interpolation
11.213 Dial Reading Errors for Various Scale Intervals
11.214 Time and Accuracy in Reading Circular Scales
11.215 Scale Divisions: Reading Circular Dials
11.216 Time and Accuracy in Reading Semi-Circular Scales
11.217 Time and Accuracy in Reading Counters
11.218 Differences Between the Natural Optic Array and Display Media
11.219 Canonical and Non-Canonical Views: From Layout to Eye
11.220 Canonical View; Homogeneous and Inhomogeneous Translation of Objects in the Field of View
11.221 Differentiation of Targets in TV and Cinematic Displays
11.222 Map Learning
11.223 Design of “You-Are-Here” Maps

11.3 Human-Computer Interfaces

11.301 Steps in Dialogue Design
11.302 Basic Properties of Person-Computer Dialogue
11.303 Comparison of Approaches to Person-Computer Dialogue
11.304 Major Data Models in Database Systems
11.305 Techniques for Modeling Interactive Systems
11.306 Keystroke Model for Predicting Task Execution Time
11.307 Protocol Analysis for Documenting User Problems with Interactive Systems
11.308 Formal Language as a Design Tool for Person-Computer Dialogue
11.309 Playback Methodology for Evaluating Person-Computer Dialogue
11.310 Interface Design Principles Derived from Human Error Analyses
11.311 Taxonomy of Computer-User Characteristics
11.312 Designing for the Casual or Infrequent Computer User
11.313 System Response Time and the Effect on User Performance and Satisfaction
11.314 Information Bandwidth in Person-Computer Dialogue
11.315 Design Recommendations for Query Languages
11.316 Comparison of Query Languages: Query-by-Example, SEQUEL, and Algebraic Languages
11.317 Data Entry Displays
11.318 Comparison of Input Time and Errors for Point-In and Type-In Data Entry
11.319 Sequence Control in Person-Computer Dialogue
11.320 Error Recovery
11.321 Design and Control of Cursors
11.322 On-Line Documentation
11.323 Aids to Person-Computer Problem Solving
11.324 Voice Versus Written Communications Between Users for Problem Solving
11.325 Presentation of Numeric Data in Person-Computer Dialogue
11.326 Presentation of Text Data in Person-Computer Dialogue
11.327 Presentation of Tabular Data in Person-Computer Display
11.328 Graphics in Person-Computer Display
11.329 Information Portrayal in Person-Computer Dialogue
11.330 Abbreviations and Acronyms in Person-Computer Dialogue
11.331 Prompting in Person-Computer Dialogue
11.332 Screen Layout and Structuring in Person-Computer Displays
11.333 Guidelines for Multiple-Frame Person-Computer Display Design
11.334 Design Guidelines for Multiple-Level Person-Computer Display
11.335 Windowing Versus Scrolling on Visual Display Terminals
11.336 Guidelines for the Use of Noncritical Auditory Signals

11.4 Attentional Directors

11.401 Guidelines for Designing Alerting Signals
11.402 Alarm Classification and Development
11.403 Target Coding: Effect on Search Time
11.404 Visual Versus Auditory Warning Signals
11.405 Visual Warning Signals: Effect of Visual Field Position and Color
11.406 Visual Warning Signals: Effects of Background Color and Luminance
11.407 Visual Warning Signals: Effect of Shape
11.408 Master Warning Signals: Effect on Detection of Signals in the Visual Periphery
Section 11.409 Visual Warning Signals: Effect of Size and Location

11.410 Alerting Signals in the Peripheral Visual Field: Use of Apparent Motion

11.411 Visual Warning Signals: Effect of Flashing

11.412 Deceleration Warning Lights for Motor Vehicles

11.413 Coupling of Visual and Auditory Warning Signals: Effects on Detection and Recognition

11.414 Coupling of Master Indicators with Peripherally Located Warning Displays

11.415 Coupling of Visual and Verbal Warning Signals: Effect on Response Time

Section 11.416 Comparison of Voice and Tone Warning Signals

11.417 Voice Auditory Warning Signals: Effect of Alerting Tones

11.418 Voice Warning Systems: Effect of Message Structure and Content

11.419 Coupling of Visual and Aural Warning Signals: Effect on Eye Fixation and Response Time

11.420 Response Time with Redundant Information

11.421 Integration of Visual and Auditory Alerts in Warning Systems

Section 12.0 Control Interfaces (Real/Virtual)

12.1 Characteristics and Functional Uses of Common Controls

| 12.101 | Recommended Uses of Controls |
| 12.102 | Comparison of Common Controls |

12.2 Control/Display Ratios

| 12.201 | Control/Display Ratios |

12.3 Grouping and Arrangement of Controls

12.301	Principles of Grouping and Arranging Controls
12.302	Guidelines for Control/Display Position and Movement Relationships
12.303	Recommended Minimum Distances Between Controls
12.304	Military Aviator Reach Envelopes for Placement of Controls

12.4 Hand-Activated Controls

12.401	Pushbuttons: Effects of Spacing, Diameter, and Orientation on Error Rate
12.402	Transilluminated Pushbutton Indicators: Effects of Display Color and Ambient Illumination on Reaction Time
12.403	Legend Switches
12.404	Toggle Switches: Effects of Spacing, Orientation, and Direction of Throw on Error Rate
12.405	Toggle Switches: Factors Affecting Activation Time
12.406	Numeric Keyset Arrangements: Effects on Speed and Accuracy of Data Entry
12.407	Conventional Versus Membrane Keyboards
12.408	Alphabetic Versus QWERTY Keyboard Arrangements
12.409	Keyboard Slope: Effect on Keying Performance

12.411	Multifunction Keyboards: Design Considerations
12.412	Control Type, Location, and Turbulence: Effect on Data Entry Performance
12.413	Rotary Selector Switches
12.414	Selection of Data Entry Devices: Rotary Selectors, Thumbwheels, and Pushbuttons
12.415	Selection of Data Entry Devices: Ten-Button Keyset, Matrix Keyboard, Vertical Levers, and Rotary Selectors
12.416	Rotary Controls: Spacing, Diameter, and Orientation
12.417	Continuous Rotary Controls: Size Coding
12.418	Rotary Selector Controls: Shape Coding
12.419	Rotary Controls: Effect of Knob Shape on Blind-Positioning Accuracy
12.420	Ganged Continuous Rotary Controls: Minimum Control Dimensions
12.421	Joystick Type: Effect on Tracking Performance
12.422	Comparison of Cursor Control Devices
12.423	CRT Touch Screen Devices
12.424	Control Coding
12.425	Push-Button Controls: Shape Coding
12.426	Use of Gloves: Effect on Control Operation
12.427	Use of Gloves: Effect on Control Operating Time
12.428	Use of Gloves: Effect on Maximum Torque Applied to Rotary Switches
12.429	Use of Gloves: Effect on Keyboard Data Entry
12.430	Use of Gloves: Effect on Discrimination of Knob Rim Surface Texture
Glossary

Abduction. The outward rotation of an eye away from the midline.

Absolute threshold. The amount of stimulus energy necessary to just detect the stimulus. Usually taken as the value associated with some specified probability of stimulus detection (typically 0.50 or 0.75).

Acceleration magnitude. Time rate of change of velocity, reflecting a change in either the speed or direction component of velocity.

Accommodation. A change in the thickness of the lens of the eye (which changes the eye's focal length) to bring the image of an object into proper focus on the retina. (CRef. 1.222)

Achromatic. (1) Characterized by an absence of chroma or color. (2) In optics, corrected to have the same focal length for two selected wavelengths.

Acoustic reflex. Contraction of two small muscles attached to the conducting bones of the middle ear in response to a high-intensity sound; the contraction dampens sound pressure by increasing acoustic impedance and serves to protect the ear from damage by very loud sound. (CRef. 2.202)

Active movement. Movement of a limb or body part by the individual under his or her own volition.

Adaptation. (1) A change in the sensitivity of a sensory organ to adjust to the intensity or quality of stimulation prevailing at a given time (also called sensory adaptation); adaptation may occur as an increase in sensitivity (as in dark adaptation of the retina) or as a decrease in sensitivity with continued exposure to a constant stimulus. (2) A semipermanent change in perception or perceptual-motor coordination that serves to reduce or eliminate a registered discrepancy between or within sensory modalities or the errors induced by this discrepancy (also called perceptual adaptation). (CRef. 5.1101)

Adaptometer. An instrument for determining the amount of retinal adaptation or the time course of adaptation by measuring changes in the observer's threshold for light. Adaptometers are most frequently designed to measure dark adaptation.

Afferent. Conveying neural impulses toward the central nervous system, as a sensory neuron; sensory, rather than motor.

Alpha wave. Oscillations in the electrical potential of the cortex of the brain that have a frequency of 6-14 Hz and characteristically occur when the individual is awake and relaxed. The waves are generally measured between one electrode taped to the scalp on the back of the head and another, more distant electrode attached, e.g., to the mastoid.

Alveolar. Articulated with the tip of the tongue placed against part or all of the ridge behind the upper teeth (as in [t], [s], [n]).

Amblyopia. Low or reduced visual acuity not correctable by refractive means and not attributable to detectable structural or pathological defects. Clinically judged present if Snellen acuity is 20/30 or worse after refractive correction, or if acuity is significantly less in one eye than in the other.

Amplitude modulation. Modulation of the amplitude of a (usually) constant-frequency carrier in accordance with the strength of a second signal, generally of much lower frequency than the carrier; AM radio utilizes amplitude modulation.

Analysis of variance. A statistical test in which the variance (average squared deviation from the mean) among scores within experimental groups is compared with the variance among means across groups to assess whether the means of the experimental groups are significantly different from one another.

Anechoic room. A room in which all surfaces are covered by large wedges of sound-absorbing material to minimize reflections and provide an essentially echo-free or free-field environment.

Aqueous humor. The clear, watery fluid that fills the front chamber of the eye (the space between the cornea and the crystalline lens) and supplies oxygen and nutrients to the cornea and lens. (CRef. 1.201)

Arousal. Increased attention to and awareness of the environment, rendering the organism better prepared for mental or physical action.

Articulator. A moveable organ such as the tongue, lips, or uvula, that is used in the production of speech.

Artificial pupil. An aperture (smaller than the eye pupil in diameter) in a disc or diaphragm mounted in front of the eye and used to control the amount of light entering the eye. A small artificial pupil (2 mm) provides the eye with a virtually infinite depth of field.

Astigmatism. In the eye, refractive error due to unequal refraction of light in different meridians, caused by nonuniform curvature of the optical surfaces of the eye, especially the cornea. (CRef. 1.201)

Asymmetric convergence. Fixation on a target to one side rather than directly ahead of the observer. (CRef. 1.808)

Atlanto-occipital joint. A joint in the vertebral column at the juncture of the first cervical vertebra and the posterior part of the skull; permits flexion, extension, and lateral flexion of the head.

Attention operating characteristic. A curve showing how performance on one task varies as a function of performance on a second task when the two are carried out concurrently and the allocation of attention between the two tasks is varied; that is, a performance trade-off.

Backward masking. Masking in which the masking stimulus occurs after the test stimulus. (See masking.)

Bang-bang control. System control in which the operator moves the control stick rapidly from maximum deflection in one direction to maximum deflection in the opposite direction in a series of motions timed to bring the error to zero in a minimum time; used only when time constants are long or in acceleration (second-order) control systems (i.e., when the system is sluggish in responding to a control input). (CRef. 9.524)
Basicentric axes. Axes with an origin in the contacting surface through which vibration is transmitted to the body.

Beats. Periodic fluctuations in amplitude produced by the superposition of sound waves of slightly different frequencies.

Békésy tracking procedure. A procedure for measuring auditory thresholds in which the listener presses a switch to reduce the signal level as long as the signal is heard and releases it to increase the signal level when the signal becomes inaudible. When the procedure is continued over several minutes, a zigzag pattern of increasing and decreasing signal levels is produced on a chart recorder designed for the purpose. Threshold is usually calculated as the average of the median points between successive peaks and valleys in this pattern.

β. In signal detection analysis, the index of response bias representing the ratio of the height (ordinate) of the signal-plus-noise distribution to the height of the noise distribution. In practice, β may be derived from the hit and false alarm rates. (CRef. 7.420)

Between-subjects design. An experimental design in which only one level of an independent variable. The performance of the difference groups is then compared to assess the effect of the experimental manipulation.

Binocular. (1) Pertaining to, affecting, or impinging simultaneously upon two sensory modalities (such as vision and touch). (See also dichotic; dichoptic.)

Binocular suppression. Decrease or loss of visibility of a portion or all of one eye's view due to stimulation of the same portion of the other eye. Binocular suppression is most clearly demonstrated when the two eyes are presented with conflicting information (such as different colors or different orientation of contours) in corresponding parts of the retinas. (CRef. 1.804)

Blackbody radiator. An ideal surface that completely absorbs all radiant energy of any wavelength incident upon it (and therefore appears black) and emits radiant energy of a spectral distribution that varies with absolute temperature according to Planck's radiation formula; also known as a Planckian radiator or an ideal radiator. (CRef. 1.107)

Blackbody source. See blackbody radiator.

Blind spot. The region of the retina where the optic nerve exits the eye; this region contains no visual receptors and is therefore insensitive to light; also known as the optic disc.

Bloch's law. A law stating that, for brief targets (less than ~100 msec), the threshold intensity for detecting a target varies inversely with exposure duration; i.e., \(I = k/T \), where \(I \) is the light intensity of the target, \(T \) is exposure duration, and \(k \) is a constant. In other words, target lights with equal energy (or equal numbers of quanta) are equally detectable \((I \times T = k) \).

Blocked design. An experimental design in which only one value (or set of values) of the experimental variable(s) is tested in each group or block of trials to reduce uncertainty and maximize the subject's performance.

Bode plot. A plot in rectangular coordinates showing the magnitude of the input-output ratio of a system (in decibels) and the magnitude of the phase lag as a function of the logarithm of frequency.

Brain potential. Electrical voltage generated by the activity of nerve cells in the brain, usually measured from electrodes placed on the scalp or in contact with brain cells.

Brightness. The subjective attribute of light sensation by which a stimulus appears to be more or less intense or to emit more or less light. Brightness can range from very bright (brilliant) to very dim (dark). In popular usage, brightness implies higher light intensities, dimness the lower intensities.

Brightness induction. See Induction.

C. Celsius (formerly Centigrade).

Candela (cd). A unit of luminous intensity equal to the luminous intensity in a direction perpendicular to the surface of 1/60 of 1 square centimeter of a blackbody radiator at the solidification temperature of platinum. Sometimes also called candle or new candle.

cd. Candela.

\(\text{cd/m}^2 \). Candelas per square meter, a unit for measuring luminance; 1 \(\text{cd/m}^2 = 0.292 \text{ fL} = 0.314 \text{ mL} \). (See also candela.)

Choice reaction time. The time from the onset of a stimulus to the beginning of the subject's response to the stimulus in conditions where there is more than one stimulus alternative and more than one response alternative. (CRef. 9.101)

Chroma. (1) The attribute of color perception representing the degree to which a chromatic color differs from an achromatic (gray) color of the same lightness. (2) The dimension of the Munsell color system corresponding most closely to saturation.

Chromatic. Having hue; colored; i.e., appearing different in quality from a neutral gray of the same lightness value.

Chromatic aberration. Image degradation in an optical system resulting from unequal refraction of light of different wavelengths; commonly manifested in simple optical systems as colored fringes on the border of an image. (CRef. 1.121)

Chromatic induction. See Induction.

Chromaticity. The quality of a color characterized by dominant or complementary wavelength (hue) and purity (saturation) but not brightness or lightness.

Chromaticity coordinates. The proportions of each of the three standard primaries required to match a given color, expressed as the ratio of the amount of one primary to the total amount of all three. The chromaticity coordinates are designated as \(x \), \(y \), and \(z \) in the colorimetric system of the CIE (Commission Internationale de l'Eclairage). (CRef. 1.720)

Chromaticity diagram. The two-dimensional diagram produced by plotting two of the three chromaticity coordinates \((x, y, z) \) against one another. The most widely used is the \((x, y) \) diagram of the CIE (Commission Internationale de l'Eclairage), plotted in rectangular coordinates. (CRef. 1.722)

CIE. Commission Internationale de l'Eclairage (International Commission on Illumination), an international organization devoted to the study and advancement of the science of illumination; the commission has developed a number of international standards in photometry and colorimetry.
Complementary wavelength. The wavelength designated by the point on the spectrum locus of a chromaticity diagram that lies on the opposite side of the achromatic point, in a straight line with the wavelength in question; i.e., the wavelength that, when mixed with the wavelength in question, yields white.

Complex conjugate. A quantity that has the same real part as a secondary quantity but an imaginary part with the opposite sign; e.g., \(a + ib \) is the complex conjugate of \(a + ib \), where \(\sqrt{-1} \).

Complex sound. A sound comprising more than one frequency, i.e., a sound that is not a pure sine wave.

Compound task. The combining of two or more component tasks in such a way that each trial consists of a single stimulus drawn randomly from one of the component tasks and a response drawn from one of the component tasks.

Conditioning (classical). Learning in which a neutral stimulus comes to elicit a given response after being paired repeatedly with a second stimulus that previously elicited the response.

Cone. A cone-shaped photoreceptor in the retina of the eye; cones are the only receptors in the fovea and their density falls off rapidly with distance from the fovea. Cones function only at photopic (daytime) levels of illumination; they are responsible for color vision and fine visual resolution. (CRef. 1.201, 1.301)

Conjoint scaling. A technique that enables several variables to be combined such that the order of their joint effects is preserved by a composition rule (e.g., an additive rule) resulting from various axiom tests (e.g., transitivity, cancellation) specified by conjoint measurement theory. Conjoint scaling procedures are applied subsequent to the axiom testing, and specify actual numerical scale values for the joint effects that fit the combination rule derived from the conjoint measurement technique. When an additive combination rule is specified by the axiom tests, a number of scaling procedures can be applied to seek interval-scaled values for level of the variables based on the ordinal constraints imposed by the data.

Contrast. The difference in luminance between two areas. In the research literature, contrast is expressed mathematically in several nonequivalent ways (CRef. 1.601). (See also contrast ratio; Michelson contrast.)

Contrast attenuation. A reduction in contrast. Divided attention. A task environment in which the observer or operator must attend to two or more stimuli, input channels, or mental operations that are active simultaneously, and must respond appropriately to each.

Contrast ratio. A mathematical expression for contrast (luminance difference between two areas); defined in this way, the contrast of one area with respect to a second is given as \(\frac{L_1}{L_2} \), or as \(\frac{(L_2 - L_1)}{L_2} \), where \(L_1 \) is the luminance of the first area and \(L_2 \) is the luminance of the second area. (CRef. 1.601)

Contrast sensitivity. The ability to perceive a lightness or brightness difference between two areas; generally measured as the reciprocal of the contrast threshold. Contrast sensitivity is frequently measured for a range of target patterns differing in value along some dimension such as pattern element size and portrayed graphically in a contrast sensitivity function in which the reciprocal
of contrast threshold is plotted against pattern spatial frequency or against visual angle subtended at the eye by pattern elements (such as bars).

Contrast threshold. The contrast associated with the minimum perceptible difference in luminance between two areas, often measured in terms of the luminance difference detectable on some specified proportion of trials (generally 0.50).

Control condition. In experimental design, the no-treatment condition; subjects are not exposed to any experimental manipulation.

Control/display ratio. For continuous control, the ratio of the movement distance of the control device to the movement distance of the display indicator (i.e., pointer or cursor).

Convergence. An inward rotation of the eyes to fixate on a point nearer the observer. (CRef. 1.808)

Convergence angle. The angle formed between the lines of sight of the two eyes when the eyes are fixated on a point in space. (CRef. 1.808)

Convergent disparity. Lateral retinal image disparity associated with a point in the visual field that is closer than the fixation point; also known as crossed disparity. By convention, convergent disparity is given a negative value when expressed in terms of visual angle.

Convergent lateral retinal disparity. See convergent disparity.

Cooper-Harper Aircraft-Handling Characteristics

Scale. A widely used rating procedure designed for use by test pilots in evaluating aircraft ease of control. Although the scale deals primarily with aircraft handling, several empirical studies have demonstrated a relation between scale ratings and subjective workload.

Cornea. The transparent structure forming the front part of the fibrous coat of the eyeball and covering the iris and pupil. (CRef. 1.201)

Corollary discharge. That component of an internally generated command (outflow) signal (such as a signal to move the eyes) that is theoretically used for comparison with the inflowing sensory signal in determining perception.

Course frequency. See input frequency.

dB. Decibel, a unit for expressing the ratio of two powers used mainly in acoustics and telecommunication. (See decibel.)

Decibel (dB). (1) In audition, the standard unit used to express the ratio of the power levels or pressure levels of two acoustic signals. For power, one decibel = 10 log P_1/P_2 (where P_1 and P_2 are the powers of the first and second signals, respectively). For pressure, one decibel = 20 log p_1/p_2 (where p_1 and p_2 are the sound pressure levels of the two signals). In most applications, the power or pressure of a signal is expressed relative to a reference value of $P_0 = 10^{-12}$ W/m² for power and $p_0 = 20$ µPa (or 0.0002 dynes/cm²) for pressure. (2) In vision, the decibel is sometimes used to express the ratio between two stimulus magnitudes, such as the threshold luminance contrast for a given target under two different experimental conditions. One decibel is taken to be 10 log I_1/I_2 (where I_1 and I_2 are the magnitudes of the two stimuli). (3) In cutaneous studies, the decibel is sometimes used to denote the ratio between two stimulus intensities and is taken to be 20 log I_1/I_2 (where I_1 and I_2 are the intensities of the two stimuli in the dimensions of force, amplitude of displacement, or pressure).

Dependent variable. The response to a stimulus presentation measured by the investigator to assess the effect of an experimental treatment or independent variable in an experiment; for example, the investigator might measure the auditory threshold (dependent variable) for several tones that differ in sound frequency (independent variable). (Compare independent variable.)

Describing function. An engineering-mathematical description of a nonlinear system element as an equivalent element in which the relationships between some, but not necessarily all, pertinent measures of the input and output signals have "linear-like" features despite the presence of nonlinearities. This approach leads to a quasi-linear characterization of nonlinear elements that can be approximated by an equivalent linear element (the describing function) plus an additional quantity called the remnant.

Detection threshold. See absolute threshold; threshold.

Dichoptic. Referring to viewing conditions in which the visual displays to the right and left eyes are not identical but differ with respect to some property (such as luminance or placement of contours).

Dichotic. Pertaining to listening conditions in which the sound stimulus to the left and right ears is not identical but differs with respect to some property (such as frequency or phase).
Difference threshold. The least amount by which two stimuli must differ along some dimension (such as sound pressure level or luminance) to be judged as nonidentical. Usually taken as the difference value associated with some specified probability of detecting a difference (typically 0.50 or 0.75).

Diopter. (1) A measurement unit expressing the refractive power of a lens and equal to the reciprocal of the focal length in meters. (2) A measurement unit expressing the vergence of a bundle of light rays equal to the reciprocal of the distance to the point of intersection of the rays in meters (taking a positive value for diverging rays and a negative value for the converging rays); the unit is often used to express the distance to an object being viewed, since it indicates the amount of eye accommodation necessary to bring the object into proper focus on the retina. (3) A measurement unit expressing the strength of a prism and equal to 100 times the tangent of the angle through which light rays are bent (generally called prism diopter).

Dioptic. Pertaining to listening conditions in which the sound stimulus to both ears is identical.

Diphthong. A gliding, monosyllabic vowel sound that undergoes a shift in vowel quality from start to finish, such as the vowel combination at the end of the word "boy".

Diplacusis binauralis. A condition in which a tone of given frequency is perceived as having a different pitch in the left and right ears; most normal listeners show at least some degree of diplacusis.

Diplopia. See double vision.

Distal. Away from the point of attachment or origin; e.g., the finger is distal to the wrist. (Compare proximal.)

Disturbance input. An undesired input signal that affects the value of the controlled output. In manual control, a signal arising from sources other than the operator’s input or the command input track to be followed that affects the controlled output (e.g., turbulence or wind shear acting on an aircraft).

Divergence. An outward rotation of the eyes to focus on a point further from the observer.

Divergent disparity. Lateral retinal image disparity associated with a point in the visual field that is further than the fixation point; also known as uncrossed disparity. By convention, divergent disparity is given a positive value when expressed in terms of visual angle.

Divergent lateral retinal disparity. See divergent disparity.

Dominant wavelength. The spectral wavelength that will match a given sample of color when mixed with a suitable proportion of white and adjusted appropriately in intensity.

Dorsal. Pertaining to the back or denoting a position toward the back surface; also, on the limbs, the side opposite the palm or sole.

Double vision. A condition in which a single object appears as double because the images of the object in the left and right eyes do not fall on corresponding portions of the retinas; also called diplopia.

Dove prism. A prism such as that invented by J. W. Dove with two slanted faces and a mirrored base. A ray entering parallel to the base is refracted, then internally reflected, and then refracted again, emerging parallel to its incident direction. When the prism is rotated about its longitudinal axis, the image formed rotates through twice the angle of the prism rotation. (CRef. 5.1102)

Dwell time. The length of time the eye is fixated on a given point.

Dynamometer. An instrument for measuring the force exerted by muscular contraction.

Dyne. The force that will accelerate 1 gram by 1 cm/sec².

Effective pilot time delay. Time delay due to processing of sensory information by the pilot.

Efferent. Conveying neural impulses away from the central nervous system, as a motor neuron serving a muscle or gland; motor, rather than sensory.

Electrocutaneous. Pertaining to electrical stimulation of the skin.

Electroencephalogram. A graphic recording of changing electrical potentials due to the activity of the cerebral cortex, measured from electrodes located on the scalp.

Electrooculography. The recording and study of the electrical properties of the skeletal muscles.

Electro-oculography. The recording and study of the changes in electrical potential across the front and back of the eyeball that occur during eye movements; generally measured using two electrodes placed on the skin at either side of the eye. The electrical potential is a function of eye position, and changes in the potential are caused by changes in the alignment of the resting potential of the eye with reference to the electrodes.

Emmetropia. Optically normal vision; i.e., the refractive condition of the normal eye in which an object at infinity is brought accurately to a focus on the retina when accommodation is relaxed. (Compare farsightedness; nearsightedness.)

Entrance pupil. The image of the aperture stop formed by the portion of an optical system on the object side of the stop. The dark aperture seen when looking into a person’s eye is the entrance pupil of the eye, which is larger and closer to the cornea than the real pupil.

Equalization. In control system design, the introduction of compensatory lead (prediction) and/or lag (smoothing) elements to achieve desired system response and stability.

Ergograph. An instrument for recording the amount of work done by muscular exertion.

Esophoria. A tendency for one or both eyes to turn inward in the absence of adequate fusion contours. (CRef. 1.809)

Exophoria. A tendency for one or both eyes to turn outward in the absence of adequate fusion contours. (CRef. 1.809)

Extended source. A light source that, unlike a point source, subtends a non-zero angle at the observer’s eye. In practice, considered to be any source whose size is larger than one-tenth the distance from the observer to the source.

Extorsion. Cyclorotational eye movements away from the midline; from the observer’s viewpoint, the right eye rotates clockwise and the left eye counterclockwise. Extorsion usually occurs in response to orientation disparity between the right and left eyes’ views.

F. Fahrenheit.

Factorial design. An experimental design in which every level or state of each independent variable is presented in combination with every level or state of every other independent variable.

False alarm. In a detection task, a response of "signal present" when no signal occurred.

Farsightedness. An error of refraction in which parallel rays of light from an object at infinity are brought to a focus behind the retina when accommodation is relaxed. In some individuals with this condition, accommodative power may be sufficient to achieve good focus of objects at all distances; others may require corrective lenses to achieve proper focus of very near objects. Also known as hyperopia or hypermetropia. (CRef. 1.204)
Fatigue-decreased proficiency boundary. One of a series of boundaries defined in International Standard 2631 (1978). Exceeding this boundary for one minute is said to carry a significant risk of impaired working efficiency in many kinds of tasks, particularly those in which time-dependent effects are known to worsen performance as, for example, in vehicle driving.

fc. Footcandle, a unit for measuring illuminance; 1 fc = 10.76 lx. (See footcandle.)

Feedback. In a closed-loop system, the return of a part of the output of the system or mechanism to the input, so that dynamic response is made to the difference between input and output (i.e., the discrepancy between intended and actual operation) rather than to the input itself.

Feedback loop. See feedback.

First-order control. A system in which the response is proportional to the first time integral of the control input; also known as velocity control.

First-order dynamics. See first-order control.

First-order system. See first-order control.

Fixation disparity. Convergence of the eyes to a plane in front of or behind the intended plane of fixation.

Fixation distance. The distance to which the eyes are converged.

Fixation point. The point in space toward which one or both eyes are aimed. In normal vision, the image of the fixation point falls on the fovea.

fl. Foot lambert, a unit for measuring luminance; 1 fl = 3.426 cd/m² = 1.076 mL. (See footlambert.)

Foot candle (fc). The illuminance of a surface 1 foot from a point source of light of one international candle and equal to 1 lumen/ft²; 1 foot candle = 10.764 lux.

Foot lambert (fl). A unit for luminous intensity equal to the luminous intensity of a surface that emits or reflects 1 lumen/ft²; 1 fl = 3.426 cd/m² = 1.076 mL.

Formant. One of several bands of frequencies apparent in the spectrum of a vowel sound that are associated with resonance of the vocal tract and determine the phonetic quality of the vowel.

Fourier analysis. The representation of a complex periodic waveform as the superposition of a series of single sinusoidal components according to Fourier’s theory.

Fovea. A pit in the center of the retina (approximately 1.2 deg of visual angle in diameter) where the density of cones is highest and visual acuity is greatest.

Frame. (1) In CRT displays, one complete scan of the image area by the electron beam. (2) In motion-picture film, a single image of the connected multiple images.

F ratio. A ratio between the variances (average squared deviations from the means) of two samples calculated to determine if two different distributions have been sampled.

Free field. A sound field in free space produced by a source that is far enough away from all objects so that they cause no reflections or other disturbances to it.

Frequency domain specifications. For dynamic systems, expression of important system properties (i.e., speed of response, relative stability, and system accuracy or allowable error) as functions of frequency.

Fricative. A consonant produced by frictional passage of air moving through a narrowing at some point in the vocal tract; it may be either voiced (as in [v] and [z]) or voiceless (as in [f] and [s]).

Frontal plane. The plane passing vertically through the body from side to side, perpendicular to the median plane and dividing the body into front and back, or any plane parallel to this plane.

Functional stretch reflex. A reflexive contraction of the leg muscles in response to passive longitudinal stretching that aids in maintaining postural stability.

Fundamental frequency. For a complex periodic waveform, the repetition rate of the waveform; i.e., the harmonic component that has the lowest frequency (and usually the greatest amplitude). Also called first harmonic.

Gain. The ratio of output to input in a system; typically employed to specify, for example, the relation between control movement and display movement or system response. In the human describing function, it may also describe the relation between perceived error and controlled response.

Gaussian (uniform field). A uniformly lit, homogeneous, structureless visual field; no surface is seen, just a fog that appears to fill the space. (CRef, 1.239)

Gaussian distribution. A probability density function that approximates the frequency distribution of many random variables in biological or other data (such as the proportion of outcomes taking a particular value in a large number of independent repetitions of an experiment where the probabilities remain constant from trial to trial). The distribution is symmetrical, with the greatest probability densities for values near the mean and decreasing densities at both larger and smaller values, and has the form

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

where \(f(x) \) is the probability density for the value \(x \) in the distribution, \(\mu \) is the mean value, and \(\sigma \) is the standard deviation. Also called normal distribution or normal probability distribution.

Gaussian noise. Noise that is the result of random processes and whose spectral level (power density) is uniform over the frequency band where it occurs; also called white noise.

Glide. A speech sound generally classified as between a vowel and a consonant, which is produced by movement or gliding to or from an articulatory position to an adjacent sound (generally a vowel); in English, the glides include /w/ and /y/ and, in some classification systems, /l/ and /r/.

gm. Gram, a unit of mass; 1 gm = 10⁻³ kg = 0.0352 oz.

Go/no-go reaction. A reaction time task in which the subject must respond ("go") when a given stimulus is presented but must not respond ("no go") on trials on which any other (or no) stimulus occurs.

Half-field. The view of one eye only; most commonly used to refer to one of the two parts of a stereogram.

Haploscope. A stereoscope in which the arms holding the displays for the left and right eyes can be rotated to produce a wide range of symmetric and asymmetric convergence angles.

Haptic. Pertaining to or arising from tactile perception based on both cutaneous and kinesthetic information.

Haversine pulse. A single cycle of a sine wave, the zero axis of which is shifted to the minimum value to yield the appearance of a unidirectional displacement.

Head-down display. A display located on the control panel of a cockpit or some other location that requires downward movement of the head to locate information. In contrast, a head-up display puts the most important display information where it can be seen with the head up, as on the windshield or helmet visor.
Head-up display. A display in which information is viewed superimposed on the outside world (as by displaying on a windscreen or visor) so that the information can be read with the head erect and with the outside world always in the field of view.

Hearing threshold level. The amount (in decibels) by which the level of a sound exceeds the average threshold of audibility of normal listeners as established in national and international standards.

Hertz (Hz). A unit of frequency equal to 1 cycle/sec.

Heterochromatic brightness matching. A procedure in which a fixed-radiance reference light of known luminance is presented adjacent to a comparison field with a different wavelength composition. The observer adjusts the radiance of the comparison field until both appear of equivalent brightness. The procedure is used to measure relative sensitivity to light of different wavelengths. (CRef. 1.109)

Heterochromatic flicker photometry. A procedure in which a reference light of fixed luminance is alternated in time with a coextensive comparison light with a different wavelength composition. The observer adjusts the radiance of the comparison field to eliminate or minimize the sensation of flicker. The procedure is used to measure relative sensitivity to light of different wavelengths. (CRef. 1.109)

Heteromodal. Pertaining to or affecting more than one sensory modality.

Homatropine. An alkaloid (oxytouyl-tropine) applied topically to the eye to dilate the pupil and paralyze eye accommodation.

Homograph. A word identical in spelling with another, but different in origin, pronunciation, or meaning.

Horizontal axis of Helmholz. In representing eye position, the horizontal axis connecting the centers of rotation of the two eyes; eye elevation is specified in terms of rotation about this axis.

Horizontal disparity. See lateral retinal image disparity.

Huddleston font. A display font developed by H. F. Huddleston; based on the ASCII font, with certain arms of letters widened to make the letters more distinguishable.

Hz. Hertz, a unit of frequency equal to 1 cycle/sec.

Ideal radiator. See blackbody radiator.

Illuminance. The luminous flux incident per unit area of a surface at any given point on the surface. The most commonly used units of measurement are lux (lumens per m²) and foot candles (ft, or lumens/ft²). (CRef. 1.104)

Increment threshold. See difference threshold.

Independent variable. The aspect of a stimulus or experimental environment that is varied systematically by the investigator to determine its effect on some other variable (i.e., the subject's response). For example, the investigator might systematically alter the frequency of a tone (independent variable) to assess the effect of these changes on the observer's auditory threshold (dependent variable). (Compare dependent variable.)

Induced effect. In stereoscopic vision, apparent tilting of the visual field about the vertical axis caused by vertical magnification differences between the left and right eyes' views. The magnitude and direction of perceived tilt depend on which eye's image has greater magnification, as well as on the amount of magnification difference between right and left eyes, viewing distance, and interpupillary separation. (CRef. 5.909)

Inducing field. The portion of the visual field acting on and modifying the perception of another portion of the visual field (the induced field or test field).

Induction. Alteration of perception by indirect stimulation. Lightness or brightness induction is the alteration of the perceived lightness or brightness of a given area due to the presence of a nearby area of different lightness or brightness. Chromatic or color induction is the alteration of the perceived hue of a colored area due to the presence of a nearby area with differing chromaticity.

Inferior oblique muscle. One of the six voluntary muscles that move the eyeball. (CRef. 1.901)

Infraadian. Pertaining to a rhythm with a period considerably longer than 24 hours.

Insensation. The distribution or supply of nerves to a body part.

Input frequency. The frequency of the changes a system is supposed to follow; the frequency of the forcing function or desired path when only one frequency (a pure sine wave) is present.

Inside-out display. A display (as of aircraft attitude) that uses the vehicle as a frame of reference, so that the display reflects the way the environment appears to the operator inside the vehicle looking out. For example, when the aircraft banks, the horizon in the attitude display tilts. (Compare outside-in display.) (CRef. 9.529)

Integrated error. Tracking error that is summed over the tracking task.

Interaural phase. The relative phase of a tone in the left and right ears, generally taken to imply a time in the mechanical activity of the middle ear.

Intermanual transfer. Transfer of the change in performance due to practice or exposure from one hand or limb to the other.

Interocular transfer. Transfer of the change in performance due to practice or exposure from one eye to the other.

Interpalpalangeal. Situated between two contiguous joints of the fingers or toes.

Interpupillary distance. The distance between the centers of the pupils of the eyes when the eyes are parallel (converged to optical infinity); also known as interocular distance. (CRef. 1.208)

Interstimulus-onset interval. The time between the onset of one stimulus and the onset of a second stimulus. Also called stimulus-onset interval.

Intervocalic. Occurring between vowels. Labial. Articulated using one or both lips (as in [b], [w]); sounds articulated using both lips are frequently termed bilabial.

Intorsion. Cyclorotational eye movements toward the midline; from the point of view of the observer, the right eye rotates counterclockwise and the left, clockwise. It usually occurs in response to orientation disparity between the right and left eyes' views.

Intra-modal matching. A procedure in which the subject matches the magnitude of a stimulus along some dimension with the magnitude of another stimulus in the same sensory modality that is presented as a standard. (Compare cross-modal matching.)

Inverse power function. An exponential function with a negative exponent, e.g., \(x^{-2} \) or \(\frac{1}{x^2} \).

Inverse square law. (1) A law stating that the illuminance or irradiance from a point source varies as the inverse square of the distance from the source to the observer. (2) A law stating that the intensity (power) of a sound source is inversely proportional to the square of the distance of the listener from the sound source. (Because intensity is proportional to the square of the sound pressure level, sound pressure is inversely proportional to the distance of the sound source.)
Least-squares method. A mathematical method of fitting a curve to a set of quantitative data points in which the sum of the squares of the distances from the points to the curve is minimized.

K. Kelvin.

kHz. Kilohertz, a frequency equal to 1000 (10^3) Hz.

Kinesesthesia. The sense of movement and position of the limbs or other body parts, arising from stimulation of receptors in joints, muscles, and tendons.

km. Kilometer, a unit for measuring length; 1 km = 1000 m.

Labiodental. Articulated with the lower lip touching the upper central incisors (as in [f], [v]).

Lag time constant. For first-order (exponential) lag, the time required for the output to reach 63% of its final value in response to a step input. It generally describes the “responsiveness” of the system, with sluggish systems having long time constants.

Landolt C. An incomplete ring, similar to the letter C in appearance, used as a test object for visual acuity. The thickness of the ring and the break in its continuity are each one-fifth of its overall diameter. The ring is rotated so that the gap appears in different positions and the observer is required to identify the location of the gap. Also called a Landolt ring or Landolt C-ring. (CRef. 1.602)

Landolt ring. See Landolt C.

Laplace domain. See Laplace transform.

Laplace operator. See Laplace transform.

Laplace transform. A transformation technique relating time functions to frequency-dependent functions of a complex variable.

Latency. The time between the onset of a stimulus and the beginning of the individual’s response to the stimulus; also called reaction time or response time.

Lateral disparity. See lateral retinal image disparity.

Lateral inhibition. Inhibitory interactions between neural units serving spatially separated regions; evidenced as a reduction in the sensation or response to stimulation of one area due to stimulation of a nearby area, usually on the skin or on the retina.

Lateral rectus muscle. One of the six voluntary muscles that move the eyeball. (CRef. 1.901)

Lateral retinal image disparity. The difference in the relative horizontal position of the visual images of an object on the left and right retinas due to the lateral separation of the eyes. (CRef. 5.905)

Lateralization. Localization of a sound presented (usually dichotically) via earphones in terms of its apparent spatial position along an imaginary line extending from the right to the left ear.

Lead time constant. The time constant of a lead element placed in a dynamic control loop to increase high-frequency stability. It determines the frequency above which the system responds with lower order.

Least-squares method. A mathematical method of fitting a curve to a set of quantitative data points in which the sum of the squares of the distances from the points to the curve is minimized.

Lens. A transparent, biconvex, lens-shaped body located immediately behind the iris of the eye; through the action of the ciliary muscle, the shape of the semi-elastic lens can be changed to alter its refractive power and bring the images of objects at different distances to a sharp focus on the retina. (CRefs. 1.201, 1.222)

Lexical decision task. A task in which the subject must judge whether a given letter string is a word.

Light adaptation. The adjustment of the visual system to an increase in illumination in which sensitivity to light is reduced (threshold for light is increased) as illumination is increased.

Lightness. The attribute of visual perception according to which a visual stimulus appears to emit more or less light in proportion to a stimulus perceived as "white." Lightness can range from very light (white) to very dark (black). The physical correlate of lightness is reflectance.

Lightness induction. See induction.

Liminal contrast threshold. The contrast associated with the minimum perceptible difference in luminance between two areas, often measured in terms of the luminance difference detectable on some specified proportion of trials (generally 0.50).

Linear regression. A statistical technique for predicting the value of one variable from the value of another variable when the two variables bear a linear relation to one another.

Line-spread function. A mathematical description of the relative intensity of light in the optical image of an infinitesimally narrow bright line as a function of distance from the center of the image in a direction perpendicular to the line’s length. (CRef. 1.215)

Linguadental. Articulated with the tip of the tongue placed on the upper front teeth (as in the [th] sound of thin).

Loudness level. The loudness level of a sound (in phons) measured in decibels re 20 µPa) of a 1000-Hz tone judged equal in loudness to the sound being measured.

Lumen (lm). A unit of luminous flux equal to the light emitted within a solid angle of unit size by a point source of light with a luminous intensity of 1 candela; i.e., 1 candela per steradian.

Luminance. Luminous flux reflected or transmitted by a surface per unit solid angle per unit of projected area in a given direction. The most commonly used units of measurement are candelas per meter² (cd/m²), footlamberts (FL), and millilamberts (mL). (CRef. 1.104)

Luminosity. The luminous efficiency (brightness-producing capacity) of radiant energy.

Luminous efficiency. The ratio of the total luminous flux radiated by a source (i.e., radiant flux weighted by the standard spectral luminous efficiency function of the eye) to the radiant flux from the source; usually expressed in terms of lumens/watt. (CRefs. 1.104, 1.110)

Luminous efficiency function. The function describing the relative sensitivity of the eye to light of different wavelengths. (CRef. 1.110)

Luminous flux. The radiant flux from a source weighted by the luminous efficiency function of the eye (i.e., the response of the eye to each wavelength present); usually expressed in terms of lumens. (CRefs. 1.104, 1.110)

Luminous intensity. The light-giving power of a source, measured as the luminous flux per unit solid angle in a given direction and usually expressed in terms of candelas (cd, or lumens/steradian). (CRef. 1.104)

Lux (lx). A unit of illuminance equal to the illumination on a surface 1 meter from a point source of light with a
luminous intensity of 1 candela, or 1 lumen per square meter (1 candela per steradian per square meter); 1 lux = 0.0929 foot candle.

lx. Lux.

m. Meter, a unit for measuring length; 1 m = 100 cm = 1000 mm.

mA. Milliamperes, a unit for measuring electric current; 1 mA = 10^-3 A.

Macula lutea. The central region of the retina, approximately 6-10 deg of visual angle (2-3 mm) in diameter. Marked by yellow pigmentation, it is the region of greatest visual acuity; the fovea is at its center.

Macular. Of or pertaining to the macula lutea.

Mann-Whitney U test. A powerful, non-parametric statistical test used with rank-order data to determine the significance of the difference between two experimental groups.

Mask. See masking.

Masking. A decrease in the detectability of one stimulus due to the presence of a second stimulus (the mask) which occurs simultaneously with or close in time to the first stimulus.

Massed practice. Extended practice without interspersed rest or recuperation periods.

Maxwellian view. A uniformly luminous field obtained when a light source is focused on the pupil of the eye. Very high luminances are achievable and the amount of light entering the eye is not affected by pupil size.

Mean. The average value of a set of numbers or data points; the sum of the values divided by the number of values.

Mechanoreceptor. A neural structure that responds to mechanical stimuli such as a change in pressure, shape, or tension; the mechanical stimulation may be internal (such as the mechanical events associated with limb movement) or external.

Medial plane. The vertical plane passing through the middle of the body from front to back and dividing the body into left and right. Sometimes called sagittal plane.

Medial rectus muscle. One of the six voluntary muscles that move the eyeball. (CRef. 1.901)

Median. The middle value in a series of values arranged in order of magnitude. For an even number of values, the median is the arithmetic mean of the two middle values.

Mel. A subjective unit of pitch such that a pure tone of 1000 Hz has a pitch of 1000 mels.

Mesopic. Pertaining to a luminance range intermediate between photopic and scotopic levels at which both the rods and cones function. It is approximately 1000 mm.

Metameric pair. Two lights or targets of different spectral composition that nevertheless appear identical in color.

Method of adjustment. A psychophysical method for determining a threshold in which the subject (or the experimenter) adjusts the value of the stimulus until it just meets some preset criterion (e.g., just appears visible or just appears flickering) or until it is apparently equal to a standard stimulus.

Method of constant stimuli. A psychophysical method of determining a threshold in which the subject is presented with several fixed, discrete values of the stimulus and makes a judgment about the presence or absence of the stimulus or indicates its relation to a standard stimulus (e.g., more or less intense).

Method of limits. A psychophysical method of determining a threshold in which the experimenter varies a stimulus in an ascending or descending series of small steps and the observer reports whether the stimulus is detectable or not or indicates its relation to a standard stimulus.

Michelson contrast. A mathematical expression for specifying contrast of periodic patterns; defined as (Lmax - Lmin)/(Lmax + Lmin), where Lmax and Lmin are the maximum and minimum luminances in the pattern. Michelson contrast ranges between 0 and 1. (CRef. 1.601)

µm. Micrometer, a unit for measuring length; 1 µm = 10^-6 m.

µPa. Micropascal, a unit for measuring pressure or stress; 1 µPa = 10^-6 Pa.

Microsaccade. Very small movements or tremors of the eye (2-28 min arc of visual angle) occurring at a variable rate and most typically seen when observers attempt to fixate very accurately.

Millilambert (mL). A unit of luminance equal to 0.001 times the luminance of a surface of 1 lumen/cm²; 1 mL = 3.183 cd/m² = 0.929 fl.

Minimum angle of resolution. The minimum distance (measured in minutes of arc of visual angle) by which two targets (such as lines or points) must be separated to be distinguished as two targets rather than one. (CRef. 1.602)

Minimum visibility. The smallest perceivable target size, typically measured as the width of the narrowest dark line that can be detected at a given distance and luminance level. (CRef. 1.602)

Mirror stereoscope. A device using a system of mirrors to present separate images of an object or scene to the left and right eyes; for appropriately constructed stereograms, the result is a single, fused image appearing to have depth or three-dimensionality. Sometimes called a Wheatstone stereoscope.

mL. Millilambert, a unit for measuring luminance; 1 mL = 0.929 fl = 3.183 cd/m². (See millilambert.)

mm. Millimeter, a unit for measuring length; 1 mm = 10^-3 cm.

Modulation transfer function. The function (usually graphic) describing the ratio of the modulation of the input to the modulation of the output over a range of frequencies; for an image-forming system, the ratio of the modulation in the image to that in the object. Also called sine-wave response function and contrast transfer function.

Modulus. The numerical value assigned to a standard stimulus (e.g., 1.00); other stimuli are judged by the subject in comparison to this modulus and assigned a value in relation to it.

Monaural. Pertaining to, affecting, or impinging upon only one ear.

Monocular. Pertaining to, affecting, or impinging upon only one eye.

Monte Carlo method. A technique for obtaining a probabilistic approximation to the solution of problems in mathematics, science, and operations research by the use of random sampling.

Motion parallax. Changes in the projective relations among objects in the visual field due to the relative motion of the observer. (CRef. 5.902)

Motor. Pertaining to structures or functions connected with the activation of muscles or glands.

msec. Millisecond, one-thousandth of a second (10^-3 sec).

Multidimensional scaling. A family of statistical techniques designed to uncover the underlying structure in data that consist of measures of relatedness among a set of objects (e.g., stimuli). Multidimensional scaling uses a matrix of proximities among the objects as input and produces an N-dimensional configuration or map of the
objects as output. The configuration is so derived that the distances between the objects in the configuration match the original proximities as closely as possible. The locations of particular clusters of objects are said to reflect whatever dimensions might underlie the proximity measures.

Munsell color system. A method of ordering and specifying object color in terms of hue, lightness, and saturation. The system is embodied in a set of color samples arranged to represent perceptually equal steps in Munsell hue, Munsell value, and Munsell chroma. (CRef. 1.724)

Munsell value. The dimension of the Munsell color system corresponding to lightness; it ranges from 1 (black) to 10 (white) and is approximately equal to the square root of the reflectance expressed in percent. (CRef. 1.724)

mW. Milliwatt, a unit for measuring power; 1 mW = 10^(-3) W.

Myopia. See nearsightedness.

Myotatic stretch reflex. A reflexive contraction of a muscle in response to passive longitudinal stretching.

N. Newton, a unit for measuring force; it is the force required to accelerate 1 kg by 1 m/sec^2.

n, N. Number, as in number of subjects or number of observations.

Nearsightedness. An error of refraction in which parallel rays of light from an object at infinity are brought to a focus in front of the retina when accommodation is relaxed. An individual with this condition will see close objects clearly, but distant objects will not be in sharp focus unless corrective lenses are worn. Also known as myopia. (CRef. 1.204)

Negative aftereffect. The occurrence of a perceptual effect in response to a stimulus that is opposite to the original effect elicited by a stimulus that preceded it. For example, after a heavy weight is lifted, a second weight appears lighter than if the first had not been lifted.

Negative feedback loop. A feedback loop in which a signal from a part of the system following the control is fed back to the system input with a polarity opposite to that of the control output, thus tending to decrease output and helping to stabilize the system by avoiding progressively increasing error. Also called negative feedback servoloop.

Neutral density. See neutral density filter.

Neutral density filter. A light filter that decreases the intensity of the light without altering the relative spectral distribution of the energy; also known as a gray filter.

Newton (N). A unit of force equal to the force required to accelerate 1 kg by 1 m/sec^2; 1 N = 10^5 dynes.

nm. Nanometer, a unit for measuring length; 1 nm = 10^(-9) m.

Nodal points. The points in a lens system, such as the eye, toward which and from which are directed corresponding incident and transmitted rays that make equal angles with the optical axis.

Noise spectral level. The average noise power in a 1-Hz band of noise (in decibels re 10^-12 W/m^2); also called noise-power density.

Nonius markers. A pair of lines or other contours presented, one to each eye, which are in vernier alignment in the combined (binocular) view when left and right stereoscopic half-fields are in proper registration on the retinas. Nonius markers are used in stereoscopic displays to facilitate proper fixation as well as to assess convergence (fixation distances), vertical eye rotation, and image size differences between the eyes.

Normal distribution. See Gaussian distribution.

Nystagmus. Involuntary rhythmic movements of the eyes, which generally take the form of a slow drift alternating with a quick movement in the opposite direction.

Octave. A band of frequencies whose upper and lower limits have a 2:1 ratio.

Open loop. A system in which there is no feedback of information about an output to an earlier stage of the system. (CRef. 9.506)

Optacon. From OPercTical-to-TActile CONverter; a reading aid for the blind that converts printed or optical patterns (such as letters) into a corresponding tactile pattern presented to the skin of the index finger pad by means of an array of 144 small vibrators covering an area of approximately 2.7 x 1.2 cm.

Optic node. The optical center of the compound lens system of the eye (center of curvature of the cornea in the simple lens equivalent).

Optokinetic nystagmus. Nystagmus induced by viewing a moving object.

Optometer. An instrument for measuring the refractive power and range of vision.

Order. See system order.

Orientation disparity. Rotation of the image in one eye with respect to the image in the other eye. This causes corresponding image points to fall on noncorresponding (disparate) retinal locations for all points in the binocular field except a point at the center, provided optical axes are parallel. (CRef. 5.908)

Orthogonal. Completely independent or separable.

Otolith organs. Two small sack-shaped organs (the utricle and the saccule) that are embedded in the temporal bones on each side of the head near the inner ear and are sensitive to gravity and linear acceleration of the head.

Outside-in display. A display (as of aircraft attitude) that uses the outside world as the frame of reference, so that the display reflects the way the aircraft would appear to someone facing the windscreen from the outside. For example, when the aircraft banks, the aircraft in the attitude display tilts while the horizon of the display remains horizontal. (Compare inside-out display.) (CRef. 9.529)

Overtone. A constituent of a complex tone whose frequency is an integral multiple of the fundamental frequency; also called harmonic or upper partial.

p. In statistical analysis, the probability that the observed difference between experimental groups is due to sampling effects (i.e., occurred by chance) rather than to the experimental manipulation. In most experimental psychology research, the significance level is set at p = 0.05 or p = 0.01. If the value of the analytical statistic calculated for the data (such as Student's t or Mann-Whitney U) is greater than the value associated with p = 0.05 (or p = 0.01), then the observed difference between experimental groups is assumed to be real (i.e., the data samples are assumed to be drawn from different populations rather than from the same population).

Pa. Pascal, a unit of pressure or stress equal to a force of 1 N/m^2.

Palatal. Articulated with the tongue on or near the hard palate (as in [r], [z]).

Panum's fusional area. A small area surrounding the fixation point (or any point on the horopter [CRef. 5.910]) in which objects are seen as single, even though corresponding image points may not fall on precisely corresponding locations of the two retinas. (CRef. 5.911)

Parafovea. A region of the retina covering approximately 4 deg of visual angle (0.5 mm), immediately surrounding the fovea.
Pascal (Pa). A unit of pressure or stress equal to a force of 1 newton/m².

Passive movement. Movement of a subject's limb or body by a device or by the experimenter while the subject keeps the moved part as relaxed as possible.

Perceptual adaptation. See adaptation (2).

Performance operating characteristic. A curve showing how performance on one task varies as a function of performance on a second task when the two are carried out concurrently and the relative emphasis on one task or the other is varied; that is, a performance trade-off function describing the improvement in the performance on one task due to any added resources released by lowering the level of performance on another task with which it is time-shared. (CRef. 7.205)

Peripheral nervous system. The nervous system excluding the brain and spinal cord.

Peripheral vision. Vision in the peripheral (non-foveal) region of the visual field.

Phase droop. The increased phase lag at very low frequencies that is sometimes observed in the human operator manual control response.

Phon. A unit of loudness equal to the number of decibels (re 20 μPa) of a 1000-Hz tone that is equal in loudness to the sound being measured. Loudness in phons is termed the loudness level of a sound.

Phone. The smallest discriminable unit of sound in speech. (CRef. 8.206)

Phoneme. The smallest meaningful unit of speech; i.e., the shortest segment of speech that, if altered, alters the meaning of a word. (CRef. 8.206)

Photometric unit. A unit for measuring radiant energy in terms of its effect on vision, as contrasted with radiometric units, which measure energy and power without regard to biological effect.

Photometry. The measurement of light in terms of its effects on vision.

Photopic. Pertaining to relatively high (daytime) levels of illumination at which the eye is light-adapted and vision is mediated by the cone receptors. (CRef. 1.103)

Photoreceptor. A receptor such as a rod or cone cell of the eye that is sensitive to light.

Plane of fixation. The plane parallel to the front of the observer's body that contains the point of convergence (or fixation) of the eyes.

Point source. A light source (such as a star) that subtends an extremely small angle at the observer's eye. In practice, considered to be any source whose diameter is less than one-tenth the distance of the observer from the source.

Position control. A control system in which the output position is directly proportional to the input position. (See also zero-order control.)

Postrotary nystagmus. Nystagmus caused by decelerative stimulation of the vestibular system after the cessation of head rotation; the eye movements are opposite in direction to the nystagmus induced by the head rotation itself.

Power spectral density. The average power of a time-varying quantity within a band 1-Hz wide, as a function of frequency.

Power spectrum. A plot of the distribution of intensity as a function of frequency (with frequency usually given in logarithms). Also called power density spectrum and frequency 'spectrum.

Primary line of sight. The line connecting the point of fixation in the visual field with the center of the entrance pupil (and center of the fovea) of the fixating eye.

Primary task. The principal task of the operator, whose performance is critical or most important. (Compare secondary task.)

Proactive inhibition. Interference of responses learned earlier with the performance of responses learned at a later time.

Probability summation. The increase in the probability of detecting a stimulus due to an increase in the number of independent opportunities for detection on a given trial (as by viewing with two eyes or processing by multiple independent sensory mechanisms). (CRef. 1.814)

Probit analysis. A regression-like maximum-likelihood procedure for finding the best-fitting ogive function for a set of binomially distributed data. Originally developed in connection with pharmacological and toxicological assays to compute the lethal or effective dose (dosage affecting 50% of treated organisms); the procedure has also been applied in psychophysical studies in analyzing all-or-nothing (yes/no) responses to compute the 50% threshold (stimulus level eliciting a given response on 50% of trials) and its confidence limits.

Proprioception. The sensing of movement and position of the body or its parts.

Proximal. Near the point of attachment of a limb or body part; near the body; e.g., the wrist is proximal to the fingers. (Compare distal.)

Psychometric function. A mathematical or graphical function expressing the relation between a series of stimuli that vary quantitatively along a given dimension, and the relative frequency with which a subject answers with a certain category of response in judging a particular property of the stimulus (e.g., “yes” and “no” in judging whether a given stimulus is detected, or “less than," “equal to," and "greater than" in comparing the stimulus with a standard stimulus). (CRef. 1.657)

Pulfrich effect. Apparent motion in depth of a laterally moving target when the retinal illuminance of one eye is lower than that of the other eye. A pendulum target appears to move in an elliptical path in a plane perpendicular to the frontal plane and parallel to the floor. (CRef. 5.933)

Pursuit tracking task. Tracking in which the operator's task is to keep a marker or cursor on a moving target symbol or command input; the operator chases or pursues the target with the target position always displayed and the size and direction of tracking error available from the positions of the target and marker or cursor.

Quickening. A display technique in which the higher derivatives of the error (or system state) are added directly onto the error position with some relative weighting; that is, the rate at which error is changing, and higher derivatives as well, are represented as additions to the deviation of a cursor from a reference position in the display. Quickening is used to reduce the difficulty of controlling higher-order systems. (CRef. 9.525)

r. Pearson product-moment correlation coefficient, a statistic that indicates the degree of linear relationship between two variables.

rad. Radian.

Radian. A unit of angular measure equal to the angle subtended at the center of a circle by an arc the length of which is equal to the radius; 1 radian = 57.3 deg.

Random-dot pattern. Matrix pattern of light and dark cells, usually computer-generated, in which the probabil-
ity that any given cell will be light or dark is determined by a random function. Such patterns are used in the study of stereoscopic vision because they allow the construction of stereograms containing no depth cues except lateral retinal image disparity. Thus only those with intact stereopsis mediated by retinal disparity can perceive the patterns.

Random walk model. A model of the perception and decision response components in reaction time tasks. According to the model, an ideal detector accumulates information about the identity of the stimulus from the start of a trial; when the information exceeds some preset threshold (response boundary), the appropriate response is made. Each new increment of information takes a constant time and is assumed to be somewhat unreliable so that the cumulative balance of all the information waivers (i.e., executes a random walk) between the alternatives.

Randomized design. An experimental design in which the various levels of the independent variable are presented in random order within a given block of trials or experimental session.

Rate-aided system. A position control system to which a rate control system has been added.

Rate control. See first-order control.

Rate order. See second-order control.

Re. Relative to the reference value given.

Reaction time. The time from the onset of a stimulus to the beginning of the subject's response to the stimulus by a simple motor act (such as a button press).

Receptive field. For cutaneous neural units, the area of the skin within which stimulation (as by pressure, vibration, etc.) influences the activity of a given sensory neuron. (CRef. 3.105)

Reflectance. The ratio of reflected radiant flux to incident flux; the portion of incident light reflected.

Regression line. A line on a graph or an equation of a line for predicting the value of one variable from the value of another; the line is derived by statistical methods as representing the relationship between the two variables that best describe a given set of data.

Remnant. In a quasi-linear characterization of a nonlinear system, the component that represents the difference between the response of the actual nonlinear system and the equivalent linear element (the describing function); called "remnant" because it is left over from the portion of the system response represented by the linear element.

Resolution threshold. A measure of the ability to resolve fine detail; determined in a variety of ways, e.g., as the minimum separation between two lines required for them to be seen as double rather than single, or as the smallest width of bars in a bar pattern that allows the patterns to be distinguished from a uniform field.

Retina. The membranous structure lining the inside of the eyeball which contains the photoreceptors (rods and cones) that mediate vision.

Retinal disparity. See lateral retinal image disparity; vertical retinal image disparity.

Retinal eccentricity. Distance from the center of the fovea to an image on or to an area of the retina generally expressed in angular terms; corresponds to the distance in the visual field from the fixation point to a given object or point in the field.

Retinal illuminance. The luminous flux incident on the retina per unit area; typically specified in trolands, where retinal illuminance in trolands is equal to the luminance of the source (in cd/m²) times pupil area (in mm²).

Retinal image disparity. See lateral retinal image disparity; vertical retinal image disparity.

Ricco's law. A law stating that, for small targets, the threshold intensity for detecting a target varies inversely with the size of the target; i.e., \(I = \frac{k}{A} \), where \(I \) is the light intensity of the target, \(A \) is the target area, and \(k \) is a constant. In other words, target lights with equal energy (or equal numbers of quanta) are equally detectable \((I \times A = k) \). (CRef. 1.308)

Risley prism. A prism assembly comprised of two thin wedge prisms (generally identical) arranged in series. Rotating the two prisms in opposite directions alters the magnitude of off-axis beam deviation but not azimuth, while rotating them in the same direction changes deviation azimuth but not deviation angle.

ROC analysis. Signal detection theory maintains that performance in a detection task is a function of both the sensitivity or resolution of the operator's detection mechanism and the criterion or response bias adopted in responding to signals. A receiver operating characteristic (ROC) graphically depicts the joint effects of sensitivity and response bias on operator performance. It is defined by the locus of points on a graph obtained by plotting the probability of correct target detection (or "hits") versus the probability of false detections (or "false alarms") in a detection task. By requiring observers to vary their response criteria under identical stimulus conditions, points along a curve that represent equivalent sensitivity but different degrees of response bias can be generated. Given hit and false alarm rates from a detection experiment, ROCs can be plotted to compare the detection performance of observers under different conditions, and analyses conducted to specify the signal detection theory indices of sensitivity to the signal (d') and criterion or response bias (B).

Rod. A rod-shaped photoreceptor in the retina of the eye; rods are distributed only outside the fovea and are responsive at low levels of illumination. (CRefs. 1.201, 1.301)

Roll angle. The angle of rotation about the longitudinal (nose-to-tail) axis of an aircraft.

Saccade. A short, abrupt movement ("jump") of the eyes, as in shifting fixation from one point to another (such as occurs in reading).

Sagittal plane. The vertical plane passing through the body from back to front, and dividing it into left and right (i.e., the medial plane), or any plane parallel to it.

Saturation. The attribute of color perception representing the degree to which a chromatic color differs from an achromatic color regardless of their lightnesses. For example, a red with low saturation is pink.

Schema. A nonconscious adjustment of the brain to the afferent impulses indicative of body posture that is a prerequisite of appropriate bodily movement and of spatial perception.

Scotopic. Pertaining to relatively low (nighttime) levels of illumination at which the eye is dark adapted and vision is mediated by the rod receptors. (CRef. 1.103)

SD. Standard deviation from the mean. (See standard deviation.)

SE. Standard error.

Second-order control. A system in which the response is proportional to the second time integral of the control input; also called acceleration control.

Second-order system. See second order control.

Secondary task. A task the operator is asked to perform in addition to the primary task; performance on the
secondary task provides an estimate of primary task workload. Secondary tasks may be "non-loading" (the operator attends to the secondary task when there is time) and "loading" (the operator must always attend to the secondary task).

Selective attention. A task environment in which the observer or operator must attend selectively to some stimuli or input channels while ignoring others that are active simultaneously.

Semi-circular canals. Three fluid-filled tubes oriented roughly at right angles to one another that are embedded in the temporal bones on each side of the head near the inner ear and that aid in maintaining body equilibrium. (CRef. 3,201)

Sensation level. The amount (in decibels) by which the level of a sound exceeds the threshold of audibility of the sound for a given listener.

Sensitivity. In a general sense, the ability to detect stimulation; in psychophysical studies, refers in particular to the ability to be affected by and respond to low-intensity stimuli or to slight stimulus differences; commonly expressed as the reciprocal of measured threshold.

Sensory adaptation. See adaptation.

Signal detection theory. A theory which holds that performance on a detection task is a function of both the detectability of the signal (or the sensitivity of the observer) and the observer's criterion or response bias in reporting the signal. (CRef. 7,420)

Signal-to-noise ratio. The ratio of the intensity of a signal to the intensity of noise in the absence of the signal. In most auditory studies, the signal-to-noise (S/N) ratio is measured as the relative sound pressure level of the signal and noise in decibels re 20 µPa, so that an S/N ratio of zero indicates that signal and noise are of equal amplitude, while positive and negative values indicate that the signal is of greater or lesser amplitude than the noise, respectively.

Simultaneous contrast. Alteration in the appearance of one stimulus due to the simultaneous presence of another nearby stimulus that differs from it along some dimension (such as lightness or color), in such a way that the difference between the two stimuli is accentuated. Simultaneous lightness contrast: alteration in the lightness of one stimulus due to the presence of a nearby stimulus of different lightness (CRef. 1,714). Simultaneous color contrast: alteration in the perceived hue of one stimulus due to the presence of an adjacent stimulus of different hue. (CRef. 1,717)

Sine wave. A periodic waveform in which the amplitude at each point across time or space varies according to a sine function.

Sine-wave grating. A bar pattern in which some property (generally luminance) varies with spatial position according to a sine function in a direction perpendicular to the bars. (CRef. 1,601)

Single vision. The perception of a single object from the separate images of the object in each eye. (CRef. 5,911)

Sinusoidal. Varying according to a sine function.

SIT-bar. Seat interface transducer bar; device for measuring the translational or rotational vibration on a seat beneath the human body.

Sloan letter chart. (1) A chart for measuring visual acuity that contains ten capital letters graded in size in equal logarithmic steps and chosen to be equal in difficulty to each other and to the Landolt ring. There is one chart for testing vision at 20 feet and another for testing at 16 inches. (2) A set of nine cards containing samples of discursive text that is used to test individuals with subnormal vision to determine the magnification required to read newsprint.

Snellen acuity. Visual acuity measured using a standard chart containing rows of letters of graduated sizes and expressed as the distance at which a given row of letters is correctly read by a specific individual compared to the distance at which the letters can be read by a person with clinically normal eyesight. For example, an acuity score of 20/50 indicates that the tested individual can read only at a nearer distance of 20 ft the letters read by a normally sighted person at 50 ft. (CRef. 1,602)

Snellen letter chart. A chart for measuring visual acuity consisting of a standard set of letters in rows of graduated size. (CRef. 1,602)

Sone. A subjective unit of loudness equal to the loudness of a 1000 Hz tone presented binaurally at an intensity of 40 dB above the listener's threshold (or 40 dB SPL for the "average" listener).

Sound pressure level. The amount (in decibels) by which the level of a sound exceeds the reference level of 20 µPa (or 0.0002 dynes/cm²).

Spaced practice. Practice in which practice periods are interspersed with rest intervals.

Spatial frequency. For a periodic target, such as a pattern of equally spaced bars, the reciprocal of the spacing between bars (i.e., the width of one cycle, or one light bar plus one dark bar), generally expressed in cycles per millimeter or cycles per degree of visual angle.

Spatial summation. The combining of the visual response to light impinging simultaneously on different regions of the retina. (See also Rico's law.)

Spectral radiant power distribution. The radiant power at each wavelength along a given portion of the electromagnetic radiation spectrum.

Spectral sensitivity. The relative sensitivity of the eye to light of different wavelengths.

Spectrogram. A graphic record of speech in which the intensity of acoustic energy at a given frequency is plotted as a function of time. (CRef. 8,202)

Spectrum locas. The line on a chromaticity diagram on which fall the chromaticities of all wavelengths of the visible spectrum.

Spherical aberration. Image degradation in an optical system that occurs when light rays passing through the central and outer zones of a lens are brought to a focus at different distances from the lens. (CRef. 1,211)

Split-half reliability method. A method of measuring test-retest reliability in which, for speed and convenience, the coefficient of correlation is calculated between performance on the first half of a test and performance on the second half of the test for a group of subjects, rather than between performance on two separate repetitions of the test. (See test-retest reliability.)

Square wave. A rectangular waveform whose amplitude periodically shifts instantaneously between two discrete values.

Stabilized vision. Vision in which, through optical or other means, the image of a target is made to move exactly with the eye so that the same portion of the retina is always stimulated, that is, the image does not move on the retina when the eye moves.

Staircase procedure. A variant of the method of limits for determining a psychophysical threshold in which the value of the stimulus on a given trial is increased or decreased, depending on the observer's response on the previous trial or group of trials.
Standard deviation (SD), Square root of the average squared deviation from the mean of the observations in a given sample. It is a measure of the dispersion of scores or observations in the sample.

Standard error of estimate. The standard deviation of the sampling distribution of a population statistic (such as the mean, median, or variance); it is a measure of the variability of the statistic over repeated sampling.

Standard error of the mean. The standard deviation of the sampling distribution of the mean; mathematically, the standard deviation of the given data sample divided by the square root of one less than the number of observations. It describes the variability of the mean over repeated sampling.

Standard luminous efficiency. Luminous efficiency as defined by the CIE (Commission Internationale de l'Eclairage).

Standard normal deviate. A test score or experimental measurement or datum point expressed in terms of the number and direction of standard deviation units from the mean of the sample distribution. Also called standard score or z-score.

Standard stimulus. A fixed stimulus presented along with a variable or comparison stimulus in an experiment designed to determine the difference threshold or just noticeable difference between the two. The value of the standard stimulus along a given dimension remains fixed, while the value of the variable stimulus is altered, and the subject must indicate the relation between the two (e.g., the comparison is "greater than," "less than," "or equal to" the standard).

Stereoacuity. The ability to discriminate depth or distance solely on the basis of lateral retinal image disparity; usually expressed as the smallest detectable difference in depth of two targets (in seconds of arc of visual angle).

Stereogram. A pair of two-dimensional drawings, photographs, etc., presented separately to the right and left eyes by a stereoscope or other means; generally, each half of the stereogram represents the same scene from a slightly different viewpoint, so that their fusion by the visual system gives rise to a single impression characterized by relief, depth, or three-dimensionality.

Stereoscopy. Visual perception of depth or three-dimensionality; commonly used to refer specifically to depth arising from lateral retinal image disparity.

Stereoscope. An instrument used to present a separate visual display to each eye. Typically utilizes a system of mirrors, prisms, or lenses to present two specially constructed flat pictures (one to each eye) that, when combined by the visual system, give the impression of solidity or three-dimensionality.

Stereoscopic. Of or pertaining to stereoscopic.

Stiles-Crawford effect. The decrease in the apparent brightness (luminous efficiency) of a narrow beam of light entering the eye near the edge of the pupil relative to the brightness of an identical beam entering in the center of the pupil. (CRef. 1.111)

Stop. A consonant sound (such as [b] or [t]) whose articulation requires complete closure of the vocal tract at some point.

Subjective vertical. The orientation the observer perceives (indicates) as being vertical, which may or may not be true (gravitational) vertical.

Superior oblique muscle. One of the six voluntary muscles that move the eyeball. (CRef. 1.901)

Suppression. See binocular suppression.

System dynamics. The patterns of interactions occurring in an interdependent group of components that serve a common function or form a functional unit.

System order. For a control system, the highest power of the Laplace operator, S, that appears in the denominator of the transfer function. Equivalently, the order of the highest-order derivative of the differential equation describing the system element. (CRef. 9.519)

Tachistoscope. An apparatus for presenting visual material for a very brief exposure time; the simplest type uses a falling screen or shutter, with an aperture that momentarily reveals the visual stimulus.

Tactile. Of or relating to tactile perception (touch) mediated by the cutaneous (skin) sense.

Tactual. Of or relating to the sense of touch, as mediated by the cutaneous (skin) sense and/or kinesthesia.

Td. Troland, the retinal illuminance produced by a surface having a luminance of 1 cd/m² when the area of the pupil of the eye is 1 mm².

Telestereoscope. A device for producing an appearance of exaggerated depth in scenes by increasing effective interpupillary distance (and thus lateral retinal image disparity). It permits depth judgments for objects otherwise too distant to judge. (CRef. 5.1102)

Temporal summation. The integration over time of the tactile response to a stimulus falling on a given region of the skin or the combining of the response to two or more stimuli impinging consecutively on the same region of the skin.

Test-retest reliability. Consistency in yielding the same or similar scores on repeated administrations of a given test, measured by computing the coefficient of correlation between performance on two successive presentations of the same test for a group of subjects.

Third-order control. A system in which the response is proportional to the third time integral of the control input.

Third-order system. See third-order control.

Threshold. A statistically determined boundary value along a given stimulus dimension which separates the stimuli eliciting one response from the stimuli eliciting a different response or no response (e.g., the point associated with a transition from "not detectable" to "detectable" or from "greater than" to "less than"). (CRef. 1.657) (See also difference threshold.)

Time constant. See lag time constant; lead time constant.

Transfer function. A complex function describing a dynamic system as a function of frequency that specifies the ratio of output to input amplitude and the phase difference between input and output.

Transmission lag. Pure time delay, i.e., a delay (expressed in time units) in transmitting input to output that leaves all other aspects of the signal unchanged.

Transonic speed. Speed approximating the speed of sound in air (738 mph at sea level); often refers to speed in the range a little below to a little above the speed of sound in air, i.e., 600-900 mph.

Tristimulus colorimeter. An instrument for measuring color which allows a given test color to be specified in terms of the relative proportions of three primary colors (e.g., red, green, and blue) which, when additively mixed, give the same hue sensation as the test color.

Troland (Td). A unit expressing light intensity at the retina (i.e., the illumination produced per square millimeter of pupil area by viewing a surface with a luminance of 1 candela per square meter. Originally called photon. (CRef. 1.106)

T-test. A statistical test used to compare the mean of a given sample with the mean of the population from which the sample is drawn or with the mean of a second sample in order to determine the significance of an experimental
effect (i.e., the probability that the results observed were due to the experimental treatment rather than to chance). Also known as Student's t-test.

Two-alternative forced-choice paradigm. An experimental procedure in which the subject is presented on each trial with one of two alternative stimuli and must indicate which stimulus occurred; a response must be made on each trial even if the subject must guess. Commonly referred to as a "criterion free" method of determining sensitivity.

Two-interval forced-choice procedure. An experimental procedure in which a subject is presented a stimulus during one of two time intervals and must indicate during which of the two intervals the stimulus was presented even if the subject must guess.

Two-point threshold. The smallest separation between two punctate stimuli applied to the skin that can be discriminated as two stimuli rather than one.

Ultradan. Pertaining to cyclical variations with a period of less than 12 hr. (CRef. 10.709)

Uniform chromaticity scale. A chromaticity diagram on which all pairs of just-noticeable different colors of equal luminance are represented by pairs of points separated by approximately equal distances.

Vehicle dynamics. The relationship between the output of a vehicle control device and the resulting motion of the vehicle.

Velar. Articulated with the tongue on or near the soft palate (velum) (as in [g], [k]).

Velocity control. See first-order control.

Vernier acuity. The ability to discern the alignment (colinearity) or lack of alignment of two parallel lines placed one above the other, as in reading a vernier scale; frequently expressed in terms of the smallest detectable misalignment in seconds of arc of visual angle. (CRef. 1.602)

Vernier adjustment. Adjustment of the lateral position of one of two vertical lines placed one above the other until the two appear vertically aligned. The procedure is used to measure vernier acuity.

Vertical retinal image disparity. The difference in the relative vertical position of the visual images of an object on the left and right retinas.

Vestibular nystagmus. Nystagmus produced by stimulation of the vestibular system (as by head rotation) or by damage to the vestibular apparatus.

Vestibular sense. The sense mediated by the otolith organs and semi-circular canals that is concerned with the perception of head position and motion and is stimulated by acceleration associated with head movements and changes in the pull of gravity relative to the head. (CRef. 3.201)

Vestibular system. The system comprised of the otolith organs and the semi-circular canals that mediate the perception of head position and motion. (CRef. 3.210)

Vestibulo-ocular reflex. Reflexive eye movements initiated by stimulation of the vestibular system during head movements whose purpose is to stabilize the eyes with respect to the object being viewed so that the image of the object on the retina will be stationary and will not be blurred by motion.

Vibrotactile stimulation. A mechanical vibration applied to the skin by an electromechanical transducer such as a modified loudspeaker or electromagnetic mechanical shaker, resulting in a periodic displacement of the skin.

Visual acuity. The ability of an observer to resolve fine pattern detail. Acuity is usually specified in terms of decimal acuity, defined as the reciprocal of the smallest resolvable pattern detail in minutes of arc of visual angle. "Normal" or average acuity is considered to be 1.0 (a resolution of 1 min arc), although many young adults have a decimal acuity slightly better than this. (CRef. 1.602)

Visual angle. The angle subtended at the eye by the linear extent of an object in the visual field. It determines linear retinal image size. (CRef. 1.240)

Visual axis. A line from the point being fixated to the center of the fovea; in the eye, the optical axis and visual axis do not coincide.

Visual capture. The tendency for visual information to dominate in determining perception when visual information and information from some other sensory modality (such as touch) are discrepant.

Visual direction. (1) The physical direction of the line of sight of the eye. (2) The relative direction in subjective visual space associated with a given point on the retina.

Visual field. The portion of the external environment that is visible to the eye in a given position; usually measured in degrees of visual angle.

Visual noise. A random array of images or pattern elements; frequently used as a camouflage in visual masking paradigms.

Visual position constancy. The tendency for the visual field to appear stable and motionless when the observer moves his or her eyes or head, despite the image motion on the retina caused by such movements.

Vitrous humor. The transparent, jelly-like substance that fills the back chamber of the eye (the space between the crystalline lens and the retina). (CRef. 1.201)

Voicing. Vibration of the vocal cords during the production of a phoneme. Phonemes accompanied by vibrations of the vocal cords (such as /b/) are voiced, and phonemes not accompanied by vibrations (such as /p/) are unvoiced.

Von Frey hair (filament). Hairs of various thicknesses and lengths calibrated to exert a constant force when pressed on the skin.

Weber ratio. See Weber's law.

Weber's law. A law which holds that the smallest detectable change in the magnitude of a stimulus along some dimension is always a constant proportion of the stimulus magnitude from which the difference is noted. The law is expressed mathematically as \[\Delta I/I = k \], where \(I \) is the magnitude of the stimulus, \(\Delta I \) is the smallest detectable change in magnitude, and \(k \) is a constant which is often called the Weber fraction or Weber ratio.

Wheatstone mirror stereoscope. A stereoscope of the type invented by physicist Charles Wheatstone which utilizes a system of mirrors to present a different visual display to each eye; when the displays for the two eyes are appropriately constructed to represent the same object or visual scene from slightly different viewpoints (or positions in space), the result is the perception of a single image apparently having depth or three-dimensionality.

White noise. Random noise whose noise spectral level (noise-power density) is uniform over a wide frequency range; termed "white noise" by analogy with white light.

Within-subjects design. An experimental design in which a single group of subjects is tested under all levels of the independent variable. Each subject serves as his or her own control, and the performance of the subjects under one condition is compared with their performance under the other conditions to determine the effect of the experimental manipulation.

Zero-order control. A system in which the position (or zero time derivative) of the response is proportional to the control input position; also called position control.
Design Checklist

This Design Checklist is provided to help you identify and locate human factors data in the Compendium. It is made up of human performance questions selected for their potential relevance to the design of control and display system components. The questions are sorted into categories keyed to a hierarchy of equipment-related factors. Each question is indexed, in turn, to specific entries within the Compendium that provide information pertinent to the question raised. To use the checklist, locate the topic of interest in the outline contents below, then turn to the indicated page for questions relating to that topic.

I. Displays 46
 A. Visual displays 46
 1. Image quality 46
 a. Resolution 46
 1) Imaging properties of the eye 46
 2) Pupillary aperture 47
 3) Visual accommodation 48
 4) Visual acuity 49
 5) Dynamic visual acuity 49
 6) Spatial frequency resolution 49
 7) Central vs. peripheral field of view 49
 b. Luminance 49
 1) Sensitivity to light and contrast 49
 2) Color 50
 3) Dark adaptation 51
 4) Afterimages 51
 c. Flicker and temporal changes 51
 d. Distortion 52
 1) Prismatic displacement 52
 2) Underwater effects 52
 3) Magnification/minification 52
 4) Visual aftereffects 52
 5) Subjective contours 52
 e. Eye/head movement dynamics 53
 1) Visual fixation 53
 2) Vergence 53
 3) Tracking eye movements 53
 4) Saccadic eye movements 54
 5) Microtremors 55
 6) Rotational eye movements 55
 7) Eye/head movement coordination 55
 8) Optokinetic response 55
 9) Vestibulo-ocular response 55
 f. Vibration 56
 1) Transmission of vibration 56
 2) Effects on visual performance 57
 3) Effects on visual display legibility 57
 2. Visual information representation and coding 57
 a. Size 57
 b. Shape and slant 57
 c. Orientation 58
 d. Grouping 58
 e. Color 58
 f. Depth 58
 1) Cues to depth 58
 2) Stereoacuity 58
 g. Motion 59
 1) Motion detection 59
 2) Apparent motion 59
 3) Relative motion 59
 4) Collision prediction 59
 h. Text 59
 1) Dialogue design 59
 2) Character font size and spacing 59
 3) Reading 60
 4) Pictures vs. words 60
 i. Numeric representation 60

 3. Binocular displays 60
 a. Binocular vs. monocular vision 60
 b. Geometrical considerations 60
 c. Image alignment 60

 B. Auditory displays 61
 1. Speech intelligibility 61
 a. Message context 61
 b. Speech interruption 61
 c. Age 61
 d. Speech level and playback speed 61
 e. Signal-noise relationships 61
 f. Earplug use 61
 g. Techniques for improving speech intelligibility 62
 2. Speech processing 62
 a. Characteristics of speech signals 62
 b. Speech production 62
 3. Non-speech signals 62
 a. Signal detectability 62
 b. Masking and interference 63
 c. Environmentally induced shifts in listener sensitivity 63
 d. Localization of signals 63
 e. Pitch (signal frequency) 64
 f. Loudness (signal intensity) 64

 C. Vestibular displays 64
 1. Vestibular sensitivity 64
 2. Vibration 64
 3. Acceleration 65
 4. Body rotation 65
D. Cutaneous (tactile) displays 65
1. Cutaneous sensitivity 65
2. Pattern discrimination 65
3. Thermal sensitivity 66

II. Controls 66
A. Feel 66
1. Use of gloves 66
2. Coding of controls 66
B. Control placement and grouping 66
C. Hand-activated controls 66
1. Pushbuttons/legend switches 66
2. Keyboards/keysets 66
3. Toggle switches 67
4. Dials and rotary selectors 67
5. Cursor controls/joysticks 67
6. Comparisons among controls 67

III. Warnings and alarms 67
A. Visual alarms 67
1. Coding 67
2. Brightness 68
3. Size specifications 68
4. Position in the field of view 68
B. Auditory alarms 68
1. Tone 68
2. Voice 68
C. Tactile alarms 68
D. Combined warning displays 68
1. Multiple-modality vs. single-modality displays 68
2. Auditory vs. visual precedence 68
3. Interaction effects in audio-visual displays 68
4. Comparison of auditory and visual warnings 69

IV. Integrated human factors 69
A. Memory 69

Visual Displays

Resolution

Imaging Properties of the Eye

How large is the human eye? (1.201)
What is the fovea and how large is it in angular terms? (1.201)
How does the density of rods (which mediate night vision) vary with distance from the fovea? (1.201)
How can retinal image size be calculated from target linear size and distance for distant objects? (1.240)
What is the blind spot? (1.201)

Where, in the eye, is the yellowish macular pigment, and how large an angle does it subtend? (1.202)
What is the distance from the cornea to the nodal point of the eye? (1.240)
Where is the eye's center of rotation with respect to the front of the cornea and with respect to the eye's entrance pupil? (1.207)

Visual optics

What are the eye's four major refracting surfaces? (1.210)
What is the approximate refraction index of the optical elements of the eye? (1.203)
What two processes in the eye, other than focusing, change the amount and spectral distribution of light reaching the retina? (1.202)

Where is two-thirds of the eye’s focusing power located? (1.201)

What are the approximate focal lengths of the eye for very near and very far distance? (1.201; 1.203; 1.240)

Astigmatism

With astigmatism, what will be the appearance of a radial pattern of lines? (1.205)

How is astigmatism specified? (1.205)

In astigmatism, what is declination error? (1.205)

What type of lens is required to correct astigmatism? (1.205)

Retinal Image distribution

What is the Fourier transform of the aperture function? (1.219)

How can the optical transfer function be obtained from the pupil aperture function? (1.218)

How is retinal image modulation obtained from the modulation transfer function of the eye’s optics and the light distribution of the object? (1.219)

What is done to a modulation transfer function to obtain an intensity point-spread function? (1.218)

In general, what happens to the modulation transfer function as spatial frequency increases? (1.219)

For extended light sources to be treated, with small error, as point sources, how much greater than their diameter must their distance be from illuminated surfaces? (1.104)

On the retina, what shape is the image of a point of light? (1.214)

What is the major factor contributing to the point-spread function of the eye? (1.214)

How does point spread vary with errors of focus? (1.214)

Which spatial frequencies are most affected by eye focus error? (1.639)

What characteristic of an optical system sets an upper limit to the spatial frequency that can be imaged by the system, no matter how well its aberrations are corrected? (1.218)

As the point-spread function increases, what happens to visual acuity? (1.214)

Under what luminance conditions is it likely that spherical aberration of the eye has little influence on visual acuity? (1.211)

How can the light distribution on the retina be calculated for the image of complex objects? (1.215)

What is the shape of the cross-section of a line-spread function? (1.215)

Over how wide a central region of the retina does the line-spread function remain relatively constant, and what happens to it at greater off-axis angles? (1.216)

For calculating the spread of light in an optical image, what is simpler than using diffraction equations? (1.218)

What is the major reason the eye does not image an edge as sharply as it appears in the object? (1.217)

For the image of an extended source of white light, where are colored fringes seen? (1.217)

Pupillary Aperture

What is the numerical aperture of an optical viewing device? (1.105)

What is the effectivity ratio of the eye pupil? (1.106)

Over what range of diameters may pupil size vary with illumination changes? (1.203)

What is the relationship between the real pupil and the entrance pupil of the eye? (1.209)

Why must an artificial pupil be carefully centered on an observer’s natural pupil? (1.111)

What does the rotation of the eye about a point well behind the pupil do to image illumination on the retina for devices whose exit pupil is not larger than the eye’s pupil? (1.207)

Effects on retinal light distribution

To minimize spherical aberration, what should pupil size be? (1.211)

How does the size of the blur patch on the retina for a point light source vary with pupil size? (1.211)

What happens to the line-spread function as pupil diameter increases? as focus error increases? (1.215)

How does pupil diameter affect the size of the blur patch on the retina and the depth of focus of the eye? (1.221)

With large pupils, what is the cause of resolution loss at longer wavelengths? (1.606)

At what eye pupil diameter does visual acuity reach its maximum? (1.614)

Effects of luminance level

What happens to pupil diameter as scene illumination increases, and what happens at very low and very high luminance levels? (1.232)

How does the time taken for the pupil to stabilize in size compare to the time taken for the eye to light or dark adapt? (1.233)

How does pupil diameter when only one eye is illuminated compare to that when both eyes are illuminated? (1.232)

When visual acuity test patterns are viewed through small pupils, what wavelength yields the best acuity? (1.606)

When one eye is closed, how does its pupil diameter compare with the pupil diameter of the open eye? (1.106)

Effects of target distance

At distances less than one meter from an object, what happens to pupil size? (1.234)
When fixation is changed from a distant scene to an equally bright display nearby (<1 meter), by how much might the pupil contract? (1.106; 1.234)

Visual Accommodation

How many diopters of accommodation are present when the eye is in a resting state? (1.223; 1.238)

Are differences between individuals in resting accommodation large or small? (1.223)

What happens to eye accommodation with steady fixation on a stationary target? (1.224)

For what distance is the eye accommodated when an unstructured target is all that is visible? (1.226)

What happens to accommodative accuracy with decreasing luminance? (1.228)

In dim light, what happens to the farthest and nearest distances to which an object can be focussed? (1.226; 1.227)

How low must luminance levels be before night myopia occurs? (1.227)

What is the relationship between the diameter of Airy’s disc and accommodation accuracy? (1.213)

For what spatial frequencies is accommodation most accurate? (1.226)

For which end of the spectrum, red or blue, does the eye have the shortest focal length? (1.212)

Effects of distance

Under conditions of low luminance, what changes in accommodation occur with change in distance? (1.226; 1.227; 1.228)

What happens to eye focus as an observer attempts to hold focus as constant as possible on a near object? (1.225)

Is fluctuation in eye focus greater for a fixated target or in the absence of a target? with a near or a far target? with monocular or binocular viewing? with large or small pupils? (1.224)

How do near-to-far and far-to-near accommodation times compare? (1.228; 1.230)

About how long does the eye take to accommodate to a slow change in object distance? (1.229; 1.230)

When a target distance changes, what is the ratio of accommodation change to distance change? (1.230)

As oscillation in distance of a far target increases in amplitude, what happens to the accommodative response relative to target position? (1.229)

If the observer must focus an object as close to the eye as possible, what color should be used? (1.212)

In an otherwise uniformly empty visual field, upon what does the apparent distance of an object depend? (1.239)

Effects of monocular vs. binocular viewing

When the eyes are fixated on a near object, how do the focus fluctuations of the two eyes compare? (1.225)

How does accuracy in accommodation compare for monocular and binocular viewing? (1.230)

Effects of age

What is the maximum range of accommodation in the young and in the very old? (1.222)

Why does the range of accommodation decrease in older people? (1.204)

Relation between accommodation and convergence

What is the ratio of accommodative convergence to accommodation (AC/A ratio)? How much larger, on average, is the observed AC/A ratio than the AC/A ratio called for by stimulus conditions? (1.231)

In the general population, how much does the AC/A ratio vary per diopter of accommodation? (1.231)

What effects on an observer may occur when accommodation and convergence are decoupled? (1.808)

Visual Acuity

What is the assumed or nominal angular resolution in minutes of arc for normal vision? (1.602; 1.608)

Where, on the retina, is visual acuity highest, and what is the angular extent of this area? (1.201)

Excluding the blind spot, where in the eye is visual sensitivity lowest? (1.305)

For what range of pupil sizes is visual acuity highest? (1.603)

What is the common measure of visual acuity that increases in numerical value with better acuity? (1.602)

What vertical separation of lines, in arc minutes, yields best vernier acuity with natural pupils and binocular vision? (1.603)

What are some of the factors, other than observer acuity, that influence minimum separable visual acuity with resolution test patterns? (1.602)

How does visual acuity vary with viewing distance? (1.603)

At what line orientations is vernier acuity most precise? (5.801)

What is the effect of practice on visual acuity tasks? (1.603)

At what age does visual acuity peak, and at what age does acuity for intermediate and high spatial frequencies begin to decline? (1.603)

Up to what exposure time, in msec, can static visual acuity increase? (1.603; 1.613)

How does visual acuity vary with luminance for light targets on a dark background? For dark targets on a light background? (1.603)

At high levels of luminance with narrow-band illumination, how does wavelength influence visual acuity? (1.603)

Does monochromatic light or narrow-band light yield appreciably better visual acuity than white light? (1.603; 1.606)
Is visual acuity improved by using lenses that correct the chromatic aberration of the eye? (1.203; 1.212)

At what retinal location is visual acuity the greatest at low illumination levels? (1.603)

Dynamic Visual Acuity

Is there an appreciable correlation between static and dynamic visual acuity? (1.621)

Is the fovea or the retinal periphery more sensitive to target motion? (5.203; 5.204)

How does dynamic visual acuity vary as the angular velocity of a target increases? (1.617)

How does dynamic visual acuity change with angular target velocity for horizontal and vertical target movement? (1.619)

Up to what target illumination does dynamic visual acuity improve, and how does this compare with the illumination required for static visual acuity? (1.619)

For what angular velocities does increased illumination provide the greatest benefit? (1.619)

When an observer can anticipate the direction of motion of a resolution test pattern, what happens to visual acuity: (a) as target velocity increases, (b) as exposure time lengthens, and (c) as anticipatory tracking time increases? (1.621)

In testing dynamic acuity with a television display, how important are direction of motion and image velocity? (11.105; 11.106)

With practice, does dynamic acuity improve more for low or for high angular velocity? (1.622)

In detecting moving vehicles, how does identification vary with number of resolved scan lines per vehicle and with image velocity? (11.105)

Spatial Frequency Resolution

What is meant by channel bandwidth in human vision, and what are three pattern characteristics for which information channels are selective? (1.652)

What range of spatial frequencies, in cycles/deg, is easiest to detect? (1.628)

As spatial frequencies become more closely spaced, what happens to ability to identify spatial frequency? (1.649)

What are three major techniques for estimating channel bandwidths for pattern orientation and spatial frequency? (1.652)

Central vs. Peripheral Field of View

Which part of the retina provides maximum visual acuity? (1.202)

What is the fovea and how large is it in angular terms? (1.201)

Which part of the retina most effectively detects motion? (1.637; 5.203; 5.204)

When visual fixation is required, what happens to detection probability for peripheral signals? (7.406)

Is peripheral vision good for detecting small or stationary targets? (11.204)

In the retinal periphery, are slowly moving or rapidly moving stimuli more easily detected? (5.205)

In the visual periphery, is reduced visual acuity due to retinal structure or to optical image quality on the retina? (1.214)

How does contrast required for detection in the visual periphery compare with that required for foveal viewing? (7.609)

In what part of the visual field is performance best for a visual message? (11.409)

How important in display reading is semantic information from the visual periphery? (8.116)

Size of Visual Field

What part of the total field of view can be seen by both eyes? (1.235)

What is the size and shape of a normal observer's field of view? (1.235)

Over what range of visual angle, measured from the center of the visual field, does field of view for color fall off? (1.237)

In addition to reducing the angular field of view, what are some of the undesirable effects of viewing through tubes attached to the head? (5.1102)

How does the apparent size of the visual field change as a function of background color? (1.237)

Luminance

Sensitivity to Light and Contrast

If a surface is inclined to incident light by an angle A, by what factor will illuminance be reduced, relative to illuminance of a perpendicular surface? (1.104)

What is the luminance profile of a visual pattern? (1.601)

What is the approximate absolute threshold of the eye in candelas per square meter? (1.013; 1.109)

What is the approximate sensitivity range of the human eye for electromagnetic radiation, in nanometers? (1.101)

What is the approximate dynamic range of rods and of cones, in candelas per square meter? (5.1001)

What limits target visibility for very dim backgrounds? (1.502)

If the luminance of a small, dim target cannot be increased, how can it be made more detectable? (1.308)

To maximize detectability of luminance increments and decrements, what should be the target size, target duration, and background illuminance? (1.403; 1.404)
In designing a system for finding and attacking ground targets from the air, what are the factors that must be considered when estimating the probability that targets will be detected? (7.607; 7.608)

In general, as viewing angle decreases, what happens to contextual information, and what does this do to the ability to separate luminance from reflectance? (11.221)

Given the display background luminance for an instrument, what amount of instrument luminance plus reflected luminance is required to obtain a working preference level for contrast and legibility? (11.102)

For medium and large surrounds, what is the preferred (most visually comfortable) surround luminance for viewing broadcast television? (11.103)

In a television display, does a small surround require more or less luminance for visual comfort than a medium or large surround? (11.103)

For small surrounds and a mean display luminance of 86 cd/m², what is the preferred average surround luminance? (11.103)

Does loss of visibility due to glare increase or decrease with increase in ambient illumination? with decrease in glare source luminance? (10.501)

Lightness and brightness

What is the luminance factor of a surface? (1.705)

What is the difference between brightness and lightness? (1.720)

What are some of the factors that complicate brightness predictions? (1.720)

For two identical gray surfaces combined with black surfaces, which appears lighter, a gray figure with a dark background or the gray background with a dark figure? (1.714)

In general, do illusory contours or figure appear to have the same brightness as their backgrounds? (6.314)

Is the distinctness of the border between a chromatic field and an achromatic field of unequal luminance affected by the direction of the luminance contrast (i.e., by which field appears brighter)? (6.313)

When the exit pupil of an optical viewing device is larger than the entrance pupil of the eye, how does scene brightness compare with and without using the viewer? What is the case when the exit pupil of the eye is larger than the instrument’s exit pupil? (1.105)

Mach bands

For a very steep luminance gradient, how short an exposure will produce Mach bands? (1.716)

For what values of the luminance gradient from dark to light do Mach bands not appear? (1.716)

Contrast sensitivity

In what part of the visible spectrum is the lowest luminance contrast required to obtain a minimally distinct border between two adjacent chromatic areas? (6.313)

What happens to contrast sensitivity with increase in ambient illumination, and at what illumination does sensitivity become relatively constant? (1.403; 6.313)

What is amplitude resolution (minimum discriminable luminance difference) for vision? (5.1001)

About what contrast is required between two adjacent areas to perceive a minimally distinct border? (6.313)

What is the formula for modulation or Michelson contrast? (6.313)

For what two types of periodic luminance pattern is Michelson contrast inappropriate? (1.601)

For a fixed target luminance, how does contrast sensitivity vary with increases in background luminance? (1.502)

When inherent (or zero range) target contrast and meteorological range are known, how can detection probability be estimated? (7.508)

What are some constraints on using nomograms derived from laboratory contrast detection data to estimate target detection range in real-life situations? (7.508)

In television display systems, what are the effects on target acquisition performance of image quality measures, such as display resolution, resolved lines/target height, signal/noise ratio, etc.? (7.614)

How does target contrast affect reaction time? (9.108)

Contrast sensitivity with flickering targets

Regardless of average luminance, how does contrast sensitivity vary with flicker rate? (1.503; 1.509)

For what frequency range does temporal contrast sensitivity peak for a large uniform field? (1.505)

What happens to the peak of the temporal contrast sensitivity function for large uniform fields as luminance level decreases? (1.505)

What happens to contrast sensitivity when temporal frequency is decreased while spatial frequency is high? (1.508)

Color

Specification

What two systems are used to define the CIE standard observer? (1.110)

How many standard deviation units on the CIE diagram correspond to a just noticeable difference in color? (1.704)

Usually, what conditions are required for good correlation between purity and saturation? (1.703)

How is color characterized when the dominant wavelength does not fall on the spectrum locus? (1.703)

Sensitivity

What is the approximate wavelength region to which the human eye is sensitive? (1.101; 1.102; 5.1001)

Over the range of visible wavelengths at high luminance, how many hues can be discriminated? (5.1001)
What can be said about the color of objects viewed under low (scotopic) light levels? (1.103; 1.301)

What limits visual sensitivity at the short wavelength end of the visible spectrum? What limits it at the long wavelength end? (1.101)

Over what range of visual angles measured from the center of the visual field does field of view for color fall off? (1.237)

In what region of the CIE chromaticity diagram are observers least sensitive to color differences? (1.704)

What percentage of males and what percentage of females have color deficiencies? (1.707)

Color discrimination

About what is the critical luminance level above which color discrimination is relatively stable? (1.705)

At very high retinal illuminance levels, at which end of the spectrum is color discrimination poor? (1.705)

As luminance decreases, for which color does color discrimination become poor first? (1.304; 1.705)

For practical work, how short can exposure be before significant loss in color discrimination occurs? (1.705)

Up to what age does color discrimination improve? (1.707)

For normal observers, a mixture of no more than how many primary colors is needed to match any hue? (1.702)

Over what range, in trolands, do color matches between metameric fields hold? (1.705)

To obtain maximum sensitivity in color matching small visual fields, what should be the chromaticity of the field surrounding the test lights? (1.705)

How do judgments of the color of textured papers compare in consistency (repeatability) with those for colored lights? (1.710)

What may happen to the distinctiveness of a border in the presence of a chromatic difference? (1.237; 1.701)

To appear equally bright, must an achromatic (gray) sample have a higher or a lower luminous reflectance than a chromatic sample? (1.303)

When adjacent to a white standard, how do yellow (560 nm) and deep red (620 nm) compare in equivalent achromatic contrast? (6.313)

In chromatic induction configurations with red/green and yellow/blue fields, as redness (yellowness) of the surrounding (inducing) field increases, what happens to the perceived redness (yellowness) of the central test area? (1.701)

What is the approximate shape of the visual field for different colors? (1.237)

How do green, blue, and yellow compare for field of view and response times? (1.204)

How much misregistration of colors in a CRT is permissible before identification performance becomes significantly poorer? Which symbol colors are best and which are worst with color misregistration? (11.126)

Dark Adaptation

After a period of exposure to very high levels of light, how much time is required to achieve complete dark adaptation to occur? (1.409; 1.411)

With increasing time in the dark, how does improvement in target detectability compare for large and small targets? (1.406)

With square-wave gratings, how long after the start of dark adaptation does resolution of coarse details continue to improve? (1.410)

Afterimages

After a single primary stimulus exposure, can various types of afterimages occur in sequence? (1.309)

How long, typically, do negative and complementary afterimages last? (1.309)

Flicker and Temporal Changes

How is sensitivity to rapid flicker measured? (1.501)

With a flickering sinusoidal grating, how does flicker sensitivity vary with duration? (1.501)

At what luminance level can the highest flicker rate be detected? (1.501)

In barely detectable targets, how well can flicker rate be discriminated? (1.510)

If the observer’s task is to detect the fine details of a pattern, what flicker rate is least detrimental to performance? (1.509)

If the contrast of a flickering target is increased from zero, which is detected first, target pattern or target flicker? (1.509)

In what two ways can flicker sensitivity be improved when the observer views a large uniform field flickering at a slow rate? (1.506)

What happens to critical flicker frequency with time in the dark for nonfoveal targets of relatively high luminance? (1.504)

With sine-wave modulation and a flash rate >15 Hz, is flicker more or less easily seen at high luminances than at low? For rates <15 Hz, how does flicker visibility vary with luminance? (11.120)

For CRT displays, below what refresh rate is it generally agreed that flicker is usually quite annoying? (11.122)

What undesirable effects may occur with observers when refresh rates are between 7 and 15 Hz? (11.122)

How high must luminance be on a CRT for a user to notice flicker with a 60-Hz refresh rate? (11.122)

To eliminate flicker perception in the fovea in most electronic displays, how high should the refresh rate be? (11.122)
To eliminate flicker in the visual periphery, how high a refresh rate is required? (11.122)
How does target flicker affect fixation stability? (1.909)

Distortion

Prismatic Displacement

What are "negative aftereffects" following adaptation to a distorted presentation of the environment? (5.1101)
After adaptation to prismatic displacement has occurred, how do negative aftereffects decay? (5.1101; 5.1104)
Is adaptation to prismatic displacement both rapid and complete when error-corrective feedback is provided? (5.1101)
How quickly do observers adapt to prisms that laterally displace the visual field? (5.1103)
Is adaptation to prism displacement of the visual field ever complete? (5.1104)
Must an observer be consciously aware of prismatic displacement for adaptation to occur? (5.1104)
With prism-induced retinal image disparity, what may happen to apparent target size as the target appears to recede? (1.950)
What are typical tolerances for prism-induced image disparity? (1.950)
How rapidly does adaptation to loss of visual position constancy decay after removal of the source of distortion? (5.1120)

Underwater Effects

What color is poorest for color coding under water? (5.1124)
What colors are most visible in turbid (muddy) water? Cloudy water? Clear water? (5.1124)
What happens to stereoacuity under water? (5.1124)
Is motion across the line of sight under water underestimated or overestimated? (5.1124)
At and beyond what underwater distance are distances overestimated? (5.1124)
What happens to apparent size of both far and near objects under water? (5.1124)
What type of image displacement occurs when objects are viewed through a face mask at an angle other than 90 deg? What different displacement occurs because the index of refraction of water is about a third higher than that of air? (5.1124)
Upon entering the water wearing a facemask, do experienced divers initially judge object size, curvature, and distance more accurately than do novices? Is initial judgment due to adaptation? (5.1125)
Why is visual position constancy lost under water? (5.1124)

With head and eye movement under water, does the environment appear stationary, as it does in air? (5.1124)

Adaptation to underwater distortion

Under what condition does adaptation occur to underwater viewing with a face mask? (5.1101)
With underwater viewing through a face mask, how quickly does an observer adapt to distortion of perceived size, distance, and curvature caused by the mask? (5.1125)
Is adaptation to underwater distortion as rapid with massed practice as with spaced practice? (5.1126)
Is adaptation to underwater distortion as rapid with free swimming as with underwater games? (5.1126)
How does amount of adaptation to underwater distortion compare for terminal exposure and concurrent exposure? (5.1126)
Do novices show as much adaptation as experienced divers? (5.1126)

Magnification/Minification

In designing an optical system to be used in tasks where little distortion can be permitted, will a horizontal or vertical distortion of 1% or less be noticed by an observer? (6.311)
What does overall (or uniform) magnification in one eye do to relative image orientation? (5.907)
Under what conditions may spectacles cause aniseikonia? (5.909)
What problems can be caused by magnification differences in the two eyes? (5.909)
Along what directions does vertical magnification in one eye produce spurious horizontal disparities? (5.907)
Is there adaptation to the optical minification of objects viewed in a convex mirror? (5.1122)
With either a rotation or a magnification difference between the eyes, what happens to angular misalignment as off-axis angle increases? (1.813)

Visual Aftereffects

What are the potential aftereffects of exposure to visual displays? (6.320)
Typically, do contingent aftereffects require short or long adaptation periods, and are they difficult to produce? (6.320)
With long exposure to periodic targets, such as gratings, does the spatial frequency of a test target that is lower in frequency than the inducing target appear to be raised or lowered? (6.319)

Subjective Contours

Are subjective contours more or less apparent with low-pass spatial frequency filtering? (6.314)
Can subjective contours mask real contours? (6.314)

Eye/Head Movement Dynamics

Visual Fixation

Spatial factors
- How far, in degrees of visual angle, does the foveal area of the retina extend around the visual fixation point? (8.116)
- Can an observer maintain eye position with ease in the absence of a visual signal? (1.915)
- About how many microsaccades occur per minute during fixation? (7.505)
- What is the optimal angular subtense of a display for most efficient eye fixations? (7.315)
- For displays with less than what angular subtense does the percentage of eye fixations falling outside of the display markedly increase? (7.315)

Temporal factors
- Does drift (excursion) of eye position from a fixation point increase with time? (1.912)
- What is the approximate length of the shortest eye dwell time in real-life situations? (7.313)
- What happens to the duration of the average eye fixation as the size of a visual display increases? (7.315)
- In fixating a remembered target location in the dark, does fixation error increase with time in the dark, and does variability increase? (1.911)
- What is average eye fixation duration for all signal bandwidths? (7.317)
- How does target flicker affect stability of eye fixation? (1.909; 1.915)

Effects of luminance and wavelength
- How does the eye behave if a fixated target is too dim to be perceived in the fovea but not in the periphery? (1.909)
- How should an observer fixate on a light that is too dim to be seen clearly? (1.916)
- When an observer attempts to fixate a static point, what three types of unintentional eye movement may occur? (1.914)
- When illumination is below the photopic (daylight vision) level, what happens to voluntary control of eye movements? (1.915)
- What is the maximum effect (in arc min) of color on eye fixation? (1.915)
- Maladaptive (fovea-centering) eye movements generally occur with light too dim to be seen clearly; for what color of light does this not happen? (1.916)
- For both dim and very dim target discs, do the majority of intersaccadic drifts move away from or toward the fovea? (1.916)

Effects of target information content
- What three factors affect fixation region? (7.505)
- Are eye fixations more frequent on display areas containing higher information density? (7.505)
- In reading, what is the average duration of eye fixations? (8.116)

Vergence

- What is the formula for convergence angle? (5.905)
- What, in degrees, is resting convergence for most people? (1.808)
- How is convergence in diopters obtained from convergence in radians? (1.808)
- Beyond what distance does convergence change very little with object distance? (1.808)
- With normal viewing conditions, do the eyes sometimes diverge past parallel? (1.808)
- Does the parallelism or convergence of the eyes change during vergence/conjugate eye movements? (1.905)
- Do both eyes always move in the same direction (conjugate motion) for abrupt eye motions? (1.906)
- Up to what frequency do slow vergence movements increase with changing (oscillating) retinal disparity? (1.949)
- With identical targets in each eye, up to how large a lateral target disparity elicits vergence eye movements? (1.950)
- In the disparity range of 0.5-1 deg, how rapidly are vertical compared to lateral disparities corrected by vergence eye movements? (1.950)
- In the peripheral retina, do vertical and lateral disparities cause symmetrical or asymmetrical vergence responses of the two eyes? (1.954)
- Can target lines of disparate length elicit vergence movements? (1.952)
- Can target lines of unequal luminance elicit vergence movements? (1.952)
- How small a vertical target disparity will be corrected by vergence eye movements? (1.950)
- Can a vertical disparity too small to induce diplopia (0.5 min arc) initiate vergence eye movements? (1.955)

Tracking Eye Movements

- Is pursuit motion of the eyes dependent upon perception of motion? (1.947)
- In general, are eye movements in tracking highly efficient? (1.946; 1.959)
- Under what conditions is motion seen during pursuit eye movements? (5.202)
- Can an observer easily engage in smooth pursuit when no target is present? (1.915)
- Are involuntary anticipatory pursuit eye movement responses suppressible? Can they be produced under conditions of no target motion? Do they improve with practice? (1.948)
Latency
With unpredictable target movement, what is the approximate lag between major changes in target velocity and changes in tracking velocity? (1.906)

How soon before target motion do anticipatory eye movements begin? (1.939)

Can anticipatory eye movements during eye tracking be voluntarily suppressed, and does their occurrence vary with experience on the task? (1.939)

When an observer expects a target to move, is there a small lag after target movement before the eyes begin to move? (1.948)

When a previously stationary target begins to move horizontally at a constant velocity, by how many milliseconds will pursuit eye movement lag behind the target? (1.942)

Accuracy
When tracking a target, for what target speed (in deg/sec) can observers not accurately match or exceed a required fraction of actual target velocity? (1.945)

When observers are asked to match eye to target velocity, what percentage of target velocity will eye velocity actually be? (1.945)

Does quality of smooth pursuit tracking differ when observers actively control target movement and when they do not? (1.946)

What type of eye movements occur with unpredictable target movement? (1.906)

With increased target predictability, does phase lag increase or decrease? (1.959)

Do synchronization of the two eyes and fixation stability change as excursion and movement frequency increase? (7.505)

How does eye tracking proceed with a constant target velocity within a range of 25-30 deg/sec, and what may be required for velocities >30 deg/sec? (1.906)

How does overall gain in smooth-pursuit tracking compare for between foveal targets and targets 5-7 deg below the line of sight? (1.941)

Effects of luminance
Does a change in the contrast of predictable moving targets cause a change in smooth-pursuit velocity? (1.915)

What effect does target luminance have on the gain of tracking eye movements, and what happens to phase lag as target luminance decreases? (1.941)

For clearly visible targets, does the relationship of eye movement to target displacement vary much with target luminance? (1.959)

When target luminance is too low for foveal detection, what happens to visual tracking? (1.959)

Effects of practice
Is tracking of targets below the line of sight difficult without practice, and do subjects perform well? (1.941)

Does training readily improve performance on a task in which observers must move their eyes in a direction opposite to target movement? (1.937)

How do errors compare for tasks in which eye movements must be in the same direction and in the opposite direction as target motion? (1.937)

Saccadic Eye Movements
Latency
What are some factors that affect differences among observers in latency of saccadic eye movements? (1.906; 1.932; 1.935)

About how many milliseconds are there between the termination of a saccade and the "point of no return" for the next saccade? (8.115)

How long before initiation of a saccade must it be programmed, and how long thereafter can it be modified? (8.116)

Does wavelength (color) affect saccadic latency? (1.915)

What happens to saccadic latency as contrast increases? (1.915)

Do righthanded people respond more quickly with rightward or leftward saccades? (1.932)

What is the minimum interval between light onset and the initiation of abrupt saccadic movement? How long do eye movements persist after cessation of target motion or the disappearance of a light? (1.906)

Accuracy
During active search, what purpose is served by saccadic eye movement? (7.505)

Is there a systematic relationship between saccade speed and accuracy? (1.935)

At the end of each saccade, with what velocity, in arc minutes/sec, do the eyes drift toward the primary position? (1.931)

Do normal voluntary saccades generally overshoot or undershoot their mark? (1.933; 1.935)

If a target disappears late in the course of the first saccade, does the eye next move to the intended (or predicted) target position? (1.932)

Can successive saccades be executed with reasonable accuracy based on remembered target locations? (1.931)

When a target appears during free search of a visual field, is one or more than one saccade usually required to center the target on the fovea? (1.935)

In reading, what is the average length of a saccade? (8.116)

Generally, does the number of different targets have an effect on saccade initiation? (1.932)

When visual fields have no fixation positions, are saccades between remembered target points similar for dark versus illuminated fields? (1.931)

In making saccades between remembered target positions, how do movement durations and velocities with eyes closed compare with those in the dark? (1.931)
Effects of fatigue
Are large saccades more fatiguing than small ones? (1.908)
After how many very large (50-deg) or large (30-deg) sac-
cades will an observer be incapable of making normal sac-
cades? (1.908)
Do changes from smaller to larger saccades temporarily re-
store saccade accuracy when the observer is visually fa-
tigued? (1.908)
With visual fatigue, do more or fewer saccades have a dy-
namic overshoot, and are more saccades present with ab-
normally large dynamic overshoot? (1.908)

Effects of practice
Does initial eye movement latency improve with practice in
fixating an object on a retinal area other than the fovea?
(1.909)
Does practice reduce overall saccadic latency or errors?
(1.935)

Predictability
For a given observer, are the angular size and duration of
saccades predictable? (1.935)
What happens to secondary saccades when a spot to be fix-
ated disappears before the primary saccade ends? (1.935)
If observers are cued in advance to locations where targets
may appear, do speed and accuracy of initial saccades in-
crease relative to no cuing? What happens to speed and ac-
curacy if cues are not accurate? (1.935)
For both normal saccades and the small corrective saccades
which generally follow them, how does peak velocity of a
saccadic eye movement vary as a function of saccade length?
(1.933)
With step motion of a target, is the response always sac-
cadic eye movement? (1.906)
Is proximity a more powerful factor than contour and move-
ment in determining the first saccade? (1.934)

Microtremors
During search of a display, what is the amplitude in arc sec
and velocity in deg/sec of microtremors? (7.505)

Rotational Eye Movements
When the eye moves, where is its center of rotation?
(1.206)
How many of its three degrees of rotational freedom does
the eye use, i.e., how many parameters fully describe eye
position? (1.903)
With optically unaided (naked eye) viewing, about how many
degrees from straight ahead may the eye rotate with
comfort? (1.207)
With head tilt, how does average amplitude of ocular tor-
sion compare with average horizon displacement? (5.803)
What two distinct types of rotational eye movement occur
when an observer tilts the head laterally in a steady, uniform
manner? (1.959)

Do cyclofusional eye movements completely compensate
for a difference in tilt of left- and right-eye images? (1.956)

Eye-Head Movement Coordination
At all vibration frequencies, how do mean eye-in-space dis-
placements compare with head-in-space displacements?
(10.418)
Why may head translation induce eye rotation? (10.418)
Up to what vibration frequency is translational eye vibration
nearly the same along all three axes as head vibration?
(10.418)
What must occur with head rotation for the retinal image to
be stabilized? (1.928)
When observers rotate their heads while fixating a distant
target with both eyes, up to how many deg/sec does retinal
image position between the eyes change? What is the aver-
age retinal image speed within each eye? (1.913)
Is eye movement compensation for head rotation the same
for both eyes, and is it accurate when observers rotate their
heads while fixating a distant target with both eyes? (1.913;
1.958)
What is suggested by the fact that the amplitude of ocular
countertorsion is a function of the sine of the angle of head
tilt? (1.957)
What type of eye movement accompanies neck rotation?
(1.958)
When the head is tilted in a gravitational field, why do the
eyes undergo torsional movements? (1.959)
What happens to visual position constancy when optical or
other devices disrupt the normal relationship between head
(or eye) motion and the resultant retinal image motion?
(5.1120)

Optokinetic Response
In a normal environment, are vestibular and optokinetic
nystagmus congruent in direction and magnitude? (1.918)
What happens to the velocity of a pursuit eye movement
with sudden exposure to a moving surround? (1.924)
How do the gains of optokinetic nystagmus and optokinetic
after-nystagmus compare? (1.924)
What are the approximate values of the rise and fall time
constants of optokinetic after-nystagmus? (1.924)

Vestibulo-Ocular Response
Dynamics
What is the gain of the vestibulo-ocular reflex? (1.917)
What is the time constant of the primary vestibular input to
vestibular nystagmus? (1.918)
How are the directions of head and eye movement related in
the vestibulo-ocular reflex? (1.917)
For what vibration frequencies does the vestibulo-ocular re-
flex stabilize the eye in space? (10.418)
Above what head rotational velocity is compensation for velocity rather poor? (1.917)

At low frequencies (<3 Hz), does predictability of motion aid eye compensation for motion? (1.917)

What, approximately, is the maximum slow-phase velocity of the vestibulo-ocular reflex? (1.922)

For head rotation velocities of >200 deg/sec, what happens to quick-phase velocity? How long does the quick phase last? (1.922)

When an observer in the dark is not alert, what happens to the gain of compensatory eye movements? (1.926)

During rotation, are changes in gain specific to the plane within which visual information is distorted? (1.926)

For active rotational oscillations of the head that require a 36% change in gain, how long does it take for complete gain adaptation? (1.926)

Why must the gain of compensatory eye movements be varied when the head rotates? (1.926)

How does the amount of compensatory eye rotation (or gain of vestibular nystagmus) required to stabilize retinal image motion compare for near and distant objects? (1.928)

What is the mean adaptive time constant underlying the time course of declining nystagmus under constant acceleration (adaptation) and secondary nystagmus? (1.930)

What eye movement accompanies ferris-wheel rotation of the head and body about a horizontal axis? (1.958)

Visual suppression of vestibular nystagmus

Will visual suppression of vestibular nystagmus increase or decrease when continuous illumination is made intermittent? (1.918)

Is visual suppression of nystagmus greater in the pitch plane for forward or backward pitch? (1.918)

How does visual suppression of vestibular nystagmus in the yaw plane vary with frequency? (1.918)

Should the target image be moved to the retinal periphery to lessen visual suppression of vestibular nystagmus? (1.918)

What visual problems are caused by incomplete suppression of vestibular nystagmus? (1.920)

Is visual suppression of vestibular nystagmus greater when leaning the head forward or leaning it backward while rotating about a vertical axis through the head? (1.919)

When the head rotates sinusoidally about a vertical axis at a sinusoidal frequency of 0.2 Hz, does an observer have difficulty reading digits on a display? (1.920)

Effects of attention

Does relaxed attention weaken or strengthen vestibular nystagmus? (1.929)

Does increased mental alertness affect the duration of nystagmus? (1.923)

If a target must be visually fixated, is vestibular nystagmus weakened or strengthened during a mental arithmetic task? (1.929)

Reverse nystagmus

In an aircraft, when may reverse nystagmus occur? (1.921)

Is there a large discrepancy between actual and required angular eye velocity for retinal image stabilization in the roll plane, and how does the discrepancy change during rolling? (1.921)

How can a pilot minimize the effects of rotation in the roll plane? (1.921)

During aircraft spin, how well can the pilot visually follow the pitch plane? (1.921)

At the time of aircraft recovery from a roll, what happens to angular eye velocity in the roll plane? (1.921)

How much reverse nystagmus occurs in the yaw plane on recovery from aircraft spin, and what is the presumed reason? (1.921)

What probably counteracts the reverse nystagmus for pitch and yaw after aircraft spin? (1.921)

Is roll after-nystagmus counteracted, is it substantial, and what may it cause the pilot to do? (1.921)

Postrotary nystagmus

How long must the head be rotated at a constant velocity for postrotary nystagmus to occur on cessation of rotation? What is the result of this nystagmus on compensation? (1.923)

How does duration of postrotary nystagmus vary as a function of angular head velocity? (1.923)

Is duration of postrotary nystagmus appreciably decreased by fixating a stationary target? (1.923)

Does tilting the head to the side after rotation of the body increase or decrease the duration and gain of postrotary nystagmus? (1.923)

Does practice reduce nystagmus intensity? Do subjective measurements of its duration change? (1.923)

Vibration

Transmission of Vibration

Over what frequency range is vertical transmission of vibration through the torso greatest? (10.406)

How do seating conditions affect transmission of vibration to the body? (10.401)

At frequencies >5 Hz and <60 Hz, what does contact with seat back and shoulder strap do to head motions? (10.401; 10.406; 10.407; 10.408)

What is the frequency range containing significant motion in vibration environments? (10.402)

With atmospheric turbulence, for which frequencies do particularly high vibration acceleration amplitudes occur? (10.403)

The translational cockpit vibration spectrum typically compromises what frequency range? (10.403)
Effects on Visual Performance

How do sinusoidal and random vibrations of the same root mean square amplitude compare in effects on visual performance? (10.409)

What is the effect on visual performance of vibration of the display compared with vibration of the observer? (10.409)

Will collimating a display reduce effects on vision of translational motion of eye or image? (10.409)

Above what frequency is visual detection of target vibration independent of vibration frequency? (10.410)

At a constant viewing distance, how does average vibration acceleration for perceiving blur vary with vibration frequency? (10.410)

During whole-body vibration, what causes reduced visual performance? (10.417)

Above what frequency of vibration will display collimation not be beneficial? (10.417)

With a collimated helmet-mounted sight or display, are the vibration amplitudes in pitch and yaw of the helmet in an aircraft sufficient to affect observer performance? (10.419)

Effects on Visual Display Legibility

Under conditions of vibration, upon what does reading performance depend? (10.402)

When luminance contrast is high (> 90%), what may happen to reading performance during vibration? (10.407)

Under vibration conditions, does increased angular display size aid vision? (10.409)

For observer-only vibration at high frequencies, in what frequency range is display legibility loss greatest? (10.411)

What is the form of the functional relationship between vibration magnitude and reading errors for all but characters of large angular subtense? (10.413)

During vertical whole-body vibration, by how many horizontal character widths should small-subtense characters be separated to optimize display legibility? (10.409; 10.414)

Do a large number of pixels in a symbol aid reading speed, with or without vibration? (10.415)

With and without vibration, are Huddleston and Lincoln Mitre fonts read equally fast? (10.413)

What luminance contrast and symbol size yield minimum reading errors during vibration? (10.416)

What is the mathematical relationship between reading errors and luminance contrast with vibration? (10.416)

Under vibration conditions, do reading errors increase for characters with larger amounts of high-spatial-frequency information? (10.435)

Visual Information Representation and Coding

Size

What is the advantage of using visual angle or angular subtense rather than linear measurements to describe the size of objects? (1.240)

When the line of sight is not along the optical axis of a spectacle lens, what happens to image size and apparent location of objects? (1.206)

What two elements provide a means of specifying the size, shape, and distance to any object in a scene? (5.105)

Does the height of the horizon, relative to an observer, influence size perception? (5.108)

Under reduced viewing conditions, does the subtended visual angle of an object influence size and distance judgments? (5.104)

Do observers tend to underestimate, accurately estimate, or overestimate objective and projective size? (5.104)

In a diving attack on vehicles, how does target detection vary with target image size (or distance) and aircraft speed? (11.106)

What is the effect of element size in reading alphanumerics with pixel element displays? (11.114)

Shape and Slant

In judging perceived slant, do observers make judgments that appear to obey the rules of projective geometry? (5.113)

In estimating the slant of surfaces with texture, do observers underestimate, accurately estimate, or overestimate slant? (5.116)

With a constant element spacing on a textured surface, how does perceived slant vary as element size increases? (5.116)

Is slant judged more accurately for surfaces with regular or irregular texture? (5.116)

What is the magnitude of the correlation between perceived slant and perceived shape? (5.113)

Does shape discrimination vary systematically with area and illumination of forms? (6.311)
Orientation

Does target detection vary with target orientation? (1.624; 1.634)

What is one reason why patterns that differ only in orientation may not be readily identifiable? (6.309)

How precisely can an observer set a luminous line in the dark to the vertical or horizontal? (5.801)

What happens to the visual vertical as the head is tilted backward? (5.801; 5.802; 5.803)

How is the visual vertical influenced by returning the tilted head or body to an erect position after prolonged tilt? How do head and body tilt effects compare? (5.801)

How long after tilting the head for a prolonged time and then returning to vertical does the effect on the perceived vertical increase? (5.802)

What is the maximum advisable tilt from perpendicular to the line of sight of a television display screen when alphanumeric have to be read? (11.109)

Grouping

With familiar versus unfamiliar groupings, how do speed and accuracy in determining number of objects in view change? (7.523)

What are five Gestalt principles for predicting which elements of a display will be perceived as figure and which as ground? (6.301)

How does the size of an area influence preference for seeing it as figure, rather than ground? (6.301)

Color

By how many degrees do the optical and visual axes of the eye differ? What does this angular deviation do to the apparent distances of objects of different color? (1.209)

When display density is high, what is the advisable maximum number of color code levels? (7.513; 11.329)

In a system that displays television imagery of terrain, symbols are to be overlaid on the scene via computer to represent objects of various types. For these conditions, will the use of colored symbols enhance operator speed in finding targets? (7.519)

For what color stimuli is the visual field widest and response time shortest? For what color is the field narrowest and response time longest? (11.204)

As ambient illumination level increases, what happens to reaction time and color-naming errors for signal lights? (11.406)

How does reaction speed to red and green signals compare with that to yellow and white signals? (11.406)

What are recommended colors for alerting or advisory signals? (11.401)

How do response times compare for compatible and incompatible control-display arrangements? Is color coding of lights and switches recommended for either condition? (11.206)

In an alphanumeric display for use in a high ambient light environment, how do red LED characters compare with green ones of equal luminances in accuracy of character identification? How do larger, less luminous elements compare with smaller, more luminous ones? (11.123)

In selecting pointer, background, and panel lighting colors, which color combinations yield highest accuracy in reading with various lighting conditions? (11.125)

In designing a circular dial, is it useful to add color contrast to a dial of a given achromatic contrast when using (1) light symbols on a dark background and (2) dark symbols on a light background? (11.124)

(See Also: Color Sensitivity)

Depth

Cues to depth

How good a depth cue is eye convergence? (1.808)

What factors can characterize perspective structure in a display? (5.105)

How does vertical position influence distance perception? (5.901)

When a moving observer is attempting to judge relative distances by using motion parallax, what is the function of visual fixation point? (5.902)

With central vision, what distance cue is dominant up to 6.4 meters? (5.904)

How do highlights and shading, respectively, indicate the surface configuration of objects? (5.901)

How can surface texture aid in depth discrimination? (11.221)

With a moving target, what happens to apparent position of the target in depth when luminance is different in the two eyes? (5.931)

For static peripheral viewing, up to what distance are stereoscopic cues effective? What is the dominant cue at longer distances? (5.904)

What are the response limits for lateral disparity? (1.952)

For observers with excellent stereoacuity and widely spaced eyes, up to what distance is retinal image disparity an effective depth cue? (5.905)

Under what natural viewing conditions do vertical retinal image disparities arise? (5.906)

How high can retinal disparity be, when eye movement is restricted, before judged target depth departs from predictions based on parallax geometry? (5.916)

At large retinal image disparities where targets are seen as double and accurate depth judgments are not possible, what judgments can be made, provided stereoscopic depth perception is still possible? (5.930)

Are hysteresis effects as pronounced for vertical disparity as for horizontal disparity? (5.937)

Stereoacuity

What stereoacuity tests are commonly available? (5.917)
Above what illumination level is stereoacuity at a maximum? (5.918; 5.919)

How rapid can motion in depth be before reducing stereoacuity? (5.918)

What effect on stereoacuity is caused by the presence of depth reference cues? (5.922)

Are results similar for stereoacuity when measured with stereoscopic targets and with real objects? (5.917; 5.929)

Motion

Motion detection

How does sensitivity to vertical-axis movement compare with sensitivity to horizontal-axis movement? (5.206)

In general, is motion detection improved more by increasing illumination or by increasing target exposure time? (5.207)

When a moving pattern has no unique parts, what may be the effect upon detection of motion direction? (6.316)

Apparent motion

What conditions of flash duration, temporal separation, and spatial separation induce apparent motion? (1.938; 5.401; 5.402; 5.403)

Is there a consistent tendency to see apparent motion between elements of like configuration? (5.402)

In apparent motion where several paths are possible, how important to path selection are feature properties of stimulus elements? (5.402)

In stroboscopic motion, how does critical sampling frequency vary with velocity? (5.404)

Relative motion

What is the least discriminable angular velocity difference between two moving objects? (5.203)

Does the presence of reference stimuli improve detection of object-relative motion? (5.203)

For a target moving against a textured background, what is the minimum detectable angular velocity and how does it compare with that against a featureless or dark background? (5.201)

For target paths of equal length, can observers accurately match target velocities? (5.203; 5.210)

When optical flow arises from observer motion, how does an object's flow vary with its distance from the observer? (5.502)

From what point does the optical flow appear to expand outward? (5.502)

For simulated aircraft landings, how much assistance in determining aim point is provided by the optical flow pattern? (5.102)

In simulated aircraft landings, what pilot judgment (distance, height, or glideslope angle) is affected by amount of detail in visual scenes? Is judgment better with more scene details? (5.103)

Can linear motion of the visible environment, such as a moving or swinging room, induce self-motion? (5.501)

Collision prediction

When an object is approaching from straight ahead, does amount of error in estimating collision time vary with approach velocity? (5.214)

When observers must judge the probability of collision of two objects on intersecting paths, and one path is occluded before the intersection point: (a) What type of object motion yields the most accurate prediction? (b) Is prediction accurate when one object rapidly slows down? (c) When one target is slowing down or speeding up, how is predicted collision time affected? (5.213)

When two small aircraft are on a collision course, does the probability of one aircraft's detecting the other increase or decrease as crossing angle increases? (7.613)

Text

Dialogue design

What are some special recommendations for the design of formal query languages relative to (1) layering, (2) semantic confusion, and (3) term specificity? (11.315)

In designing a query language, what are some general recommendations for (1) data organization, (2) quantifiers, (3) query feedback, (4) abbreviations, and (5) dialogue transaction? (11.315)

What are some special recommendations for the design of informal query languages relative to dialogue clarification and use of quasi-natural language? (11.315)

What are some considerations in designing sequence control for dialogue? (11.319)

What are some guidelines for error detection, message design, and error correction? (11.320)

In presenting data in person-computer dialogue, what are some recommendations for (1) display of text data, (2) display of alphanumeric data, (3) multicolumns displays, and (4) grammatical style? (11.326)

In presenting numeric data, what are some recommendations for formatting numerical information to facilitate comprehension and comparison of the data by the user? (11.325)

In presenting tabular data, what are some guidelines for (1) formatting data into lists, and (2) justification of lists? (11.327)

Character font size and spacing

What is the probability of correctly reading alphanumeric and geometric symbols on CRT and large-screen projected displays with different modular organizations, exposure times, and visibility? (7.109)

Do 5x7 and 7x9 pixel symbols produce an equal number of errors and equal reading speed? (10.415)

What is the minimum vertical symbol resolution, in TV lines, required for high accuracy in character recognition and how does accuracy vary with angular size of characters? (11.108)
For CRT alphanumerics, what is the maximum allowable off-axis viewing angle? the recommended minimum number of TV lines per character? the recommended minimum angular subtense of characters? How does bandwidth influence legibility? (11.109)

What is the preferred resolution for television-displayed characters in terms of scan lines per symbol height? (11.111)

What stroke widths relative to character width of symbols on television are best for legibility (accuracy) and reading speed? (11.112)

On fixed displays of alphanumeric characters, what range of active area (i.e., element size/inter-element spacing), is acceptable in unstressed conditions? What range is acceptable in difficult viewing conditions? (11.115)

With dot-matrix displays, how does text reading rate vary with the ratio of element size to element spacing? (11.116)

With and without vibration, are Huddleston and Lincoln Mitre fonts read equally fast? (10.415)

Do a large number of pixels in a symbol aid reading speed, with and without vibration? (10.415)

Reading

How does the shape of elements (dots) in a pixel display influence search time and reading time, and what shape is best? (11.207)

What are the characteristics of eye fixations and saccades text reading? (8.101)

In reading, what is the average duration of eye fixations? (8.116)

During reading, as viewing distance increases, what happens to fixation duration? (8.111)

In reading, how does eye fixation duration compare for long and short words? (8.113)

In reading, does average number of eye fixations per word increase with word length? (8.114)

When reading, do saccades generally fall on blank spaces? (8.116)

Pictures vs. words

How do pictures and words compare as to speed with which they can be categorized? (8.106)

On the average, can a presented picture be named as rapidly, as a presented printed word can be pronounced? (8.106)

Numeric Representation

For scales with various spacing between numbers, what is the approximate number of graduation marks above which reading errors no longer appreciably decrease? (11.212; 11.214)

For a circular dial, is accuracy maximized during interpolation by a large number of minor graduation marks? (11.215)

How much time is required to read semi-circular scales and what accuracy can be expected? (11.216)

How much time is required to read counters and what accuracy can be expected? (11.217)

What are the design guidelines for graphic presentation of (1) labels, (2) axis subdivisions and scales, (3) displayed values, (4) symbols? (11.328)

Binocular Displays

Binocular vs. Monocular Vision

What is probability summation in vision, and what does it imply? (1.801)

How do contrast sensitivity, detection of weak lights, visual acuity, and form recognition (in simple displays) compare for binocular versus monocular vision? (1.801)

Under binocular rather than monocular viewing conditions, how much does contrast sensitivity improve? (1.802)

When the luminances in the two eyes' visual fields are very different, what is the effect upon binocular brightness? (1.803)

How do monocular approaches to landing an aircraft compare in height and in steepness to binocular landings? (3.101)

How does workload compare for monocular and binocular aircraft landings? (5.101)

How does relative accommodation compare for monocular and binocular viewing with a target oscillating in depth? (1.229)

How does pupil size with both eyes stimulated compare with pupil size when only one eye is stimulated? (1.232)

Geometrical Considerations

What is the range of interpupillary distances (IPD) found in the adult population? (1.208)

What happens to interpupillary distance when looking into an instrument whose optical axes diverge so that the eye axes must converge? (1.208)

In using an optical device with an exit pupil, where should the exit pupil of the device be located relative to the eye? (1.209)

What is the formula for convergence angle? (5.905)

How is convergence in diopters obtained from convergence in radians? (1.808)

Image Alignment

What conditions produce binocular rivalry? (1.804)

Under what conditions may binocular suppression occur? (1.807)

When the images in the two eyes are too far out of alignment to permit fusion, what may happen to target appearance? (1.813)
What are the maximum recommended tolerances, based on comfort in use, for vertical and horizontal misalignment? (1.813; 5.911)

With axial misalignment of a binocular device, how does alignment vary over the field of view? (1.813)

What is the largest recommended vertical disparity for displays? (5.906)

Is double vision (diplopia) due to vertical disparity more disturbing and uncomfortable with complex or real scenes than when backgrounds are homogeneous? (5.906)

When targets appear double due to large image disparity, does ability to accurately localize targets in depth cease? (5.930)

How does the maximum tolerable rotational misalignment of a stereoscopic display compare for displays with almost no details and for displays with considerable detail? (5.913)

In a stereoscopic display, how does tolerance for rotational misalignment vary with target size? (5.913)

Can the two eyes rotate relatively to each other to compensate for rotational misalignment of stereoscopic displays? (5.913)

Speech Intelligibility

Message Context

In a noisy situation, can context aid message reception? (7.208)

Under difficult listening conditions, why are sentences more intelligible than isolated words? (8.301)

In noise, does the recognition of common words exceed that of rarely used words? (8.308)

Are effects of the recognizability of words due to commonality and to word length independent or dependent? (8.308)

Speech Interruption

What happens to the intelligibility of interrupted speech as the speech-time fraction increases? (8.402)

Age

At what age does speech perceptibility begin to markedly decline? (8.401)

Speech Level and Playback Speed

For a high-quality communication system, how much dynamic range is needed, and how much is sufficient for practiced talkers and listeners? (8.203)

What is the speed range over which recorded speech can be played back with little effect on intelligibility? (8.404)

Signal-to-Noise Relationships

What happens to speech intelligibility when speech level exceeds 100 dB? (8.305)

How does recognition of speech vary with signal-to-noise ratio? (8.305)

For speech in noise, how much improvement in intelligibility can be expected with increased vocal force? (8.312)

Phase

Putting speech out of phase in the two ears without altering noise is equivalent to increasing speech power by what amount? (8.314)

Up to how much is word intelligibility improved by having signal or noise 180 deg out-of-phase in the two ears rather than in phase? (8.314)

Spatial Separation

What spatial separation of signal and noise sources yields best intelligibility? (8.314)

How does accuracy in responding to one of two simultaneous auditory messages vary with spatial separation of the messages? (7.210)

How does speech intelligibility compare when speech and noise appear to arise from the same location and when they seem to arise from different locations? (8.314)

Masking characteristics of noise

What kind of noise is the best masker for speech? (8.306)

In general, does high-frequency noise mask the low-frequency components of speech? (8.306)

When noise is more intense than speech, which is the better masker, low-frequency or high-frequency noise? (8.306)

When noise is less intense than speech, which is more effective as a masker, low-frequency bands, or midrange to high-frequency bands? (8.306)

For a speech message, is a speech distractor more or less effective than noise? (8.307)

Earplug Use

For very high noise levels, do earplugs aid intelligibility? (8.312)

For noise that raises the signal threshold at least 60 dB, do earplugs increase speech intelligibility? (8.316)

For relatively quiet conditions, do earplugs decrease intelligibility of speech? (8.316)

How much can earplugs designated for a specific noise spectrum aid intelligibility? (8.316)
At all signal-to-noise levels in a reverberating room, at what noise level do earplugs aid rather than hinder speech intelligibility? (8.316)

Techniques for Improving Speech Intelligibility

What are seven methods to improve the intelligibility of speech in noise? (8.304; 8.312)

Does use of a smaller set of words (vocabulary or alternatives) increase intelligibility in noise? (8.309)

For speech in noise, how much improvement in intelligibility can be expected with repetition? (8.312)

Is intelligibility affected when speech is clipped after it is mixed with noise? (8.313)

How much of the speech wave can be clipped off before listeners fall below 90% correct identification of isolated words? (8.313)

In quiet conditions, up to how much peak clipping can occur without decreasing intelligibility? (8.313)

Does having the noise and speech come from different locations aid intelligibility? (8.315)

Speech Processing

Characteristics of Speech Signals

What are two ways of describing a spectrum envelope of speech? (8.201)

In speech analysis, which acoustic invariants are sought? (8.201)

Can individual components of speech be isolated by a spectrum envelope? (8.201)

In speech, most of the energy falls below what frequency? (8.201)

At frequencies over 600 Hz, what happens to speech energy as frequency increases? (8.204)

What is the frequency range in which the intensity of human speech is greatest and in which 300 Hz band is speech energy concentrated? (8.204)

At 1 m from a talker, what is long-term RMS speech pressure in dB for whispering and for shouting? (8.203)

At 1 m from a talker, what is the dB range from minimum normal level to maximum normal level for peak instantaneous levels, and how much does it vary across talkers? (8.203)

Which sounds are on the average the loudest, vowels or consonants? (8.203)

On the average, how much less are measured speech intensities for females than for males? How do they compare in the 100-1000 Hz range? above 1000 Hz? (8.204)

Why do analyses of speech spectrograms usually concentrate on consonants? (8.201)

What is the range of duration of vowels/sec and consonants/sec in speech? (8.201)

In normal speech, what is the range of phonemes/sec? (8.201)

Which have rapidly changing aperiodic elements, vowels or consonants? (8.201)

How do glides compare with vowels in length and in intensity? (8.205)

Speech Production

At normal rates of speech, about how many times a second do lips and tongue change position? (8.201)

What is the usual rate of laryngeal pulses/sec for males and for females? (8.201)

How do fricatives and stops compare in manner of production? (8.205)

What are the joint effects of the number of words in the response and the number of syllables per word in a reaction time task? (8.208)

How much does response time increase for each additional word required in a response? (8.208)

Non-speech Signals

Signal Detectability

For a 1000 Hz tone at 20 dB or above, what is amplitude resolution (minimum perceptible intensity difference) in dB? (5.1001)

For a reference of 0 dB = 0.0002 dyne/cm², what is the dynamic range in dB of hearing? (5.1001)

For what pure tone frequency is sensitivity greatest? (2.301)

From 20-1000 Hz and above 1000 Hz, respectively, what is auditory frequency resolution? (5.1001)

With earphone listening, does reversing the phase of the noise or of the signal greatly enhance signal detection in noise? (2.314)

How does the minimum audible pressure compare for tones above and below 6000 Hz with free-field versus earphone listening? (2.302)

Does signal detectability vary when signal and noise come from different locations? (8.301)

Effects of duration

How does discrimination of the duration of noise bursts vary with signal bandwidth, amplitude, and waveform? (2.503)

Which is more easily integrated into a single percept, simultaneous signals from two locations? signals from a single location? signals separated in time? (6.401)

By how large an interval can two sequential auditory stimuli be separated and still be heard as a single, fused sound rather than as two sounds? (6.407)

How short must the interval be between two brief sounds for the sounds to be heard as distinctly separate? (6.408)
Does slowing presentation rate aid in hearing a sequence of tones as a single coherent series? (6.403)

Effects of interaural phase
Are interaural phase effects more pronounced at higher or at lower signal-to-noise ratios? (8.314)
About how much lower are binaural thresholds than monaural ones? How does this difference vary with frequency? (2.301)
How can interaural phase differences between signal and mask affect signal detection? (2.306)
Does monaural or binaural noise increase more rapidly with sound pressure level? (2.608)
In listening for a signal with noise present, under what conditions do interaural phase effects occur? (2.609)
Do increasing the interaural phase difference of a signal and a distractor affect intelligibility? (8.301)

Underwater listening
How do absolute underwater sound thresholds compare with those in air? (2.301)
What happens to the difference between underwater and in-air hearing thresholds as frequency increases? (2.304)

Masking and Interference
Up to how much attenuation at one ear, relative to the other ear, can be caused by the sound shadow of the head? (2.801)
How does pressure on the ears from earphones induce low-frequency masking noise? (2.302)
Which masks more effectively, a sound lower or higher in frequency than the sound to be masked? (2.306; 2.309; 8.301)
How does masking by narrow-band masks and wide-band masks vary with signal delay? (2.306)
How wide apart can two tones be and still produce strong beats with each other? What does this do to detectability? (2.309; 8.301)
To increase signal masking in noise, should wide-band noise (200-400 Hz) be used, or is a low-frequency band of the same power better? (8.306)
How much masking may be obtained when signal and mask are presented to opposite ears? (2.309)
For signals affected by a mask, how does threshold vary with signal frequency? (2.308)
How do pulse and steady-state masks compare in effectiveness? (2.313)
What is interaural masking, and where does the mask interfere with the signal? (2.313)
Does interaural masking show symmetry with frequency? (2.313)
For how long after mask presentation does masking continue? How does it decay within that time? (2.313)
Echoes
In normal rooms, by how much time do echoes follow original sounds and how much are they attenuated from the original signal? (2.817)
By how much time must an echo follow a sound for it to be heard as a separate or independent sound? (2.817)

Environmentally Induced Shifts in Listener Sensitivity
What does exposure to sounds do, temporarily, to sensitivity to nearby frequencies? (10.311)
For what signal frequency relative to the noise center frequency, does maximum temporary threshold shift (TTS) occur? (10.311)
How does temporary threshold shift vary with exposure duration? (10.311)
How does degree of temporary threshold shift vary with sound pressure level (SPL) of sounds such as white noise, pulsed tones, clicks, or gunshots? (10.312)
Exposure to low-frequency (<2000 Hz) noise may cause a permanent loss in sensitivity for what range of frequencies? (10.313)
What three factors should be considered in assessing the risk of permanent damage to hearing from sound exposure? (10.313)
Does broadband or narrow-band noise produce more temporary threshold shift? (10.313)
Below what frequency do pure tones increase temporary threshold shift? (10.313)
How does noise-induced permanent threshold shift vary with exposure intensity and with years of exposure? (10.314)
How does hearing loss vary with the frequency and bandwidth of the noise inducing it? (10.314; 10.315)
Exposure to what kind of noise produces the greatest hearing loss? (10.314)
After how many years of noise exposure may hearing loss level off? (10.315)
Recovery
How quickly does recovery from temporary threshold shifts begin after noise stops, and what is the time course of recovery? (10.311)
About how many hours may be required for complete recovery from long-term exposure to 4.0 Hz-centered noise? (10.313)
Susceptibility
Does degree of an individual’s hearing loss at one frequency permit prediction of susceptibility to loss at another frequency? (10.315)
Localization of Signals
What are the two main cues for localizing sounds? (2.810)
What is the shape of the region within which sound source localization is confusing? (2.805)

Where in the sound spectrum are front-back localization errors most common? (2.813)

Under free-field conditions, where on the horizontal plane are sound localization errors smallest? (2.813)

What does occluding one ear do to the perceived locus of sounds? (2.810)

For wide-band noise and for narrow-band signals, how does localization error compare for both ears versus one ear? (2.810)

Do echoes normally interfere with localization of sound sources? (2.817)

When visual and auditory information on localization is contradictory, how much can vision bias hearing? (5.1006)

When optical devices produce visual field displacement, causing a discrepancy between visual and auditory localization, do sounds then seem to come from the apparent visual sound source? (5.1127)

Does it aid accuracy of reception of one of two simultaneous auditory displays to give visual cues to message source location? (7.210)

With the head fixed in position, how does sound source localization change when listeners are blindfolded? (2.815)

How do earphones affect the perceived location of sounds? (8.314)

Is there any perceptual adaptation to an artificially reversed auditory space? (5.1127)

Intensity cues

For what sound frequencies is interaural intensity difference an important cue to sound localization? (2.803)

Above what sound frequency does the human head provide an effective shadow so that interaural intensity differences can serve as a primary cue for sound localization? (2.804)

Temporal cues

What is the maximum possible difference in time of arrival to the two ears of sounds from a small sound source? (2.801)

Up to what frequency is interaural time-of-arrival difference an important cue in locating a pure tone? (2.801)

What is the minimum duration of sounds for which head movements can aid localization? (2.801)

For a pure 3900 Hz tone with only interaural time differences as a cue, how well can listeners locate sound sources? (2.808; 5.1006)

What can be done to high-frequency complex stimuli so that a listener can extract time-of-arrival differences to determine the location of a sound source? (2.808)

Pitch (Signal Frequency)

Other things being equal, how does pitch vary with changes in frequency? (2.701)

Loudness (Signal Intensity)

How does loudness depend on bandwidth? (2.606)

How does loudness of tones heard in the two ears compare with loudness when only one ear is used? (2.601; 2.608)

For what repetition rates does a pulse train sound louder than a continuous sound of equal total energy? (2.610)

What is loudness adaptation, and how does it differ from fatigue and habituation? (2.612)

In an aircraft, at which noise level in dB does noise change from acceptable to uncomfortable? (10.302)

Vestibular Displays

Vestibular Sensitivity

What is the absolute threshold of the vestibular sense? (5.1001)

What is the range of input frequencies for which cupula displacement is a function of head velocity? (3.203)

By how many degrees may cupula displacement lead or lag head velocity? (3.203)

What illusion may be produced by linear acceleration? (3.210)

How well can people detect constant velocity in the absence of visual cues? (3.210)

Vibration

Below how many m/sec^2 are vibration magnitudes not perceptible? (10.401)

Between 2 and 100 Hz, for both seated and standing observers, what is the approximate threshold in m/sec^2 root mean square for perception of whole-body vibration? (10.401)

Are seated subjects more or less sensitive to horizontal (x- and y-axis) vibration than standing subjects? (10.427)

Approximately how much does vibration frequency have to change to be noticeable 50% of the time? (5.1001)

What vibration magnitude and duration will generally cause severe discomfort? (10.401; 10.402; 10.426; 10.428; 10.430)

At and above what level are vibration magnitudes assumed to be dangerous? (10.401; 10.402)

Does sustained normal acceleration affect vibration transmission through the torso? (10.406)

At what frequencies are local vibrations to the hands associated with circulatory, bone, joint, muscle, and nerve injuries? (10.402)

(See also Visual displays; Transmission of vibration)
Acceleration

As positive (toe-to-head) accelerations increase from 1-4 g do both the fovea and the periphery become less sensitive to contrast? (10,901)

What happens to contrast sensitivity as either longitudinal acceleration (toe-to-head) or transverse acceleration increases? (10,904)

For the seated subject, are physiological limits lower for vertical or transverse acceleration? (10,903)

With vertical acceleration of a seated subject, what happens to vision? (10,903)

At what acceleration level is reading of aircraft instruments potentially affected? (10,905)

Under high illumination (150 cd/m²), what happens to errors in reading aircraft instruments as acceleration increases up to 4 g? (10,905)

If acceleration lasts more than 6-7 seconds, how much does acceleration tolerance increase? (10,906)

With positive g acceleration of 4-6 seconds, at what levels does (a) loss of peripheral vision occur, (b) blackout occur, and (c) unconsciousness occur? (10,406)

During tolerance testing for positive g acceleration, up to how many multiples of g have been used for short durations with live human subjects? (10,906)

How do thresholds for direction of motion and sensation of tilt compare? (3.206)

Cutaneous (Tactile) Displays

Cutaneous Sensitivity

What is an adequate stimulus for pressure on the skin? (3.101)

How widely spaced must two points be on the thigh or on the fingertips to discriminate one point from two points? (two-point resolution) (3.101)

For which frequencies of a vibratory signal is the base of the thumb most sensitive? (3.108)

How long should tactile pulses be to optimize detectability for cueing purposes? (3.116)

When two tactile pulses are physically separated and must be perceived as discrete, how close in time can they occur? (3.118)

Pattern Discrimination

Is the skin capable of acute spatial resolving power? (3.101)

For vibrotactile pattern perception how does accuracy of perception compare for static presentation versus other modes? (6.502; 6.503)

How does identification accuracy compare for equal-sized characters for Braille and vibrotactile presentation? (6.502; 6.506)

How does identification accuracy for vibrotactile letter patterns vary with intensity for short and for longer presentation times? (6.504)

When vibrating pins present letters to the fingertips, how does accuracy compare using one finger versus spreading the pattern over two fingers? (6.507)

In discrimination learning of vibrotactile patterns that vary in locus, duration, and intensity, how much practice is required to attain ~90% accuracy? (6.510)

In discriminating two-dimensional shapes, how well can alphabet characters be discriminated by active fingertip motion versus touching without motion? How well are geometric outline shapes discriminated by moving the palm over the surface? twisting an object in the palm? with target resting on the palm? (6.607)

What is the effect on perceived roughness as skin temperature changes? (6.604)

How does the judged roughness of a surface of constant texture vary as the shear force parallel to the surface decreases? (6.605)
Thermal Sensitivity

How quickly does adaptation to warmth reach an asymptote? (3.101)

Controls

Feel

Use of Gloves

If controls are used while wearing gloves, what effects may be expected on operator performance with various types of controls? (12.426)

When speed of operation is important, how do different types of gloves compare for different types of controls? (12.427)

How do gloves influence the maximum torque that can be applied to rotary controls with various control orientations and knob diameters? (12.428)

When keyboard data entry is required while wearing gloves, how important is auditory feedback? What key travel and resistance should be considered when both speed and accuracy are important? (12.429)

How does glove-wearing influence the discriminability of fluted knobs? How well can a glove wearer discriminate knob rim surface textures? (12.430)

Coding of Controls

What are the major coding methods used for controls, and what are their advantages and disadvantages? (12.424)

When pushbutton controls are used, are there known shapes for developing coding sets that have high discriminability by touch alone? (12.425)

When felt by hand, how is the curvature of a convex object's horizontal edge judged relative to its true curvature, and (2) how is the curvature of a concave object's edge judged relative to its true curvature? (6.609)

When continuous control rotary knobs are used, how much must they differ in diameter to avoid confusion between them? (12.417)

When rotary selector controls are used under conditions where they must be identified and adjusted without looking at them, is a wide range of shapes available that require little or no learning? In terms of total operating time, are there significant differences between coded and non-coded controls? (12.418)

When a rotary control is used under conditions where it cannot be seen, how do straight-sided and tapered knobs compare in setting accuracy? (12.419)

Control Placement and Grouping

As a practical rule, how far apart should controls be spaced in front of the operator? in areas to the back and sides of the operator? (9.208)

In designing a workstation, what are the principles for grouping and arranging controls for optimizing operator performance? (12.301)

In designing a system that has both displays and controls, how should controls be arranged to ensure unambiguous associations of controls with their displays and predictable display movements with system responses? (12.302)

In a system containing multiple controls of various types, what are the recommended minimum separations between them by type of control? (12.303)

In designing workspaces for standing and for seated operators, what are the reach envelopes for placement of controls? (12.304)

Hand-activated Controls

Pushbuttons/Legend Switches

When pushbutton controls are used, how does error rate vary with the diameter and orientation of the pushbuttons and the space between them? (12.401)

What are the human design factors for legend switches, and what are the specific design requirements for them? (12.403)

In designing transilluminated pushbutton indicators to be used in low ambient illumination where rapid reading is essential, how do white or red colors compare with green or amber for speed of response? (12.402)

Keyboards/Keysets

How important are word arrangement and keyboard position in data entry? (11.318)

In terms of operator speed and accuracy in data entry, how do calculator keyboard and telephone arrangements compare? (12.406)

How do conventional and membrane keyboards compare in terms of operator speed and accuracy? (12.407)

In selecting among different keyboard arrangements, what arrangements will be expected to yield best performance in terms of speed and accuracy? (12.408)

What range of keyboard slope is acceptable? (12.409)

In designing keyboards for data entry, how do speed and accuracy of use vary with key size, required activation force, key displacement, and feedback that indicates activation? (12.410)
What are some of the design considerations for computer-driven control/display panels and multi-function keyboards? (12.411)

Does level of vibration affect performance under vibration with decimal input devices? (10.424)

How do ten-button keyset, rotary controls, and thumbwheels compare, with and without turbulence, and what would be a desirable key activation pressure for the keyset keys? (12.412)

How, in terms of speed, accuracy, and operator preference, do ten-button keysets, matrix keyboard, vertical levers, and rotary selectors compare for data entry? (12.415)

Under vertical axis vibration at 0.17 Hz with a magnitude of 0.24 m/sec², is performance in keyboard digit punching affected by the vibration? (10.425)

Toggle Switches

When toggle switches are used, how does error rate vary with the spacing between switches, the switch orientation, and the direction of throw? (12.404)

What system factors influence toggle switch activation time, and how does activation time vary with them? (12.405)

Dials and Rotary Selectors

When rotary switch selectors are to be used, what are the design requirements for scale/pointer, positioning, and shape? (12.413)

When rotary control knobs are used, how does performance vary with the separation between control knob edges and with knob diameter? (12.418)

When dials are read at leisure, how does reading accuracy vary with dial size? (11.213)

Under quick check conditions, what dial size is optimal? (11.213)

Warnings and Alarms

Visual Alarms

What happens to detection probability as the number of possible signals increases from one to four? (1.627)

By how much should a visual warning precede a visual signal to reduce reaction time? (5.1014)

What is the probability of correctly responding to annunciators and discrete status lights? What are some of the factors affecting response time? (7.107)

What are some factors affecting the failure to respond to annunciator lights? How do failure probabilities vary with increasing number of annunciators? (7.115)

What must be avoided to make a warning signal salient enough to attract attention? (11.402)

For all dial sizes, how does error vary as scale intervals are made smaller? (11.213)

When concentric (ganged) continuous rotary controls are used, how does operator performance vary with knob thickness and diameter? (12.420)

Cursor Controls/Joysticks

For fine continuous positioning control of a cursor, what are some available design options? (11.321)

How do commonly available cursor control devices compare in cursor positioning speed and accuracy, and will device selection involve a speed/accuracy tradeoff? (12.422)

What type of joystick is best for position control of a cursor on a display? (9.201)

Comparisons Among Controls

In selecting a control type for data entry, how do rotary selectors, thumbwheels, and digital pushbuttons compare in operator speed and errors? (12.414)

How do ten-button keysets, rotary controls, and thumbwheels compare, with and without turbulence? What would be a desirable key activation pressure for the keyset keys? (12.412)

How, in terms of speed, accuracy, and operator preference, do ten-button keysets, matrix keyboard, vertical levers, and rotary selectors compare for data entry? (12.415)

During vibration, do subjects prefer the pushbutton matrix or the thumbwheel array, and how do these compare in speed and accuracy? (10.424)

What are the advantages and disadvantages of touch screens as data input devices across different design approaches? (12.423)

Why, during whole-body z-axis vibration, is pursuit tracking with a rotary control no better than with a joystick? (10.423)

Coding

For selection of information coding techniques, what are the recommended applications, limitations, and design guidelines for the following code types: (1) color, (2) shape, (3) blinking, (4) brightness, and (5) alphanumeric? (11.329)

What are the recommended colors for signals that are high-priority alerting? cautionary? advisory? (11.401)

How do reaction times vary to colored signal lights? (11.406)

For warning signals, where warning is given by turn on (onset) or turn off (offset) of lights, which gives the most rapid response for foveal presentations? (11.405)
Brightness

What is the minimum brightness recommended for visual alerting signals relative to other visual displays? (11.401)

Does the surround brightness level at day or at night influence detection time or speed for warning lights? (11.408)

Size Specifications

What is the recommended height-to-width ratio and stroke width for warning signal legends? (11.401)

What is the minimum recommended legend height for warning indicators? (11.401)

For some messages, at what height in degrees does reaction time to a warning-message character no longer decrease? (11.409)

Under normal operating conditions, how important is caution warning-light size? (11.409)

Under worst-case conditions, what happens to reaction time as warning-light size increases? (11.409)

Position in the Field of View

How close to the operator's line of sight should warning signals be? (11.401)

If a master caution light is used, does location of a light nearer the center of the field of view result in quicker detection? (11.408)

What additional equipment is recommended when visual signals are located in the peripheral visual field? (11.401)

Auditory Alarms

Tone

Does separating sound sources aid attention to one of them? (7.209)

For an auditory choice reaction time task, will preceding the auditory signal by an auditory warning improve performance? (5.1014)

Is selective attention possible for integral stimulus dimensions, such as loudness, pitch, and timbre? (7.206)

Does a more intense warning signal decrease reaction time? (9.108)

For what auditory frequency is detection better in the dark than in the light? (5.1004)

For auditory alerts, what is the recommended frequency range of multiple frequencies? (11.401)

How far above the amplitude of the masked threshold should the amplitude of an auditory signal be? (11.401)

If an auditory warning signal is not directional, should it be presented to both ears? to the dominant ear? (11.401)

Does use of a two-tone, warbling, master auditory warning signal yield reaction times shorter than a one-tone master or visual master alone? (11.413)

Voice

In general, how does response speed to most voice warnings compare with that to tone warnings? (11.416)

What should precede voice messages? (11.401)

What is recommended about the language and phraseology of voice signals? (11.401)

How do response times compare for semantic (contracted sentence) and a shorter keyword version of a voice warning message? (11.417)

What is the effect on speed of reaction of a warning tone preceding either a semantic or a keyword voice warning when time is measured from start of event? (11.417)

Tactile Alarms

Why are tactile alerts not recommended? (11.401)

For a vibrotactile warning system, does sensitivity of the wrist compare favorably with that of different locations other than the head? (3.106)

Combined Warning Displays

Multiple-Modality vs. Single-Modality Displays

How does detection during vigilance with both visual and auditory (simultaneous) signals compare to that with either alone? (7.410)

How does reaction time for combined auditory and visual signals compare with that for visual signals only? (5.1013; 11.415)

Does pairing a visual stimulus with an auditory stimulus decrease reaction time? (5.1012)

Does it aid reception of simultaneous auditory displays to give visual cues to message source location? (7.210)

Auditory vs. Visual Precedence

For how long should warning signals be presented? (11.401)

In designing guidelines for alerting signals, what is the basis for assigning priority to signals? (11.401)

What does an auditory signal preceding a visual signal do to reaction time, and what should be the interval between them? (5.1014)

What should be the time order of onset of master visual and master aural alerts? (11.421)

Interaction Effects in Audio-Visual Displays

What effect does moderate auditory stimulation have on white light sensitivity? (5.1003)
Can an auditory stimulus influence sensitivity to a visual stimulus, even though no response to the auditory stimulus is required? (5.1003)

With either visual or auditory warning, what happens to reaction time when warning signal strength is increased? (5.1015)

What does a visual signal following an auditory signal do to reaction time? (5.1014)

Comparison of Auditory and Visual Warnings

How does intense light stimuli in the photopic vision range compare with sound with regard to speed of response? (11.404)

How do reaction times to visual and auditory stimuli compare? (5.1012)

Memory

What position in a visually presented list yields the poorest recall? (4.102)

How does the time taken to switch from element to element in a visual display compare with switching time in memory? (7.218)

In about how many seconds after an observation does an observer's memory of it become seriously deficient? (7.316)

If the items in a heard list are acoustically similar, does this help or harm recall? (4.101)

What position in a heard list yields poorest recall? (4.102)

How does auditory presentation of an additional item before presentation of a list (a prefix) affect item recall? (4.102)

Learning

What does the power law of learning say about the effect of practice on the instantaneous rate of learning? (4.201)

How does giving participants knowledge of results (feedback) affect performance in motor tasks? (9.404)

Do experimental results indicate that it is easy or difficult to ignore learned automatic responses? (7.520)

Attention and Allocation of Resources

Selective Attention

How does selective attention performance compare with divided attention performance? (7.216)

Is selective attention possible for integral stimulus dimensions, such as loudness, pitch, and timbre? (7.206; 7.213)

Does separating sound sources aid attention to one of them? (7.209)

When the type of textual material of target and distractor differ, is performance improved? (7.209; 7.213)

Does presenting targets and distractors in different sound frequency bands aid attention to targets? (7.209)

If speaker gender for distractor and target differs, is attention to the target aided? (7.209)

How does ability to listen selectively vary with age? (7.209)

For a given channel, how does detectability vary as the number of signals increases in a competing channel? (7.214)

Divided Attention

Does dividing attention between two channels, rather than attending to only one, decrease probability of detecting a target? (7.214; 7.216)

Is attention shift between different locations in a visual display, when the eyes do not move, continuous or discontinuous? (7.218)

As task compatibility in concurrent search tasks increases, does interference between them increase? (7.221)

In general, about how many independent displays can be effectively monitored by one observer, and what two things impose this limit? (7.110; 7.314)

What happens to detection probability as the number of possible signals increases from one to four? (1.627)

Visual Search

In scanning an alphanumeric matrix for a specific target, upon what does rate of search depend? (7.502)
Are eye fixations more frequent on display areas containing higher information density? (7.505)

In searching an alphanumeric matrix, does searching for the absence of a target take as long as searching for target presence? (7.502)

How do the number and density of background characters affect visual search time on a display? (7.514; 7.517)

In designing a system for finding and attacking ground targets from the air, what factors must be considered when estimating the probability that targets will be detected? (7.501)

Does the frequency of eye movement increase or decrease when a target is recognized? (7.505)

Is redundant coding (more than one coding method) valuable for reducing search time and errors when visual search is involved? What happens with redundant coding at high levels of display density? (7.511; 11.202; 11.203)

How does the time required to determine how many objects are in the field of view vary with the number of objects? (7.512; 7.523)

Is a larger number of gray levels more important for recognition or for search? (7.604)

In general, how many shades of gray are adequate for simple search and how many are required for recognition tasks? (7.604)

Monitoring and Supervisory Control

In a supervisory control system, what does the human interactive system do? (6.309; 7.301)

What are some of the disadvantages of supervisory control? (7.301)

Once a process has been correctly adjusted so that there is no residual drift due to control-setting error, what determines the operator's background sampling rate? (7.302)

During sampling behavior, does an operator attempt to estimate higher derivatives? (7.302)

What is evoked in place of habitual behavior when unforeseen events occur which have a high cost of errors? (7.303)

Under conditions of manual control, especially under high work loads, what system conditions are likely to go unnoticed? (7.304)

What are three reasons why allowing the operator to have actual manual control of a system or process results in better monitoring and response to failures? (7.304)

If a display is driven by a zero-mean Gaussian band-limited signal, how large a deviation (in standard deviations) will always be detected? (7.305)

Upon what do intermediate-loop processes depend? (7.305)

With a constantly monitored display, is an increase or a decrease in parameter value detected sooner? (7.305)

What probability of correctly operating a continuous control while monitoring dynamic displays is realistic for simple and multiple displays at various levels of required accuracy, visibility, and available viewing time? (7.113)

How does sampling rate vary with the bandwidth of the monitored process? (7.314)

What happens to sampling frequency as a system approaches the tolerable limit of system operation? (7.314)

In designing a computer-assisted system, how should incentives, task duration, task complexity, mental load, and pacing be arranged to optimize operator efficiency? (7.801; 7.803)

What are five general, high-level cognitive and computational functions involved in allocation of decision functions between human and computer? (7.721)

Vigilance

For a higher event rate, how does response time vary with false alarms, correct rejections, correct detections, and misses? (7.404)

In a vigilance task, how does reaction time to signals vary with variability in intersignal interval? (7.406; 7.412)

What effect do longer signal durations have on signal detectability and on vigilance decrement? (7.406)

What is the relationship between signal strength during vigilance and detection probability? (7.406; 7.415)

In a vigilance task, at what signal frequency is detection probability maximum? (7.406)

During vigilance, do multiple signal sources aid performance? (7.410)

In vigilance for sequential events, how many categories yield best accuracy? (7.413)

During vigilance sessions, how do hit rates and false alarm rates compare for single- and multiple-response conditions? (7.414)

During vigilance, how do visual, auditory, and cutaneous modes compare? (7.410; 7.412)

In a vigilance task, how does vigilance decrement compare for the auditory signals alone, visual signals alone, and combined (visual-auditory) signals? (7.409)

In a vigilance task, does adding an auditory signal to a visual one improve detection probability? (7.409; 7.410)

Measures of Vigilance

What method is used to measure accuracy of detection? (7.402)

Do values of physiological measures, such as skin conductance, heart rate, respiration rate, and muscle tension, correlate with vigilance performance? (7.413)

Vigilance Decrement

What is vigilance decrement and how long a period is required before it occurs? (7.401)

In a vigilance task, what does a higher probability of a signal do to detection probability and to vigilance decrement? (7.406)
With knowledge that vigilance will be of long duration, how quickly does decrement occur and is it increased over no-knowledge conditions? (7.410)

Does irrelevant information harm vigilance? (7.412)

Does adrenaline level during vigilance correlate with vigilance decrement? (7.413)

In vigilance tasks, when is performance impairment likely with noise? (10.302)

Techniques for Improving Vigilance

Do short breaks help during vigilance tasks? (7.410)

Is performance during vigilance aided by isolation? (7.410)

Can target detectability in a vigilance task be kept high by adaptive techniques based on performance, and is there still some loss over time? (7.410)

How can the number of categories displayed simultaneously be increased to at least three without performance loss? (7.412)

In general, does vigilance practice aid performance? (7.414; 7.416)

Does signal cueing aid vigilance? (7.416)

In systems where sustained attention is required, what are the upper time and temperature limits for unimpaired performance? (10.601)

Workload

Channel Sensitivity and Capacity

What are the best operating ranges of vision (wavelength, color, illumination), audition (frequency, dB range), taste (concentration), and the vestibular sense (head-to-foot acceleration)? (5.1001)

How many channels does the human operator have? (7.301)

What is the transmission rate for visual nerve fibers, and how does it compare with how much information/sec a person can absorb and interpret? (4.301)

What is the ear’s transmission rate for random sound? for loud sounds? for spoken English? (4.301)

How many bits of information is the limit of channel capacity according to studies on vision, audition, and taste? (4.302)

In terms of ability to distinguish two successive stimuli as successive, what is the minimum time between stimuli for vision, audition, touch, taste, and smell? (5.1001)

Workload Theory

What does “workload” mean? (7.704)

What are some of the operator behaviors resulting from display of too much information at one time? (11.332)

Is there a demonstrated relationship between workload and system operability? (7.711)

Under conditions of manual control, especially under heavy workloads, what system conditions are likely to go unnoticed? (7.304)

In workload assessment, what does the multiple resources model assume? (7.202)

In workload assessment, what three dimensions defining separate resources have been proposed? (7.202)

Workload Measurement

What are the three broad categories of techniques used to assess workload? (7.704)

What information do global measures of workload provide? (7.703)

What determines the level of diagnosticity required in a situation? (7.703)

In workload assessment, how are sensitivity criteria validated? (7.701)

In workload assessment, what is indicated by a significant interaction between difficulty and priority? (7.203)

What is the relationship between perceived effort and spare mental capacity? (7.709)

What impact does skill level have on workload measurement? (7.702)

In workload assessment, which of the two, a difficult motor task or a difficult cognitive task, competes for resources with tracking? (7.203)

What two things are simply defined by the performance operating characteristic (POC) curve, and how are they measured or shown on the plot? (7.205)

Primary and secondary tasks

At what workload levels are primary-task measures insensitive to workload? (7.701)

In workload assessment, what are secondary tasks? (7.709; 7.719)

How is performance on a secondary task related to the difficulty of a primary task? (7.709)

What is a common criticism of secondary tasks by operators? (7.719)

To ensure sensitivity to workload associated with a particular primary task, what characteristics must a secondary task possess? (7.720; 7.710; 7.720; 7.721)

How much practice should be given on a secondary task? (7.721)

How can the peripheral interference associated with response competition be avoided while ensuring the use of appropriate processing resources? (7.721)

In workload assessment, why should several levels of secondary-task difficulty be employed? (7.721)

Can mental arithmetic and tracking, encoding and tracking, and vocal response and tracking be carried out without interfering with one another? (7.204)

What three variables should be considered when observers must keep a running mental tally for several categories of information? (7.412)
Subjective workload measures
How is mental workload measured? (7.402)
How diagnostic of workload are subjective techniques? (7.701)
What is the Subjective Workload Assessment Technique (SWAT) designed to do? (7.712)
At what workload level are SWAT ratings much better than primary task performance for indicating level of workload? (7.714)

Physiological measures
What is the commonly used physiological response for measuring workload? (7.704)
How sensitive is eye pupil diameter relative to other indicators of workload? (7.728)
As a percentage range, how much does pupil diameter vary over a period of several seconds when stimulus conditions do not change? (7.728)
What happens to the diameter of the eye's pupil when a person engages in information processing? (7.728)

Reaction Time

What is reaction time, in milliseconds, to make a simple muscular movement to a visual stimulus? an auditory stimulus? a tactile stimulus (for a stimulated finger)? (5.1001; 5.1012; 5.1013)
What sense modality has the shortest reaction time? (5.1012; 9.108; 11.404)
How does visual target contrast affect reaction time? (9.108)
Under dim light with good brightness contrast, how do reaction times for different colors compare? (11.406)
What part of the visual field yields the shortest reaction time? (9.108)
In a choice reaction time task, how does reaction time vary with stimulus probability when stimulus and response are highly compatible? when stimulus and response are incompatible? (9.113; 9.116)
Are vocal responses faster than manual responses? (9.108; 9.120)
How do the number of words in a response and the number of syllables per word combine in a reaction-time task? (8.208)
How do reaction times compare for one-handed and two-handed tasks of equal difficulty? (9.202)
As target distance increases, do hand and eye response time both increase? (9.206)
Does pairing a visual stimulus with an auditory stimulus decrease reaction time? (5.1012)

Speed-Accuracy Tradeoffs

As a general rule, what is the relationship between the speed of a response and its accuracy? (9.105)
When observers are instructed to be more accurate, what happens to their reaction time? (9.105)
In designing a system where very rapid operator responses are essential, how does speed of response vary with the number of bits of information that must be used to make decisions? (9.106)

Effects of Number of Alternatives

How does reaction time for manual responses vary with the number of stimulus alternatives and with stimulus probability? (5.119; 9.120)
What does the presence of redundant stimulus information do to reaction time in a choice reaction time task? (11.420)

Effects of Warning Signals

For an auditory choice reaction time task, will an auditory warning prior to the auditory signal improve performance? (5.1014)
What is the relationship between reaction time and the length of interval between a warning signal and a subsequent stimulus? (9.108)
In reaction-time tasks, when reaction time decreases due to a warning signal, what generally happens to error frequency? (5.1014)
With either visual or auditory warning, what happens to reaction time when warning signal strength is increased? (5.1015)
(See also Warning and alarms)

Effects of Feedback, Motivation, and Training

Does seeing the hand moving to a target position aid response time and accuracy? (9.206)
When movements are guided by visual feedback of hand position, what is the formula for movement time as a function of movement amplitude and target width? (9.207)
If subjects are rewarded for quick rather than accurate responses, what happens to their reaction time? (9.105)
Can subjects be trained to meet specified reaction times? (9.105)
Tracking Control Performance

Is tracking with most cutaneous displays as good as with visual displays? (9.538)

With practice, is tracking with three cutaneous vibrators in a row similar in error to tracking with three lamps in a row? (9.538)

When the feedback signal in a stationary compensatory tracking task consists of only the error signal, how does tracking accuracy compare for visual and tactile displays? (9.501)

When a tone in each ear indicates error direction, with higher pitch for greater error, is control of two independent axes better with one visual and one auditory than with both visual? (9.538)

How does auditory intensity tracking error compare with visual tracking error? (9.538)

How does auditory tracking compare with visual, when error direction is indicated by a tone to the right or left ear, and error size by interruption rate of the tone? (9.538)

With tracking of auditory pitch, which is better, compensatory or pursuit tracking? (9.538)

How does tracking error compare for a tracked target to right and to left of the fixation point? (9.534)

How does tracking error compare for targets above the fixation point and below it? (9.534)

Tracking Performance with Time Delay

How short a pure transmission delay (transport delay) can affect tracking? (9.516)

Does the human operator have to detect a transport delay for it to hurt tracking? (9.516)

With increasing transport delay in a zero-order tracking system, what happens to human control? (9.516)

Is it difficult for human operators to predict vehicle location when the system has lag sources other than that of the operator? (9.510)

Does training with up to 200 msec delays still benefit later actual flying performance? (9.517)

How does performance with motion cues compare to performance without cues for delays up to 300 msec? (9.517)

Manual Control with Vibration

Is there a model for predicting the effects of vibration on manual control that can predict performance within ±1 standard deviation for a range of electrical control stick gains, forcing functions, display gains, and vibration axes? (10.421)

When a continuous manual control task is performed for an extended duration, how does the proportion of the tracking error related to the movement of the target vary with duration? (10.434)

For what range of whole-body vibration is manual pursuit tracking most sensitive? (10.422)

With sinusoidal vibration, does collimating a display to place it at optical infinity improve tracking performance? (10.417)

With no vibration, are reading errors fewer with greater pixel definition? (10.415)

What is the approximate frequency of major body resonance at which tracking is most affected by z-axis vibration? (10.422)

How do zero-order and first-order control groups compare in tracking during whole-body z-axis vibration? (10.422)

In zero-order (simple gain) pursuit tracking during whole-body z-axis vibration, how much of tracking error is due to direct transmission of vibration through the body into the control system? (10.422)

In pursuit tracking during z-axis vibration, is direct transmission of vibration of the body into the control system (breakthrough) as large with rotary controls as with joysticks? (10.423)

During pursuit tracking with z-axis whole-body vibration, how does high-frequency phase lag for an isotonic joystick compare with that for either isometric or isotonic control knobs? (10.423)

In zero-order (simple gain) pursuit tracking during whole-body z-axis vibration, how much of tracking error is due to direct transmission of vibration through the body into the control system? (10.422)

With vibration, how does tracking error attributable to breakthrough in pursuit tracking with simple gain (zero-order dynamics) compare to that with pure integration (first-order dynamics)? (10.422)

With vertical axis vibration under ship-motion conditions, what vibration magnitudes affect tracking and navigational plotting? (10.425)
Control Order and Noise in Tracking

Does tracking error increase with control order? (9.536)
What general statement can be made about tracking performance as tracking system order increases? (9.524)
Do tracking tests discriminate between pilots and non-pilots? (7.612)
Why are higher-order tracking systems extremely difficult to control? (9.526)
Does integrated tracking error differ appreciably for position control (zero-order) and rate control (first-order) systems for pursuit and for compensatory tracking? (9.521)
Which system, position or rate control, is worse for lower frequencies and for higher frequencies? (9.521)
How do operators using zero-order and first-order control compare in tracking during whole-body z-axis vibration? (10.422)
Can use of separate controls for position and velocity for one display cursor aid tracking? (9.532)
What happens to tracking performance in going from a first-order system to one of higher order? (9.520)
As compared to continuous control, how well do discrete-state controllers perform with third-order or noisy systems? (9.526)
With what order of system is bang-bang control inappropriate? (9.524)
In dual-axis control, does a second order (rate) system yield longer or higher error than a first order (position) system? (9.536)
How does target acquisition (response to a step input) vary with increasing system order? (9.520)
Does an integrated display and control yield lower error than a separated control and display? (9.536)
For what order of system is a redundant display useful? (9.532)
What effect does 120-dB intermittent and random noise have on continuous-tracking performance? (10.302)
In a tracking situation, what is the upper limit on number of decisions/sec when there is some spatial uncertainty? (9.510)

System Gain and Tracking Performance

How may gain be expressed in a way that permits comparison among different systems? (9.513)
Is there an optimum gain in compensatory tracking? (9.528)
What is meant by "optimum" control gain? (9.515)
In pursuit tracking with whole-body z-axis vibration, how does optimal control gain for minimum total tracking error compare with optimal gain with no vibration? (10.423)
In pursuit tracking during z-axis vibration, is tracking improved by lowering control gain? (10.423)
Why does tracking performance decrease only slightly as system gain increases beyond optimum gain? (9.515)
In a tracking system, can time delay and gain be varied independently? (9.509)
What is the effect upon the operator of low control gain? (9.515)
When system gain is low, why is tracking hurt by increasing lags and why, when gain is high, may tracking benefit from longer lags? (9.518)
What problems may occur with a high-gain system? (9.515)
In tracking with a joystick, as system gain increases, what happens to the average force applied to the stick? (9.515)
Why can a pilot not distinguish between, the closed-loop r' frequencies and for higher frequencies? (9.521)
Gain of the aircraft control system and the closed-loop gain of the display? (9.513)

Techniques for Aiding Tracking Performance

For better tracking, how can system dynamics be changed to a lower order to obtain a rate-aided system? (9.526)
In terms of system order, how does quickening affect apparent system order? (9.525)
How does quickening a display aid a tracking operator? (9.525)
Is information about higher-order derivatives, such as velocity and acceleration, useful in tracking? (9.532)
Is it useful to display derivative information as position? (9.532)
Does it help tracking to display velocity on a cursor? (9.532)
Does a peripheral display of velocity, such as a barber pole, aid tracking? (9.532)
In a manually controlled system, how easily can the operator perceive higher-order derivatives? (9.510)
Can operators involved in manual tracking predict acceleration directly when not receiving vestibular cues? (9.510; 9.539)
What is pseudo-quickening, and what effect has it on system control and tracking error? (9.525)
In a quickened display, what effect do time constraints, bandwidth, and time span of prediction have on tracking accuracy? (9.525)
What problems may occur in operating a system with a quickened display that requires a second display? (9.525)
Cyclical Variations in Human Performance

Characteristics of Cyclical Variations

What is the period of a circadian rhythm? (10.701)
In humans, what is the average length of the period of the ultradian rhythm? (10.703)
In long-duration missions or in tasks extending over time zones, what are the expected effects of schedule changes? (10.710; 10.712; 10.713)
About how much difference is there between maximum and minimum skin temperature in the daytime? (10.702)
How does heat conductance during early night (1800-2400 hr) compare with that in the morning (0600-1200)? (10.702)
Does core body temperature appreciably increase during work relative to rest? (10.702)
Do subjects preferring morning work differ in phase of body temperature rhythm or in performance rhythms from those preferring evening work? (10.711)

Effects of Fatigue on Performance

What three types of anomalous eye movement result from visual fatigue? (1.908)
In a multi-person system, where operations are around the clock every day and rotating shifts are used, what are the expected effects of occasional sleep loss and fatigue? (10.801; 10.802; 10.803; 10.804; 10.806; 10.808; 10.810; 10.811)
How do fatigue, noise, sleep loss, heat, and time of day affect reaction time, gaps, and errors in multiple-choice serial reaction time? (10.704; 10.705; 10.706)
How does loss of the first half of a night's sleep compare with loss of the second half for recall of presented material? (10.809)

Human Reliability and Error Prediction

In system design, how does one apply the technique for human error rate prediction (THERP) to analyze human reliability? (7.103)
What human performance data and sources are available for human reliability analyses? (7.104)
What is realistic for the probability of correctly setting continuous controls to given values while monitoring a dynamic display, or of doing so while tracking with continuous controls? (7.114)
What are some of the factors affecting the probability of error in reading and recording information from various types of display devices? What are the nominal probabilities for error and their ranges? (7.116)
What is the probability of correctly activating a discrete control while reading a meter or other dynamic display, and what is the effect on performance of control display configuration, modular organization, visibility, required accuracy, and viewing time? (7.112)
What is the probability of correctly responding to annunciators and discrete status lights, and what are some of the factors affecting response? (7.107)
What is the probability of correctly reading meters for various conditions (different numbers of meters, meter visibility, viewing time, etc.)? (7.108)
How much time is required, and what accuracy can be expected, in reading counters? (11.217)
Index

Abduction, 1,905. See also Eye movements

Aberration, optical
chromatic, 1,203, 1,212, 5,934
refractive errors, 1,204, 1,205
spherical, 1,211

Abney effect, 1,707, 1,708
Abney’s Law, 1,109

Absolute threshold, 1,656
Absorption defect
in color vision, 1,726

Absorption filter, 1,108
AC/A ratio, 1,231. See also Accommodation; convergence

Acceleration
angular (rotary)
accretion detection threshold, 3,208
effect on eye movements, 1,930, 1,958
peristaltic procedures, 3,205
postrotary procedures, 3,205
sensory magnitude, 3,208
and visual acuity 1,603, 10,902
control of, 9,519
display of, 9,532
illusions due to, 3,210
elevation illusion, 3,210, 5,504, 5,505
oculogyral illusion, 3,210, 5,504, 5,505
oculogyral illusion, 1,921, 3,205, 3,208, 3,209
See also Vestibular illusions

linear
acceleration detection threshold, 3,207
consciousness limits, 10,906
dial reading and, 10,905
gravity baseline, 3,206
illuminator body tilt and, 5,801
methods for study of, 3,206
misperception of, 3,210
sensory magnitude, 3,207
visual effects, 1,904, 10,906
contrast sensitivity, 10,903, 10,904
judgment of visual vertical, 5,801
target detection, 10,901, 0,904
as vestibular stimulus, 3,201-3,203
visual, 5,213

Accessory stimulation effects
auditory accessory stimulus, 5,1003, 5,1005, 5,1014
visual accessory stimulus, 5,1004, 5,1005

Accommodation
accommodation/convergence relation, 1,231
effect of decoupling, 1,808
aging and, 1,222, 1,230
aids to, 7,507
amplitude, 1,222
contrast sensitivity and, 1,628, 1,639
dark focus, 1,222, 1,223, 1,226, 1,228, 7,507
definition, 1,222
as depth cue, 5,901
distance of target and, 1,228-1,230
empty-field myopia, 1,222, 1,223, 1,226, 1,228, 7,507
latency and time course, 1,222, 1,229, 1,230
luminance level and, 1,226, 1,228
measurement of, 1,222
monocular vs. binocular viewing, 1,224, 1,227, 1,229, 1,230
normal fluctuation in, 1,224, 1,225
resting position (dark focus), 1,222, 1,223, 1,226, 1,228
with spherical aberration, 1,211
structure of target and, 1,226
vergence eye movements and, 1,953
visual acuity and, 1,603
See also Focus (eye)

Achromatic color, 1,706
Achromatic contrast, 1,601
Achromatic induction, 1,707, 1,713, 1,715
Mach bands, 1,716

Achromatic lens, 1,211, 1,212
Achromatic lightness scale, 1,721
Achromatopsia, 1,726
Acoustic coupler, 2,104
Acoustic memory, 4,102
factors affecting, summarized, 4,101

Acoustic reflex, 2,202

Activation errors
error classification, 11,310
hand controls, 7,111, 7,114, 12,401, 12,404, 12,420

Acuity
comparison of sensory modalities, 5,1001, 5,1002
See also Spatial resolution; tactile acuity; visual acuity

Adaptation
auditory, 6,318
loudness, 2,601, 2,612
pitch, 2,701, 2,707, 2,710, 6,318
cutaneous, 3,101, 3,116
feature-selective, 6,318
direction of motion, 5,212, 6,318
orientation, 1,652, 6,318
size or spatial frequency, 1,626, 1,628, 1,650, 1,651, 6,318,
6,319
kinesthetic, 3,308, 3,310
to loss of visual position constancy, 5,1101, 5,1120, 5,1124,
5,1126
to spatial rearrangement, 5,1101, 5,1127
auditory, 5,1101, 5,1127
inversion and left-right reversal, 5,1101, 5,1114
prismatic displacement, 5,1103-5,1113, 5,1119
underwater distortion, 5,1101, 5,1124, 5,1126
visual tilt, 5,1115-5,1119
See also Space perception, adaptation of
thermal, 3,101, 3,123, 3,124
vestibular, 3,209
visual, 6,318
chromatic, 1,705, 1,710
dark, 1,406, 1,413. See also Dark adaptation
light, 1,405. See also Light adaptation
motion, 5,212, 6,318
orientation-specific, 1,652, 6,318
size or spatial-frequency specific, 1,626, 1,628, 1,650,
1,651, 6,318, 6,319
See also Aftereffects

Adaptation pitch, 2,710
Adaptation syndrome, 10,101
Adaptive-task technique
in workload measurement, 7,722
Additivity
in color mixture, 1.723

Adduction, 1.902, 1.905. See also Eye movements

Aerial perspective, 5.901

Afferent nerves
cutaneous, 3.102-3.104

Aftereffects
auditory, 6.318, 6.320
contingent, 1.309, 1.320
feature-selective, 6.318-6.320
haptic
surface orientation, 5.806
kinesthetic, 3.301, 3.321
arm position, 3.301, 3.303, 3.310, 3.321
head position
rotation, 2.814, 3.303, 3.308, 3.321
tilt, 3.303, 5.801, 5.802
postural, 3.308, 3.321, 5.801, 5.802
weight lifting, 3.321
object motion, 5.114, 5.202, 5.212, 5.503, 6.318, 6.320
self-motion, 5.503
of spatial rearrangement
auditory, 5.1127
visual, 5.1101-5.1103, 5.1115
See also Space perception, adaptation of vestibular
body or head tilt, 2.814, 3.303, 3.308, 3.321
postrotary, 3.210
visual
angles, 6.320
color, 1.309, 6.318, 6.320
curvature, 6.317, 6.318, 6.320
figural, 5.1123, 6.317-6.320
orientation (tilt), 1.652, 5.801, 5.902, 5.805, 6.318, 6.320
retinal disparity, 6.320
spatial frequency, 6.318-6.320
See also Adaptation; motion aftereffects

Afterimages
auditory, 2.710
visual, 1.309, 5.215

Afternystagmus, 1.921, 1.924. See also Postrotary nystagmus

Aging
accommodation and, 1.222, 1.230
attention and, 7.217
auditory sensitivity and, 2.301, 2.303
color perception and, 1.707
contrast sensitivity and, 1.603, 1.623
joint-movement detection and, 3.304
lens changes and, 1.222
noise effects and, 10.306
selective listening and, 7.212
speech intelligibility and, 8.304, 8.315, 8.401
vigilance and, 7.413
visual acuity and, 1.603, 1.623
visual field size and, 1.236

Aiding
of control, 9.520, 9.521, 9.526
correlated with quickening, 9.526
decision aiding, 7.307, 11.323, 11.324

Aircraft recognition
of aspect, 11.107
See also Target recognition

Aircraft simulators. See Simulation

Aircraft spin
vestibulo-ocular nystagmus and, 1.921

Aircraft vibration
fixed wing, 10.403
rotary wing, 10.404
See also Vibration

Air-to-air search, 7.612, 7.613
modeling of, 7.606, 7.610

Air-to-ground detection
modeling of, 7.605, 7.607

Airy's disk, 1.213

Alerting signals, 11.401, 11.410, 11.421. See also Warning signals

Alertness, See Cyclical variations; sleep; stress; stressors

Alpha movement, 5.401
See also Space perception, adaptation of

Alphanumeric coding
vestibular computer displays, 11.329, 11.330

Alphanumeric displays
body or head tilt, 2.814, 3.303, 3.308, 3.321
postrotary, 3.210
visual
angles, 6.320
color, 1.309, 6.318, 6.320
curvature, 6.317, 6.318, 6.320
color, 1.309, 6.318, 6.320
color-matrix, 11.108, 11.123, 11.126, 11.148
See also Dot-matrix displays

Ambiguous figures, 4.106, 6.001, 6.306, 6.316
Ambiguous movement, 6.316
Ambiguous patterns, 6.306
Ambyopia, 1.932
Amel font, 11.209
Ames remote manipulator, 9.201
Ames window. See Trapezoidal window illusion
Anomalia, 1.204
Amodal perception, 6.310
Amplitude distortion
of speech, 8.313

Amplitude envelope
auditory localization and, 2.801, 2.805
pitch and, 2.701, 2.705
Amplitude modulation
detection of, for amplitude-modulated noise, 2.501
localization of amplitude-modulated tones, 2.808
loudness adaptation and, 2.612
pitch of amplitude-modulated noise, 2.701, 2.710, 2.711
rate perception, 2.711, 5.1020
Amplitude resolution
comparison of sensory modalities, 5.1001
See also Intensity discrimination
Amplitude spectrum, 2.102
Ampulla, 3.201
Anaglyph, 5.914
Analog meter
reading accuracy, 7.116
Anechoic chamber, 2.801
Angular acceleration. See Acceleration; angular
Aniseikonia, 5.906, 5.907, 5.909
adaptation to, 1.927, 5.509, 5.1101, 5.1121, 5.1122
limits for stereops, 5.931
Anisotropia, 1.205
Annunciator displays, 7.107, 7.115
Anomalouscope, 1.726
Anorthoscopic perception, 6.305
Anthropometry
count reach envelopes, 12.304
Anticipatory eye movements, 1.948. See also Eye movements
Anxiety
performance effects, 7.803, 10.202
state vs. trait anxiety, 7.802, 7.803
as a stressor, 10.103, 10.202
AOC. See Attention operating characteristic curve
Aperture size
image quality and, 1.218, 1.219
Apparent contrast, 7.601
Apparent motion, 5.401-5.407
alpha movement, 5.401
with ambiguous (multiple) stimuli, 5.402, 5.406
beta movement, 5.401, 5.403
correspondence problem, 5.402, 5.406
critical sampling frequency for stroboscopic targets, 5.404
delta movement, 5.401
displacement threshold, compared to real motion, 5.208
exposure duration and, 5.401, 5.402, 11.410
with eye movements, 5.202, 5.215
gamma movement, 5.401
grouping of pattern elements in, 6.302
interstimulus-onset interval and, 5.405-5.407
Korte's Laws, 5.401-5.403, 5.405
low-spatial-frequency information and, 6.302
luminance and, 5.401, 5.403
with nonidentical stimuli, 5.402, 5.406
perceptual organization and, 5.406
in peripheral vision, 11.410
phi movement, 5.401
with random-dot patterns, 5.407
spatial separation and, 5.401-5.403, 5.407, 11.410
spatiotemporal filtering and, 5.404, 5.405
tactile pattern display mode, 6.501
tactile stimuli, 3.101, 3.120
time-distance tradeoffs, 5.402
time interval and, 5.401-5.403, 5.405, 5.407, 11.410
velocity of, 5.403
vernier acuity with, 5.220
visual and cutaneous compared, 3.120
visual persistence and, 5.404, 5.405
wagon wheel effect, 5.401
See also Motion aftereffects; motion illusions
Apparent size
with apparent object motion, 5.401
convergence angle and, 1.808
with lenses, 1.206
See also Size perception
Apparent straightahead (borelight)
auditory, 2.814, 5.1113. See also Auditory localization
eccentric gaze and, 5.606, 5.802
after head rotation, 2.814, 3.308, 3.321
kinesthetic, 5.308, 5.321
postural persistence and, 5.308, 5.321
with prismatic displacement of visual field, 5.1113
visual, 5.606, 5.802, 5.1113
See also Egocentric localization; spatial localization
Aqueous humor, 1.201, 1.203
light absorption, 1.202
refractive index, 1.203, 1.210
Armed Forces vision tester, 5.917
Arousal
definition, 10.101, 10.102
noise and, 10.301
performance and, 7.801, 10.104
personality type and, 7.804
theories of, 10.101
vigilance and, 7.401
See also Attention; stress; stressors
Articulation. See Speech; articulation
Articulation Index, 8.317
Artificial Illuminants, 1.102, 1.107
as a stressor, 10.103, 10.202
spectral distribution, 1.102
Aspect recognition
of aircraft silhouettes, 11.107
Assimilation
color, 1.718
lightness induction, 1.713
Astigmatism, 1.205, 1.634
ambiguous (multiple) stimulus, 5.402, 5.405
Atmospheric attenuation
atmospheric modulation transfer function, 7.601
as a depth cue, 5.901
sighting range and, 7.602, 7.603, 7.605
Atmospheric modulation transfer function, 7.601
Attention
attention operating characteristic (AOC) curve, 7.201, 7.220
differentiated vs. undifferentiated, 7.201, 7.204
divided, 7.206, 7.213-7.217, 7.219-7.221
models of, 7.201, 7.204
selective, 7.206-7.212, 7.219, 7.221
switching of, 7.218
See also Attention cueing; divided attention; mental resources;
monitoring; selective listening; supervisory control;
vigilance; visual search; warning signals; workload
Attentional directors. See Warning signals
Attentional set
auditory grouping and, 6.403
Attention cueing, 9.117, 9.118, 9.535
Attention operating characteristic (AOC) curve, 7.201, 7.220
Aubert effect, 3.210, 5.804
Aubert-Fleishl paradox, 5.215
Audiovisual tracking, 9.538
Audition
anatomy and physiology, 2.201, 2.202
auditory memory, 4.101, 4.102
basic characteristics, 5.1001
binaural inhibition, 2.305
binaural summation, 2.305
bone conduction, 2.304
compared to other sensory modalities, 5.1001, 5.1002, 5.1017, 5.1018
79
Audition (continued)

divided attention, 7.206, 7.213-7.217. See also Divided attention
interactions with other senses
detection, 5.1003-5.1005
reaction time, 5.1012-5.1015
spatial localization, 5.1006-5.1009, 5.1113, 5.1127
temporal perception, 5.1018-5.1021
localization of sound, 2.801-2.817
loudness, 2.601-2.613
perceptual organization, 6.401-6.408
pitch, 2.701-2.711
selective listening, 7.206-7.212. See also Selective listening sensitivity
in noise, 2.305-2.315
in quiet, 2.301-2.305
shading, 7.207, 7.208
speech. See Speech intelligibility
temporal resolution, 2.501-2.504, 6.406
two-click threshold, 6.408
See also Auditory localization; auditory masking; auditory perception; auditory sensitivity; loudness; pitch (auditory)

Auditory detection. See Auditory sensitivity

Auditory displays, 9.538

Auditory lateralization
definition, 2.801
lateralization performance. See Auditory localization

Auditory localization
with auditory rearrangement of space, 5.1127
azimuth and, 2.812
background information, 2.801
basis for, 2.801
binaural cues, 2.801, 5.1006
of clicks, 2.807, 2.809, 2.814, 2.815, 2.817
compared with cutaneous localization, 3.118, 3.119, 5.1006
compared with visual localization, 2.815, 3.119
placement (mislocalization), 2.814
distance judgment, 2.801
duration and, 2.811
with earphone presentation, 2.804-2.809, 2.811, 2.817
compared to free-field presentation, 2.804
echo suppression, 2.817
eye movement effects, 2.815
of familiar sources, 2.801
frequency and, 2.801, 2.805, 2.806, 2.808, 2.810, 2.812, 2.813
grouping of tone sequences and, 6.401
head position and, 2.814
in horizontal plane, 2.801, 2.803-2.809, 2.811-2.817
interaural intensity differences and, 2.801, 2.803, 2.804, 2.809
compared to interaural time differences as localization cue, 2.801, 5.1006
interaural phase differences and, 2.801, 2.806
interaural time differences and, 2.801, 2.805, 2.807-2.809, 2.811

compared to interaural intensity differences as localization cue, 2.801, 5.1006
cone of confusion, 2.805
echo, 2.817
lateralization illusion, 6.402
with masking noise, 2.816
in medial plane, 2.801, 2.805, 2.810
minimum audible angle, 2.804, 2.812, 2.816
monaural cues, 2.801
of noise
broadband, 2.801, 2.804, 2.805, 2.809-2.811

compared to pure tones, 2.804, 2.810, 2.811, 2.816

narrow-band noise, 2.805, 2.810, 2.811, 2.816

preference effect, 2.817

precision of, 2.804, 2.812, 2.816

with prismatic displacement of visual field, 5.1113, 5.1127

do pure tones, 2.801, 2.803-2.806, 2.809-2.813, 2.816

amplitude-modulated, 2.808
compared to noise, 2.804, 2.810, 2.811, 2.816

sound pulses, 2.809

sound shadow, 2.801, 2.802

spectral cues, 2.801, 2.810, 2.816

underwater, 5.1124

visual facilitation, 2.815

Auditory masking, 2.305-2.311, 2.313-2.315
acoustic reflex and, 2.202

backward masking, 2.306, 2.312, 2.709, 7.206, 7.215

bandwidth effects
mask, 2.306
signal, 2.310

binaural unmasking
of speech, 8.312, 8.314, 8.315

do pure tones, 2.305, 2.314, 2.315

binaural vs. monaural listening, 2.305, 2.314

continuous vs. pulsed mask, 2.313
critical band, 2.307, 2.309, 2.310
duration of signal and, 2.306, 2.311
earphone-induced, 2.302

and echoic memory, 4.101

effect on loudness, 2.601, 2.609, 2.611
effect on pitch perception, 2.701, 2.703, 2.708, 2.709

factors affecting, summarized, 2.306

forward masking, 2.306, 2.312, 2.313

frequency effects
signal frequency, 2.307

signal-mask frequency relation, 2.306, 2.308, 2.313, 2.314, 2.611

interaural differences and, 2.306, 2.314

interaural masking, 2.306, 2.313

masking level difference, 2.305, 2.314, 2.315, 8.312, 8.314, 8.315

mask intensity and, 2.306-2.308

by noise
broadband, 2.306, 2.307, 2.314, 2.611
compared to pure-tone masking, 2.306, 2.308

narrow band, 2.306, 2.308, 2.312, 2.314, 2.611

white, 2.105, 2.310-2.312, 2.611

partial masking, 2.611

by pure tones, 2.306, 2.308, 2.309, 2.313
compared to noise masking, 2.306, 2.308

remote masking, 2.314

signal-mask asynchrony and, 2.306

signal-to-noise ratio and, 2.311

simultaneous masking, 2.305-2.311, 2.313-2.315

of speech, 8.306-8.315, 8.401. See also Speech intelligibility

See also Auditory sensitivity

Auditory perception
adaptation
to auditory rearrangement, 5.1101, 5.1127
loudness, 2.601, 2.612
pitch, 2.701, 2.707, 2.710
aftereffects, 6.318, 6.320
discrimination
intensity, 2.401, 7.206
pitch, 7.206, 7.215
timbre, 7.206
illusions, 6.405
octave illusion, 6.404
scale illusion, 6.402
pattern perception
pattern discrimination, 5.1017
pattern recognition, 5.1018, 6.407
temporal pattern perception, 5.1017, 5.1018, 6.403, 6.406, 6.407
perceptual organization, 6.401-6.408
Gestalt grouping principles and, 6.401
grouping of tone sequences, 6.401
attentional set and, 6.403
ear dominance and, 6.404
by err of input, 6.401, 6.404
by frequency, 6.401, 6.402
by frequency separation, 6.401, 6.403, 6.404
by presentation rate, 6.401, 6.403
segregation of phase-shifted tones, 6.405
speech, 8.201, 8.207, 8.301-8.404
temporal perception
coherence, 6.403
place, 6.406
fission, 6.403
interstimulus-onset interval and, 6.407, 6.408
order, 5.1022, 6.407, 6.408
See also Audition; auditory localization; auditory sensitivity; speech; speech intelligibility

Auditory sensitivity
age and, 2.301, 2.303
bandwidth and, 2.301
with binaural vs. monaural listening, 2.301, 2.305
duration and, 2.301
with free-field vs. earphone presentation, 2.301, 2.302
frequency effects, 2.301-2.304
ISO standard, 2.302
with masking, 2.301, 2.305-2.315. See also Auditory masking
in noise, 2.305-2.315. See also Auditory masking
after noise exposure, 10.311-10.316
in quiet, 2.301-2.305
underwater, 2.301, 2.304
with visual stimulation, 5.1004
Auditory threshold. See Auditory sensitivity
Auditory tracking, 9.538

Augmentation
of control dynamics, 9.520, 9.521, 9.526
of displays, 9.525
See also Quickening

Aural distortion, 2.105

Autokinetic motion, 5.216, 5.606
Automatic search, 7.516, 7.520

Automation
computer driven controls, 12.411
decision making and, 7.307-7.309
fault detection and, 7.304
expert systems, 7.307, 7.308
function allocation, 7.301, 7.304, 7.307-7.309
levels of, 7.307
monitoring and, 7.314
See also Controls; human-computer interfaces; person-computer dialogue; supervisory control

Autonomic nervous system
noise effects, 10.301

Autostereoscope, 1.812

Axes, of body, 5.701
Axial chromatic aberration, 1.203, 1.212, 5.934
Axial chromatism, 1.203, 1.212, 5.934

β
index of response bias, 1.657, 7.405, 7.420

Backward masking
auditory, 2.306, 2.312, 2.709, 7.206, 7.215
tactile, 3.117, 6.505, 6.511, 6.513-6.515

Band-pass filtering
by visual system, 1.632
Bandwidth, 2.102
auditory masking and, 2.306, 2.310
auditory sensitivity and, 2.301, 2.310
loudness and, 2.601, 2.604-2.606
Bang-bang control, 9.524
Bárány chair, 3.205
Basilar membrane, 2.201
Beamsplitter, 1.108
Beats, 2.308, 2.309
Benham’s disk, 1.719
Beta movement, 5.403

Binaural pitch disparity, 2.701, 2.706
order, 5.1022, 6.407, 6.408
Binaural summation, 2.305

Binaural vs. monaural listening
detection and, 2.301, 2.305
loudness and, 2.601, 2.608, 2.609
masking and, 2.314, 2.609
See also Auditory localization

Binocular alignment. See Binocular image registration

Binocular averaging, 1.803

Binocular disparity, See Lateral retinal image disparity; vertical retinal image disparity

Binocular displacement, 5.936

Binocular displays, 1.812
adjustment tolerances, 1.813
distortion in, 5.907, 5.909
stereoscopic, 5.914, 5.915

Binocular enhancement, 1.801, 1.802

Binocular fixation, 1.808. See also Vergence eye movements; visual fixation

Binocular fusion, 5.909, 5.910, 5.937
limits, 5.911-5.913, 5.930

Binocular image registration
aniseikonia, 5.907, 5.909
comfort limits, 1.813, 5.905, 5.909, 5.911, 5.913
fusion limits, 1.813, 5.911-5.913, 5.930
horizontal displacement, 1.813. See also Lateral retinal image disparity
magnification differences, 5.907, 5.909
rotational differences, 5.906, 5.908, 5.913
vertical displacement, 1.813. See also Vertical retinal image disparity

Binocular instruments, 1.812, 1.813, 5.914, 5.915

Binocular interaction, 1.801, 1.804

Binocular rivalry, 1.804-1.807

Binoculars, 1.812
image luminance with, 1.105

Binocular summation, 1.801-1.803, 1.814

Binocular suppression, 1.804-1.807
of double images, 1.813, 5.911
performance effects, 1.807

Binocular vs. monocular viewing, 1.801-1.803
accommodation, 1.224, 1.227, 1.229, 1.230. See also Accommodation
Binocular vs. monocular viewing (continued)

- aircraft landing performance, 5.101
- brightness and contrast magnitude, 1.803
- contrast sensitivity, 1.802
- probability summation and, 1.814
- pupil size and, 1.232

Binocular vision

- accommodation with, 1.224, 1.227, 1.229, 1.230. See also Accommodation advantages of, 1.801
- aniseikonia, 5.907, 5.909
- binocular combination of brightness and contrast, 1.803
- binocular displacement, 5.936
- binocular instruments and displays, 1.812, 1.813, 5.914, 5.915
- binocular rivalry, 1.804-1.807
- binocular summation, 1.801-1.803, 1.814
- binocular suppression, 1.804-1.807
- convergence, 1.808
- eye movements in. See Vergence eye movements; visual fixation
- eye signature (unocular discrimination), 1.811
- fusion, 5.909-5.913, 5.930, 5.937
- horopter, 5.910
- image registration. See Binocular image registration vs. monocular, 1.224, 1.227, 1.229, 1.230, 1.801-1.803
- probability summation and, 1.814
- single vision, 1.231, 5.910-5.913, 5.930, 5.937
- stereocuity, 5.918-5.929
- See also Depth perception; stereoscopic vision

Binoptic display, 1.812

Ejocular, 1.812

Biological rhythms

- body temperature, 10.702, 10.710, 10.711, 10.714
- characteristics of, 10.701
- endogenous, 10.102, 10.701
- entrained, 10.701
- exogenous, 10.102, 10.701
- sleep patterns, 10.703, 10.710, 10.714
- ultradian, 10.709
- See also Cyclical variations

Blopter Vision Test, 5.917

Blackbody radiator, 1.107

Blackout

- with sustained acceleration, 10.906

Blankout (loss of vision), 1.239

Blind positioning

- of hand controls, 12.417, 12.418, 12.419, 12.425
- target-directed movement, 9.204, 9.208, 9.209

Blind spot, 1.201, 1.210, 1.301

Bloch's law, 1.402, 1.512

Blur patch, 1.205, 1.211, 1.212, 1.221

Bode plot

- system representation in, 9.504

Body axes, 5.701

Body orientation

- axes, 5.701
- illusions of, 3.210, 5.505, 5.708, 5.709
- optimal modality for sensing, 5.1002
- postural stability, 5.702-5.707
- specification of, 5.701
- terminology, 5.701
- See also Postural stability

Body rhythms. See Biological rhythms; cyclical variations

Body rotation, 1.958, 3.204

- illusions of, 1.923, 3.204, 3.210
- response measurement, 3.205

sensitivity to, 3.208
- visual effects, 5.801, 10.902
- zero-gravity rotation methods, 10.1001
- See also Acceleration angular

Body sway, 5.702-5.707. See also Postural stability

Body temperature

- circadian rhythms in, 10.701, 10.702, 10.710, 10.711, 10.714
- personality nud, 10.708
- schedule shift and, 10.712
- time-zone shift and, 10.713
- See also Cyclical variations

Body tilt

- aftereffects, 5.801
- effect on orientation judgments, 5.801, 5.804
- effect on vestibular system, 3.206
- illusionary, 3.210, 5.708, 5.801
- with illusory self-motion, 5.707
- See also Postural stability

Bone conduction, 2.304

Borders

- achromatic, 1.707, 6.313
- chromatic, 1.707, 6.313
- distinctness, 1.707, 6.313
- edge enhancement (Mach bands), 1.707, 1.716
- See also Edge sharpness

Boredom

- detection efficiency and, 7.417
- See also Fatigue

Bore sight angle. See Apparent straight ahead

Braille characters

- recognition, 6.506

Brake lights, 11.412

Break frequency, 9.519

Breakthrough

- in manual control, 10.421-10.423

Brightness

- binocular, 1.803
- brightness scales, 1.720
- color glow (fluorescence), 1.711
- correlates of, 1.706
- definition, 1.705, 1.720
- discrimination of, 1.401-1.405, 1.413. See also Brightness discrimination
- distinguished from lightness, 1.706, 1.720
- distinguished from luminance, 1.706
- equal-brightness contours, 1.303, 1.304
- measurement of, 1.109
- outdoor, and solar elevation, 1.103
- photopic vs. scotopic vision, 1.301
- and pupil entry angle, 1.111
- Purkinje shift, 1.407
- relative, as depth cue, 5.901
- wavelength and, 1.110, 1.303, 1.304, 1.407
- See also Lightness; luminous efficiency

Brightness coding, 11.329

Brightness constancy, 1.712, 1.715

Brightness contrast, 1.714, 1.715. See also Contrast

Brightness difference threshold. See Brightness discrimination

Brightness discrimination, 1.401-1.405

- adaptation level and, 1.405, 1.413
- adaptation time and, 1.405
- background luminance and, 1.401-1.403, 1.512
- duration of luminance change and, 1.402, 1.512
- luminance increment vs. decrement, 1.404
- target size and, 1.403
- temporal summation, 1.512

Brightness induction, 1.707, 1.713, 1.715, 1.716

Brightness matching
- heterochromatic, 1.109, 1.303, 1.701
- See also Brightness constancy

Brightness scale, 1.720

Broadband noise
- masking by, 2.306, 2.307, 2.314, 2.611
- performance effects, 10.302-10.310
- sensitivity to amplitude modulation, 2.501
- See also Noise; white noise

Brunswik ratio, 1.712

Caffeine
- as stressor, 7.804

Calculator keysets, 12.406

Calibration
- acoustical, 2.104

Camouflage
- embedded figures, 6.308
- in visual displays, 7.514, 7.517, 7.518, 7.519
- See also Visual masking

Cancellation theory, 1.938

Candela, 1.104, 1.106

Canonical view
- algorithm, 10.310

Capacity limitations, 7.203, 7.205. See also Mental resources; workload

Capture errors, 11.310

Carbonell's model (of monitoring behavior), 7.316, 7.319

Cataracts, 1102
- in control design, 12.302

Categorization (of objects), 6.201-6.203
- exemplar typicality and, 6.202
- levels of semantic categories, 6.201
- speed and accuracy of, 6.202, 6.203
- words vs. pictures, 8.106, 8.107
- visual prototypes, 6.202

Cathode ray tubes. See CRT displays

Caution. See Warning signals

Centrifugation
- as method for investigating linear acceleration, 3.206

Character recognition
- tactile, 6.506
- tactile vs. visual, 6.508
- See also Alphanumeric displays; letter recognition

Chart recorders
- reading accuracy, 7.116

Check reading
- of displays, 7.116

Choroid coat, 1.201

Chroma. See Saturation

Chromatic aberration, 1.203, 1.212
- color stereopsis and, 5.934

Chromatic adaptation, 1.705, 1.710, 6.318. See also Chromatic aftereffects

Chromatic aftereffects, 1.309, 6.318, 6.320. See also Chromatic adaptation

Chromatic induction, 1.701, 1.707, 1.717, 1.718

Chromaticity, 1.107, 1.710, 1.722
- discrimination of, 1.704

Chromaticity coordinates, 1.722

Chromaticity diagram, 1.702, 1.722
- chromaticity coordinates, 1.702, 1.722
- CIE 1931, 1.722
- CIE 1960 UCS, 1.722
- CIE 1976 UCS, 1.722

Chromostereopsis. See Color stereopsis

Chronobiology, 10.701. See also Cyclical variations

Chunking
- motor skills, 9.403
- reading, 8.119, 8.121

CIE lightness function, 1.721

CIE standard colorimetric observer
- 1931, 1.722
- 1964 10-degree, 1.722

CIE system of colorimetry, 1.722

Ciliary body, 1.201

Ciliary muscle, 1.203, 1.222

Cinematic displays, 11.218, 11.221
- audio-visual asynchrony, 5.102
- canonical vs. noncanonical view, 11.219
- composite motion in, 5.501
- differences from natural optic array, 11.218
- homogeneous vs. inhomogeneous object translation, 11.220
- motion simulation in, 5.501
- object segregation in, 11.221
- self-motion simulation in, 5.501, 5.502

Circadian rhythms
- with altered schedule, 10.710, 10.712, 10.713
- body temperature, 10.702, 10.710-10.714
- definition, 10.701
- with isolation, 10.714
- in performance and work efficiency, 10.704-10.708, 10.711-10.713
- zeitgebers and, 10.701, 10.710
- See also Cyclical variations

Circularvection, 1.924, 5.501, 5.503, 5.708, 6.304

Clockwise-for-increase principle
- in control design, 12.302

Closed-loop system, 9.508, 9.511
- closed-loop transfer function, 9.506

Closure
- Gestalt grouping principle of, 6.301

Clutter. See Density

Cochlea, 2.201

Cockpit vibration, 10.403, 10.404. See also Vibration

Code learning
- vibrotactile codes, 6.510
- See also Coding

Coding
- alphanumeric, 6.510, 11.329, 11.330
- brightness, 11.124, 11.329
- color, 11.201-11.206. See also Color coding
- of controls, 12.417, 12.418, 12.424, 12.425
- highlighting, 11.329
- shape, 7.511, 11.407, 12.418, 12.424, 12.425
- size, 7.511, 12.417, 12.424
- vibrotactile, 6.510
- See also Color coding; information portrayal; shape coding

Coding theory
- pattern recognition, 6.321, 6.322

Cognitive engineering, 11.310

**Cognitive maps, 4.107, 11.222, 11.223

Cold
- effect on manual dexterity, 10.602
- performance effects, 10.602
- sensitivity to, 3.122, 3.124
- as a stressor, 10.103
- See also Temperature sensitivity

Collision
- detection of aircraft on collision course, 7.613. See also Target acquisition
- specification by optical flow pattern, 5.502
- time to collision, judgment of, 5.213, 5.214

Color
- achromatic colors, 1.706
See also Color appearance; colorimetry
Combination tones, 2.105
Command language, 11,330, 11,331
Common fate
Gestalt grouping principle of, 6.301
Communications. See Earphone listening; speech intelligibility
Compensatory displays, 9.508, 9.515, 9.521, 9.528. See also
Compensatory tracking
Compensatory eye movements. See Eye movements:
compensatory
joystick type and, 12.421
See also Compensatory displays
Complementary afterimages, 1.309
Complementary wavelength, 1,722
Complex sound, 2.102. See also Broadband noise; narrow-band
noise; white noise
Component task, 7.221. See also Selective attention
Compound task, 7.219, 7.221. See also Divided attention
Computer-driven controls, 12.411
Computer graphics, 11,328. See also Simulation
Computer interfaces. See Human-computer interfaces
Concavity
aptic perception of, 6.609
Concentric controls, 12.420
Concurrent tasks
mental resource (attention) allocation and, 7.201, 7.203-7.205,
7.207, 7.221
personality effects, 7.804
reading and, 8.120
response mode similarity effects, 9.122
stress effects
noise, 10.304
sleep deprivation, 10.802, 10.806
visual search, 7.220
See also Attention; divided attention; monitoring; selective
listening; supervisory control; workload measurement;
secondary task measures
Condenser microphone, 2.104
Cones, 1.201, 1.301
color vision and, 1.706, 1.722
dark adaptation, 1.305, 1.406-1.413
light adaptation, 1.305
retinal distribution, 1.201, 1.301
sensitivity, 1.103, 1.301, 5.1001
spectral sensitivity, 1.102, 1.302, 1.305
See also Photopic vision
Conjoint measurement, 7.711, 7.712
Conjugate eye movements, 1.905, 1.906. See also Eye
movements
Conjunctiva
radiation absorption, 1.102
Connectedness
Gestalt grouping principle of, 6.001
Consistent mapping
automatic visual processing and, 7.520
Consonants, 8.201, 8.206, 8.207
of American English, 8.205
See also Speech
Consipicuity
search time and, 7.506, 7.511, 7.519
warning signals and, 11,405, 11,407-11,409, 11,411
Constancy. See Perceptual constancy
Constraint theory
of perceptual organization, 6.321
Contact lens method
eye movement measurement, 1,904
Contingent aftereffects, 1.309, 6.320
Continuous controls, 12.102, 12.201, 12.303
accuracy of operation, 7.113, 7.114
recommended uses, 12.101
See also Controls
Continuous-function models
of visual detection, 1,654
Contours
subjective or illusory, 6.314
See also Borders
Contrast
atmospheric attenuation, 7.601-7.603
binocular combination of, 1.802, 1.803
calculation of, 1.601
color appearance and, 1.707, 1.711
definition, 1.601
dial scale reading and, 11.124
discrimination of, 1.646, 10.903, 11.119
display legibility during vibration and, 10.416
effective contrast, 7.605
eye movements and, 1.915, 1.939
Fechner's paradox, 1.803
gray levels, 7.604, 11.119
Michelson contrast, 1.601
reaction time and, 9.103, 9.109
subjectivity to. See Contrast sensitivity
spatial frequency discrimination and, 1.649
stereoscopic vision and, 5.918, 5.931, 5.937
summation of, 1.802, 1.803
target acquisition and, 7.601-7.603, 7.614
visual acuity and, 1.603-1.605
visual search and, 7.509, 7.510
See also Apparent contrast; brightness contrast; color contrast;
contrast sensitivity; lightness contrast
Contrast attenuation, atmospheric, 7.601, 7.603
Contrast discrimination, 1.646
during acceleration, 10.903
gray scale, 1.721
number of perceptible gray levels, 11.119
Contrast enhancement
luminance, 1.707, 1.716
pitch, 2.707
Contrast matching, 1.647
Contrast modulation
definition, 1.219
Contrast ratio, 7.601
definition, 1.601
Contrast sensitivity, 1.628-1.645, 1.650-1.652
during acceleration, 10.904
accommodation and, 1.628, 1.639
aging and, 1.623
binocular vs. monococular, 1.801, 1.802
correlated with visual acuity measurements, 1.644, 1.645
discrimination, 1.646
discrimination, 1.647
correlation sensitivity function, 1.602
correlation with flying performance, 7.612
definition, 1.601
detection models, 1.653, 1.654, 7.606
discrimination, 1.646
effects, 1.628, 1.647, 1.642
factors affecting, summarized, 1.628
field size and, 1.628, 1.629
for flickering targets, 1.508, 1.628
focus errors and, 1.628, 1.634, 1.639
luminance level and, 1.628, 1.631-1.633, 1.643
as a measure of visual ability, 1.602, 1.644, 1.645
Contrast sensitivity (continued)
for moving targets, 1.628, 1.637, 1.645
orientation and, 1.628, 1.634, 1.652
size and, 1.628, 1.629, 1.635, 1.636
Snellen letters and, 1.644
spatial frequency and, 1.628, 1.630, 1.635, 1.650, 1.651
spatial frequency discrimination, 1.648, 1.649
visual field location and, 1.628, 1.635, 1.636, 1.637
during whole-body vibration, 10.433, 10.435
See also Target detection
Contrast threshold, 1.601
models for predicting, 7.606
See also Contrast sensitivity; target detection
Control. See Manual control; monitoring; optimal control theory;
supervisory control
Control aiding, 9.520, 9.521, 9.526
Control/display configuration, 11.206, 12.302
Control/display movement relationships, 12.302
Control/display ratio, 12.201
Controlled visual search, 7.520
Control order, 9.519
Controls
aiding, 9.520, 9.521, 9.526
arrangement, 12.102, 12.301-12.304, 12.411
coding, 12.102, 12.411, 12.424. See also Color coding; shape
coding; size coding
comparisons among types, 12.102
computer driven, 12.411
control/display position and movement relationships, 12.302
control/display ratio, 12.201
density, 12.405
design, 9.205
errors in operation
activation errors, 7.111-7.114, 12.401, 12.404, 12.420
data entry errors
keyboards and keysets, 12.406-12.408, 12.410, 12.415, 12.429
nonkeyboard controls, 12.412, 12.414, 12.415, 12.419,
12.420
See also Error; human performance reliability
gloved operation
control operating time and, 12.427
keyboard data entry and, 12.426, 12.429
knob rim discrimination and, 12.430
torque on rotary switches and, 12.428
multifunction controls, 12.411
recommended uses, of control types, 12.101
selection, 12.101, 12.102
separation, 12.303, 12.401, 12.404, 12.416
shape, 12.419
size, 12.419, 12.428
types of
concentric, 12.420
continuous, 7.311, 7.314, 12.101, 12.102
cursor, 11.321, 11.331, 12.422
data entry. See Data entry devices
decimal input devices, 10.424
discrete, 7.111, 12.101, 12.102, 12.403
foot switch, 9.304
ganged, 12.101, 12.420
integrated, 9.536, 9.537
J-handles, 12.303
joysticks, 10.409, 10.423, 11.318, 12.201
for cursor control, 12.422
displacement (isotonic), 12.101, 12.421, 12.422
force (isometric), 9.537, 12.101, 12.421, 12.422
integrated, 9.536, 9.537
keyboards. See Keyboards
keysets. See Keysets
key operated, 12.101, 12.303
knobs
confusability, 12.417
diameter, 12.428
fluted, 12.430
knurled, 12.430
shape-coded, 12.418, 12.419, 12.430
smooth, 12.430
levers, 12.101, 12.102
horizontal, 12.427
vertical, 12.415
light pens, 11.313, 12.101, 12.422
linear, 12.101, 12.201
mouse, 12.101
pointers, 11.125
pushbuttons, 12.101, 12.102, 12.414
coding, 12.424
color, 12.402, 12.424
diameter, 12.401
gloved operation, 12.427
illumination, 12.402
orientation, 12.401
shape, 12.425
spacing, 12.303
push-pull, 12.101
rockers, 12.101, 12.201, 12.303
rotary, 12.413, 12.416
compared to other controls, 12.102, 12.414, 12.415
data entry with, 12.412
gloved operation, 12.426-12.430
minimum dimensions, 12.420
minimum separation, 12.303
shape, 12.418, 12.419
coding, 12.417
selector, 12.101
side arm controller, 9.537
slide switches, 12.101, 12.102
stacked, 12.420
thumbwheels, 12.101, 12.102, 12.412
minimum separation, 12.303
vs, rotary and pushbutton, 12.414
toggle switches, 12.101, 12.102, 12.404
activation time, 12.405
color coding, 11.206
gloved operation, 12.426, 12.427
minimum separation, 12.303
touch screens, 12.423
trackball, 12.101, 12.422
Control theory
manual control, 9.511, 9.512
supervisory control, 7.301, 7.309, 7.310, 7.311
Convergence, 1.808, 1.902, 1.951
accommodation and, 1.231, 1.808
definition, 1.808
phorias, 1.809, 1.810
See also Vergence eye movements
Conversion filter, 1.108
Convexity
figure-ground organization and, 6.301
haptic perception of, 6.609
Cooper-Harper Aircraft Handling Characteristics Scale,
7.705-7.707. See also Workload measurement
Coordinated movement, 9.304, 9.305
See also Movement sequences; movement, target-directed
Coriolis effects, 3.206, 3.209, 3.210, 5.503
pseudo-Coriolis effects, 5.503
Cornea, 1.201, 1.210
light absorption, 1.102, 1.203
optical imaging and, 1.203, 1.205, 1.209, 1.210
refractive index, 1.210
Corneal reflection
eye movement measurement, 1.904
Corollary discharge
autokinetic illusion and, 5.503
motion perception and, 5.202
retinal image stabilization and, 1.910
Coronal plane
definition, 5.701
Correspondence
apparent motion and, 5.402, 5.406, 6.316
Corridor illusion, 5.108
Cortical evoked potential
in workload measurement, 7.702-7.704, 7.724-7.727
Counters, 11.217
Countertorsional eye movements, 1.957-1.959. See also
Torsional eye movements
Counting, 7.523
Coupled controls, 11.413
Crest factor, 10.402
Crista ampullaris, 3.201
Critical band
definition, 2.307
loudness and, 2.604, 2.606
masking and, 2.307, 2.309, 2.310
Critical control task, 7.706, 9.527
Critical duration. See Temporal summation
Critical flicker frequency
of CRT displays, 11.122
of visual targets, 1.501, 1.504, 1.507
See also Temporal modulation, sensitivity to; temporal
perception
Critical instability task
in workload measurement, 7.705
Critical intensity, 1.512
Criticality principle
of control arrangement, 12.301
Critical size. See Spatial summation
Critical tracking task, 7.706, 9.527
Cross-adaptive technique
in workload measurement, 7.722
Cross-coupled task
manual control, 9.510
Cross-modal perception
distance and location, 3.301, 3.303, 5.1010
temporal patterns, 5.1017, 5.1020
Crossover frequency, 9.507
Crossover regression, 9.523. See also Manual control
CRT displays
color coding, 1.201. See also Color coding
flicker in, 11.120, 11.122
gray levels, 7.604, 11.119
gray scale, 1.721
image quality
bandwidth and, 11.101
image motion and, 11.101
image unsteadiness and, 11.121
luminance preferences
background, 11.102
surround, 11.103
symbol, 11.102
Michelson contrast, 1.601
phosphor persistence, 11.120, 11.122
reading of, 7.105, 7.109, 7.114
symbol legibility, 11.108-11.118
dot-matrix characteristics and, 11.114-11.118
resolution and, 11.108, 11.109, 11.111
See also Alphanumeric displays; legibility, symbol
target detection in, 7.614, 11.106, 11.107
target recognition in, 7.614, 11.104-11.108
number of scan lines and, 7.614, 11.104, 11.105, 11.108
See also Displays; person-computer dialogue; screen displays;
video displays
Cued response method
reaction time, 9.105
Cueing
of attention, 9.117, 9.118, 9.535
of response, 9.105
of spatial position, 7.210, 9.113
See also Warning signals
Cumulative normal function, 1.657
Cupula, 3.204, 3.209
anatomy, 3.201
cupulometry, 3.205
dynamics, 1.930, 3.203
Cupulometry, 3.205
Cursor controls, 11.321, 11.331, 12.422
Curvature
definition, 2.307
adaptation to, 5.1123
loudness and, 2.604, 2.606
aftereffects of, 5.1123
masking and, 2.307, 2.309, 2.310
Critical control task, 7.706, 9.527
Critical stability of control arrangement, 12.301
Critical size. See Spatial summation
Critical tracking task, 7.706, 9.527
Cross-adaptive technique
in workload measurement, 7.722
Cross-coupled task
manual control, 9.510
Cross-modal perception
distance and location, 3.301, 3.303, 5.1010
temporal patterns, 5.1017, 5.1020
Crossover frequency, 9.507
Crossover regression, 9.523. See also Manual control
CRT displays
color coding, 1.201. See also Color coding
flicker in, 11.120, 11.122
gray levels, 7.604, 11.119
gray scale, 1.721
image quality
bandwidth and, 11.101
image motion and, 11.101
image unsteadiness and, 11.121
luminance preferences
background, 11.102
surround, 11.103
symbol, 11.102
Michelson contrast, 1.601
phosphor persistence, 11.120, 11.122
reading of, 7.105, 7.109, 7.114
symbol legibility, 11.108-11.118
dot-matrix characteristics and, 11.114-11.118
resolution and, 11.108, 11.109, 11.111
See also Alphanumeric displays; legibility, symbol
target detection in, 7.614, 11.106, 11.107
target recognition in, 7.614, 11.104-11.108
number of scan lines and, 7.614, 11.104, 11.105, 11.108
See also Displays; person-computer dialogue; screen displays;
video displays
Cued response method
reaction time, 9.105
Cueing
of attention, 9.117, 9.118, 9.535
of response, 9.105
of spatial position, 7.210, 9.113
See also Warning signals
Cumulative normal function, 1.657
Cupula, 3.204, 3.209
anatomy, 3.201
cupulometry, 3.205
dynamics, 1.930, 3.203
Cupulometry, 3.205
Cursor controls, 11.321, 11.331, 12.422
Curvature
definition, 2.307
adaptation to, 5.1123
aftereffects of, 5.1123
haptic perception of, 6.609, 6.610
prism-induced, 5.1101, 5.1102
underwater distortion of, 5.1123, 5.1126
Curvature illusion, 6.609, 6.610
Cutaneous sense, 3.101-3.126. See also Cutaneous sensitivity;
haptic perception; tactile perception
Cutaneous sensitivity
adaptation, 3.101, 3.116
adequate stimulus for skin sense, 3.101
anatomic correlates of touch, 3.101
background information and summary, 3.101
body site differences, 3.106, 3.115
definition, 3.101
electrocutaneous stimulation, 3.101, 3.125, 3.126
intensity difference threshold
pressure, 3.101, 3.109
temperature, 3.123
vibration, 3.101, 3.109, 3.110
masking and, 3.101, 3.110, 3.117
measurement of, 3.105
methods of stimulation, 3.101, 3.105
pressure sensitivity, 3.101, 3.106, 3.109, 3.125
auditory facilitation of, 5.1005
salutation, 3.101, 3.119
sensation magnitude, 3.111-3.114, 3.126
magnitude enhancement, 3.114
magnitude summation, 3.112, 3.113
short-term memory, 4.108
spatial interactions, 3.101
masking, 3.110, 3.117
perceived magnitude, 3.111, 3.112
temperature sensation, 3.121
tactile sensory innervation of the skin, 3.101-3.104
temperature sensitivity, 3.121-3.124
temporal interactions, 3.101
masking, 3.117
perceived magnitude, 3.113, 3.114
two-point resolution, 3.101, 3.115
Cutaneous sensitivity (continued)

body site differences, 3,101, 3.106
discrimination, 3,109, 3.110
sensory magnitude, 3.101, 3.111-3.114, 3.116

See also Skin; tactile perception; temperature sensitivity; touch; vibrotactile sensitivity

Cutaneous tracking, 9.583

Cut off/cut-on filters, 1.108

Data base systems, 11.304, 11.312

Data entry displays, 11.317, 11.325, 11.332

Data entry devices, 10.424, 12.406, 12.410

Data tablet, 12.422

Decision aiding, 7.307, 11.323, 11.324

Decision allocation
between human and computer, 7.307

Decision augmentation system, 7.307

Decision criterion
signal detection analysis, 1.656, 1.657, 7.405, 7.420

Dale-Chall readability index, 8.129

Daytime vision. See Photopic vision

Deadlift, 2.103

Decibel, 2.103

Decimer acuity
definition, 1.602

See also Visual acuity

Decision aiding, 7.307, 11.323, 11.324

Decision allocation
between human and computer, 7.307

Decision augmentation system, 7.307

Decision criterion
signal detection analysis, 1.656, 1.657, 7.405, 7.420

Dawn, 1.614

Dark focus, 1.222, 1.223, 1.226, 1.228, 7.507

Dark adaptation
1.406-1.413

absolute sensitivity of dark-adapted eye, 1.306
adaptation field characteristics and, 1.406, 1.407, 1.411-1.413
duplication theory of, 1.407
factors affecting, summarized, 1.406
flecker sensitivity and, 1.504
of rods vs. cones, 1.301, 1.410
preadapting duration and, 1.413
preadapting intensity and, 1.411
target size and, 1.408
target wavelength and, 1.407
spatial summation and, 1.409
target size or spatial frequency and, 1.406, 1.409, 1.410
temporal summation and, 1.409

Dawn adaptation index, 8.129

Dawn adaptation index, 8.129

Deceleration lights, 11.412

Depolarization. See Delineation of depolarization

Delineation. See Delineation of depolarization

Delineation of depolarization, 1.406

Deafness
See also Hearing loss

Deadlift, 2.103

Decimeter acuity
definition, 1.602

See also Visual acuity

Decimeter input devices, 10.424

Delusion, 1.327

Deflection, 1.406

Degree of freedom, 1.657

Deflection
between human and computer, 7.307

Demand, 1.657
Decision making
In component and compound tasks, 7.221
decision criteria, 7.405, 7.420
and attentional limits, 9.104
humans as decision makers, 7.901
human-computer allocation of, 7.307
in monitoring and supervisory control, 7.301, 7.303, 7.310, 7.311
problem-solving aids, 11.323
speeded, circadian rhythms in, 10.705, 10.706
See also Decision aiding
Decision theory, 7.420
and interactive system modeling, 11.305
vigilance and, 7.405
Declination error, 1.205
Delboeuf illusion, 5.106
Delta movement, 5.401. See also Apparent motion
Density
of backlit materials, 1.601
of displays, and visual search, 7.501, 7.505, 7.511-7.514, 7.516-7.519
Depressant drugs
as stressor, 10.202
Depth cues
accommodation, 5.901
aerial perspective, 5.901
color fringes due to chromatic aberration, 1.212
convergence angle, 1.808
detail clarity, 5.901
familiar size, 5.901
height in plane, 5.901
height-width ratio, 5.113
interposition, 5.901
linear perspective, 5.105, 5.115, 5.901
motion generated
changing retinal size, 5.904
kinetic occlusion, 5.901, 5.903
kinetic shear, 5.901, 5.903
motion parallax, 5.901, 5.902, 5.904
motion perspective, 5.502, 5.901
relative brightness, 5.901
retinal image disparity, 5.905, 5.907-5.909, 5.929
limits as depth cue, 5.904, 5.930
shadow, 5.901
signed vs. unsigned, 5.903
texture gradient, 5.116, 5.901
visual angle, 5.104, 5.901
See also Depth perception; motion in depth; stereoscopic vision
Depth distortions
adaptation to, 5.1101, 5.1121, 5.1125
with aniseikonia, 5.909. See also Aniseikonia
color stereopsis, 1.209, 5.934, 5.1102
with empty-field viewing, 1.259
Mach-Dvorak effect, 5.933
due to prisms and lenses, 5.1102, 5.1121
Pulfrich effect, 5.933
due to telescoposcope, 1.812, 5.1101, 5.1102
with underwater viewing, 5.1124, 5.1125
Depth of focus
of eye, 1.221
Depth perception, 5.901-5.936
astigmatism and, 1.205
color stereopsis, 1.209, 5.934, 5.1102
cues for, 5.901-5.903, 5.905. See also Depth cues
depth resolution. See Stereovision
eye movements in. See Vergence eye movements
with restricted vs. free eye movements, 5.916
in simulated landing scenes, 5.102, 5.103
See also Distance perception; stereovision; stereoscopic vision
Derivatives
display of, 9.532
Derivative
human-computer allocation of, 7.307
Desaturation
of CRT displays, 11.102
definition, 1.706
hue and, 1.708
See also Color appearance
Describing function
manual control, 9.511, 9.523
description of, 7.405, 7.420
Design errors, 11.310
Desaturation
detection of, 7.610
definition, 1.706
of displays, and visual search, 7.501, 7.505, 7.511-7.514
detection lobe, 7.610
definition, 1.706
Deuteranomaly
limits as depth cue, 5.904, 5.930
dependent on wavelength, 5.904
Deuteronomal
as stressor, 10.202
desaturation, 7.102
De Vries-Rose Law, 1.502, 1.632
depitude cues
accommodation, 5.901
diagnosticity
aerial perspective, 5.901
differential attention, 7.201, 7.204
See also Attention; signed vs. unsigned, 5.903
directional cue
for, 5.905-5.903, 5.905
direction perception
auditory judgment of, 2.801, 2.814, 5.1113
see also Auditory localization
discovery of, 5.106, 5.107
visual judgment of, 5.606, 5.802, 5.1113. See also Apparent straightahead; spatial localization
Discrete controls, 7, 111, 12, 101, 12, 102, 12, 403. See also Controls: types of

Discrete displays, 7, 111. See also Displays: types of

Discrete state controller, 9, 526

Discrimination
 brightness, 1, 401-1, 406, 1, 413
 color, 1, 704, 1, 705, 1, 726
 depth. See Stereocuity
 flicker, 1, 510, 5, 1520
 form, 6, 607, 6, 608. See also Letter recognition
 frequency, 2, 711
 intensity. See Intensity discrimination
 pattern. See Pattern discrimination
 pitch. See Pitch discrimination
 spatial frequency (size), 1, 648, 1, 649
 temperature, 3, 123
 vector models of, 1, 655
 visual targets. See Target acquisition; target recognition

Disjunctive eye movements, 1, 190, 1, 905, 1, 906, 1, 949. See also Eye movements; vergence eye movements

Disorientation. See Vertigo; visual position constancy, loss of

Displacement controls, 12, 101, 12, 421

Display augmentation, 9, 525

Display quickening, 9, 501, 9, 520, 9, 521, 9, 525, 9, 526

Display reading, 7, 116, 7, 117
 annunciator displays, 7, 107, 7, 115, 7, 117
 counters, 11, 217
 CRT displays, 7, 105, 7, 109, 7, 114, 11, 101, 11, 103-11, 122
 indicator lights, 7, 106, 7, 107, 7, 111, 7, 116, 7, 117, 12, 402
 multi-channel displays, 7, 110
 scales, 11, 210-11, 216

See also Dial reading; displays: legibility, symbol; scale reading

Displays
 arrangement of multiple displays, 9, 535
 collimation, 10, 417
 color coding, 7, 511-7, 513, 7, 515, 7, 519, 11, 201-11, 203, 11, 205
 control/display configuration, 11, 206, 12, 302
 control/display movement relationships, 12, 302
 control/display ratio, 12, 201
 CRT displays. See CRT displays
 data entry displays. See Data entry displays
 format, CRT displays, 11, 325, 11, 333, 11, 335
 gain, 9, 513, 9, 514

image degradation. See Image degradation

image quality. See Image quality

legibility
 during acceleration, 10, 902
 contrast and, 10, 416, 11, 102, 11, 107
 dot-matrix characteristics and, 11, 114-11, 118
 gray levels, 7, 604, 11, 119
 luminance and, 10, 905, 11, 102
 number of CRT scan lines and, 11, 108, 11, 109, 11, 111
 overprinting and, 11, 208
 symbol characteristics and, 11, 108, 11, 109, 11, 111-11, 114, 11, 118
 during vibration, 10, 411, 10, 413-10, 416
 luminance, 11, 102, 11, 103
 calculation of, 1, 105
 resolution, 7, 614, 11, 108, 11, 109, 11, 111, 11, 218
 size, 7, 315, 7, 505, 7, 517
 types of
 aircraft, 9, 529
 alphanumeric, 11, 109-11, 118. See also Alphanumeric displays

annunciators, 7, 107, 7, 115

auditory, 9, 538

binocular, 1, 812, 5, 914, 5, 915. See also Binocular displays

cinematic, 11, 218-11, 221

color, 11, 201. See also Color coding

compensatory, 9, 508, 9, 515, 9, 521, 9, 528

counters, 11, 217

CRT, 11, 101, 11, 103-11, 122. See also CRT displays; person-computer dialogue; screen displays

data, 11, 304, 11, 317, 11, 325, 11, 333, 11, 335. See also Data displays

data entry, 11, 317

dials. See Dial reading

dichoptic, 1, 812

digital, 7, 116

discrete, 7, 111

dot matrix, 11, 114-11, 118

dynamic, 7, 112-7, 114

electroluminescent, 11, 102, 11, 123, 11, 125

See also CRT displays

frequency-separated, 9, 529

head-coupled, 10, 420

head-up, 9, 529, 11, 409

horizon, 9, 517, 9, 529

indicators, 7, 106, 7, 107, 7, 111, 7, 116, 7, 117, 12, 402

inside out, 9, 517, 9, 529

intermittent, 9, 530

LED, 11, 123

linear, 12, 201, 12, 302

mechanical indicators, 11, 125

monochrome vs. color coded, 7, 501

multi-axis, 9, 533-9, 535, 9, 538

multi-channel, 7, 110

multi-frame, 11, 333, 11, 334

numeric, 11, 325. See also Alphanumeric displays

outside in, 9, 529

peripheral, 9, 532

plan position indicator, 7, 105

predictor, 9, 525

previewing, 9, 530

pursuit, 9, 508, 9, 521, 9, 528

quickened, 9, 501, 9, 520, 9, 521, 9, 525, 9, 526

radar, 7, 105. See Radar displays

rear projection, 7, 116

scale rendering. See scale reading

screen, See Screen displays

self-motion, 5, 501, 5, 503

status lights, 7, 107

stereoscopic, 5, 914, 5, 915

tactile, 3, 105, 6, 501-6, 509, 9, 501, 9, 538

text, 11, 207, 11, 326. See also Alphanumeric displays;

person-computer dialogue; screen displays

unannounced, 7, 117

warning, See Warning signals

See also CRT displays; display reading

Distance

ego-centric, 5, 105

See also Distance perception; horizon

Distance perception

accuracy, 5, 112

in blind positioning, 9, 204

in aircraft landing, 5, 101-5, 103

constancy of, 5, 112

cross-modal vs. intramodal distance judgments, 5, 1010

distance cues to, 5, 104, 5, 105. See also Depth cues
distortions of
adaptation to, 5.110, 5.121, 5.125, 5.126
optically induced, 5.110-5.1126
with underwa ter viewing, 5.1124-5.1126
illusions of distance, 5.108
linear perspective and, 5.105
with prolonged viewing of close object, 1.902
for sound source, 2.801
visual angle and, 5.104
See also Depth perception
Distance vision. See Depth perception; distance perception; sighting range; viewing distance
Distortion
aural, 2.105
of speech, 8.304, 8.312, 8.313. See also Speech intelligibility; of altered speech visual. See Visual distortion
Distractors
in reaction time tasks, 9.110, 9.117, 9.118
in visual search tasks, 7.514-7.516. See also Density
Diurnal rhythms. See Circadian rhythms
Dotted attention
distotory, 7.206, 7.214
age and, 7.213, 7.217
factors affecting, summarized, 7.213
practice and, 7.213, 7.216
mixed modalities, 7.206, 7.207, 7.215, 7.217
vs. selective attention, 7.206, 7.214, 7.221
visual, 7.219-7.221
See also Concurrent tasks; monitoring; selective listening, workload; vigilance
Dominant wavelength, 1.722
Dosimeter, 2.104
Dot-matrix displays
element size, 11.114, 11.116
interelement spacing, 11.115, 11.116
matrix size, 11.117
symbol size, 11.118
viewing distance, 11.118
Double vision
due to accommodation/convergence decoupling, 1.808
discomfort caused by, 5.906, 5.911
hysteresis effects, 5.937
due to interocular magnification differences, 1.813
due to interocular rotation differences, 1.813, 5.913
due to lateral retinal image disparity, 5.905, 5.911, 5.930
stereoscopic depth perception with, 5.927, 5.930
due to vertical retinal image disparity, 5.906, 5.912
See also Binocular image registration
Drive, 10.101, 10.102. See also Incentive; motivation
Dual-axis tracking, 9.510, 9.536
Dual task. See Concurrent tasks; divided attention; mental resources
Duplicity model
applied to dark adaptation, 1.407
applied to spectral sensitivity, 1.302
Duration perception
auditory stimuli, 2.503, 2.504, 5.1019
bimodal stimuli, 5.1019
visual stimuli, 5.1019
Dwell time, 7.313, 7.317, 9.530. See also Monitoring; visual fixation
Dynamic range
for audition, 2.103
for sensory modalities compared, 5.1001
for vision, 1.103
Dynamic visual acuity, 1.617-1.622, 7.522
correlation with static acuity, 1.617, 1.621
direction of movement and, 1.617, 1.619
practice and, 1.622
target orientation and, 1.618, 1.620
target velocity and, 1.617-1.622, 7.522
vernier targets, 5.220
Ear
anatomy and physiology, 2.201, 2.202
resonance properties, 2.201, 2.302
sound pressure transfer function, 2.802
See also Audition
Ear canals, 2.201
Ear dominance, 6.401
Earphone listening
auditory sensitivity with, 2.302
loudness with, 2.603
sound localization with, 2.801, 2.804. See also Auditory localization; with earphone presentation
Earplugs, 8.304, 8.312, 8.316
Ebbinghaus illusion, 5.106
Eccentric gaze
apparent straightahead and, 5.606, 5.802
autokinetic movement and, 5.606
eccentric fixation of dim targets, 1.916
eye-muscle potentiation turd, 5.1101
mixed modalities, 7.206, 7.214, 7.217
eccentric fixation of dim targets, 1.916
vs. selective attention, 7.206, 7.214, 7.221
visual, 7.219-7.221
See also Concurrent tasks; monitoring; selective listening, workload; vigilance
Eccentricity. See Retinal location; visual field location
Effective contrast, 7.605
Effective damage level, 10.316. See also Hearing loss
Effective pupil area, 1.106, 1.111
Effectivity ratio, 1.106, 1.111
Effort
perceived mental effort, 7.709, 7.712. See also Workload measurement
sense of muscle effort, 3.301, 3.325. See also Kinesthesia
Egocentric localization
definition, 5.601
distance, 5.105
factors affecting, summarized, 5.607
with intersensory conflict, 5.1007-5.1009
optimal modality, 5.1002
visual, 5.601, 5.603, 5.606, 5.607
See also Apparent straightahead
Ego motion, 5.501. See also Self-motion
Ehrenstein illusion, 5.406
Electrocutaneous stimulation
applications, 3.101
exposure duration and, 3.125
Electrocutaneous stimulation (continued)
methods of stimulation, 3.101
sensation magnitude, 3.101, 3.126
sensitivity to, 3.101, 3.125
temporal summation, 3.101, 3.107
weight perception with, 3.324
See also Cutaneous sensitivity
Electroencephalogram (EEG)
localization, 7.702-7.704, 7.724-7.727
Electrooculography (EOG)
localization in measurement, 7.704, 7.729
Electro-oculography
localization of, 7.702, 7.704, 7.724, 7.727
Exhaustive search
memory, 4.105
visual, 9.117
Exit pupil, 1.105, 1.209
Exogenous rhythms, 10.102, 10.701. See also Cyclical variations
Exophoria, 1.809
due to convergence deficit, 1.231
description, 1.809, 1.902
population incidence, 1.810
Expert systems, 7.307, 7.308
Exposure duration
auditory sensitivity and, 2.301, 2.306, 2.311
color perception and, 1.703, 1.707
cutaneous sensitivity and, 3.107, 3.125
flicker sensitivity and, 1.501
loudness and, 2.601, 2.607
motion perception and, 5.203, 5.207-5.209, 5.401, 5.403
of noise, effects of, See Noise
pitch discrimination and, 2.709
sound localization and, 2.811
stereoscopic vision and, 5.918, 5.926, 5.935
tactile pattern perception and, 6.504
visual acuity and, 1.603, 1.613, 1.621
visual detection and, 1.305, 1.412, 1.511, 1.624, 7.406
Extensional eye position information, 1.938
Extraretinal eye position information, 1.905, 1.956. See also Torsional eye movements
Eye injury
circadian performance rhythms and, 10.708
stress effects and, 7.804
vigilance performance and, 7.413
Eye
accommodation (focus), 1.222-1.231. See also Accommodation
anatomy and dimensions, 1.201, 1.209, 1.210
anisokonia, 1.927, 5.906, 5.907, 5.909, 5.1101, 5.1121, 5.1122
astigmatism, 1.205, 1.634
axial chromatic aberration, 1.212
dark focus, 1.222, 1.223, 1.226, 1.228, 7.507
declination error, 1.205
depth of focus, 1.221
elevator Illusion, 3.210, 5.504, 5.505
entrance pupil, 1.208
focal length, 1.203, 1.204, 1.209, 1.210, 1.212, 1.222
fovea, 1.201, 1.202, 1.209, 1.210
image properties, 1.218, 1.219
light distribution for extended source, 1.217
line-spread function, 1.215, 1.216
modulation transfer function, 1.219, 1.220
point-spread function, 1.213-1.215
interpupillary distance, 1.208
light scatter in, 1.202
model (schematic) eye, 1.209
optical axis, 1.209, 1.210
optical parameters, 1.209, 1.210
photoreceptors, 1.201
position sense of, 5.607
pupil diameter, 1.203, 1.232-1.234. See also Pupil: diameter of...
pupillary axis, 1.209
cylindrical power, 1.209, 1.222
torsion, 1.109, 1.901, 1.902
spectral transmittance of ocular media, 1.202
spherical aberration, 1.211
spherical refractive errors, 1.204
visual aids magnification properties, 1.206
visual angle, 1.240
visual axis, 1.209, 1.210
visual field, 1.235-1.237
See also Image quality; vision

Eye-hand coordination
heat exposure and, 10.601
See also Movement, target-directed

Eye-head coordination, 1.958, 1.960
countertorsion, 1.957, 1.959
factors affecting, summarized, 1.960
model of retinal image stabilization, 1.910
in target acquisition, 7.503
vestibulo-ocular reflex, 1.901, 1.913, 1.917
vestibular nystagmus, 1.917-1.922, 1.926-1.930
during vibration, 10.418
in visual fixation, 1.913

Eye movements
abduction, 1.905
abrupt movements, 1.906
adaptability of, 1.907
adduction, 1.902, 1.905
afternystagmus, 1.921, 1.923, 1.924, 1.930
anatomy and mechanics of, 1.901, 1.902
anticipatory, 1.948
apparent motion and, 5.202, 5.215
axes of rotation, 1.901
cancellation theory, 1.938
classification of
by direction and axis of rotation, 1.905
by speed, 1.906
compensatory, 1.901, 1.958
for head rotation, 1.913, 1.917, 1.958, 1.960,
10.418. See also Vestibulo-ocular reflex
for head tilt, 1.905, 1.957-1.959
model of, 1.910
to torsional stimuli, 1.956
for vertical disparity, 1.955, 5.906
with visual fixation, 1.913
conjugate, 1.905, 1.906
conjugative, 1.905
collapse, 1.808, 1.902, 1.951
coordinate systems for describing, 1.903
coordination with head movements, 1.958, 1.960. See also Eye-head coordination
countertorsion, 1.957-1.959
cyclorotational eye movements, 1.905, 1.956, 1.957, 1.959, 5.803
disjunctive, 1.190, 1.905, 1.906, 1.949
during display monitoring, 7.311, 7.313-7.319
dwell time (fixation duration), 7.311, 7.313-7.317
models of, 7.311, 7.316-7.319
sampling frequency, 7.313, 7.314, 7.316, 7.317
scan patterns, 9.535
transition probabilities (link values), 7.311, 7.313-7.316, 7.318, 7.319
See also Monitoring
drift, 1.905, 1.911, 1.912, 1.914, 1.916
eye muscles and, 1.901, 1.902
eye tremor, 1.912, 1.914, 7.505. See also Microtremors
fatigue and, 1.908
fixation, 1.911-1.916. See also Visual fixation
fusional eye movements, 1.955, 1.956. See also Vergence eye movements
glissades, 1.908
induced motion and, 5.201, 5.302
involuntary
anticipatory, 1.948
during fixation, 1.906, 1.911, 1.912, 1.914, 1.916
with head movement, 1.957-1.960. See also Vestibulo-ocular reflex
maladaptive, 1.909, 1.915, 1.916
measurement of, 1.904
microsaccades, 1.906, 1.914, 1.932
microtremors, 1.914, 7.505
motion perception and, 5.201, 5.202, 5.215, 5.216, 5.302
nystagmus, 1.906, 1.918-1.925, 1.927-1.930. See also Nystagmus
optokinetic nystagmus, 1.918, 1.921, 1.924, 1.925
physiological nystagmus, 1.906
postrotary nystagmus, 1.923, 1.930
pursuit eye movements, 1.906, 1.938-1.949
model of, 1.938
See also Pursuit eye movements
rapid (during sleep), 10.703, 10.809, 10.810
during reading, 8.101
fixations, 8.112-8.116
glare level and, 8.112
parafocal information, 8.116
saccades, 8.111-8.113, 8.115
text characteristics and, 8.113, 8.114
viewing distance and, 8.111
saccades, 1.931-1.937. See also Saccades
specification of, 1.903
square-wave jerk, 1.914
false torsion, 1.905
See also Torsional eye movements
tracking eye movements, 1.938-1.949. See also Pursuit eye movements
tremor, 1.912, 1.914
velocity of, 1.906
model of, 1.910
vergence, 1.955, 1.950-1.955
effect of lenses on, 1.206
See also Vergence eye movements
version, 1.905
vestibular nystagmus, 1.918-1.922, 1.928-1.930. See also Vestibular nystagmus
vestibulo-ocular reflex, 1.910, 1.917, 1.926, 1.927. See also Vestibular nystagmus; vestibulo-ocular reflex
during visual search, 7.407, 7.503-7.506, 7.511, 7.515
types of, 7.505
See also Nystagmus; pursuit eye movements; saccades; vergence eye movements; vestibulo-ocular reflex; visual fixation; visual search

Eye muscle potentiation, 5.1101
Eye muscles, 1.901, 1.902
Eyepiece
binocular, 1.812
binocular, 1.812
and image luminance, 1.105
Eye signature, 1.811
Eye tremor, 1.912, 1.914, 7.505
Fabry-Perot filter, 1.108
Facilitation, intersensory
of detection, 5.1003-5.1005, 7.409
Facilitation, Intersensory (continued)
of localization, 2.815, 5.1009
of reaction time, 5.1012, 5.1014, 5.1015
of temporal pattern perception, 5.1018
See also Intersensory interactions
Failure detection. See Fault detection
Full time
definition, 2.102
Familiarity
perceived shape and, 6.310
Familiar size
as depth cue, 5.901
Farbenglu (color glow), 1.707, 1.711
Farnsworth-Munsell 100-Hue Test, 1.726
Farsightedness, 1.204
Fast Fourier transformation analyzer, 2.104
Fatigue, 10.201, 10.801
aversion to effort and, 10.801
circadian rhythms and, 10.102, 10.710
effects, summarized, 10.801
eye movements and, 1.908
limb position perception and, 3.316
measurement of, 10.201
perception and, 10.801
phasic, 10.801
physical effort and, 10.801
serial response and, 10.801, 10.805
skilled performance and, 10.801
as stressor, 10.102, 10.103, 10.202, 10.805
work efficiency and, 10.707
See also Sleep deprivation
Fault detection
automation level and, 7.304
time to detect, diagnose, and repair faults, 7.305
training for, 7.306
See also Monitoring, supervisory control
Feature-selective adaptation, 6.318, 6.320
orientation, 1.652, 6.318
size or spatial frequency, 1.626, 1.628, 1.650, 1.651, 6.318, 6.319
Feature theory
pattern recognition, 6.321
Fechner's colors, 1.719
Fechner's paradox, 1.803
Feedback
auditory, 9.304
delayed, 5.1107, 5.1108, 9.304
manual control systems, 9.506, 9.507, 9.527. See also System feedback
movement sequences and, 9.304
prism adaptation and, 5.1107, 5.1108
proprioceptive, 9.537
target-directed movement time and, 9.201, 9.205, 9.206
tracking displays, 9.501, 9.508, 9.525
vigilance training and, 7.416
See also Knowledge of results
FFT analyzer, 2.104
Flick coordinate system
for eye movement representation, 1.903
Field of view
normal achromatic visual field, 1.235, 1.236
normal visual fields for color, 1.237
target acquisition and, 7.614
target differentiation and, 11.221
See also Peripheral vision; visual field location
Field size
color discrimination and, 1.705
contrast sensitivity and, 1.628, 1.629
motion perception and, 5.203, 5.210
stereoeacuity and, 5.918, 5.923
See also Peripherul vision
Figural aftereffects, 5.1123, 6.317-6.320
due to prism exposure, 6.317-6.320
Figure-ground segregation, 6.001, 6.301
Flicker Illusion, 5.215, 5.217
Filtering. See Spatial filtering; spatiotemporal filtering; temporal filtering
Filtering defect
in color vision, 1.726
Filter-separation stereoscopy, 5.914
First-order lag, 9.519
First-order system, 9.503, 9.505, 9.519, 9.520, 12.421
aversion to effort and, 10.801
Fitts' law, 9.201, 9.203, 9.207, 9.210
circadian rhythms find, 10.102, 10.710
Five-choice serial response task, 10.805
effects, summarized, 10.801
Fixation disparity, 1.809
eye movements and, 1.908
limb position perception and, 3.316
See also Visual fixation
measurement of, 10.201
Fixation, of the eye. See Visual fixation
perception and, 10.801
Flashing warning signals, 11.410-11.412
phasic, 10.801
See also Warning signals
physical effort and, 10.801
Flesch readability index, 8.129
serial response and, 10.801, 10.805
Irration Monitoring; supervisory control
critical flicker frequency, 1.501, 1.504, 1.507
audio-visual interactions, 5.1020
defective factors affecting, summary of, 1.501
flicker frequency and, 1.501, 1.503, 1.505, 1.506, 1.508-1.510, 11.120
flicker perception vs. pattern perception, 1.509
luminance level and, 1.508, 1.628
model of temporal sensitivity, 1.513
target configuration and, 1.501, 1.505, 1.506
target size and, 1.506, 1.507
target spatial frequency and, 1.508, 1.509
temporal contrast sensitivity, 1.503, 1.505, 1.509
visual field location and, 1.501, 1.504
Flight-director display, 9.525
Flight of colors, 1.309
Flight simulation
as aid to reading comprehension, 8.127
aircraft landing scenes, 5.102, 5.103
See also Simulation
Flowcharts
as aid to reading comprehension, 8.127
Fluence (fluorescence), 1.707, 1.711
Flutter
auditory, 5.1020
Flying performance
correlation with visual tests, 7.612
See also Aircraft landing
Focus (eye), 1.201, 1.203, 1.209
accommodation, 1.222-1.231
blur patch, 1.205, 1.211, 1.212, 1.221
decation: error, 1.205
Geometric effect, 5.909, 5.1121

Gestalt principles, 6.001, 6.301, 6.303, 6.321
 auditory grouping and, 6.401
 of figure-ground segregation, 6.301
 area, 6.301
 contrast, 6.301
 convexity, 6.301
 lightness, 6.301
 orientation, 6.301
 surroundedness, 6.301
 symmetry, 6.302
 of grouping, 6.301, 6.302
 closure, 6.301
 common fate, 6.301
 good continuation, 6.301, 6.310
 proximity, 6.301, 6.302
 similarity, 6.301
 symmetry, 6.301
 simplicity principle, 6.303
 spatial filtering and, 5.107, 6.302
 See also Auditory perception

Gaze, 10.501

Glass filter, 1.108

Glideslope angle
 judgment of, 5.101-5.103
 See also Slant perception

Glissades, 1.908

Gloves
 control operating time and, 12.427
 keyboard data entry and, 12.426, 12.429
 knob rim discrimination and, 12.430
 torque exerted and, 12.428
 Goal setting, 7.307, 7.309, 11.323
 Goal structure model
 human-computer interaction, 11.307

Good continuation
 Gestalt grouping principle of, 6.301, 6.310, 6.401

Granit-Harper Law, 1.507

Graphics
 screen presentation of, 11.328

Graphs
 reading error probabilities, 7.116

Grating resolution, 1.604, 1.606, 1.614, 1.616

Gratings
 use in acuity measurement, 1.602

Gravity. See Acceleration; G-suits; microgravity

Gray levels, 7.604, 11.119

Gray scale, 1.721

Grouping
 apparent motion and, 6.302
 in counting, 7.523
 Gestalt principles of, 6.001, 6.301-6.303. See also Gestalt principles
 See also Chunking; perceptual organization

G-suits, 10.301

Gullstrand model eye, 1.209

Gunning's Fog Index, 8.129

Habitation
 definition, 3.209

Hair cells, 2.201

Handwriting speed, 9.302

Haptic perception
 aftereffects, 5.806
 of curvature, 6.609, 6.610
 definition, 6.601
 of form, 3.101, 5.608, 5.1016, 6.607, 6.608

 illusions
 curvature, 6.609, 6.610
 horizontal-vertical, 5.110
 of length, 5.110
 of orientation, 5.806, 5.808
 compared to visual, 5.808
 of proportion, 5.111
 of roughness, 6.603-6.606
 scanning, 6.602
 of viscosity of liquids, 6.611
 See also Kinesthesia; tactile perception

Harmonic distortion, 2.105

Harmonics
 definition, 2.102
 pitch discrimination and, 2.708

Hazeltine font, 11.209

Head-coupled displays
 perception of, during vibration, 10.420

Head movement
 auditory localization and, 2.801, 2.810
 eye movements in response to, 1.958, 1.960. See also Eye-head coordination; vestibulo-ocular reflex
 in target acquisition, 7.503
 as a vestibular stimulus, 3.201-3.203

Headphones
 calibration, 2.104
 See also Earphone listening

Head position
 terminology for describing, 5.701
 tonic neck reflex, 3.326
 vibration transmission and, 10.406
 See also Head rotation; head tilt

Head rotation
 aftereffects, 2.814, 3.308, 3.321
 coordination with eye movements, 1.960. See also Eye-head coordination; vestibulo-ocular reflex
 perceived straight-ahead and, 2.814, 3.308, 3.321

Head shadow, 2.801, 2.803

Head tilt
 aftereffects, 5.801, 5.802
 apparent horizontal with, 5.803
 apparent vertical with, 5.801, 5.802
 eye movements in response to, 1.957-1.959. See also Eye-head coordination; vestibulo-ocular reflex
 illusions induced by, during body rotation, 3.204, 5.503

Head-up displays, 9.529, 11.409

Head vibration, 10.406
 helmet vibration and, 10.419
 horizontal, 10.408
 vertical, 10.407
 vision and, 10.410, 10.418, 10.433
 See also Vibration

Heap's visual carpet, 7.605

Hearing. See Audition

Hearing level
 definition, 2.103

Hearing loss
 due to aging, 2.301, 2.303
 due to noise exposure
 permanent threshold shift
 age and, 10.314
 exposure duration and, 10.314, 10.315
 factors affecting, summarized, 10.315
 noise intensity and, 10.314, 10.315
 prediction and prevention, 10.316
 temporary threshold shift
 acoustic reflex and, 2.202
factors affecting, summarized, 10.311
noise duration and, 2.301, 10.311
noise intensity and, 2.301, 10.311, 10.312
noise spectrum and, 10.311, 10.313
recovery time, 10.311, 10.312

Hearing threshold level
definition, 2.103

Heat
performance effects, 10.202, 10.601, 10.805
skin sensitivity to, 3.101, 3.121-3.124
as stressor, 10.103
See also Temperature sensitivity

Heaviness
perception of. See Weight perception

Helicopters
vibration characteristics, 10.404

Helmet-mounted displays
perception of, during vibration, 10.420

Helmholtz coordinate system
eye movement representation, 1.903

Hering Illusion, 5.106

Heterochromatic brightness matching, 1.109, 1.303, 1.701
Heterochromatic flicker photometry, 1.109, 1.701
Heterochromatic lightness matching, 1.303

Heteromodal perception, 5.1022

Heterophoria, 1.809, 1.810, 1.902

Hickethler System
color ordering, 1.723

Hick-Hyman law
choice reaction time, 9.111-9.113, 9.119

Hierarchical models
database systems, 11.304
supervisory control, 7.307-7.309

Higher-order systems, 9.524, 9.526, 9.532, 9.536

Highlighting
screen displays, 11.329

Hirsch alphabetic keyboard, 12.408

Homochromatic afterimages, 1.309

Homochromatic lightness scale, 1.721

Homogeneous object translation, 11.220

Horizon
horizon-ratio relation, 5.105, 5.108
in linear perspective, 5.105, 5.115
shape and distance perception and, 5.105
size perception and, 5.105, 5.108
surface horizon, 5.105
terrestrial horizon, 5.108
ture horizon, 5.108

Horizon displays, 9.517, 9.529

Horizontal misalignment
of binocular images, 1.813. See also Lateral retinal image disparity

Horizontal-vertical illusion
haptic, 5.110
visual, 5.106

Horopter, 5.910

Howard-Dolman apparatus, 5.917

Huddleston font, 10.415

Hue
Bezold-Brücke hue shift, 1.707, 1.709
binary (non-unique) hue, 1.706
in color-order systems, 1.773
in Munsell Color System, 1.724
in OSA Color System, 1.725
constant-hue contours, 1.708, 1.709
correlates of, 1.706, 1.722
definition, 1.706
discrimination of 1.101
factors affecting, summarized, 1.707
luminance level and, 1.707, 1.709
saturation and, 1.708
type of illumination and, 1.710
unique hue, 1.706, 1.707
wavelength and, 1.101

See also Color appearance; wavelength (light)

Human-computer interfaces

database systems, 11.304
data entry, 11.317, 11.318
interface design, 11.310
in supervisory control, 7.308, 7.309
system design
designing for casual or infrequent users, 11.312
determination of user characteristics, 11.311
modeling, 11.304, 11.305

system response time, 11.313
task execution time, prediction of, 11.306
user problems
error analysis of, 11.310
protocol analysis of, 11.307

See also Automation; person-computer dialogue

Human operator
modeling of
display monitoring, 7.316-7.319
supervisory control, 7.303, 7.304, 7.309-7.311
human-computer relationships in, 7.307-7.309

Human performance reliability
analysis of, 7.101, 7.102
SAINT model, 7.102
Siegel/Wolf stochastic models, 7.102
THERP method, 7.102, 7.103
data sources, 7.104
error analysis, 7.101-7.104, 7.115, 11.310
error prediction, 7.102, 7.103
error probability
control operation
continuous controls, 7.113, 7.114
discrete controls, 7.111, 7.112
display reading/response
annunciators, 7.107, 7.115, 7.117
chart recoders, 7.116, 7.117
counters, 11.217
CRT displays, 7.109. See also CRT displays
dials, 11.213. See also Dial reading
digital displays, 7.116
gaphs, 7.116
indicator (status) lights, 7.106, 7.107, 7.116, 7.117
large-screen projected displays, 7.109
metres, 7.108, 7.110, 7.116, 7.117
printing recorders, 7.116
radar-type display scopes, 7.105
scales, 11.210, 11.214, 11.216. See also Scale reading
time to read/respond
discrete indicator lights, 7.106
radar-type display scopes, 7.105
scales, 11.210, 11.214, 11.216. See also Scale reading

See also Error

Humidity
as stressor, 10.600, 10.602

Hyperacuity, 1.607-1.609
See also Vernier acuity; visual acuity

Hyperopia, 1.204
Image degradation

Incentive

by astigmatism, 1,205, 1,634

by chromatic aberration, 1,203, 1,212

by diffraction, 1,213

by glare, 10.501

by refractive errors, 1,204

by spherical aberration, 1,203, 1,211

See also Aniseikonia; Image quality

Image displacement

adaptation to, 5.1101, 5.1103-5.1113, 5.1119
devices producing, 5.1102

See also Prismatic displacement, adaptation to

Image intensity distribution

calculation equations, 1,219

extended source, 1,217

Fourier description, 1,218

line source, 1,214, 1,215

modulation transfer function, 1,219, 1,220

point source, 1,104, 1,213, 1,214

See also Line-spread function; point-spread function

Image interpretation, 7,526

Image inversion

adaptation to, 5.1101, 5.1114
devices producing, 5.1102

Image luminance

with optical viewers, 1,105

Image magnification/minification

adaptation to, 1,927, 5,909, 5.1101, 5.1121, 5.1122

aniseikonia, 5,906, 5,907, 5,909, 5.1121
devices producing, 5.1102

Image motion

CRT displays, 11.101, 11.105, 11.106, 11.121

See also Motion; motion perception

Image prevalence

in binocular rivalry, 1,804-1,806

Image processing, 6,312

Image quality

aniseikonia, 5,906, 5,907, 5,909, 5,1121

aperture size and, 1,218, 1,219

CRT displays, 11.101, 11.121, 11.218
depth of focus and, 1,221
depth distortion. See Depth distortions
diffraction and, 1,213

extended source, 1,217

flicker, 11.122

Fourier description of, 1,218, 1,219
glare, 10.501

image registration. See Binoculungal image registration

inter-pixel spacing, 1,115, 1,116

limits on, 1,213-1,215, 1,217

line-spread function, 1,215, 1,216

point-spread function, 1,213, 1,214

See also Aberration, optical; image degradation; image

resolution; legibility, symbol

Image resolution

vision. See Eye; focus (eye); see also Visual acuity

See also Optical imaging

Image reversal

adaptation to, 1,927, 5,1101, 5.1114
devices producing, 5.1102

Image stabilization

on retina. See Vestibulo-ocular reflex

Image translation, 11.220

Imaging displays, 7,316

Impact point

judgment of, 5.101, 5.102

Incentive

performance effects, 7,801

for introverts vs. extroverts, 7,804, 10,708
Incidental learning, 10.308
Incus, 2.201
Independence, statistical, 1.814
Indicator lights, 7.106, 7.107, 7.111, 7.116, 7.117, 12.402
See also Displays; warning signals
Induced effect, 5.906, 5.909
Induced motion, 5.201, 5.301
conditions favoring, 5.301
definition, 5.211
factors affecting, summarized, 5.302
frequency characteristics, 5.211
See also Motion illusions; self-motion illusions
Induction
achromatic, 1.707, 1.713, 1.715, 1.716
chromatic, 1.701, 1.707, 1.717, 1.718
figural aftereffects, 6.317
motion, 5.201, 5.211, 5.301, 5.302. See also Induced motion
self-motion, 1.924, 5.501, 5.503, 5.707, 5.708. See also Self-motion illusions
Illusions
illuminance, 5.918, 5.931
kinetic occlusion, 1.223, 1.231
Interaural differences
angle, 2.601, 2.609
masking and, 2.305, 2.314, 2.315
speech intelligibility and, 8.304, 8.312, 8.314, 8.315
relation to interaural time difference, 2.806
segregation of phase-shifted tones, 6.405
time, 2.801, 2.805-2.809, 2.811, 5.1006
echo suppression and precedence effect, 2.817
masking and, 2.315
relation to interaural phase difference, 2.806
Interaural masking, 2.313
Interfaces. See Controls; displays; human-computer interfaces;
person-computer dialogue
interference filter, 1.108
Interference level
speech, 8.317, 8.318
Intermanual transfer
of prism adaptation, 5.1106, 5.1109
Intermittent displays, 9.530
See also Flicker
Intermittent stimulation
auditory
loudness of, 2.610
pitch of, 2.711
rate perception, 2.711, 5.1020
visual. See Flicker
Intermodulation distortion
definition, 2.105
Interocular differences
aniseikonia, 1.927, 5.906, 5.907, 5.909, 5.931, 5.1121,
5.1122
horizontal position. See Lateral retinal image disparity
luminance, 5.918, 5.931
Pulfrich effect, 5.933
number of contours, 5.932
orientation, 5.907, 5.908, 5.913
size, 5.906, 5.907, 5.909, 5.931
spatial frequency, 5.937
stereoaclity with, 5.931
time delay, 5.218, 5.931
Mach-Dvorak effect, 5.933
vergence eye movements and, 1.952
vertical position. See Vertical retinal image disparity
Interocular transfer
of prism adaptation, 5.1109
of tilt adaptation, 5.1116, 5.1117
of tilt illusion, 5.805
Inter-pixel spacing
character legibility and, 11.115, 11.116
Interpolation. See Dial reading; display reading; scale reading
Interposition
as depth cue, 5.901
kinetic occlusion, 5.901, 5.903
shape perception and, 6.310
Interaural distance, 1.208
convergence angle and, 1.808
Intersensory interactions, 2.141, 5.1003-5.1022
detection facilitation, 5.1003-5.1005, 5.1014, 7.409
intersensory discrepancy, adaptation to. See Speech perception,
adaptation of
orientation perception, 5.802-5.804, 5.1011
reaction time facilitation, 5.1012, 5.1014, 5.1015, 11.420
spatial localization
cognitive factors, 5.1009
intersensory bias, 5.1007-5.1009, 5.1110
visual capture, 5.1007-5.1009
response factors, 5.1009
Intersensory Interactions (continued)
sound localization, 2.814, 5.1007, 5.1127
ventriloquism effect, 5.1007, 5.1009
straitheadshift, 5.802, 5.1113
temporal effects
audiovisual synchrony, 5.1021
duration perception, 5.1019, 5.1020
temporal pattern perception, 5.1018, 5.1020
temporal rate perception, 5.1020
vigilance, 7.409
Intension, 1.905, 1.950. See also Torsional eye movements
Introversion
circadian performance rhythms and, 10.708
stress effects and, 7.804
vigilance performance and, 7.413
Inverse square law
for light intensity (irradiance), 1.104
for sound intensity, 2.103
Inversion Illusion, 3.210, 5.709
Involuntary eye movements. See Eye movements: involuntary
Iris, 1.201, 1.209
Irradiance
definition and measurement, 1.104
Iso-utility curve, 9.104
Jet lag, 10.710, 10.713. See also Cyclical variations
J-handle controls, 12.303
Joint-movement detection. See Movement detectability; kinesthesia
Joint-movement sense. See Kinesthesia
Joysticks, 10.409, 10.423, 11.318, 12.201
cursor control, 12.422
displacement (isotonic), 12.101, 12.421, 12.422
force (isometric), 9.537, 12.101, 12.421, 12.422
Kalman estimator, 7.310, 7.311
Kalman filter, 7.311, 9.512
Kanizsa cube, 6.303
Kappa-tau space, 9.509
Keyboards
alphabetical, 12.408
feedback, 12.410, 12.411
key characteristics, 12.410
matrix, 12.415
membrane, 12.407
multifunction, 12.411
QWERTY, 12.408, 12.410
slope of, 12.409
See also Keying performance; keysets
Keying performance
error recognition, 11.320
feedback and, 12.410
gloves and, 12.429
keyboard arrangement and, 12.406, 12.408
keyboard slope and, 12.409
key size, force, and displacement and, 12.410
keystroke model of task execution time, 11.306
See also Data entry
Key-operated switches, 12.101, 12.303
Keysets
calculator vs. telephone arrangement, 12.406
compared to other data entry devices, 12.415
feedback, 12.410
key size, force, and displacement, 12.410
See also Data entry; data entry devices; keyboards
Keyword cueing
data entry displays, 11.417
Kinesthesia, 3.301-3.326
active vs. passive positioning, 3.301, 3.302
adaptation, 3.308, 3.310
aftereffects, 3.301, 3.302
arm position, 3.301, 3.303, 3.310, 3.321
head position, 2.814, 3.303, 3.308, 3.312, 1.501, 5.802
background information and summary, 3.301
definition, 3.301
heaviness, sense of, 3.301, 3.321, 3.323, 3.324
illusions, 3.301, 3.303, 3.314, 3.315
interaction with other senses
orientation perception, 5.1011
spatial localization, 5.1007, 5.1009
joint angle encoding, models of, 3.322
memory for limb position, 3.301, 3.321
movement detectability (joint or limb), 3.301, 3.303-3.307
excursion amplitude and, 3.301, 3.305, 3.307
factors affecting, summarized, 3.303
movement velocity and, 3.301, 3.303, 3.305, 3.307
muscle effort, sense of, 3.301, 3.325
parallelism judgment, 5.807
physiological basis, 3.301
position perception, 3.301, 3.303
ankle (foot), 3.320
head, 3.308, 3.321
knee, 3.319
measurement of, 3.301, 3.302
positioning accuracy, 3.301, 3.303, 3.308, 3.309, 3.317
position matching, 3.301, 3.303, 3.1010
shoulder, 3.316, 3.318
underwater distortion and, 5.1124
visual-kinesthetic discrepancy and, 3.303, 5.1007, 5.1008.
See also Intersensory interactions
visual scene distortion and, 3.303, 5.1001, 5.1002. See also
Space perception, adaptation of
postural persistence, 3.308, 3.321
role in postural stability, 5.702, 5.704
proprioceptive feedback, 9.537
shape discrimination, 6.607
tactile-kinesthetic scanning, 6.602
tonic vibration reflex, 3.315
weight lifting, 3.326
See also Body orientation; haptic perception; movement
detectability; position perception; postural stability
Kinetic occlusion, 5.901, 5.903
Kinetic shear, 5.901, 5.903
Kinocilia, 3.201, 3.202
Knobs. See Controls: types of
Knowledge of results
circadian performance rhythms and, 10.708
motor learning and, 9.404
performance after sleep deprivation and, 10.807
personality effects on performance and, 10.708
See also Feedback; incentive
Kohstamm effect, 3.321
Koepfmann's empirical frequency-of-seeing curve, 7.609
Kopfemmann cube, 6.303
Korte's laws, 5.401-5.403, 9.530
Kvalseth's sampling model
monitoring behavior, 7.316
Labyrinthine organs, 3,201
disease or defects of
illusive self-motion and, 5,503
ocular counterrotation and, 1,957
postural stability and, 5,702, 5,704
vestibular illusions and, 5,504, 5,709

Lag. See System lag

Lag time constant, 9,522

Lamellar field, 5,221

Landolt C
use in acuity measurement, 1,602
See also Gap detection

Language. See Person-computer dialogue; query language; reading; speech; visual language processing

Laplace operator
control systems, 9,504, 9,519

Laser
exposure risks to vision, 1,102

Lateralization
auditory, 2,801. See also Auditory localization

Lateral retinal image disparity
absolute vs. relative, 5,905
adaptation, 6,318
aftereffects, 6,318, 6,320
with aniseikonia, 5,907, 5,909
binocular displacement, 5,936
calculation of, 5,905
corrective vs. divergent, 5,905
definition, 5,905
depth perception and, 5,901, 5,905
functional limits as depth cue, 5,904
maximum for stereoscopic depth perception, 5,930
perceived depth as a function of disparity, 5,916
disparity difference threshold (stereovision), 5,918-5,927, 5,929
horiex, 5,910
hysteresis effects, 5,937
with image magnification in one eye, 5,907
with image rotation in one eye, 5,908
limits for single vision, 5,911
comparison to vertical disparity limits, 5,912
relation to target depth in space, 5,905
relative, and stereovision, 5,918-5,921, 5,927
vergence eye movements in response to, 1,949-1,952, 1,954, 1,955, 1,959
viewing distance and, 5,905
See also Binocular image registration; stereovision

Lead time constant, 9,519, 9,522

Learning
incidental, 10,308
motor learning, 9,401-9,404
noise effects on, 10,308
power law of, 4,201
skill acquisition, 4,201
vibrotactile code learning, 6,510
See also Motor learning; practice; training

LED displays, 11,123

Legibility, symbol, 11,108-11,118
shape and, 11,207
size, 11,111, 11,112, 11,114-11,116, 11,118
spacing and, 11,113, 11,115, 11,116
stroke width and, 11,112
See also Alphanumeric displays; legibility of; displays;
display reading; font

Length
perception of, 5,109-5,111, 5,113. See also Distance perception

Lenses (optical)
achromatic (color corrected), 1,211, 1,212
aniseikonia produced by, 5,907, 5,909
corrective, 1,206
meridional-size, 5,906, 5,907, 5,909, 5,1101, 5,1102, 5,1121
spherical, 5,1101, 5,1102, 5,1121
visual image and, 1,206

Lens (of eye) 1,201, 1,120
ageing and, 1,222, 1,707
composition, 1,203
diameter, 1,210
optical imaging and, 1,203, 1,209
radiation absorption, 1,101, 1,102
fractive errors and, 1,204
fractive power, 1,210, 1,211
visual accommodation, 1,222-1,231
See also Accommodation

Leroy font, 11,209

Letter recall, 8,122

Letter recognition
auditory
with selective vs. divided attention, 7,206
haptic vs. visual, 6,608
tactile, 6,502-6,507
with masking, 6,511-6,515
vs. visual, 6,508
visual
with binocular suppression, 1,807
context effects, 8,104
vs. haptic, 6,608
aerial vs. simultaneous presentation and, 8,122
vs. tactile, 6,508
See also Legibility, symbol; reading; visual language processing

Levers, 12,101, 12,102, 12,415, 12,427

Lexical decision task, 8,108, 8,109

Light
artificial illuminants, 1,102, 1,107, 1,710
color temperature, 1,107
diffraction of, 1,213
central light distribution and, 1,214-1,218
See also Diffraction
frequency range, 1,101
intensity range, 1,103
luminous efficiency function, 1,102, 1,104. See also Luminous efficiency function
luminous energy, 1,104
measurement of, 1,104-1,106
photometric techniques, 1,109
radiant energy, 1,104
sensitivity to. See Visual sensitivity
spectral distribution, 1,102
spectral transmittance and reflectance, 1,108
speed of, 1,212
standard illuminants, 1,107, 1,710

Light adaptation, 1,405
brightness discrimination, 1,401-1,405
color appearance and, 1,304, 1,705, 1,707
contrast sensitivity and, 1,628, 1,631-1,633, 1,643
de Vries-Rose Law, 1,502, 1,632
flicker sensitivity and, 1,501-1,505, 1,512
foveal vs. peripheral vision, 1,405
motion perception and, 5,203, 5,205
stereovision and, 5,918, 5,919
target detection and, 1,305, 1,512, 1,624
time course, 1,103, 1,405
visual acuity and, 1,603-1,605, 1,616, 1,619
See also Luminance

Light increment threshold. See Brightness discrimination
Lighting

Glare and, 10.501

Lightness

In color-order systems, 1.723
Munsell system, 1.724
OSA system, 1.725
definition, 1.706, 1.721
distinguished from brightness, 1.706, 1.720
equal-lightness contours, 1.303
lightness matching, 1.701, 1.715
lightness scales, 1.721
perceptual organization and, 6.301
physical correlates, 1.706, 1.721
type of illumination and, 1.710
wavelength and, 1.303
See also Lightness constancy; lightness contrast; lightness induction

Lightness constancy, 1.712
model of, 1.715

Lightness contrast, 1.714
model of, 1.715

Lightness Induction, 1.713, 1.714
model of, 1.715

Lights. See Displays; warning signals

Light scatter. See Diffraction, light

Light sensitivity. See Visual sensitivity

Likelihood principle of perceptual organization, 6.303

Limb sense of movement and position. See Kinesthesia

Limbus boundary tracking
eye movement measurement, 1.904

Lincoln–Müller font, 10.415, 11.115, 11.209
Linear acceleration. See Acceleration; linear
Linear controls, 12.101, 12.201. See also Controls
Linear displays, 12.201, 12.302. See also Displays

Linear perspective
definition and description, 5.115
depth and distance perception and, 5.105, 5.108, 5.901
orientation perception and, 5.115
shape perception and, 5.105, 5.113
size perception and, 5.105, 5.108
slant perception and, 5.115
See also Depth perception

Linear vection, 5.503, 6.304
affect effects, 5.707
detrimental effects of, 5.707
displays producing, 5.501
postural stability and, 5.707
Line-spread function, 1.215, 1.216
point-spread function and, 1.214, 1.215

Link values
display monitoring, 7.313, 7.316, 7.318
See also Monitoring

Lip reading, 8.303

Liquid filter, 1.108

Liquids

perception of viscosity, 6.611

Listing coordinate system
eye movement representation, 1.903

Loading task. See Workload measurement; secondary task measures

Localization. See Auditory localization; cutaneous sensitivity; localization; spatial localization; target acquisition; visual localization

Locomotion, 9.306. See also Movement sequences

Logistic function, 1.657

Log-normal function, 1.657

Longitudinal chromatism, 1.212

Loudness, 2.601-2.613
adaptation to, 2.601, 2.612
bandwidth and, 2.601, 2.604-2.606
binocular vs. monocular listening, 2.601, 2.608
discomfort level, 2.613
distinguished from intensity, 2.601
duration and, 2.601, 2.607
equal-loudness contours, 2.603
factors affecting, summarized, 2.601
free field vs. earphone presentation, 2.603
frequency and, 2.601, 2.603
interaural phase and, 2.601, 2.609
intermittent stimulation and, 2.601, 2.610
international standard, 2.603
with masking, 2.601, 2.609
partial masking, 2.611
sound pressure level and, 2.601, 2.602, 2.605, 2.608, 2.609
stimulus type and,
 broadband noise, 2.605
 narrow-band noise, 2.607
 pure tones, 2.601, 2.603, 2.605, 2.607-2.610
two-tone complexes, 2.604
white noise, 2.601, 2.605, 2.608
summation of, 2.604, 2.606-2.608
tolerance level, 2.613

Lumen, 3.201

Luminance

Abney's law, 1.109
apparent motion and, 5.401, 5.403
candela, 1.104, 1.106
color appearance and, 1.707, 1.709
distinction of scene luminance to retinal illuminance, 1.106
CRT display surround, preferred, 11.103
distinguished from brightness, 1.706
flicker sensitivity and, 1.204
luminous efficiency function, 1.102, 1.104, 1.109, 1.110, 1.130
measurement of, 1.104
motion perception and, 5.207, 5.209
apparent motion, 5.401, 5.403
optical viewers, 1.105
perceptual correlate, 1.706
radiometric correlate, 1.104, 1.706
reaction time and, 9.102, 12.402
specification in CIE colorimetry system, 1.722
visual acuity and, 1.613, 12.402

of visual patterns, 1.601
See also Brightness; light adaptation; lightness

Luminance factor, 1.721, 1.722

Luminance profile, 1.601

Luminosity. See Brightness; luminous efficiency

Luminosity function. See Luminous efficiency function

Luminous directional reflectance, 1.705

Luminous efficiency, 1.104, 1.110, 1.302
Abney's law, 1.109
for color-defective observers, 1.726
equal-luminosity contours, 1.304
measurement of, 1.109
pupil entry angle and, 1.111
See also Brightness; luminous efficiency function; spectral sensitivity (vision)

Luminous efficiency function, 1.110, 1.302
comparison of functions obtained with different techniques, 1.109
definition, 1.102, 1.104
Judd modification, 1.110
measurement methods, 1.109, 1.701
standard (CIE) mesopic function, 1.110
standard (CIE) photopic function, 1.110, 1.302
standard (CIE) scotopic function, 1.110, 1.302
standard (CIE) 10-deg photopic function, 1.110
Luminous energy, 1.104
Luminous flux
definition, 1.104
Luminous intensity, 1.104
Luminous transmittance, 1.706
Lux
definition, 1.104
Mach bands, 1.107, 1.716
Mach-Dvorsik effect, 5.933
Mackworth clock test, 10.102, 10.201
Maculae (vestibular system), 3.201, 3.202
Macula lutea, 1.201, 1.202
Maerz and Paul Dictionary of Color, 1.723
Magnification (visual field)
adaptation to, 3.209, 5.1122
due to visual aids, 1.206
interocular differences, 5.907, 5.909
tolerance limits, 1.813
See also Anisokonia
Magnifier
binocular, 1.812
Magnitude enhancement
vibrotactile stimulation, 3.114
Magnitude estimation
definition, 1.656
kinesthethic stimulation, 3.306
linear acceleration, 3.207
loudness, 2.602
rotary (angular) acceleration, 3.208
workload measurement, 7.710
Magnitude summation
vibrotactile stimulation, 3.112, 3.113
Malleus, 2.201
Manual control
bang-bang control, 9.524
control criteria, 9.510
control dynamics
acceleration control, 9.519
augmentation, 9.520, 9.521, 9.526
aiding, 9.520, 9.521, 9.526
bode plot representation, 9.504
closed-loop transfer function, 9.506
control order, 9.519
crossover frequency, 9.507
feedback
negative, 9.506, 9.507
positive, 9.507, 9.527
system stability and, 9.506, 9.507, 9.527
See also System feedback
first-order lag, 9.519
gain, 9.502-9.505, 9.509
lead/lag time constant, 9.519
open-loop transfer function, 9.506
phase margin, 9.507
position control, 9.519, 9.520
time differentiation, 9.507
time integration, 9.503
transfer function, 9.504, 9.506
unburdening, 9.520, 9.528
velocity control, 9.519, 9.520
critical tracking task, 7.706, 9.527
crossover regression, 9.523
definition, 7.301
describing function, 9.511
critical tracking task, 7.706, 9.527
crossover regression, 9.523
definition, 7.301
describing function, 9.511
critical tracking task, 7.706, 9.527
crossover regression, 9.523
definition, 7.301
describing function, 9.511
error types, 9.510
failure detection and, 7.304
human limitations in, 9.510
kappa-tau space, 9.509
models of, 7.301, 9.508
crossover model, 9.511, 9.523
optimal control model, 9.512
during vibration, 10.421
multiaxis control, 9.531, 9.536, 9.537
multiloop control, 9.531
Performance Control System, 9.505
practice effects, 9.539
relation to supervisory control, 7.301, 7.303, 7.306
tracking performance
aiding and, 9.520, 9.521, 9.526
auditory tracking, 9.538
direction of control movement and, 9.205
display characteristics and augmentation, 9.525
derivative displays, 9.532
gain, 9.513-9.515, 9.518
inside-out vs. outside-in, 9.529
intermittency, 9.530
modality, 9.538
multiaxis, 9.533, 9.534, 9.538
nonvisual displays, 9.538
placement of, 9.535
pursuit vs. compensatory, 9.508, 9.521, 9.528
quickening, 9.501, 9.525, 9.526
visual field location and, 9.534
gain and, 9.509, 10.423
heat exposure and, 10.601
input frequency and, 9.521
kinesthetic tracking, 9.538
multiaxis control, 9.533, 9.534
noise exposure and, 10.301, 10.304
sleep deprivation and, 10.806
system order and, 9.520, 9.521, 9.524, 9.536
with vibration, 10.422
tactile tracking, 9.538
time delay (transmission lag) and, 9.509, 9.516, 9.517, 9.518, 9.522
tracking mode and, 9.539
vestibular tracking, 9.538
vibration and, 10.409, 10.421-10.423, 10.425, 10.434. See also Vibration
vibration and, 10.409, 10.421-10.423, 10.425
Manual dexterity
cold exposure and, 10.602
schedule shifts and, 10.712
Manual scanning, 6.602
curvature perception with, 6.609, 6.610
length perception with, 5.110
pattern perception with, 5.1016
proportion perception with, 5.111
Maps
cognitive mapping of the environment, 4.107
design of, 11.223
map learning, 11.222
you-are-here maps, 11.223
Microtremors, 1.912, 1.914, 7.505
Middle ear, 2.201, 2.202
MIL-141 model eye, 1.209
Milliamberit, 1.106

Minification (visual field)
- adaptation to, 5.1122. See also Magnification (visual field)
- minimally distinct border, 1.109

Minimum angle of resolution, 1.611, 1.612
- definition, 1.602
- measured by Airy's disk, 1.213

Minimum audible angle
- azimuth and, 2.812
- definition, 2.812
- frequency and, 2.812
- with masking noise, 2.816
- relation to interaural intensity difference thresholds, 2.804
- relation to interaural phase difference thresholds, 2.806

Minimum audible field (minimum audible pressure), 2.302

Minimum separability
- of controls. See Controls
- definition, 1.602
- illuminance and, 1.604, 1.605
- pupil size and, 1.614
- viewing distance and, 1.615
- See also Gap detection; visual acuity

Minimum visibility
- definition, 1.602

Mirrors
- optical and perceptual effects
 - convex, 5.1101, 5.1102, 5.1122
 - inverted, 5.1101, 5.1120
 - left-right reversing, 5.1101, 5.1102, 5.1120

Misregistration
- binocular images. See Binocular image registration
- color symbols, 11.123
- See also Image quality

Mission Operability Assessment Technique (MOAT), 7.711

Mistuning
- pitch discrimination and, 2.708

Model eye, 1.209, 1.210

Modulation sensitivity. See Contrast sensitivity

Modulation transfer function, 1.219
- for contrast, 1.629, 1.631, 1.632, 1.645
- atmosphere, 7.601
- for defocused imagery, 1.220, 1.639
- of the eye, 1.218
- pupil size and, 1.638
- for flicker, 1.503, 1.505, 1.506, 1.508

Monocular listening. See Binocular vs. monocular listening

Monitoring
- decision making and, 7.301, 7.303, 7.310, 7.311
- definition, 7.301
- display size and, 7.315
- distinguished from vigilance and visual search, 7.401
- eye movements during
 - dwell time (fixation duration), 7.311, 7.313-7.317
 - sampling frequency, 7.313, 7.314, 7.316, 7.317
 - scan patterns, 9.535
 - transition probabilities (link values), 7.311, 7.313-7.315, 7.318, 7.319
- See also Visual search
- factors affecting, summarized, 7.314
- fault detection, 7.304, 7.305
- instrument, 7.301, 7.313-7.319
- measurement methods, 7.402
- models of, 7.316
- Carbonell's queuing, 7.316, 7.319

Markov, 7.316, 7.318
- optimal control, 7.311, 7.316
- optimal estimation, 7.310

Senders' periodic sampling, 7.316, 7.317
- multichannel displays, 9.535, 10.307
- noise exposure and, 10.302
- observer characteristics affecting, summarized, 7.413
- relation to supervisory control, 7.301
- sampling behavior, 7.302, 7.313, 7.316-7.319
- signal characteristics affecting, summarized, 7.406
- task characteristics affecting, summarized, 7.411
- See also Display reading; divided attention; eye movements; supervisory control; vigilance; visual search

Monochromacy, 1.726

Monochrome displays
- vs. color coded, 11.201
- See also Displays

Monocular viewing. See Binocular vs. monocular vision

Monoscopic display, 1.812

Motion
- analysis of
 - optical flow analysis, 5.221
 - vector analysis, 5.221
- apparent, 5.401-5.407. See also Apparent motion
- composite, 5.221
- contrast sensitivity for moving targets, 1.628, 1.637, 1.645
- detection of moving targets, 1.624
- illusory, due to loss of visual position constancy, 5.1114, 5.1120, 5.1123, 5.1126. See also Motion illusions
- induced, 5.301, 5.302. See also Induced motion
- invented, 5.301, 5.1101, 5.1102
- nonuniform, 5.213
- object-relative, 5.201
- portrayal in CRT and cinematic displays, 5.221, 11.220
- self-motion. See Self-motion
- stereoscopic for moving targets, 5.918, 5.925
- subject-relative, 5.201
- visual acuity for moving targets, 1.617-1.622. See also Dynamic visual acuity
- See also Motion illusions; motion perception; self-motion

Motion aftereffects
- contingent, 6.320
- direction-selective, 6.318, 6.320
- caused by loss of visual position constancy, 5.1114
- of object motion, 5.202, 5.212, 5.1114, 6.318, 6.320
- of self-motion, 5.503

Motion cues
- to object motion, 5.201, 5.202
- in simulated aircraft landings, 5.103

Motion illusions
- cutaneous, 3.101
- kinesthetic, 3.301
- visual
 - apparent pausing, 5.218
 - autokinetic illusion, 5.216
 - illusory motion in depth
 - dynamic visual noise stereophenomenon, 5.218
 - Mach-Dvorak effect, 5.933
 - Pulsifer effect, 5.933
 - illusory rotation (escalator illusion), 5.218
 - due to misperceived depth, 5.219
 - with tracking eye movements (Fishtine illusion), 5.217
 - waterfall illusion, 6.320
- visual-vestibular
 - oculogyral illusion, 1.921
- See also Apparent motion; induced motion; motion aftereffects; self-motion illusions
Motion in depth
- aircraft landing performance, 5.101
- real landings, 5.102, 5.103
- simulated scenes, 5.102, 5.103
- illusory: dynamic visual noise stereophenomenon, 5.218
- Mach-Dvorak effect, 5.933
- Pulfrich effect, 5.933
- induced, 5.301
 - rigid vs. nonrigid motion, 5.222
 - selective adaptation, 6.318
 - stereocuity with target motion in depth, 5.918
Motion parallax, 5.902
- and canonical vs. noncanonical views in cinematic displays, 11.219
- as a depth cue, 5.901, 5.902
- functional limits, 5.904
- distinguished from motion perspectives, 5.902
Motion perception, 5.201-5.407
- adaptation, direction-specific, 5.212, 6.318
- aftereffects, 5.202, 5.212, 5.503, 5.1114, 6.318, 6.320
- ambiguous, with untextured figures, 6.316
- apparent motion, 5.208, 5.401-5.407. See also Apparent motion
 - during binocular suppression, 1.807
- collision judgment, 5.213, 5.214
- continuous vs. stop-go-stop motion, 5.208
- correspondence problem, 5.402, 5.406, 6.316
- cue conflict, 5.201
- direction of motion and, 5.206, 5.212
- displacement threshold, 5.201, 5.203, 5.205, 5.208, 5.209, 5.211
- exposure duration and, 5.203, 5.205-5.209
- eye-head system, 5.202
- during eye movements
 - saccadic eye movements, 5.201, 5.602, 5.603
 - tracking eye movements, 5.201-5.203, 5.215, 5.217
- factors affecting, summarized, 5.203
- field size and, 5.203, 5.210
- frequency characteristics of, 5.211
- illusions of motion, 5.202, 5.216-5.219, 5.933
- image-retina system, 5.202
- induced motion, 5.201, 5.301, 5.302. See also Induced motion
 - luminance and, 5.203, 5.205, 5.207, 5.209
- motion constancy, 5.210
- motion contrast, 5.301
- nonuniform motion, 5.213
- object-relative motion, 5.201-5.203, 5.208-5.210, 5.301
- oscillatory motion, 5.211
- path length and, 5.203, 5.210
- with reference stimuli, 5.203, 5.208-5.210, 6.304
- rigid vs. nonrigid motion, 5.222
- rotary motion, 5.204, 5.206, 5.222, 5.301
- self-motion, 5.501-5.505. See also Self-motion
- subject-relative motion, 5.201, 5.202, 5.209
- target spatial frequency and, 5.204
- target velocity and, 5.203, 5.209, 5.211
- with underwater viewing, 5.1124, 5.1126
- velocity
 - perceived velocity, 5.203, 5.204, 5.210, 5.215, 5.217
 - velocity constancy, 5.210
 - velocity threshold, 5.201, 5.203, 5.204, 5.206, 5.207, 5.209, 5.211
 - velocity transposition, 5.210
See also Velocity perception
- viewing distance and, 5.210
- visual field location and, 5.203-5.205

See also Apparent motion; induced motion; motion illusions; self-motion
Motion perspective, 5.502, 5.901
Motion picture displays. See Cinematic displays
Motion sickness
- factors affecting, summarized, 10.426
- due to low-frequency vibration, 10.425
- due to optical distortion of the visual field, 5.909, 5.1114, 5.1120
- seasickness, 10.426
- recovery from, 3.209
- due to self-motion (real or illusory), 3.209, 5.503
Motion simulation, 5.401, 5.501, 5.502
- See also Apparent motion; cinematic displays; induced movement; simulation
Motivation, 10.101
- reaction time and, 9.108
See also Drive; Incentive
Motor fusion, 1.810
- definition, 1.809
Motor learning, 9.401-9.404
- knowledge of results and, 9.404
- method selection and, 9.401
- practice
 - massed vs. distributed, 9.402
 - model of practice effects, 9.401
 - power law of practice, 4.201, 9.403
- response chunking and, 9.403
See also Movement sequences; movement, target-directed; training
Motor programming
- vocal responses, 8.208, 8.209
Motor skills, 4.201, 9.303, 9.401-9.403. See also Manual control; movement sequences; movement, target-directed.
Movement accuracy. See Movement, target-directed
Movement detectability (Joint or limb), 3.301, 3.303-3.307
- elbow, shoulder, 3.304, 3.305
- excursion amplitude and, 3.301, 3.305, 3.307
- factors affecting, summarized, 3.303
- finger, 3.304, 3.305, 3.307
- hip, 3.304, 3.306
- knee, ankle, toe, 3.304
- measurement of, 3.301
- movement velocity and, 3.301, 3.303, 3.305, 3.307
- with muscle sense disengaged, 3.307
- wrist, 3.304
See also Kinesthesia
Movement sense, 3.101. See also Kinesthesia
Movement sequences, 9.301-9.307
- coordinated, 9.305, 9.307
- feedback and, 9.304
- handwriting, 9.302
- locomotion, 9.306
- response interference, 9.305, 9.307
- running, 9.306
- speed-accuracy trade-offs, 9.302
- step cycle times, 9.306
- tapping, 9.301, 9.302, 9.305
- age and sex effects, 9.301
- correlations between articulators, 9.302
- correlations with other motor tasks, 9.302
- typing, 9.302, 9.303
- walking, 9.306
Movement, target-directed
- directional effects, 9.204-9.206, 9.208, 9.209
Movement time
 tapping, 9.301, 9.302
 target-directed movement. See Movement, target-directed typing, 9.302
 walking and running, 9.306
Mulder's constant, 3.208
Müller effect, 3.210, 5.804
Müller-Lyer illusion, 5.106, 5.107
Multichannel displays, 7.110
Multichannel model
 attention, 7.201. See also Mental resources
 joint-position encoding, 3.222
 spatial vision, 1.653-1.655, 1.657, 6.319
Multidimensional scaling, 7.711
Multiframe displays, 11.333, 11.334
Multiloop control, 9.311
Multimodal perception, 5.1019
 duration perception, 5.1019
 reaction time to b!sensory stimuli, 5.1012
 temporal pattern recognition, 5.1018
 See also Intersensory interactions
Multiple-resources model, 7.202, 7.203, 7.207, 7.720. See also
 Attention; mental resources
Multistable figures, 4.106, 6.001, 6.306, 6.316
 See also Illusions: visual
Munsell Color System, 1.721, 1.723, 1.724
 lightness scaling for, 1.721
 Munsell Book of Color, 1.724
 Munsell chroma, 1.724
 Munsell hue, 1.724
 Munsell value, 1.724
 perceptual correlates of Munsell hue, value, and chroma, 1.706
Muscle
 ciliary, 1.203, 1.222
 extraocular, 1.901, 1.902
 Muscle activity. See Motor learning; movement sequences;
 movement, target-directed
Muscle effort
 perception of, 3.301, 3.325
Muscle fatigue
 electromyogram spectrum and, 7.729
 heaviness with, 3.301, 3.303, 3.323
 illusory arm spectrum and, 7.729
Muscle sense, 3.301, 3.325. See also Kinesthesia
Muscle spindle receptors, 3.301
Muscle tension
 as predictor of performance after sleep deprivation, 10.807
 workload measurement and, 7.704, 7.729
Myopia
 empty field, 1.222, 1.223, 1.228, 1.239, 7.507
 instrument, 1.223, 1.231
 See Nearightedness
Myotatic reflex, 5.702
n-alternative forced-choice procedure, 1.657
Naming latency
 pictures vs. words, 8.106, 8.107, 8.109
Narrow-band noise
 masking by, 2.306, 2.308, 2.314, 2.611
 of speech, 8.306
Nausea. See Motion sickness
Navigation
 maps and, 11.222, 11.223
Nearightedness, 1.204
 night myopia, 1.222, 1.223, 1.227, 1.228, 1.239, 7.507
 See also Myopia
Necker cube, 6.001, 6.306
Negative afterimages, 1.309
Nerve units
 afferent (skin), 3.102-3.104
Neural quantum theory
 Night vision. See Scotopic vision
NIPS. See Noise-induced permanent threshold shift
Noise
 broadband, See Broadband noise
 comfort level, in aircraft, 10.302
 definition, 2.105
 equipment noise, 2.105
 hearing loss after exposure to
 permanent threshold shift (NIPS), 2.301, 10.314-10.316
 prediction and prevention, 10.316
 temporary threshold shift (TTS), 2.301, 10.311-10.314, 10.316
 See also Hearing loss; noise-induced permanent threshold shift (NIPS); noise masking; temporary threshold shift (TTS)
 measurement of, 2.105
Narrowband. See Narrowband noise
performance effects of continuous exposure, 10.302-10.310
 aftereffects, 10.310
 age and, 10.306
 calculation tasks, 10.302, 10.309
 card sorting, 10.302
 incidental learning, 10.308
 key pressing, 10.302
 language tasks, 10.302
 letter cancellation tasks, 10.306
 letter transformation tasks, 10.309
 manual tasks, 10.302
 marksmanship, 10.302
 memory tasks, 10.302, 10.302, 10.308
 monitoring, 10.302, 10.303, 10.307
 serial response tasks, 10.302, 10.305, 10.310, 10.805
 signal source sampling, 10.307
 speed-accuracy tradeoff, 10.305
 stereoscopic ranging, 10.302
 summary of, 10.302
 tracking, 10.302-10.304
Noise

(continued)

vigilance, 10.302-10.304
performance effects of noise bursts, 10.301
pink noise, 2.105
white noise, 2.105. See also White noise
See also Noise masking

Noise bursts
performance effects, 10.301

Noise comfort level
in aircraft, 10.302

Noise criteria curves
prediction of speech intelligibility, 8.317

Noise dosimeter, 2.104

Noise exclusion, 8.316

Noise-induced permanent threshold shift (NPTS)
age and, 10.314
exposure duration and, 10.314, 10.315
factors affecting, summarized, 10.315
noise intensity and, 10.314, 10.315
prediction and prevention, 10.316

See also Hearing loss; temporary threshold shift (TTS)

Noise masking
of speech, 2.105, 8.305-8.318. See also Speech Intelligibility
of tones or discrete stimuli
by broadband noise, 2.306, 2.307, 2.314, 2.611
by narrow-band noise, 2.306, 2.308, 2.314, 2.611
by white noise, 2.105, 2.305, 2.310-2.312
of undesirable environmental/industrial sounds, 2.105

See also Auditory masking

Noise-power density, 2.105

Noise shield, 8.312

Noise spectrum level, 2.105

Non-cannibalistic view, 11.219

Nonsimultaneous masking, See Backward masking; forward masking

Nontonal pitch, 2.710, 2.711

Nyquist theorem, 7.317

Nystagmus, 1.906, 1.918-1.925, 1.927-1.930
after aircraft spin, 1.909
after nystagmus, 1.921, 1.923, 1.924, 1.930
arthro-ocular, 1.938
cervico-ocular, 1.958
with countertorsion, 1.957
ferris-wheel rotation and, 1.958
optokinetic, 1.918, 1.921, 1.924, 1.925
physiological, 1.906
postrotary, 1.923, 1.930
rotary acceleration and, 1.958
secondary, 1.930
vestibular, 1.918-1.922, 1.928-1.930
See also Eye movements; optokinetic nystagmus; postrotary nystagmus; vestibular nystagmus; vestibulo-ocular reflex

Object-centered localization
visual, 5.601, 5.604-5.607
See also Visual localization

Object constancy, 11.221

Objective
binocular vs. binocular, 1.812
image luminance with, 1.105

Object localization
visual, 5.601-5.607
See also Visual localization

Object motion, 5.201-5.222. See also Motion perception

Object perception
object constancy, 11.221
perceptual dimensions and, 6.101

See also Form perception; pattern perception; perceptual organization
Object-relative motion, 5.201-5.203. 5.208-5.210, 5.301. See also Motion; motion perception

Object superiority effect, 6.308

Oblique effect, 1.634, 5.808

See also Orientation perception

Oblique muscles,
ocular, 1.901, 1.902

Occlusion
as depth cue, 5.901
kinetic, 5.901, 5.903
shape perception and, 6.310

Octave Illusion, 6.404

Ocular
image luminance with, 1.105

Ocular countertorsion reflex, 1.957. See also Torsional eye movements

Ocular media,
optic nerve, 1.201
predictive and prevention, 10.316
indicators of refraction, 1.210

Ocular torsion.

See Torsional eye movements

of tones or discrete stimuli Ocular. tremor, 1.912, 1.914

by broadband noise, 2.216, 2.301-2.314, 2.316, 2.318
by white noise, 2.105, 2.305, 2.310-2.312

use as vestibular response measure, 3.205, 3.208, 3.209

Oculomotor control
model of, 1.910

Ogle model eye, 1.209

Omission
efforts of, 11.318

On-line documentation, 11.322

Open-loop system, 9.506, 9.511, 9.513

See also Manual control

Open-loop transfer function, 9.506

Operating errors. See Human performance reliability

Opponent processing model
joint position encoding, 3.322

Optacon, 3.105, 6.506, 6.511, 6.513

Optical axis, 1.209, 1.210

Optical devices
binocular, 1.812
instrument myopia, 1.223
perceptual effects, 5.1102
required distance between eyepieces, 1.208
vignetting, 1.207

Optical flow pattern
description, 5.502
motion analysis and, 5.221

See also Optic array

Optical Illusions. See Illusions

Optical imaging
aniseikonia. See Aniseikonia
astigmatism, 1.205, 1.634
axial chromatic aberration, 1.212
convolution in, 1.214, 1.215, 1.219

See also Convolution equation, 1.219
diffraction, 1.213
eye optical system, 1.203, 1.209
effect of lenses, 1.206

Fourier description, 1.218, 1.219

Fourier transform, 1.219

light distribution for extended source, 1.217
line-spread function, 1.215, 1.216

modulation transfer function, 1.218-1.220
optical transfer function, 1.218-1.220
point-spread function, 1.213-1.215, 1.218

108
pupil aperture function, 1.218
pupil entry angle (Stiles-Crawford effect), 1.110, 1.111, 1.707
refractive index, 1.209
spherical aberration, 1.211
spherical refractive errors, 1.204
transmittance of ocular media, 1.202
See also Image degradation; Image quality
Optical reference system, 1.238
Optical resolution. See Image quality; optical imaging
Optical Society of America Color System, 1.723, 1.725
Optical transfer function, 1.218-1.220
Optical viewers
image luminance with, 1.105
Optic array, 11.218-11.220. See also Optical flow pattern
Optic disc. See Blind spot
Optic nerve, 1.201
Optic torsion response, 1.956. See also Torsional eye movements
Optimal control theory
behavioral modeling
manual control, 9.512
during vibration, 10.421
monitoring, 7.311, 7.316
supervisory (system) control, 7.301, 7.303
See also Manual control
Optimal estimation theory, 7.310
modeling of system monitoring and control, 7.303, 7.310
Optimization theory. See Optimal control theory; optimal estimation theory
Optokinetic nystagmus, 1.924, 1.925, 1.958
afternystagmus, 1.924, 1.958
calculo-systems-analysis model of, 1.910
definition, 1.924
fast (saccadic) phase, 1.924, 1.925
slow (pursuit) phase, 1.924, 1.925
vestibular nystagmus and, 1.918
visual acuity and, 1.902
See also Nystagmus; vestibulo-ocular response
Optokinetic pursuit, 1.924, 1.925, 1.958
Optokinetic reflex. See Optokinetic nystagmus
Orbison illusion, 5.106
Order perception, 5.1022, 6.407, 6.408
Organ of Corti, 2.201
Orientation (visual)
astigmatism and, 1.205, 1.634
contrast sensitivity and, 1.628, 1.634
dynamic acuity and, 1.618, 1.620
interocular differences, 1.956, 5.907, 5.908, 5.913
shape perception and, 6.309
specification by linear perspective, 5.115
stereoacuity and, 5.918, 5.924
target detection and, 1.624
vernier acuity and, 5.801
See also Body orientation; shape perception; spatial localization; tilt
Orientation disparity, 5.907, 5.908, 5.913
eye movements to, 1.956
Orientation perception, 5.801-5.808
adaptation, 1.652, 6.318
aftereffects
haplax, 5.806
visual, 1.652, 5.802, 5.805, 6.318, 6.320
binocular suppression and, 1.807
body or head tilt and, 3.210, 5.801-5.804
haplax, 5.806, 5.808
of horizontal
factors affecting, summarized, 5.801
visual, 5.801, 5.803, 5.804, 5.101. See also Visual vertical
illusory of, 5.501, 5.805
Aubert effect, 3.210, 5.804
Müller effect, 3.210, 5.804
oculogravic illusion, 5.505
induction effects, 5.805
model of visual discrimination, applied to, 1.655
oblique effect, 1.634, 5.808
orientation matching, 5.808
orientation selectivity, 1.652
orientation-shape coupling, 6.001
parallelism, kinesthetic judgment of, 5.807
surface orientation, haptic discrimination of, 5.806
vertical factors affecting, summarized, 5.801
proprioceptive, 5.802
visual, 5.801, 5.802, 5.804
facës affecting, summarized, 5.801
See also Visual vertical
visual vs. haptic, 5.808
visual masking and, 1.607
with visual-proprioceptive conflict, 5.101
See also Body orientation; orientation (visual); tilt; visual horizontal; visual vertical
Orienting responses, 5.607, 5.701
Orthophoria, 1.809, 1.810
Orthotelephonic gain, 8.302
Optic array, 11.218-11.220. See also Optimal control theory; optimal estimation theory
Optokinetle reflex, 1.924, 1.925, 1.958
Overprinting
symbol recognition and, 11.208
Overtones
definition, 2.102
Oxygenization
and contrast discrimination under acceleration, 10.903
P-300 waveform
workload measurement and, 7.202-7.204, 7.724-7.727
Pacini corpuscle, 3.103, 3.104
Pain, 3.101
Pann's fusional area, 5.911, 5.912
Pann's limiting case, 5.932
Parafocal preview
in reading, 8.116
Parallelism
perception of, 5.806, 5.807
Parallel processing
visual
detection, 1.653-1.655
search, 7.516, 7.520, 9.117
See also Mental resources
Parallax swings, 3.206
Partial masking
auditory, 2.613
Part-whole relations, 6.001
Passband filter, 1.108
Pattern detection. See Contrast sensitivity; pattern perception;
spatial pattern sensitivity; target acquisition; target detection
Pattern discrimination
pattern complexity and, 6.307
tactile patterns, 6.509
temporal patterns
comparison of vision, audition, and touch, 5.1017, 5.1018
See also Rhythm
See also Pattern perception; pattern recognition; pattern reproduction

Pattern masking
feature selective, 1.650, 1.652, 6.318
tactile, 6.511-6.515
factors affecting, summarized, 6.511
visual. See Visual masking; see also Camouflage

Pattern perception
categorization of patterns, 6.203
eye movements during, 7.505
memory for patterns
perceptual organization and, 4.106
prototypicality and, 6.203
skilled memory effect, 4.104
pattern resolution. See Visual acuity
temporal patterns, 5.1002, 5.1017, 5.1018. See also Rhythm
theories of, 6.203, 6.321, 6.322
See also Form perception; pattern discrimination; pattern recognition; perceptual organization

Pattern recognition
context effects, 6.308
intra-modal vs. cross-modal presentation and, 5.1016
object superiority effect, 6.308
pattern complexity and, 6.307
temporal patterns, 5.1002
theories of, 6.321
mathematical coding theory, 6.321, 6.322
prototype theory, 6.203, 6.321
tracing vs. whole-pattern presentation and, 5.1016
See also Form perception; letter recognition; pattern discrimination; pattern perception

Pattern reproduction
pattern complexity and, 6.307
temporal patterns, 5.1002, 5.1017, 5.1018. See also Rhythm

Pattern resolution. See Image quality; optical imaging; spatial resolution; temporal perception; visual acuity; visual resolution

Patterns, visual
luminance description, 1.601
Peak clipping, 8.304, 8.312, 8.313
Pendular whiplash illusion, 5.215
Perceived noisiness level (PNdB), 8.317
Perceptual adaptation. See Space perception, adaptation of
Perceptual coding
of pattern structure, 6.322
See also Coding
Perceptual constancy
brightness, 1.712, 1.715
color, 1.707, 1.712
distance, 5.112
lightness, 1.712
motion (velocity), 5.210
object, 11.221
position, 5.201, 5.1120. See also Visual position constancy
shape, 5.113, 5.115
size, 5.104
Perceptual coupling, 6.001, 6.309
Perceptual dimensions
classification of, 6.101
dimensional analysis, 6.101, 6.318, 6.320
Perceptual learning. See Learning

Perceptual organization
ambiguous movement, 6.316
amodal perception, 6.310
anorthoscopic perception, 6.305
apparent motion, 5.406, 6.302. See also Apparent motion
border perception, 1.707, 6.313
categorization, 6.201-6.203
constancy. See Perceptual constancy
contingent aftereffects and, 6.320
figure-ground relationships, 6.301
Gestalt principles, 6.001, 6.301-6.303, 6.310, 6.321, 6.401
grouping
principles of, 6.301-6.303, 6.401
tone sequences, 6.401-6.404
visual patterns, 6.301-6.303
illusory (subjective) contours, 6.314
impossible figures, 6.303. See also Multistability
interposition, 5.901, 6.310
Kanizsa cube, 6.303
Kopfermann cube, 6.303
lightness contrast and, 1.714
likelihood principle, 6.303
multistability, 4.106, 6.001, 6.306, 6.316
Necker cube, 6.306
object superiority effect, 6.308
oblique effect, 1.634, 5.808
octave illusion, 6.401, 6.404
orientation and, 6.309
overlapping objects, 5.901, 6.310
parallelism, 5.806, 5.807
part-whole relationships, 6.001, 6.303
perceptual coupling, 6.001, 6.309
perceptual dimensions, 6.101, 6.318, 6.320
phenomenal rest, 6.316
principle of Pragnanz, 6.303
reference frames, 6.304
reversibility figures, 4.106, 6.001, 6.306
scale illusion, 6.402
segmentation of phase-shifted tones, 6.405
shape perception, 6.309, 6.310
similarity principle, 6.303, 6.310
tagged image file format, 6.316
temporal coherence vs. fusion, 6.401, 6.403
See also Auditory perception; perceptual organization; form perception; Gestalt principles; pattern perception; pattern recognition

Performance operating characteristic (POC) curve, 7.205
Performance reliability. See Error; human performance reliability

Performance time, 4.201. See also Movement time

Perimetry
normal achromatic visual field, 1.235, 1.236
normal visual fields for color, 1.237

Period
of sound, 2.101

Periodicity. See Cyclical variations

Peripheral nervous system
skin, 3.102-3.104

Peripheral tracking, 9.534

Peripheral vision
during acceleration, 10.901
apparent motion in, 11.410
color perception in, 1.705
contast sensitivity in, 1.633, 1.637, 7.606
dark adaptation in, 1.406, 1.408, 1.409, 1.412
detection of moving targets in, 1.637
displays for, 9.532
flicker sensitivity (CFP) in, 1.504
light adaptation in, 1.405
lightness induction in, 1.713
motion perception in, 5.204-5.206
self-motion induction and, 5.501, 5.503
sensitivity of, 1.305-1.307
spatial summation in, 1.305, 1.307, 1.308, 1.409
spectral sensitivity of, 1.102
tracking in, 9.534
warning signals in, 11.408, 11.410
See also Field of view; field size; scotopic vision; visual field location
Persistence
of phosphors, 11.120, 11.122
postural, 3.308, 3.321
saccadic, 1.906
visual, 5.404, 5.405
Person-computer dialogue
auditory signals, 11.336
comparison of interactive dialogues, 11.303
data entry methods, 11.318
design of
for casual or infrequent users, 11.312
determination of user characteristics, 11.311
error analysis and, 11.310
formal grammar as tool in, 11.308
steps in, 11.301
documentation, 11.322
evaluation of user performance, 11.306, 11.308
playback methodology, 11.309
information bandwidth, 11.314
lockout, 11.313, 11.323
problem-solving aids, 11.323
prompting, 11.320, 11.321, 11.331
query languages, 11.303
algebraic, 1.316
design recommendations, 11.315
SEQUEL, 11.316
user problems with, 11.315
Zloof's query-by-example, 11.316
screen displays
cursor design, 11.321. See also Cursor control
data entry displays, 11.317
information portrayal
abbreviations and acronyms, 11.330
coding, 11.329
graphics, 11.328
numeric data, 11.325
tabular data, 11.327
text, 11.326
layout and structuring, 11.332
multiframe displays, 11.333
touchscreens
acceptance, 12.423
advantages/disadvantages, 12.423
windowing vs. scrolling, 11.335
See also Alphanumeric displays; CRT displays
sequence control, 11.317, 11.319, 11.333-11.335
system response time, 11.313
task execution time, 11.306, 11.308
types of dialogue
computer initiated, 11.302
mixed initiative, 11.302
summary of, 11.303
user initiated, 11.302
user-computer mismatch, analysis of
block interaction model, 11.307
goal structure model, 11.307
information-processing model, 11.307
protocol analysis, 11.307
See also Human-computer interfaces
Personality, 7.802-7.804, 10.708
anxiety proneness, 7.802, 7.803
Introversion/Extroversion, 7.413, 7.804, 10.708
Vigilance performance and, 7.413, 7.804
Perspective. See Linear perspective
Phantom colors, 1.719
Phase
biological rhythms, 10.701
sound, 2.101, 2.102
Phase angle
sound, 2.102
Phase lag, 9.502, 9.504, 9.507, 9.509
Phase spectrum
sound, 2.102
Phase fatigue, 10.801, 10.803
Phenomenal rest, 6.316
Phi movement, 5.401
Phon
loudness unit, 2.104
Phone
sound, 2.102
Phonemes, 8.203, 8.205, 8.206
Phoria, 1.809, 1.902
accommodation and, 1.231
and image misalignment in binocular instruments, 1.813
population incidence, 1.810
Phosphors, CRT, 11.122
persistence, 11.120
Photometry
Abney's Law, 1.109
luminous efficiency function, 1.102, 1.104, 1.109, 1.110, 1.302
measurement units, 1.104, 1.106
methods, 1.109
retinal illuminance, 1.106
Photopigments, 1.201
Photoreceptors, 1.201
Picture perception, 8.106, 8.107. See also Pattern perception
Picture quality. See Image quality
Pier's law, 9.102
Pigment epithelium, 1.20
Pilot performance
binocular vs. monocular aircraft landing, 5.101
correlation with visual tests, 7.612
simulated landing scenes, 5.102, 5.103
Pilot selection, 7.612
Pincushion effect, 5.1124
Pink noise, 2.105
Pinna, 2.201
resonance properties, 2.201, 2.302
role in sound localization, 2.801, 2.805
spaced vs. massed, 5.1101, 5.1106, 5.1109, 9.402

temporal pattern perception and, 5.1017
tracking and, 5.939
vibrotactile code learning and, 6.510
vigilance and, 7.414, 7.416
visual search and, 7.516, 7.524
See also Learning; training

Prägnanz
Gestalt principle of, 6.303
Preattentive processing, 7.515
Pre categorical acoustic store, 4.101
Precedence effect
sound localization, 2.817
Predictor displays, 9.525
Presbycusis, 2.301, 2.303
Pressure sensitivity (skin)
absolute sensitivity, 3.106
body site differences, 3.101, 3.106, 3.115
with concurrent auditory stimulation, 5.1005
exposure duration and, compared with electrocutaneous stimulation, 3.125
intensity discrimination, 3.109
measurement apparatus, 3.105
neural basis, 3.101, 3.103, 3.104
tactile localization, 3.115
two-point discrimination, 3.101, 3.115
See also Cutaneous sensitivity; vibrotactile sensitivity

Previewing displays, 9.530

Primacy effect
acoustic memory, 4.102

Primary colors, 1.702, 1.722

Primary task, 7.716, 7.726, 7.727. See also Workload measurement

Priming
visual processing, 8.106, 8.109, 8.210

Printing recorder
reading accuracy, 7.116

Prismatic curvature
adaptation to, 5.1123

Prismatic displacement, adaptation to, 5.1101, 5.1103-5.1113, 5.1119
acquisition function, 5.1105, 5.1107, 5.1119
active vs. passive movement and, 5.1101, 5.1104
cognitive/learning effects in, 5.1101, 5.1110
comparing to tilt adaptation, 5.1119
conditioning of, 5.1101, 5.1110
decay function, 5.1119
deliberate correction for displacement, 5.1110
devices producing displacement, 5.1102
effects (potential end states) of adaptation, 5.1101, 5.1112
exposure conditions and, 5.1104
concurrent vs. terminal exposure, 5.1103, 5.1104, 5.1109
constrained vs. unconstrained exposure, 5.1101, 5.1103, 5.1104
target pointing vs. no target, 5.1104, 5.1105, 5.1108
facilitating conditions, 5.1104
feedback conditions and, 5.1101, 5.1107, 5.1108
intermanual transfer of, 5.1106, 5.1109
interocular transfer of, 5.1109
intersensory bias and, 5.1110
methods for inducing and measuring, 5.1101, 5.1103
negative aftereffect, 5.1101, 5.1103, 5.1104
practice and, 5.1105
spaced vs. massed practice, 5.1101, 5.1106-5.1109
preconditions for, 5.1104
prior prism exposure and, 5.1110, 5.1111
proactive inhibition and, 5.1111

Psychophysical methods, 1.656

Pseudo-Coriolis effect, 5.503. See also Coriolis effect

Pseudo-isochromatic plates
color vision testing, 1.726

Pseudo-isochromatic plates
color vision testing, 1.726

Psychological refractory period
reaction time, 9.107, 9.122

Psychological scaling, 7.710, 7.711

Psychometric function, 1.657

Psychophysical methods, 1.656

Pulfrich effect, 5.933

Pulse targets
pulse trains

Practical effects of, 5.1115
See also Tilt adaptation

Prisms
optical effects, 5.1102
perceptual effects, 5.1102
Dove, 5.1101
right-angle, 5.1121
wedge, 5.1101, 5.1121, 5.1123

Proactive inhibition
in prism adaptation, 5.1111

Probability summation, 1.814
in binocular vision, 1.801-1.803

Probe microphone, 2.104

Probit analysis, 1.657

Problem solving
aids to, 11.323
voice vs. written communication and, 11.324
See also Decision making

Process control, 7.301, 7.303
fault detection, 7.304, 7.305
sampling behavior during, 7.302
See also Manual control; monitoring; supervisory control

Programmable keyboards, 12.411

Prompting
in person-computer dialogue, 11.320, 11.321, 11.331

Pronunciation. See Speech

Proportion
haptic vs. visual judgment of, 5.111
horizontal-vertical illusion, 5.106, 5.110

Proprioception. See Kinesthesis

Proprioceptive feedback, 9.537

Proprioceptive vertical
correction of, 5.1101
judgment of, 5.802
See also Orientation perception; visual vertical

Protan, 1.726

Protanomaly, 1.726

Protanopia, 1.707, 1.726

Protocol analysis
human-computer interaction, 11.307
Pulse targets (continued)

loudness of, 2,610
pitch of, 2,711
sensitivity to
factors affecting, summarized, 1,511
target size, and, 1,512
temporal summation, 1,512

Pupil
diameter of, 1.203. See also Pupil size
entrance pupil, 1.209
exit pupil, 1.209
in eye-movement measurement, 1,904
light entry angle, 1,111, 1,707
position of, 1.201, 1.209
Pupillary axis, 1.209
Pupillary reflexes, 1.232, 1.233
near vision, 1.234, 7,728
Pupillometry, 7,701, 7,703, 7,704, 7,728
Pupil size
accommodation fluctuations and, 1,224
with binocular vs. monocular viewing, 1,232
color stereopsis and, 5,934
contrast sensitivity and, 1,628, 1,638
depth of focus and, 1,221
effectiveness size, 1,106, 1,111
effectiveness ratio, 1,106, 1,111
image quality and, 1,218, 1,219
luminance level and, 1,106, 1,232, 1,233
pupil aperture function, 1,218
spherical aberration and, 1,211
time course of changes in, 1,233
upper spatial frequency cutoff and, 1,219
viewing distance and, 1,231, 1,234
visual acuity and, 1,603, 1,614
width of point-spread function and, 1,213, 1,214
as workload measure, 7,704, 7,728. See also Pupillometry

Pupil tracking
eye movement measurement, 1.904
Pure tone, 2.102
Pure-tone pitch, 2.702
Purkinje images
eye movement measurement, 1.904
Purkinje shift, 1.301, 1.304, 1.407
Purple line, 1.722
Pursuit displays, 9,508, 9,521, 9,528
Pursuit eye movements
cancellation mechanism, 1.938
to complex sinusoidal target motion, 1,944
loss of visual position constancy during, 5.201, 5.215
model of, 1.938
with observer control of target motion, 1.946
optokinetic, 1.924, 1.925, 1.958
perceived target motion during, 5.201, 5.202
Aubert-Fleishl paradox, 5,215
Filene illusion, 5,215, 5,217
motion illusions, 5,215
velocity perception, 5,203, 5,215
to perceived vs. real target motion, 1.947
to random one-dimensional target motion, 1.943
target localization during, 5,604, 5,605
visual acuity during, 1,617-1,622
See also Eye movements; smooth pursuit eye movements
Pursuit tracking
eye movements. See Pursuit eye movements
manual control, 9.521, 9.528
Pushbutton controls. See Controls: types of
Push-pull controls, 12.101

Query languages
person-computer dialogue, 11.303
algebraic, 11.316
design recommendations, 11.315
SEQUEL, 11.316
user problems with, 11.315
Ziolo’s query-by-example, 11.316

Queuing model
monitoring behavior, 7.316, 7.318, 7.319
Quick function, 1.657
Quickening
contrasted with control aiding, 9.526

Radar displays
reading time and accuracy, 7.105
See also CRT displays
Radiance
definition, 1.104
Radiant energy, 1.104
Radiant flux, 1.104
Radiant Intensity
definition, 1.104
Radiation
damage to visual system, 1.102
spectral distribution, 1.102
Radiometer, 1.108
Radiometric units, 1.104
Radiometry
measurement units, 1.104
Ramsden disc. See Exit pupil
Rancho remote manipulator, 9.201
Random Dot E test, 5.917
Random eye movements, 10,703, 10.809, 10.810
See also Eye movements
Random eye movement (REM) sleep, 10.809. See also Sleep
Random serial visual presentation (RSVP), 8.121, 8.122
Rasmussen’s hierarchically structured control model, 7.303,
7.312
Rate aiding, 9.520, 9.521, 9.526
Rate control. See Velocity control
Rater scale, 1.656
Rayleigh limit, 1.614
Reach envelopes, 12,304
Reaching. See Movement sequences; movement, target-directed
Reaction time, 9.101-9.122
background information, 9.101
choice
color and, 11.406, 12.402
with concurrent task, 9.122
conflicting information and, 9.118
coupled manual and vocal responses, 9.120
cueing and, 9.113
definition, 9.101
distractors and, 9.110, 9.117, 9.118
factors affecting, summarized, 9.110
illumination level and, 11.406, 12.402
Refraction index
air, 1.209
aqueous humor, 1.203, 1.210
cornea, 1.210
definition, 1.212
depth, 1.210
vitreous humor, 1.203, 1.209, 1.210
wavelength and, 1.212

Refresh rate
CRT display flicker and, 11.122

Relational models
data-base organization, 11.304

Reliability analysis, 7.101-7.103. See also Human performance reliability

Remote masking, 2.314
REM (rapid eye movement) sleep, 10.809. See also Sleep

Repetition pitch, 2.710

Research settings, 7.312

Resolution. See Displays: resolution; spatial resolution; visual acuity

Resonance, 2.101

Response bias
signal detection analysis, 1.656, 1.657, 7.405, 7.420

Response chunking
motor learning, 9.403

Response criterion
signal detection analysis, 1.656, 1.657, 7.405, 7.420

Response time. See Reaction time

Restricted blind positioning, 9.208, 9.209

Reticle, 7.507

Retina, 1.201, 1.301
anatomy, 1.201
blind spot, 1.201, 1.210, 1.301
cones, 1.201, 1.301
distribution of, 1.201, 1.301
See also Cones
damage to
from laser light, 1.102
from prolonged exposure to darkness, 1.102
from short-wavelength light, 1.102
distance from cornea, 1.210
fovea, 1.201, 1.301
image formation on, 1.203, 1.209
macula lutea, 1.201, 1.202
photoreceptors, 1.201, 1.301
rods, 1.201, 1.301
distribution of, 1.201, 1.301
See also Rods
See also Cones: rods

Retinal eccentricity. See Retinal location; visual field location

Retinal illumination
conversion to scene luminance, 1.106
determination of, 1.106
with optical viewers, 1.105
range of variation in, 1.203
troland, 1.106

Retinal image
with astigmatism, 1.205
with chromatic aberration, 1.212
depth of field and, 1.221
formation of, 1.203, 1.209
homogeneous vs. inhomogeneous translation, 11.220
image motion and postural stability, 5.706
image/retina system in motion perception, 5.202
interocular misalignment. See Binocular image registration;
lateral retinal image disparity; orientation disparity;
vertical retinal image disparity
light distribution in. See Image intensity distribution
during motion, 5.502, 5.902
with refractive errors, 1.204
size calculation of, 1.209
with lenses, 1.206
perceived distance and, 5.901
size changes, as depth cue, 5.904
visual angle and, 1.240
with spherical aberration, 1.211
stabilization of, during head and environmental movement
eye movements and, 1.917, 1.918. See also Nystagmus; vestibulo-ocular reflex
model of eye movement control to achieve stabilization, 1.910
See also Image quality

Retinal image tracking
eye movement measurement, 1.904

Retinal location
rod/cone density and, 1.201, 1.301
spatial summation and, 1.307, 1.308
visual localization (visual direction) and, 5.601
See also Peripheral vision; visual field location

Retinal rivalry. See Binocular rivalry

Retinopathy
darkness induced, 1.102
radiation induced, 1.102

Reverberation
as cue to sound distance, 2.801
pitch discrimination and, 2.709
speech intelligibility with, 8.401

Reverse contrast
lightness induction, 1.713

Reverse nystagmus, 1.921. See Afternystagmus

Reversile figures, 4.106, 6.001, 6.306, 6.316

Rhythm
biological. See Biological rhythm; cyclical variations
detection of changes in, 6.406
discrimination of temporal patterns, 5.1017, 6.406
reproduction of temporal patterns, 5.1017, 5.1018

Ricco's law, 1.307, 1.308, 9.102. See also Spatial summation

Ridgway Color System, 1.723

Righting maneuvering
microgravity environments, 10.1001

 Rise time, of sound
definition, 2.102
pitch discrimination and, 2.709

Risk minimization
monitoring behavior, 7.319

ROC. See Receiver operating characteristic (ROC) curve

Rocker controls, 12.101, 12.201, 12.303

Rods, 1.201, 1.301
color vision and, 1.722
contrast sensitivity, 1.633
dark adaptation, 1.305, 1.406-1.413
flicker sensitivity, 1.504
light adaptation, 1.305
retinal distribution, 1.201, 1.301
sensitivity, 1.103, 1.301, 5.1001
spectral sensitivity, 1.102, 1.302, 1.305
See also Scotopic vision
Roll, 5.701. See also Body tilt
Romberg test, 5.704
Rotary acceleration. See Acceleration: rotary
Rotary controls. See Controls: types of
Rotary motion
induced, 5.301
rigid vs. nonrigid, 5.222
self-motion. See Acceleration: angular
vernier acuity and, 5.220
Rotary wing aircraft
vibration characteristics, 10.404
Rotational misalignment
of binocular images, 1.813, 5.908
comfort limits, 1.813, 1.913
single vision limits, 5.913
Roughness perception, 6.603-6.606
contact force and, 6.603
groove width and, 6.603, 6.604
land width and, 6.603
thear force and, 6.605
skin temperature and, 6.604
vibration adaptation and, 6.606
Round window, 2.201
RSVP, 8.121, 8.122
Ruffini endings, 3.103, 3.104
Running
step cycle time, 9.306
Saccades, 1.931-1.937
accuracy, 1.915, 1.931, 1.935
amplitude, 1.935, 1.936, 1.942
away from target, 1.935, 1.937
with head rotation, 1.922
compensatory, 1.959
corrective, 1.933, 1.935, 1.936, 1.942, 1.946
in the dark, 1.931
definition, 1.931, 1.932
directional bias, 1.932, 1.934
duration, 1.931, 1.935, 1.936
eversioning conditions, 1.906
ers, 1.909, 1.935-1.937
fatigue effects, 1.908
during fixation, 1.914, 1.916
with head movement, 1.960
latency, 1.906, 1.935, 1.942
factors influencing, summarized, 1.915, 1.932
visual task and, 1.909, 1.935, 1.937
with warning signals, 11.419
microsaccades, 1.906, 1.914, 1.932, 1.933, 7.505
motion perception during, 5.201, 5.202, 5.602, 5.603, 5.607
nonfoveating, 1.937
to periodic step motion of target, 1.948
persistence, 1.906
purpose of, 1.906, 1.931, 1.932
during reading, 8.113, 8.115
progressive, 8.111
regressive, 8.111-8.113
See also Eye movements: during reading
saccade suppression, of target motion, 5.602, 5.603, 5.607
secondary, 1.935-1.937
with target blanking, 1.935, 1.936
target characteristics and
luminance, 1.915, 1.932
predictability, 1.932
size, 1.934
summary of, 1.915
velocity, 1.942
visual field location, 1.934
torsional, 1.959
velocity, 1.906, 1.931, 1.933
visual task and, 1.931, 1.935, 1.937
during visual search, 7.504, 7.505
during visual tracking, 1.939, 1.942, 1.946
voluntary control of, 1.937
See also Eye movements; pursuit eye movements; visual search
Saccade suppression, 5.602, 5.603, 5.607
Saccule, 3.201, 3.202
Safety, 11.402, 11.412. See also Warning signals
Sagittal plane
definition, 5.701
SAINT model
human reliability analysis, 7.102
Saliutation, 3.101, 3.119
Same-different matching
letters, 8.102, 8.103, 8.109
nonword letter strings, 8.108
words, 8.102, 8.108
Sampling behavior
during display monitoring, 7.302, 7.313, 7.316-7.319
noise exposure effects, 10.307
during process-control monitoring, 7.302
See also Monitoring; supervisory control
Sampling Theorem, 7.317
Saturation (color)
Abney effect, 1.708
correlates of, 1.703, 1.706
definition, 1.703, 1.706
excitation purity und, 1.703
hue and, 1.708
representation in color-order systems, 1.723
Munsell system, 1.724
OSA system, 1.725
surround size and, 1.707
See also Chroma
Sawtooth waveform, 2.102
Scale illusion, 6.402
Scale reading
color and, 11.124, 11.125
contrast and, 11.124
dial size and, 11.213, 11.215
interval length and, 11.212, 11.213, 11.215
number of graduation marks and, 11.211, 11.212, 11.215
time and/or accuracy of
circular, 11.211, 11.214, 11.215
dial, 11.213, 11.215
linear, 11.210-11.212
numeric, 11.215
semicircular, 11.216
See also Dial reading
Scale-side principle
control/display relationships, 12.302
Scanning
eye movement patterns, 7.407, 7.504-7.506, 7.511, 7.515, 9.535. See also Eye movements; monitoring; visual search
manual. See Manual scanning
Scene analysis, 11.221
Scene luminance
conversion to retinal illuminance, 1.106
See also Luminance
Schema theory
of text memory, 8.128
Schematic eye, 1.209, 1.210
Schmidt's law, 9.210. See also Movement, target-directed
Sclera, 1.201
Scotopic vision
characteristics of, 1.301
contrast sensitivity of, 1.633
light adaptation in, 1.305, 1.405
operating range, 1.103
reaction time functions, 9.102
spatial summation in, 1.308
spectral sensitivity of, 1.110, 1.302, 1.305
stereocuity of, 5.919
visual acuity and, 1.603, 1.612
See also Luminance; peripheral vision; rods
Screen displays. See CRT displays; displays: types of; person-computer dialogue; screen displays
Scrolling
video display terminals, 11.335
Search. See Visual search
Sensitiveness, 3.209, 10.426. See also Motion sickness
Seat vibration
transmission of, 10.405, 10.406, 10.431, 10.432
Secondary tasks. See Workload measurement; secondary task measures; see also Concurrent tasks; divided attention
Selective adaptation. See Feature-selective adaptation
Selective attention. See Selective listening; see also Divided attention; mental resources
Selective listening
age and, 7.209, 7.212
auditory shadowing, 7.207, 7.208
vs, divided attention, 7.213
factors affecting, summarized, 7.209
message frequency spectrum and, 7.211
pitch and, 7.211
source location and, 7.209, 7.210
See also Divided attention; mental resources; speech intelligibility
Selector controls, 12.101 See also Controls: types of
Self-inclination. See Body tilt
Self-motion. See also Motion sickness
self-motion, 5.501-5.505
aftereffects, 5.503
aircraft landings
real, 5.101
simulated, 5.102, 5.103
cues to guide self-locomotion, 5.502
visual display providing self-motion information, 5.501-5.503
induced, 1.924, 5.301, 5.501, 5.503. See also Self-motion illusions
illusion, motion perspective during, 5.502
optical flow pattern during, 5.502
reference frame and, 6.304. See also Vection
sensation magnitude function for linear acceleration, 3.207
sensitivity to angular (rotary) acceleration, 3.208
sensitivity to linear acceleration, 3.207
visual acuity and, 1.617, 1.619
See also Acceleration; self-motion illusions; vibration
Self-motion illusions
eye-motion induction
turning illusions due to postrotary nystagmus, 1.923
vestibular induction
Coriolis effects (turning and falling), 3.204, 3.210
unperceived constant velocity, 3.210
visual induction, 5.301
circularvection, 1.924, 5.501, 5.503, 6.304
effect on postural stability, 5.707
factors affecting, summarized, 5.503
linearvection, 5.501, 5.503, 5.707, 6.304
Self-rotation
in microgravity, 10.1001
Self-terminating search
memory, 4.105
visual, 9.117
Semantic categories, 6.201, 6.202
studies of, summarized, 6.201
Semicircular canals, 3.203, 3.210
dynamics of, 1.930, 3.203
effect of body tilt on, 3.206
effect of head tilt and body rotation on, 3.204
endolymph, 3.201, 3.203
illusions caused by canal stimulation, 3.210
neural adaptation, 3.209
role in eye movements, 1.901, 1.910, 1.957, 1.958
Senders' models
monitoring behavior
aperiodic sampling model, 7.316
Markov model, 7.316, 7.318
periodic sampling model, 7.316, 7.317
Sensation level
definition (hearing), 2.103
Sensitivelnce Index
signal detection, 1.657, 7.405, 7.420
Sensory dominance. See Intersensory interactions
Sensory modalities, comparison of, 5.1001
apparent movement (tactile/visual), 3.223
optimal modality for various perceptual tasks, 5.1002
orientation matching (haptic/visual), 5.808
reaction time (auditory/visual), 5.1001, 5.1012, 5.1013
spatial localization
tactile/auditory, 3.118, 5.1006
tactile/auditory/visual, 3.119
tempo al pattern perception (auditory/visual/tactile), 5.1017, 5.1018
See also Intersensory interactions
Sensory saliency, 3.101, 3.119
SEQUEL query language, 11.316
Serial exhaustive search
memory, 4.103, 4.105
visual, 9.117
Serial reaction time, 9.107
description, 10.201
noise exposure and, 10.305, 10.310
signal spacing and, 9.107
sleep deprivation and, 10.804
Serial recall, 4.101, 4.102
noise exposure and, 10.302
See also Reaction time
Serial responding. See Serial reaction time
Serial search
memory, 4.105, 7.520
visual, 9.117
Sex (gender) differences
in age-related hearing loss, 2.303
in lateral achromatic visual field, 1.236
in vigilance performance, 7.413, 7.418
Shadow
as depth cue, 5.901
Shadow caster, 5.914
Shading (auditory)
message frequency spectrum and, 7.211
message structure and, 7.208
multiple-channel attention models and, 7.207
workload measurement and, 7.719
See also Selective listening
Shannon-Weiner sampling theorem
process-control monitoring, 7.302
Shape
effect on contrast sensitivity, 1.628, 1.643
geometrical shape-slant relation, 5.113
interocular differences in
aniseikonia, 5.909
limits for stereoscopic vision, 5.931
specified by linear perspective, 5.105
Shape coding
vs. color coding, 11.203
of controls, 12.418, 12.424, 12.425
with gloves, 12.430
visual search with, 7.510-7.512
Shape perception
gemotical shape-slant relation, 5.113
illusions of shape, 5.113
linear perspective and, 5.105, 5.113, 5.115
optimal modality for, 5.1002
orientation and, 6.001, 6.309
of partially hidden objects, 6.310
shape constancy, 5.113, 5.115
shape distortion, recognition of, 6.311
slanted surfaces, 5.113
texture scale and, 5.105
See also Form perception; pattern perception
Shift work
performance effects, 10.710-10.712
See also Cyclical variations
Short-term memory
auditory, 4.102
memory search rate, 4.103, 4.105
stress effects, 10.202
tactile, 4.108
See also Memory
Sidearm controller, 9.537
Siegel/Wolf stochastic models
of human performance reliability, 7.102
Sighting range, 7.602, 7.603, 7.605. See also Target acquisition
Signal detectability. See Auditory masking; speech intelligibility; vigilance; warning signals
Signal detection theory, 1.656, 1.657, 7.405, 7.420
Signal-to-noise ratio
auditory detection and, 2.311
speech intelligibility and, 8.204, 8.305
and target acquisition on CRT displays, 7.614
See also Masking
Similarity
Gestalt grouping principle of, 6.001, 6.301, 6.302, 6.401
Simplicity principle
of perceptual organization, 6.303, 6.310
Simulation
aircraft dynamics, 9.517
aircraft landing performance and, 5.102, 5.103
aircraft silhouettes, 11.107
motion in depth, 5.502
object motion, 5.221, 5.401, 5.501, 5.502
rotating objects, 5.222
range estimation in, 5.112
self-motion, 5.501, 5.502
and study of supervisory control, 7.312
See also Cinematographic displays
Simulator sickness. See Motion sickness
Simultaneous contrast
brightness, 1.713, 1.715
color, 1.717
lightness, 1.713-1.715
Sine wave
sound, 2.101, 2.102
visual patterns, 1.601
Single vision
accommodation/convergence relation and, 1.231, 1.808
horopter, 5.910
hysteresis effects, 5.937
limits
with image rotation in one eye, 5.913
with lateral retinal image disparity, 5.911, 5.930
with vertical retinal image disparity, 5.912
Panum's fusional area, 5.911, 5.912
See also Binocular image registration; binocular suppression; fusion, binocular
Size
familiar size, and depth perception, 5.901
of field
color discrimination and, 1.705
contrast sensitivity and, 1.628, 1.629
motion perception and, 5.203, 5.210
stereocuity and, 5.918, 5.923
horizon-ratio relation, 5.105, 5.108
interocular differences, 5.907, 5.909
limits for stereoscopic vision, 5.931
linear perspective and, 5.105
projective vs. objective size estimation, 5.104
proportion, haptic vs. visual judgment of, 5.111
of retinal image, 1.209, 1.240
size constancy, 5.104
size-distance invariance, 5.104
of target
brightness discrimination and, 1.403
contrast sensitivity and, 1.635, 1.636, 1.640
flicker sensitivity and, 1.501, 1.506, 1.507
target detection and, 1.624, 1.625
visual sensitivity and, 1.305, 1.306, 1.410
spatial summation, 1.305, 1.306, 1.409
visual angle relation, 5.104
See also Length; size perception; spatial frequency
Size coding, 7.511, 12.417, 12.424
Size perception
apparent size
with apparent object motion, 5.401
convergence angle and, 1.808
with lenses, 1.206
horizon-ratio relation, 5.105, 5.108
illusions of size, 5.105-5.108
optimal modality for, 5.1002
perceived distance and, 5.104
size-distance invariance, 5.104
size distortion
adaptation to, 5.1122, 5.1125, 5.1126
devices producing, 1.206, 5.1102
underwater viewing, 5.1124-5.1126
visual angle and, 5.104
Skill acquisition, 4.201. See also Manual control; motor learning; movement sequences; movement, target-directed
Skilled memory effect
studies of, summarized, 4.104
Skin, 3.101
apparatus for mechanical stimulation, 3.105
dermis, 3.103
neurophysiology
cutaneous mechanoreceptors, 3.101, 3.103, 3.104
dermatomes, 3.102
microneurography, 3.103
neuroanatomy, 3.103
receptive fields, 3.102, 3.103
tactile sensory innervation, 3.102-3.104
See also Cutaneous sensitivity; tactile perception

119
Slant perception, 5.1121
distortion of slant, adaptation to, 5.1121
geographical slant, 5.114
glideslope angle, 5.101-5.103
illusory
 with interocular magnification differences, 5.909
 with interocular spatial-frequency differences, 5.937
optical slant, 5.114
shape perception and, 5.113
texture gradient and, 5.105, 5.116
See also Orientation tilt

Sleep
cyclical patterns (stages) of, 10.703, 10.709, 10.714, 10.809
sleep/wake cycles, alteration of, 10.710, 10.712, 10.714
See also Cyclic variations

Sleep deprivation
partial, 10.809
memory effects, 10.809, 10.811
performance effects, 10.809
calculation task, 10.809, 10.811
vigilance, 10.809, 10.811
selective, 10.809
memory effects, 10.809, 10.810
total
circadian rhythms and, 10.808
memory effects, 10.802
performance effects
calculation tasks, 10.802, 10.807
dual task, 10.806
prediction from physiological indicators, 10.807
serial response task, 10.802-10.805
shooting, 10.808
summary of, 10.802
tracking, 10.802, 10.806
vigilance, 10.802, 10.806, 10.809, 10.811

Slow-wave control movements, 12.201

Slow-wave sleep, 10.703, 10.809

Smell, sense of
basic characteristics, 5.1001
compared to other sensory modalities, 5.1001

Smooth pursuit eye movements
accuracy of, 1.939, 1.946, 1.947
adequate stimulus, 1.947
anticipatory (predictive) tracking, 1.939, 1.941, 1.948
control-systems-analysis model of, 1.910
eliciting conditions, 1.906
error of, 1.942, 1.946
factors affecting
observer control of target movement, 1.946
summary of, 1.915, 1.939
target flicker, 1.906, 1.939, 1.946
target luminance, 1.915, 1.939, 1.941
target movement, 1.943, 1.944
target velocity, 1.942, 1.945, 1.947
visual field location, 1.939, 1.941
gain of, 1.939-1.941
latency of, 1.915, 1.939, 1.942
maladaptive, 1.909
perceived target motion during, 5.201, 5.202
Aubert-Fleish paradox, 5.215
Filchner illusion, 5.215, 5.217
motion illusion, 5.215
velocity perception, 5.203, 5.215
perceived vs. real motion and, 1.947
phase of, 1.939, 1.940

with retinal image stabilization, 1.947
saccades and, 1.941, 1.942, 1.946
type of target movement and, 1.940
complex sinusoidal motion, 1.940, 1.944
predictable, 1.939, 1.941, 1.948
ramp motion, 1.939, 1.942, 1.945, 1.947
random motion, 1.940, 1.943
sinusoidal motion, 1.939-1.941
unpredictable, 1.939, 1.943
velocity of, 1.915, 1.940, 1.942, 1.945
visual task and
velocity matching, 1.945
tracking at less than target velocity, 1.939, 1.945
See also Orientation tilt

Snellen acuity
age and, 1.623
correlation with flying performance, 7.612
definition, 1.602
See also Eye movements, pursuit eye movements

Sleep deprivation
memory effects, 1.644
noise, 2.105
use in acuity measurement, 1.602

Scoliosis, 2.303.
See also Noise-induced permanent threshold shift (NPI TS); temporary threshold shift (TTS)

Solenoidal field, 5.221

Sound, 2.101-2.105
amplitude
definition, 2.101
measurement of, 2.103
bandwidth, 2.102
complex sound, 2.102
detectability, 2.201-2.315
distortion, 2.105
frequency
definition, 2.102
fundamental frequency, 2.102
of speech, 8.201
See also Frequency
harmonics (overtones), 2.102
intensity
acoustic reflex, 2.202
of familiar sounds, 2.103
loudness and, 2.601, 2.602
loudness discomfort level, 2.613
measurement of, 2.103, 2.104
specification of, 2.101
of speech, 8.203, 8.204
See also Loudness; sound level; sound pressure level
localization of.
See Auditory localization
measurement of, 2.102-2.104
noise, 2.105.
See also Noise
period, definition, 2.101
phase, 2.102
definition, 2.101
propagation of, 2.101
pure tone, 2.102
rise/fall time, 2.102
sound level, definition, 2.104
sound power, 2.103
sound pressure, 2.103
sound pressure transfer function, 2.802
sound shadow, 2.801-2.803
spectral analysis, 2.102-8.202
speech
acoustic analysis, 8.201, 8.202
intensity, 8.203, 8.204
waveform, 2.102
waveform envelope, 2.102, 8.202
wavelength, 2.101
See also Audition; frequency; loudness; noise
Sound level, 2.103
definition, 2.104
in prediction of speech intelligibility, 8.317
See also Sound pressure level
Sound level meter, 2.104
Sound pressure level
definition, 2.103
at detection threshold, 2.301, See also Auditory sensitivity
loudness and, 2.601, 2.602, 2.605, 2.608, 2.609
of speech, 8.201, 8.203, 8.204
See also Sound level
Sound pressure transfer function, 2.802
Sound shadow, 2.801-2.803
Sound spectrogram, 8.202
Space perception, adaptation of, 5.1101-5.1127
auddory rearrangement of space, 5.1101, 5.1127
background information and summary, 5.1101
definition, 5.1101
depth distortions, 5.909, 5.1101, 5.1121, 5.1124, 5.1125
devices for inducing, 5.1101, 5.1102
distance distortions, 5.1101, 5.1121, 5.1124
form distortions, 5.1101, 5.1124-5.1126
individual differences in, 5.1101
inversion of visual field, 3.209, 5.1114
left-right reversal of visual field, 3.209, 5.1114
loss of visual position constancy, 1.907, 3.209, 5.1101, 5.1120, 5.1124, 5.1126
methods of inducing, 5.1101, 5.1103
prismatic curvature, 5.1123
prismatic displacement, 5.1101, 5.1103-5.1113, 5.1119, See also Prismatic displacement, adaptation to
depth distortions, 5.1101, 5.1121, 5.1124
underwater distortions, 5.1101, 5.1124-5.1126
visual tilt, 5.115-5.1119, See also Tilt adaptation
See also Prismatic displacement, adaptation to; tilt adaptation
Spatial practice, 5.1106, 9.402
Spatial acuity
comparison of sensory modalities, 5.1001, 5.1102
touch, 3.101, 3.115
vision, 1.603-1.623, See also Visual acuity
Spatial disorientation. See Motion illusions; self-motion illusions; visual position constancy: loss of
Spatial filtering
form perception and, 6.312, 6.314
gemetric illusions and, 5.107
orientation selectivity, 1.652
perceptual organization and, 6.302
spatial-frequency selectivity, 1.626, 1.631, 1.632, 1.650, 1.651
in target detection process, 1.651, 1.653
See also Contrast sensitivity; modulation transfer function; spatial tuning; spatiotemporal filtering; temporal filtering
Spatial frequency
adaptation, 1.651, 6.318
after-effects, 6.316-6.320
apparent spatial-frequency shift, 6.319
with binocular suppression, 1.807
contrast sensitivity and, 1.628, 1.630, 1.653. See also Contrast sensitivity
dark adaptation and, 1.410
discrimination of, 1.648, 1.649
Fourier transform, 1.219
flicker sensitivity and, 1.501, 1.508, 1.509
form perception and, 5.107, 6.312
masking, 1.650
model of visual identification applied to, 1.655
modulation transfer function, 1.219
motion (velocity) perception and, 5.204
reaction time and, 9.103
spatial-frequency analysis, 1.218, 1.601
spatial-frequency cutoff, and pupil size, 1.218, 1.219
spatial-frequency selectivity, 1.650, 1.651
See also Size; spatial filtering
Spatial interactions
tactile, 3.301, 3.112, 3.119-3.120
in masking, 3.110, 3.117, 6.511-6.515
with spatial surround, 3.108, 3.111
See also Tactile masking
visual
acuity and, 1.603, 1.607
contrast sensitivity and, 1.628, 1.640, 1.650, 1.652
orientation perception and, 1.607
stereocuity and, 5.918, 5.922
See also Apparent motion; visual masking
See also Spatial summation
Spatial knowledge
cognitive maps, 4.107
map learning, 11.222
map reading, 11.223
Spatial localization
auditory, 2.801-2.817, See also Auditory localization
compared to tactile, 5.1006
cross-modal vs. intra-modal, 3.301, 5.1010
with intersensory conflict, 5.1007-5.1009
in large-scale environments, 4.107
map reading, 11.222, 11.223
optimal modality for, 5.1002
tactile, 3.101, 3.115, 3.118, 3.119, 5.1006
visual, 5.601. See also Visual localization
See also Apparent straightahead; egocentric localization
Spatial pattern sensitivity, 1.601-1.655
acuity, 1.602-1.623, See also Visual acuity
contrast discrimination, 1.646
contrast matching, 1.647
contrast sensitivity, 1.628-1.645. See also Contrast sensitivity
flickering targets, 1.505, 1.509
measurement of, 1.602
models of, 1.653-1.655
orientation selectivity, 1.652
spatial-frequency adaptation, 1.651
spatial-frequency discrimination, 1.648, 1.649
spatial-frequency masking, 1.650
See also Contrast sensitivity; pattern perception; visual acuity
Spatial resolution
auditory, minimum audible angle, 2.804, 2.812, 2.6°
comparison of sensory modality, 5.1001, 5.1002
of display devices. See Image quality; optical imaging
tactile, two-point threshold, 3.115, 3.301
visual, 1.603-1.623
depth resolution, 5.918-5.927, 5.929. See also Stereocuity
measurement of, 1.602
spatial separation difference thresholds, 1.609
See also Visual acuity
See also Spatial localization; visual acuity
Spatial summation
cutaneous sensation magnitude, 3.112
temperature sensation, 3.121
visual detection, 1.305, 1.308, 1.403, 1.624
during dark adaptation, 1.408, 1.409
visual field location and, 1.305, 1.307
Spatial tuning
kinesthesia, 3.322
vision, 1.650-1.655
See also Spatial filtering
Spatialtemporal filtering
visual apparent motion and, 5.404, 5.405
See also Spatial filtering; temporal filtering
Spatialtemporal Interactions
tactile perception
apparent motion, 3.120
localization, 3.119
visual perception
apparent motion, 3.119, 5.402-5.405, 5.407
flicker perception, 1.505-1.508
See also Spatial interactions; temporal interactions
Spectral analysis
light, 1.102
sound, 2.102, 2.104, 8.202
speech, 8.202
visual patterns, 1.601
Spectral power distribution
radiant energy (light), 1.102, 1.722
artificial illuminants, 1.102
CIE standard illuminants, 1.107
sunlight, 1.102
sound, 2.102
Spectral reflectance, 1.108
Spectral resolution
comparison of sensory modalities, 5.1001
See also Color discrimination; pitch discrimination
Spectral sensitivity (vision), 1.110, 1.302
duplication model of, 1.302
luminous efficiency functions
CIE standard functions, 1.110, 1.302
with different measurement techniques, 1.109
measurement methods, 1.109, 1.701
peak sensitivity, 1.102, 1.301, 1.304, 1.305
photopic (cone) vision, 1.110, 1.301, 1.302, 1.304, 1.305
range, 1.101, 1.102
scotopic (rod) vision, 1.110, 1.301, 1.302, 1.304, 1.305
See also Luminous efficiency
Spectral transmittance
of ocular media, 1.202
Spectrum analyzer, 2.104
Spectrum envelope
speech analysis and, 8.202
Spectrum level
noise, 2.105
Spectrum locus
chromaticity diagram, 1.702, 1.722
Speech
acoustic properties
duration, 8.201
frequency, 8.201
sex differences, 8.201
sound pressure level, 8.201, 8.203, 8.204
sex differences, 8.204
allophones, 8.206
altered. See Speech intelligibility: of altered speech
articulation
articulation index, 8.311
articulatory features
manner of articulation, 8.205
place of articulation, 8.205
voicing, 8.205
coearticulation, 8.201
consonants
of American English, 8.206
cues and cue trading, 8.207
production of, 8.205
masking of. See Speech intelligibility
methods of analyzing, 8.202
spectrogram, 8.202
speakers
phonemes
of American English, 8.206
definition, 8.206
production of, 8.205
sound pressure level of, 8.203
phones, 8.206
definition, 8.206
pronunciation latency
pronunciation typicality and, 8.209
word list length and, 8.208
words vs. pseudowords, 8.209
pronunciation time
number of syllables and, 8.208
practice and, 8.210
semantic content and, 8.210
word list length and, 8.208
vowels
acoustic properties, 8.201
of American English, 8.205
production of, 8.205
See also Speech intelligibility
message frequency spectrum and, 7,211, 8,304
number of masking voices and, 8,304, 8,306
relative message intensity and, 8,307
sound source location and, 7,209, 7,210, 8,304
speech vs. noise mask, 8,304, 8,307
See also Selective listening
stress pattern and, 8,301
visual cues and, 8,303
See also Voice signals
Speech Interference Level, 8,317, 8,318
Speech recall
with noise masking, 8,311
Speed-accuracy tradeoffs, 9,105
choice reaction time, 9,105, 9,114, 9,116
noise exposure and, 10,305
typing, 9,303
Spherical aberration, 1,203, 1,211
pupil size and, 1,203
Spherical refractive errors, 1,204
SPL. See Sound pressure level
Square-top multicavity filter, 1,108
Square-wave jerks (of the eye), 1,914
Stacked controls, 12,420
Staircase method, 1,656
Standard colorimetric observer
CIE 1931, 1,722
CIE 1964 10-degree, 1,722
Standard Illuminants
color appearance and, 1,710
spectral energy distribution, 1,107
Stapedius muscle, 2,202
Stapes, 2,201, 2,202
Startle reaction
performance effects, 10,301
State anxiety, 7,802, 7,803
Static-position sense, 3,301, See also Kinesthesia
Statoconial membrane, 3,201, 3,202
Status lights, 7,106, 7,107, 7,116
Step-by-step brightness matching, 1,109
Step cycle time, 9,306
Stereoaclity, 5,917-5,929
adjacent contours and, 5,918, 5,922
compared with vernier acuity and real depth acuity, 5,929
definition, 5,917
exposure duration and, 5,918, 5,926
factors affecting, summarized, 5,918
field of view and, 5,918, 5,923
luminance and, 5,918, 5,919
measures of, 5,917
with moving targets, 5,918, 5,925
relative disparity and, 5,918, 5,921, 5,927
target orientation and, 5,918, 5,924
with telescopes, 1,812
with underwater viewing, 5,112
with vertical retinal image disparity, 5,927
viewing distance and, 1,615, 1,918
visual field location and, 5,918, 5,920, 5,927
Stereocilia, 3,201, 3,202
Stereognosis, 3,101. See also Haptic perception
Stereogram, 5,914, 5,915
Stereokinetic effects, 6,316
Stereopsis. See Stereoscopic vision
Stereoscope, 1,812
Stereoscope displays, 1,812, 5,914, 5,915
See also Three-dimensional displays
Stereoscopic vision, 5,904-5,931
anomalous cases
dynamic visual noise stereophenomenon, 5,218
with interocular luminance differences (Pulfrich effect), 5,933
with interocular magnification differences
geometric effect, 5,909
induced effect, 5,906, 5,909
with interocular time delay (Masch-Dvorak effect), 5,933
color stereopsis, 1,209, 5,934, 5,1102
depth threshold, 5,918-5,927, 5,929. See also Stereoaclity
display methods, 5,914, 5,915
duration thresholds, 5,935
horoceptor, 5,910
hysteresis effects, 5,937
limiting interocular differences, 5,931
limits of depth perception with, 5,930
functional limits as depth cue, 5,901, 5,904, 5,905
minimum stimulus conditions, 5,932
motion in depth. See Motion in depth
depth from orientation disparity, 5,908
Panum's limiting case, 5,932
patent stereopsis, 5,930
perceived depth magnitude, 5,916
qualitative stereopsis, 5,930
retinal image disparity, 5,905-5,909
test of, 5,917
with vertical disparity, 5,906, 5,928
See also Binocular vision; depth perception; motion in depth; stereopsis
Stevens' power law,
brightness, 1,720
discomfort during vibration, 10,428
See also Power law of practice
Stiles-Crawford effect
for brightness, 1,106, 1,111
for color, 1,707
Stimulant drugs
as stressor, 10,202
Stimulus interactions. See Masking; spatial interactions;
spatiotemporal interactions; temporal interactions
Stimulus-response compatibility
reaction time and, 9,110, 9,114-9,116, 9,119
Stockholm 9-point scale
for workload measurement, 7,708
Stockholm 11-point scale
for workload measurement, 7,709
Straightahead. See Apparent straightahead
Street figures, 4,106
Stress, 10,101-10,104
behavioral indicators of, 10,202
classes of, 10,102, 10,103
conceptualizations of, 10,101, 10,102
general adaptation syndrome, 10,101, 10,102
measurement of, 10,102, 10,201, 10,202
performance effects. See Stressors
stress variables, classification of, 10,103
theories of, 10,101
See also Arousal; drive; motivation
Stressors
acceleration, 10,901-10,906
alcohol, 10,202, 10,805
anxiety, 7,802, 7,803, 10,202
caffeine, 7,804
classes of, summarized, 10,103
cold, 10,602
cyclical/schedule variations, 10,701-10,714
drugs, 10,102, 10,103, 10,202, 10,805
Stressors (continued)

fatigue, 10.102, 10.201, 10.202, 10.801, 10.805
heat, 10.202, 10.601, 10.805
incentive, 10.202, 10.805
memory and, 10.202, 10.601
noise, 10.202, 10.301-10.316, 10.805
performance effects, summarized, 10.202, 10.805
for introverts vs. extroverts, 7.804
schedule shifts, 10.710, 10.712, 10.713
sleep deprivation, 10.202, 10.601, 10.805

System order, 9.519
break frequency, 9.519
tracking performance and, 9.516, 9.520, 9.521, 9.528, 9.536
System stability, 9.509, 9.519
as control goal, 9.508, 9.511
feedback and, 9.506, 9.507, 9.527
System transfer function, 9.504, 9.506

Tactile acuity
two-point resolution, 3.101, 3.115

Tactile displays, 3.105, 6.501, 9.538

Tactile masking
backward, 3.117, 6.505, 6.511, 6.513, 6.515
forward, 3.117, 6.505, 6.511, 6.513-6.515

Tactile perception
apparent movement, 3.101, 3.120
code learning, 6.510
discrimination
intensity, 3.109, 3.110, 5.1001
with concurrent visual stimulation, 5.1001
Illusions, 3.101, 3.120
localization, 3.101
illusory displacement, 3.118, 3.119
precision of, 3.115
of pulse pairs, 3.118, 3.119, 5.1006
compared to auditory localization, 5.1006
pattern perception
display modes, 6.501
pattern discrimination, 5.1017, 6.509
pattern identification
body site differences, 6.503
correlation height and, 6.502, 6.506
display mode and, 6.502, 6.503
display width and, 6.502, 6.507
exposure duration and, 6.502, 6.504
factors affecting, summarized, 6.502
intensity and, 6.502, 6.504
with masking, 6.505, 6.511-6.515
See also Tactile masking
tactile vs. visual, 6.508
pattern discrimination, 5.1017, 6.509
temporal patterns, 5.1017, 6.509
stereognosis, 3.101
See also Haptic perception

Tactile sensitivity. See Cutaneous sensitivity

Tactile tracking, 9.501, 9.538
Tactual perception
modes of, 6.601
See also Haptic perception; kinesthesia; tactile pattern perception

Tapping rate, 9.301, 9.302, 9.304

Target acquisition
air-to-air, 7.605, 7.610, 7.612, 7.613
air-to-ground, 7.605, 7.607
with alerted vs. unalerted search, 7.613
atmospheric conditions and, 7.601, 7.602
atmospheric modulation transfer function, 7.601
collision avoidance, 7.613
crossing angle and, 7.613
in CRT displays, 7.608
factors affecting, summarized, 7.614
display gain and, 9.514
field of view and, 7.614
gray levels and, 7.604, 11.119
models of
ADM, 7.607
CRES/SCREEN, 7.607
DETECT II and III, 7.607
GRG, 7.606, 7.607, 7.611
Hammill/Sloan, 7.606, 7.611
Heaps's visual cursor, 7.605
Koopman/Lamar, 7.606, 7.609, 7.611
MARSAM II, 7.607
multiple regression, 7.608
PEO, 7.606
Rand, 7.606
threshold "detection lobe," 7.610
VIDEM, 7.611
VISTRAC, 7.607
search time prediction, 7.608
sighting range
correlation of performance with visual tests, 7.612
prediction of, 7.605, 7.611
nomographs, 7.602, 7.603
target contrast and, 7.602, 7.603, 7.605-7.608
target size and, 7.602, 7.603, 7.605-7.608, 7.610
vehicle recognition, 11.104, 11.105
visual field location and, 7.606, 7.610
See also Auditory localization; target detection; target recognition; vigilance; visual localization; visual search
Target detection
during acceleration, 10.901, 10.904
with binocular suppression, 1.807
factors affecting, summarized, 1.624
glare and, 10.501
glare levels and, 7.604, 11.119
intersensory interactions in, 5.1003-5.1005
models of
for applications environments, 7.606, 7.609, 7.610. See also
Target acquisition; models of theoretical
continuous-function models, 1.654
threshold models, 1.653
probability summation and, 1.814
psychometric functions, 1.657
selective adaptation and, 1.626
target spatial dimensions and, 1.624, 1.625
uncertainty effects, 1.624, 1.627
See also Target acquisition; target recognition; vigilance; visual search; visual sensitivity
Target recognition
in CRT displays
contrast and, 11.107
image motion and, 11.105
resolution and, 11.104, 11.107
size and, 11.104
in real-world scenes, 7.526
See also Pattern perception; target acquisition; target detection; visual search
Task analysis
in human error prediction, 7.103
Task difficulty
control system dynamics and, 9.522
subjective perception of, 7.705, 7.708, 7.710
workload measurement and, 7.705, 7.708, 7.710, 7.715
Task performance
keystroke model, for human-computer interaction, 11.306
Taste, sense of
basic characteristics, 5.1001
compared to other sensory modalities, 5.1001
Technique for Human Error Rate Prediction (THERP), 7.102, 7.103
Telephone keysets, 12.406, 12.410
Telescope
image luminance with, 1.105
useful visual field, 1.207
Telescopescopes, 1.812, 5.110, 5.1102, 5.1121
Television displays. See CRT displays; video displays
Temperature sensitivity, 3.101, 3.121-3.124
adaptation, 3.101, 3.123, 3.124
body size differences, 3.101, 3.121
rate of temperature change and, 3.101, 3.122
sensation magnitude of heat and cold, 3.101, 3.124
size of stimulation area and, 3.121
temperature discrimination, 3.123
to cold, 3.101, 3.122-3.124
methods of stimulation, 3.101
neural basis, 3.101
See also Body temperature; cold; heat
Template theory
pattern recognition, 6.321
Temporal contrast sensitivity, 1.503, 1.505, 1.506, 1.508, 1.509
model for predicting, 1.513
See also Temporal modulation sensitivity; temporal perception
Temporal filtering
visual processing and, 1.513
Temporal interactions
auditory sensitivity, 2.306, 2.312, 2.313
pitch perception, 2.709
tactile pattern masking, 6.511, 6.513-6.515
tactile sensitivity, 3.117
See also Temporal summation
Temporal modulation sensitivity
auditory
gap detection, 2.502
sensitivity to amplitude modulation, 2.501
visual
flicker sensitivity, 1.501-1.510
model of temporal sensitivity, 1.513
See also Flicker sensitivity
See also Temporal perception
Temporal order. See Order perception
Temporal perception
detection of auditory-visual asynchrony, 5.1021
duration perception, 2.303, 2.304, 5.1019
order perception, 5.1022, 6.407, 6.408
temporal pattern perception, 5.1002, 5.1017, 5.1018
coherence vs. flicker in auditory sequences, 6.403
detection of pattern changes, 6.406
optimal modality for, 5.1002
pattern discrimination, 5.1017, 6.406
pattern reproduction, 5.1017, 5.1018
temporal rate judgment, 1.510, 5.1020
See also Temporal modulation sensitivity
Temporal summation
auditory detection, 2.311, 2.312
electrocutaneous stimulation, 3.107, 3.125
Temporal summation (continued)
loudness, 2.601, 2.607, 2.610
vibrotactile stimulation
detection, 3.107
pattern masking, 6.505
perceived magnitude, 3.113
visual detection, 1.305, 1.402, 1.512, 1.624
during dark adaptation, 1.409
See also Temporal Interactions
Temporary threshold shift (TTS)
acoustic reflex and, 2.202
factors affecting, summarized, 10.311
noise duration and, 2.301, 10.311
noise intensity and, 2.301, 10.311, 10.312
noise spectrum and, 10.311, 10.313
recovery time, 10.311, 10.312
See also Hearing loss; noise-induced permanent threshold shift (NiPTS)
Text comprehension aids to
review questions, 8.126
summaries and advance organizers, 8.127
with concurrent task, 8.120
syntactic structure and, 8.124
displays. See Alphanumeric displays; person-computer dialogue; screen displays
engineering of, 8.101, 8.129
memory aids to
review questions, 8.126
summaries and advance organizers, 8.127
inferences made during reading, 8.125
information ordering and, 8.123
schema theory of, 8.128
readability measurement, 8.129
during whole-body vibration. See Vibration
See also Person-computer dialogue; reading; visual language processing
Texture gradient
depth perception and, 5.116, 5.901
perceived slant and, 5.105, 5.116
shape specification and, 5.105
Texture perception
interaction of audition and touch, 5.1005
optimal modality for, 5.1002
roughness perception, 6.603-6.606
See also Pattern perception
Thermal adaptation, 3.123, 3.124
Thermal detector
for radiant energy, 1.108
THERP (Technique for Human Error Rate Prediction), 7.102, 7.103
Thouless ratio, 1.712
Three-dimensional displays, 5.914, 5.915
for stereocuity testing, 5.917
See also Binocular displays; depth cues; depth perception; motion in depth; stereoscopic displays; stereoscopic vision
Threshold
absolute, 1.656
difference, 1.656
measurement of, 1.656, 1.657
See also Specific sensory dimensions
Threshold models
visual detection, 1.653
Throat microphone, 8.312
Tilt, 5.115-5.119
illusory, 5.805
with centrifugation (oculogravic illusion), 5.505
with visual field rotation, 5.301, 5.801
tilt aftereffect, 5.805
tilt contrast, 5.805
See also Body tilt; orientation perception; slant perception; tilt adaptation; visual horizontal; visual vertical
Tilt adaptation, 5.1101, 5.1115-5.1119
acquisition function, 5.1116-5.1119
compared with adaptation to prismatic displacement, 5.1119
See also Tilt aftereffect; tilt adaptation; visual horizontal; visual vertical
Torsional eye movements, 1.956-1.959
counter torsion, 1.957-1.959
cyclofusional eye movements, 1.956, 5.803
extension, 1.903
false torsion, 1.905
with head tilt, 1.901, 1.958, 1.959, 5.803
with interocular rotation differences, 1.926
intorsion, 1.905
judgment of visual vertical and, 5.801
perceived visual orientation and, 5.803
torsional drift, 1.959
true torsion, 1.905
with visual field rotation, 1.956, 5.803
See also Eye movements
Torsion-pendulum equation, 3.202, 3.203
Torsion swing, 3.205
Touch
anatomic correlates, 3.101
basic characteristics, 5.1001
compared to other sensory modalities, 5.1001, 5.1002, 5.1017, 5.1018
See also Cutaneous sensitivity; haptic perception; tactile localization; tactile masking; tactile pattern perception
Touch screens, 12.422
Trackball controls, 12.101, 12.422
Tracking
auditory, 9.538
cutaneous, 9.538
eye movements. See Pursuit eye movements; smooth pursuit eye movements
manual control
definition of task, 9.508
performance. See Manual control
vestibular, 9.538
See also Compensatory tracking; pursuit tracking
Tracking eye movements. See Pursuit eye movements; smooth pursuit eye movements
Tracking in depth, 1.949. See also Vergence eye movements
Training. See also Compensatory tracking; pursuit tracking
for supervisory control, 7.306
transfer of, 8.120, 9.517
for vigilance tasks, 7.416
See also Learning; practice
Trait anxiety, 7.802, 7.803. See also Anxiety
Transfer function. See Modulation transfer function; system transfer function
Transfer of training, 8.120
Transmission lag. See System lag
Transverse plane
definition, 5.701
Trapezoidal window illusion, 5.113
Tremor. See Eye tremor
Triangular waveform, 2.102
Triangulation, 11.222
Trichromacy, 1.102, 1.702, 1.722, 1.726
Trichromatic coefficients, 1.722
Tristimulus values, 1.702, 1.722
Tritan, 1.726
Tritanomaly, 1.705
Tritanopia, 1.705, 1.707, 1.726
Troland, 1.106
Tropia, 1.809
TTS. See Temporary threshold shift
Turning illusions, 1.923, 1.930, 3.310
TV displays. See CRT displays; video displays
Two-alternative forced-choice procedure, 1.657
Two-click threshold, 6.408
Two-handed reaching, 9.202. See also Movement, target-directed
Two-point resolution
touch
body site differences, 3.101, 3.115
definition, 3.101
measurement methods, 3.105
Tympanic membrane, 2.201
Typing, 9.303, 12.407, 12.408. See also Data entry
Typography. See Fonts
Ultrasound rhythms, 10.102, 10.701, 10.703, 10.709. See also Cyclical variations
Ultraviolet radiation
visual pathology and, 1.102
Unannounced displays, 7.117
Underwater listening
auditory sensitivity and, 2.301, 2.304
distortion of sound, 5.1101, 5.1124, 5.1126
sound localization and, 5.1124
Underwater motor skills, 9.207
Underwater movement time, 9.207
Underwater viewing
adaptation to, 5.1101, 5.1125, 5.1126
diving experience and, 5.1101, 5.1125, 5.1126
judgment of distance and, 5.1124-5.1126
judgment of visual vertical and, 5.801
optical and perceptual distortions of, 5.1101, 5.1124, 9.207
size distortions and, 5.1124-5.1126
Undifferentiated attention, 7.201, 7.204. See also Attention
Uniform-chromaticity scale (CIE), 1.722
Uniform lightness scale, 1.721
Training.
See also Compensation training; pursuit training
USAF tri-bar
use in acuity measurement, 1.602
Utricles, 3.201, 3.202
eye movements and, 1.957, 1.958
Uttrocular discrimination, 1.811
UV radiation. See Ultraviolet radiation
Vanishing point
in linear perspective, 5.105, 5.115
Vection
circularvection, 1.923, 5.503, 6.304
displays producing, 5.501
factors affecting, summarized, 5.503
linearvection, 5.503, 6.304
aftereffects, 5.707
detrimental effects of, 5.707
displays producing, 5.501
postural stability and, 5.707
See also Self-motion illusions
Vectograph, 5.914
Vector model
of visual identification, 1.655
Vehicle recognition
in CRT displays, 11.104, 11.105
See also Target acquisition; target recognition
Velocity control, 9.519, 9.520. See also First-order system
Velocity perception (visual)
discrimination of velocity, 5.203
illusions of velocity during tracking eye movements, 5.215, 5.217
Velocity perception (visual) (continued)
Aubert-Fleishl paradox, 5.217
Filchner illusion, 5.215, 5.217
pendular-whiplash illusion, 5.217
rebound illusion, 5.217
misperception due to vestibular adaptation, 3.210
perceived velocity, 5.203
text content
context and, 5.210
field size and, 5.203, 5.210
reference stimuli and, 5.210
velocity transposition, 5.210
visual field location and, 5.204
velocity threshold, 5.203
exposure duration and, 5.203, 5.207
factors affecting, summarized, 5.203
frequency of oscillatory motion and, 5.211
illumination level and, 5.203, 5.207
static reference stimuli and, 5.203, 5.209
visual field location and, 5.203, 5.204, 5.206
See also Motion perception
Vestibulo-ocular effect, 5.1007, 5.1009
Verbal comprehension. See also Text; comprehension of Verbal protocols
analysis of human-computer interactions, 11.307
Verbal recall. See also Memory
Vergence eye movements, 1.950-1.955
accommodation and, 1.231
accommodative vergence, 1.953
convergence angle, 1.808
definition, 1.808, 1.905
duration, 1.950, 1.953
fusional
target orientation and, 5.801
secondary, 1.930
target segment onset asynchrony and, 1.610
phase, slow, 1.922

See also Torsional eye movements; eyefusional eye movements
Vernier acuity
as acuity measure, 1.602
compared with other measures, 1.602
apparent motion and, 5.220
compared with stereoacuity and real depth acuity, 5.929
rotatory motion and, 5.220
spatial masking and, 1.607
target orientation and, 5.801
target segment onset asynchrony and, 1.610
two-dot acuity, 1.608
See also Visual acuity
Vernier offset
misperception due to target motion, 5.220
See also Vernier acuity
Version eye movements, 1.905. See also Eye movements
Vertical-horizontal illusion
haptic, 5.110
visual, 5.106
Vertical misalignment. See Binocular Image registration; vernier offset; vertical retinal image disparity
Vertical retinal image disparity
adaptation to, 5.906
with anisokoria, 5.906, 5.909
definition, 5.906
depth perception and, 5.906, 5.927, 5.928
with image magnification in one eye, 5.906, 5.907
with image rotation in one eye, 5.906, 5.907
induced effect, 5.909
limits for single vision, 5.912
stereoacuity and, 5.927
vergence eye movements in response to, 1.950, 1.952, 1.954, 1.955, 1.959
See also Lateral retinal image disparity
Vertigo
after aircraft spin, 1.921
after body rotation, 1.923, 3.210
Coriolis effects, 3.206, 3.209, 3.210, 5.503
elevator illusion, 3.210, 5.504, 5.505
oculogyral illusion, 1.921, 3.209, 3.210
See also Self-motion illusions; vestibular illusions; visual position constancy; loss of Vestibular ataxia, 5.704
Vestibular canals. See Semicircular canals
Vestibular displays, 9.538
Vestibular Illusions
Aubert effect, 3.210, 5.804
Coriolis effects, 3.206, 3.209, 3.210, 5.503
elevator illusion, 3.210, 5.504, 5.505
ilusory tilt
of body, 1.930, 3.210, 5.505, 5.708
unperceived tilt, 3.210
of visual objects, 3.210, 5.505, 5.804
inversion illusion, 3.210, 5.709
Müller effect, 3.210, 5.804
oculogyral illusion, 3.210, 5.505
oculogyral illusion, 1.921, 3.209, 3.210
postrotatory sensations, 1.923, 1.930, 3.210
turning illusions, 1.923, 1.930, 3.210
unperceived acceleration, 3.210
unperceived constant velocity, 3.210
unperceived tilt, 3.210
Vestibular nystagmus, 1.918-1.923, 1.928-1.930
attention and, 1.929
duration, 1.930
fixation conditions and, 1.922, 1.929
gain, 1.917, 1.920, 1.928
with magnifying spectacles, 3.209
latency, 1.930
with optical reversal of visual field, 3.209
peak frequency, 1.919, 1.929
postrotatory, 1.918, 1.921, 1.923, 1.930, 1.958, 3.209
factors affecting duration of, summarized, 1.923
quick phase, 1.922
velocity of, 1.922
secondary, 1.930
slow phase, 1.922
velocity of, 1.919-1.922
time course, 1.922
with aircraft spin, 1.921
vestibular adaptation and, 3.209
visual suppression of, 1.918-1.920
factors affecting, summarized, 1.920
See also Eye movements; nystagmus; vestibulo-ocular reflex

See also also
Vestibular sense
basic characteristics, 5.1001
compared to other sensory modalities, 5.1001, 5.1002
See also Vestibular sensitivity; vestibular system

Vestibular sensitivity
adaptation, 3.209
to angular (rotary) acceleration
detection threshold, 3.208
sensation magnitude, 3.207
to linear acceleration
detection threshold, 3.207
sensation magnitude, 3.208
methods of studying
linear acceleration, 3.206
rotary acceleration, 3.205

Vestibular system, 3.201-3.210
adaptation, 3.209
aftereffects, 3.210
anatomy and physiology, 3.201-3.203
ataxia, 5.704
eye-movement control and, 1.957-1.960. See also Vestibular nystagmus; vestibulo-ocular reflex
functions, 3.201
habituation, 3.209
illusions involving. See Vestibular illusions
labyrinthine disease, effects of, 5.503, 5.702, 5.704, 5.709
otolith organs, 3.201
dynamics, 3.202
postural stability and, 5.702, 5.704
recalibration, 3.209
semicircular canals, 3.201
dynamics, 3.203, 3.204
stimulus for, 3.201-3.203
See also Vestibular sense; vestibular sensitivity

Vestibular tracking, 9.538

Vestibulo-ocular interaction, 1.957-1.960

Vestibulo-ocular reflex, 1.906
control-systems-analysis model of, 1.910
degree of compensation for head rotation, 1.913
disruption of visual acuity, 10.902
eye-head coordination during vibration and, 10.418
factors affecting, summarized, 1.917
gain of,
factors affecting, summarized, 1.917, 1.926
with visual distortion, 1.927
phase lag
with visual distortion, 1.927
recalibration, 1.927
vestibular adaptation and, 3.209
See also Eye movements; vestibular nystagmus

Vibration, 10.401-10.435
of aircraft, characteristics of,
fixed wing, 10.403
rotary wing, 10.404
background information and summary, 10.401
of head, 10.406
of helmets, 10.419
low-frequency, 10.425, 10.426
measurement and representation of, 10.402
multi-axis, 10.409, 10.412
of muscles
heaviness and, 3.301
perceived limb position and, 3.301, 3.303, 3.314, 3.315
perceived muscle force and, 3.303, 3.325
performance effects of whole-body vibration
contrast sensitivity, 10.433
data entry, 10.424
display reading
character font and, 10.415
character shape and, 10.409, 10.435
character size and, 10.409, 10.413, 10.435
character spacing and, 10.409, 10.414, 10.435
direction of vibration and, 10.409, 10.412
display collimation and, 10.417
helmet-mounted displays, 10.420
luminance contrast and, 10.409, 10.416
spatial-frequency content and, 10.435
vibration amplitude distribution and, 10.409, 10.412
vibration frequency and, 10.409, 10.411
viewing distance and, 10.409, 10.417
manual control tasks
control dynamics and, 10.409, 10.422, 10.425
control gain and, 10.423
control sensitivity and, 10.409, 10.423
control type and, 10.409, 10.423
factors affecting, summarized, 10.409
model for predicting, 10.421
vibration duration and, 10.434
vibration frequency and, 10.422, 10.425
minimum vibration for visual effects, 10.410
observer vs. display vibration, 10.411, 10.412
summary of, 10.401, 10.409
visual blur, 10.410
visual sensitivity, 10.427, 10.433
of skin
roughness perception and, 6.606
See also Vibrotactile sensitivity

Vibrotactile displays, 3.105, 6.501
Vibrotactile pattern perception. See Tactile pattern perception
Vibrotactile sensitivity, 3.101, 3.106-3.114, 3.116-3.120
body site differences, 3.101, 3.106
exposure duration and, 3.107
intensity discrimination (intensity difference threshold), 3.109
with masking, 3.110
localization, 3.118. See also Tactile localization
masking and, 3.101, 3.110, 3.117
neural basis, 3.101-3.104
sensation magnitude, 3.101, 3.111
adaptation and, 3.116
magnitude enhancement, 3.101, 3.114
magnitude summation, 3.101, 3.112, 3.113
spatial interactions, 3.101, 3.108, 3.111, 3.117
spatial summation, 3.112
Vibrotactile sensitivity (continued)
spatiotemporal interactions, 3.101, 3.118
stimulation methods, 3.105
with surround vs. no surround, 3.101, 3.107, 3.108, 3.111
temporal interactions, 3.101, 3.113, 3.114, 3.117
temporal summation, 3.101, 3.107, 3.113
vibration frequency and, 3.108, 3.301
See also Cutaneous sensitivity; pressure sensitivity (skin); tactile localization
VIDEM model
prediction of aircraft detectability, 7.611
Video displays
acuity for moving targets in, 1.618, 1.620
differences from natural optic array, 11.218
motion portrayal in, 5.221, 5.401
simulation of self-motion and depth in, 5.502
target differentiation in, 11.221
See also CRT displays; information portrayal
Viehh-Müller circle, 5.910
Viewing distance
accommodation and, 1.224, 1.228-1.231
pupil size and, 1.234
stereovisual and, 5.915, 5.918
visual acuity and, 1.603, 1.615, 1.616
Viewing time. See Exposure duration
Vigilance, 7.401-7.419
arousal and, 7.401
attention and, 7.401
background information, 7.401
boredom and, 7.417
cyclical variations in performance, 10.706, 10.709, 10.711
decision criterion in, 7.401, 7.405
definition of task, 7.401
distinguished from monitoring and visual search, 7.401
distraction, 7.407
feedback and, 7.416
development exposure and, 10.601
incentives and, 7.411, 7.416
instructions and, 7.415, 7.416
measurement methods
adaptive task technique, 7.402, 7.410
summary of, 7.402
noise exposure effects, 10.302-1.304
observer characteristics affecting
signal characteristics affecting
sex differences, 7.413, 7.418
summary of, 7.413
personality and, 7.413, 7.804
practice and, 7.414, 7.416
reaction time patterns in, 7.404
receiver operating characteristic (ROC), 7.402, 7.405, 7.420
research in, 7.401
response bias in, 7.401, 7.405
signal characteristics affecting
discriminability, 7.408
modality, 7.406, 7.409, 7.411, 7.413
redundancy, 7.406, 7.409
spatial location, 7.406, 7.407, 7.411
summary of, 7.406
signal detection theory applied to, 7.401, 7.405
sleep deprivation effects, 10.802, 10.806, 10.809, 10.811
time on task and, 7.401, 7.403
task characteristics affecting
accumulation of information from sequential events, 7.412
inter-task correlations, 7.419
summary of, 7.411
time on task and, 7.401-7.403, 7.407-7.409, 7.414, 7.417, 7.418
training methods for, 7.416
vigilance decrement, 7.401, 7.403
See also Monitoring; target acquisition; target detection; visual search
Vignetting, 1.207
Villasobos Colour Atlas, 1.723
Viscosity perception, 6.611
Visibility. See Contrast sensitivity; target acquisition; target detection; visual sensitivity
Visible spectrum, 1.101
Vision
acuity, 1.603-1.623
basic characteristics, 5.1001
binocular vision, 1.801-1.813
color vision, 1.701-1.726
crises, 1.101, 1.118
contrast sensitivity, 1.628, 1.655
depth perception, 5.901-5.937
dynamic range, 1.103, 1.119
eye movements, 1.901-1.960
flicker sensitivity, 1.501-1.510
interactions with other senses
epression and, 7.411, 7.416
photoreceptors, 1.201
receiver operating characteristic (ROC), 7.402, 7.405, 7.420
visual acuity, 1.602-1.623
research on, 7.401
with empty-field viewing, 1.239
motion perception, 5.201-5.407
optics of the eye, 1.201
photopic, 1.103, 1.301
photorceptors, 1.201
rod, 1.201, 1.301, 5.1001
scotopic, 1.103, 1.301
sensory dominance of, 5.1007-5.1009, 5.1011, 5.1013, 5.1127
space perception, 5.101-5.108, 5.112-5.116
spatial pattern perception, 1.603-1.655, 5.801-5.805, 6.301-6.322
stimulus specification, 1.101-1.111, 1.601
temporal sensitivity, 1.501-1.513
vibration effects, 10.410. See also Vibration
visual sensitivity, 1.301-1.413
See also individual topics
Visual accommodation, 5.213
Visual accommodation. See Accommodation
Visual acuity, 1.602-1.623
during acceleration, 10.902
and accommodation, 1.603
age and, 1.603, 1.623
with binocular vs. monocular viewing, 1.801
compared with depth acuity, 5.929
contrast and, 1.603, 1.605
correlation with flying performance, 7.612
during dark adaptation, 1.410
decrement, 1.602
differences in, with different test patterns, 1.602
dynamic acuity, 1.617-1.622, 5.220, 7.522
exposure duration and, 1.603, 1.613
factors affecting, summarized, 1.603
gap detection, 1.611, 1.613, 1.617-1.619, 1.621, 1.622
illuminant wavelength and, 1.603, 1.606
luminance level and, 1.603-1.605, 1.613, 1.616, 1.643
masking and, 1.603, 1.607
measurement of, 1.602
acuity task variants, 1.602
Airy’s disk diameter as acuity indicator, 1.213
correlation with static acuity, 1.621
contrast sensitivity and acuity measures, 1.644, 1.645
test pattern variants, 1.602
for moving targets, 1.617-1.622, 5.220, 7.522
correlation with static acuity, 1.621
eye movements and, 1.932, 1.934, 1.939, 1.941

Visual field
coordinate systems for describing, 1.238
normal achromatic field, 1.235
age and sex differences, 1.236
normal color fields, 1.237

Visual field location
color perception and, 1.705, 1.706, 11.204
contrast sensitivity and, 1.628, 1.635-1.637, 7.506, 7.606
eye movements and, 1.932, 1.934, 1.939, 1.941
flicker sensitivity and, 1.501, 1.504
motion perception and, 5.203-5.205, 5.503
perceived velocity and, 5.204
single vision limits and, 5.911, 5.912
stereoscopic depth perception and, 5.918, 5.920, 5.927, 5.935
target detection and, 1.624, 7.610
tracking and, 9.534
visual acuity and, 1.603, 1.611, 1.612
visual sensitivity and, 1.305-1.307
warning signals and, 11.405
See also Peripheral vision; retinal location

Visual field stability. See Visual position constancy

Visual fixation, 1.911-1.916
accuracy of, 1.902
with angular acceleration, 1.930
change in. See Saccades; smooth pursuit eye movements; vergence eye movements
convergence and, 1.808
during display monitoring, 7.311, 7.313-7.319. See also Monitoring
eccentric fixation, 1.916. See also Eccentric gaze
with head and body movement, 1.913, 1.918, 1.958, 1.960.
See also Vestibular nystagmus; vestibulo-ocular reflex
monocular, 1.914
of moving targets. See Pursuit eye movements
preferred fixation distance, 1.902
during reading
duration, 8.112, 8.113
number, 8.112-8.114
probability, 8.113, 8.114, 8.116
words processed during, 8.115
residual eye movements during, 1.914
saccades during, 1.914, 1.916
stability of
in the dark, 1.911, 1.913
with flicker, 1.915
in the light, 1.912
target characteristics and,
flicker, 1.915, 1.916
illumination level, 1.909, 1.915
summary of effects, 1.915
target rotation with head, 1.918
during visual search, 7.407, 7.504-7.506, 7.511, 7.515
See also Eye movements; monitoring; vergence eye movements; visual direction; visual localization; visual search

Visual horizontal
with head or body tilt, 3.210, 5.803, 5.804
precision of judgments, 5.801
with visual-proprioceptive conflict, 5.101
See also Alphanumeric coding; alphanumeric displays; coding displays; display quickening; fonts; legibility, symbol;
maps; person-computer dialogue; screen displays; picture perception; simulation; video displays; visual language processing

Visual information portrayal. See Alphanumeric displays; coding; displays; maps; person-computer dialogue; screen displays; simulation

See also Dynamic visual acuity
flicker sensitivity and, 1.501, 1.504
See also Image quality; optical imaging
Visual Information processing
attention switching and, 7.218
digitized images, 6.312
automatic vs. controlled processes, 7.520
embedded figures, 6.308
divided attention and, 7.219-7.221
feature selective, 6.318
focused attention and, 7.221
orientation-specific effects, 1.652, 6.318
See also Attention; mental resources; visual search
spatial-frequency-specific effects, 1.650, 6.318

Visual language processing, 8.101
real-world scenes, 7.525
digitized images, 6.312
attentive switching anti, 7.218
embedded figures, 6.308
automatic vs. controlled processes, 7.520
selective attention and, 7.521
visual acuity and, 1.603, 1.607
See also Camouflage; spatial interactions
context effects (word superiority effect), 8.104
in real-world scenes, 7.525
phonological codes, 8.110
serial vs. simultaneous presentation, 8.122
same-different matching, 8.102
cancellation theory and, 7.521
priming and, 8.109
left-right reversal, 7.101, 1.114
same-different matching, 8.103
type of match and, 8.102, 8.103
See also Letter recognition
phonological codes, 8.110
of pseudowords, 8.101, 8.106
of random letter strings, 8.101, 8.106
semantic codes, 8.110
of text
categorization speed, 8.106, 8.107
text recognition, 8.101
meaningfulness and, 8.108
naming speed, 8.106, 8.107
vs. nonword processing, 8.108
vs. picture processing, 8.106, 8.107
priming and, 8.109
pronounceability and, 8.108
same-different matching, 8.102
word recognition, 8.101
text effects, 8.105
text model of, 8.110
Visual latency, 1.222, 1.229
See also Reaction time
See also Alphanumeric displays; letter recognition; reading
Visual localization, 5.601-5.607
absolute identification, 5.601
cancellation theory and, 1.938
compared with auditory localization, 2.815
ego-centric, 5.601
during eye movements
vs. saccadic, 5.602, 5.603, 5.607
tracking (pursuit), 5.604, 5.605
eye position and, 5.606
factors affecting, summarized, 5.607
intersensory interactions, 5.1007-5.1010
of moving targets, 5.602, 5.603, 5.607
object-centered, 5.601
with optical distortion, 5.1101, 5.1103, 5.1113
See also Prismatic displacement, adaptation to; space perception, adaptation of
spatiotemporal interactions in
apparent motion, 5.401-5.407
salient (displacement), 3.119
See also Apparent straight-ahead, spatial localization; visual direction
Visually coupled systems. See Head-coupled displays
Visual masking
color coding and, 7.511, 7.513, 7.519, 11.201-11.203, 11.403
constant mapping and, 7.516, 7.520
costant mapping and, 7.516, 7.520
cybernetic controls, 7.520
disjunction of target and distractor sets and, 7.502, 7.516, 7.520
displacement, 5.501, 5.514-5.516, 11.518, 5.520, 9.117
displacement and, 7.501, 7.513, 7.517
distinguished from monitoring and vigilance, 7.401
empty-field viewing and, 1.239
eye movements during, 1.935, 7.504, 7.505
factors affecting, summarized, 7.501
measurement methods, 7.402
for moving vs. static targets, 7.522
for multiple targets, 7.501, 7.516, 7.524
distinct from monitoring and vigilance, 7.401
with distractors, 7.501, 7.502, 7.514-7.516, 7.518, 7.520, 9.117
distinct from monitoring and vigilance, 7.401
for presence vs. absence of targets, 7.502
processing of nontargets, 7.515
in radar-type displays, 7.105
in real-world scenes, 7.525, 7.526
sequential expectancy and, 7.521
shape coding and, 7.511, 11.207, 11.403
target complexity and, 7.503, 7.512
see also Visual latency
See also Visual localization
Visual prototypes, 6.203
Visual rearrangement, 5.1101, 5.1102. See also Space perception, adaptation of
Visual resolution. See Image quality; optical imaging; spatial resolution; visual acuity
Visual search, 7.501-7.526
accommodative aids and, 7.507
color coding and, 7.511, 7.513, 7.519, 11.201-11.203, 11.403
target contrast and, 7.509, 7.510
target lag and, 7.521
target location and, 7.407, 7.502, 7.503
target luminance and, 7.503, 7.519
target size and, 7.501, 7.506, 7.510
visual search rate, 7.502, 7.508
without eye movements, 7.508
See also Monitoring; target acquisition; target detection; vigilance
Visual sensitivity, 1.301-1.413
during acceleration, 10.901, 10.904
with concurrent auditory stimulation, 5.1003
background luminance and, 1.401-1.403, 1.512
with binocular suppression, 1.807
binocular vs. monocular viewing, 1.801
brightness discrimination, 1.401-1.404, 1.413, 1.512
in the dark, 1.406-1.409, 1.411-1.413. See also Dark adaptation
equal-brightness contours, 1.304
factors affecting, summarized, 1.305, 1.511
light intensity range, 1.103
light upper tolerance limit, 1.103
normalized (across wavelength), 1.110, 1.302. See also Luminous efficiency
scotopic vs. photopic vision, 1.301
spatial summation, 1.308, 1.409
spectral sensitivity, 1.102, 1.109, 1.302
target size and, 1.307, 1.308, 1.408, 1.412, 1.512
temporal summation, 1.409, 1.512
visible spectrum, 1.101
visual field location and, 1.305-1.307
See also Spatial pattern sensitivity; target acquisition; target detection
Visual stability, See Visual position constancy
Visual tests
acuity, 1.602
acuity, 1.602
correlation with flying performance, 7.612
stereoacuity, 5.917
Visual tracking. See Manual control; pursuit eye movements
Visual vertical
during acceleration, 3.210, 5.505, 5.801
factors affecting, summarized, 5.801
with head or body tilt, 3.210, 5.801, 5.802, 5.804
precision of judgments, 5.801
reference frame effects, 5.801
See also Orientation perception; visual horizontal
Visual-vestibular interaction
illusory self-motion (vection), 5.501, 5.503, 5.707
illusory visual motion
elevator illusion, 3.210, 5.504
oculogyral illusions, 1.921, 3.209, 3.210
illusory visual tilt, 5.801-5.804
Aubert effect, 3.210, 5.804
Müller effect, 3.210, 5.804
oculogyral illusion, 3.210, 5.505
vestibular nystagmus, 1.918-1.923, 1.928-1.930
visual suppression of, 1.918-1.920
vestibulo-ocular reflex, 1.917, 1.926, 10.902
See also Vestibular nystagmus; vestibulo-ocular reflex
Visuomotor coordination
with optical distortion of the visual scene, 5.1101, 5.1103, 5.1112
Visuomotor negative aftereffect, 5.1103
Visuomotor reduction of effect, 5.1103
Vitreous humor, 1.201
light absorption, 1.202
radiation damage, 1.102
refractive index, 1.203, 1.209, 1.210
Vocal effort
intelligibility of speech in noise and, 8.304, 8.310
Vocal tract, 8.205
Voice signals, 11.415-11.418
compared to tone signals, 11.416
confusability, 11.418
See also Speech intelligibility; warning signals; voice warnings
Voltmeter, 2.104
Volumetric display, 1.812
Von Frey hairs, 3.101, 3.105
Von Kries coefficients, 1.710
Vowels, 8.201
with binocular suppression, 3.807 of American English, 8.205
See also Speech
brightness discrimination, 1.401, 1.404, 1.413, 1.512
in dark, 1.409, 1.411, 1.413, Darktile, 1.406
See also Wagon-whom effect, 5.401
adaptation Wald decision rule, 7.311
equal-brightness contours, 1.404, 1.512
Walk time factors affecting, summarized, 1.305, 1.512 step cycle time, 9.306
Light intensity, 7.103
Warping, See out
light upper tolerance limit, 1.103
Warnings, normalized (across wavelength), 1.110, 1.302, See also Warnings
negative vs. positive legend, 11.414
stereocuity, 5.917
reaction time, 5.1015, 5.110, 5.114
shape preferences, 11.407
signal characteristics affecting response
color, 11.405, 11.406
flash, 11.409-11.412
loudness, 11.404
luminance, 11.404, 11.406
modality
visual vs. auditory, 11.404
visual and voice combined, 11.415
presence of master warning, 11.408, 11.409, 11.414
visual field location, 11.405, 11.408, 11.409, 11.419
voice vs. tone, 11.416
warning interval, 11.419
status lights, 7.107
voice warnings
with accompanying tone warning, 11.417
confusability, 11.418
facilitation of response to visual warning, 11.415
message structure and content, 11.418
semantic vs. keyword, 11.417
vs. tone warnings, 11.416
See also Speech intelligibility
See also Cueing; reaction time
Warrick’s principle
control/display movement relationships, 12.302
Waterfall illusion, 6.320. See also Motion illusions
Water submersion. See Underwater listening; underwater viewing
Waveform, 2.102
analysis, 2.102
evelope, 2.102
phase relations, 2.112

Wavelength (light)
color appearance and, 1.101, 1.707
complementary wavelength, 1.703, 1.722
discrimination of, 1.704, 1.705
color-defective individuals, 1.726
dominant wavelength, 1.703, 1.722
hue and, 1.101
range of visible energy, 1.101
response time and, 1.205
visual sensitivity and, 1.110, 1.302
See also hue; spectral power distribution; spectral sensitivity

Weber-Fechner Law, See Weber's Law

Weber's Law
brightness discrimination, 1.401
contrast sensitivity, 1.632
Weber ratio
contrast discrimination, 1.646
flicker sensitivity, 1.502, 1.503
spatial frequency discrimination, 1.648
vibrotactile intensity discrimination, 3.109, 3.110

Weber ratio. See Weber's Law

Weight expectancy Illusion, 3.321

Weighting network
sound level meters, 8.317

Weightlessness, See Microgravity

Weight lifting
tonic neck reflex and, 3.326

Weight perception, 3.301, 3.303, 3.323, 3.324
electriccutaneous stimulation and, 3.303, 3.324
fatigue and, 3.303, 3.323
skin anesthesia and, 3.303, 3.324
temperature and, 5.1005
underwater distortion of, 5.1124, 5.1126
weight expectancy illusion, 3.321

Weverlthane's optimal control model, 7.311, 7.316

White noise, 2.102
definition, 2.105
intensity discrimination of, 2.401
masking by, 2.105, 2.305, 2.310-2.312
of speech, 8.305-8.310, 8.313, 8.314
performance effects of exposure to, 10.305
See also Broadband noise

Word recognition
text and, 8.105
model of, 8.110
naming speed, words vs. pictures, 8.106, 8.107
with priming, 8.109
vs. nonword letter string recognition, 8.108
See also Reading; visual language processing

Work efficiency
circadian rhythms in, 10.707

Workload
assessment of. See Workload measurement
channel capacity, 4.302
human-computer allocation of, 7.307-7.309
measurement of. See Workload measurement
mental resources and, 7.201-7.203, 7.703, 7.720, 7.721
performance operating characteristic (POC) curve, 7.205
See also Attention; concurrent tasks; divided attention; mental resources; workload measurement

Workload measurement
diagnosticity of measurement methods, 7.701, 7.703
measurement methods, summarized, 7.704
multiple-resources model and, 7.201-7.203, 7.703
physical workload, 7.729
physiological measures, 7.704
electromyography, 7.729
pupil diameter, 7.728
transient cortical evoked responses, 7.724-7.727
primary task measures, 7.716
secondary task measures
adaptive task technique, 7.722
classes of, 7.704, 7.719
embedded secondary tasks, 7.723
guidelines for using, 7.720, 7.721
loading task paradigm, 7.717
Stockholm scales and, 7.709
subsidiary task paradigm, 7.718
selection of measurement method, 7.701-7.703
sensitivity of measurement methods, 7.701, 7.702
subjective measures
conjoint scaling, 7.711, 7.712
Cooper-Harper Aircraft Handling Characteristics Scale, 7.705-7.707, 9.327
control task difficulty and, 9.515, 9.522
guidelines for use, 7.715
limitations of, 7.715
magnitude estimation, 7.710
Mission Operability Assessment Technique (MOAT), 7.711
Stockholm scales, 7.708, 7.709
Subjective Workload Assessment Technique (SWAT), 7.712-7.714
See also Attention; mental resources; workload

Yaw, 5.701

Yerkes-Dodson law, 10.101, 10.104
Yes/no procedure, 1.657
You-are-here maps, 11.223

Zeitgeber, 10.709

Zero gravity, See Microgravity

Zero-order system, 9.504, 9.505, 9.516, 9.519, 9.520, 12.421

Zooref's query-by-example language
person-computer dialogue, 11.316

Zollner illusion, 5.106
ENGINEERING DATA COMPRENDIUM:
Supplemental Registration Form

Reproduce and mail to:
Engineering Data Compendium
Armstrong Aerospace Medical Research Laboratory, AAMRL/HE
Wright-Patterson Air Force Base, OH 45433-6573, USA

Please register so that we may keep you informed of updates, additions and future products.

Name
LAST FIRST MIDDLE INITIAL

Mailing Address (please indicate address to which further correspondence should be sent)
☐ Work:

COMPANY
DIVISION
DEPARTMENT
ADDRESS
CITY STATE ZIP COUNTRY

☐ Home:

ADDRESS
CITY STATE ZIP COUNTRY

Phone
Home: ()
Work: ()

Primary end product or services performed at work location

Type of business at work location (i.e. manufacturing, design, RD&T)

Number of employees at work location

Your primary job function/organizational title

Your primary job activities

Number of years you’ve been involved in these activities

Your comments or suggestions for improvement of the Engineering Data Compendium will be very much appreciated. Please reproduce and mail to:

Engineering Data Compendium
Armstrong Aerospace Medical Research Laboratory, AAMRL/HE
Wright-Patterson Air Force Base, OH
45433-6573, USA

<table>
<thead>
<tr>
<th>Name</th>
<th>LAST</th>
<th>FIRST</th>
<th>MIDDLE INITIAL</th>
</tr>
</thead>
</table>

Mailing Address (work or home, whichever correspondence should be sent to)

<table>
<thead>
<tr>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY</td>
</tr>
</tbody>
</table>

Comments (include page#, figure#, and/or table#)

Suggestions for future editions