NMASA-TM= (01277

NASA Technical Memorandum 101297 NASA-TM-101297

ICOMP-88-14 193800 1341

Implementing Direct, Spatially Isolated
Problems on Transputer Networks

Graham K. Ellis .
Institute for Computational Mechanics in Propulsion

Lewis Research Center
Cleveland, Ohio

August 1988

CASE WESTERN

Q.

IMPLEMENTING DIRECT, SPATIALLY ISOLATED PROBLEMS ON TRANSPUTER NETWORKS

Graham K. E11is*
Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

Parametric studies have been performed on transputer networks of up to 40
processors to determine how to implement and maximize the performance of the
solution of problems where no processor-to-processor data transfer is required
for the problem solution (spatially isolated).

Two types of problems were investigated in this study. A computationaily
intensive problem where the solution required the transmission of 160 bytes of
data through the parallel network, and a communication intensive example that
required the transmission of 3 Mbytes of data through the network. This data
consists of solutions being sent back to the host processor and not intermedi-
ate results for another processor to work on.

Studies were performed on both integer and floating-point transputers.
The floating-point transputer features an on-chip floating-point math unit and
offers approximately an order of magnitude performance increase over the inte-
ger transputer on real valued computations.

The results indicate that a minimum amount of work is required on each
node per communication to achieve high network speedups (efficiencies). The
floating-point processor requires approximately an order of magnitude more work
per communication than the integer processor because of the floating-point
unit's increased computing capability.

INTRODUCTION

With the advent of multiple-instruction, muitiple-data (MIMD) stream par-
allel processors comes the problem of distributing the problem of interest onto
a network of processors for solution. This paper discusses some techniques
that can be used for implementing direct, spatially isolated problems on trans-
puter networks.

A direct problem is one that requires a known number of iterations to
solve the problem (i.e., not iterative). The term spatially isolated refers to
the class of problems that can be divided such that no data are required from
any other processor for the problem solution. This, however, does not preclude
the necessity of distributing and collecting initial data and final answers on
the transputer network.

Direct, spatially isolated problems are investigated because of their sim-
plicity when compared with iterative, data coupled problems such as matrix
inversion. By using a simple problem, the need to perform dynamic load balanc-
ing to keep all of the processors in the network busy and the extra programming
required for intelligent network communication can be eliminated.

*Senior Research Associate (work funded under Space Act Agreement C99066G).

NEE- 27756 #-

In general, there are two approaches to distributing a problem onto a par-
allel processing network. The first is to let each processor perform the same
computations but on different data. The other method is to distribute the com-
putation itself over the network so that each processor performs only part of
the numerical computation. The first method will be investigated in this

paper.

Two types of direct, spatially isolated problems are studied in this paper.
A computationally intensive problem and a communication intensive problem. The
computationally intensive problem is a definite integral that is used to compute
an approximation to pi (ref. 1). The integral is evaluated using the rectangle
rule. The communication intensive problem is a mapping of the complex plane
used to visually search for complex roots of polynomials (private communication
with Alan Palazzolo of Texas A&M). The communication limited problem occurs
because of the size of the results of the computation. The computed data are
quite large and consequently cause a communication bottleneck in the network.

This paper first provides an introduction to the hardware and software
features of the transputer and then the programming and performance of the com-
putationally intensive and the communication intensive problems are discussed.
A working knowledge of occam is assumed.

HARDWARE

A transputer is a microprocessor containing memory, serial links that
allow point-to-point connection of networks of transputers and an optional
floating-point math unit on a single VLSI chip. The transputer is a Reduced
Instruction-Set Computer (RISC) which gives high-performance rates for many
types of computations.

The IMS T414 transputer contains 2 kbytes of 50 ns on-chip RAM, four
bidirectional serial links that can operate at 5, 10, and 20 Mbits/sec data
transfer rates. The 20-MHz version of the T414 is capable of approximately
10 MIPS and 100 kflops. The IMS T800 transputer contains 4 kbytes of 50 ns
on-chip RAM, four bidirectional serial links at 5, 10, 20 Mbits/sec and an
on-chip floating-point unit. A 20-MHz T800 is capable of approximately
10 MIPS and 1.5 Mflops (ref. 2). A block diagram of the T800 is shown in
figure 1.

The transputer's links are autonomous Direct Memory Access (DMA) engines
that upon initialization can transfer data without any processor intervention.
The bandwidth of the microprocessor bus is such that all four serial links
(both input and output) can operate at 20 Mbits concurrently.

The transputer system used in this study consists of a transputer host/
development system that runs on a PC AT compatible. The development board
contains a 15-MHz T414 processor with 2 Mbytes RAM. The transputer network
consists of 40 20-MHz transputers with 256 kbytes DRAM per processor and a
transputer based medium performance graphics board. The graphics board sup-
ports a resolution of 512 by 512 pixels and 256 simultaneous colors.

Simulations using either 40 T414 or 40 T800 transputers were performed to
determine the advantage of the on-chip floating-point math unit.

The 1ink speed for all the tests was set at 10 Mbits/sec. The network was
wired as a 10 processor by 4 processor torus. This architecture is convenient
‘because many other architectures of interest can be mapped onto a torus. Exam-
ples of other architectures that map onto a 10- by 4-torus are a two-dimensional
mesh, ring, pipeline, and hypercubes of order 1, 2, or 3.

SOFTHARE

A1l of the software for the performance tests in this paper were written
in occam. Occam was developed to easily implement communication and concur-
rency (ref. 3). Occam can be used to describe the structure of a network or
system in terms of point-to-point communication channels. It is also used to
program the individual processors in the network.

The software was developed using the INMOS Transputer Development System
(TDS). The TDS is an integrated package consisting of an editor, occam com-
piler, linker, network configurer, and other development tools (ref. 4). The
version used for the benchmarks was occam TDS, BETA2, D700C.

Occam allows a system to be described in terms of a collection of concur-
rent processes (ref. 5). A process performs a sequence of actions and termi-
nates. Concurrent processes can only communicate with each other and with
peripheral devices through point-to-point channels. Occam programs are built
from three primitive processes (ref. 6).

Assignment

vV i= ¢ assign expression e to variable v
Qutput

cle output expression e through channel ¢
Input

c?v input from channel ¢ to variable v

Constructors are used to combine primitive processes into larger processes.
The sequential constructor, SEQ, causes its components to be executed one after
another. A SEQ process terminates when the last component under the SEQ termi-
nates. The parallel construct, PAR, causes its components to be executed con-
currently. If a PAR is specified on a single processor, the processes are
time-sliced according to a round-robin scheduler built into the transputer
hardware. A PAR process terminates only after all of the components under the
PAR have terminated. The alternative construct, ALT, chooses one component
process for execution. If more than one component process is enabled to be
selected, only one will be selected. The selection of the process is arbi-
trary. An ALT process terminates when the selected component terminates.

The transputer supports two priority levels for its operations. All
parallel processes running at a low priority get time sliced according to the
on-chip hardware scheduler built into the transputer. A low-priority time
stice is 5120 cycles long (approximately 1 ms) (ref. 7). A high-priority

process will run without interruption until it finishes or has to wait for
channel communication. The PRI PAR statement is used to prioritize a process.
Only two process can appear under a PRI PAR statement. The first process
appearing after the PRI PAR statement is run at high priority. To run more
than one process at high priority, the following syntax can be used:

PRI PAR
PAR
a)
bO
c()
dOo

where a(), b(), c() and d{) are occam procedures. Procedures a(), b() and c()
running under the PAR construct are considered to be a single process.

The code fragment listed above means processes a(), b(), and c() will all
run at high-priority until they deschedule for communication or they termi-
nate. Each of the high-priority processes will run preemptively until they
deschedule. High-priority processes do not get time-sliced. The exact order-
ing of the processes appearing in a PRI PAR is the last lexically appearing
process will schedule first, and then the others will be queued up as they
appear top-to-bottom. In the example listed above, the high~priority process
list will appear as:

cO)
a()
b

When none of the processes a(), b(), and c() can proceed, process d() gets
scheduted. If any of the processes in the high-priority process 1list get sche-
duled, it will interrupt the process d().

Any programs written using the PAR or PRI PAR constructs should not depend
on the order that the processes are queued in process list for proper opera-
tion; however, knowing how the occam compiler generates the code can be helpful
when maximum performance is required.

Channel communication is self-synchronizing. Communication occurs when
one process outputs to a channel and another process inputs from it. If either
the sender or receiver is not ready, the other process waits until both pro-
cesses are ready to continue. The programmer does not have to explicitly spec-
ify the synchronization, it is performed automatically just by using the input
and output primitives presented previously. There is no implicit buffering of
channel communications. Asynchronous channel communication is not directly
supported.

COMPUTATION INTENSIVE EXAMPLE

The computationally intensive problem to be solved on a transputer network
is a small sized problem with very 1ittle data transfer through the network.
The problem is the Pi Program (ref. 1). It computes an approximation to pi by
using the rectangle rule to approximate the following definite integral:

j £(x) dx 1)
0

where
4
f(x) = T—TX—;; (2)
and the rectangle rule states:
Rn(f) = h{f(xi)] (3
where
1
h = - (4)

Xi = (i - %>h (5)

In order to implement the pi program on a network of transputers, first a
suitable architecture must be chosen. Unlike many multiprocessors whose archi-
tecture is fixed, transputers can be wired in any configuration supported with
four connections per processor.

Since the programmer must develop all of the communication routing algo-
rithms for the network, it is currently more convenient to implement a simple,
regular architecture and use simple communication procedures instead of a more
complicated scheme. Additionally, the DMA link engines allow data to be piped
through a network of processors with little performance penalty.

The problem will be implemented on a pipeline of transputers. A pipeline
is used because it is very easy to implement the required communication buffers
for the network data transfer. Simulations will be run for 1, 8, 16, 32, and
40 processors. Both T414 and T800 versions of the transputer will be tested.

As a baseline, the pi program was implemented on a single transputer (the
development board) using only SEQ processes. This version gives a datum from
which the network computations can be compared. The listing of the single pro-
cessor sequential version of the pi program is given in appendix A.

The next step was to simulate the desired network of transputers on a sin-
gle transputer using the PAR construct. One of the advantages of occam is the
ability to simulate the network configuration on a single processor. The dis-
cussion for the simulated parallel network and the actual parallel network are
combined since they are conceptually identical. The listing of the single pro-
cessor parallel version of the pi program is presented in appendix B and the
network version is listed in appendix C.

As previously mentioned, a pipeline of processors (or processes for the
single processor case) is used because of the simple communication protocol
required. The current generation of software tools for transputers is such
that the programmer must explicitly define and program the processor-to-
processor data routing procedures. The pipeline and communication buffers are
shown in figure 2.

The single processor sequential implementation of the rectangular integra-
tion is quite simple. The occam code fragment for the rectangle rule computa-
tion is shown below.

SEQ i = 0 FOR number.intervals
SEQ

xi := ((REAL32 TRUNC i) - 0.5 (REAL32)) * delta.x
sum := sum + (delta.x * (4.0 (REAL32) / (1.0 (REAL32) + (xi * xi»))

where

number.intervals the total number of intervals to use for the integration

delta.x the width of each interval in the integration
X i temporary storage

sum the value of the integral

i Toop counter

Note the strict data typing occam requires. This strict typing insures the
correctness of any occam expression.

The obvious method for distributing the integration onto a network of N
processors is to divide the interval [0, 1] into N equal segments and let
each processor work on a subset of the interval. The real work for implement-
ing the parallel solution of the pi problem is in writing the communication
routines for the network.

Since the number of processors is known at compile time, each processor
can be assigned a unique number that can be used to determine the start and end

values for the interval on each processor. The computation required to compute
a local interval [u, v] is as follows:

u = n(ﬁ) (6)

(7

<

it

c

+
=0

where
n processor number (numbers start at 0)
¢ total number of intervals on [0, 1]
N total number of processors in network

Note that the number c¢/N is a constant. Because of this, the host com-
puter can compute it once and send it to every processor. The value ¢/N is
really the number of local intervals to be computed on each processor.

The formulation for the rectangle rule requires the multiplier value
h = 1/c for the proper function evaluation. Therefore, the only values

required to be output to the network to start the simulation is to output the
value for h, and the value for c/N.

INPUT BUFFER PROCESS

To distribute the work onto the network, some sort of input buffer routine
must be written. Since the data needs to propagate down the pipe, the obvious
scheme is to read the data from the host and pass it to the local computation
process and also to the next processor (process) in the network. The data can
be sent from the input buffer to the local compute process and the next proces-
sor in parallel. This also increases the performance of the network since the
serial links can operate autonomously without processor intervention once the
initial communication is set up. The channel set-up time for a communication
is approximately 1 usec (20 machine cycles) (ref. 8). The code fragment show-
ing the input buffer routine is given below:

SEQ
in ? delta.x; local.intervals
PAR
to.local.compute ! delta.x; local.intervals
to.next.processor ! delta.x; local.intervals
where
delta.x the width of each interval in the integration
local.intervals the number of intervals to be computed on this processor
in the input channel

to.local.compute the channel to the computing process on this node

to.next.processor the channel to the input buffer on the adjacent processor

COMPUTE PROCESS

The compute process is similar to the sequential program version; the
local start and stop points [u, v] are used instead of the whole interval
[0, 11. The whole process consists of reading in delta.x and the number of
local intervals from the input buffer process, and then performing the required
computations. The partial sum is then sent to the output buffer process. The
code fragment showing the computation process is given below:

SEQ

from.input.process ? delta.x; local.intervals

sum := 0.0 (REALG64)

SEQ i = (processor.number * local.intervals) FOR local.intervals

SEQ
xi := ((REAL64 TRUNC i) - 0.5 (REAL64)) * delta.x
sum := sum + (delta.x * (4.0 (REAL64)) / (1.0 (REAL64) + (xi * xi))
to.output.process ! sum

where

delta.x the width of each interval in the integration
Tocal.intervals the number of intervals to be computed on this processor
from.input.process the input channel from this node's input buffer
to.output.process the channel to the output buffer process on this node

i lToop counter

OUTPUT BUFFER PROCESS

Once the local data has been computed, the partial sum needs to be sent
back to the host so it can be combined with the results from the other proces-
sors. The output buffer needs to be able to read data from both the local com-
pute process and the adjacent processors output node. Since the order of the
results appear on the network is unknown, the occam ALT construct is used. The
code fragment showing the output buffer routine is shown below:

WHILE TRUE
ALT
from.local.compute ? local.sum
link.out ! local.sum

from.adjacent.processor 7 sum
lTink.out ! sum

where

local.sum temporary storage for the partial sum from the local
compute process

sum temporary storage for the partial sum from the adja-
cent node's output buffer process

from.local.compute the channel from the local compute node

from.adjacent.processor the channel from the adjacent node's output buffer
: process

HOST PROCESS

The host process starts the simulation by sending out the desired delta x
and number of local intervals. The host process then waits for the results
from the network. Since the number of processors in the network is known, the
number of data packets received is recorded and when all packets have been
received from the network, the program terminates. The occam code fragment for
the host process is listed below:

out ! h; ¢n

replys := 0

total := 0.0 (REAL64)

WHILE replys < num.processors

SEQ

in ? partial.sum

total := total + partial.sum

replys := replys + 1
where
out the output channel to the first processor in the pipeline
h (1/number of total intervals) on [0, 1]
cn c/N, the number of local intervals on each processor
replys the number of replys received from the network

num.processors number of processors in network

total the approximate value for pi

partial.sum a single processor's contribution to total

in the input channel from the first node in the pipeline
PERFORMANCE

The pi program was evaluated on 1, 8, 16, 32, and 40 transputers. For
each case, the number of total intervals for the integration was varied from
103 to 107 in powers of 10. The first performance tests were to determine the
optimum priorities for computation and communication.

The computation times were obtained using the occam TIMER statement to
read the on-chip timer. The low-priority timer has a resolution of 64 psec
per tick.

The recommended method of programming transputer networks is to assign a
high priority to communication and low priority to computation (ref. 9). To
verify this, three different process priority configurations were tested. Each
case uses three processes that run in parallel on each node. The three cases
are as follows:

Prioritized communication:

PRI PAR
PAR
input.buffer()
output.buffer()
compute()

Prioritized computation:

PRI PAR
compute()
PAR
input.buffer()
output.buffer(

A1l processes low-priority:

PAR
input.buffer()
output.buffer()
compute ()

The resuits for the communication tests for a T800 floating-point trans-
puter network are shown in figures 3 to 5. The optimum case is to assign pri-
ority to communication. The reason that prioritizing communication increases
network performance is that more processors can be kept busy. By interrupting
processing to set up a data transfer, other processors in the network receive
data to work on rather than waiting until the adjacent processor finishes its
computations. Another reason that it helps to prioritize communication is that
the transputer links, once initialized, can transfer data without processor
intervention. By prioritizing the data transfer, concurrent computation, and
communication can occur on a single transputer.

Given that priority should be given to communication, the pi program
benchmark was run on both T414 and T800 networks. Both 32-bit and 64-bit math
version were tested. The results from these tests for the T800 floating-point
processors are shown in figures 6 and 7. A comparison of the floating-point
performance of the T414 and T800 shows that the T800 has approximately an order
of magnitude increase in performance over the T414 for 32-bit computations.
There is approximately a 40 times speedup on the T800 over the T414 on 64-bit
floating-point computations. This can be reconciled by the fact that the T800
has a 64-bit floating point unit built into the hardware and the T414 must
build 64-bit numbers out of 32-bit operands which typically takes four times as
many operations as 32-bit computations.

Note, however, that for a small number of total intervals for the integral
computation that the network performance is faster for 8 processors when com-
pared to 40 processors. The extra communication time for distributing a small
workload over 40 processors causes a decrease in performance over the 8 proces-
sor case since less communication time is spent distributing the work and each
processor has more data to work on.

Normally the speedup of a network is defined as:

Solution time for 1 processor tl (8)

Solution time for N processors n

Speedup =

or often the speedup can be normalized to express efficiency. .One hundred per-
cent efficiency means there is no overhead for communication on the network.

_ £1€100)

efficiency (%) = e (9

10

Since the development board being used is a 15-MHz T414 it is not meaning-
ful to compare the development board results with the 20-MHz T414 and T800 net-
work simulations. The first method of generating single node timings for
speedup computations was to use the development board and a single T800. This
should not be as fast as a single T800 running the problem because of network
overhead.

In order to get results for a single processor, a B004 development board
was modified to use a 20-MHz T800 floating-point transputer. Also, the modi-
fied BOO4 development board changed the number of wait states on the external
memory from five-cycle at a 15-MHz clock to three-cycle at a 20-MHz clock which
equates to going from a 330-ns memory cycle to a 150-ns memory cycle. This
modification still makes the comparison to the network nodes difficult since
they use four-cycle memory (200-ns cycle). Another complicating factor is that
the transputer loader used for these tests does not load the on-chip RAM on the
development board so the 50-ns on-chip memory cannot be used and memory access
times are not the same as the processors on the network. The times for the
development board T800 could be expected to be at most 25 percent faster than
would be expected using a four-cycle external memory.

The results for the 20-MHz T800 development board, a 15-MHz T414 develop-
ment board, a single 20-MHz T800 network node (using a 15-MHz T414 as a host)
and a PC/AT 80286/80287 at 8 MHz are shown in figure 8. The single-node net-
work T800 was about 33 percent faster than the T800 on the development node.
This is probably due to the loader not taking advantage of the on-chip memory
on the development board. The use of the on-chip memory should make the T800
on the development board run faster since there is no network overhead for a
single processor. The T414 shows performance approximately an order of magni-
tude slower than the T800. The 80286/80287 chip set at 8 MHz is approximately
50 percent slower than the T414 at 15 MHz.

Speedup and efficiency computations using the single T800 on the develop-
ment board as t1 and the network times as tn are shown in figures 9 and 10.
Figure 9 shows the speedup of the network for 8 to 40 processors. for less
than 10000 intervals, the 8 processor network is the fastest. Figure 10 shows
the same data as figure 9 except the speedup has been normalized by the number
of processors to express efficiency. The difficulty in using figure 10 is that
execution time must be computed from the plot. It is difficult to tell how
much faster, if any, the 8 processor case is when compared to the 40 processor
case for 1000 intervals.

Instead of just measuring t1/tn for speedups, another method of quanti-
fying speedup is splitting the solution time into communication and processing
components. This can be used to determine the maximum possible network per-
formance as a function of the ratio of communication time to processing time.
This equation assumes there is no sequential (serial) part of the program to
slow down the network. The problem is perfectly parallelizable. The speedup
equation is written in terms of how long does it take to implement a sequen-
tial problem on a parallel network. The following equation is presented in
reference 10.

Speedup = ___IQ_T__ a0
Tc + (ﬁg>

1

where
Tp processing time for one processor
Tc communication time for concurrent solution
N the number of processors in the network
The speedup equation (10) can be rewritten as

N

Speedup = Wit R
N(T—p + 1

an

This formulation of the speedup equation, however, does not compare the
parallel communication time, Tc, with the parallel processing time. The pro-
cessing time, Tp, is for a single processor while Tc is the communication
time over the distributed network.

Another method of presenting the speedup equation is to base it on the
time to implement a parallel problem on a sequential network (ref. 11). In
this case, the following equation can be used for speedup:

_ __N(p")
Speedup = T¢' + Tp’ 2>
where
Tc! communication time for network solution

Tp' processing time per node on the network solution
N the number of processors in the network
Rewriting equation (12) yields:

N
Speedup = <Tc‘ a3

'Tp—.+1

This equation presents the proper parallel communication time divided by
paraliel processing time and gives the correct speedup ratios. The serial pro-
cessing time is this case is also assumed to be zero.

The ideal case is zero network communication time. In this case, the
speedup is merely the number of processors. For maximum performance, the ratio
(Tc/Tp) should be minimized. A plot of speedup as a function of the number of
processors is shown in figure 1I1.

Obviously, the Tc/Tp ratio can be minimized by either minimizing Tc by
using a processor with high-speed data transfers from node-to-node or maximizing
Tp by using slow processors or a large number of operations per communica-
tion. Since the T800 performs floating-point arithmetic with exceptional

12

speed, considerable work needs to be allocated to each node between communica-
tions for maximum performance. A reasonable goal seems to be a Tc/Tp ratio
of at most 0.001, (i.e., 1000(Tc) = Tp).

NETWORK COMMUNICATION LIMITED PROBLEM

The problem tested on the network to cause a communication bottleneck was
a simple mapping of a region of the complex plane (private communication with
Alan Palazzolo of Texas A&M). The problem discretizes a two-dimensional region
of the complex plane and evaluates a specified polynomial at every discretized
point. Based on the quadrant of the complex plane that the function lies in,
one of four colors is assigned to that point and is plotted. Where four colors
intersect, the polynomial has a root. This is a rather crude approach, but the
problem is interesting in that there is immediate feedback on how effective the
network implementation is because of the real-time graphics display of the com-
plex plane mapping. The communication bottleneck occurs because of the volume
of data that has to be sent through the network to the graphics board for
displiay.

Since no complex math libraries are available in occam, simple complex
add, multiply, and polynomial evaluation routines were developed. The polyno-
mial evaluation routine uses Horners's rule for increased accuracy and perform-
ance (ref. 9). The complex math routines are 1listed in appendix D.

In order to implement the root visualization program on a network of
transputers, first a suitable architecture must be chosen. Unlike many multi-
processors whose architecture is fixed, transputers can be wired in any config-
uration supported with four connections per processor.

Since the programmer must develop all of the communication routing algo-
rithms for the network, it is currently more convenient to implement a simple,
reqular architecture and use simple communication procedures instead of a more
complicated scheme. Additionally, the DMA link engines allow data to be piped
through a network of processors with little performance penalty.

The architecture chosen for the root visualization is a pipeline. The
communication buffers required for data transfer on a pipeline are only input
and output buffers. An example of these along with the pipeline is shown in
figure 2. If the data protocol for the network is chosen with some forethought
arbitrary length pipes can be built and tested with only a software configura-
tion parameter change.

The complex root mapper works as follows:

(1) Prompt user for region of complex plane to map

(2) Discretize specified region

(3) Compute f(2)

(4) Find quadrant of f(2z)

(5) Send data to graphics board for plotting a color at point =z

The graphics routines used in this test are documented in references 12

and 13. The source code for the root visualization program is listed in
appendix E.

13

Unlike the definite integral problem, there is a large volume of data
flowing through the network. For each data point to be plotted, the x-coordi-
nate, y-coordinate, and color must be sent to the display board. The pipeline
is used to compute the data and the computed data is sent back to the host pro-
cessor. The host processor then sends the computed data to the graphics board.
A block diagram of the network is shown in figure 12. As with the integration
problem, the network architecture was chosen for its ease of implementation.

A more reasonable choice for a communication bound problem would be to take
advantage of as many links as possible on each transputer. One possible sug-
gestion is shown in figure 13.

Since the size of the data required for the plotting data on the screen is
constant, the order of the polynomial is varied to change the communication
computation ratio on the network. All 40 processors were used for each simula-
tion. The order of the polynomial was varied from 1 to 80 to see how much com-
putation was required to overcome the communication bottleneck.

As with the first example, a sequential version of the program was imple-
mented. Unlike the first problem, two processors were required for the sequen-
tial version: the computation node and the graphics board.

The next step is to determine how to divide the problem for concurrent
solution on the network. Since the polynomial evaluation is direct, a known
number of computations will be performed for each point in the complex plane.
Dividing the two-dimensional region into strips for each processor is a simple
method of distributing work and was the method used.

There are 40 processors and the screen resolution is 512 by 512 pixels.
Not every processor can have an equal number of pixels to compute. The number
of pixel lines (columns of pixels) each processor gets is determined as
follows:

Screen width
Number of processors

Number of columns =

and the number of processors that will have (number of columns + 1) columns is
screen width mod number of processors
with the remainder getting "number of columns" columns.

The host processor decides how to distribute the work load. The dx, and
dy for the complex plane is computed along with the corresponding coordinates
for the plane region of interest. Each processor gets sent a copy of the
following: oo

out ! [x.min, y.minl; [dx, dyl; [x.start, x.stopl;power+l::coeffs

where

X.min the minimum real value of the two-dimensional region
y.min the minimum complex value of the two-dimensional region
dx the spacing between the x pixels

14

dy the spacing between the y pixels

x.start the local starting x coordinate for this processor
Xx.stop the local stop value for the x coordinate

power the order of the polynomial to evaluate

coeffs the coefficients of the polynomial to evaluate

INPUT BUFFER

The input buffer for each node in the network is slightly different than
the integration example presented earlier. Instead of propagating a single
data set through the network, all of the data for the root solver originates
from the host processor. The input buffer must be able to read the data from
the host and decide whether the data is to be used locally or passed on to the
next processor.

The input buffer on each processor decides where to send the data it
receives by sending the first packet of data it gets to its own local node and
any other data it receives to the next node in the network. This is done by
setting a flag the first time data is received. The code that performs this
function is shown below:

local := FALSE

WHILE TRUE
SEQ
in ? coords;du;columns;size::coeffs
IF
NOT Tlocal
SEQ
out ! coords; du; columns; size::coeffs
local := TRUE

through ! coords; du; columns; size::coeffs

where

coords(0] the minimum real value of the two-dimensional region
coords[1] the minimum complex value of the two-dimensional region
dufo] the spacing between the x pixels

duf11] the spacing between the y pixels

columns{0] the local starting x coordinate for this processor

columns[{1] the local stop value for the x coordinate

15

size the order of the polynomial to evaluate
coeffs the coefficients of the polynomial to evaluate

Note that the input buffer routine is in an infinite Toop. This will actually
deadlock the network after all the required data has been sent; however, since
it is on a network node, it does not cause any problems and the coding is
easier than trying to terminate after some known number of data sets has been
received. The host processor is the one which must terminate properly because
if it deadlocks, the host transputer will have to be rebooted.

COMPUTE PROCESS

The compute process on the network nodes must read in the initialization
data from the input buffer process and decode the information to determine what
pixels to work on. Because of the way the link transfers occur, it is better
to have a single long data transfer through a link rather than several short
ones. The data transfer size chosen to send to the output buffer and ulti-
mately to the host was a whole column (512) of pixels. The data format chosen
was to send an array of 3(512) that contained the following information:

i -- screen x coordinate in Integer Device Coordinates (IDC)
J -- screen y coordinate in IDC
color -- color of the pixel at (i, J)

The size of each data transfer becomes (512)(3)(32 bits) which is 49 152 bits
or 6144 (6K) bytes.

Two additional data transfer protocols were implemented to try to minimize
the data transfer times through the network. The first was to change the
32-bit integers used above into 16-bit integers. This is possible since all of
the data representations required can be stored in 16-bits. The second scheme
was to encode the graphics information in a run-length (RL) format. Two 32-bit
words were used to store the following information:

16-bits: 1 coordinate

16-bits: j coordinate

16-bits: number of pixels to color
8-bits: color to use for pixels
8-bits: byte for direction control

The control byte uses the two least significant bits (LSB) to encode whether to
increment or decrement the pixel drawing in the x or y-direction. The cod-
ing is as follows:

direction LSB
+X 00
+y 01
-X 10
-y 11

16

One change for the RL encoded blocks that has not been implemented is to
pack multiple run-length encoded blocks in to a single large block for data
transfers. Right now each RL packet is sent separately so the number of chan-
nel writes for this case is significantly larger than the other two cases.

The results for the root-solver are given in the performance section
below.

OUTPUT PROCESS

The output buffer process is similar to the output buffer process of the
integration problem. Either of two channels is scannad using the ALT statement
in occam. Any input received is sent to the adjacent node.

One addition for some of the tests was a number of internal buffers
between the compute and output process and the link and the output process were
used to see if they affected performance.

PERFORMANCE

A1l performance tests were run using a pipeline of either 40 T414 or 40
T800 transputers. Tests were performed for 1, 3, and 5 output buffers on each
processor in the arrangement shown in figure 14. Polynomials of order 1, 4, 5,
10, 20, 40, and 80 were tested for each configuration.

Figure 15 shows the results for the 32-bit integer (6 kbyte block size)
transfer protocol on a T414 network. The results show only a moderate perform-
ance gain for the 5-buffer case and only for the polynomial of order 10. For
all other orders, the performance is approximately the same regardless of the
number of buffers used.

The 16-bit (3 kbyte block size) transfer protocol results for a T414 net-
work are shown in figure 16. The results for this case are the same for every
buffer configuration. There is no advantage for the 5-buffer case with a poly-
nomial of order 10 as there was with the 32-bit transfer protocol. The times
for both the 32-bit and 16-bit transfers were nearly identical.

The results show a linear increase in solution time for polynomials of
order greater than 20. Since the amount of data transferred is constant, these
problems are limited by the computational speed of the processors rather than
the speed limitations of the link data transfers.

The results for the run-length encoded data for a T414 network are shown
in figure 17. The performance using this protocol is approximately 30 percent
slower than either the 16-bit or 32-bit transfer protocol. The performance
degradation is due to the number of data transfers required. The total volume
of data is less than the 3 Mbytes required for the 32-bit protocol; however,
the number of channel writes increases because each RL block encodes only one
color.

The transputer requires only 1 usec (20 cycles) to set up a channel commu-
nication for any size data transfer. RL encoding a whole scan-line instead of

17

a single color might increase the performance compared with the straight RL
encoding.

The comparison involves the communication time to send a block of data
versus the time to compress the block, send a smaller amount of data and decom-
press it. This test has not yet been performed.

The network of T800's was tested and the results are shown in figure 18
for the 32-bit integer data transfer protocol. The plot for this case is com-
pletely horizontal for polynomials from order 1 to 80. The solution time also
does not change for 1, 3, or 5 return buffers. The extra floating-point per-
formance offered by the T800 requires a considerable number of computations for
every communication, (Tc/Tp < 0.001), in order to achieve reasonable network
speedups. The current solution on the T800 network is still communication
bound. Additional work causes no degradation in network performance.

SUMMARY

Parametric studies were performed to determine how to best implement
direct, spatially isolated problems on transputer networks. Both computation-
ally intensive and communication intensive problems were studied. The results
indicate that the computation time per processor should exceed the communication
time per processor by at least 1000 times for reasonable network performance.

18

APPENDIX A - SINGLE PROCESSOR SEQUENTIAL VERSION OF THE PI PROGRAM

e e e e e e e e e e et et e e e e e e e e e . G e . " > A o e = ke e = A —— e o o
FILE: PI_SEQ.LIS SIZE: 1345 bytes
SAVED: Tue Jul 12 13:38:36 1988 PAGE: 1

o e e e e e e e e e e e e e e e e e o = A S = o ——— A = = o o

List of Fold# single transputer implementation

**List of File*%* PI.tsr

**List all lines

*%*Excluding : NO LIST folds

{{{

PROC pi.program(CHAN OF ANY keyboard, screen)
#USE "\tdsiolib\userio.tsr"

{{{ wvariables
INT interval
INT count

INT dummy

REAL64 delta.x

REAL64 sum

REAL64 xi

1}

{{{ timer variables

TIMER time

INT start.time

INT stop.time

13}

{{{ nmisc vars and consts

VAL rl1.0 IS 1.0 (REAL64)

VAL r0.0 IS 0.0 (REALG64)

INT any :

11}

SEQ
write.full.string(screen, "Enter the number of intervals : ")
read.echo.int (keyboard, screen, count, dummy)
newline(screen)
count := 1000
sum := r0.0 ’
delta.x := rl.0 / (REAL64 TRUNC count)
time ? start.time
SEQ i = 0 FOR count

SEQ
xi := ((REAL64 TRUNC i) - 0.5 (REAL64)) * delta.x
sum := sum + (delta.x * (4.0 (REAL64) / (rl.0 + (xi * xi))))
time ? stop.time
write.full.string(screen, "Time : ")
write.int(screen, stop.time MINUS start.time, 0)
write.full.string(screen, " low-priority ticks ")
newline(screen)
write.full.string(screen, "Approx. value for PI : ")
write.real32(screen, sum, 2, 6)
newline(screen)
read.char (keyboard, any)

%0 00 o0 00 o0 e

1))

19

APPENDIX B - SINGLE PROCESSOR PARALLEL VERSION OF THE PI PROGRAM

e ——————
FILE: PI_PAR.LIS SIZE: 4980 bytes
SAVED: Tue Jul 12 13:39:06 1988 PAGE: 1
+ ——
List of Fold single transputer implementation, PARallel
[ist of File PI2.tsr

**List all lines

**Excluding : NO LIST folds

PROC pi.program(CHAN OF ANY keyboard, screen)
#USE "\tdsiolib\userio.tsr"

{{{ constants
VAL rl.0 IS 1.0 (REAL32) :
VAL r0.0 IS 0.0 (REAL32)
BN
{{{ CHAN definitions
VAL num.processors IS 40 :
[num.processors]CHAN OF ANY to.network, from.network
[num.processors]CHAN OF ANY to.compute, from.compute
1)} -
{{{ PIPE buffer PROCs
{{{ PROC input.buffer
PROC input.buffer (CHAN OF ANY in, link.out, local.out)
INT total.intervals :
INT local.intervals :

SEQ
in ? total.intervals; local.intervals
PAR
link.out total.intervals; local.intervals

local.out total.intervals; local.intervals

}
{ PROC return.buffer
OC return.buffer (CHAN OF ANY local.in, link.in, out,
VAL INT process.number)
REAL32 partial.sum :
INT loops :
INT proc.num :
SEQ
loops := 0
WHILE loops < ((num.processors - process.number))
ALT
local.in ? partial.sum
SEQ
loops := loops + 1
out ! process.number; partial.sum
link.in ? proc.num; partial.sum
SEQ
loops := loops + 1
out ! proc.num; partial.sum

})
{{
PR

1)}

1)}

{{{ END-OF-PIPE buffer PROCs

{{{ PROC end.input.buffer, End-of-pipe

PROC end.input.buffer (CHAN OF ANY in, local.out)
INT total.intervals :

20

APPENDIX B - Continued.

—— — —— T - S . AR = G S W D = T D S e LS T P NP WD e S G G S - S . A S S L S o T - S = S f =t - T S G —— —— T —— - ——t— —— —— —— A ——

FILE: PI_PAR.LIS SIZE: 4980 bytes
SAVED: Tue Jul 12 13:39:06 1988 PAGE: 2

INT local.intervals :

SEQ
in ? total.intervals; local.intervals
local.out ! total.intervals; local.intervals

1))
{{{ PROC end.return.buffer, End-of-pipe
PROC end.return.buffer(CHAN OF ANY local.in, out, VAL INT process.number)
REAL32 partial.sum :
SEQ
local.in ? partial.sum
out ! process.number; partial.sum

1)}
}}}
{{{ PROC compute -
PROC compute(CHAN OF ANY in, out, VAL INT process.number)
{{{ variables
INT total.intervals :
INT local.intervals :
REAL32 delta.x
REAL32 sum
REAL32 xi

Io N
({{ computation

SEQ
in ? total.intervals; local.intervals
sum := r0.0

delta.x := rl.0 / (REAL32 TRUNC total.intervals)
SEQ i = (process.number * local.intervals) FOR local.intervals
SEQ ' .
xi := ((REAL32 TRUNC i) - 0.5 (REAL32)) * delta.x
s= sum + (delta.x * (4.0 (REAL32) / (r1.0 + (xi * xi))))

i8S
{{{ PROC sink
PROC sink(CHAN, OF ANY in, REAL32 total)
REAL32 result :
INT replys:
INT processor :
SEQ
replys := 0
total := r0.0
WHILE replys < num.processors
SEQ
in ? processor; result
total := total + result
replys := replys + 1
{{{ COMMENT write statements
::tA COMMENT FOLD
{{{ write statements

21

APPENDIX B - Continued.

FILE: PI_PAR.LIS SIZE: 4980 bytes

SAVED: Tue Jul 12 13:39:06 1988) © PAGE: ‘ 3

1)
%

TIMER time
INT start.time
INT stop.time

3
{{
{{

write.full.string(screen, "total =")
write.real32(screen, total, 2, 6)
write.full.string(screen, " ' reply from processor: ")
write.int(screen, processor, 0) =~

newline (screen)

13}

)

)

{ timer variables

e o0 e

}
{ main program
{ wvariables

INT any :

INT dummy
INT count

REAL32 sum :

1))
SEQ

22

{{{ print statements
write.full.string(screen, "Enter the number of intervals per processor: ")

read.echo. int (keyboard, screen, count, dumnmy)
newline(screen)
1)}
{{{ main program
time ? start.time
PAR .
to.network[0] ! count * num.processors; count
{{{ pipe nodes ‘
PAR i = 0 FOR (num.processors - 1)
PAR
input.buffer(to.network{i], to.network[i+1], to.compute{i])
compute (to.compute{i], from.computef[i}, i)
return.buffer(from.compute[i], from.network([i+1], from.network{i], i

-~

11}

{{{ end-of-pipe node

end. input.buffer (to.network[num.processors-1],
to.compute[num.processors-1])

compute (to.compute[num.processors-1],

from.compute[hum.processors—-1], num.processors - 1)

end.return.buffer(from.compute[num.processors-1],

from.network[num.processors-1], num.processors - 1)

N R '

sink(from.network[0], sum)

time ? stop.time

1)}

{{{ print statements

write.full.string(screen, "Time : ")

“APPENDIX B - Concluded.

" FILE: PI_PAR,LIS " SIZE:

; S 4980 bytes
 SAVED: Tue Jul '12°13:39:06 1988 PAGE: 4
write.int(screen, stop.time MINUS start.timé,‘O)
write.full.string(screen, " low-priority ticks ")
newline(screen)

write.full.string(screen, "Approx. value for PI : ")
write.real32(screen, sum, 2, 6)
newline(screen)
read.char (keyboard, any)
1))
)

23

APPENDIX C - NETWORK VERSION OF THE. PI PROGRAM

Fommmmm—omms oo === meTTTTSsss ST v ===t
FILE: PI_EXE.LIS SIZE: 2890 bytes
SAVED: Thu Jun 30 13:10:50 1988 Y . iPAGE: 1
+ ____________________ t 4 - — — o e e o +
List of Fold network . example
*#*I,ist of File** PI3.tsr

**List all lines

**Excluding : NO LIST folds

PROC pi.example(CHAN OF ANY keyboard, screen)
#USE "\tdsiolib\userio.tsxr"
#USE "procnum.tsr"

{{{ CHAN definitions

{{{ channel addresses
VAL 1ink0.in IS
VAL linkl.in IS
VAL link2.in IS
VAL 1link3.in IS

~N oo
o9 oe8 o 00

VAL 1linkO.out IS
VAL linkl.out IS
VAL link2.out IS
VAL link3.out IS
31}
CHAN OF ANY to.network, from.network :
PLACE to.network AT link2.out :
PLACE from.network AT link2.in :
NS
{{{ PROC sink
PROC sink(CHAN OF ANY in, REAL32 total)
INT replys:
REAL32 partial.sum :
SEQ
replys := 0
total := r0.0 ’
WHILE replys < num.processors
SEQ
in ? partial.sum
total := total + partial.sum
replys := replys + 1
{{{ COMMENT write statements
:::A COMMENT FOLD
{{{ write statements
write.full.string(screen, "partial sum: ")
write.real32(screen, total, 2, 6)
newline(screen)
1)}
1)

WM O

1))
{{{ timer variables
TIMER time

INT start.time
INT stop.time
1)}) :
{{{ main program
{{{ variables

24

APPENDIX C - Continued.

FILE: PI_EXE.LIS - SIZE: 2890 bytes
SAVED: Thu Jun 30 13:10:50 1988 PAGE: 2

—————————————————————————————————————— ———— - —_— ——— 1 e e e o}

INT any :
INT dummy :
INT count :
REAL32 total :
13}
SEQ
{{{ print statements
write.full.string(screen, "Enter number of intervals for each processor: "

read.echo. int (keyboard, screen, count, dummy)

newline(screen)

1)}

{{{ main program

time ? start.time .

to.network ! count * num.processors; count - send init data to networ

sink(from.network, total)

time ? stop.time

11}

{{{ print statements

write.full.string(screen, " Network PRI PAR communication cas
|l)

newline(screen)

write.full.string(screen, " 20MHz. T800C ")
newline(screen)

newline(screen)

write.full.string(screen, "Total number of network processors: ")
write.int(screen, num.processors , 0)

newline(screen)

write.full.string(screen, "Total number of intervals : ")

write.int (screen, num.processors * count, 0)

newline (screen)

newline(screen)

write.full.string(screen, "Time : ")

write.int(screen, stop.time MINUS start.time, 0)

write.full.string(screen, " low-priority ticks ")

write.full.string(screen, " Time : ")

write.real32(screen, (REAL32 ROUND (stop.time MINUS start.time)) /
< 15625.0 (REAL32), 2, 4)

write.full.string(screen, " seconds")

newline(screen)

newline(screen)

write.full.string(screen, "Approximate value for PI : ")

write.real32(screen, total, 2, 6)

newline(screen)

read.char (keyboard, any)

DN

IB Y

25

APPENDIX C - Continued.

Fmmm e ——— ————- - e e e e e e e e e e e e e e e e e =
FILE: PI_PROG.LIS SIZE: 6293 bytes
SAVED: Thu Jun .30 13:11:08 1988 : PAGE: i

+ ——————————————————————————————————— - —— — — S G G > et et D D B B> T T B D — ———

**List of Fold*#* network example

**xList of Filexx* PI3P.tsr

**[,ist all lines

*%*Excluding : NO LIST folds

({{ SC pipe

:::tA 4 10

{({{F pipe

:::F pp.tsr

PROC pipe(CHAN OF ANY from.left, to.left,
to.right, from.right,
VAL INT process.number)

#USE "procnum.tsr"

CHAN OF ANY input.to.compute, compute.to.output :
{({{ PROC input.buffer '

PROC input.buffer (CHAN OF ANY link.in, link.out, local.out)
INT total.intervals, local.intervals :

SEQ
link.in ? total.intervals; local.intervals
PAR :
link.out total.intervals; local.intervals

1
local.out ! total.intervals; local.intervals

DS
{{{ PROC return.buffer
PROC return.buffer (CHAN OF ANY local.in, link.in, link.out)
REAL32 sum, local.sum :
SEQ
WHILE TRUE
PRI ALT
local.in ? local.sum
link.out ! local.sunm

link.in ? sum
link.out ! sum

I}
{{{ PROC compute
PROC compute (CHAN OF ANY in, out)
{{{ wvariables
INT total.intervals
INT local.intervals
REAL32 delta.x
REAL32 sum
REAL32 xi
1))
SEQ
in ? total.intervals; local.intervals
sum := r0.0
delta.x := rl.0 / (REAL32 TRUNC total.intervals)
SEQ i = (process.number * local.intervals) FOR local.intervals
SEQ

26

APPENDIX C - Continued.

FILE: PI_PROG.LIS SIZE: 6293 bytes
SAVED: Thu Jun 30 13:11:08 1988 PAGE: 2

f o e o e e e e e e e e ' o o e - - -

¥xi := ((REAL32 TRUNC i) - 0.5 (REAL32)) * delta.x
:= sum + (delta.x * (4.0 (REAL32) / (rl.0 + (xi * xi))))
out '

1))

[100]}INT waste.space.for.proper{workspace S
PRI PAR
compute (input.to.compute, compute.to.output)
PAR '
input.buffer(from.left, to.right, input.to.compute)
return.buffer(compute.to.output, from.right, to.left)

...F code ,
A 1 2)

:::F pp.dcd

F descriptor
A 14

F pp.dds

F link

A 109

F pp.dlk

VAL B0O3pairs IS 1 :

{{{ CHAN definitions
{{{ channel addresses
VAL 1ink0O.in IS
VAL linkl.in IS
VAL link2.in IS
VAL 1link3.in IS

N OO

VAL 1linkO.out IS
VAL linkl.out IS
VAL link2.out IS
VAL link3.out IS

1)) .

CHAN OF ANY dummyl, dummy2 :
[8 * BOO3pairs]CHAN OF ANY to, from :
1))

WO

-- pipeline of processors, architecture f(b003pairs)
PLACED PAR
{{{ BOO3pairs for pipe
PLACED PAR j = 0 FOR (B0OO3pairs - 1)
PLACED PAR
VAL i IS (8 * j) :
PROCESSOR i T8
PLACE to[i}] AT 1linkl.in :

27

APPENDIX C - Continued.’

PI_PROG.LIS

PLACE from([i] AT
PLACE to[i+1] AT
PLACE from[i+1] AT
pipe(to[i]), from[i},
VAL k IS (8 * j) + 1 :
PROCESSOR k T8
PLACE to[k] AT
PLACE from{k] AT
PLACE to[k+1] AT
PLACE from[k+1l] AT
pipe(to[k], from([k],
VAL 1 IS (8 * j) + 2 =
PROCESSOR 1 T8

Thu Jun 30 13:11:08 1988

linkl.out
link2.out
link2.in
to[i+l], from[i+1l], i)

1link3.in
link3.out
linkl.out
linkl.in
to[k+1], from[k+1], k)

PIACE to[1] AT- 1inkO.in :
PLACE from[1l] AT 1linkO.out :
PLACE to[1l+1] AT 1link2.out : -
PLACE from{l+1] AT 1link2.in :
pipe(tof{l], from[l], to[l+1], from[1+1], 1)
PLACED PAR m = O FOR 2
VAL n IS (((8 * j) + 3) + m) :
PROCESSOR n T8
PLACE to[n] AT 1ink3.in :
PLACE from[n] AT 1link3.out :
PLACE to[n+1l] AT 1link2.out :
PLACE from{n+l] AT 1link2.in :
pipe(to[n], from[n], to[n+1], from[n+l]}, n)
VAL o IS (8 * Jj) + 5 :
PROCESSOR o T8
PLACE tof{o] AT 1link3.in :
PLACE from{o] AT 1link3.out :
PIACE to[o+1] AT 1linkl.out :
PLACE from[o+l] AT 1linkl.in :
pipe(to[o], from{o], to[o+l], from[o+l], o)
VAL p IS (8 * j) + 6 :
PROCESSOR p T8
PLACE to[p] AT 1linkO.in :
PLACE from[p] AT 1linkO.out :
PLACE to[p+1] AT 1link2.out :
PLACE from[p+1] AT 1link2.in :
pipe(to[p], from[p], to[p+l], from[p+l], p)
VAL g IS (8 * j) + 7 :
PROCESSOR g T8
PLACE to[q] AT 1ink3.in :
PLACE from[qg] AT 1link3.out :
PLACE to[g+1l] AT 1linkO.out :
PLACE from[g+1] AT 1linkO0.in :
pipe(to[q], from[q], to[g+l], from[g+l], Qq)

1Y)

{{{ BOO3pair end-of-pipe
VAL j IS (BOO3pairs - 1) :
PLACED PAR :

28

VAL i IS (8 * j) :
PROCESSOR i T8

. APPENDIX. C - -Concluded.

e e e e i e 8 e s e e e e o o 2 e T T it e et e . . . T — — . o T — —— — — —

FILE: PI_PROG.LIS
SAVED: Thu Jun 30 13:11:08 1988 PAGE: 4

e St i e e e R R e e o e e Gt e T At . S S T S e e o S e e (e e e e . T St i o S = e o e o

PLACE to[i]
PLACE from[i]
PLACE to[i+1]
PLACE from[i+1]

pipe(to[i], from[i], to[i+1], from[1+1], i)

VAL k IS (8 * j) +
PROCESSOR k T8
PLACE to[k]
PLACE from[k]
PLACE to[k+1]
PLACE from{k+1]
pipe(to[k], from([
VAL 1 IS (8 * j) +
PROCESSOR 1 T8
PLACE to[l]
PLACE from([1l]
PLACE to[l+1]
PLACE from[1l+1]

AT 1linkl.in
AT 1linkl.out
AT 1link2.out
AT 1link2.in

1

AT 1ink3.in
AT 1link3.out
AT 1linkl.out
AT 1linkl.in :

K], to[k+1], from[k+1], k)

2

AT 1linkO.in
AT 1linkO.out
AT link2.out
AT 1link2.in

pipe(to[l], from[l], to[l+1], from[l+1],
PLACED PAR m = 0 FOR 2

VAL n IS (((8 * j

PROCESSOR n T8
PLACE to[n]
PLACE from[n}
PLACE to[n+1l]}
PLACE from[n+1}

pipe(to[n], from[n], to[n+l1], from[n+l],

VAL o IS (8 * j) +

PROCESSOR o T8
PLACE to[o]
PLACE from[o]
PIACE to[o+1]
PLACE from[o+1]

pipe(to[o], from[o], to[o+1l], from[o+l], o)

VAL p IS (8 * j) +

PROCESSOR p T8
PLACE to[p]
PLACE from[p]
PLACE to[p+1]
PLACE from[p+1l]

pipe(to(p], from[p], to[p+l], from(p+l], P)

VAL g IS (8 * j) +

PROCESSOR gq T8
PLACE to[q]
PLACE from[q]

) + 3) + m) :

AT 1link3.in:
AT 1link3.out
AT 1link2.out
AT 1link2.in

5 :

AT 1link3.in
AT 1link3.out
AT linkl.out
AT 1linkl.in

6

AT 1inkO.in
AT 1linkO.out
AT 1link2.out
AT 1link2.in

7 :

AT 1link3.in
AT link3.out :

pipe(to[q], from[q], dummyl, dummy2, q)

1))

1)

29

APPENDIX D ~ OCCAM COMPLEX MATH PROCEDURES

+ ————————————————————————
FILE: COMPLEX.LIS
SAVED: Thu Jun 30 13:15:44 1988
o —-_—
List of Fold math
**List of Filex* math.tsr

**List all lines

*#*Excluding : NO LIST folds

{{{ PROC cmplx.mult

PROC cmplx.mult (REAL64 x1, yl, X2, Y2)
REAL64 t.x, t.y :

SEQ
t.x 1= (%1 * x2) - (yl1 * y2)
t.y = (%1 * y2) + (x2 * yl)
xl := t.x -- return results in 1st
vl := t.y

1)
{{{ PROC cmplx.add
PROC cmplx.add(REAL64 x1, yl, x2, y2)

1)
{{{ PROC cmplx.poly

——— - — — — — ——— — ———

2 paramters

PROC cmplx.poly(REAL64 x, iy, VAL INT n, []REAL64 coeffs).
-- compute value of complex polynimial using Horner’s rule

REAL64 t.x, t.y :

INT a :

SEQ
t.x

X
t.y i

n

SEQ i = 1 FOR (n - 1)
SEQ
:ti=n -1
cmplx.add(t.x, t.y, coeffs[a],
cmplx.mult(t.x, t.y, x, iy)

. Yy
cmplx.mult(t.x, t.y, coeffs[n], coeffs[n])

coeffsfa])

cmplx.add(t.x, t.y, coeffs[0]}, coeffs[0])

X 1= t.x
iy := t.y

)1}

30

APPENDIX E - ROOT VISUALIZATION PROGRAM

i e o A etttk
FILE: ROOT EXE.LIS SIZE: 11803 bytes
SAVED: Thu Jun 30 13:13:10 1988 PAGE: 1

+ —————————————————— 7———-— - —— - e T T T G TP e . S S S W B S S e T e S s S S . S —

*%xList of Fold** root.test

List of File roottest.tsr

**%List all lines

**Excluding : NO LIST folds

PROC root.test(CHAN OF ANY keyboard, screen)
#USE "\tdsiolib\userio.tsr"
#USE "procnum.tsr"

{{{ channel constants
VAL 1linkoO.in IS 4:
VAL linkl.in IS 5:
VAL link2.in IS 6:
VAL 1link3.in IS 7:

VAL linkO.out IS O:
VAL linkl.out IS 1:
VAL link2.out IS 2:
VAL link3.out IS 3:

1))

...F TGT graphics routines, PARTIAL —- 1link2 NO LIST
:::F TGP.tsr
{{{ pipeline channel definitions ~~ 1ink3

CHAN OF ANY to.pipe, from.pipe :

PLACE to.pipe AT link3.out :
PLACE from.pipe AT 1link3.in :

1)
{{{ global variables

REAL32 x.min, x.max, y.min, y.max :
INT order :
[1LO00]REAL64 coeffs :
1))
{{{F PROC distribute.work
:::F PROCO2.tsr
PROC distribute.work(CHAN OF ANY out, INT power)
{{{ variables
INT block.size
INT remainder
INT x.start :
INT x.stop :
REAL64 dx :
REAL64 dy :
1})
INT any :
SEQ
block.size :
remainder :

o0 e

= screen.width / num.processors

= screen.width \ num.processors

dx := REAL64- ((REAL64 (x.max - x.min)) / (REAL64 screen.width.r))
dy := REAL64 ((REAL64 (y.maX - y.min)) / (REAL64 screen.height.r))
X.start := 1

31

“APPENDIX E - Continued.

FILE: ROOT_EXE.LIS SIZE: 11803 bytes
SAVED: Thu Jun 30 13:13:10 1988 , PAGE: 2

x.stop := block.size

{{{ column size = block.size + 1

SEQ i = 0 FOR remainder

SEQ

{{{ COMMENT write statements
:::A COMMENT FOLD
{{{ write statements
write.full.string(screen, "*n*cx.start = ")
write.int(screen, x.start, 0)
write.full.string(screen, " X.stop = ")
write.int(screen, x.stop, 0)

13}
1)}

out ! [x.min, y.min]; [dx, dyl; [x.start, x.stop]: (power+l)::coeffs
X.start := x.stop + 1
x.stop := x.start + (block.size)
13}
- keyboard ? any
{{{ column size = block.size
SEQ i = 0 FOR (num.processors - remainder)
SEQ
{{{ COMMENT write statements
:::A COMMENT FOLD
{{{ write statements

write.full.string(screen, "*n*cx.start = ")
write.int(screen, x.start, 0)
write.full.string(screen, " x.stop = ")

write.int(screen, x.stop, 0)

11}
1))

out ! (x.min, y.min)]; [dx, dy]l:; [x.start, x.stop]:; (power+l)::coeffs
x.start := x.stop + 1
x.stop := x.start + (block.size - 1)

I3

}}IF .
{{{F PROC return.buffer
:::F PROCO3.tsr
PROC return.buffer (CHAN OF ANY in, out, reply)
{{{ COMMENT case: c.color.line.16
:::A COMMENT FOLD
{{{ case: c.color.line.l1l6
INT replys :
INT size :
INT any :
[725][3]INT16 scan.lines :
SEQ
replys := 0 -
WHILE replys < screen.width
SEQ

32

APPENDIX E -~ Continued.

FILE: ROOT_EXE.LIS SIZE: 11803 bytes
SAVED: Thu Jun 30 13:13:10 1988 PAGE: 3

in ? size::scan.lines

out ! c.color.line.16; size::scan.lines
reply ? any

replys := replys + 1

COMMENT case: c.RL.line
A COMMENT FOLD
({{ case: c.RL.line
INT rows :
INT replys :
INT size :
INT any :
[20]BYTE scan.lines :
SEQ
rows := 0 .
WHILE rows < num.processors

1))
113
{{l

SEQ
in ? size::scan.lines
IF
size = 0
YOWS = rows + 1
TRUE
SKIP

out ! c.RL.line; size::scan.lines
reply ? any
replys := replys + 1

1))
1))
{{{ case: c.color.line
INT replys :
INT size :
INT any :
{725][3]INT scan.lines :
SEQ
replys := 0
WHILE replys < screen.width
SEQ
in ? size::scan.lines
out ! c.color.line; size::scan.lines
reply ? any
replys := replys + 1
1))
INF
{{{ MAIN program
VAL mywin IS 0 :
{{{ variables
TIMER time :
INT start.time, stop.time :

INT size :

33

APPENDIX E - Continued.

‘FILE: ROOT_EXE.LIS SIZE: 11803 bytes
SAVED: Thu Jun 30 13:13:10 1988 PAGE: 4
INT reply :
INT kchar :
1)}
SEQ

init.graphics()

{({{ COMMENT init coeffs
:::A COMMENT FOLD

({{ 1init coeffs

order := 8

coeffs[0] := 0.75 (REAL64)

coeffs{1l] := -0.25 (REAL64)

coeffs[2] := 1.25 (REAL64)

coeffs[3] := -2.0 (REAL64)

coeffs[4] := 1.0 (REAL64)

coeffs[5] := 11.1 (REAL64) -

coeffs[6] := -1.0 (REAL64)

coeffs[7] := 1.25 (REAL64)

coeffs{8] := 1.0 (REAL64)

1))

1)}

{({{ coeffs for casel.dat -- order 88

--order := 88 -- prompt user for this for run-time sizing
coeffs[0] := 2688895930118165929042780049559.83 (REAL64)
coeffs[1l] = 6310589369780418649865970861203.22 (REAL64)
coeffs(2] = 233939534840709935205570659516290.0 (REALG64)
coeffs[3] i= 510773690881590732896509316716931.0 (REAL64)
coeffs[4] t= 6.3303627503690360E+0033 (REAL64)

coeffs[5] := 1.2429615635259371E+0034 (REAL64)

coeffs([6] := 5.66495110305152669E+0034 (REAL64)

coeffs[7] := 8.77943412511369227E+0034 (REAL64)

coeffs[8] t= 2.25797796733599617E+0035 (REAL64)

coeffs([9] += 2.73080816039041898E+0035 (REALG64)

coeffs[10] := 4.66533404569097168E+0035 (REAL64)

coeffs[11] := 4.39969314876543267E+0035 (REAL64)

coeffs[12] := 5.42782242850244884E+0035 (REALG64)

coeffs[13] := 4.05032862074184194E+0035 (REAL64)

coeffs[14] = 3.81374801307389009E+0035 (REALG64)

coeffs[15] := 2.29606938841018777E+0035 (REAL64)

coeffs[16] := 1.71485373980479918E+0035 (REAL64)

coeffs[17] := 8.48477598392125705E+0034 (REALG64)

coeffs{18] := 5.17790790202715782E+0034 (REALG64)

coeffs[19] := 2.13869894331200797E+0034 (REAL64)

coeffs[20] := 1.09286839104576627E+0034 (REALG64)

coeffs[21] := 3.81646613218027614E+0033 (REAL64)

coeffs{22] := 1.66745391691839301E+0033 (REAL64)

coeffs[23] := 4973268422586182430007996348221144.0 . (REALG64)
coeffs[24] := 189188290566508127296112121059096.0 "(REAL64)
coeffs[25] := 48580120082090725188431415764876.9 (REALG64)
coeffs[26] := 16349929288811369895712458180271.8 (REAL64)
coeffs[27] := 3637493148134400853608756755446.65 (REALG64)
coeffs{28] := 1098575112436686454841969572957.11 (REAL64)

34

APPENDIX E - Continued.

FILE: ROOT_EXE.LIS
SAVED: Thu Jun 30 13:13:10 1988

coeffs[29]
coeffs[30]
coeffs[31]
coeffs[32]
coeffs{33]
coeffs[34]
coeffs[35]
coeffs[36]
coeffs[37}]
coeffs{38]
coeffs[39]
coeffs[40]
coeffs[41]
coeffs[42]
coeffs[43]
coeffs[44]
coeffs[45]
coeffs[46]
coeffs[47]
coeffs{48]
coeffs[49]
coeffs[50]
coeffs[51]
coeffs[52]
coeffs[53]
coeffs[54]
coeffs{55)
coeffs[56]
coeffs([57]
coeffs[58]
coeffs[59]
coeffs[60]
coeffs[61]
coeffs{62]
coeffs[63]
coeffs[64]
coeffs[65]
coeffs[66]
coeffs[67]
coeffs[68]
coeffs[69]
coeffs[70]
coeffs[71]
coeffs[72]
coeffs[73]
coeffs[74]
coeffs[75]
coeffs[76]
coeffs[77]
coeffs[78]
coeffs[79]
coeffs[80)]
coeffs[81]

Q0 €0 26 €0 G ST €0 00 S& ER 84 4% AT €4 68 S0 40 46 A8 A% €4 S5 4% I S5 2% S 6 4T S L S5 ST P S5 B BE 4 S S S % S OB OD HY I S0 S P e+ e PG

/I T (P O ([(N O (O (1 1 1 1 I

212815051948892533165452457192.527
58410234125050819363608617829.6252
9891589046259807757844102942.81857
2495108565092394079464624601.63530
370559057882617439887733253.516792
86762289256163180428829359.2217909
11330111037850070012918916.6270315
2483977502924678886689789.00207246
285859983602747700127993.727648760
59130829569778908317394.1575184057
6008350921694303650397.26713586514
1180405069826718984060.89309743975
106079400171860179627.222476776953
199065432228496970983.9861423290810
1584447790602882067.48812525032395
285401472996503223.456288831832534
20143945845636738.0824270081621489
3497473470335931.06551666661023121
219112572495724.945212388655304123
36801087774640.0061595353794202558
2047853441552.65983127088214246812
333731879974.996810959590064780248
16501719098.3088148178255474997398
2616121894.88966892741168171805196
114947347.068238925297516034243685
17766959.5654620379020406442872735
693434.646530225711649036391327799
104692.613947567642945168602841386
3626.60816715194259217045895894494
535.667394235602871164616290671228
16.4466902665493268561892693874906
2.37979624754459180456962481262258

6.463281181801569101E-0002 (REALG64)
9.172209135671340010E-0003 (REAL64)
2.197458385268279111E-0004 (REAL64)
3.061382571345561467E-0005 (REAL64)
6.446212248480929382E-0007 (REALG64)
8.823250234915350103E-0008 (REALG4)
1.625075783878327454E-0009 (REAL64)
2.186853501421395672E-0010 (REAL64)
3.501254030114446424E-0012 (REAL64)
4.634883471937603426E-0013 (REAL64)
6.398877449419483224E-0015 (REAL64)
8.336696149052224707E-0016 (REAL64)
9.820986584730996429E-0018 (REAL64)
1.259768369772852991E-0018 (REAL64)
1.248830190534017194E-0020 (REAL64)
1.577699371679007549E-0021 (REAL64)
1.291500436521210235E-0023 (REALG64)
1.607363897472892237E-0024 (REAL64)
-1.058123161156898495E-0026 (REAL64)
1.297613499647725398E-0027 (REAL64)
6.605231009053681181E-0030 (REALG64)

SIZE:
PAGE:

—— o — ——— —— ——————— S T —————— — " ——— ——— Y % T ————————— A} T — —————— — i ——— ———— ——— — 2 — — —

11803 bytes

(REAL64)
(REAL64)
(REAL64)
(REAL64)
(REALG64)
(REAL6G4)
(REAL64)
(REAL6G4)
(REAL64)
(REAL64)
(REAL6G4)
(REAL6G4)
(REAL64)
(REALG4)
(REAL64)
(REAL64)
(REAL64)
(REALG64)
(REAL64)
(REAL64)
(REAL6G4)
(REAL64)
(REAL64)
(REAL64)
(REALG4)
(REAL6G4)
(REAL64)
(REAL64)
(REAL64)
(REAL64)
(REAL6G4)
(REAL64)

35

APPENDIX E - Continued.

FILE: ROOT_EXE.LIS SIZE: 11803 bytes
SAVED: Thu Jun 30 13:13:10 1988 PAGE: 6
coeffs[82] := 7.982842253949253044E-0031 (REAL64)

coeffs[83] := 2.950261391660566535E~0033 (REAL64)

coeffs[84] := 3.514343332711036982E-0034 (REAL64)

coeffs[85] := 8.394511312395237207E-0037 (REAL64)

coeffs[86] := 9.856712543206136081E-0038 (REAL64)

coeffs[87] := 1.142896632201841234E-0040 (REAL64)

coeffs[88] := 1.322886039443583949E-0041 (REAL64)

1)

{{{ prompt user for screen coordinate data
write.full.string(screen, "Enter Real min: ")
read.echo.real32(keyboard, screen, x.min, kchar)
write.full.string(screen, "Enter Real max: ")

read.echo.real32 (keyboard, screen, x.max, kchar)
write.full.string(screen, "Enter Imaginary min: ")
read.echo.real32 (keyboard, screen, y.min, kchar)
write.full.string(screen, "Enter Imaginary max: ")
read.echo.real32 (keyboard, screen, y.max, kchar)
write.full.string(screen, "Enter order of polynomial: ")
read.echo. int (keyboard, screen, order, Kkchar)
1)
time ? start.time -- after user inputs data....
{{{ init windows/viewport
set.window.2d(x.min, y.min, x.max, y.max, mywin)
set.viewport.2d(0.0 (REAL32), 0.0 (REAL32), rl.0, rl.0, mywin)
{{{ set screen
g.send2 (c.select.screen, 0)
g.send2(c.clear.screen, 0)
g.send2(c.display.screen, 0)
IR D]
activate.viewport.2d(mywin)
clear.window(0)
display.viewport.2d (mywin)
1) »
{{{ distribute work and read results
PAR
distribute.work(to.pipe, order)
return.buffer(from.pipe, to.graphic, from.graphic)
1)}
finit.graphics()
time ? stop.time
{{{ write results
write.full.string(screen, "Low priority ticks: ")
write.int(screen, (stop.time MINUS start.time), O0)
keyboard ? reply
1))
NS

36

APPENDIX E - Continued.

+—— ——— — — ————— —— ——— —— - ——— ——— — e — — —— " —— ——
FILE: ROOT_PRG.LIS SIZE:
SAVED: Thu Jun 30 13:14:28 1988 : PAGE:

+ ———

[,ist of Fold pipe program

**List of Filex* pipe00.tsr

**List all lines
**Excluding : NO LIST folds
{{{ SC pipe node
t::A 3 10
{{{F pipe node
:::F pipe.tsr
PROC pipe(CHAN OF ANY from.left, to.left,
to.right, from.right, dummy)
{{{F PROC input
:::F PROCOO.tsr
PROC input (CHAN OF ANY 1n, out, through)
{{{ wvariables
[100]REAL64 coeffs :
[2]REAL64 du :
[2]REAL32 coords :
[2]INT columns :

INT size :
1})
BOOL local :
SEQ
local := FALSE
WHILE TRUE
SEQ
in ? coords; du; columns; size::coeffs
IF
NOT local
SEQ
out ! coords; du; columns; size::coeffs
local := TRUE
TRUE
through ! coords; du; columns; size::coeffs

}F
{F PROC output -- replicated ALT
¢F PROCOl.tsr
OC output({2JCHAN OF ANY in, CHAN OF ANY out)
{{
:::A COMMENT FOLD
{{{ round-robin ALT : requires [2] CHAN OF ANY in
INT size :
~-=[7253[3]INT scan.lines :
=-[725][3]INT16 scan.lines :
--[200]BYTE scan.lines :
INT count :
SEQ

count := 0

WHILE TRUE

SEQ
ALT i = count FOR (SIZE in)
infi\(SIZE in)] ? size::scan.lines

{ COMMENT round-robin ALT : requires [2] CHAN OF ANY in

37

APPENDIX E - Continued.

FILE: ROOT_PRG.LIS SIZE: 19688 bytes
SAVED: Thu Jun 30 13:14:28 1988 PAGE: 2
SEQ

out ! size::scan.lines
count := count PLUS 1

INT size :
[725][3]INT scan.lines :
--[725][3)INT16 scan.lines :
--[200]BYTE scan.lines :
INT count :
SEQ
count := 0
WHILE TRUE
SEQ
ALT i = 0 FOR (SIZE in)
in[i] ? size::scan.lines
out ! size::scan.lines

1))

JIIF
{{{ COMMENT PROC output -- non-replicated ALT

:::A COMMENT FOLD

{{{ PROC output -- non-replicated ALT

PROC output(CHAN OF ANY inl, in2, CHAN OF ANY out)
{{{ COMMENT round-robin ALT : requires [2] CHAN OF ANY in
:::A COMMENT FOLD
{{{ round-robin ALT : requires [2] CHAN OF ANY in
INT size :
-~[725][3]INT scan.lines :
--[725)[3]INT16 scan.lines :
~-[200]BYTE scan.lines :
INT count :

SEQ
count := 0
WHILE TRUE
SEQ

ALT i = count FOR (SIZE in)
in{i\ (SIZE in)} ? size::scan.lines
SEQ
out ! size::scan.lines
count := count PLUS 1

11}

1))

{{{ "“regular" ALT

INT size :

[725][3]INT scan.lines :
--[725]([3]1INT16 scan.lines :
-~[200]BYTE scan.lines :

INT count :

SEQ
count := 0
WHILE TRUE

38

APPENDIX E - Continued.-

e - A s — T - —— " o T — o T St " Y —— S _— " T o - > S e

FILE: ROOT_PRG.LIS SIZE: 19688 bytes
SAVED: Thu Jun 30 13:14:28 1988 PAGE: 3
SEQ
ALT

inl ? size::scan.lines
out ! size::scan.lines

in2 ? size::scan.lines
out ! size::scan.lines

11}

PROC compute
PROC.tsr
compute (CHAN OF ANY in, out)
{ COMMENT case: c.color.line.16
:A COMMENT FOLD
{ case: c.color.line.16
{ PROC cmplx.mult
OC cmplx.mult (REAL64 x1, y1, x2, y2)
REAL64 t.x, t.y :

Lo B R
M oee m e

)
)
{F
:F
ocC
{(
{{
{{
PR

X1 * x2) - (yl * y2)

X1 * y2) + (x2 * yl1)

X -- return results in 1lst 2 paramters
Y

t ot

11}
{{{ PROC cmplx.add
PROC cmplx.add(REAL64 x1, yl, X2, v2)

SEQ
X1l := X1 + %2
vyl := yl + y2

1))
{{{ PROC cmplx.poly
PROC cmplx.poly(REAL64 x, iy, VAL INT n, []REAL64 coeffs)

—- compute value of complex polynimial using Horner’s rule
REAL64 t.x, t.y :

INT a :

SEQ .
t.x 1= x
t.y := iy

cmplx.mult(t.x, t.y, coeffs[n], coeffs[n])
SEQ i = 1 FOR (n - 1)
SEQ
a:=n-1i
cmplx.add(t.x, t.y, coeffs{a], coeffs[a])
cmplx.mult(t.x, t.y, x, iy)
cmplx.add(t.x, t.y, coeffs{0], coeffs[0}]) ’
X 1= t.x .
iy := t.y

1)

39

APPENDIX E - Continued. -

FILE: ROOT_PRG.LIS SIZE: 19688 bytes

SAVED: Thu Jun 30 13:14:28 1988 PAGE: 4
o -

{{{ variables and constants
INT size :
[100]REAL64 coeffs :

[725](3]INT16 scan.lines :
REAL64 X, Y :
REAL64 x.01ld, y.old :

[2]REAL32 coords :
(2]REAL64 du :
[2]INT columns :

{{{ define color registers

VAL black IS 0 : . - =— define some color register nun:

ers
VAL red Is 31
VAL green IS5 47
VAL blue IS 63
VAL yellow IS 79

a0 oo se ae

INT color :

1))
VAL screen.height IS 512 :
11}
SEQ
--out ! [x.min, y.min}; [dx, dy]:; [x.start, x.stop]; power::coeffs
in ? coords; du; columns; size::coeffs
X := (REAL64 coords(0]) + (du[0] * (REAL64 TRUNC columns{0]))
{{{ compute the rows
SEQ 1 = columns[0] FOR ((columns[l] - columns[0]) + 1)
SEQ .
y := REAL64 coords[l] --y.min
{{{ compute the column
SEQ j = 0 FOR screen.height

SEQ
X.0ld := X%
y.old =y

cmplx.poly(x, y, size - 1, coeffs)
{{{ compute quadrant, assign color
IF

X >= 0.0 (REAL64)

IF
Yy >= 0.0 (REALG64)
color := yellow
TRUE
color := red
TRUE
IF .
Yy >= 0.0 (REAL64)
color := dgreen
TRUE
color := blue

1))

40

APPENDIX E - Continued.

FILE: ROOT_PRG.LIS
SAVED: Thu Jun 30 13:14:28 1988

NT16 1
NT16 j
NT16 color

scan.lines[j][0] :=
scan.lines[j][1] :=
scan.lines{j][2] :=
Y := Yy + dufl]

HHH

1)}
X := X + du[o0]
out ! screen.height::scan.lines

)

} .

{ c.RL.1line
::A COMMENT FOLD

{ case: c.RL.line

{ PROC cmplx.mult

PROC cmplx.mult(REAL64 x1, yl1,
REAL64 t.x, t.y :

SEQ

)
1))
1))
{{{ COMMENT case:
{{{
{{{

X2, Y2)

1 * x2) - (Y1 * y2)

1 * y2) + (x2 * y1)

(
(

ol ee oo

t
t

PROC cmplx.add
C cmplx.add (REAL64 x1, yl, x2, y2)

SEQ
X1l := x1 + %2
Yyl =yl + y2

1))
{{{ PROC cmplx.poly
PROC cmplx.poly(REAL64 x, iy, VAL INT n,

b4
X
X ~-- return results in 1lst 2 paramters
Yy

[JREAL64 coeffs)

-~ compute value of complex polynimial using Horner’s rule

REAL64 t.x, t.y :

INT a :

SEQ
t.x

X.
t.y i

]

SEQ i
SEQ
a:=n -1
cmplx.add(t.x, t.y, coeffs[a],
cmplx.mult(t.x, t.y, x, iy)

FOR (n - 1)

cmplx.add(t.x, t.y, coeffs{0], coeffs[0])

X 1= t.x
iy := t.y

1))
(L

variables and constants

: y
cmplx.mult(t.x, t.y, coeffs[n], coeffs[n}])
=1

coeffs(a])

41

FILE:
SAVED:

APPENDIX E - Continued.

ROOT_PRG.LIS

Thu Jun

INT size :
[100]REAL64 coeffs :

REAL64 X, Yy :
REAL64 x.o01ld, y.old :

30 13:14:28 1988

[2]REAL32 coords :
[2]REAL64 du

[2]INT columns

{{{

define color registers

VAL black IS O :
ers

VAL red IS 31 :

VAL green IS 47 :

VAL blue IS 63 :

VAL yellow IS 79 :

INT color :

1)}

VAL screen.height IS 512 :

}))

{{{ abbreviations

VAL bpw IS 4

[4]INT line.buffer :

nment

INT16
INT1e6
INT16
BYTE
BYTE

1))
SEQ

control := #01 (BYTE)
[x.min, y.min};
in ? coords; du; columns;

—--out !

{{{(

SEQ

INT

i.16
j.1l6
count
colour
control

(4 * bpw]BYTE pixel.buffer RETYPES line.buffer

RETYPES [pixel.buffer FROM O FOR 2]
RETYPES [pixel.buffer FROM 2 FOR 2]
RETYPES [pixel.buffer FROM 4 FOR 2]

IS pixel.buffer[6] :
IS pixel.buffer(7] :

-~ + y direction
(dx, dy}:
size::coeffs

compute the rows
x := (REAL64 coords[0]) + (du[0] * (REAL64 TRUNC columns[0]))
i = columns[0} FOR ((columns{1] = columns{0]) + 1)

INT j :

SEQ

42

}.I:
J =
{{{
WHILE j

SEQ

{{{

0]

REAL64 coords[1]

color.start :

—-y.min

compute the column

< screen.height

get color for starting point

X.0ld := x

y.old
cmplx.poly(x, Y,

=Y

size - 1, coeffs)

-- define some color register numb

: —— done this way for alig

[x.start, x.stop]; power::coeffs

~- get first color for

loopi

APPENDIX E - antinued.

FILE: ROOT PRG.LIS ' a . SIZE: 19688 bytes
SAVED: Thu Jun 30 13:14:28 1988 , PAGE: 7

{{{ compute quadrant, assign color
IF
X >= 0.0 (REAL64)
IF
y >= 0.0 (REAL64)
color := yellow
TRUE
color := red
TRUE
IF
y >= 0.0 (REAL64)
color := green
TRUE
color := blue

= ¥x.o0ld
= y.old

init variables for this column
16 := INT16 i -- starting point
j.16 := INT16 j

count := 0 (INT16) —-- init count
color.start := color

colour := BYTE color

1)}
WHILE (color = color.start) AND (j < screen.height)

SEQ
{{{ 1increment variables
y :=y + du[l] -- increment by dy
J =3+ 1 .
count := count + (1 (INT1l6))

)
{{{ get color for next y

xX.0ld := x

y.old :=y

cmplx.poly(x, y, size - 1, coeffs)
{{{ compute quadrant, assign color

. IF
X >= 0.0 (REAL64)
IF
y >= 0.0 (REAL64)
color := yellow
TRUE
color := red
TRUE
IF
y >= 0.0 (REAL64) , .
color := green
TRUE
. color := blue
11}
X := x.old

43

APPENDIX E - Continued.

FILE: ROOT_PRG.LIS SIZE: 19688 bytes
SAVED: Thu Jun 30 13:14:28 1988 PAGE: "8
y := y.old
S ,
out ! 8::pixel.buffer -- this won’t work for d7004
11}
X := X + du[0]
1)) , ,
out ! 0O::pixel.buffer --signal end of column

}
)
{ case: c.color.line
{ PROC cmplx.mult

OC cmplx.mult (REAL64 x1, yl, x2, ¥y2)
REAL64 t.x, t.y :

)}
)}
{{
{{
PR

SEQ .
t.x 1= (x1 * x2) - (y1 * y2)
t.y = (%1 * y2) + (x2 * yl) -
x1l := t.x —-— return results in 1st 2 paramters
yl := t.y

1))

{{{ PROC cmplx.add

PROC cmplx.add(REAL64 x1, yl, x2, y2)
SEQ

X1l + x2

vyl + y2

x1
Yyl

3}

{{{ PROC cmplx.poly

PROC cmplx.poly(REAL64 x, iy, VAL INT n, []REAL64 coeffs)

-— compute value of complex polynimial using Horner’s rule
REAL64 t.x, t.y : .

INT a :

SEQ
t. % 1= x
t.y = iy

cmplx.mult(t.x, t.y, coeffs[n], coeffs[n])
SEQ i = 1 FOR (n - 1)
SEQ
a :=n-1
cmplx.add(t.x, t.y, coeffs[a], coeffs[a])
cmplx.mult(t.x, t.y, x, iy)
cmplx.add(t.x, t.y, coeffs{0], coeffs{0])
X = t.x
iy = t.y
)
{{{ wvariables and constants ,
INT size :

[1L00]REAL64 coeffs :

[725][3}INT scan.lines :
REAL64 X, Y @

44

Gro——

ers

FILE:
SAVED:

APPENDIX.

E - Continued.

ROOT_PRG.LIS
Thu Jun 30 .13:14:28 1988

REAL64 x.0l1d, y.old :

[2)REAL32 coords :
[2]REAL64 du :
[2]INT columns :

{{{

VAL black IS 0 : -- define some color register numb

VAL red IS 31 :

VAL green IS 47 :

VAL blue IS 63 :

VAL yellow IS 79 :

INT color :

1)))

VAL screen.height IS 512 :

13}

SEQ
=-out ! [x.min, y.min]; [dx, dy]; [x.start, x.stop]:; power::coeffs
in ? coords; du; columns; size::coeffs

define color registers

X = (REAL64 coords[0]) + (du[O0] * (REAL64 TRUNC columns{0]))

{{{

compute the rows

SEQ i = columns[0] FOR ((columns(1l] - columns[0]) + 1)
SEQ

Y := REAL64 coords[l] --y.min

{{{ compute the column

SEQ j = 0 FOR screen.height

SEQ ‘

X.0ld := x
y.old =y

coeffé)

cmplx poly(x, y, size - 1,
{{{ compute gquadrant, assign color
IF ~
X >= 0.0 (REAL64)
IF
y >= 0.0 (REAL64)
color := yellow
. TRUE
color := red
TRUE
IF
y >= 0.0 (REAL64)
color := green
TRUE
color := blue
31}
X := x.old .
y := y.old
scan.lines[j][0] := i
scan.lines[j][1] := j
scan.lines[j][2] := color

Y :=y + du[1l]

45

APPENDIX E - Continued.

FILE: ROOT_PRG.LIS SIZE: 19688 bytes
SAVED: Thu Jun 30 13:14:28 1988 PAGE: io

I3
X := x + du[0]
out ! screen.height::scan.lines

1))
}IIF
{{{F PROC thru.buffer
:::F PROCO4.tsr
PROC thru.buffer (CHAN OF ANY local.in, local.out)

INT size :

[725][3]INT scan.lines :

~~[725][3]INT16 scan.lines :

--{200]BYTE scan.lines 3

WHILE TRUE

SEQ
local.in ? size::scan.lines
local.out ! size::scan.lines

}))F

CHAN OF ANY to.compute, from.compute :
[2]CHAN OF ANY to.buffer :
[2]CHAN OF ANY thru :
PRI PAR
PAR
input(from.left, to.compute, to.right)
thru.buffer(from.compute, to.buffer([0])
thru.buffer(to.buffer[0], thru{o}l)
thru.buffer(from.right, to.buffer[1])
thru.buffer(to.buffer{1l], thru{l})
output (thru , to.left)
—--output (from.right, from.compute , to.left)
compute (to.compute, from.compute)

...F code

H 12

:::F pipe.dcd

. .F descriptor
A 1 4
:F pipe.dds
.F 1link
A 109
F pipe.dlk

SC b007 board .
A 3 10 '
F b007 board
F b007.tsr -
C graphics(CHAN OF ANY to, from, load.link)
#USE "\d700c\graphlib\b0071ib.tsr"

46

APPENDIX E - Continued. -

FILE: ROOT PRG:LIS SIZE: ' 19688 bytes
SAVED:' Thu Jun 30.13:14:28 1988 . . PAGE:r - 11

B007(to, from)

...F code
t:tA 1 2
F b007.dcd

F descriptor
A 14

F b007.dds
..F link
:::tA 19

::F b007.d1lk

VAL BOO3pairs IS 5 :

{{{ CHAN definitions
{{{ channel addresses
VAL link0.in IS
VAL linkl.in IS
VAL link2.in IS
VAL link3.in IS

NS
e o8 ap

VAL linkO.out IS
VAL linkl.out IS
VAL link2.out IS
VAL link3.out IS

1)}

CHAN OF ANY dummyl, dummy2 , b007.boot :
[8 * BOO3pairs)CHAN OF ANY to, from , dummy :

WO

CHAN OF ANY to.graphics, from.graphics :
)

-- pipeline of processors, architecture f(b003pairs)
PLACED PAR . o :
{{{ BOO3pairs for pipe
PLACED PAR j = 0 FOR (B0O3pairs - 1)
PLACED PAR
VAL i IS (8 * j) :
PROCESSOR i T8

PLACE to[i] AT 1linkl.in :
PLACE from[i] AT 1linkl.out :
PLACE to[i+1] AT 1link2.out :

PLACE from[i+1] AT 1link2.in

pipe(to[i]), from([i], to[i+1], from[i+1], dummy{i]) .
VAL k IS (8 * j) + 1 : o o
PROCESSOR k T8

PLACE to[k] AT 1link3.in :
PLACE from[k}] AT 1link3.out :
PLACE to[k+1] AT 1linkl.out :

47

APPENDIX E - Continued.

FILE: ROOT_PRG.LIS

SAVED: Thu Jun 30 13:14:28 1988 PAGE:

19688 bytes

12

PILACE from[k+1] AT

pipe(to[k], from[k]
VAL 1 IS (8 * j) + 2
PROCESSOR 1 T8

PLACE to[l] AT
PLACE from[1} AT
PLACE to[l+1] AT

PLACE from[1+1] AT
pipe(to[l], from({l]

linkl.in :
, tol{k+1], from[k+l], dummy([k])

1ink0.in
linkoO.out
link2.out
link2.in
, to[1l+1], from[l+1], dummy([1l])

PIACED PAR m = 0 FOR 2
VAL n IS (((8 * 3) + 3) + m) :

PROCESSOR n T8

PLACE to[n] AT 1link3.in :
PLACE from[n] AT 1link3.out :
PLACE to[n+1] AT 1link2.out :

PLACE from[n+l] AT 1link2.in

pipe(to[n}], from{n}, to[n+l], from(n+l], dummy[n})

VAL o IS (8 * j) + &
PROCESSOR o T8

PLACE to[o] AT
PLACE from{[o] AT
PLACE to[o+1] AT

PLACE from[o+1] AT
pipe(to[o], from[o]
VAL p IS (8 * j) + 6
PROCESSOR p T8
PLACE to[p] AT
PLACE from{p] AT
PLACE to[p+1] AT
PLACE from[p+1l] AT
pipe(to[p], from[p]
VAL q IS (8 * j) + 7
PROCESSOR q T8

PLACE to[q] AT
PLACE from[q] AT
PLACE to[g+1] AT

PLACE from[q+l] AT

pipe(to[q], from[q]

IS N .
{{{ BO0O03pair end-of-pipe
VAL j IS (B0O3pairs - 1)
PLACED PAR
VAL i IS (8 * j) :
PROCESSOR i T8

PLACE to[i) AT
PLACE fromf{i}] AT
PLACE to[i+1] AT

PLACE from[i+1] AT

pipe(to[i], from[i],
VAL k IS (8 * j) + 1 :
PROCESSOR k T8 -

PLACE to[k] AT

PLACE from{k] AT

48

link3.in
link3.out
linkl.out
linkl.in
, to[o+1], from[o+l], dummy[o])

1link0.in
1ink0.out
link2.out
link2.in
, to[p+l]}, from([p+1l], dummy([p])

link3.in
link3.out
1inko0.out
1ink0.in
, tolg+l}, from[g+l], dummy[ql)

linkl.in :
linkl.out :
link2.out :
link2.in :
to[i+1], from[i+1l], dummy{i]).

l1ink3.in
link3.out

o0 oo

—_—

APPENDIX E - Concluded.

e e e e e e e e e e e e e e e e o o e o o o o . o 0 ot . e o e o (. i o o o e e e s e o e e . e e o S o . s e e e e e e e o e

FILE: ROOT_PRG.LIS SIZE: 19688 bytes
SAVED: Thu Jun 30 13:14:28 1988 PAGE: 13

PLACE to[k+1] AT 1linkl.out :

PLACE from[k+1l] AT 1linkl.in :

pipe(to(k], from{k}, to{k+1l], from[k+1l], dummy(k])
VAL 1 IS (8 * j) + 2 :
PROCESSOR 1 T8

PLACE tof[l] AT 1inkoO.in
PLACE from[1] AT 1linkO.out
PLACE to[l+1] AT 1link2.out

PLACE from({1l+1] AT 1link2.in :

pipe(to[1l], from[l], to[1l+1], from[1l+1], dummy[1l])
PLACED PAR m = 0 FOR 2

VAL n IS (((8 * j) + 3) + m) :

PROCESSOR n T8

PLACE to[n] AT. link3.in :
PLACE from(n] AT 1link3.out :
PLACE to[n+1] AT 1link2.out :

PLACE from{n+l] AT 1link2.in
pipe(to[n], from[n], to[n+1], from[n+l], dummy[n])
VAL o IS (8 * j) + 5 :
PROCESSOR o T8

PLACE to[o] AT 1ink3.in :
PLACE from[o] AT 1link3.out :
PLACE to[o+1] AT 1linkl.out :

PLACE from[o+l] AT 1linkl.in
pipe(to[o], from[o], to[o+l], from[o+1], dummy{o])
VAL p IS (8 * j) + 6 :
PROCESSOR p T8

PLACE to[p] AT 1linkO0.in :
PLACE from[p) AT 1l1linkO.out :
PLACE to[p+1] AT 1link2.out :

PLACE from[p+l] AT 1link2.in .
pipe(to[p], from[p], to[p+1l], from[p+1], dummy[p])
VAL g IS (8 * j) + 7 :
PROCESSOR g T8
PLACE to[q] AT 1link3.in
PLACE from[q] AT 1link3.out
PLACE b007.boot AT 1ink0.out
pipe(to[q), from[q], dummyl, dummy2, b007.boot)

s s ey

11}
{{{ graphics board
PROCESSOR 999 T8

PLACE to.graphics AT linkl.in :

PLACE from.graphics AT linkl.out :

PLACE b007.boot AT 1linkO0.in :

graphics(to.graphics, from.graphics, b007.boot)
1))

49

10.

11.

12.

50

REFERENCES

. Babb, R.G. II, ed.: Programming Parallel Processors. Addison-Wesley,

1987.

. Homewood, M., et al.: The IMS T800 Transputer. IEEE Micro, vol. 7,

no. 5, Oct. 1987, pp. 10-26.

. May, D.; and Taylor, R.: OCCAM - An Overview. Microprocessors and

Microsystems, vol. 8, no. 2, Mar. 1984, pp. 73-79.

. Transputer Development System User Manual. INMOS Corp., Colorado Springs,

Co.

. May, D.; and Shepherd, R.: The Transputer Implementation of OCCAM. Fifth

Generation Computer Systems 1984, Elsevier North Holland, 1984, pp.533-541.

. May, D.: OCCAM. SIGPLAN Notices, vol. 18, no. 4, Apr. 1983, pp. 69-79.
. T414 Engineering Data. INMOS Corp., Colorado Springs, CO.

. Atkin, P.: Performance Maximization. Technical Note 17, INMOS Corp.,

Colorado Springs, CO.

. Carnahan, B.; Luther, H.A.; and Wilkes, J.0.: Applied Numerical Methods.

John Wiley and Sons, 1969.

Danial, A.; and Watson, J.: Iterative Finite Element Solver on Transputer
Networks. Lewis Structures Technology 1988, Vol. 1 - Structural Dynamics,
NASA CP-3003-VOL-1, 1988, pp. 113-123.

Gusfaston, J.L.; Montry, G.R.; and Benner, R.E.: Development of Parallel
Methods for a 1024-Processor Hypercube. SIAM J. Scientific Stat. Comput.,
vol. 9, no. 4., July 1988, pp. 609-638.

Ellis, G.K.: Two-Dimensional Graphics Tools for a Transputer Based
Display Board. NASA TM-100820, 1988.

. E1lis, G.K.: User Manual for the Two-Dimensional Transputer Graphics

Toolkit. NASA TM-100974, 1988.

IMS T800

FLOATING POINT UNIT

|

7
— 32
— CENTRAL
<—— SYSTEM =32=) progesson
—
] SERVICE UNIT
—_—
LINK
K—=32=D{ \n1errace —=
4K BYTES —1.
OF 32,
ON-CHIP —) =32=)| wreneace —n
UNK f—o
K—=32=D{ 1ERrace —
po— UNK |——
Er—
T wmemory =2 = INTERFACE |~
=—] INTERFACE [EI
— f—— e
32-BIT EXTERNAL MEMORY BUS

FIGURE 1. - BLOCK DIAGRAM OF A T800 FLOATING POINT TRANSPUTER.

—{ euT

\

COMPUTE

-

-] ouTPUT)=

7\INPUT A A

)

COMPUTE

——

,/”;;;;UT <1—--/\V—

INPUT

COMPUTE

OUTPUT

PROCESSOR O

FIGURE 2. - PIPELINE OF TRANSPUTERS SHOWING INPUT, OUTPUT. AND COMPUTE BUFFERS.

PROCESSOR 1

PROCESSOR N

51

52

TIME, sec

TIME, sSEC

1000 PROCESSORS

—0— 40
—_— 32
100 . 1
e e 8

10

.01

.001

102 103 104 10° 108 107 108
NUMBER OF INTERVALS
FIGURE 3. - PI PROGRAM USING PRIORITIZED COMPUTATION,
32-BIT MATH, AND T800 FLOATING-POINT PROCESSORS.
1000 —
= PROCESSORS
00 ——O— 40
—— 16
10 —l— 8
1'_—
.
.01
.001 Lalebtd 'llll!J_[I Lo beatd R ||||[|
102 103 10" 10° 108 107 108

NUMBER OF INTERVALS

FIGURE 5. - PI PROGRAM USING ALL LOW-PRIORITY
PROCESSES, 32-BIT MATH. AND T800 FLOATING-
POINT PROCESSORS.

fIME. SEC

TIME, SsEc

1000 ‘ PROCESSORS
—_—O— 40
100 —0— 32
— 8
10 ‘
1
K
.01
.001 | lllllll.l Letad 1l I podgbbl 1l ||h|
102 05 . 1t 100 106 107 108
NUMBER OF INTERVALS
FIGURE 4. - PI PROGRAM USING PRIORITIZED COMPUTATION,
32-BIT MATH, AND T800 FLOATING-POINT PROCESSORS.
1000 PROCESSORS
L © s 40
100 - 32
e A a— 16
—-O_ 8
10
1

.01

.001
102 103 104 10° 106 107 108
NUMBER OF INTERVALS
FIGURE 6. - PI PROGRAM USING PRIORITIZED COMMUNICA-
TION, 64-BIT MATH, AND T80O FLOATING-POINT
PROCESSORS.

TIME, sEc

SPEEDUP

PROCESSORS

—_—— 40
—_—f{ 32
100 n a— 16

1000

+ 8
10
1
.
.01
2009 Catutd Lo bbbl b oottt abl bbbl 1
102 103 104 10° 108 107 108
NUMBER OF INTERVALS
FIGURE 7. - PI PROGRAM USING PRIORITIZED COMMUNICA-

TION, 64-BIT MATH. AND T414 INTEGER PROCESSORS.

50 B PROCESSORS
—_— O 40
—_— 32
yp— —<— 16
—_—— 8
30—
20—
10—
Lodotd to bbbl bobebtd tobildd o A
0
102 103 10" 10° 108 10/ 108

NUMBER OF INTERVALS

FIGURE 9. - PI PROGRAM SPEEDUP USING T800 FLOATING-
POINT PROCESSORS.

TIME, sec

10 000
—_—O— T4
1 000 — e 1800
—O— 80286787
100 e NETWORK T800
10
1
A
.01
.001 Lotattd bbbl Lo bobbd 0 tatd ol
102 103 10" 10° 108 107 108

EFFICIENCY

NUMBER OF INTERVALS

FIGURE 8. - SINGLE PROCESSOR PERFORMANCE SOLVING PI
PROGRAM USING 32-BIT MATH.

1.2—

1.0 —

PROCESSORS

102 103 10" 10° 108 107 108
NUMBER OF INTERVALS

FIGURE 10. - PI PROGRAM NETWORK SOLUTION EFFICIENCY
USING T800 FLOATING-POINT PROCESSORS.

53

54

SPEEDUP

50

40

30

20

10

INTERVALS

TOT—To—0 |

10 20 30 40 50
NUMBER OF PROCESSORS

FIGURE 11, - SPEEDUP FOR PI PROGRAM.

PROCESSOR PIPELINE

AL

PC HOST/
BOOY4

A

> 1 A\

B00O7
GRAPHICS BOARD

FIGURE 12, - NETWORK USED FOR ROOT VISUALIZATION PROBLEM.

PC HOST,

BOOY4 DEVELOPMENT

BOARD

]

B0O7
GRAPHICS
BOARD

FIGURE 13. - SUGGESTED HIGH-BANDWIDTH NETWORK TO TAKE ADVANTAGE OF AS MANY

TRANSPUTER LINKS AS POSSIBLE.

1 BUFFER 3 BUFFERS 5 BUFFERS
— INPUT INPUT INPUT

!
@PUTE

L

RETURN Tl

AWAY
{3\

comp P COMPUTE
P "

AV

JJ

AYA

RETURN @

FIGURE 14. - OUTPUT BUFFER CONFIGURATIONS FOR ROOT VISUALIZATION TESTS.
1000 — BUFFERS
- —O— 1
- —0O— 3
<
2
w
s 100
£
[
10 I I l L |
0 20 40 60 80 100

ORDER OF POLYNOMIAL

FIGURE 15. - ROOT VISUALIZATION TEST PERFORMANCE USING
32-BIT TRANSFER PROTOCOL.

55

56

TIME, sEC

1000

10
0

BUFFERS

ORDER OF POLYNOMIAL

FIGURE 18. - ROOT VISUALIZATION TEST PERFORMANCE USING
32-BIT TRANSFER PROTOCOL AND T800 PROCESSORS.

- —0— 1
. —0— 3
- _o— g
§ BUFFERS
g 1o —_—0— 1
=R -
e e 5
l I | l | 0 | | | | |
20 40 60 80 100 0 20 40 60 80 100
ORDER OF POLYNOMIAL ORDER OF POLYNOMIAL
FIGURE 16, - ROOT VISUALIZATION TEST PERFORMANCE USING FIGURE 17. - ROOT VISUALIZATION TEST PERFORMANCE USING
16-BIT TRANSFER PROTOCOL. RUN-LENGTH (RL) ENCODING.
1000 —
— BUFFERS
B —Cm 1
| R S— 3
o L e samann 5
u
« 1001—
> —
= -
ow-o—0 -0 -0
10 | | | |]
0 20 40 60 80 100

NASA Report Documentation Page

National Aeronautics and
Space Administration

1. Report No. NASA TM-101297 2. Government Accession No. 3. Recipient's Catalog No.
ICOMP-88-14
4. Title and Subtitle 5. Report Date
Implementing Direct, Spatially Isolated Problems August 1988
on Trans pu ter Networks . 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Graham K. Ellis E-4278

10. Work Unit No.

505-63-18B

. Performing Organization Name and Address

11. Contract or Grant No.

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

13. Type of Report and Period Covered

12.

Sponsoring Agency Name and Address Technical Memorand um

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

14. Sponsoring Agency Code

. Supplementary Notes

Graham K. E11is, Senior Research Associate at the Institute for Computational
Mechanics in Propulsion, NASA Lewis Research Center (work funded under Space Act
Agreement C99066G).

. Abstract

Parametric studies have been performed on transputer networks of up to 40 proces-
sors to determine how to implement and maximize the performance of the solution
of problems where no processor-to-processor data transfer is required for the
problem solution (spatially isolated). Two types of problems were investigated
in this study. A computationally intensive problem where the solution required
the transmission of 160 bytes of data through the parallel network, and a commu-
nication intensive example that required the transmission of 3 Mbytes of data
through the network. This data consists of solutions being sent back to the host
processor and not intermediate results for another processor to work on. Studies
were performed on both integer and floating-point transputers. The floating-
point transputer features an on-chip floating-point math unit and offers approxi-
mately an order of magnitude performance increase over the integer transputer on
real valued computations. The results indicate that a minimum amount of work is
required on each node per communication to achieve high network speedups (effi-
ciencies). The floating-point processor requires approximately an order of mag-
nitude more work per communication than the integer processor because of the
floating-point unit's increased computing capability.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Parallel processing Unclassified - Unlimited
Transputer Subject Category 61

Performance calculation

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price”

Unclassified Unclassified 58 A04

NASA FORM 1626 OCT 85 *For sale by the National Technical Information Service, Springfield, Virginia 22161

National Aeronautics and
Space Administration

Lewis Research Center
ICOMP (M.S. 5-3)
Cleveland, Ohio 44135

Ofticial Business
Penalty for Private Use $300

NNASAN

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

Postage and Fees Paid
National AeronautiCs anc
Space Administration
NASA-451

