NS 77200 P 7%

NASA Technical Memorandum 100974 NASA-TM-100974

ICOMP-88-13 193800138 LHS

User’s Manual for the Two-Dimensional
Transputer Graphics Toolkit

Graham K. Ellis
Institute for Computational Mechanics in Propulsion

Lewis Research Center
Cleveland, Ohio

August 1988

CASE WESTERN
RESERVE UNIVERSITY

NNASAN

TABLE OF CONTENTS

SUMMARY . . o ot e 1
INTRODUCTION . . v v vt e 1
COMPUTER GRAPHICS BASICS« © &« o v i v v v e v e i e e e e e e 1
Pixel e 1
Color Look up Table00 0000 e e e e e e 2
Coordinate Systems L o0 000w o s e e e 2
Integer Device Coordinate System (Absolute Screen Coord1nate System) 2
World Coordinate System L 2
Normalized Device Coordinates« « . . o o ... 3
Screens e 3
Windows and V1ewports 3
GETTING STARTED . . v v v e vt e et e e e e e e e e e e e e e e e e 4
EXAMPLES o e e e e e e e e e e e e e e e e e 6
Window Set-up e e e e e e e e e e e e e e e e 6
Multiple Window Set-up e e e e e e e e e e e e e e e e e e e 7
SLine Drawing o . L L L o e e e e e e e e e e e e e e e e e e 8
Composite Matrix Transformation o oo 9
Double-Buffered Animation e 10
BYPASSING THE TRANSPUTER GRAPHICS TOOLKIT o . .. 12
COMMAND SUMMARY o o o e 13
Startup and Shutdown Procedures « . . . o 0w o e 14
Geometric Transformation Procedures « « . o o oo, 14
Screen and Window Manipulation Procedures 14
Absolute and Relative Draw Procedures « « « v v v v o o v o w 14
Miscellaneous Display Procedures ¢ o v « v v v v v v v v e 14
New BOO7 Procedures « ¢ o v v v v v v v v v e e 15
Internal Graphics System Procedures 15
COMMAND REFERENCE e 16
APPENDIXES o . o o oo oo . 69
A - GRAPHICS TRANSFORMATIONS e e e e e e e e 69
Translation e e e e e e e e e e e . 69
Scaling L oL e e e e e e e e e e e e e e e . 69
Matrix Representat1on of Graph1cs Transformations 70
Composite 2D Transforms« o . o o000 0w e 72
Transputer Graphics Toolkit Transformations12

-
NEF-R7 799

B ~ WINDOWING AND CLIPPING

Windowing .

Line Clipping . « » v v v v v v oo

C - PROGRAM LISTING

REFERENCES

..........

ii

.......

......

oooooo

. 74

. 74
. 715

i
. 99

(=R VEV)

USER'S MANUAL FOR THE TWO-DIMENSIONAL TRANSPUTER GRAPHICS TOOLKIT

Graham K. Ellis*

Institute for Computational Mechanics in Propulsion
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

The user manual for a two-dimensional graphics toolkit for a transputer
based parallel processor is presented. The toolkit consists of a package of two-
dimensional display routines that can be used for simulation visualizations.

It supports multiple windows, double buffered screens for animations, and simple
graphics transformations such as translation, rotation, and scaling. The display
routines are written in occam to take advantage of the multiprocessing features
available on transputers. The package is designed to run on a transputer
separate from the graphics board.

INTRODUCTION

A description of the operation and features of the two-dimensional trans-
puter graphics toolkit (TGT) is presented in this manual. An introduction to
basic graphics terminology is given along with some examples using the TGT. A
technical reference is provided that fully details the parameters required and
procedure calls used by the TGT. Appendix A shows the computations used inter-
nally by TGT to generate graphics transformations. Appendix B contains the
development of two-dimensional windowing and clipping algorithms used by the
toolkit and, Appendix C contains a listing of the TGT routines in occam.

COMPUTER GRAPHICS BASICS

This section provides an introduction to some of the basic graphics and
screen display terminology used in this manual.

Pixel

Pixel is an acronym for picture element. The pixels are the tiny dots on
the display screen used in combinations to generate text and graphics. Each
pixel can have 2 or more colors. Monochrome text or graphics has 2 colors,
black and white (or black and green, etc.). Monochrome pixels require only 1
bit of storage for each pixel. Color pixels typically have anywhere from 4 bits
to 32 bits of storage for each pixel. Four bits per pixel allows a pixel to be
one of 16 unique colors. Thirty-two bits per pixel allows a pixel to be one of
more than 4 billion colors. The number of bits per pixel is typically referred
to as the number of bit-planes. An example of a four bit-plane display is shown
in figure 1.

*Senior Research Associate (work funded under Space Act Agreement C99066G).

The transputer graphics board used in the NASA Lewis Research Center's
Transputer Laboratory is the INMOS BOO7 graphics board (ref. 1). This board has
8 bits per pixel for a maximum of 256 different colors. A special technique is
used on the B007 to increase the number of colors to choose from to a number
greater than 256. This technique uses a color look-up table (LUT).

Color Look-up Table

A color look-up table is a method of increasing the number of possible
shades of colors to choose from over the amount normally limited by the number
of bits per pixel. The LUT uses one level of indirection to increase the number
of shades available to the display monitor. Instead of each pixel representing
a color, the pixel value is interpreted as containing an address of a color to
send to the display screen. A diagram of the look-up table operation is shown in
figure 2.

On the B0OO7, the 8-bit pixel value points to one register out of 256 that
contains the color to be displayed at that pixel. The color register contains a
18-bit value that specifies the color to be displayed. Each primary color for
the monitor, red, green, and blue is allocated 6 bits. Thus, there are 262, 144
different shades available, but only 256 of those shades can be displayed at one
time. The advantage in doing this is there is a decrease in the number bytes
required to store a screen image. The BOO7 is a 512 by 512 pixel display medium
performance graphics board. MWith a single byte per pixel, each screen requires
256K bytes for storage. If the full 18 bits were allocated for each pixel, the
storage required for each screen would increase to 768K bytes.

Coordinate Systems

The TGT uses three different coordinate systems to generate graphics. The
applications programmer uses only two of these systems. The three coordinate
systems used are described below:

Integer Device Coordinate System (Absolute Screen Coordinate System). -
This coordinate system is used internally by the TGT. Normally, the programmer
does not call any routines using the Integer Device Coordinate System (IDC).
IDC refers to the coordinate system used by the low-level BOO7 graphics board
driver routines. The IDC origin is the upper left corner of the display monitor
and has the (x, y) coordinate (0, 0). The x-coordinate increases to the right,
and the y-coordinate increases downward. The BOO7 maximum x and y coordinate
values are both 511. Using IDC would make any graphics rendering task difficult
since most applications do not use integer coordinates between O and 511. All
coordinates specified in IDC must be integers.

World Coordinate System. - The World Coordinate System (WCS) is a two-
dimensional real coordinate space. The WCS is used by the programmer to describe
the model of interest. The model is specified using whatever 2D coordinates are
appropriate. MWCS is a cartesian system and unlike IDC, the x-coordinate
increases to the right and the y-coordinate increases upward.

The WCS origin is at (0.0, 0.0); however, the WCS can correspond with any
position on the display screen. In order to relate the WCS to the IDC, a map-
ping from the world coordinates to integer coordinates must be specified using
the normalized device coordinate system discussed below.

Normalized Device Coordinates. - The Normalized Device Coordinate (NDC) sys-
tem is used internally by the TGT and by the programmer to specify the mapping
of the WCS onto the display screen. The NDC origin is in the lower left corner
and is at the (x, y) coordinates (0.0, 0.0). The maximum x and y screen value
is 1.0 regardless of the actual number of x and y direction screen pixels. No
assumption is made that the number of x and y pixels is equal. Note that like
the WCS, NDC uses real coordinates.

World coordinate windows (see the description of windows and viewports
below) are mapped onto the screen using NDC. The WCS window expressed in NDC is
called a viewport. Internally in TGT, the viewport is mapped into an IDC window
and is ready to be sent to the BOO7 for display. The mapping from the world
coordinate system to normalized device coordinates to integer device coordinates
is shown in figure 3.

The NDC coordinate system removes the actual display resolution from the
user procedure calls. If, at some time in the future, a higher resolution
display driver was added, TGT could be edited and users could recompile their
programs and the screen output would be exactly the same except at a higher
resolution. The window size is not a function of the number of pixels, it is a
function of NDC which removes the screen resolution from any TGT user procedure
calls.

Screens

The term screen in this document relates to the area of memory on the BOO7
that is displayed on the graphics monitor. The B0OO7 has enough memory allocated
for two screens. Only one screen can be displayed at a time. For a full explana-
tion of the BO07 features, see the BOO7 User Manual (ref. 1). Two screens are
used for a technique called double-buffering. This technique is normally used
for animations. One screen is displayed while the hidden screen is modified for
the next display frame. The screens are "swapped": the nondisplayed screen is
displayed and the currently displayed screen becomes hidden and can be updated
for redisplay without the drawing modifications being seen. This is how smooth
animations are performed.

Windows and Viewports

A window on the TGT is defined as a rectangular area in the WCS. A window
must be mapped (copied) into a part of the screen memory to become visible. The
mapping technique used by TGT is to specify the desired window placement on
screen using NDC. The window mapped into NDC is called a viewport. The NDC
viewport is mapped into IDC and it is called a window on the BOO7 board.

Fortunately, the IDC windows are never used directly by application programmers
and the WCS window and the NDC viewport are the only coordinate systems needed
by a programmer using TGT. An example of mapping a drawing in WCS to NDC to IDC
is shown in figure 3.

It is possible to draw into a window and not display it. This is because
the window memory is separate from the memory allocated for the two screens.
The window memory is called the window heap. When the display window command is
issued, the window heap is copied into the specified area of the screen memory.
TGT supports multiple windows although once a window is defined, its size cannot
change. Also, TGT does not support releasing window storage once a window is
defined.

GETTING STARTED

The TGT source code should be included at or near the top of the application
program that will use TGT. Because of the way the TGT routines are written, it
is not possible to compile the TGT routines are written, it is not possible to
compile the TGT procedures and use them as a library (ref. 2). The allocation
of global storage requires that a user include the source code to TGT in a
program. The source code is in a special file and can be copied into a users
program. The source code for the TGT is on the NASA Lewis Transputer Laboratory
host computer in the c:/d700c/animate subdirectory. The TGT file is called
TGT.tsr.

The TGT source code can be compiled either using the D700C or the D700D com-
pilers. The only routine that needs to be changed is the rotate() procedure.
Both C and D versions of rotate are in the TGT source code. The procedure that
is not required can be commented out and the compiler will ignore it.

The library for the B007 graphics board is in the c:/graphlib subdirectory
and is called b007.tsr. Network programs using this library can be built using
the D700C version of the compiler. To use the D700D version would require a
slight modification of the BOO7 driver code.

If only the host BOO4 board and the BOO7 graphics board are required for a
network, there are two loadable CODE PROGRAM folds in c:/d700c/animate that are
compiled for either a T414 or T800 based BOO7 graphics board. These loadable
folds can be used to load the B700 board. Link 2 on the B004 should be
connected to link 1 on the B0O7.

With the current version of TGT, any unnecessary routines must either be
deleted or commented out or the program will not compile. This is a compiler
variable storage problem created by the size of TGT and the D700C version of the
TDS. This is not required for the D700D version of the compiler.

Some of the windowing and geometric transformation procedures provided in
TGT must be called in a specific order for proper application program operation.
A world window must be defined using the set.window.2d() procedure before a view-
port is defined using the set.viewport.2d() procedure. If this calling order is
not followed, some of the internal variables used by set.viewport.2d will be
uninitialized and the application program will not program correctly.

The geometric transformation procedures require the global transformation
matrix, trans.2d, to be initialized to the identity matrix. This is performed
with the make.identity(trans.2d) procedure call. Any calls to scale(), rotate(),
or translate() will modify the global trans.2d matrix, and unless the matrix has
been initialized, the application program will fail.

Several examples showing both windowing and'géometric transformation proce-
dures are listed below. The following examples are presented:

. Window set-up

. Multiple window set-up

. Line drawing

. Composite matrix transformation
. Double buffered animation

DB who -,

Each example uses the following format for generating drawings:

-~ include the TGT source code
-- initialize the graphics board
-- user specified TGT calls

-- shut down graphics board

EXAMPLES
Window Set-up

The code fragment shown below defines a window with the lower left corner
at (-80.0, -50.0) and the upper right corner at (70.0, 25.0) in the world coordi-
nate system. The window is placed on the display screen with the Tower left
corner at (0.0, 0.0) and the upper right corner at (0.75, 0.5) of the full
screen size. The window is activated for drawing and is cleared to a light gray
color which is color register 4 in the look-up table. The window is displayed
and then the graphics board is shut down. Note that the window numbering is
maintained by the application programmer and the window numbers start at number
of O.

The window-viewport-screen relationship for this example is shown in
figure 4.

--include the TGT source code here
VAL my.window IS O :
SEQ
init.graphics()
set.window.2d(-80.0 (REAL32), -50.0 (REAL32),

70.0 (REAL32), 25.0 (REAL32), my.window)
set.viewport.2d(0.0 (REAL32), 0.0 (REAL32),

0.75 (REAL32), 0.5 (REAL32), my.window)
activate.viewport.2d(my.window) ‘
clear.window(4)
display.viewport.2d(my.window)
finit.graphicsQ)

Multiple Window Set-up

The code fragment shown below defines and opens two windows on the display
screen. One window is in the -lower left corner of the screen and the other is
in the uppper right corner. The lower left window is cleared to light gray and
the upper right window is cleared to red. The last window drawn will overlap
any currently displayed windows. This only affects screen memory and not the
window heap storage. Note the window numbering is maintained by the application
programmer and the window numbers start at number O with a maximum window number
of 31.

The set.window.2d() procedure modifies the global internal storage used by
the TGT. The set.viewport.2d() procedure sends windowing commands to the BOO7
graphics display board. The set.window.2d() procedure must be called before the
set.viewport.2d() procedure. Once the viewports are defined, they can be
activated, displayed and drawn into in any order.

-- include the TGT source code here
VAL my.win.one IS O :
VAL my.win.two IS 1 :
SEQ
init.graphicsO
set.window.2d(-10.0 (REAL32), -100.0 (REAL32),
25.0 (REAL32), 50.0 (REAL32), my.win.one)
set.window.2d(0.0(REAL32), -10.0 (REAL32),
43.0 (REAL32), 10.0 (REAL32), my.win.two)
set.viewport.2d(0.0 (REAL32), 0.0 (REAL32),
0.75 (REAL32), 0.75 (REAL32), my.win.one)
activate.viewport.2d(my.win.one)
clear.window(4) --light gray
display.viewport.2d(my.win.one)
set.viewport.2d(0.25 (REAL32), 0.25 (REAL32),
1.0 (REAL32), 1.0 (REAL32), my.win.two)
activate.viewport.2d(my.win.two)
clear.window(31) --red
display.viewport.2d(my.win.two)
finit.graphics()

Line Drawing

In the code fragment shown below, a window is opened to the full screen
size and cleared to 50 percent intensity white (gray). A diagonal line from the
lower left corner to the lower upper right is drawn.

-- include the TGT source code here
VAL my.window IS O :
SEQ
init.graphics()
set.window.2d(-80.0 (REAL32), -50.0 (REAL32),
70.0 (REAL32), 125.0 (REAL32), my.window)
set.viewport.2d(0.0 (REAL32), 0.0 (REAL32),
1.0 (REAL32), 1.0 (REAL32), my.window)
activate.viewport.2d(my.window)

clear.window(8) -- 50 % intensity white (gray)
bg.colour(8) -- 50 % intensity white (gray)
fg.colour(0) -- black foreground pen

draw.line.2d(-80.0 (REAL32), -50.0 (REAL32),

70.0 (REAL32), 125.0 (REAL32), my.window)
display.viewport.2d(my window)
finit.graphicsO

Composite Matrix Transformation

The code fragment shown below opens a window to the full screen size and
clears it to 50 percent intensity white (gray). A box is drawn in black in the
center of the window and is rotated 30 times through a displacement of 6 degrees.
The x and y lengths of the line segments that make up the box are scaled by 0.9
for each rotation. The effect of this is the originally square box becomes dis-
torted as it rotates and shrinks. The window is not cleared between consecutive
drawings so all the boxes will be seen.

—- include the TGT source code here
VAL my.window IS O :
[4]REAL32 x, y :
SEQ
init. graphics(Q)
set.window.2d(-100.0 (REAL32), -100.0 (REAL32),
100.0 (REAL32), 100.0 (REAL32), my.window)
set.viewport.2d(0.0 (REAL32), 0.0 (REAL32),
1.0 (REAL32), 1.0 (REAL32), my.window)
activate.viewport.2d(my.window)

clear.window(8) -- 50 % intensity white (gray)
bg.colour(8) -- 50 % intensity white (gray)
fg.colour(0) -- black foreground pen

-- initialize the box coordinates
x[0] := -50.0 (REAL32)

y[0]1 := x[0]
x[11 := x{0]
y[1] := 50.0 (REAL32)
x[2]1 := yl[11]
y[2] := yil11]
x[3] := y[1]
y[3] := xI0]

--set up composite tranformation matrix
make.identity(trans.2d)
rotate(6.0 (REAL32), 0.0 (REAL32), 0.0 (REAL32))
scale(0.9 (REAL32), 0.9 (REAL32),

(0.0 (REAL32), 0.0 (REAL 32))

display.viewport.2d(my window)

--draw the box and rotate and scale it 30 times
SEQ i = O FOR 30
SEQ
SEQ i = 0 FOR 3
draw.line.2dxfi], yl[il, x[i+11, y[i+1D)

draw.line.2d(x[0]1, y(0l, x[3], y(3D
transform.points(4, x, y)

finit.graphics()

Double-Buffered Animation

The code fragment shown below opens a window to the full screen size. The
window is cleared to 50 percent intensity white (gray) and the drawing pen is
set to black. A box is drawn in the middle of the screen. While the box is dis-
played, the hidden screen has a scaled and rotated box drawn in it. The screens
are swapped and the rotated, scaled box (distorted because the scaling scales
the x and y projections of a line on the x an y axes) is displayed. The hidden
screen is cleared and the next rotation, scaling and line drawing is performed.
The screens are drawn in this manner for each time the box is rotated and
scaled. Thus, the view sees a rotating box that smoothly decreases in size.
None of the line drawing is seen since it all occurs on the hidden screen.

Note that the x and y coordinates are modified by each call to the
transform.points() procedure. If the original data is required later, a copy of
that data must be used with the TGT routines so the original data is not
modified.

--include the TGT source code here
VAL my.window IS O :
[4]REAL32 x, y:
SEQ
init.db.graphics(O -- initialize double buffered
-- graphics
set.window.2d(-100.0 (REAL32), -100.0 (REAL32),
100.0 (REAL32), 100.0 (REAL32), my.window)
set.viewport.2d (0.0 (REAL32), 0.0 (REAL32),
1.0 (REAL32), 1.0 (REAL32), my.window)
activate.viewport.2d(my.window)
clear.window(8)
bg.colour(8) -- 50 % intensity white (gray)
fg.colour(0) -- black foreground pen
--initialize the box coordinates
x[0] := -50.0 (REAL32)

y[01 := x[0]
x[1] := x[0]
y{11 := 50.0 (REAL32)
x[2] := y[11]
y[2] := y[11]
x[31 := y[11
y[31 := x[0]

--set up composite transformation matrix
make.identity(trans.2d)

rotate(6.0 (REAL32), 0.0 (REAL32), 0.0 (REAL32))
scale(0.9 (REAL32), 0.0 (REAL32), 0.0 (REAL32))
--code continues on next page

10

--draw the box, rotate and scale it 30 times
SEQ i = 0 FOR 30
SEQ
SEQ i =0 FOR 3
draw.line.2d(x[i], y[i], x(i+1], y[i+1])

draw.line.2d(x[0]1, y[01, x[31), y(3D

display.viewport.2d(my.window)

flip.screen() ‘

clear.window(8)

transform.points(4, x, y)
finit.graphics(Q)

11

BYPASSING THE TRANSPUTER GRAPHICS TOOLKIT

Not all of the capabilities of the B007 graphics board are supported by the
Transputer Graphics Toolkit. This section provides information on directly
accessing the BOO7 graphics board when also using the TGT. Sending commands
directly to the graphics board should only be performed by experienced users.

The input and output channels used by TGT to communicate with the B0Q7
graphics board are called to.graphic and from.graphic. These channel names are
globally scoped for internal TGT use. The channel names to.graphic and
from.graphic can be used for direct communication with the B0O7. The channels
are PLACEd onto the output and input of link 2 on the processor using the TGT.
The programmer is responsible for sending all commands to and receiving any
commands from the B0OO7 graphics board. Use of the B007 is described in
reference 1.

The BOO7 display driver software is provided as a loadable CODE PROGRAM fold
and expects to input and output on link 1 (ref. 2). This file currently resides
in ¢:/d700c/animate subdirectory on the NASA Lewis Transputer Laboratory host
computer. Do not try to modify the BOO7 driver code. It was compiled under TDS
2.0 version D700C and will not compile under any of the later TDS releases
without some slight changes.

12

COMMAND SUMMARY

This section lists the graphics procedures according to their function.
This section is helpful if the exact procedure name is not known but the type of
function required is known. Only the procedure names are listed in this section.
The full description of each command can be found in the Command Reference
section below.

The graphics commands have been split into the following groupings:

Startup and Shutdown Procedures

Geometric Transformation Procedures
Screen and Window Manipulation Procedures
Absolute and Relative Draw Procedures
Miscellaneous Disptay Procedures

New BQO7 Procedures

Internal Graphics System Procedures

13

Startup and Shutdown Procedures

finit.graphics
init.db.graphics
init.graphics

Geometric Transformation Procedures

make.identity
rotate

scale
transform.point
transform.points
transiate

Screen and Window Manipulation Procedures

activate.viewport.2d
clip.line.2d
clip.point.2d
display.viewport.2d
move.viewport.position.2d
select.screen
set.viewport.2d
set.window.2d

Absolute and Relative Draw Procedures

draw.arc.2d
draw.circle.2d
draw.line.2d
draw.polygon.2d
draw.rectangle.2d
line.abs.2d
line.rel.2d
move.abs.2d
move.rel.2d
point.abs.2d
point.rel.2d

Miscellaneous Display Procedures

activate.screen
bg.colour
clear.screen
clear.window
display.screen
fg.colour
fill.polygon
fill.polygon.2d
flip.screen
int.line
quick.fill.polygon
quick.fill.polygon.2d
select.colour.table
set.colour

14

New B0O7 Procedures

pixel.line
colour.line

Internal Graphics System Procedures

c.draw.line
combine.transformations
g.draw.line

g.send

g.sendl

g.send2
map.to.screen.coords

15

COMMAND REFERENCE

This section provides a detailed description of the TGT routines. The vari-
ables used in the parameter 1lists are explained and the global variables modified
and routines called from a TGT procedure are listed. The descriptions are listed
alphabetically.

The real numbers used in the example section of each command description
leaves out the REAL32 type qualifier. This is done for readability and the type
qualifier should be included in the application program. The examples shown
previously use the correct method for declaring REAL32 variables.

16

activate.screen
Declaration: PROC activate.screen(VAL INT screen.number)
Usage: activate.screen(screen.number)

Parameters: screen.number: the number of the screen to activate for
drawing. The value for screen.number must be O or 1.

Function: Activates the requested screen for drawing. It does not affect
the displayed screem. This procedure will deactivate the
active window and window mode. It does not affect the window
heap allocation.

Procedures called:
g.send2()

Global variables used:
BOOL window.selected

Example: activate.screen(l)
Activates screen 1 for drawing. Does not affect
the displayed screen. If screen 1 is displayed,
any drawing commands executed will be seen. If

screen 0 is displayed, the execution of drawing
commands will be hidden.

17

activate.viewport.2d()
Declaration: PROC activate.viewport.2d(VAL INT viewport.number)
Usage: activate.viewport.2d(viewport.number)

Parameters: -viewport.number: The number of the
viewport to be activated for drawing.

Function: Selects the specified viewport for drawing. This is only
for drawing. To display the viewport requires the
display.viewport.2d() procedure.

Procedures called:
g.send2()

Global variables used:
active.window

Example: active.viewport.2d(4)

Activates viewport 4 for drawing. Any subsequent
drawing commands issued will be performed in the

WCS window number 4 and cllpped to its boundary
coordinates.

18

bg.colour()

Declaration:

Usage:

Parameters:

Function:

PROC bg.colour(VAL INT entry)
bg.colour(entry)

entry: the color table entry to use for the
background color.

Changes the background drawing pen to the color in the
color Tookup table at position entry.

Procedures called:

g.send2()

Global variables used: None

Examples:

bg.colour(124)
Selects the color in position 124 of the color look-up

table to be the background pen. The current Took-up table
has 256 entries. The value for entry can be from 0 to 255.

19

c.draw.line()

Declaration:

Usage:

Parameters:

Function:

PROC c. draw.line(VAL INT x1, y1, x2, y2)
c.draw.line(x1, y1, x2, y2)

x1, yl1: IDC coordinate of the starting point
x2, y2: IDC coordinate of the end point

Draws a 1ine from (x1, y1) to (x2, y2) in IDC.

Procedures called: None

Global variables used:

Example:

CHAN OF ANY to.graphic
CHAN OF ANY from.graphic

c.draw.line(25, 44, 288, 30%5)
Draws aline in IDC from (25, 44) to (288, 305).

This procedure is not normally used by application
programs since it uses integer device coordinates.

20

clear.screen()
Declaration:
Usage:
Parameters:

Function:

PROC clear.screen(VAL INT colour)
clear.screen(colour)
colour: the color table entry to use

Clears the screen to>the color in the look-up
table specified by the value colour.

Procedures called:

g.send2()

Global variables used: None

Example:

clear.screen(4)

Clears the screen to the color in the color lookup

table at entry 4. This clears the active screen.

It does not affect the window heap space but any windows
displayed on the screen will be written over.

21

clear.window()
Declaration:
Usage:
Parameters:

Function:

PROC c]ear.window(VAL INT colour)
clear.window (colour)
colour: the color table entry to use

Clears the window to the color in the look-up
table specified by the value colour.

Procedures called:

g.send2()

Global variables used: None

Example:

clear.window(4)

Clears the window to the color in the color look-
up table at entry 4. This clears the active -
window. It clears the window in the window heap
area of memory. The window must be redisplayed to
put the cleared window on the screen.

22

clip.line.2d()

Declaration:

Usage:

Parameters:

Function:

PROC clip.line.2d(REAL32 x1, y1, x2, y2,

BOOL disp]ay)
clip.line.2d(x1, y1, x2, y2, display)

x1, yl: starting coordinate of the l1ine to be
clipped.

x2, y2: end coordinate of the line to be
clipped

display : boolean value showing whether the
line is on screen or not.

Clips the line from (x1, yl) to (x2, y2) to the
current WCS window coordinates. The boolean value
display is set to TRUE if any of the line is
on-screen and to FALSE if the line is totally off
screen. The clipped lines coordinates are
returned in the calling parameters.

Procedures called:

SC.code.2d()
reject.check()
exchange()

Global variables used:

Example:

[max.windows][index.size]REAL32 windows

clip.line.2d(x1, y1, x2, y2, displayed)

Clips the Tine from (x1, yl1) to (x2, y2) and
returns the clipped coordinates in (x1, y1) and
(x2, y2). If the Tine is in the WCS window,
display is TRUE else display is FALSE.

23

clip.point.2d()
Declaration: PROC clip. point.2d(VAL REAL32 x, y, BOOL disp]ay)

Usage: clip.point.2d(x, y, diaplay)

Parameters: X, ¥y : The x and y coordinates of the point of
be clipped. '
display : boolean value showing whether the

point (x, y) is in the WCS screen.

Function: Clips the point (x, y) to the current WCS window
coordinates. The value display shows whether or
not the point is in the WCS window.

Procedures called: None

Global variables used:

[max.windowsl[index.sizeJREAL32 windows

Example: clip.point.2d(x, y, display)

Clips the point x, y to the current WCS window
coordinates. The value display is TRUE if the

point is in the WCS window and it is FALSE if it
is not.

24

colour.line()
Declaration:
Usage:

Parameters:

Function:

PROC colour.line(VAL INT size, [JINT buffer)
colour.line(size, buffer)

size: the number of (x, y, colour) coordinate
triplets in buffer to draw.

buffer: buffer containing the data in (x, y,
colour) format.

Performs block transfer of pixel coordinate data.
Each pixel in addition to the (x,y) data contains
a color look-up table entry number to use for that
point. Storage is in (x[0], y{Ol, colour(0l], ...,
x[nl, y[nl, colourin]) order, where n = (size-

1). The maximum number of triplets that can be
transferred is 726. NOTE: The (x,y) coordinate
data is stored in IDC NOT in the WCS.

Procedures called: None

Global variables used:

Example:

CHAN OF ANY to.graphic
CHAN OF ANY from.graphic

colour.line(222, buffer)

Draws 222 pixels from the buffer array into the
active screen or window. The color of each pixel
is stored with the coordinate information in
buffer. The format is consecutive triplets of (x,
y, colour) data.

25

combine.transformations()

Declaration: PROC combine.transformations(L31[3]IREAL32 mat.a,

mat.b)
Usage: combine.transformations(mat.a, mat.b)
Parameters: mat.a, mat.b: the matrices that are to be

multiplied together. The multiplication order is
fallb]l. The result is returned in mat.a.

Function: Multiplies the matrix mat.a by mat.b and returns
the result in mat.a. This procedure is used to
create composite matrix out of the scale, rotate,
and translate procedures. This procedure is not
normally used by application programmers.

Procedures called: None

Global variables used: None

Example: combine.transformations(trans.2d, temp.matrix)

Multiplies the trans.2d matrix by temp.matrix and
returns the result in trans.2d.

26

display.screen()

Declaration: PROC display.screen(VAL INT screen.number)

Usage: display.screen(screen.number)

Parameters: screen.number: the number of the screen to
display. The value for screen.number must be O
or 1.

Function: Displays the specified screen. If the specified

screen is already displayed, it does nothing.
Procedures called: |

g.send2()
Global variables used: None
Example: display.screen(0)

Displays screen O.

27

display.viewport.2d()

Declaration:
Usage:

Parameters:

Function:

PROC display.viewport.2d(VAL INT viewport.number)
display.viewport.2d(viewport.number) -

viewport.number - the number of the
viewport -to be copied into the active screen-
memory.

Copies the specified viewport from window heap
memory to the active screen memory. This
procedure does not change the active viewport for
drawing.

Procedures called:

map.to.screen.coords()
g.send()

Global variables used:

Example:

INT active.window
INT window.selected
[max.windowsl[index.size]REAL32 windows

display.viewport.2d(3)

Copies the viewport 3 into the currently active
screen's memory. The window may or may not be
displayed on the monitor. This depends on whether
the active screen is the one visible on the
monitor.

28

draw.arc.2d

Declaration:

Usage:

Parameters:

Function:

Procedures called:

PROC draw.arc.Zd(VAL REAL32 x1, y1, x2, y2,
' x3, y3)

draw.arc.2d(x1, y1, x2, y2, x3,y3)

X1, yl,

X2, y2,

x3, y3 : The three points through which the
arc will be drawn.

Uses the three point arc routine to draw an arc
in the WCS. Draws in the active viewpoint (WCS
window).

map.to.screen.coords()
g.send()

Global variables used: None

Example:

draw.arc.2d(0.0, 0.0, 25.0, 25.0, -25.0, 25.0)
Draws an arc through the three world coordinate

system points (0.0, 0.0), (25.0, 25.0), and
(-25.0, 25.0).

29

draw.circle.2d()

Declaration:

Usage:

Parameters:

Function:

Procedures called:

Global variables used:

Example:

'PROCldraw.c{rclé.deVAL REAL32 x.center, y.center,

radius
draw.circle.2d(x.center, y.cenfer; radius)

x.center, y.center: WCS coordinates for the center
of the circle.

radius: radius in WCS

Render a circle in WCS with center (x.center,
y.center) and radius radius. The circle is scaled
to the viewport with the x-axis dimension. If the
window to viewport mapping is not proportional,
the circle will no longer be the correct aspect
ratio, the y-axis length will be incorrect.

map.to.screen.coordinates()
g.send()

[max.windows1[index.sizeIREAL32 windows ,
draw.circle.2d (0.0, 0.0, 45.0)

Draws a circle in WCS with center (0.0, 0.0) and
radius 45.0.

30

draw.line.2d()
Declaration: PROC draw.line.2d(VAL REAL32 x1, yi, x2, y2)
Usage: draw.line.2d(x1, y1, x2, y2)

Parameters: x1, y1: x and y coordinates of the first point
x2, y2: x and y coordinates of the second point

Function: Draws a line from (x1, y1) to (x2, y2) in WCS.
Procedures called:

map.to.screen.coords()
g.draw.line()

Global variables used: None
Example: draw.line.2d(-5.0, 0.0, 10.0, -7.0)

Draws a line from (-5.0, 0.0) to (10.0, -7.0) in
the worid coordinate system.

31

draw.polygon.2d()

Declaration:

Usage:

Parameters:

Function:

PROC draw.polygon.2d(VAL INT num.sides,
VAL [IREAL32 buffer)

draw.polygon.2d(num.sides, buffer)
num.sides: number of sides for the polygon

buffer: buffer containing the polygon sides
in the order: x[0] = buffer[0], y[0] = buffer[11],

Draws a polygon in the world coordinate system.
Automatically closes the polygon connecting (x[0],
y[01) with (x[lastl, y[lastl). The maximum number
of sides currently supported is 100.

Procedures called:

map.to.screen.coords()

Global variables used:

Example:

CHAN OF ANY to.graphic
CHAN OF ANY from.graphic

draw.polygon.2d(10, buffer)

Draws an 10 sided polygon using the points stored
in buffer in increasing x, y order.

32

draw.rectangle.2d()

Declaration: PROC draw.rectangle.2d(VAL REAL32 x, vy,
x.length, y.length)

Usage: draw.rectangle.2d(x, y, x.length, y.length)
Parameters: X, y: the top left coordinate of the
rectangle. ‘

x.length, y.length: length of the x and y sides of
the rectangle.

Function: Draws a rectangle in WCS.
Procedures called:

map.to.screen.coords()
g.send()

Global variables used:
[max.windowsl{index.sizeJREAL32 windows
Example:
draw.rectangle.2d(1.0, 2.0, 5.0, 7.0)
Draws a rectangle with upper left corner at (1.0,
2.0) in the world coordinate system. The length

of the x side is 5.0 units and the length of the y
side is 7.0 units.

33

fg.colour()
Declaration: PROC fg.colour(VAL INT entry)
Usage: fg.colour(entry)

Parameters: entry: . the color table entry to use for the
foreground color.

Function: Changes the foreground drawing pen to the color in
the color look-up table at position entry.

Procedures called:
g.send2()

Global variables used: None

Example: fg.colour(124)
Selects the color in position 124 of the color
look-up table to be the foreground pen. The

current look-up table has 256 entries. The value
for entry can be from 0 to 255.

34

fill.polygon()
Declaration:
Usage:

Parameters:

Function:

PROC fill.polygon(VAL INT x, y).
fill.polygon(x, y)

X, y: a point in IDC inside the polygon that
is to be filled.

An arbitrary polygon is filled with the currently
selected foreground color. The polygon is selected
by specifying a point inside it. This routine uses
normalized device coordinates which is not normaily
used by applications programs. For a world
coordinate system version see the procedure
fill.polygon.2d().

Procedures called:

g.send()

Global variables used: None

Example:

fill.polygon(125, 200)
Fills the polygon that has an interior point at

(125, 200) in integer device coordinates. MWill
draw into the active screen or window.

35

fill.polygon.2d()

Declaration:

Usage:

Parameters:

Function:

PROC fill.polygon.2d(VAL REAL32 x; V)
fill.polygon.2d(x, y)

X, y: a point in WCS inside the polygon that
is to be filled. ‘

An arbitrary polygon is filled with the currently
selected foreground color. The polygon is
selected by specifying a point inside it. This
routine uses the world coordinate system.

Procedures called:

map.to.screen.coords()
g.send()

Global variables used: None

Example:

£i11.polygon.2d(125.0, -200.0)

Fills the polygon that has an interior point at
(125.0, -200.0) in the world coordinate system.
It will draw into the active screen or window.

36

finit.graphics()
Declaration: PROC finit.graphics()

Usage: finit.graphics()
Parameters: None
Function: Sends c.terminate flag to BOO7 graphics board for

termination. Ignores the reply from the B007.
Procedures called: None
Global variables used:

CHAN to.graphic
CHAN from.graphic

Example: finit.graphics()
Shuts down the B0O07 graphics board

37

flip.screen()

Declaration: PROC flip.screen()

Usage: flip.screen()
Parameters: None
Function: Swaps the currently display and nondisplayed

screens. ~Used for double buffered animation. The
nondisplayed screen is always active.

Procedures called:

g.send1()
Global variables used: None
Example: flip.screen()

Flips the currently displayed and nondisplayed
screens.

38

g.draw.line()
Declaration:
Usage:
Parameters:

Function:

PROC g.draw.1ine(L2]INT pO, p1)

g.draw.line(p0, p1)

p0, pl: arrays of (x, y) coordinate data.
draws a line in IDC from pO to pl. The data is

stored as p0l0] = x1; pOL1] = yl1,; p1l0] = x2;
p1l1] = y2.

Procedures called: None

Global variables used:

Example:

CHAN OF ANY to.graphic
CHAN OF ANY from.graphic

g.draw.line(x0, x1)
Draws a line in IDC from the point x0O to the point
x1. The arrays x0, and x1 each contain (x, y)

coordinate data. This procedure is not normally
used by applications programmers.

39

g.send()
Declaration: PROC g.send(VAL INT32 command, VAL [JINT params)
Usage: g.send(command, params)

Parameters: command: the drawing command to send. to the B0OO7
graphics board.

parameters: array of data needed by the B0OO7 to
execute the specified command. :

Function: Allows a graphics command and an arbitrary amount
of data to be sent to the B0OO7 graphics board. An
example of a procedure that uses this command is
draw.rectangle().

Procedures called: None
Global variables used:

CHAN OF ANY to.graphic
CHAN OF ANY from.graphic

Example: g.send(c.draw.rectangle, [x.screen, y.screen,
x.length, y.lengthl)

Sends the draw rectangle command to the B0OO7
graphics board. The data sent is the upper left
corner of the rectangle in IDC (x.screen,

y.screen) and the length of each side: x.length

and y.length. Note the data is surrounded by square
brackets. The brackets effectively put

that data in an array for transfer.

40

g.send1()
Declaration: PROC g.send1(VAL INT32 command)
Usage: g.send1(command)

Parameters: command: the low-level command to send to the
BOO7 graphics board.

Function: Used to send a single graphics command to the
BOO7 graphics board. Some commands only require a
single word to be sent to the B0O7. ‘
Procedures called: None

Global variables used:

CHAN OF ANY to.graphic
CHAN OF ANY from.graphic

Example: g.sendl(c.flip.screen)

Tells the BOO7 to flip the active and inactive
screens. Used for double-buffered animation.

41

g.send2()

Declaration:

Usage:

Parameters:

Function:

PROC g.send2(VAL INT32 commandl,
VAL INT32 command2)

g.send2(commandl, command2)

commandl, command2: the low-level éomhagds to
send to the B007 graphics: board.

Used to send two graphics commands to the BOO7
graphics board. Some commands only require two
parameters to be sent to the BO007.

Procedures called: None

Global variables used:

Example:

CHAN OF ANY to.graphic
CHAN OF ANY from.graphic

g.send2(c.select.colour.table, 1)

Selects color'Took-up'table'l for good primary
colors.

42

init.db.graphics()
Declaration: PROC init.db.graphics()

Usage: init.db.graphics()
Parameters: None
Function: Initializes the B0OO7 for double-buffered screens

selects the default color table 1, sets the
‘background color pen to black, and the foreground
color pen to white. '

Procedures called:

g.send1Q)
g.send2(0)

Global variables used:
INT window.selected
Example: init.db.graphicsO)
Sets up the BOO7 for double buffered animations.

43

init.graphics()

Declaration: PROC init.graphics()

Usage init.graphics()

Parameters None

Function: initfé]izes the B007 graphics board for single

buffered rendering. . Screen 0 is selected and
cleared to black. The foreground color is set to
white and the background color is set to black.

Procedures called:

g.send2()
Global variables used:

INT window.selected
Example: init.graphics()

- Initializes BOO7 graphics board for single
buffered dislay.

44

int.line()
Declaration: PROC int.line(VAL INT x1, yl, x2, y2)
Usage: int.line(x1, yl, x2, y2)
Parameters: x1, yl: the starting point for the line in IDC
x2, y2: the end poinf for“the line in IDC
Function: Draws a line from (x1, y1) to (x2,-y2) in IDC.
Procedures called:
c.draw.line()
Global variables used:

CHAN OF ANY to.graphic
CHAN OF ANY from.graphic

Example: int.1ine(25, 25, 511, 229)
Draws a line from (25, 25) to (511, 229) in

integer device coordinates. The line is drawn in
the active window or screen.

45

line.abs.2d()

Declaration: PROC 1ine.abs.2d(VAL REAL32 x, ¥)

Usage: line.abs.2d(x, y) ‘ |

Parameters; | X, y: The endpé%nt of thé line in WCS
coordinates. S :

Function: Draws a line from. the current graphics cursor

position (the graphics cursor position must be
initialized by the user with the move.abs.2d()
command) to the endpoint specified by (x, y) in
WCS.
Procedures called:
move.abs.2d()
map.to.screen.coords()
g.draw.line()
Global variables used:
[max.windowsl[index.size]REAL32 windoWs
Example: line.abs.2d(100.0, 50.0)
Draws a line from the current graphics cursor

position to a (100.0, 50.0) in the world coordinate
system.

46

Tine.rel.2d()

Declaration: PROC line.rel.2d(VAL REAL32 dx,dy)
Usage: line.rel;Zd(dx, dy)
Parameters: dx, dy: the distance in the x and y directions

from the current graphics cursor position for the
line endpoint. The values dx, and dy are in the
WCS.

Function: Draws a line from the current graphics cursor
position to a point dx in the x-direction and dy
in the y-direction away. All coordinates are in
the world coordinate system. The graphics cursor
position must be initialized using the
move.abs.2d() procedure.

Procedures called:
move.rel.2d()
map.to.screen.coords()
g.draw.line()
Global variables used:
[max.windows]I[index.size]REAL32 windows
Example: line.rel.2d(5.0, -10.0)
Draws a line from the current graphics cursor
position in world coordinate system to a point 5.0

units in a x-direction and -10.0 units in the y-
direction away from the current graphics position.

47

make identity()

Declaration: PROC make.identity ([3]f3]REAL32 trans.matrix)
Usage: make.identity(trans.matrix)
Parameters: ~trans.matrix :- A 3 by 34érray_(matrix) to be

set to the identity matrix.
Procedures called: None
Global variables used: ,Néne
Example:) , make.jdentity(my.matrix)
Sets the 3 by 3 array my.méfrix to the identity

matrix. All diagonal terms set to 1.0. All
others set to 0.0. .

48

map.to.screen.coords()

Dectlaration:

Usage:

Parameters:

Function:

Procedures called:

PROC map.to.screen.coords(VAL REAL32 x, vy,
INT x.screen, y.screen)

map.to.screen.coords(x, y, x.screen, y.screen)

X, y: the coordinates in the WCS to be mapped
into IDC.

x.screen, y.screen: the IDC coordinates for the
(x, y) point in WCS.

Maps a point in WCS for the active screen or
window. The result is in IDC and is passed back
in x.screen, y.screen. The routine makes use of
the global data stored in the windows array.

NOTE: The window IDC system is relative to the
window origin and not its position on screen.
This is because window rendering is done in the
BOO7 in the window heap space and not the screen
memory.

None

Global variables used:

Example:

BOOL window.selected
[max.windows][index.size]REAL32 windows

map.to.screen.coords(-5.0, -5.0, ix, iy)
Maps the point (-5.0, -5.0) in the active world

coordinate system window to integer device
coordinates. The result is passed back in ix and

iy.

49

move.abs.2d()
Declaration:
Usage:

Parameters: ..

Function:

Procedures called:

PROC move.abs.2d(VAL REAL32 x, y)
move.abs.2d{(x, y)

X, y: -the point in the WCS to which the
graphics cursor is to be moved.

Causes the invisible graphics cursor maintained by
internally by the TGT to be moved to the point (x,
y) in the KCS)

None:

Global variables used:

Example:

[max.windows][index.sizelREAL32 windows

move.abs.2d(10.0, 11.0)

~ Moves the graphics cursor to the point (10.0,

11.0) in the current world coordinate system
window.

50

move.rel.2d()
Declaration:
Usage:

Parameters:

Function:

Procedures called:

PROC move.rel.2d(VAL REAL dx, dy)
move.rel.2d(dx, dy)

dx, dy: the distance in the x and y directions
to move the graphics cursor from the current
position.

Moves the current graphics cursor position a
distance dx in the x-direction and dy in the
y-direction in the world coordinate system.

None

Global variables used:

Example:

[max.windows][index.size]lREAL32 windows
move.rel.2d(1.0, -2.0)
Moves the graphics cursor to a point (1.0, -2.0)

away. The cursor must be positioned initially
with the move.abs.d() procedure.

51

move.viewport.position. 2d()

Declaration:

Usage:

Parameters:

Function:

Procedures caTied:

Global variables

Example:

PROC move v1ewport pOSlt]On 2d(VAL iNT
viewport.number, VAL REAL32 x.min, y.min)

—'move.viewport. pos1ton 2d(v1ewport number,

x.min, y.min) -

viewport.number: the v1ewport that 1s to be
rep051t1oned onscreen.

’x;m1n,’y.m1n.. the new pos1t1on of ‘the lower left

corner of the viewport. The position is expressed
in NDC. . :

Modifies the global parameters that contain the: -

parameters for the window position on the display
screen. This procedure does ‘not display the
repositioned viewport. The procedure
display.viewport.2d() must be .used for displaying
the viewport.

None

used:

[max.windows]l[index.size]REAL32 windows
move.viewport.position.2d(3, 0.0, 0.0)

Moves the lower left corner of viewport number 3
to the lower left corner of the screen. The

viewport remains the same size as when it was
defined using the set.viewport.2d() procedure.

52

pixel.line()
Declaration:
Usage:

Parameters:

Finction:

Procedures called:

PROC pixel.line(VAL INT size, [JINT buffer)
pixel.line(size, buffer)

size: the number of (x, y) pairs in buffer to
draw. '

buffer: buffer containing the data to plot.
Data must be stored contiguously in (x, y)
coordinate pairs.

Allows block transfers of pixel coordinate data.
The maximum number of data points that can be
transferred is 1089 (x, y) coordinate pairs.
Storage is in (x[01, y[01, x[11, y11, ..., xInl,
y[nl) order where n = (size - 1). The variable
size is the number of (x, y) pairs to transfer.
NOTE: The (x,y) coordinate data is in integer
device coordinates and NOT in the world coordinate
system.

None

Global variables used:

Example:

CHAN OF ANY to.graphic
CHAN OF ANY from.graphic

pixel.1ine(100, buffer)
Draws the first 100 (x, y) coordinate pairs stored

in the array buffer in the current foreground
color in the current active window or screen.

53

point.abs.2d
Declaration:
Usage:

Parameters:

Function:

PROC point.abs.2d(VAL REAL x,)
point.abs.2d(x, y) o

X, y: the coordinate in the WCS where a point
is to be drawn.

Draws a point in the curreht WCS window at the
coordinate (x, y) o

Procedures called:

map.to.screen.coérds()
g.send()

Global variables uséd: None

Example:

point.abs.2d(1.0, -2.0)
Draws a point at (1.0, -2.0) in the current WCS

window. The graphics cursor is set to this
coordinate.

54

point.rel.2d()
Declaration:
Usage

Parameters:

Function:

Procedures called:

PROC point.rel.2d(VAL REAL dx, dy)
point.rel.2d(dx, dy)

dx, dy: the distance in the x and y directions
to move the ggraphics cursor from the current
position and draw a point.

Moves the current graphics cursor position a
distance dx in the x-direction and dy in the
y-direction and draws a point in the currently
selected foreground color.

map.to.screen.coords()
g.send()

Global varaibles used:

Example:

[max.windows][index.sizelREAL32 windows
point.rel.2d(1.0, -2.0)

Moves the graphics cursor to a point (1.0, -2.0)
away and draws a point in the currently selected

foreground color. The cursor must be positioned
initially with the move.abs.2d() procedure.

55

quick.fill.polygon()

Declaration:
Usage:

Parameters:

Function:

PROC quick.fill.polygon(VAL INT x, y)
quick.fili.polygon(x, y)

X, y: point inside the polygon to be filled.
The coordinate (x, y) is specified in IDC.

An simple convex polygon is filled with the
currently selected foreground color. The polygon
is selected by specifying a point inside it. This
routine uses IDC. For a WCS version of this
command see quick.fill.polygon.2d().

Procedures called:

g.send()

Global variables used: None

Example:

quick.fill.polygon(100, 333)
Fills only the simple convex polygon that contains the

point (100, 333). The coordinate is specified in integer
device coordinates.- :

56

quick.fill.polygon.2d()

Declaration:
Usage:

Parameters:

Function:

PROC quick.fill.polygon.2d(VAL REAL32 x, y)
quick.fill.polygon.2d(x, y)

X, y: point inside the polygon to.-be filled.
The coordinate (x, y) is specified in WCS.

A simple convex polygon is filled with the
currently selected foreground color. The polygon
is selected by specifying a point inside it. The
algorithm assumes no interior angles of the
polygon exceed 180 degrees. This routine uses the
WCS.

Procedures called:

g.send()

Global variables used: None

Example:

quick.fill.polygon.2d(100.0, -25.5)

Fills only the simple convex polygon that
contains the point (100.0, -25.5). The
coordinate is specified in the world
coordinate system.

57

rotate()
Declaration:
Usage

Parameters:

Function:

Procedures called:

D700C Version
PROC rotate(VAL REAL32 alpha, x.pivot, y.pivot)

rotate(alpha, x.pivot, y.pivot)

| alpha: the desired rotation angle in degrees.

x.pivot, y.pivot: the point in the world
coordinate system about which rotation occurs.

The rotate routine modifies the trans.2d matrix
for a rotation of alpha degrees about the
stationary point (x.pivot, y.pivot).

make.identity()
radian.equiv()

COSPO)

SINPC)

combine. transformations()

Global variables used:

Example:

[31[3IREAL32 trans.2d
rotate(45.0, 0.0, 0.0)
Set up the trans.2d matrix for a positive 45.0

degree rotation about the origin (0.0, 0.0) in
world coordinate system.

58

rotate() D700D0 Version

Declaration: PROC rotate(VAL REAL32 alpha, x.pivot, y.pivot)
Usage: rotate(alpha, x.pivot, y.pivot)
Parameters: alpha: the desired rotation angle in degrees.

x.pivot, y.pivot: the point in the world
coordinate system about which rotation occurs.

Function: The rotate routine modifies the trans.2d matrix
for a rotation of alpha degrees about the
stationary point (x.pivot, y.pivot).

Procedures called:
make.identity()

CoSO
SINQO

FUNCTION radian.equiv()
combine.tranformations()

Global varaibles used:
[3103] REAL32 trans.2d
Example: rotate(45.0, 0.0, 0.0)
Set up the trans.2d matrix for a positive 45.0

degree rotation about the origin (0.0, 0.0) in the
world coordinate system.

39

scale()

Declaration:

Usage:

Parameters:

Function:

Procedures called:

“'PROC scale(VAL REAL32 scale X, s¢a1e'y,

x.fixed, y.fixed)
scale(scale.x, scale.y, x.fixed, y.fixed)

scale.x, scale.y: :.scale factor for the x and y
axis dimensions. oo boroe

x.fixed, y.fixed: - the stationary (x, -y

._coord1nate of the object be1ng scaled

The scale routlne mod1f1es the global
transformation matrix trans.2d to scale a data set-
by scale.x, scale.y about the stat1onary point
(x.fixed, y.fixed)

combine.transforﬁationé()vi
make.identity()

Globhal variables used:

Example:

[31[31REAL32 trans.2d
scale(0.5, 1.0, 0.0, 0.0)

| The-trans.2d matrik-has'beéh cdnfigured:to scale

the x-dimension of.some data to 0.5 while not
changing the y-axis dimension. The scaling is
from the stationary point (0.0, 0.0) in the world
coordinate system.

60

select.colour.table()
Declaration: PROC select.colour.table(VAL INT number)
Usage: select.colour.table(number)

Parameters: number: the number of the B007 color table
to use. The value for number should be O or 1.

Function: Selects which color table to use on the B007
graphics board. The table selection specifies how
the bits in the byte address pointer are to be
interpreted. Color table 1 is normally used
because it has good primary color scales. See the
INMOS B0OO7 user manual for more details (ref. 1).

Procedures called:
g.send2()

Global variables used: None

Example: select.colour.table(1)

Selects color table 1 which has good primary
color scales. '

61

select.screen()

Declaration: PROC select.screen(VAL INT screen.number)

Usage: select.screen(screen.number)
Parameters: screen.number : screen to activate
Function: Activates the requested screen. number (must be O

or 1) and turns off the window mapping feature of TGT.
Using this command allows drawing directly

into the: screen map. Can also use this command to
disable double-buffering once it is enabled.

The display.screen() command also -needs to be used
when disabling double-buffering.

Procedures called:
g.send2()
Global variables used:
window.selected
Example: select.window(05
Screen number O is selected for drawing. The

internal TGT variable window.selected is set to
FALSE.

62

set.colour()
Declaration:
Usage:

Parameters:

Function:

PROC set.colour(VAL INT entry, red, green, blue)
set.colour(entry, red, green, blue)
entry: the color look-up tabie entry to modify

red, green, blue: the value of the red, green
and blue intensities to be stored in the look-up
table. The value for each intensity can be from 0
to 63 (6-bits of intensity information). For more
details see reference 1.

Modifies the color look-up table to the specified
values for red, green and blue.

Procedures called:

g.send()>

Global variables used: None

Example:

set.color(2, 12, 23, 61)

Sets the color table entry 2 to: red intensity,
12; blue intensity, 23; green intensity, 61.

63

set.viewport.2d()

Declaration:

Usage:

Parameters:

Function:

PROC set.viewport.2d(VAL REAL32 x.min, 'y.min,
X.max, y.max,
VAL INT viewport.number)

set.viewport.2d(x.min, y.min, x.max, y:max,
viewport.number)

x.min, y.min: the lower left corner of the
viewport in NDC. - ' '

x.max, y.max: the upper right corner of the
viewport in NDC.

viewport.number: the number of thé WCS window
that this viewport is associated with.

Maps the WCS window given by viewport.number into
NDC. The procedure will not allow viewport
parameters outside the range [0.0, 1.0] to be
used. The appropriate scale factors to map from
WCS to NDC are computed in this procedure. The
viewport (window) selected is activated for
drawing. '

NOTE: The window size and position on the view
screen is generated using this command. The -
position of the window can be modified using the
move.viewport.position.2d() procedure.

Procedures called:

map.to.screen.coords()

Global variables used:

Example:

INT active.window

BOOL window.selected
[max.windows]lindex.sizelREAL32 windows
CHAN to.graphic

CHAN from.graphic

set.viewport.2d(0.1, 0.1, 0.5, 0.5, 4)
The WCS window number 4 is mapped into viewport
number 4 in NDC. The onscreen placement of the

viewport is with the lower left corner at (0.1,
0.1) and upper right corner at (0.5, 0.5)) in NDC.

64

set.window.2d()

Declaration:

Usage:

Parameters:

Function:

Procedures called:

PROC set.window.2d(VAL REAL32 x.min, y.min,
' ©X.max, y.max,
VAL INT window.number)

set.window.2d{xmin, y.min, x.max, y.max,
window.number)

x.min, y.min: the lower left corner of the window

in the WCS.

X.max, y.max: the upper right corher of the
window in the WCS. :

window.number: the number assigned to this window.
Window numbering should start a window number O.

Allows the user to define a WCS window for
graphics rendering. HWill not do anything if
maximum number of windows is exceeded. The value
is currently set to 32. This procedure must be
called before using the set.viewport.2d()
procedures.

None

Global variables used:

Example:

[max.windows]{index.size]REAL32 windows
set.window.2d(-25.0, -50.0, 100.0 0.0, 1)

User WCS window number 1 is defined to be from the
lower left corner at (-25.0, 50.0) to the upper
right corner at (100.0, 0.0) in the world
coordinate system. Note at this point, the
placement of the world window on screen is not
specified. This must be done using
set.viewport.2d().

65

transform.point()
Declaration:
Usage:

Parameters:

Function:

Procedures called:

PROC transform.point(REAL32 X,)
transform.point(x, y)

X, y: The WCS x and y coordinate of the point
to be transformed by the trans.2d matrix.

Performs a matrix multiplication of. the point
(x,y) by the trans.2d matrix. Note that x and y
must be able to be modified (call by reference)
since the new x, y is passed back in the parameter
list.

None

Global variables used:

Example:

[3] [3] REAL32 trans.2d
transform.point(x, y)
Transform the point (x, y) in the world coordinate

system by the trans.2d global transformation
matrix.

66

transform.points()

Declaration:

Usage:

Parameters:

Funtion:

Procedures called:

PROC tranform.points(VAL INT count,
[JREAL32 x, y)

transform.points(count, x, y)

count : the number of points.to transform

X, ¥ = . the array of x and y coordinates to

to be transformed. ‘

Performs a matrix multiplication on the coordinate
arrays x and y by the trans.2d matrix. The number
of points transformed is count.

None

Global Variables used:

Example:

{3103] REAL32 trans.2d
transform.points(100, x, y)
Transforms the first 100 data points in the x, and

y coordinate arrays by the trans.2d global
transformation matrix. -

67

translate()

Declaration: PROC translate(VAL REAL3Z translate.x,
translate.y) '
Usage: translate(franslatefk'vfraﬁsiafe y
Parameters: - translate X, translate y: d1stance for
translating x, and y coordinates
Function: - .. Modifies the trans.2d array for x, and y

4 translation. ..
Procedures called: |

make.identity()
combiine.transformations()

Global variables used: e
[31[3]REAL32 trans.2d; |

Example: P transiate(2.0, 3.0)
Transforms the trans.2d matrix e} 1t will
translate data 2.0 units in the x-direction and

3.0 units in the y-direction in the world
coordinate system.

68

APPENDIX A
GRAPHICS TRANSFORMATIONS

This section gives a brief overview of the two-dimensional (2D) graphics
transformations used in the Transputer Graphics Toolkit (TGT). A more complete
presentation of this information can be found in references 3 to 5.

The development of franslation, scaling, and rotation operations in 2D are
presented along with the extension to homogeneous coordinates for the matrix
representation of the transformations. The global variables used by TGT are
also presented so an understanding of the transformations performed can be
obtained.

Translation
A translation is a straight-line movement from one position in space to

another. 1In 2D space, the translation from one point P(x , y) to another point
P(x', ¥') can be performed by:

x' = x + Ty n
y' =y + Ty (2)
where
Tx = translation distance in the x-direction

Ty = translator distance in the y-direction

The translation distance from the original point is (Tx, Ty).

Scaling

Scaling is used to alter the size of an object. Points can be scaled by
multiplying the coordinate P(x, y) by scale factors Sx, and Sy to generate
the new coordinates (x', y'):

X' r e cos (¢) ¢ cos (8) - r « sin () « sin (8) an

A r e sin (¢) ¢ cos (B) + r « cos (¢p) « sin (8) (12)

where r is the distance from the point from the origin.

Since
X =1 * cos(é) a3

y=r . sin(4) a4

equations 11 and 12 can be rewritten as

69

x' X ¢ cos(d) -y » sin(®) 15

u

y * cos(¢d) - x » sin(®) (16)

yl

As with the scaling operation, the rotation can be performed about a fixed
point, P(Xr, Yr), called the rotation point or pivot point. Rotation with
respect to this arbitrary fixed point is shown in figure 6. The transformation
equations for this case.are: :

XI

Xp + (X = Xr) » cos(®) - (y = Yy) = sin(®) an
Ye + (y = Yr) o cos(®) + (X = Xp) » sin(@) (18)

yl
The placement of the pivot point is totally arbitrary and if the rotation point
is set to (Xr, Yr) = (0, 0), the original rotation equations are obtained.

If only small angles are to be used, the tr1gonometr1c functions can be
replaced with the following approx1matlons

cos(8) = 1 (19)
sin(®) = © (20)

where © is the angle in radians. These small angle approximations are not
used in the transputer graphics toolkit.

Matrix Represention of Graph1cs Transformatlons

Typical transformations performed by many applications are not merely a sin-
gle scaling, rotation, or translation, but a combination of the three. An effi-
cient approach combining the various transformations would be to generate a
matrix from which the final coordinate could be computed from the iinital coordi-
nate. The general form of the matrix representations of the three transforma-
tions are:

X' = X + Ty translation
yi=y+ Ty

x' = x * Sy , scaling
yl=y*sy

x' = X * Ry rotation
y|=y*Ry

Notice the translation is a matrix addition while the scaling and rotation
operations are matrix multiplications. Because the translation is expressed as
a matrix addition, there is no 2 by 2 matrix than can be used for all three
transformations.

70

If the points to be transformed are expressed in homogeneous coordinates,
all three transformations can be expressed as matrix multiplications. In homoge-
neous coordinates, point P(x, y) is represented as P(W*x, W*y, W) for W z 0.

When given a homogeneous coordinate representation for a point P(X, Y, W),
a 2D cartesian coordinate representation for the point P(x, y) can be found by
x = X/Wand y = Y/W. For the 2D transformations used in the TGT routines, W
will always be 1 and the division need not be performed. In some three-
dimensional viewing operations, W will be different than 1.

With the coordinates for 2D space now represented as a 3-element vector,
3 by 3 transformation matrices can be written for the translation, rotation, and
scaling operations. The 2D plane in the 3D space (x, y, w) can be thought of as
the plane in 3D space with the coordinates (x, y, 1).

The transformation matrix for translation is:

x', y',11 =[x, y, 11f[1 0 O

01 0
@2n
Ty Ty 1
where
Ty = translation distance in the x-direction.
Ty = translation distance in the y-direction.
The transformation matrix for scaling is
x', y', 11 =[x, y, 11 [Sy O 0
° o0 (22)
0 0 1
where
Sy = scale factor for x-axis
Sy = scale factor for y-axis
and the rotation transformation matrix is:
[x', y', 11 =1Ix , y, 11 [cos(®) sin(e) 0
-sin(@) cos(8) 0
(23)

0 0 1

71

where

© = rotation angle

"Composite 2D Transforms

Now that the transformations can be represented as matrices, a composite
transformation matrix can be generated that represents any arbitrary sequence of
translations, rotations, and scalings. The composite transformation matrix can
be built by using matrix multiplications. The matrices can be multiplied in the
order desired to generate the composite transformatlon matrix. Rememeber that
matrix multiplication is order dependant:

[AI[B] = [BILA]

Thus, a translation followed by a rotation is not the same as a rotation fol-
lowed by a transtation.

Transputer Graphics Toolkit Transformations

The TGT has a global, 3 by 3 transformation matrix that is used for build-
ing a composite transformation matrix. This global transformation matrix is a
{3JC3]1REAL32 array called trans.2d. To properly create a composite transforma-
tion matrix, first the trans.2d matrix must be set to the identity matrix with
the make.identlty() procedure. After it-is initialized to the identity matrix
the TGT transformation routines, translate(), rotate(), and scale(), can be
used. These routines directly manipulate the trans.2d matrix to generate the
desired composite transformation matrix. After the composite trans.2d matrix is
built, data can be modified (multiplied) by the matrix by using either the trans-
form. p01nt() or transform. p01nts() procedures. An example of this procedure is
shown below:

The code fragment shown below opens a window to the full screen size and
clears it to 50 percent intensity white (gray). A box is drawn in black in the
center of the window and is rotated 30 times through a displacement of 6 degrees.
The x and y lengths of the 1ine segments that make up the box are scaled by 0.9
for each rotation. The effect of this is the originally square box becomes dis-
torted as it rotates and shrinks. The window is not cleared between consecutlve
drawings so all the boxes will be seen.

--include the TGT source code here
VAL my.window IS 0:
[(4]REAL32 x, y:
SEQ
init. graph1cs()

72

set.window.2d(-100.0 (REAL32), -100.0 (REAL32),

100.0 (REAL32), 100.0 (REAL32), my window)
set.viewport.2d(0.0 (REAL32), 0.0 (REAL32),

1.0 (REAL32), 1.0 (REAL32), my window)
activate.viewport(my.window)
clear.window(8)
bg.colour(8) -- 50% intensity white (gray)
fg.colour(0) -- black foreground pen

-- initialize the box coordinates
x{0] := -50.0 (REAL32)

y[01 := x[0]
x{1] := x([0]
y[11 := 50.0 (REAL32)
x[2] := y(1]
yl21 := y(11]
x[31 := yl11]
y[3] := x[0]

-- set up composite transformation matrix
make.identity(trans.2d)

rotate(6.0 (REAL32), 0.0 (REAL32), 0.0 REAL32))
scale(0.9 (REAL32), 0.0 (REAL32), 0.0 (REAL32))

display.viewport(my window)

--draw the box and rotate and scale it 30 times
SEQ i = O FOR 30
SEQ
SEQ i = 0 FOR 3
draw.line.2d[x[i], y(il, xCi+1), y(i+1D)
draw.line.2d(x[0]1, y[01, x[3]1, y{3D
transform.points(4, x, y)

finit.graphics()

73

" APPENDIX B,
WINDOWING AND CLIPPING
Windowing ﬁ

Application programmers require the ability to define objects in a world
coordinate system (WCS). A world coordinate system is any cartesian coordinate
system a programmer finds convenient. Objects defined in the WCS are mapped by
the TGT procedures first into Normalized Device Coordinates (NDC) and then into
Integer Device Coordinates (IDC). Normalized device coordinates are used by the
applications programmer to specify window placement and sizing on the display
screen. The IDC are used by the transputer graphics display board to perform
all of its graphics rendering computations. These coordinate systems are shown
in figure 3. _

Normalized device coordinates are defined with the origin in the lower left
corner of the screen and the maximum x and y coordinate is 1.0. The normal-
ized device coordinate system is used for WCS window placement and sizing on the
display screen. The equations required to map.-from the WCS to NDC are shown
below: .

ey IRV .
vmax vm

Sev = % a - 1n (24)

wmax - “wmin-

X =X _
S, = vaax va1n (25)
y wmax - “wmin ‘
where :
Sxvs Syy x and y viewport scale factors

Xvmax, Yvmax X and y coordinates of the upper right corner
of the viewport expressed in NDC

Xvmin» Yvmin X and y coordinates of Fhe Tower left corner
of the viewport expressed in NDC

Xwmax» Ywmax the x and 'y coordinates of the upper right
corner of the WCS window

Xwmin. Ywmin the x and y coordinates of the lower
left corner of the WCS window

The mapping from NDC to IDC is performed internally by the TGT. The IDC
are used by the INMOS BOO7 transputer graphics board for its graphics primitive
computations. The BOO7 has a maximum resolution of 512 pixels in both the hori-
zontal and vertical directions. The integer screen coordinates vary from 0 to
511. Once an object is defined in NDC, the mapping to IDC is quite easy. The
equations used to map from NDC to IDC are shown below:

74

Xndc = X = Xymin) * Sxyv + Xymin (26)
Yndc =].O - ((y - _ywmin) b Syv + vain) (27)

where

X, ¥ x and y coordinate of the WCS point to be converted to NDC

Xndc»> Yndc = the NDC coordinates of the points converted from WCS
Xidc = Xndc * Xscreen (28)
Yide = Yndc ¢ Yscreen (29)
where

Xscreens>Yscreen = the horizontal and vertical resolution of the video display
screen in pixels.

the coordinate in integer device coordinates of the original
point P{(x, y) in KCS.

Xidc»Yidc

However, the B0OO7 graphics board uses a window heap for window display stor-
age display storage that is totally separate from the display screen storage, so
the coordinate system used to draw in a window is always relative to the window
origin regardless of where that window is displayed on the screen. The routines
in TGT automatically take this into account and the consequences of such a
mapping are totally transparent to the application programmer.

Line Clipping

The Cohen-Southerland line-clipping algorithm (CS) is used in the
clip.line.2d() procedure in the TGT. This algorithm is discussed in detail in
references 3 to 5. Although the Tine drawing routines used in TGT could make
use of this clipping algorithm, the current release does not because the B0O7
graphics board performs raster clipping in its own display routines with consid-
erable speed. The clipping routine is provided in case an application requires
such operations.

Basically, the CS line-clipping algorithm uses a four digit binary code
called a region code for each line endpoint. The region code identifies the end-
point as lying in one of nine regions relative to the desired display window.

The regions and their respective codes are shown in figure 7. The region number-
ing is used to respective codes are shown in figure 7. The region numbering is
used to represent one of four possible Tine endpoint positions relative to the
display window. The following position bits are turned on if the line endpoint
lies in a specific region:

bit 1 - endpoint to the left of the window
bit 2 - endpoint to the right of the window
bit 3 - endpoint below the window
bit 4 - endpoint above the window

75

The bit values can quickly be determined by comparing the line endpoint
(x, y) to the window boundaries. Once the region codes have been determined for
the line endpoints, a quick check can be performed to establish which lines are
completely inside or outside the window boundaries. Lines that are not either
completely inside or outside the window boundary are checked for intersection
with the window boundaries.

New endpoints are computed for any lines intersecting a window boundary
using the following equations (see fig. 8):

For an intersection with a vertical window boundary:
y =yl + m(x -x1)
For an intersection with a horizontal boundary:
k = X1 + (y -y1) /m
where
m= (y2 -y1) / (x2 - x1)
Notice that a division is required in the CS clipping algorithm. Since
division is fast on the floating-point transputer, this is not a problem;
however, if it is a problem, there is another line-clipping routine called mid-

point subdivision which does not require any division to clip a line to a window
boundary (refs. 3 and 4).

76

- APPENDIX C
TRANSPUTER GRAPHICS TOOLKIT SOURCE CODE

This sections contains the source code for all of the transputer graphics
toolkit procedures.

The program was listed using the file lister program provided as Example 17
in the D700C release of the Transputer Development System (TDS). The lines
beginning with {{{ or }}} represent the folds in the TDS text editor (ref. 6).
They can be interpreted as comments in the listing below.

77

APPENDIX C - Continued

e - ———— D A D P P S e V> s . P e i T e W) e o e S S . S S . S S Sy vv> oo
FILE: TGT.lis - - SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 198 PAGE: 1

e ———— — - —-— —————— e

**List of Fold*#* TGT graphics routines

List of File TGT.tsr

**List all lines

*%*Excluding : NO LIST folds

{{{ TGT graphics routines

{{{ graphics channel definitions
CHAN OF ANY to.graphic, from.graphic:
VAL 1ink0O.in IS 4:

VAL linkl.in IS 5:

VAL link2.in IS 6:

VAL link3.in IS 7:

VAL 1inkO.out IS O0:
VAL linkl.out IS 1:
VAL link2.out IS 2:
VAL 1link3.out IS 3:

PLACE to.graphic AT link2.out:
PLACE from.graphic AT link2.in:
1)}

{{{ constants

(3][3]REAL32 trans.2d: -- Yglobal" 2-D transformation matrix
{{{ screen size definitions

VAL screen.width Is 512 :

VAL screen.height 1s 512 :

VAL screen.width.r IS 511.0 (REAL32):

VAL screen.height.r IS 511.0 (REAL32):

VAL max.windows Is 32

VAL max.viewports IS max.windows :

1)

{{{ primitive size definitions
VAL max.sides IS 100
VAL max.points 1s 50

1)}

BOOL display :
BOOL window.selected :

VAL r0.0 IS 0.0 (REAL32) :
VAL r1.0 IS 1.0 (REAL32) :
VAL r2.0 IS 2.0 (REAL32) :

INT active.window :

{{{ windows array indicies
VAL index.size Is 12 :

VAL x.world.min Is
VAL x.world.max Is
VAL y.world.min Is
VAL y.world.max Is
VAL x.view.min is

WO
es oo 00 e os

78

APPENDIX C - Continued

VAL vp.scale.x IS 10
VAL vp.scale.y Is 11
1))
[max.windows][index.size]REAL32 windows :

[max.windows]INT b007.win.num : -- carry along B007 "internal" window vals
1))

{{{ graphic commands to to B007

{{{ commands

o e
FILE: TGT.lis o SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 2

+ ————————————————— - - —— —— — — — - —— - — " B = ——— - o ——

VAL y.view.min Is 5 :

VAL x.view.max IS 6 :

VAL y.view.max Is 7 :

VAL pen.x Is 8 :

VAL pen.y IS 9 :

VAL c.plot.point IS 1 (INT32) :
VAL c.draw.line Is 2 (INT32) :
VAL c.draw.circle IS 3 (INT32) :
VAL c.draw.arc Is 4 (INT32) :
VAL c.draw.rectangle IS 5 (INT32) :
VAL c.draw.polygon Is 6 (INT32) :
VAL c.fill.polygon Is 7 (INT32) :
VAL c.move IS 8 (INT32) :
VAL c.move.rel Is 9 (INT32) :
VAL c.clear.screen IS 10 (INT32) :
VAL c.select.screen IS 11 (INT32) :
VAL c.display.screen IS 12 (INT32) :
VAL c.flip.screen IS 13 (INT32) :
VAL c.copy.screen IS 14 (INT32) :
VAL c.clear.window IS 15 (INT32) :
VAL c.select.window IS 16 (INT32) :
VAL c.display.window IS 17 (INT32) :
VAL c.set.window IS 18 (INT32) :
VAL c.set.draw.mode IS 19 (INT32) :
VAL c.draw.char IS 20 (INT32) :
VAL c.define.char IS 21 (INT32) :
VAL c.write.string IS 22 (INT32) :
VAL c.untyped.string IS 23 (INT32) :
VAL c.write.number IS 24 (INT32) :
VAL c.scroll IS 25 (INT32) :
VAL c.jump.scroll IS 26 (INT32) :
VAL c.rotate IS 27 (INT32) :
VAL c.reflect.x IS 28 (INT32) :
VAL c.reflect.y IS 29 (INT32) :
VAL c.line.feed IS 30 (INT32) :
VAL c.carriage.return IS 31 (INT32) :
VAL c.set.colour IS 32 (INT32) :
VAL c.select.fg.colour IS 33 (INT32) :
VAL c.select.bg.colour IS 34 (INT32) :
VAL c.select.colour.table IS 35 (INT32) :
VAL c.set.mask.reg IS 36 (INT32) :
VAL c.set.xwidth IS 37 (INT32) :

79

FILE: TGT.lis

APPENDIX C - Continued

SAVED: Tue Jul 05 15:10:54 1988

VAL c.set.yheight

VAL c.line.fregquency
VAL c.frame.rate

VAL c.interlace

VAL c.pixel.clock
VAL c.init.crt

VAL c.quick.fill

VAL c.terminate

{{{ new block transfer protocols

Is

Is
Is
IS
Is
IS
Is

Is

38

40
41
42
43
44
45

255

(INT32)

(INT32)
(INT32)
(INT32)
(INT32)
(INT32)
(INT32)

(INT32)

)

-~ added to do block transfers of pixels:
-- c.pixel.line expects size::data with data in an (x, y) format

-~ c.color.line expects size::data with data in and (%, y, color) format
-~ NOTE size is only the MOST significant value

VAL c.pixel.line
VAL c.color.line
VAL c.color.line.16
VAL c.RL.line

13}

1))

{{{ return codes
VAL e.ok

Is

VAL e.out.of.drawing.range

VAL e.invalid.screen

VAL e.invalid.window
VAL e.no.window.store
VAL e.too.many.windows
VAL e.unknown.drawing.mo
VAL e.invalid.rotation
VAL e.invalid.colour
VAL e.char.out.of.range

VAL e.string.length.exceeded

VAL e.invalid.colour.tab

1))
{{{ PROC g.draw.line

de

le

99 (INT32)
IS 100 (INT32)
IS 101 (INT32)
IS 102 (INT32)

s
IS
IS
1s
IS
is
IS
1s
1s
1S
1s
1s

PROC g.draw.line ([2]INT pO, pl)

INT32 reply :
SEQ

0
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10

-11

(INT32)
(INT32)
(INT32)
(INT32)
(INT32)
(INT32)
(INT32)
(INT32)
(INT32)
(INT32)
(INT32)
(INT32)

S5 88 44 38 S ST 3 5% 93 5% % s

L e L P ————

in a 2-D array

to.graphic ! c.draw.line; INT32 (p0[0]); INT32 (pO{1}):; INT32(pl[0]):
INT32(p1{1])

from.graphic ? reply

11
{{{ PROC c.draw.line
PRO

C c.draw.line (VAL INT pO, pl, p2, p3)

INT32 reply :°
. SEQ

to.graphic ! c.draw.line; INT32 (p0); INT32 (pl):; INT32(p2):

from.graphic ? reply

INT32 (p3)

80

APPENDIX C - Continued

FILE: TGT.lis S) SIZE:
SAVED: Tue Jul 05 15:10:54 1988 PAGE:

1))
{{{ PROC g.send
PROC g.send (VAL INT32 command, VAL []JINT params)
--send a command and recieve reply
INT32 reply :
SEQ
to.graphic ! command
SEQ i = 0 FOR SIZE params
to.graphic ! INT32 params[i]
from.graphic ? reply

}
{ PROC g.sendl
OC g.sendl (VAL INT32 command)
--send a command an recieve reply
INT32 reply :
SEQ
to.graphic ! command
from.graphic ? reply

)}
{{
PR

)
{{{ PROC g.send2
PROC g.send2 (VAL INT32 coml, VAL INT com2)
—--send a two param command an receive reply
INT32 reply :
SEQ
to.graphic ! coml; INT32 com2
from.graphic ? reply

1)) .
{({({ PROC init.graphics
PROC init.graphics()
INT reply :
SEQ
{{{ BO007 initialization
g.send2 (c.select.screen, 0)
g.send2(c.clear.screen, 0)
g.send2 (c.display.screen, 0)
g.send2 (c.select.colour.table, 1) =--good primary scales
g.send2 (c.select.bg.colour, 0) -=-black
g.send2 (c.select.fg.colour, 15) --white
window.selected := FALSE
1}

1))
{{{ PROC init.db.graphics
PROC init.db.graphics()
INT reply :
. SEQ
{{{ B007 initialization
g.send2 (c.select.colour.table, 1) --good primary scales

g.sendl (c.flip.screen)- . —--switch to alternating screens

81

APPENDIX C - Continued

o e e e e e e et e e e e e e e i e e e S = L e A e e " o e A D e e P T o S . T et S S e S s
FILE: TGT.lis SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 5
+ —————————————————————————————————— D S S S ——— T —— T —— T —— T — —— - — T —————
g.send2 (c.select.bg.colour, 0) --black

g.send2 (c.select.fg.colour, 15) --white
g.sendl (c.flip.screen)
window.selected := FALSE

11}

1))
{{{ PROC finit.graphics
PROC finit.graphics ()
INT32 reply :
SEQ
to.graphic ! c.terminate
from.graphic ? reply

et w80

))
1}
{{{ PROC select.screen

PROC select.screen(VAL INT screen.number)

IF
(screen.number = 0) OR (screen.number = 1)
SEQ
g.send2(c.select.screen, screen.number)
window.selected := FALSE
TRUE

SKIP

IR S
{{{ PROC map.to.screen.coords
PROC map.to.screen.coords (VAL REAL32 x, y, INT x.screen, y.screen)
--NOTE: x, y are in window coordinates, not viewport.
REAL32 temp.x, temp.y:
REAL32 dx, dy :
SEQ
{{{ COMMENT write statistics
:::A COMMENT FOLD
{{{ write statistics
write.full.string(screen, "map.to.screen.coords: x
write.real32(screen, x, 5, 2)
write.full.string(screen, " ")
write.full.string(screen, "map.to.screen.coords: y
write.real32(screen, y, 5, 2)
newline (screen)
1)1}

3
IF

window.selected
REAL32 scale.x, scale.y :
SEQ
{{{ compute relative to window coords

Il)

ll)

temp.x = ((x - windows[activé.window][x.world.min]) *
windows[active.window] [vp.scale.x])

82

APPENDIX C - Continued

FILE: TGT.lis SIZE: 32134 bytes
SAVED: Tue Jul 05 15 10:54 1988 PAGE: 6

temp.y := (windows[active.window][y.view.max] -
windows[active.window][y.view.min]) -
({y - windows([active.window][y.world.min]) *
windows[active.window] [vp.scale.y])

xX.screen := (INT TRUNC (temp.x * screen.width.r))
y.screen := (INT TRUNC (temp.y * screen.height.r))
1)
TRUE
SEQ
({{ compute relative to screen coords
{{{ window-to-viewport mapping
temp.x = ((x -
windows[active.window] [x.world.min]) *
windows[active.window] [vp.scale.x]) +
windows[active.window][X.view.min]

windows[active.window] [y.world.min]) *
windows[active.window] [vp.scale.y]) +
windows[active.window][y.view.min])

)
{ viewport-to-screen mapping

screen := (INT TRUNC (temp.Xx * screen.width.r))
s

}

}}
{{
X.
y.screen := (INT TRUNC (temp.y * screen.height.r))
}}

1))
{{{ COMMENT write xformed coords

::tA COMMENT FOLD

{{{ write xformed coords i
write.full.string(screen, " x.screen
write.int(screen, x.screen, 0)
write.full.string(screen, " ")
write.full.string(screen, " y.screen
write.int(screen, y.screen, 0)
newline(screen)

}}}

IS

Il)

Il)

1)
{{{ PROC transform.points
PROC transform.points(VAL INT count, []REAL32 x, Y)
REAL32 temp.x:
SEQ i = 0 FOR count
SEQ
temp.x := ((x[i]*trans.2d[0][0]) + (y[i]*trans.2d[1]{0]))+ trans.2d4([2][0
y[i] := ((x[i]*trans.2d[0]{1]) + (y[i]*trans.2d[1]([1])) + trans.2d[2][1]

x[i] := temp.x

83

APPENDIX C - Continued

FILE: TGT.lis SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 7 ‘

1)}

{{{ PROC transform.point

PROC transform.point (REAL32 x, V)
REAL32 temp.X:

SEQ
temp.x := ((x * trans.2d{0][0]) + (y * trans.2d[1](0]))+ trans.2d[2][0]
y := ((x * trans.2d[0][1]) + (y * trans.2d[1][1])) + trans.2d[2][1]
X := temp.X

1)
{{{ transformation procedures, modify matrix trans.2d
{{{ PROC make.identity
PROC make.identity([3][3]REAL32 trans.matrix)
SEQ i = 0 FOR 3
SEQ j = 0 FOR 3
IF
i=3
trans.matrix{i}[j] := ri1.0
TRUE
trans.matrix[i][j] := ro.0

}}

{{ PROC combine.transformations

ROC combine.transformations([3]}[3]REAL32 mat.a, mat.b)
{3][3]JREAL32 temp.matrix:

Lo o P 1)

SEQ
SEQ 1 = 0 FOR 3
SEQ j = 0 FOR 3
temp.matrix{ij{j] := (((mat.af{i][0] * mat.b[0][]]) +
(mat.a[i][1] * mat.b[1][]])) +
(mat.a[i][2] * mat.b[2][F]))
SEQ 1 FOR 3

=0
SEQ j = 0 FOR 3
mat.a[i][j] := temp.matrix[i][j]

1)

{{{ PROC scale

PROC scale(VAL REAL32 scale.x, scale.y, x.fixed, y.fixed)
{3][3]REAL32 temp.matrix :
REAL32 s.%, s.y, x.f, yv.f :

SEQ
s.x := scale.x
S.y := scale.y
xX.f := x.fixed

make.identity(temp.matrix)

temp.matrix{0)][{0] := s.x

temp.matrix(1](1] := s.y

temp.matrix[2][0] := (rl.0 - s.x) * x.f
temp.matrix{2])[1] := (rl1.0 - s.y) * y.f
combine.transformations(trans.2d, temp.matrix)

84

APPENDIX C - Continued

FILE: TGT.lis SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 8

1}
{{{ COMMENT PROC rotate (D700C version)
:::A COMMENT FOLD
{{{ PROC rotate (D700C version)
PROC rotate(VAL REAL32 alpha, x.pivot, y.pivot)
#USE "\tds2trig\sincos.tsr"
[3][3]REAL32 temp.matrix:
REAL32 alph, cos.alpha, sin.alpha:

{{{ PROC radian.equiv
PROC radian.equiv(REAL32 angle)
angle := angle * ((3.14159265 (REAL32)) / (180.0 (REAL32)))

}}

EQ .
alph := alpha
make.identity (terp.matrix)
radian.equiv(alph)
COSP(cos.alpha, alph)
SINP(sin.alpha, alph)
temp.matrix(0](0]
temp.matrix{0][1]
temp.matrix{1][0]
temp.matrix[13[1}]
temp.matrix([2][0]

17, L

cos.alpha

sin.alpha

(-sin.alpha)

cos.alpha

(x.pivot * (rl.0 - cos.alpha)) + (y.pivot * sin.alpha

R

temp.matrix[2][1] :

(v.pivot * (rl1.0 - cos.alpha)) - (x.pivot * sin.alpha

combine.transformations(trans.2d, temp.matrix)

FUNCTION radian.equiv
L32 FUNCTION radian.equiv (VAL REAL32 angle)
VAL degrees.to.radians IS (3.14159265 (REAL32)) / (180.0 (REAL32))
REAL32 result :
VALOF
result := angle * degrees.to.radians
RESULT result :

1))
1))
{{{ PROC rotate (D700D version)
{{{
REA

}1)

PROC rotate(VAL REAL32 alpha, x.pivot, y.pivot)
#USE snglmath
{3){3]REAL32 temp.matrix:
REAL32 angle, cos.alpha, sin.alpha:

SEQ
make.identity (temp.matrix)
angle := radian.equiv(alpha)
cos.alpha := COS(angle)
sin.alpha := SIN(angle)

85

)
)

APPENDIX C - Continued

FILE: TGT.lis SIZE: 32134 bytes

SAVED: Tue Jul 05 15:10:54 1988 PAGE:

temp.matrix[0][0] cos.alpha

temp.matrix[0][1] := sin.alpha
temp.matrix(13[0] := (-sin.alpha)
temp.matrix[1]{1] := cos.alpha
temp.matrix[2][0] := (

x.pivot * (rl.0 - cos.alpha)) + (y.pivot * sin.alpha

temp.matrix{2)[1] := (y.pivot * (rl.0 - cos.alpha)) - (x.pivot * sin.alpha

combine. transformations(trans.2d, temp.matrix)

1))
{{{ PROC translate
PRO

C translate(VAL REAL32 translate.x, translate.y)
(3]1[{3]REAL32 temp.matrix:
REAL32 t.x, t.y:

SEQ
t.x := translate.x -- assignable statements
t.y := translate.y
make.identity(temp.matrix)
temp.matrix[2][0] := t.x
temp.matrix{2j[1] := t.y
combine.transformations (trans.2d, temp.matrix)

PROC clip.line.2d

1))
1))
{{{ clipping procedures
{({
PRO

C clip.line.2d(REAL32 x1, yl, X2, v2,
BOOL display)

{{{ COMMENT Cohen-Southerland clipping algorithm

:::A COMMENT FOLD

{{{ Cohen-Southerland clipping algorithm

Cohen-Southerland clipping algorithm for line P1 = (x1, yl) to
P2 = (x2, y2). '

1))

)1}

{{{ PROC sC.code.2d
PROC SC.code.2d(REAL32 x, y, INT outcode)
SEQ
outcode := 0
IF
{{{ point left of window
¥ < windows[active.window] [x.world.min]
outcode := outcode \/ 1
)]
{({{ SKIP
TRUE
SKIP

1)
IF

86

FILE:
SAVED:

" APPENDIX C - Continued

TGT.lis SIZE: 32134 bytes
Tue Jul 05 15:10: 54 1988 PAGE: 10

{{{ point right of window
X > windows[active.window][x.world.max)

outcode := outcode \/ 2

1)}
{{{ SKIP

TRUE

SKIP

1))

IF

})

point below window
windows[active.window][y.world.min]

{{
<
outcode := outcode \/ 4
}

{{{ SKIP
TRUE

SKIP

1))

{{{ point above window
y > windows[active.window][y. world max]

IF

outcode := outcode \/ 8

)})
{{{ SKIP
TRUE

SKIP

11}

1))
{{{ PROC reject.check '
PROC reject.check(VAL INT outcodel, outcode2, BOOL reject)

SEQ
IF

(outcodel /\ outcode2) <> 0

reject := TRUE

TRUE

reject := FALSE

1))
{{{ PROC accept.check
PRO

SEQ
IF

C accept.check(VAL INT outcodel, outcode2, BOOL accept)

(outcodel \/ outcode2) = 0

accept := TRUE

TRUE

1))
(!
PR

accept := FALSE

PROC exchange ' e
OC exchange(REAL32 x1, yl, x2, y2, INT outcodel, outcode2)

{2]REAL32 temp:
INT temp.mask:

87

APPENDIX C - Continued

te—- —es———— ————t
FILE: TGT.lis _ SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 11

SEQ

Yyl := y2
t= tenmp[0]
y2 := temp[l]
temp.mask := outcodel
outcodel := outcode2
outcodel := temp.mask
1)) '
{({{ clipping routine
BOOL done, accept, reject:
INT outcodel, outcode2:
REAL32 slope:

SEQ
done := FALSE
WHILE NOT done
SEQ :
{{{ get position codes for both points
SC.code.2d(x1, yl, outcodel)
SC.code.2d(x2, y2, outcode2)
accept.check(outcodel, outcode2, accept)

11}
IF
{{{ trivial accept check
accept
SEQ
done := TRUE
display := TRUE
1))

TRUE
SEQ
reject.check(outcodel, outcode2, reject)
IF '
{{{ trivial reject check
reject
SEQ

done := TRUE
display := FALSE
1))
TRUE
SEQ
{{{ make sure (x1, yl) is outside window
IF
{{{ switch points so (x1, yl) is outside window
outcodel = 0
exchange(xl, yl, x2, y2, outcodel, outcode2)
}})
TRUE
SKIP

88

APPENDIX C - Continued

+

——-— — —— . W ———— —— — T —— T T W S —— ————————~— —— +
FILE: TGT.lis ' SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 12
+ - —-— ————— e +
1)
IF
{{{ vertical line
Xl = x2
SEQ
IF

{{{ line completely through window
(outcodel \/ outcode2) = 6

IF
({(¢ vy2>y1
y2 > vyl
SEQ
y2 := windows[active.window][y.world.max]
vyl := windows{active.window]([y.world.min]

RUE
SEQ
vl := windows[active.window][y.world.max]
y2 := windows[active.window][y.world.min]

1))
{{{ line extends above window
outcodel = 8

vl := windows[active.window][y.world.max}
}))
{{{ 1line extends below window
outcodel = 6 '
yl := windows[active.window][y.world.min]
) ’
{{{ SKIP
TRUE

SKIP

1)}

1)}
{{{ any other line
TRUE
SEQ
slope := (y2 - yl) / (x2 - x1)
IF
{{{ left of window
(outcodel /\ 1) <> 0
SEQ
vyl := yl + ((windows[active.window][x.world.mi
n] - x1) * slope)
x1 := windows[active.window][x.world.min]

)
{{{ right of window
(outcodel /\ 2) <> 0O
SEQ
yl := y1 + ((windows{[active.window]([x.world.ma
x] = x1) * slope)
%1 := windows[active.window][x.world.max]

89

APPENDIX C - Continued

oo e e e +

FILE: TGT.lis SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 13

-~

below window

utcodel /\ 4) <> 0

SEQ

x1 := x1 + ((windows[active.window][y.world.mi

—~
O =

n] - yl) / slope)
vl := windows[active.window][y.world.min}

)
{{{ above window
(outcodel /\ 8) <> 0
SEQ
X1l := x1 + ((windows[active.window][y.world.ma
x] - y1) / slope)
yl := windows[active.window][y.world.max]
13}
TRUE
SKIP

1)}
11}

11} : :
{{{ PROC clip.point.2d
PROC clip.point.2d (VAL REAL32 ¥, y, BOOL display)

SEQ
IF
((x < windows[active.window][x.world.min]) OR
(x > windows[active.window][x.world.max]) OR
(y < windows([active.window][y.world.min]) OR
(y > windows[active.window][y.world.max]))
display := FALSE
TRUE

SKIP

1))

1)) .

{{{ PROC set.window.2d .

PROC set.window.2d (VAL REAL32 x.min, y.min, X.max, y.max,
VAL INT window.num)

IF
window.num < max.windows
SEQ
windows[window.num] [X.world.min] := xX.min
windows[window.num] [x.world.max] := X.max
windows[window.num] [y.world.min] := y.min -
windows[window.num] [y.world.max] := y.max
TRUE

SKIP

1}

{{{ PROC set.viewport.2d

PROC set.viewport.2d (VAL REAL32 x.min, y.min, X.max, y.max,
VAL INT viewport.num)

SEQ

90

APPENDIX C - Continued

+ —————————————————————— - —— - — . > o = — — ot e T i s S T A . S B . il O P o T S T T — " g GO0+ @ s T s
FILE: TGT,lis . SIZE: 32134 bytes
SAVED: Tue Jul 05.15:10:54 1988 PAGE: 14
o e e e e e o e e e i 0 e et D e St D P s R T S e S e D G e e e s D M S e e = . e o s e e e e
IF e
(x.min < r0.0) OR (y.min < r0.0) OR (x.max > rl.0) OR (y.max > rl.0)
SKIP S ' '
TRUE

INT x.size, y.size :
INT %X.win.min, y.win.min :
INT x.win.max, y.win.max :

SEQ R - :
active.window := viewport.num -- for map.to.screen.coords
window.selected := FALSE -~ don’t need to save current val.

windows{viewport.numj[vp.scale.x] := (xX.max - x.min) /
(windows[viewport.num] [xX.world.max] -~
windows[viewport.num] [X.world.min])

windows[viewport.num] [vp.scale.y] := (y.max - y.min) /
(windows[viewport.num][y.world.max] -
w1ndows[v1ewport num] [y.world.min])

w1ndows[v1ewport num] [X.view.min] := x.min

windows{viewport.num][x.view.max] := X.max
windows[viewport.num][y.view.min] := y.min
windows[viewport.num][y.view.max] := y.max

map.to.screen.coords (windows[viéewport.num] [x.world.minj,
windows[viewport.num][y.world.min],
X.Wwin.min, y.win.min)

map.to.screen.coords (windows[viewport.num] [x.world.max],
windows(viewport.num]({y.world.max],
X.win.max, y.win.max)

X.size := x.win.max - x.win.min

y.size := y.win.min - y.win.max

to.graphic ! c.set.window; x.size; y.size
from.graphic ? b007.win.num{viewport.num]
window.selected := TRUE

}

{ PROC activate. v1ewport 24

OC activate.viewport.2d (VAL INT viewport. number)

SEQ
active.window := viewport.number
g.send2(c.select.window, b007.win.num[viewport. number])

)

{ PROC display.viewport.2d

OC display.viewport.2d (VAL INT viewport)

INT x.min, y.max :

INT old.active.window :

BOOL old.window.selected :

SEQ
old.active.window := active.window.
active.window := viewport
old.window.selected := window. selected
window.selected := FALSE -- display window in screen coords
map.to.screen.coords (windows[viewport] [x.world.min],

windows[viewport][y.world.max],

91

APPENDIX C - Continued

FILE: TGT.lis SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 15

x.min, y.max)
g.send(c.display.window, [b007.win.num[viewport], x.min, y.max])
active.window := old.active.window
window.selected := old.window.selected

)1}
{{{ PROC move.viewport.position.2d
PROC move.viewport.position.2d (VAL INT v1ewport number,
VAL REAL32 x.min, y.min)
REAL32 dx, dy :
SEQ
dx := windows([viewport.number]{[x.view.max] -
windows[viewport.number][x.view.min]
dy := windows[viewport.number){y.view.max] -
windows[viewport.number][y.view.min]

windows[viewport.number][x.view.min] := x.min
windows[viewport.number]{y.view.min] := y.min
windows[viewport.number] [x.view.max] := x.min + dx
windows[viewport.number][y.view.max] := y.min + dy

--display.viewport (viewport.number)

BN
{{{ absolute, relative, and cursor commands
{{{ PROC move.abs.2d
PROC move.abs.2d (VAL REAL32 x, y)
SEQ
windows[active.window][pen.x] := X
windows[active.window][pen.y] := ¥y

)})
{{{ PROC move.rel.2d
PROC move.rel.2d (VAL REAL32 dx, dy)
SEQ
windows[active.window][pen.x] := windows[active.window][pen.x] + dx
windows[active.window] [pen.y] := windows[active.window][pen.y] + dy

)
{ PROC point.abs.2d
OC point.abs.2d (VAL REAL32 X, Y)
BOOL display:
INT x.screen, y.screen:
SEQ
~~clip.point.2d(x, y, display)
display := TRUE
IF
display
SEQ
map.to.screen.coords(x, y, X.screen, y.screen)
g.send(c.plot.point, [x.screen, y.screen]))
TRUE
SKIP

)
{{
PR

)

92

APPENDIX C - Continued

o e e e e e e e - — - -———

FILE: TGT.lis

SAVED: Tue Jul 05 15:10:54 1988

+ - — ——

SIZE: 32134 bytes

PAGE: 16

{{{ PROC point.rel.2d

PROC point.rel.2d (VAL REAL32 dx, dy)

BOOL display:
REAL32 X, ¥:
INT x.screen, Y.screen:
SEQ
move.rel.2d(dx, dy)

x := windows[active.window][pen.x]
y := windows([active.window][pen.y]

~- clip.point.2d(x, vy, dlsplay)

display := TRUE
IF

display
SEQ

map.to.screen.coords(x, y, X.screen, Y.screen)
g.send(c.plot.point, [x.screen, y.screen})

TRUE
SKIP

}

{ PROC line.abs.2d

OC line.abs.2d (VAL REAL32 x, V)
BOOL display:

REAL32 x1, yl1,

by
T
PR

x2, y2:
{2]INT pointl, point2:
SEQ
X2 = X
y2 =y
x¥1 := windows[active.window][pen.x]
Yl := windows([active.window]{pen.y]

move.abs.2d (%, y)

-- clip.line.2d(x1, y1l, x2, y2, display)

display := TRUE
IF
display
SEQ

-~ update cursor position

map.to.screen.coords(xl, yl, pointl[0], pointi[1])

map.to.screen.coords (x2,
g.draw.line(pointl, point2)

TRUE
SKIP

1))
{{{ PROC line.rel.zd

PROC line.rel.2d(VAL REAL32 dx, dy)

BOOL display:
REAL32 x1, yi,

x2, y2: :
.[2]INT pointl, point2:
SEQ

y2, point2[0], point2{1])

¥l := windows[active.window][pen.x]
Yl := windows{active.window]([pen.y]

93

APPENDIX C - Continued ‘

+ —————————————————————— —— - . e - —— S et e e e S D W (S T W T s s WD S i — — T ———

FILE: TGT.lis ‘ SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 - PAGE: 17

move.rel.2d(dx, dy)

x2 := windows[active.window] [pen.x]

y2 := windows[active.window][pen.y]

-- clip.line.2d(x1, y1, x2, y2, display)
display := TRUE

IF
display
SEQ
map.to.screen.coords(xl, yl, pointi{0], pointil{1])
map.to.screen.coords(x2, y2, point2[0], point2[1])
g.draw.line(pointl, point2)
TRUE

SKIP

PROC draw.line.2d
0C draw.line.2d (VAL REAL32 x1, yl, X2, y2)
[2]INT pointl, point2 :
REAL32 tx1, tyl, tx2, ty2 : -- assignable parameters
SEQ
tx1
tyl
tx2
ty2 :
--clip.line.2d(tx1, tyl, tx2, ty2, display)
display := TRUE
IF
display
SEQ
map.to.screen.coords(xl, yl, pointl[0], pointil[1])
map.to.screen.coords(x2, y2, point2[0], point2[1])
g.draw.line(pointl, point2)
TRUE
SKIP

1))

13} . C
{{{ graphics primitives
{{{

PR

R
RVIvRY
INFARES)

}
{ PROC draw.rectangle.2d
OC draw.rectangle.2d (VAL REAL32 %, y, X.length, y.length)
INT x.screen, y.screen :
INT x.len.scn, y.len.scn :
REAL32 scale.x, scale.y :
SEQ
map.to.screen.coords (x, y, X.screen, y.screen)
map.to.screen.coords(x.length, y.length, x.len.scn, y.len.scn)
{{{ scale sides
scale.x := x.length / (windows[active.window][x.world.max] -
windows[active.window] [x.world.min])
X.len.scn := (INT TRUNC (scale.x *
((windows[active.window] [x.view.max]-
windows[active.window] [x.view.min]}) *
screen.width.r)))

})
(
PR

94

APPENDIX C - Continued

FILE: TGT.lis ' SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 18
S e e - - - e LS +

scale.y := y.length / (windows[active.window][x.world.max] ~
windows[active.window] [x.world.min])
y.len.scn := (INT TRUNC (scale.y *
((windows[active.window] [y.Vview.max]-
windows[active.window][y.view.min]) *
screen.width.r)))

)

g.send(c.draw.rectangle, [x.screen, y.screen, x.len.scn, y.len.scn])

Y1}
{{{ PROC draw.polygon.2d
PROC draw.polygon.2d (VAL INT num.sides, '
VAL []REAL32 buffer)
[max.points]INT x.tmp, y.tmp :
INT count :
INT reply :
SEQ
count := 0
SEQ i = 0 FOR num.sides
SEQ
map.to.screen.coords (buffer[count], bufferfcount+1], x.tmp[i], y.tmp[i
1)
count := count + 2
to.graphic ! c.draw.polygon; num.sides
SEQ i = 0 FOR num.sides
to.graphic ! x.tmp[i]); y.tmp[i]
from.graphic ? reply

})
{{ PROC draw.circle.2d o
ROC draw.circle.2d(VAL REAL32 x.center, y.center, radius)
INT x.cen, y.cen, rad :
REAL32 scale.x :
SEQ
map.to.screen. coords(x center, y.center, x.cen, y.cen)
{{{ scale radius
scale.x := radius / (windows[active.window][x.world.max] -
windows[active.window] {x.world.min])
rad := (INT TRUNC (scale.x *
((windows[active.window] [x.view.max]~-
windows[active.window][X.view.min]) *
screen.width.r)))

)
{
P

g.send(c.draw.circle, [x.cen, y.cen, rad])

1))

{{{ PROC draw.arc.2d

PROC draw.arc.2d (VAL REAL32 x1, vl, x2, vy2, x3, y3)

INT ix1, iyl, ix2, iy2, ix3, iy3 :

. SEQ
map.to.screen.coords(x1l, yl, ix1, iyl)
map.to.screen.coords(x2, y2, ix2, iy2)
map.to.screen.coords (x3, y3, ix3, iy3)

95

APPENDIX C - Continued

FILE: TGT.lis SIZE: 32134 bytes
SAVED: Tue Jul 05 15:10:54 1988 PAGE: 19

tr————— e ——-— - —— G o D D S S S S S e D e G S W W D e s S P T D G s D s e S S e e e . . e S

{{{ COMMENT write statements
¢ ::A COMMENT FOLD

{{{ write statements
write.int(screen, ix1, 0)
write.int(screen, iyl, 0)
write.int(screen, ix2, 0)
write.int(screen, iy2, 0)
write.int(screen, ix3, 0)
write.int(screen, iy3, 0)
1)}

11}

g.send(c.draw.arc, [ix1, iyl, ix2, iy2, ix3, iy3})

)
) _
{ misc. screen and window routines
{ PROC flip.screen
oCc flip.screen()
g.sendl(c.flip.screen)

}
{ PROC activate.screen

OC activate.screen(VAL INT screen.number)
S

g.send2(c.select.screen, screen.number)
window.selected := FALSE

}
{ PROC display.screen

OC display.screen(VAL INT screen.number)
g.send2 (c.select.screen, screen.number)

}
{ PROC clear.screen

OC clear.screen(VAL INT colour)
g.send2(c.clear.screen, colour)

)
{ PROC select.colour.table

OC select.colour.table (VAL INT number)
g.send2 (c.select.colour.table, number)

)
{ PROC set.colour

OC set.colour (VAL INT entry, red, green, blue)
g.send(c.set.colour, (entry, red, green, blue])

}

{ PROC fg.colour

OC fg.colour (VAL INT entry)
g.send2 (c.select.fg.colour, entry)

1))

)
{
R

96

APPENDIX C - Continued

FILE: TGT.lis SIZE:
SAVED: Tue Jul 05 15:10:54 1988) PAGE:

{({{ PROC bg.colour
PROC bg.colour (VAL INT entry)
g.send2(c.select.bg.colour, entry)

131}

{({{ PROC int.line

PROC int.line(VAL INT x1, yl, x2, y2)
c.draw.line(x1l, yl, x2, y2)

)
{ PROC clear.window

OC clear.window (VAL INT colour)
g.send2(c.clear.window, colour)

1)}
{{{ PROC pixel.line
PROC pixel.line(VAL INT size, []INT buffer)
-- assumes buffer is packed (x, y) from a 24 array
INT reply :
SEQ
to.graphic ! c.pixel.line; size::buffer
from.graphic ? reply

13)
{{{ PROC colour.line
PROC colour.line(VAL INT size, []JINT buffer)
-- assunes buffer 1s packed (x, y, color) from a 2d array
INT reply :
SEQ
to.graphic ! c.color.line; size::buffer
from.graphic ? reply

}
{ PROC fill.polygon

OC fill.polygon(VAL INT x, V)
g.send(c.fill.polygon, [x%, ¥1)

}
{ PROC quick.fill.polygon

OC quick.fill.polygon(VAL INT x, y)
g.send(c.quick.£ill, [x, y1)

31}
{{{ PROC fill.polygon.2d
PROC fill.polygon.2d (VAL REAL32 x, y)
INT i.x, i.y :
SEQ
map.to.screen.coords(x, y, i.x, i.y)
g.send(c.fill.polygon, [i.x, i.y])

1)
{{{ PROC quick.fill.polygon.2d
PROC quick.fill.polygon(VAL REAL32 X, Y)

97

APPENDIX C - Concluded

+—— -

FILE: TGT.lis
SAVED: Tue Jul 05 15:10:54 1988
fm——————— —— - -

SIZE:
PAGE:

——— et

32134 bytes
21

INT i.x, i.y :

SEQ
map.to.screen.coords(x, y, i.x, i.y)
g.send(c.quick.fill, [i.x, i.Yy])

— B0
St Nt At

98

REFERENCES

. IMS B0OO7 Evaluation Board User Manual. INMOS Corp., Colorado Springs, CO,
1986. :

. El1is, G.K.: Two-Dimensional Graphics Tools for a Transputer Based Dis-
play Board. NASA TM-100820, 1988.

. Foley, J.D.; and Van Dam, A.: Fundamentals of Interactive Computer Graph-
ics. Addison-Wesley, Reading, MA, 1982.

. Hearn, D.:; and Baker, M.P.: Computer Graphics. Prentice-Hall, 1986.

. Newman, W.M.; and Sproull, R.F.: Principles of Interactive Computer
Graphics. 2nd ed., McGraw-Hill, 1979.

. Transputer Development System 2.0 User Manual. 72 TDS 111000, INMOS
Corp., Colorado Springs, CO, 1987.

o -
CLTT]
A

PIXEL VALVE
E FOR (x.y) = 6
X
e}
BIT-PLANE 4
PIXEL AT COORDINATE
x.y)
BIT-PLANE 3
BIT-PLANE 2

BIT-PLANE 1
FIGURE 1. - EXAMPLE OF A FOUR BIT-PLANE SCREEN MEMORY.

99

SCREEN MEMORY
8 BIT-PLANES

(-80,-50)

Ymax

WINDOW

18 BITS
DISPLAY SCREEN
1 63 [
f L83 [O
PIXEL AT (x.V) L—>|__|_|__I PIXEL AT (x.y)
6 BITS6 BITS 6 BITS
R 6 B
255
FIGURE 2. - COLOR LOOK-UP TABLE OPERATION.
DATA PICTURE NORMALIZED DEVIGE 10
FROM __ | DEFINITION IN WORLD »| DEvice .| COORDINATES|___,_ GRAPHICS
APPLICATION COORDINATES COORDINATES BOARD
PROGRAM
)
v 1 VIEWPORT Yo
L—-_A X A A
WORLD
WINDOW 0 1

FIGURE 3. - MAPPING FROM WORLD COORDINATE SYSTEM TO NORMALIZED DEVICE COORDINATES TO INTEGER

DEVICE COORDINATES.

(70.25)

WORLD COORDINATE SYSTEM

(1,0.1.0)

(0.75,0.5)

(0.0.0.0)

NORMALIZED DEVICE COORDINATES
FIGURE 4. - SCREEN, WINDOW AND VIEWPORT RELATIONS FOR THE WINDOW SETUP EXAMPLE.

100

» X

FIGURE 5. - ROTATION OF A POINT ABOUT THE ORIGIN.

' I
|
| |
1001 | 1000 |
| |
_____ | [
0001 0000
WORLD
WINDOW
——— I
| [
0101 | 0100 l
| I
I |

1010

FIGURE 6. - ROTATION OF A POINT ABOUT AN ARBITRARY POINT.

FIGURE 7. - THE NINE CLIPPING REGIONS AND THEIR RESPECTIVE

CLIPPING CODES.

101

FIGURE 8. - LINE CLIPPING FROM LINE AB TO CD.

NASN Report Documentation Page

National Aeronautics and
Space Administration

1. Report No. NASA TM-100974 2. Government Accession No. 3. Recipient's Catalog No.
1COMP-88-13
4. Title and Subtitle 5. Repont Date
User's Manual for the Two-Dimensional August 1988

Transputer Graphics Toolkit

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Graham K. Ellis E~-4266
10. Work Unit No.
9. Performing Organization Name and Address 505-63-18
National Aeronautics and Space Administration 1. Contract or Grant No.

Lewis Research Center
Cleveland, COhio 44135-3191

13. Type of Report and Period Covered

. Sponsoring Agency Name and Address Te chni c a] Memor and um

National Aeronautics and Space Administration 7y
Washington, D.C. 20546-0001

. Sponsoring Agency Code

. Supplementary Notes

Graham K. Ellis, Senior Research Associate at the Institute for Computational
Mechanics in Propulsion, NASA Lewis Research Center (work funded under Space Act
Agreement C99066G).

18.

Abstract

The user manual for the two-dimensional graphics toolkit for a transputer based
parallel processor is presented. The toolkit consists of a package of two-
dimensional display routines that can be used for simulation visualizations. It
supports multiple windows, double buffered screens for animations, and simple
graphics transformations such as translation, rotation, and scaling. The dis-
play routines are written in occam to take advantage of the multiprocessing fea-
tures available on transputers. The package is designed to run on a transputer
separate from the graphics board.

17.

19.

Key Words (Suggested by Author(s)) 18. Distribution Statement

Graphics - Unclassified - Unlimited

Transputer Subject Category 61

Parallel processing

Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22, Price*
Unclassified Unclassified 104 AO6

NASA FORM 1626 OCT 65 *For sale by the National Technical Information Service, Springfield, Virginia 22161

National Aeronautics and
Space Administration

Lewis Research Center
ICOMP (M.S. 5-3)

Cleveland, Ohio 44135

Official Business
Penalty for Private Use $300

NNASA

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

Postage and Fees Paid
National Aeronautics and
Space Administration
NASA-451

