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ABSTRACT 

A numerical solution technique has been developed for computing the flow 
field around an isolated helicopter rotor m hover. The flow is governed by 
the compressible Euler equations which are integrated using a finite vol­
ume approach. The Euler equations are coupled to a free wake m04el of 
the rotary wmg vortical wake. This wake model IS incorporated into the fi­
nite volume solver usmg a prescribed flow, or perturbation, techmque which 
eliminates the numerical diffusion of vorticity due to the artificial viscos­
Ity of the scheme. The work has been divided into three major parts. In 
the first part, comparlSons of Euler solutions to expenmental data for the 
flow around isolated Wings show good agreement with the surface pressures, 
but poor agreement With the vortical wake structure. In the second part, 
the perturbation method is developed, and used to compute the interaction 
of a streamwise vortex With a semispan wing. The rapid diffusion of the 
vortex when only the basic Euler solver is used is illustrated, and excellent 
agreement with experimental section lift coefficients is demonstrated when 
using the perturbation approach. Finally, the free wake solution techmque 
18 described and the coupling of the wake to the Euler solver for an 1S01ated 
rotor 18 presented. Comparisons With experimental blade load data for sev­
eral cases show good agreement, With discrepanCies largely attributable to 
the neglect of VlSCOUS effects. The computed wake geometnes agree less 
well With experiment, the pnmary difference hemg that too rapid a wake 
contractlOn is predicted for all the cases. 
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Nomenclature 

A,B,C 

b 

c 

E 

E,. 

F 

F(U) 

h 

H 

H,. 

i,j,k 
Ie 

K 

M 

n 

N 

p 

r 

R 

speed of sound, or vortex core size 

components of flux Jacobian at boundary 

wing aemispan 

wing chord 

specific heats at constant volume, preasure 

Courant.Friedricha.Lewy number 

dissipation operator 

second and fourth difference components of D 

internal energy per umt mass 

total energy per unit mass, or complete elliptic 

integral of the second kind 

total roenergy per unit mass, EquatIon (4.1) 

flux operator; also see Equations (4.18a), and (4.18b) 

flux vector 

enthalpy per unit mass 

total enthalpy per unit mass 

total rothalpy per unit mass 

cartesIan unit vectors 

argument of elliptic Integrals 

complete elliptic integral of the first kind 

Mach number I or number of rotor wake SPirals 

umt vector normal to boundary 

coordinate direction normal to boundary 

number of trailing vortex filaments 

local cartesIan coordinate directions at far field boundary 

preasure 

radius, or Riemann invariant 

rotor blade radIUS, or gas constant 
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R 

S 

S(£) 

S(U) 

t 

T 

U,tI,W 

U 

U 
tr 
U 
v 

z,y,z 

X,Y,Z 

residual of finite volume operator 

entropy 

cell face projected area, or similarIty transform 

entropy function, p/ p" 

vector of Coriolis and centrifugal acceleratIon terms 

time 

temperature 

cartesian velocity vector 

components of cartesian velOCIty vector 

state vector of conservation variables 

see Equations (2.11) and (2.12) 

see EquatIon (2.34) 

state vector of characteristic van abies 

control volume 

cartesian position vector 

components of cartesian position vector 

computational coordinates 

angle of attack, or enthalpy dampmg coeffiCIent 

multistage timestepping coefficients 

ratio of specific heats, clI / Cv 

circulation 

central difFerence operator 

time step size 

second and fourth difference artifiCIal VIscosIty coeffiCIents 

radius 

Glauert variable, Equation (4.26) 

collective pitch at .75R of rotor 

second and fourth difference artifiCIal VIscosIty constants 

eIgenvalue of the Jacobian matnx 
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A 

T 

w", 

subscripts 

o 
a 

cyl 

ez 

If 
l,),k 

n 

r,,p,z 
sind 

tip 

tI 

wake 

X,Y,Z 

00 

diagonal matrix of eigenvalues ..\ 

averaging operator 

density 

time scale 

velocity potential 

azimuth angle 

vorticity vector 

bound circulation underrelaxation parameter 

wake underrelaxation parameter 

angular velocity of rotor 

prescribed flow value 

absolute quantity, measured in mertial frame 

vortex cylinder quantity 

value extrapolated from computational dom&ln mterlor 

far field value 

computational coordinate mdices 

normal to boundary, or wake vortex Index 

quantities referred to ", ,p, and z directions 

self-induced 

quantity at rotor blade tip 

vortex quantity 

wake quantity 

referred to computational coordinate directiOns 

free stream value 
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superscripts 

(n) 

n 

new 

old 

quantity referred to inertial reference frame 

quantity at n'" multistage level 

quantity at n'" tIme or iteration level 

value after relaxation update 

value before relaxation update 
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Introduction 

1.1 Background 

The helico~ter h~ proven itself as a useful and practical vehicle Slnce 

the late 1940's. However, the aerodynamics of these aircraft is considerably 

more complex and drlficult to analyze than that of conventional fixed Wlng 

aircraft. If one considers the flight envelope of a helicopter, the range of 

How regimes covers most of the Huid dynamic phenomena of interest to any 

aerodynauucist. In forward Hight, the How around the maln rotor blades is 

unsteady and three dimensional. At the tip of the advancing blade, tranSOnlC 

speed may be reached, resulting in shocks. On the retreating blade, high 

angles of attack can result in dynamic stall, and over the inboard portion 

of the blade a region of reversed How IS found. Each blade operates In the 

vortical wake of the other blades of the rotor-in particular there IS a strong 

lnteraction between the advancing blade and the tiP vortex of the preceding 

blade once every revolution. One must also consider the lnteraction of the 

mam rotor wake With the tall rotor, or the Interference between the two maln 

rotors in a tandem configura':ion. The presence of the fuselage complicates 

the picture even more. All thIS contributes to maklng the helicopter an 

aerodynauuclst's nightmare-or dream, depending upon hIS or her attitude 

One thlng the hehcopter does that conventional aircraft cannot do IS 
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Figure 1.1: Companson of hoverIng rotor and fixed WIng wakes 

hover or fly at very low speeds efficiently. For an Isolated rotor In hoverIng 

flight the flow picture is SImplified 8InCe the loads on the rotor blades are 

steady. By considenng the flow field in blade fixed coordinates, one has the 

analog to steady state flight of a conventional &llcraft. Even here, however, 

are difficulties not found in fixed wing aircraft aerodyn&mlcs The difference 

between a hovenng rotor wake and a classICal fixed WIng wake can be seen 

in Figure 1.1, taken from McCroskey [42]. The tIP vortex of each rotor 

blade passes near the following blade, resultIng In rapid varIatIons of the 

spanwise aerodyn'\llUc loading near the tip. Also, the wake descends below 

the rotor, In contrast to the fixed WIng wake which 18 convected downstream 

of the WIng. Because of thIS, the structure of the rotary WIng wake has 
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a significant impact on the load distribution of the rotor. This IS quite 

different from the classical fixed wing wake for which the effect of the wake 

roll up is only third order in the angle of attack (Ashley &: Landahl [3], pp. 

135-136). The implication of this is that even for the seemingly simple case 

of the hovering rotor, there are important nonlinear fluid dynamic effects 

that must be accounted for if the aerodynamic loads on the rotor are to be 

accurately predicted. 

The above discussion sheds some light on why the analysis of helicopter 

aerodynamics lags that of fixed wing aircraft. The complex aerodynamlcs 

of rotary wing flow fields is not easily amenable to analytic treatment, and 

generally the techniques that have developed over the past forty years are 

based on drastic simplificatiOns of the real flow field. With the ad vent of high 

speed computers, the pOSSibility of handling these complicated flow fields 

numerically is gradually being realized .. The development of computational 

fluid dynamics technology has had a great impact on the design and analysIS 

of conventional aircraft, for which many robust techniques for predicting 

aerodynamic loads have been developed. Progress In this technology for 

rotary wing configurations has lagged that for fixed wing aircraft, in good 

part due to the essentially more complex flow fields associated With the 

former. 

The research reported herem deals with the prediction of the aerody­

namic loads on a hovering rotor. The next section of this chapter reviews 

methods for modeling the vortical wake of a hoverlDg rotor. The computa­

tion of the aerodynamlc loads and the coupling of the wake model to the 

solution of the near field flow of the rotor blades is discussed 10 section 

1.3. FlDally, the chapter ends With a discusslon of the alms of the current 

research and an outline of the rest of the thesis. 
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1.2 Hovering Rotor Wake Models 

Many approaches to modeling the rotary wing wake exist. Moat models 

are based on the assumption of an inviscid, irrotational, incompressible flow 

with embedded vorticity. Classical vortex theories of propellers provide a 

starting point for rotor analyses. These methods model the blades and wake 

with distributions of bound and trailing vorticity and use the Biot-Savart 

law to compute the induced velocities. The classical theories assume that 

the wake may be treated as a rigid, non-contractmg helical vortex sheet. 

This is consistent for high speed propellers for winch the induced velocities 

are small compared to the axial translation speed. For a hoverlng rotor, this 

assumption is clearly wrong as the only veloc1ties are the induced veloc1ties. 

From momentum theory, it is known that the induced veloc1ty over the rotor 

disk is half the velocity in the fully developed wake. Hence the wake of the 

rotor must contract. Furthermore, the structure of the hovering rotor wake 

is found to be much different from the classical p1cture of a vortex sheet 

(Figure 1.1). For this reason, propeller vortex theory cannot be directly 

applied to rotary Wlngs in hover. More reallStic models of the wake are 

required for accurate prediction of the blade loads. There are primarily two 

approaches to modeling the wake in common use today· prescribed wake 

and free wake analyses. 

Prescribed wake hover prediction methods have been 1n WIdespread use 

in recent years (Landgrebe [38,39j, Kocurek & TangIer [3S!). These meth­

ods use experimental data to derive empirical formulas relatlDg the rotor 

blade geometric parameters and thrust coefficient to the vortex wake geom­

etry. More refined models have been developed by adding further correla­

t10ns based on the rotor load distribution (Landgrebe et al. [40j, Kocurek 

& Berkowitz [34!) These methods have been quite successful 1n pred1cting 

hover performance for convent1onal rotor configurations. However, these 

schemes do not correctly model the flow phYSICS, namely the transport of 
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vorticity In the wake. Their moat serious limitation is their reliance on exper­

imental data for predicting the wake geometry. This empiricism works well 

for rotors similar to those of the experimental data base. If unconventional 

plan forms or twist distnbutions are used, the prescribed wake correlations 

are no longer valid and the results obtained with this approach must be 

treated With suspicion. For this reason, these methods are not reliable for 

new configurations, such as tilt-rotor aircraft, in which the wake geometry 

may differ considerably from that of a conventional helicopter rotor. 

This limitation is overcome by free wake analysis methods (Clark & 

Leiper [181, Summa [64]). These methods are based on Helmholtz's theorem 

that vortex lines in an mviscid, incompressible fluid must lie along stream­

lines. The wake 11 modeled as vortex sheets and filaments, and the force free 

pOSitions of these vortices are detenruned Iteratively. Free wake methods are 

the most general approach to wake modeling currently bemg used. The price 

of this generality is that they are computationally expensive. For conven­

tional rotors, free wake methods often give results no more accurate than 

the prescribed wake methods. For this reason, prescribed wake methods are 

favored in mdustry. However, free wake models, being firmly rooted in the 

flow physics, are better suited to unconventional configurations for whlch 

an experimental data base does not exist. Furthermore, free wake methods 

can provide insights into the physics of rotary wmg wakes, somethIng that 

prescribed wake approaches cannot do. 

Recently, Miller [45,44,431 has developed a fast free wake method based 

on a Simplified model of the rotor wake. Miller has replaced the hehcal wake 

vortices with either vortex lines (his two dimenslonal model) or vortex rmgs 

(three dimensional model) lymg at the mean position of the vortex spirals 

below the blade. ,\5 With the more geometrically det&lled free wake models, 

the force free pOSitiOns of these vortices are found Iteratively. Miller uses 

only two vortex filaments to represent the tr&lling vorticity: one tiP vortex 
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and one inboard vortex representing the inboard vortex sheet. This wake 

model has also been used by Roberts &; Murman [54,46] who have shown 

that more than one vortex filament is required to model the inboard portion 

of the vortex sheet accurately. The results obtained with these simple free 

wake models show that reasonably accurate results can be obtained for a 

small computational cost, making the fast free wake analyslS method a useful 

tool for hover performance prediction. 

Although the free wake model of the rotor wake captures the flow physics 

by allowing the transport of vorticity, some limitations in the model stul 

exist. It is baaed on the assumption of a potential flow, meaning that dis­

tributed vorticity is not admitted; the wake is modeled as vortex sheets and 

filaments, and convection of the wake elements is treated in a Lagrangian 

fashion. Any distributed vorticity, such as In the tip vortex core, cannot 

be treated with potentlal methods. If rotational flow fields are to be com­

puted, either the Euler or Navler-Stokes equatlons must be used to model 

the flow. The solution of these equations requires the use of a fixed grid in 

an Eulerian reference frame. Liu et al. [411 have presented a solution of the 

Incompressible Navier-Stokes equations for a rotor In hover. Unfortunately, 

their solution does not show the expected contraction of the wake, possibly 

because of their lack of a model for the far wake. Also, they consldered a 

flow having a Reynolds number much lower than exists for most rotors of en­

gineering mterest. Much work needs to be done m developing Navier-Stokes 

methods for computmg the vortical wake of a hovering rotor. 

The modeling of the rotor wake is of course only part of the hover prob­

lem. The aerodynamiC loads on the blade must also be computed. fur­

thermore, there is a very close coupling between the detalled near field flow 

about the rotor blades and the subsequent roll up and convectlon of the 

wake. In the next section, the computation of the flow field about the rotor 

blades and the coupling of this to the wake model are exammed. 
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1.3 Rotor Blade/Wake Coupling 

The most common method of computing the aerodynamic loads of he­

licopter rotor blades is to model them as lifting lines or lifting surfaces. 

These models are based on the assumption of small disturbances to an in­

viscid, irrotational flow. Lifting line theory requires the further assumption 

that three dimensionality may be treated as a perturbation on a two di­

mensional flow about each rotor blade section. This latter assumption is 

violated at the tip of the blade, and in the blade/vortex interaction region 

if the tip vortex is sufficiently strong and close to the blade. Lifting surface 

theory is three dimensional, so that the blade vortex interaction is more ac­

curately represented. One restriction of these blade models is the linearIZed 

treatment of the boundary conditions. More geometric generality may be 

acheived by using a surface singularity method (panel method) to model 

the blade (Summa [641, Morino et al. [48D. This approach is based on the 

Green's function method for the Laplace equation, and strictly spealnng is 

confined to incompressible flows. 

Liftmg line, lifting surface, and panel methods treat the portion of the 

trailing vortex wake attached to the blade as either a fixed or free sheet. The 

prescribed wake methods and the simplified free wake model of Miller [451 

fix the position of the trading vortex sheet. Miller uses the computed bound 

circulation distribution to determine the strength of the vortices 10 the free 

portion of the wake. In the free wake methods of Summa [641 and Mormo et 

at. [481 the paneling of the attached near wake corresponds to the begmnmg 

of the free wake, and the pOSitions of the attached wake elements are found 

iteratively as part of the free wake solution procedure. Th18 provides a 

natural and very close coupling of the wake geometry solution to the near 

field flow around the blade 

The governmg equation for the hfting line, surface, and panel methods 

is the Laplace equation, which is exact for an incompressible potential flow 
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However, the tip Mach number is often large enough that compressibility 

effects are significant. This can be accounted for through the use of an 

approximate compressibility correction, such as the Prandtl-Glauert rule. 

However, if transonic speeds are reached at the blade tip, the linear gov­

erning equation is no longer adequate to model the Bow. For these cases 

either the transonic small perturbation or full potential equation is required 

to compute the Bow about the rotor. To solve these equations, a finite dif­

ference or finite volume approach must be used. Such methods require the 

value of the potential to be defined at fixed points in an Eulerian reference 

frame. This in tum makes it necessary to generate a grid system around 

the rotor blade, which is called the computational domain. By solving the 

equation, the Bow field is known throughout the computational domain. 

The transonic small perturbation (TSP) equation is based on small geo­

metric disturbances to the Bow of an inviscid, irrotational ideal gas at near 

sonic velocities. This allows the use of linearized boundary conditions at 

the rotor surface, and simplifies the grid generation task. ThiS equation has 

been applied to the case of a rotary Wing In hover by Caradonna et al. for 

both non-lifting [13,6] and lifting Bows[12] The TSP equation IS strictly 

valid only in the transonic range, and as With lift10g surface theory, the hn­

earized treatment of the boundary conditions is not valid at a blunt leading 

edge. The full potential equation, on the other hand, 15 valid from transonic 

to subsonic speeds, and allows the rotor geometry to be more accurately 

modeled. This requires the generation of a boundary conforming grId sys­

tem. It has recently been used for a hovering rotor by Strawn & Caradonna 

[63] and Egolf & Sparks [241. 

Coupling a finite difference potential solver to a rotor wake model IS 

complicated by the fact t lat the treatment of the vortex wake on a fixed 

Eulerian mesh IS somewhat more dIfficult than for surface Integral methods 

Vortex sheets and lines must be represented by branch cuts 10 the computa-
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tional domain. In Caradonna et al. [12], Egolf & Sparks [24], and Strawn '" 

Caradonna [63], the vortex wake is prescribed. The trailing vortex system of 

the blade is treated as a quasi-planar sheet lying along a coordinate surface 

The tip vortex spirals below the blade are fixed in space, and are represented 

by branch cuts in the domain. Strawn & Caradonna used an experImen­

tally determined wake geometry, while Egolf & Sparks used the Kocurek '" 

TangIer [35] prescribed wake model. This is an effective approach when the 

wake vortices do not lie too close to the rotor blades. Because the potential 

equation does not convect vorticity, modeling a free vortex wake requires a 

Lagrangian treatment of the sheet within the finite difference domain. In 

general, a free sheet Will not lie along a coordinate surface, complicatmg the 

branch cut boundary condition. Murman & Stremel [49] and Steinhoff '" 

Suryanarayanan [62] have treated the problem of vortex sheet roll up USIng 

a fimte difference potentIal solver. More work remams to be done on thIS 

approach. 

The formation of the tIP vortex and the structure of the trailing vortex 

sheet shed from the rotor blade are, of course, dependent upon the VlSCOSlty 

of the flUId and the enforcement of the no slip condition at the solid surface. 

Potential models cannot compute this process. The Kutta condition pro­

vides a model for specIfying separation from sharp traIling edges and tips. 

Some additional separation model 18 needed to approximate the tIP vortex 

formation around a rounded tip (e.g. Summa [64]). Furthermore, If the 

tip vortex of one blade passes suffiCIently close to the follOWing blade, the 

distortion of the vortex path and changes in the core structure cannot be 

handled With a potential method. To compute strong blade/vortex Interac­

tions as well as the roll up of the wake as it comes off the blade, the Euler 

or Navier-Stokes equations are needed to solve for the near field flow around 

the blade. Although VlSCOUS forces prOVide the phYSical mechanism for the 

separation of the vortical wake from the blade, the roll up and convection of 
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the wake is primarily an inviscid phenomenon. This suggests that the Eu­

ler equations, because they admit vortical solutions, should be an adequate 

model for computing the near field flow around a rotor blade, provided they 

Yield a realistic model of separation. 

The Euler equations for an inviacid, non-heat conducting ideal gas have 

been used to compute the flows around fixed wing configurations (e.g. Jame­

son & Baker [31], Rizzi & Eriksson [53]). Researchers have found that, con­

trary to expectations, the Kutta condition at a sharp trailing edge need not 

be explicitly enforced. The usual explanation for this turn of events IS that 

the artificial vlSCosity of these schemes mimics the effect of real viSCOSity at 

sharp edges. More puzzling is the fact that separation is observed around 

smooth edges, such as rounded wing tips. Again, artifiCial visCOSity IS the 

suspected culprit, and It has been suggested that this separation would not 

occur if the grid were SUitably refined. The mechanism for separation In 

Euler codes has not been clarified, and much work needs to be done 10 thiS 

area. 

Although the cause of separation in Euler codes is not completely un­

derstood, It has been observed that the rolled up vortical wakes computed 

by such methods appear to be realistiC models of real wakes. Much work 

has been done on leading edge separation around slender configurations in 

particular, with emphasis on understanding the nature of the rolled up vor­

tices. Powell et al. [50] have eX&IDlned the nature of leading edge vortices 

computed USlOg the cODlCal form of the Euler equations. The total pressure 

loa in the vortex core was observed to be insensitive to such numencal pa­

rameters such as the magnitude of the artificial viscosity and the refinement 

of the grid. Furthermore, the total pressure loss was very SImIlar to that 

observed experimentally Powell et aI. proposed that the total pressure loss 

18 due the discrete nature of the computed vortex sheet. FlOlte volume solu­

tiOns of the Euler equations must yield a sheet with a finite thickness rather 
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than a contact discontinuity. This thickness results in a total pressure loss 

&8 the tangential velocity goes through zero across the sheet. Powell and his 

colleagues further argue that for this reason, the discrete Euler equations 

mimic the effect of viscosity in a real fluid, and hence realistically model a 

shear layer in a high Reynolds number flow. If this is the case, then fimte 

volume solutions of the Euler equations should be a better model for vortl­

cal flows than might be expected at first. The Navier-Stokes equations may 

only be necessary for flows In which viscous effects cannot be neglected, such 

&8 flows with large scale separation. 

Because the Euler equations admit vortlcal solutions, they can be used 

to compute the flow in the wake regIon of a rotor as well as around the 

blade. ThIs avoids the assumption of an incompressIble potentIal flow WIth 

embedded vortex sheets requIred by the LagrangIan free and preSCrIbed wake 

methods descrIbed in the previous section. In prlDciple, a finite volume grId 

can be constructed that extends from the rotor blade near field to the wake 

regIon below the rotor, and the entire flow field of the rotor may be found 

as part of the same solution procedure. This eliminates the need to couple a 

wake model to the rotor blade near field solutIon, and IS SImilar lD philosophy 

to the free wake panel method of Summa [64]. However, thIS approach is 

not practical. The vortical regions in the wake are tYPICally very compact. 

To be able to resolve the wake structure below the blade, an extremely 

fine grid is needed in the region of the vortex core. Either a globally fine 

grid is required or some form of local refinement must be used. The first 

option results in exceSSIve resolution In regions where the flow gradients are 

small. The second optIon reqUIres either a priori knowledge of the locatIon of 

the wake vortICes or an adaptive refinement strategy This complicates the 

algorIthm for solving the equatIOns. A second problem IS that the artIficial 

VlSCOSlty reqUIred by the Euler solver WIll result lD a non-phYSIcal dIffUSIon 

of the vortex as It is convected below the blade, although real VISCOSIty or 
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inviscid inatabilities may diffuse it. An attempt to overcome these problems 

has been made by Steger ok Kutler [611, who computed the vort1cal flow 

in the wake of an aircraft using a very simple adaptive grid strategy and 

fourth order accurate spatial differencing. Finally, smce the rotor wake IS 

of infinite axial extent below the rotor, some model for the port1on of the 

wake lying outside the computational domain is reqwred m order to get the 

proper wake contraction and induced velocities near the blade. For these 

reasons, it is preferable to model the wake separately, and to couple It to 

the Euler solution of the near field of the blade. To take full advantage of 

the properties of the Euler equatlons, the coupling strategy should allow 

the computation of strong blade/vortex interactions m which the tip vortex 

passes very close to the tr&lling blade, including the sltuat10n In whlch the 

blade cuts through the rotat1onal core of the vortex. 

Little work has been done to date usmg the Euler equat10ns for hovermg 

rotors. Sankar et al. [56J have presented one solution technique usmg the 

Euler equations coupled to a wake model. Their approach consists of wr1tmg 

the state vector as a perturbat10n about the veloclty field mduced by the 

vortex wake. The wake is modeled as a smgle tlP vortex sp1ral whose posltlon 
• 

1S prescribed below the rotor blade. A further slmplificatlon is to 19nore 

the spanwise and chordwise induced veloclty components, and to wrlte the 

perturbation about the axial component of the induced veloclty m a limited 

region of the computational domain near the rotor blade. Although the 

method demonstrated by Sanlcar et al. 1S relat1vely slmple, It does not make 

full use of the advantages of the Euler equations over potent1al methods 

This approach 18 effectively a downwash, or angle of attack, correct1on at 

the blade, turning the Euler solver mto an extended liftmg line method 

Also, Sanlcar ~d his co-workers cannot compute the strong mteract10ns of 

a tlP vortex With a rotor blade because of the excessively Simple mcluslon 

of the wake influence. Finally, a more complete wake model IS required to 
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accurately predict the aerodynamic loads on the rotor. 

In a more recent paper, Agarwal and Deese [I] also solve the Euler equa­

tions for the flow around a rotor blade. As in Sankar et al., the approach of 

Agarwal and Deese is essentially to correct the angle of attack of the blade 

to account for the wake influence. Unlike Sankar and hIS co-workers, they 

use the results of a free wake calculation to determine the induced angle 

of attack at the rotor blade, and this is translated lDtO a effective geomet­

ric twist distribution. The free wake solution and the Euler computation 

are performed lDdependentlYi there is no coupling or iteration between the 

two. In the cases they present in [I], they make a further simplification 

by simply adjustlDg the collective pitch rather than giving the blade a new 

twist distribution. As Wlth Sankar et al., this falls to take full advantage of 

the properties of the Euler equationS' over the potential equation. Agarwal 

and Deese point out that to capture the rotor wake with the Euler solver, 

a highly refined grid must be used. They conclude that coupling the free 

wake solver to the Euler solver may provide an effective solution algorithm 

for hovering rotor flows. 

In Roberts & Murman [551, an earher version of the work described lD 

this theSIS is reported. As in Sankar et al., the wake is computed separately 

from the Euler solution around the blade. The wake model used IS that of 

Roberts & Murman [54], which is essentially the vortex rlDg model devel­

oped by Miller [45]. For the case computed lD [551, the lDduced velOCity 

field of the entire seml-lnfinite wake IS used to specify the far field boundary 

condItions for the Euler solver. ThiS lDtroduces the vortex wake lDtO the 

finite volume computational domalD. To reduce the smearlDg of the wake 

vortices due to artificial viSCOSity, the induced velOCity of the entire wake 

IS computed at each grid cell in the computatioDal domalD and subtracted 

from the total velOCity field before the smoothlDg operator 1S apphed. Al­

though thiS reduces the smearing of the vortices, the truncation error In the 
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coarse regions of the grid still results in more diffusion of the vortex core 

than than is desired. Insufficient resolution in the far field means that the 

core structure of the tip vortex spiral cannot be specified properly at the 

boundary. Finally, the scheme did not fully couple the predictIon of the 

wake geometry to the near field flow of the rotor blade. 

With this background of previous work on the hover problem estabhshed, 

the approach and objectives of the present research w1l1 be dISCUSSed in the 

next section. Finally, an outline of the remainder of the thesIS w1l1 be glven. 

1.4 Present Research 

As discussed in the prev10us sectIon, applicatIon of existmg finite volume 

or finite difference methQds to a hovering helicopter rotor 115 complicated by 

the fact that the wake of a rotor 1S very eompact, makmg It ddRcult to 

compute the flows Wlthout smearmg the wake excessively due to madequate 

grid resolution and numerical dissipatIon. If these problems can be over­

come, Euler methods Wlll prove a valuable tool for understanding hovermg 

rotary wing flow fields and serve as a necessary step towards a complete 

NaVler-Stokes model. 

The objectives of the current research are three-fold. First, the lssue 

of whether numer1cal solutions of the Euler equat10ns YIeld real1st1c models 

of the vortical structure and the roll up of the wake is addressed. Thls 115 

done by companng the solut1on of the Euler equat10ns to the exper1men­

tally measured wake flow field of a convent1onal wmg of moderate aspect 

ratio. Second, a method of introducing a streamwise vortex mto the compu­

tational domain such that Its structure remains well defined even m coarse 

reg10ns of the gr1d is developed. Th1S is to allow efficient computatIon of the 

blade/vortex mteractlon for a. hovermg rotor The method 115 demonstrated 

by computmg the mteract10n of a smgle streamWlse vortex passmg over a 

low aspect rat10 Wlng and comparmg Wlth exper1ment. Fmally, an 1teratlve 
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method for coupling a free wake solution of a hovermg rotor wake with the 

near field flow around a rotor blade is developed, and the results for a two 

bladed model rotor are compared to experiment. 

In the next chapter, the finite volume algorithm for the Euler equatlons 

is presented, and the code validated for the ONERA M6 wing at transODlC 

speed and an aspect ratio 6 wmg of rectangular planform at a highly sub­

sonic Mach number. The trailing vortex system computed in the latter case 

is compared to experIment, and the valIdity of the Euler equations for com­

puting the structure of the wake -is discussed. In chapter 3, a method for 

introducing a streamWIse vortex mto the Euler computational domam and 

computing its mteractlon WIth a WIng IS presented. The method IS vali­

dated agamst the experImental data of Smith & Lazzeroni [57] Chapter 4 

discusses the coupling of the Euler solver WIth Miller)s SImplified free wake 

model. An lteratlve SolutIon procedure for combming the two methods IS 

presented, along WIth computations of a two bladed rotor 10 hover. These 

results are compared to the test data of Ballard et al [5] and Caradonna & 

Tung [14] Fmally, conclUSIons are presented 10 chapter 5 
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Chapter 2 

Euler Solution Procedure 

In thl8 chapter, the governing equations for an inviscld gas, the Euler 

equations, are given, and the algorithm for solution of the equations IS pre­

sented. The method used 18 the finite volume multIstage scheme of Jameson 

[31]. The generation ofthe body fitted grid IS discussed. An 0-0 grId topol­

ogy is used, and the grId generator IS the algebraic code of Eriksson [25]. 

Two test cases are presented for validation of the Euler code. The first is 

the ONERA M6 wmg at transonic speed. ComparIsons are made between 

computed surface pressures and the experimental data of reference [7] The 

second test case IS the rectangular planform wmg tested by Weston [67] at 

a low Mach number. Comparisons are made wlth both surface pressures 

and wake surveys The purpose of thl8 comparlson IS to deterrrune whether 

the numerical solutIon of the Euler equations YIelds a realistic model of the 

trailing vortical wake of a lifting wmg 

2.1 Euler Equations 

The flows consldered here are taken to be steady The Reynolds number 

IS assumed to be hlgh and the Prandtl number IS of order Unity, meanmg 

that VISCOUS and thermal effects are confined to thm shear layers Flows 

With masslve separatIon are not treated here. The outer mVlscld flow IS 
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then governed by the equations for an inviscid, adiabatic, Ideal gas, called 

the Euler equations. With this model, the boundary layers and wakes are 

ignored, and only the Euler equations are solved for the outer flow. Although 

only steady flows are of interest here, solutions are found by solving the 

unsteady Euler equations In a time asymptotic fashion. The unsteady Euler 

equations are given here in integral form, and are derived from an application 

of the laws of conservation of mass, momentum, and energy to an arbitrary 

control volume in an Eulerian reference frame. The boundary conditiOns 

necessary for obtainmg a steady state solution are also presented. 

Consider the control volume V shown in Figure 2.1. Conservation of 

-
-

Figure 2.1. Control volume 

mass requires that the time rate of change of the mass of flUid In the control 

volume equal the net flux across the boundaries. Wrltlng thiS In lntegral 
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form gives 

:t III pd
3
z = -II pu.nd

2
z, (2.1) 

v BV 

where P IS the fluid density, u is the velocity, t is time, d3z IS a differential 

volume element, d2z IS a differential area element on the control volume 

surface, and n is the outward pOlDting normal at the control volume surface. 

Applying Newton's second law to the flow through the control volume, 

we get 

:t III pud
3
z = -II pu(u.n) d

2
z -II pnd2

z. (2.2) 
v BV BV 

where p is the static pressure of the fluid. 

Conservation of energy across the control volume Yields the energy equa­

tion, 

where 
a-a 

E=cuT+ -2-. 

(23) 

Here T IS the temperature of the flUid and Cu IS the speclfic heat at constant 

volume. 

Finally to close the system, an equation of state IS requIred. This 1S 

given by the ideal gas law, 

p=pRT (2.4) 

where R = cII - Cu is the 1deal gas constant, cII belDg the specific heat at a 

constant pressure. 

The continwty, momentum, and energy equat10ns can be written lD a 

more convenient form given below, 

(2.5) 
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where 
p 

pu 
u= pv 

pw 
pE 

and 

F(U) = 

pU 
pUU+ pi 
PVU + pj 
PWU+ pic 
(pE+ p)u 

E= _1_ e+ u.u. 
"T -1 p 2 

The vector U 18 called the state vector, and F(U) is the flux vector; u, 11, 

and W are the cartesian components of the velocity u in the %, y, and z 

directions, respectively, and i, i, and ic are the corresponding unit vectors 

in those directions. The equation of state has been used to ehminate T from 

the energy equation; the symbol "T IS the ratio of the specific heats, c,j cu, 

and IS taken to be equal to 1.4. The steady state IS reached when the surface 

10tegral in Equation (2.5) IS zero. 

The steady state boundary conditions required to complete the specifi­

cation of the steady problem are now presented. At a stationary solid wall, 

there 18 no flUid flux across the surface. This is written as 

u·n=O, (2.6) 

where n is the unit normal at the surface. In the far field upstream of the 

W1Og, the flow should approach a uniform stream, 

lim U = U oo • • --00 
(27) 

where U oo = (Poo,Poouoo,O,O,PooEoo)T is the state vector of the umform 

free stream, % being taken as the free stream direction. The flow field IS not 

uniform at downstream 10finlty for a hfting flow due to the eXlstence of a. 

vortlcal wake. The usual boundary condition In the Trefftz plane 18 that the 

flow perturbation 10 the streamWlse direction vanishes, 

au 
hm -a =0 . 

• -+00 % 
(2.8) 
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Finally, the flow is required to separate from the body at sharp trailing 

edges. This is called the Kutta condition. 

To solve Equations (2.5) numerically, it 18 useful to non-dimenslonallze 

the dependent and independent variables. The reference values used to 

normalize the variables are arbitrary, the only requirement being that the 

choice of normalization constants be cons18tent. In this thesis, the denslty 

and pressure are normalized by their free stream values, Poo and Poo, and 

the velocity is non-dimensionalized by 0 00 / v:f, where 0 00 is the free stream 

speed of sound. Lengths are normalized by an arbitrary length scale c, 

usually taken to be the chord of the wing, and t is normalized by cv:f/ooo. 

With these cholces for the normalization constants, the non-dimenslonal 

Euler equatlons are ldentlcal to Equation (2.5). The non-dimenslonal free 

stream state vector becomes 

1 

v:fMoo 
U oo = 0 

o 
_1_+ "IAf! 
"1-1 

(2.9) 

where Moo is the free stream Mach number. In the remamder of this thesls, 

the non-dimenslonal equations Wlll be referred to unless otherwise noted. 

In the next sections of this chapter, the numerical algorithm for solvlDg 

Equatlon (2.5) is presented. 

2.2 Spatial Discretization 

The fimte volume spatIal discretlzatlon used here IS that developed by 

Jameson & Baker [31] and fuZZl & ErIksson [53] ThiS conslsts of diViding the 

computatlonal domam lDto hexahedral cells (Figure 2.2). The state vector 

U IS defined at the center of each cell. The Bux vector at the cell center, 

F(U), is computed from the state vector. To approximate the Bux integral 

on the right hand slde of Equation (2.5), the Bux vectors at adjolDing cells 
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are averaged to get the flux vector on a cell face. This is dotted lnto the 

projected area of the cell face. The sum of the outgoing fluxes across all six 

faces of the cell is computed to get the approximation to the rlght hand slde 

of Equation (2.5). 

Figure 2.2: Finite volume cell 

If X, Y, and Z are the computational coordinates In the I, J, and k 

directions, the discrete approxunatlon to the flux lntegral can be wrltten as 

FI,J,. = 5x (Sx· s.&xF(U)"".) + 5y (Sy . s.&yF(U)"".) 

+5z (SZ . s.&zF(U)',J,.) (2 10) 

The operators 5x and s.&x are the central dlfference and averaglng operators 

10 the X dlrectlon and are defined as 
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and 

JJxl",,1c = ~ (i,+i",. + I,-i",.) . 
Analogous operators are found for the Y and Z directions. The values 

Bx, By, and Bz are the projected face areas In the positive X, Y and Z 

directions, respectively (Figure 2.2). 

This approximation to the flux integral can be seen to yield a central 

difference discretization of the equations, which is second order accurate on 

a cartesian grid. Central difference algorithms for first order equations are 

dispersive rather than disSipative (see Anderson, et al. [2]). This 11 because 

the truncation error consists of odd order higher derivatives rather than even 

order derivatives. For nonlinear equations, tlus can lead to instability due 

to aliasing errors. AJJ energy cascades from long wavelengths to short wave­

lengths, the shortest wavelengths cannot be resolved on the finite volume 

grid. AJJ a result, these waves show up as distorted long waves. To elim­

mate this unphysical behavior, a dissipative mechanism must be added to 

the discrete Euler equations. The form of the diSSipation term is described 

below. 

2.3 Artificial Viscosity 

The artificial viscosity model, or dissipation operator, used IS that of 

Jameson et al. [32]. It COnsIStS of two terms, a fourth difference and a 

second difference expression. The fourth difference artificial vIscosity has 

the following form: 

D(4) {" (Va",. (4) ,,3",) } '",. = - ax -r.-E',J,.axu',J,. +... . 
',J,. 

(2.11) 

Only the difference m one coordinate direction IS shown; the differences In 

the other two coordmate dllectlons are Slmllar. In Equation (2.11), E~1/c 
IS the fourth difference diSSipation coeffiCient, Va,J,. 1S the cell volume, and 
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r.",. is the time step for the cell, scaled to a CFL number of 1; U',J,A: is the 

state vector at cell i,j,k with pE replaced by pE+ pm the energy equation. 

Since pE + P = pH, where H is the total enthalpy, this has the effect of 

admitting a constant total enthalpy flow as an exact solution to the discrete 

equations. This is a desirable property, since the flows considered here wlll 

have a constant total enthalpy in the steady state. This also allows the use 

of enthalpy damping, which will be described in section 2.6. The definition 

of the fourth order coefficient will be given shortly. 

The inclusion of the cell volume v"J,A: is necessary to make the dissipation 

term conslStent With the flux integral term and with the time denvatlve 

term in Equations (2.5). The unsealed time step term, r •. J,A:, 18 equivalent 

to scaling the dissipation term by the spectral radius of the flux Jacobian, 

aF / au. Pulliam [51] has analyzed artificial diSSipation ~odels for the Euler 

equations, and he shows that by usmg a Jacobian scalmg term m the artificial 

viscosity in combination With a central difference discretization of the flux 

mtegral results in a difference scheme that emulates an upWind differencmg 

algorithm. 

The fourth difference dissipation prOVides a level of background dissi­

pation suffiCient to stabilize the time marchmg algorithm, and to kIll the 

odd-even decoupling of the solution typical of central difference algorithms 

for the Euler equations. In transonic flows, the fourth difference artifiCial 

viscosity operator is insufficient to capture shocks. A second difference ar­

tificial viscosity is required. This takes the form 

D (2) {6 (V,'J'. (2) 6"') } ',J,A: = X r',J,. e',J,. xU',J,. +... , (2 12) 

where e~~,. IS the second difference dissipation coeffiCient. 

The two smoothmg coeffiCients In the X direction are deterrruned from 

the formulas 

(2 13) 
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(2.14) 

with similar expressions for the Y and Z directions. The form of"the second 

difference dissIpation coefficient is designed so that it turns on only near 

shocks. In smooth regions of the flow field, the second difference of pressure 

is small, and IS formally of second order In the grId spacing. This makes 

D(2) formally of third order 10 the grid spacing. Near shocks, the pressure 

switch is of order umty, and locally the second difference artIficial VlScoslty 

becomes first order. Typical values of ,,(2) are 0.1 to 0.25. 

Because the second difference smoothing is necessary solely to capture 

shocks, it IS cot needed for shock free flows. IT a purely subsoniC flows IS 

computed, It has been found that the fourth difference alone is adequate to 

stablhze the calculation. For these flows, ,,(2) IS set to zero. 

The fourth difference artificial viscosity prOVIdes a background diSSIpa­

tion in order to stabilize the time stepplng scheme. However, it w1l1 cause 

Wiggles, and can possIbly be destabilizing, at a shock. The form of £(4) IS 

chosen such that in smooth regions of the flow, where the pressure gradi­

ents are IIllld, the coeffiCIent takes on ltS largest values. Near shocks, where 

the second difference pressure SWitch becomes of order umty, the fourth 

dlfference artificial visCOSIty coeffiCIent IS turned off. Note that the fourth 

difference artIficial viscOSIty 18 formally a third order quantity In the grId 

spaclng. The value of ,,(4) is chosen to be between 0.004 and 0 01. 

2.4 Multistage Time Integration 

ApplYlng the spatlal discretlzatlon and artifiCIal VISCOSlty operators to 

the Euler equatlons on the fimte volume grid, one obtalns the serru-dlscrete 

equations 
cIU.",Jc 1 {~ D} ( 5) dt = -v.- 1".11 - I.J •• , 2.1 

1,1.· 
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where the dissipation operator is 

_ (Z) (4) 
D •• J .1c - D. J JiI + D. J JiI' t t •• 

This forms a large system of coupled nonlinear ordinary differential equa­

tions for U. To integrate these equations, the multistage time steppmg 

scheme of Jameson & Baker [31] is used. 

The multistage scheme is applied at time level n as follows: 

U(O) - un, 
U(l) - U(O) _ al ~t (F(O) _ D(O») , 

U(Z) = U(O) _ az ~t (F(l) _ D(O») , 

U(S) = U(O) _ 03 ~t (F(Z) _ D(O») , 

U(4) = U(O) _ a4 ~t (F(S) _ D(O») , 

U"+l = U(4). 

The multistage coefficients are 

111 
01 = -,oz = -,03 = -,04 = 1 

432 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 

The artificial smoothing is evaluated only at the Inltial stage of the temporal 

integration. This is to reduce the operatlon count for the scheme. The time 

step At for cell i,j, Ie is found from the formula 

(217) 

where c is the speed of sound, Sm4Z 18 the vector sum of the maximum 

projected areas of the cell In the x, y, and z duectlons, and eFL IS the 

Courant-Frledrichs-Lewy number, whlch IS chosen by the stablhty linut of 

the multistage scheme. For the coefficients of the time steppmg scheme given 

here, 

eFL ~ 2V2 
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(see appendix A). Most of the cases presented in this thesis were run at 

the maximum allowable CFL number given above. As shown here, the time 

step for each cell is chosen such that the CFL number is constant throughout 

the computational domam. Larger cells will run at larger time steps than 

small cells. As a result, the lntegration 15 no longer time accurate, but the 

convergence to the steady state IS accelerated. Essentially, the temporal 

integration scheme has become an iteration path to the steady state, but 

the solution at any intermechate iteration level no longer has any physical 

meaning. 

One important feature of the multistage temporal lntegration scheme 

presented here 15 that the steady state operator, F •. 1,Ic-D •• 1,1c, is Independent 

of the time step used in the lntegration. 

Note here that the value of r',J,1c which is used to scale the artifiCial vis­

cosity operator presented m the last section is Simply equal to At',J,Ic/CFL. 

This is necessary to make the artliiclal viSCOSity lndependent of the CFL 

number used to reach steady state. 

2.5 Boundary Conditions 

Boundary conditions on the computational domam are required to mam­

tam a properly posed initial-boundary value problem, Just as they are re­

qUired analytically. However, the number of boundary conditions which may 

be prescribed mathematically are not sufficient to close the discrete equation 

system. Extra relations must be derived from the local analytic behaVior of 

the governmg partial differential equations. These extra relations, and their 

physical Significance, are discussed In this section 

2.5.1 Solid Wall 

At the solid wall, we have the physical boundary conditIOn given by 

Equation (26), namely, the requirement of no Bux through the wall. For 
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the continuity and energy equation, this is easily incorporated by lumply 

setting the mass and energy fluxes to zero at the wall. However, in the 

momentum equation, there is still a pressure contrIbution at the solid wall 

To obtain the value of the pressure at the wall, the pressure is extrapolated 

from the interior usmg the normal momentum equatIon as formulated by 

Rizzi [52]. The expression is obtained by writing the momentum equation 

at the wall and dotting it into the umt normal, 

aii A (~V :t\ A V A p- . n + pu' u,' n = - p' n at 
where n IS the unIt normal at the wall. Using EquatIon (2.6) and noting 

that in wing-fixed coordinates an/at = 0, the momentum equatIon may be 

rewritten as 
~ (- VA) ap pu· u' n =-an (2 18) 

EquatIon (2.18) gives the pressure gradient normal to the solid wall in 

terms of the known surface curvature and the velocity at the wall. The 

velOCIty at the wallIS taken to be the tangentIal component of the velOCIty 

in the first computational cell off the body. With this, EquatIon (2.18) IS 

solved for ap/ an at the wall, and the pressure is extrapolated to the wall 

from the first Interior cell. 

2.5.2 Far Field 

Analytically, we have the requIrement that the flow disturbances van­

ish at upstream infinity, EquatIon (2.7), and that streamwise perturbations 

vanish in the Trefftz plane, Equation (2.8). These are more difficult bound­

ary conditions to apply, SInce the computatIonal domam only extends a few 

chords from the wing at which distance the disturbances wIll not have van­

Ished. Also, the far field boundary conditions gIven above are for the steady 

state flow. Since unsteady equations are beIng marched In time to reach the 

steady state, the problem bemg solved IS an InItIal-boundary value problem 
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The numerical boundary conditions applied at the computational far field 

are developed with the requirement that the transient disturbances pass 

through the boundary with mimimum reflections. The far field boundary 

conditions used are those of Jameson & Baker [311, who use the theory of 

characteristics to satisify these conditions. 

At the far field boundary, the Euler equations are written in coordmates 

normal and tangential to the boundary, 

(2.19) 

where N, T1, and T2 are local cartesian coordinates normal and tangential 

to the boundary, and A, B, and C are the N, T1, and T2 components of the 

flux Jacobian aF I au. The normal direction 18 taken to be pOSitive po1Ot1Og 

out of the domam. The boundary conditions are developed by assuIIUng all 

incident waves are normal to the boundary in the far field, so the tangential 

derivatives may be taken to be zero. Equation (2.19) then reduces to 

au =Aau 
at aN' (2.20) 

A smillarlty transform can be found which diagonalizes the Jacobian 

matrix A 10 Equation (2.20). If 8-1 and 8 are the matrices of the left and 

rlght eigenvectors of A, respectively, then the matrlx 

Un 0 0 0 0 
0 Un 0 0 0 

A = 8-1AS = 0 0 Un 0 0 (2.21) 
0 0 0 un+a 0 
0 0 0 0 Un - a 

lS a diagonal matrix of the eigenvalues of Ai Un 18 the velOCity normal to the 

boundary (posltlve outward) and a 18 the speed of sound at the boundary. 

The one-dimenslonal equatlons are then written 10 compatibility form, 

8-1 au A8-1 au = 0 
at + aN ' (222) 

45 



and the values of the characteristic variables are determined. IT the as­

sumption is made that the Bow is locally isentropic, then the compatIbility 

equations 2.22 can be rewritten in the form 

au, A au, 
at+ 'aN' (2.23) 

for I = 1 to 5, where A, is the i'" eigenValue A and U, IS the correspond-

109 characteristic variable. The characterisic van abies associated With each 

eigenvalue are: 

Un 8 (2.24a) 

Un Un (224b) 

Un U'2 (224c) 
20 

(2.24d) Un+O un +--
1 "1-

20 
(224e) Un -0 Un ---

"1- 1 

where 8 IS the entropy, and Un and U,2 are the components of velOCIty tan­

gentIal to the boundary. The last two variables are the RIemann invariants 

The compatlbllity equat10ns thus can be seen to correspond to entropy, vor­

tiCIty, and acOustIC waves normal to the boundary. 

It should be noted that the form of the compatIbility equatIons gIven 

here IS not unique, and 1f the isentrop1c assumpt10n IS not used another set 

of equations may be found (e.g., see Courant & Hilbert [201, pp. 434-436) 

From the theory of characterIStics, 1t IS known that the number of bound­

ary conditIOns specIfied should equal the number of characterIstIcs entering 

the domam at the boundary, whIch correspond here to those assOCIated With 

the negatIve eIgenvalues of A. At a subsonic inflow Un and Un -0 are negative 

and u" +0 IS positive, so four characterIStics enter the domam, co"respondIng 

to the inCident entropy, vortICity, and downstream runnIng acoustic waves 

These four characterIStIc varIables specIfied. The characterIstIc varIable cor­

respondIng to the upstream running acOUstIC wave IS extrapolated from the 
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interior in order to close the system at the boundary and determine the state 

vector there. At a subsonic outflow, there is one incoming characteristic, the 

upstream running acoustic wave, which is specified. The outgOing acoustiC, 

vorticity, and entropy waves are extrapolated. 

The implementation of the boundary conditions in the code IS now de­

scribed. Since none of the flows considered here have a supersonic free 

stream, only the subsonic boundary conditiOns will be described. The in­

coming and outgoing Riemann invariants are 

_ A 24,. 24 r,. = u,.·n + -- = un + --, 
'1- 1 '1- 1 

(2.25a) 

and 
- A 

2400 24 ( b) roo = 1.100 • n - -- = Un - -- 2 25 
'1-1 '1- 1 

Here, 11,. and 4 •• are, respectively, the velocity and speed of sound at the 

first Interior point of the domain, and Uoo and 400 are the free stream values, 

and n is the unit normal pointing out of the domain. 

The velocity normal to the boundary is found from 

1 
Un = 2 (r,. + roo) (2.26a) 

and the speed of sound 18 given by 

'1-1 
4 = -4-(r •• - roo). 

At the Inflow, the entropy is specified, and IS given as 

1... = 1. 
p"t 

At an outflow, the entropy is extrapolated: 

p P,. 
-=~ p"t P •• 

The values of p and p are then formed from 
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and 
pa2 

p=-. 
"I 

The tangential velocity 18 specified from the free stream at an inflow pOint 

and extrapolated at an outflow. This is most easily done by writing the 

total velocity as 
__ +( _ A)A 
U=Uoo Un-Uoo·nn (2.28a) 

at an inflow boundary and 

_ _ ( _ A)A 
U = U ,Z + Un - U.Z • n n (2.28b) 

at an outflow boundary. DOing it this way aVOids having to explicitly com­

pute the tangential component of velocity at a boundary pOint. 

The boundary conditions are updated at each stage of the multistage 

time integration. 

2.5.3 Artificial Viscosity 

Establishing proper boundary conditions for the artificial vIscosity terms 

IS difficult. The mathematiCs of the governing partial differential equations 

does not tell us anything about the dissipation terms. PhYSical reasonmg 

also fails us Since the additional terms are not physical. Finally, the fact 

that the artificial VISCOSity uses a five point difference stencllin each coordi­

nate direction means that special treatment is reqUired at the first two cells 

adjacent to the boundary. The present treatment of the diSSipation terms 

at the boundaries of the computational domain IS based on the analysIs of 

Erikason [27], who developed a boundary treatment of the artifiCIal VIscosity 

that guarantees that the terms are globally dissipatIve. The ImplementatIon 

of his approach IS presented here. 

For the second difference term, the smoothing flux across a boundary 

face 18 set to zero. Let the subscripts 1 and 0 represent the values at an 

interior cell adjecent to the domain boundary and a dummy cell Just outSIde 

48 



the boundary, respectively (Figure 2.3). This boundary condition on the 

0 2 

0 

". ", " 0 o 

0 

2 0 

0 

,~ ", " 

o 0 

-I 0 

Uo= 2U.- U2. 
U~ = 3U.- 2U2, 

Figure 2.3: Artificial viscosity difference stencil at boundary 

second difference dissipation is equivalent to setting 

(229) 

For the fourth difference artificial vlScosity, Erlksson's treatment IS equlva­

lent to linearly extrapolating the values from the first two cells Inslde the 

domain to two dummy pOints outslde the boundary, 1 e. 

Uo = 2Ul - U2, 

U-l = 3Ul - 2U2• 

(2.30a) 

(230b) 

The lmplementatlon of these boundary condltlons IS most eastly accom­

plished by linearly extrapolating the state vector U and the pressure p 

according to Equations (230a) and (2.30b). Because the pressure IS also 
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linearly extrapolated, the second difference dissipation coefficient €~~~. be­

comes zero at the boundary face, which accomplishes the same thing as 

Equation (2.29). The same difference stencil for the artificial viscOSity op­

erator can thus be used at all the interior cells. 

This boundary condition for the artificial viscosity is apphed both at the 

solid wall and at the far field boundaries. At the symmetry plane, the flow 

variables are simply reflected across the boundary. 

2.6 Enthalpy Damping 

The flows bemg computed here are steady, and have a constant total 

enthalpy The unsteady equations are used simply to provide an Iteration 

path to the steady state, and time accuracy lS not of concern. ThiS IS the 

Justification for using local tIme stepping as descrIbed 10 the section on the 

multistage integration scheme, as thIs provides one way of accelerat10g the 

convergence of the code to the steady state. Another convergence acceler­

ation approach used here IS known as enthalpy damping, which has been 

proposed by Jameson [321. ThiS approach has been further exammed by 

Turkel [651 and by Jespersen [331. A detailed derivation of the modified 

equation set that results from the use of enthalpy damping is given 10 ap­

pendix B. The general outline of Jameson's approach to enthalpy damping 

is given below. 

Jameson gives a heuristic development of the approach based on his ex­

perience with Iterative solutions of the steady transOnIC potential equation. 

The argument he presents lS based on an irrotatl0nal, unsteady subsoniC 

flow. This flow can be deSCrIbed by the wave equation, 

1 
2~U - ~ee - ~"" - ~~~ = 0, a 

(2.31) 

where e = z - ut, e = y - tit, and ) = z - wtj thlS IS derived assUmIng by 

assUmIng constant velocity for the transformation (see appendix B). If thlS 

50 



equation is modified by adding a term proportional to the time derivative 

of <P, the telegraph equation, 

(232) 

is obtained. This equation has solutions consisting of exponentially damped 

waves (see Courant & Hilbert [20], pp. 192-193). Jameson, in his devel­

opment of methods for the solution of the potential equation for transonic 

flows, has found that the coefficient Q used has a strong effect on conver­

gence rate of the iterative scheme. He proposes that a similar term be added 

to the Euler equations to simulate the effect of the <Pt term in the potential 

equation. To do this, he notes that for an unsteady, irrotational flow With a 

uniform free stream, the Bernoulli equtt.tion becomes 

<Pt = Hoo - H, (2.33) 

where H IS the total enthalpy and Hoo IS the free stream total enthalpy. 

Therefore, Jameson suggests modifying the unsteady Euler equations by 

adding a term proportional to the difference In the local total enthalpy and 

free stream total enthalpy to the equation system. The modified equatIon 

set is 
au ~ -at + V· F(U) + Q(H - Hoo)'U = 0, (2.34) 

where 
p 

pu 

u= pv 
pw 

p 

The reason for replacing pE WIth P in the energy equation IS that otherWise, 

a. term proportional to HZ appears, which accordIng to Turkel [65] can lead 

to dlfficultles, and according to Jameson et aI. [321 can be destablilzIng 

Jameson has found It to be effective then to use the form In EquatIon (2 34) 
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There are two properties to note about the modified equation. First, the 

additional terms vanish when H = Hoo. Thus for steady flows in which the 

total enthalpy is uniform, the steady state operator is unchanged. Using the 

modified equation will therefore not affect the steady state solution. The 

second point of interest is that the modified equation set has no physical 

meaning. The transients computed With these equations do not represent 

any physical transients. The justification for the use of the modified equa­

tIOns rests on the fact that only the steady state is of interest, and the path 

used to reach the steady state is irrelevant. If transIent flow phenomena are 

of interest, Equations (2.34) cannot be used. 

In solving this equation set, the approach used 18 to solve the four stage 

temporal mtegratlon for the standard equation set (2.5), and to add the 

enthalpy dampmg terms as a pomt ImpliCIt update of the state vector at the 

end of the tIme step. Also, It has been found to be most convenient to replace 

Q With t" so that the implicit update step becomes mdependent of the tIme 

step used in the multistage integration. Typically, the enthalpy dampmg 

coefficient Q is taken to be 0025, a value determined through numerical 

experImentation. It has been found that the enthalpy damping does not 

affect the maximum allowable time step of the basIC multistage algorIthm 

Also, despite the fact that enthalpy damping IS theoretIcally destabIilzmg 

(Turkel, [65]) m supersomc regions, It has not been found necessary to turn 

It off in these regions for transonic cases. 

The advantages of the enthalpy damping for acceleratmg convergence 

have been found to be most pronounced for low Mach number flows In 

the high subsoniC to transonic range, enthalpy dampmg has not greatly 

affected the convergence rate. For highly subsomc flows, It has had a marked 

effect. For the lowest speed flows presented m th18 theSIS (Moo $ 02), the 

convergence rate has been observed to be as much as 5 tImes faster WIth 

enthalpy dampmg. Since most of the results shown here are m the subSOniC 
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range, this has been a compelling reason for uSing enthalpy damping. 

2.7 Grid Generation 

The finite volume grids used for all the cases but one in this theSIS are 

generated by the algebraic code of Eriksson [25]. The grid generator maps 

the space between the wing surface and a quasi-spherical outer boundary 

into a logical cube, as Illustrated in Figure 2.4. Figure 2.5 shows the grid 

generated for the ONERA M6 wing. The grid has an 0-0 topology, in 

which both the chordwise and spanwise grid sections have an O-grld topol­

ogy. The attrac..~lve fer.ture of this grid 15 Its relative economy in grid POints 

around the wing. The grid points are clustered In the high gradient regions 

near the leading and trailing edges, and. at the wing tiP, and the gnd IS 

stretched In the far field where resolution IS not needed. Transfinite inter­

polation 15 used to generate the grid, and It conSIsts of using interpolating 

functions to compute the coordinate geometry between boundary planes In 

the computational domain. 

One problem with mapping the space between the wing surface and the 

outer computational boundary onto a logical cube IS that singular lines will 

arise in the computational domain where coordinate surfaces fold over one 

another. This can be seen In Figure 2.5, for the 0-0 grid, where the Singular 

lines are seen to be emitted from the corners of the wing tip. Eriksson has 

done a cla.ssificatlon and study of the coordinate Singularities that arise In 

the mapping of the phYSical space to the computational space In reference 

[261. He shows that the stability of the cell based finite volume scheme IS not 

affected by the presence of the grid Singularities. He also concludes that the 

truncation error In the viCinity of the Singular lines becomes zeroeth order, 

but that the overall error of the scheme lies between first and second order 

In the grid spacing. 

In the grid generator developed by Eriksson, the Singular lines are made 
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Figure 2 4 Mapping from physical space to computational space (from ref­
erence [25]) 
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Flgure 2 5 Grid generated for the ONERA M6 wmg (from reference [53]) 
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to come off' the wing tip in the I!Ipanwise direction, and mtersect the outer 

boundary along lines approxunately 45° to the free I!Itream direction and in 

the plane of the wing (Figure 2.5). This makes the grid well behaved in 

the wake region. Since one of the purposes of the present research IS to 

examine the wake computed by the finite volume Euler equations, this IS a 

very desirable property. 

In the remainder ofthil!l chapter, the I!IOlutlOns for the ONERA M6 wmg 

and the wing tested by Weston are presented and compared to experiment. 

2.8 ONERA M6 Test Case 

The first case presented here IS the ONERA M6 wmg at a free stream 

Mach number of 0.84 and an angle of attack of 3.06 degrees. The purpose of 

thiS case IS to validate the present fimte volume algonthm for the Euler equa­

tions. ThiS case has been computed by a number of authors and therefore 

is a suitable test case of the present method The computed pressure coeffi­

cients for thiS case are compared to the experimental values of reference [7] 

The solution was obtained on a grid of 96 cells in the chordWlse direction, 20 

cells m the spanwise directlon, and 20 cells from the Wlng surface to the far 

field boundary. This gives 38,000 grid cells, whlch lS moderate resolutlon. It 

should be noted that thIS grid is identical to that used by Rlzzl & Eriksson 

[53] for this same test case. The artlficial VISCOSity coeffiCients used were 

,,(2) = 0.1,,,(4) = 0.01. The eFL number was 2.8 and the enthalpy damping 

coeffiCient was 0.025. The solutlon was obtamed after 1000 Iterations of 

the Euler solver, and took approximately 13 mmutes of CPU time on the 

Cray X-MP 148. The lteratlon history IS shown m Figure 2 6, where the root 

mean square of the change m the state vector at each Iteratl"ln lS shown. 

ChordWlse distributiOns of the pressure coeffiCient are shown in Figure 27 

The solid lines are the computed pressure coeffiCients, and the symbols are 

experimental values The ordmate IS .;;rc rather than the usual xl c ThiS 
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Figure 2.6: Convergence history for the ONERA M6 WIng 

has the effect of stretching the coordinates at the leading edge, makmg the 

rapId expansion in that region more clearly VIsible. All the surface pressure 

coefficient plots in this thesis are plotted this way. The agreement IS good 

over most of the wmg, Wlth larger discrepanCIes near the root than at the 

tIP The weak shock at the leading edge and the stronger shock near the 

midchord are captured by the scheme, and can be seen to coalesce IOta a 

SIngle strong shock near the tip At the root, the aft shock 1S seen to be 

stronger and further aft than was observed exper1mentally ThIS dIfference 

may be attrIbuted to shock/boundary layer mteractlon, whIch weakens the 

shock 10 tranSOnlC flow, and results in the shock bemg further upstream 
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Figure 2.7' Computed and experimental surface pressures, ONERA M6 
WIng, Moo = 0.84, a = 3.06° 

than 10 an lOVlSCld calculation. The agreement of the surface pressures at 

the leachng edge with the observed suction peak IS very good, although this 

is possibly fortuitous. Very good agreement IS seen near the WIng tip, where 

the leading edge and the mtdchord shocks coalesce lOto a slOgle strong shock. 

This merging of the leading edge and mtdchord shocks IS very clearly seen 

10 Figure 2.8, 10 which Mach contours 10 the first cell off the WIng surface 

are shown. 

One of the more lOterestlOg features of thiS soiutlOn 1S the behavlOr at 

the tiP (':J/b = 099, Figure 2.7). The experimental data clearly show a 
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Figure 2.8: Surface Mach number contours, ONERA M6 wing, Moo = 0 84, 
a = 306° 

secondary suctIon peak on the upper surface of the aufod near the tradlng 

edge. Qualitatively similar behaVIor is seen In the computed results, In that 

there is lift being produced over the last 60% of the auf oIl chord at the tIP 

sectIon. ThlS behaVIor can be explalned by the formatIon and roll up of the 

tIP vortex over the WIng. Here we have the sItuatIon dIscussed In chapter 

one, namely the separation of the flow around a rounded WIng tIP WIthout 

speclfYlng a Kutta conditIon. The discrete Euler equationJ, because of the 

addItIon of the numerIcal dISSIpatIon terms, are providlng a pseudo-Vlscous 

simulatIon of the flow That is, the artifiCIal VISCOSIty provIdes a mechamsm 
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for the separation of the flow around the tip, although the detalls of this 

process are not clearly understood. Although this In a sense miIrucs the 

physics of a real viscous flow, the details of the separation process in the 

discrete Euler equations cannot be construed as simulating the real flow In 

that region. However, the large scale vortical structures in the wake may be 

insensitive to these details. ThIS latter point wlll be addressed below. 

2.9 Weston Test Case 

The second case run for a fixed wing geometry 115 the wing tested by We­

ston at Langley Research Center [67]. This wing 115 ofrectangular planform, 

untWIsted, WIth a senuspan to chord ratio of3 and NACA 0012 alrfoll sectlon 

With a body of revolution tip. It was tested at low speed, corresponding to a 

Mach number of 0.1425. The experimental data conslsts of surface pressure 

coefficient measurements and detailed wake surveys, making lt well sUlted 

for comparing the present solutions with the actual wake structure. The 

computations for this case were performed on a 128 x 32 x 32 grld (132,072 

cells), which is a reasonably fine resolution grld. The artlficlal V1SCOSlty co­

efficients were ,,(2) = 0 and ,,(.) = 0.004. The enthalpy damping coefficient 

was set to 0.1. To reduce the computatlon tlme for this case, 500 lterations 

were run on first on a coarse grld of 64 x 16 x 16 cells, which was generated 

by ignoring every other gnd point on the final grid The coarse grld solutIon 

was then injected onto the fine mesh, and another 500 IteratIons were run 

Total CPU time for this case was approxunately 23 minutes on the Cray 

X-MP/48. The iteration hlstory 115 shown ln Figure 2.9. 

The comparison of the surface pressures shown In Figure 2 10 are seen 

to be good. At the root sectlon, the SUCtlO'l peak 115 seen to be hlgher than 

experlment. Thls appears to be due prlmarlly to the flow angulanty 10 the 

Wind tunnel. Flgure 2.11, taken from Weston [67]' shows the measured flow 

angularlty in the empty tunnel, whlch IS conslderable near the Wing root 
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Figure 2.9: Convergence history for Weston wmg, Eriksson's grid 

location At each section, the computed pressure at the trading edge IS 

seen to show more recompression than was observed experimentally, due to 

the growth of the boundary layer on the wing. However, 10 moving along 

the span to the tiP, the lift coefficient at each section IS seen to falloff 

more rapidly than was observed experimentally Aga1O, the conSiderable 

flow angularity in the tunnel can account for the discrepancy. Near the tiP 

Itself, the computed suction peak at the leading edge IS much lower than was 

observed experimelltally At the lead10g edge stagnation pomt near the tiP, 

there IS a lower pressure than 10 the experiment. Suruiar behaVior 15 seen 

10 the ONERA M6 results at the 99% span section (Figure 2 7) Solutlons 
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Figure 2 10: Computed and experimental surface pressures, Weston wmg, 
Moo = 0.1425, Q = 8°, Enksson's grid 

on a coarser grid also show very similar behaVior. One possible cause for 

this behavior is the difference in the tip geometry between the computatIOn 

an experiment The experimental WIng model had a body of revolutIOn tIP 

(both for the ONERA M6 and for the Weston wmg) , while the compuatlonal 

geometry is rounded but not a body of revolutIon. Also, the grId smgulanty 

intersects the WIng at the tIP leading edge, and locally the solutIon accuracy 

IS degraded. 

At the tIP of the WIng (y/b = 0.99, Figure 2.10) the pressure coefficIents 

show a secondary suctIon peak at the traIling edge, qualitatIvely surular 

62 



0--0 
1.0 0-0 

0 0 angle 
range 

.8 

0-0 

.6 0---<) 

~ 

n 
.4 

0-0 

0-0 

0-0 
.2 0 

0--0 
0 

0 
-.5 0 .5 1.0 

Lateral flow angle t deg 

Figure 2.11 Flow angularity in empty WInd tunnel 

63 



to the experimental observations. The cause of this localized reduct10n in 

pressure appears to be due to the formation of the tip vortex as 1t rolls 

up over the wing tip. Although the tip is rounded, there is a separat10n 

occurring as at the sharp trailing edge, and the flow is qual1tatively behavlng 

like the real, VlSCOUS flow. The signmcant quant1tat1ve d1fFerences in the load 

distribution do show that the behavior, although mimicking the phYS1Cal 

process, is not a reliable model of the physics. 

One difficulty Wlth the gr1d generator used to create the gr1d for th1s case 

1S that the body of revolution tip geometry cannot be accurately modeled. 

Eriksson's grid generator wdl round off the t1P, but does not prov1de exactly 

a bod~ of revolution shape. Furthermore, hlS treatment of the gr1d slngular 

lines as they come off the tip places certain restrict10ns on the degree of free­

dom allowed in sliec1fying the tip shape geometry Wlthout gettlng too h1ghly 

skewed a gr1d. For this reason, computations have also been performed for 

this case on a gr1d prov1ded by Wedan [66]. This gr1d was generated by a 

hybr1d algebraic/elliptic PDE procedure. The two surface gr1ds are shown 

In Figures 2.12 and 2.13 Wedan's gr1d has the same number of cells as 

the Er1ksson grid, but Wlth a different distr1but1on of grld POlnts. It also 

accurately models the body of revolut1on Wlng t1P (F1gure 2 13) Solut1ons 

obtained USIng thlS grid are shown in Figure 2.14. Because With Wedan's 

gr1d the chordwise coord1nate planes on the Wlng surface do not lie along 

the streamwise direction as they do with Enksson's gnd, the pressure coef­

ficients were interpolated to the exper1mental spanWlse stat10ns Note the 

snrular results as for the original grId over the lnboard port1on of the gnd, 

but the differences at the tip. With th1S grld, pressure dlstr1but1on at the 

99% senuspan locat1on more nearly matches the experlmental data quallta­

tIvely, although the suct10n peaks at the leading and traIling edges are st1ll 

lower than experIment. The dIfferences are hkely not only to the d1fFerences 

In the t1P shape, but In the d1fFerences In the spanwise resolutIon at the tIP, 
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whIch is slightly coarser WIth Wedan's grid. Clearly, the local behaVIor of 

the Bow is sensitive to the details of the grId and the tIP geometry 

Although the Euler solutIons on the two grIds are sIgnificantly dIfferent 

10 detail near the wing tIP, both have qUIte slIrular surface pressure dIS­

tributions 1Oboard of the tIP and both are conSIStently underpredict10g the 

experimental suctIon peaks over most of the WIng As stated above, a hkely 

culprIt for thIS state of affaIrs is the Bow angularIty 10 the w10d tunnel. To 

get a better understand10g of thIS dIScrepancy, a comparIson has also been 

made between both Euler solutIons and the results of a surface smguiarity 

potentIal code (panel method) Since the free stream Mach number IS so 
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F1gure 2.14: Computed and exper1mental surface pressures, Weston WlDg, 
Moo = 0.1425, Q = 8°, Wedan's gr1d 

low and the flow is attached over most of the wing, the Euler Solut1on and 

the potential solution should give very slmilar results. The panel code used 

15 QUADPAN (Coppersmlth, Youngren, & Bouchard [191), wh1ch 1S a pro­

duction code used by Lockheed. This code uses quadrllateral panels, w1th 

constant source and constant doublet strengths on each panel. A total of 

975 panels on the wing surface were used to model the wmg, and the wake 

panel were extended 100 chord lengths behind the Wlng. 

Compar1sons between the chordWlse pressures obt&lned Wlth the Euler 

solver on Eriksson's grid and with QUADPAN are shown in F1gure 2 15 
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Overall agreement is very good, although the Euler solution shows slightly 
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Figure 2.15: Comparison of Euler and QUADPAN solutions, Weston wmg, 
Eriksson's grid 

less lift forward of 30% chord and more aft than the panel code. ThiS 

suggests a slight difference In the thIckness distribution of the wmg between 

the two solutions, although both are nomlnally the same (In fact, ~xactly 

the same airfoIl section coordinates were used as Input for Eriksson's grid 

generator and for the panel code.) Sigmficant differences at the tiP are 

VISible, as to be expected, smce the Euler solution IS showmg separation 

around the tiP and the panel code has a fixed planar tralllng vortex wake 

that is eMltted only along the wmg trading edge However, the suction 
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peaks match qwte well over the inboard sections. 

Surface pressures for the Euler solution on Wedan's grid and the panel 

code are shown in Figure 2.16. The agreement is excellent over the wmg. 
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Figure 2.16: Comparison of Euler and QUADPAN solutions, Weston wmg, 
Wedan's grid 

Even at the tip, the surface pressures are In amazingly good agreement, 

especially considering that the tip shape In the panel code is rectangular, 

nat a body of revolutlon. The agreement In thls regIon may be somewhat 

fortuItous. As for Eriksson's grid, the suction peaks agree qUite well between 

the Euler and potential solutiOns. 

The agreement between the potential solution and both Euler solutions 
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is very encouraging, because the two models should be nearly identIcal for 

this particular flow. Also, the agreement inboard of the tip indicates that the 

details of flow near the tip computed by the Euler equations have only a local 

influence and are dominated by the details of the mesh and tip geometry 

in that region. Also, the agreement of the Euler and potentIal solutIons 

further indicates that the discrepancy in the measured and computed surface 

pressures is due pnmarily to the flow angularity in the wind tunnel. 

Because the flow at the tip is so different for the two Euler solutions on 

two different grids, but the differences have only a local influence on the 

loading on the wing, it 11 of interest to see how sensItive the computed wake 

structure 11 to the det&lls at the tip. Also, comparISOns WIth experimental 

wake surveys will also indicate how well the Euler equatIons model the 

phYSICal wake structure. 

Comparisons of the wake structure computed by the two Euler solutIons, 

as well as experimental results, have been made at a locatIon of apprOXI­

mately 1/2 chord downstream of the trailing edge. The grids at that statIon 

are shoWn In FIgures 2.17 and 218. Note that ErIksson's grId prOVIdes 

much better resolution in the wake than Wedan's grid. Figures 2.19, 220, 

and 2.21 show computed and experImental contours of total pressure coef­

ficient, defined as (p, - p,_) / !pu~. A well defined tIP vortex IS seen both 

computatIonally and experimentally. The two computed tIP vortIces are 

very smillar in location and total pressure loss despIte both the dlfferences 

in the computed load distribution near the WIngtIp and the dIfferences lD the 

grid resolution In the wake. The solutIon on ErIksson's grId has a shghtly 

greater total pressure loss lD the core of the vortex and 11 slightly lDboard of 

the vortex computed on Wedan's grId. The vortex POSItIon IS based on the 

locatIon of the total pressure nummum in both cases, and the dlfFerence IS 

WlthlD a grId cell, so the dIscrepancy IS not sIgmficant. Overall, the agree­

ment between the two calculatIon IS qUIte good, despIte the differences In 
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Figure 2.19: Total pressure coefficIent, xl c ~ 0 5, ErIksson's grId 

the geometnc modelIng of the tip, the computed load distrlbutIOns at the 

tIP, and the differences In the grId resolutIon In the wake. ThIs suggests 

that the initial stage of the wake roll up computed by the Euler equatIons IS 

not sensItlve to the local flow details In the regIon where separatlon occurs, 

nor to detall differences In the grId resolutIon. 

Although each computatation agrees well with the other, the level of total 

pressure loss IS lower In the calculatIons than In the experlment (Compare 

the results In Figures 2.19 and 2.20 to the experlmental values In 2 21 ) 

Furthermore, no total pressure loss can be seen In the Inboard portIon of the 

vortex sheet In the computatIon, In contrast to the experIment. The posltion 
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of the computed tip vortices agree well with experiment, as determined by 

the location of the total pressure minimum. The discrepancy 10 the level of 

total pressure loss between the computations and experiment IS most likely 

due to the neglect of VISCOSity. 

Static pressures are shown 10 Figures 2.22, 2.23, and 224 as contours 

of constant pressure coeffiCient The computed pressures 10 the core of 
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Figure 2.22: Pressure coefficient, zjc ~ 0.5, Eriksson's grId 

the vortex are higher, and more UnIform, than was observed experimentally 

The computed pressure coeffiCients differ from the experimental values by 

an order of magnItude, although once agalO the two computatIons are very 

SimIlar. This IS further eVidence that the detaIls at the tiP do not have 
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a strong lnfluence on the structure of the wake computed WIth the Euler 

solver. The quantitative comparison with the measured pressure In the 

wake is poor, however. 

The third wake quantity which was compared was the axial velocity In 

the vortex core, which are shown in Figures 2.25, 2.26, and 2.27. The results 

WESTON TEST CASE - CI = 8°, M_ = 1425, 128 x 32 x 32 snd 
"Iv.. contourl 

04 
INC,. 0 10011-01 

03 

02 

II 01 

00 

-01 

ERIKSSON'S CRID 

-02 
24 25 26 21 28 29 30 31 32 

II 

Figure 2.25: AJual velocity, ujuoo , xjc::::s 0 5, ErIksson's grId 

are shown as contours of constant axial velocity normalized by the free 

stream velocity. As with the total and static pressure, the computed results 

obtained on the two different grids agree well With each other, and do not 

agree well WIth the measured values. Note that the computed results show 

an axial velOCity defiCit In the core of approximately 10% of the free stream 
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velocity, in contrast to the 20% velocity excess observed experimentally. The 

reasons for this are not quite clear. According to Brown [IOJ, whether an 

axial velocity deficit or excess is seen depends upon the ratio of lDduced 

to profile drag, WIth a deficit occurring when the viscous drag IS high. By 

this argument, an invlscid calculation should show a velOCIty excess, and It 

should be greater than the experimental value. Weston [67J also discusses 

the experimental axial velocity excess based on the theory of Batchelor [8J 
Again, the theory states that the axial velOCIty In the core is generated in 

a primanly lDviscid manner, and for this case should be an excess velocity. 

The fact that exactly the OppOSIte is seen here suggests that the mechanISm 

by which the tip vortex IS formed in the Euler code 1S considerably dIfferent 

than the phYSICal mechanISm. 

For the calculatIons shown here, the Euler equatIon SOlutIOns are seen 

to be a poor model for the structure of the wake. ThIS is 1n contrast to 

the results for leading edge vortex flows computed by Powell et al. [50]. In 

reference [50J, the argument is presented that discrete solutions of the Euler 

equatIOns should be a realistic model for such Bows, 10 partIcular for the 

core of the vortex TheIr argument IS a klDematlc one, namely, the velOCIty 

must pass through a minimum in the center of a dIscrete sheet. If the total 

enthalpy IS constant, and the dynamIC boundary condItion of no pressure 

Jump across the sheet holds, then there must be a total pressure loss whose 

base level is set only by the strength of the sheet. The artifiCIal VISCOSIty of 

the computation, and the phYSIcal VlSCOS1ty of the real flow, affect the total 

pressure loss only to a hIgher order 

For the flow shown here, thIS argument does not hold. UnlIke the leadlDg 

edge vortex flows, the vortex sheets here are much weaker The low Mach 

number of the current computat10n (Moo = a 1425) compared to the super­

SOnIC leadlDg edge vortex flows means the base total pressure loss here wIll 

be much less than for the leading edge vortex. The momentum defiCIt due 
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to the viscous boundary layer will produce a total pressure loss of the same 

order of magnitude as the Jump in veloc1ty across the boundary layer. Note 

that, for the mboard portion of the sheet, the experimental total pressure 

loss contours virtually overlay the u/uoo contours (Figures 2.21 and 227) 

Also, since the wake here is a free vortex sheet, and hence rolls up as It 

1S convected downstream, the streamwise d1fFusion due to the artificial ViS­

cosity will have a significant effect on the development of the wake. To 

see this, the computed and measured total pressure coefficients two chords 

behmd the wing are shown in Figures 2.28, 229, and 2.30. Note that the 
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FIgure 2.28: Total pressure coeffiCIent, x/c:=:$ 2, Eriksson's grId 

experImental core IS stIll qUIte compact, and 10 fact Its structure IS not very 
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different from its structure at one half chord behind the trading edge. The 

same cannot be said for the computed cores, which are much more diffuse 

than they were upstream. The grids are much coarser at this location than 

upstream. ThIS effect does not appear in a conical flow computation, In 

which the dimensionality of the problem has been reduced by one. Even 

in fully three dimensional calculations of a leading edge vortex flows, which 

have also been observed to provide remarkably accurate values of total pres­

sure loss, the conicality or approximate conicality of the flow and the large 

vortex strengths mean that the results will be similar to a COnical solution. 

2.10 Summary 

The algorithm for solvlng the Euler equations has been verified for two 

test cases. The agreement With experimental pressure distributions for both 

the ONERA M6 wing at transonic speed and the plaln rectangular Wing 

tested by Weston at low Mach number is good. Discrepancies In the span­

Wise load distribution between computations and expellment In the latter 

case appear to be due to flow angularity In the Wlnd tunnei The Euler 

solutions for Weston's Wing have been computed USlng two dlfferent grids 

With different tiP geometries and differing resolutlon in the wake. The load 

distributions at the tiP were seen to be sensltlve to the dlfferences In the 

grids and tip shapes, but the overall location and structure of the tlP vortex 

were relatively insensitive to these local features. 

Comp&rl8Ons of the experimental and computational wake structures 

were mixed. The location of the vortex core was well predicted, but the 

details of the structure were very different Dlfferences In the level of total 

pressure loss In the core appear to be due to the neglect of VlSCOUS effects 

More puzzhng IS the eXlstence of an aXIal veloclty excess observed experi­

mentally In the core of the vortex, In contrast to a computed axlal velOCIty 

defiCit. Thls suggests that the numerlcal process which the causes the flow 
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to separate, and the initial stages of the tip vortex formation computed by 

the discrete Euler equations, are very different from the physical process In 

a real flow. 
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Chapter 3 

Perturbation Scheme 

In th18 chapter, a method IS developed for computmg the interactIon 

between a streamwise vortex and a wing. First, the problema of using the 

unmodtfied finite volume algorithm developed in the prevloUs chapter for 

computing such Bows are discussed. The motIvation beh1nd the pertur­

bat1on, or prescribed Bow, scheme for introducmg a vortex into the finite 

volume computational domain is presented. The modificat1ons of the bas1c 

finite volume solver required by the perturbat10n approach are then de­

scr1bed. A very slmple model problem, the steady Bow of a streamWlse 

vortex 1n a rectangular section channel, is presented to 11lustrate how the 

perturbation approach eliminates the numer1cal difFus10n of vortic1ty. F1-

nally, the perturbation scheme is validated agamst the exper1mental data of 

Smith & Lazzeroni [571. 

3.1 Problems with Euler Solver 

Since the pr1mary tOP1C of th1S thes18 18 rotary Wlng Bows m which there 

IS an Interaction between a compact t1P vortex and the rotor blade, It IS 

necessary to eXamlne the abllity of the finIte volume scheme to handle such 

Bows Rather than cons1derIng a hovermg rotor directly, a slmpler problem 

1S used to study this iSSue. The problem eXamlned IS the Interaction of a 
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streamwise vortex with a fixed wing, and is shown schematlcally 10 Fig­

ure 3.1. This flow configuration is also of practical interest in itself, since 

it corresponds to such situations as the interaction of the wake of a canard 

with a main wing, or the problem of a tlP or leading edge vortex Impinging 

on a taU surface. The interaction treated here 18 assumed to be steady, and 

can be described by the steady Euler equations. 

Figure 3.1. Schematic of Wing/vortex 1Oteractlon 

One approach to computing such a flow would be to generate a grid 

around the Wing and 1Otroduce the vortex through the upstream boundary 

conditions. In principle, there would appear to be no reason why thlS would 

not work. However, two difficulties arlSe if thlS slmphstlc approach lS used. 

The first is that a very fine grld IS required at the upstream far field boundary 

to resolve the vortex core. The second IS that the artiilclal VISCOSity of the 

scheme Will diffuse the vorticity before It reaches the hft10g surface Both 

these problems are discussed below 

To understand the first problem, It must be explalned how a vortex IS 
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introduced at the infiow boundary. Any vorticity can be introduced into the 

computatlonal domain only through two of the inflow boundary conditions. 

The first is the speclfication of the tangentlal velocity at the far field. The 

SWlrl velocity associated Wlth the vortical flow field results in a tangentlal 

velocity component different from the freestream. Secondly, the entropy 1S 

specified at an inflow boundary. From Crocco's theorem, we can expect 

that in the core of the vortex, where the flow is rotational, there will be a 

gradient of entropy (assuming homenthalp1c flow; 1f there are total enthalpy 

gradients, the flow may be rotational yet isentrop1c). Conversely, by Specl­

fying a varying entropy and constant total enthalpy at the inflow boundary, 

a rotational flow must be 1Otroduced 1Oto the computatlonal domaln. The 

entropy and tangent1al veloc1ty spec1ficatlon are seen to prOVide the only 

mechamsm by which vort1c1ty can be introduced into the domaln. 

A closer exanunation of the tangentlal veloclty boundary conditlon shows 

that 1t does not give vortic1ty directly. Specmcation of the tangentlal veloclty 

really glVes the circulat1on, not the vorticlty 1tself. Th18 is because the 

clrculatlon around a closed circuit 1S related to the vort1city by the integral 

(3 1) 

where r is the circulation, w is the vort1clty, and S is the surface bounded 

by the circuit. It 18 seen that for a glven clrculatlon around the CIrCUlt, 

the vortlclty distribution 1S not uniquely defined. The entropy boundary 

condition Wlll glve vortlc1ty, since for a homenthalplc flow, the distrlbutlon 

of entropy is related to the vortlclty through Crocco's theorem. However,lf 

the core of the vortex is more compact than the spac10g of the gr1d at the far 

field, the structure of the core cannot be properly described. ThlS 1S shown 

schematlcally in Figure 3 2 The Slze of the rotational core 1S shown to be of 

the order of the gr1d spaC1Og. Clearly the entropy gradlent 10 the core of the 

vortex cannot be resolved 10 the far field. As a result, the vortex obtained 
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in the interior of the computational domain is much larger than the actual 

vortex. Although the grid resolution increases as the WIng is approached, 

the equations contain no mechanism to cause the vortex core to shnnk in the 

interior of the domain; that is, there is no production of entropy in the core 

to make up for the failure to adequately resolve the entropy in the far field. 

For the grids typically used in Euler computations, and the characterIstically 

compact core of a lift generated vortex, this problem will generally eXIst for 

most computations. 

VORTEX 
CORE 

a 

Figure 3.2: Schematic of vortex core sIZe vs. far field grId resolutIon 

The second problem referred to was the effect of the artIfiCIal vIscosIty 

requIred for numerIcal stabIlity. ThIS added dlffusive term causes the vortex 

to be smeared as It IS convected downstream, as was seen In the preVIOUS 

chapter. Since the artIfiCIal vlScosity term 18 proportIonal to some power 

of the grid spacIng ([Az]3 here for the fourth difference dIssipation), the 
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numerical diffusion is greatest where the grid is the coarsest. Thus at the 

far field inflow boundary, where there is generally insufficient resolution 

to accurately introduce the vortex into the domain, the artificial viscosity 

aggravates the problem even more. It is seen that a sufficiently fine grld IS 

required not only to resolve the vortex, but to reduce the level of numerlcal 

diffusion of vorticity. 

It is a difficult task to provide enough resolution to allow the detailed 

structure of the vortex to be resolved in the far field, and hence allow the 

proper vortex to be introduced into the domain. First of all, if the grid reso­

lution is increased globally so that a logically cubical computational domam 

can be mamtained, the convergence of the scheme w1l1 suffer drastically. The 

work per lteratlon scales as the number of grld cells N The allowable tlme 

step of the scheme scales as 6.z, which lS a typical length scale of a cell. 

Thls scales as N!, meanmg the number of iteratlons reqwred to reach a 

steady state goes as N f. Thus the work required to reach the steady state 

roughly scales as Nt If, for example, the grid resolution is doubled in each 

coordinate direction, the work requIred to reach a steady state lS mcreased 

by roughly a factor of 16, and the storage requIred lncreases 8 tlmes. It IS 

easily seen that to provide a fine enough global grid to be able to resolve an 

incoming vortex at the far field the scheme will become prohibltlvely expen­

sive. Not only that, but global grid refinement provides excesslve resolutlon 

In regions where it is not necessary. This is clearly not a viable solution to 

the problem. 

An alternative way of providing resolutlon of the vortex core lS to use 

a local refinement of the grld. This lS probably best done by usmg elther 

grld embeddmg, or patched or over1&ld grlds along the vortex path. Thls 

means that a lOgIcally cublcal grld structure cannot be mamtamed, and 

a pomter system 19 requIred to provide the connectivity mformatlon of the 

grid. What is gained by thiS approach is the economy of grid pomts, because 
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resolution is provided only where needed. Care is required at grid interfaces 

to maintain spatial accuracy and conservatlon. The effect of the embedding 

on the quality of the solutions is an important issue. Further difficulties arise 

if the embedding is to be done adaptively, which is certainly a conceptually 

attractlve idea since the vortex path is not known a prlori. A good adaptive 

grid strategy requires both an effective way of finding the vortex, and a way 

of refining the grid during the course of the computation that both resolves 

the vortex and is efficient. Developing such an approach is a far from trlvial 

task, and adds considerably to the complexity of the scheme. 

For these reasons, an alternative approach is used here in which the 

vortex locatlon and structure may be speclfied, Without the need to prOVide 

a grid capable of resolv1Og the rapid flow gradients. This approach IS based 

on the Idea proposed by Burung & Steger [11J and subsequently used by 

Chowet al. [16J, and Srinivasan and his co-workers [58,59,60J. This method, 

called the perturbatlon or prescribed flow scheme, IS described in the next 

section. 

It should also be noted before contmuing that the disCUSSion 10 thiS 

section on the difficulties of resolving a vortex being convected through 

the computational domain is not liIIUted to the particular algorithm of this 

theSIS. The comments apply to any method used to solve the Euler equatlons 

10 an Eulerian frame of reference. Navier-Stokes schemes Will encounter 

the same problems as well. The perturbation scheme that IS developed In 

th18 chapter 18 also very general in ItS applicatlon. Although the details of 

implementlng the scheme Will depend upon the algOrIthm used, the baslc 

features of the approach are 10dependent of the Euler solver. 

3.2 Perturbation Scheme 

The perturbatlon scheme used here was introduced by Bun10g & Steger 

[11J as a generalizatlon of freestream subtractlon for the Euler equatlons 
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They used it to compute flows having a non-uniform free stream without the 

need for excessive grid resolution in the far field. More recently, Srinivasan et 

al. [58,59,60] have used this approach for computing the unsteady interaction 

of a vortex with an airfoil. They have demonstrated that the approach allows 

the vortex to remain well defined and compact, even in coarse reglons of 

the grld. The present investigation implements the scheme differently than 

Srinivasan and his co-workers, since the flows of interest here are steady In 

this respect, the current work is more closely related to the work of Chow 

et al. [16], who solved the Euler equations for the steady, two dimensional 

flow around an airfOil usmg the Bunmg &; Steger perturbatlon approach 

The prescrlbed flow solutlons for thelr calculatlons were found usmg a finite 

difference full potential equatlon to reduce the resolutlon needed for the 

Euler solver. The fundamental ideas of the current work are described below 

To clarify the basis of the approach, the details of the Implementation wlll 

be left to the next section. 

The basiS of the perturbation method is that over some region of the 

flow field of interest the local behaVior IS slmllar to that of a Simpler flow 

which may be described analytically. For the case of the mteractl0n of a 

streamwise vortex with a Wing (Figure 3.1), the flow near the vortex core 

behaves as If it were an isolated vortex, the mfluence of the wmg bemg weak 

in that region. In other words, the flow field is domtnated locally by the 

velocity field associated With the vortex. Furthermore, the flow field of an 

isolated vortex that satisfies the steady Euler equations can be readily found. 

By computing thiS vortex mduced flow and subtractmg It from the dIScrete 

approximation to the Euler equations, the need to prOVide a grld capable of 

resolving the rapid flow field gradients In the VICInity of the vortex core IS 

ehmtnated. 

To be more specific about how the scheme works, conSider the compress-
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ible Euler equations (2.5) 

:t III U ~% + II F(U) . Ii d
2

% = O. (3.2) 

V 8V 

The spatial discretization of this equation was described In the preVlOUS 

chapter. It consists of the approximation to the flux integral and the addition 

of the artificial viscosity terms. The semi-discrete equations may be written 

as 
dU""A: _ 1 R 

dt - -V '",A: (3 3) 

where the residual R IS defined as 

(3.4) 

F.",. being the finite volume flux integral approximation and D.",A: belDg 

the artificial VISCOSity operator for cell (i, i,k). With the basiC finite volume 

scheme, R is driven to zero by the pseudo-tlIIle integration. 

From the lDduced velocity field of an lsolated vortex, a state vector 

U o = (po, POUo, POVo, PoWo, poEo)T that satisfies, or approxlmately satlsfies, 

the steady Euler equations can be readily computed. SubtractlDg the flux 

lDtegral associated With thls state vector from Equation (32) yields 

Since the second surface Integral is zero, the equatlon IS unchanged analyt­

ically. However, U o Will not necessarily satisfy the dIScrete equations due 

to the truncation error and artifiCial VISCOSity In the limlt of vanishlDg grld 

spacing, these terms wIll vanISh. However, for a finite grid resolution these 

terms In general Will be non-zero. The magDltude of these terms depends 

upon the gradlents of the flow field as well as the resolution of the grid By 

applying the discrete spatial operator (Equation (34» to the flow field U o, 

a set of reSiduals Ro are found at each cell These reSiduals are subtracted 
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from the residuals R aasociated with the complete state vector U. The 

discrete Euler equations to be solved are 

tiU',J,1I 1 (R Ro) 
dt = -V - ',J,II· (3.6) 

In solving this equation, the residuals R are no longer drlven to zero, but 

are driven to Ro. This allows the truncation error of the scheme to be 

approximately corrected in the region of the vortex. This is because Ro 

represents the truncation error of the scheme applied to the prescrlbed flow 

U o. Near the vortex core, Uo has large spatial gradients, and Ro takes 

on large values due to the difference between the discrete operator and the 

dlfferentlal operator applied to Uo at that locatlon. Since the gradients of 

the state vector U are assumed to show sunilar varlations to U 0 near the 

vortex, the resldual R should show siml1ar behavlor as Ro if the differentlal 

operator is bemg statlSfied. Away from the vortex locatlon, the prescrlbed 

flow residuals will be small, since the flow field gradients are weak, and the 

solution in those regions will behave as if the standard finite volume scheme 

IS bemg used there. 

One important issue in using the perturbation scheme IS the questlon of 

consistency. In Equation (3.5), the state vector U o was assumed to satlSfy 

the steady Euler equations. If this is the case, in the limit of vanlshmg 

grld spacing the residuals Ro will vanish, and the Euler equations wIll be 

recovered. Thus the scheme 18 consistent with the steady Euler equatlons 

If, and only If, the prescrlbed flow exactly satlsfies the Euler equatlons. If 

U 0 18 not an exact solutlon to the steady Euler equatlons, the prescnbed 

flow residuals Ro wIll remam non zero when the gnd spacmg vanlShes, and 

the scheme 18 not consistent. In practlce, it is posslble to find a prescribed 

flow that exactly satlSfies the steady Euler equatIons only In Special circum­

stances. However, In the next sectlon, a method of obtammg a prescrIbed 

flow solution that nearly satlsfies the steady Euler equations is developed. 

Equatlons (3.6) are Integrated in tlme usmg the multistage algorlthm 
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described in the last chapter, with the Ro terms being treated as source 

terms. The temporal integration is now of the form 

U(O) - U" , 
U(l) = U(O) _ al ~t (F(O) - D(O) - Ro) , (3.7a) 

U(Z) = U(O) _ az ~t (F(l) - D(O) - Ro), (3.7b) 

U(S) - U(O) _ as ~t (F(Z) - D(O) - Ro), (3.7c) 

U(4) - U(O) _ a4 ~t (F(S) - D(O) - Ro) , (37d) 

U"+l = U(4) 

It should also be noted. that except for the incluslon of the prescrlbed. flow 

residuals Ro, no changes 10 the spatial discretization, the artt6.clal vIscosity 

operator, or the enthalpy damping are required.. The boundary conditions 

are slightly changed, in that the far field velocity now consists of a freest ream 

plus the induced velocity of the prescribed vortical field, i.e 

UII = Uoo + ua, (3 8) 

where ii II is the velocity at the far field boundary, UOO IS the undisturbed 

uniform freestream, and iia IS the prescribed. flow velOCity field at the far 

field boundary, which 18 taken for the cases here to be the induced velOCity 

of the vortices making up the prescribed flow field. In the far field bound­

ary conditiOns given in the last chapter, the 1Ocom1Og Rlemann varlable 

(Equation (2.25b)) is replaced. by 

_ ~ 2011 
roo = ull' n - --, 

i-I 
(3 9) 

where a!f IS glven by the equation 

all = i ----5!2. + __ _ ull' ull 
(

M2 1) - -
2 "f - 1 2 

(3 10) 
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and the inflow tangential velocity specification (Equation (2.28a» is replaced 

by 

ii = ii/l + (un - ii/l . n)n. (3.11) 

Also, the entropy at the inflow boundary will not necessarily be unIform, 

since the prescnbed flow is rotational. The specification of a uniform freestream 

entropy (Equation (2.27a» is replaced by 

.!!.. = S(X) 
p' 

(3 12) 

where 5 (X) is the entropy distribution in the far field. In general, 5 (X) will 

be equal to 1 everywhere except in the rotational core of the prescribed flow 

vortex, where It must vary as a consequence of Crocco's theorem. The man­

ner in which the non-uniform entropy in the core is determined is descr1bed 

in the next section. The outflow boundary conditions are unchanged except 

for the new incommg RIemann variable, Equation (3.9). 

Except for the changes in the time stepping algorithm and In the far 

field boundary conditions, the scheme is identical to that presented m the 

preV10US chapter. No changes in the stabllity of the scheme have been ob­

served, and for all the cases presented here, a CFL number of 2.8 has been 

used. 

The main difference between the perturbation approach as it IS apphed 

here and as it is used by Srinivasan et al. is that the flows bemg computed 

here are assumed to be steady. The prescribed flow U o is a steady vortlcal 

flow, and the Euler equations are integrated 1n tlme to reach a steady state. 

For this reason, the prescribed flow resIduals need only be computed once 

and stored, rather than being computed at each iterat1on. 

A questIon arIses for the case for which the prescrIbed flow 1S not a 

good apprOXImatIon to the actual flow field over the entue computatIonal 

domam. For example, consider a streamWlse vortex Impmgmg on a wmg 

leading edge. A prescribed flow cODSlSting of an undisturbed streamWlse 
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vortex will be a very poor approximation both in the immediate vicinity 

of the wing and downstream of the wing. Even for cases in which the 

vortex does not hit the wing but stdl passes very close to it, the distortion 

of the vortex path from its undisturbed position will be large enough that 

specifying the undisturbed vortex as the prescribed flow will result in large 

errors, rather than a reduction of the error. However, the resolution of thlS 

problem is extremely simple: the terms Ro may be switched off in regions 

of the flow where U o is a poor approximation to the actual local behavior. 

For example, in the case In which the vortex impinges on the wing leading 

edge, Ro may be set to zero near the wing and downstream of the trading 

edge. In these regions, the Euler equations are being solved In the normal 

way, i.e. the vortlcal flow IS "captured". By Speclfylng the vortex up to the 

wing, the problem of numerlcal diffusion 18 aVOided, so that the vortex w1l1 

be properly defined at the wing. Also the grid resolution IS the finest near 

the Wing, meaning that the problem of numerical diffuslon of the vortex 18 

least important there. Finally, the structure of the vortex after Its encounter 

with the Wing is not known, and neglecting to Specify the prescrlbed flow 

field in this region is consistent With alloWing the wake generated by the 

Wing to be captured by the Euler code. 

3.3 Prescribed Flow Specification 

Two sets of calculations Will be shown to demonstrate the perturbation 

scheme. One is the convectlon of a streamWlSe vortex in a square cross 

section channel (Figure 3.3). The prescribed flow consists of an Infinlte 

vortex in an unbounded fluld With a unlform veloclty along the direction 

of the vortex. The other set of calculatiOns COnslStS of the mteractlon of 

a streamWlSe vortex With a fixed wing. The geometry of the Wing/vortex 

mteractlons described lD thiS chapter 15 shown lD F1gure 3 4. A semtspan 

wing 1S attached to wall, and a streamWise vortex 1S generated upstream. It 
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F1gure 3.3. Channel geometry 

IS assumed that th~ vortex has completely rolled up and thus IS axlsymmetnc 

by the time is reaches the WlDg. The distance of the vortex from the wall 

18 denoted by Yv and Its displacement above the wlDg is Zv. The manner 

of specifying the prescribed flow field Uo IS essentially the same for both 

configurations, and 1S descr1bed below. 

For the channel flow the velocity field of the prescr1bed flow IS assumed 

to be identical to the induced velocity field of an lDfinlte lDcompresslble hne 

vortex in a uniform freestream. For the wlDg/vortex cases, an image vortex 

to account for the symmetry plane IS added as well. Since the lDduced 

velOCity of the vortex pair results lD a downward motion of the palr, the 

two vortices are placed at an angle to the freestream given by their mutual 

induced downwash. To avold the slDgular behaVior of the velOCity field 

near the vortex, a finite core structure 1S necessary. The Rankme vortex 1S 

chosen for the channel flow cases due to ItS very Simple core structure. For 

the Wlng/vortex mteractlon cases, a more phYSically reallStlc model of the 

upstream generated vortex is needed, and the Lamb core structure 18 used 

due to ItS smooth varlat10n of vorticity. 
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Figure 3.4: Wing/vortex interactIon geometry 

The tangentIal velocIty of a two-dimerullonal Rankine vortex IS gIven 

by 

u, = { 
2;'" If r > a 

r,. if r < a 
2lrQl 

and the tangentIal velocity of a Lamb vortex lS gIven by 

u, = 2:.... {l _ e-(;)2} 
211"r 

(3 13a) 

(3.l3b) 

where u, is the tangential velocIty, r is the cIrculatIon, r IS the dIstance 

from the center of the vortex and a IS the vortex core size. The choIces of 

the vortex core size and the cIrCUlatIon for the wing/vortex calculations are 

dISCussed in sectIon 3.5. The tnduced velocity of the streamWlse vortex and 

ItS Image lS computed at the center of each cell of the finIte volume grid 

USIng EquatIon (3 13a) or (3.13b), and the unIform freestream velOCity IS 

added to that. 

After computing the velocIty at each cell, the densIty and pressure are 

required to complete the specIficatIon of the state vector U o. OutsIde the 
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core, these are determined by assuming a constant total enthalpy and en­

tropy at the freestream values. In the core of the vortex, the total enthalpy 

is taken to be the freeatream value. To determine the entropy distribution in 

the core, use is made of Crocco's theorem, given here in dimensional form: 

(3.14) 

where H is the total enthalpy, T is the temperature, s is the specmc entropy, 

uis the veloClty, and w = Vxiiis the vorticity. It is seen that Equation (3 14) 

implies that the entropy is not constant, but has a radial variation through 

the rotational core. To deternune the entropy distribution through the core, 

equation Equation (3.14) IS rewritten m non-dimensional form to get 

VH P 1 V ~ ~ =--- s+uxw 
p,-1 

(3 15) 

where the equation of state has been used to eliminate T, and s has been non­

dimensionalized by CU' Now, If the total enthalpy IS taken to be constant, 

Equation (3 15) may be simplified further by usmg the defimtlon of H to 

elinunate p and p. The resulting equation IS 

~ (H - ii ~ ii) Va = -u x w. (3 16) 

Since H is determined by the freeatream Mach number and ii IS known 

from the Induced velocity field of the vortices makmg up the prescnbed flow 

field, a can be found by numerically Integrating Equation (3.16) through 

the vortex core. For the channel flows, th18 is easy to do SInce the flow IS 

axisymmetric about the vortex core, and there 18 only a radial variation In 

entropy Strictly speakIng, for the wIng/vortex flows, the flow Will not be 

axIsymmetric due to the Influence of the Image vortex. However, for the 

small core vortIces treated here, the flow near the core IS very nearly that of 

an Isolated vortex, and thus WIll be treated as aXisymmetric for the purposes 

of integrating EquatIon (3.16). 
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For a Rankine core structure, Equation (3.16) for an axISymmetnc vortex 

reduces to r 2 ,. 
-"1~ 

ar = -'- r 2,.:I' 
..,-1 - 8",2ea4 

(3.17a) 

for r ~ a. The entropy is uniform outside the core, r > a. This entropy 

distribution is plotted in Figure 3.5 for ria = 1. A Lamb vortex has a radial 
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Figure 3.5: Nondimenslonal entropy distnbutlon 1D a RanklDe vortex core, 
ria = 1, "1 = 1.4 

entropy distribution given by 

a. -"1~e-(;):I {l_e-(;)l} 

ar = -'- _ ~ {1- e-(;):I}2 
..,-1 8",",. .. 

(317b) 
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and is shown in Figure 3.6. The above equations are given in non-dimensional 
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Figure 3.6: Nondimenslonal entropy distrIbution m a Lamb vortex core, 
r fa = 1, '1 = 1.4 

form; these are integrated numerically to find the dlStribution of entropy in 

the core. A cubic spline lS fitted through the resultmg distrIbutIon to allow 

interpolatIon of the entropy to the centers of the fimte volume cells The 

spline formula is gIven in DahlqUISt ok Bjorck ([211, pp. 131 to 134). OutsIde 

the vortex, where the entropy is uniform, 6 IS set equal to zero. 

Once the entropy IS known, the entire prescribed state vector U o can be 

determmed. To get the densIty, the equatIon of state and the constant total 

enthalpy assumption are used. The equation of state describing the relatIon 
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between pressure, density, and entropy, is 

p= pre'. 

It is more convenient to define a new variable 

and write the equation of state as 

S = e' 

.!... = S. 
p'" 

(3.18a) 

(3.18b) 

ThIS definition gives S equal to 1 outside the rotational core, and greater 

than 1 In the core. ThIS IS the same definition of S as the function S(i} 

given in the discussion of the far field boundary conditions In the last section 

From the known velocity field and total enthalpy, the ratio of pressure to 

density is 

-=-- H--p , - 1 ( iI . iI) 
p, 2 

(3 19) 

Combining Equations (3.19) and (3.18b) YIelds the followmg equation for 

the density, 

_ {' - 1 ( iI· iI) } ~ p- -- H-- . 
,S 2 

(320) 

Also, from Equation (3.19), the total energy E = H - pip can be readily 

found. With the density, velocity, and the total energy known at each cell 

m the domam, the prescribed flow state vector U 0 IS known. 

Now that U 0 IS specified throughout the computational domam, the fi­

nite volume operator for the flux Integral and the artificial visCOSity operator 

are applied to U o. ThiS gives the residuals Ro of the prescribed flow These 

are corr puted once and stored. During the multi-stage time integration, Ro 

IS subtracted from the reSiduals R of the complete flow field U Thus In the 

steady state, the reSiduals R are driven to Ro, not to zero. Near the core of 

the vortex, where the presCribed flow reSiduals are large, the state vector U 
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wIll show the same rapid variations as the undisturbed vortex. Away from 

the vortex, the residuals Ro will be small, and the solution wtll be locally 

similar to a conventional Euler solution. 

It should be pointed out that it is not necessary to have an analytic model 

for the prescribed vortic~ flow field. In prinCiple, a numerical solution for 

the prescribed flow can be used. For example, a high resolution numerical 

solution of the Navier-Stokes equations for an isolated vortex could take the 

place of the Rankine or Lamb vortex core structures used here. 

3.4 Vortex in Channel 

The first set of computations shown are for the flow of a streamWise vor­

tex 10 a square section channel The purpose of these results IS to 111ustrate, 

using a simple model problem, how the perturbation scheme eliminates the 

numerical diffusion of vortiCity. The configuration is shown IS Figure 3.3. 

The channel length 18 five times the channel height. The grid POlnts are 

umformly distributed, With a crossflow resolution of 20 x 20 cells, and 10 

cells in the streamWise direction. The inlet Mach number 1S 0.5, vortex core 

radius IS O.lh, where h 1S the channel height, and the vortex CIrculation IS 

o laooh/ y"l, where a oo is the freest ream speed of sound. A Ranklne core 

structure is assumed. The choice of the vortex strength IS arbitrary. The 

core size is such that it lies across approXimately 4 x 4 fimte volume cells 

in the crossflow direction. This IS a coarse resolution of the vortex, but 1S 

finer than 18 generally acheived for 11ft generated wakes such as presented 

10 the last chapter. For the fine mesh results presented 10 chapter 2, the 

resolution of the tip vortex was roughly slmllar to the resolution for these 

cases. Three cases Will be shown: 10 the fir,t, the Euler solver was run With­

out the perturbatlon scheme, and the vortex was Introduced only through 

the inlet boundary condltions; in the second, the perturbatlon scheme was 

used to prescribe the vortex flow field, and 10 the thlrd, a prescrlbed flow 
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field that dId not satisfy the Euler equations was used to demonstrate the 

consequences of the fallure of satisfying the consistency. All cases were run 

at a CFL of 2.8, a fourth difference artificIal VISCOSIty coefficIent of 0.004, no 

second dIfference dIssipation, and an enthalpy damplQg coefficIent of 0 025 

" 

Figure 3.7 shows the vortIcIty vectors at the IIllddle of the channel for 
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VortICIty VectOri 
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Figure 37 VortICIty vectors 1Q channel, standard Euler scheme 

the standard Euler scheme. The mean flow IS In the same dIrectIon as the 

vortICIty vectors Although the specIfied vortex has a Ranklne core, for 

whIch the vortICIty IS umform In the core and zero outsIde, It IS seen at the 

lnlet that the vortICIty apparently IS not umform 1Q the core ThlS IS due to 

the fact that the vortICIty IS computed by a finIte dIfference apprOXImatIon 
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to the curl, and the truncation error of the difference formula gives the 

appearence of a nonuniform vorticity. 

It is immediately apparent, looking at Figure 3.7, that the vorticity IS 

bemg diffused as it IS convected downstream. The core size is groWIng, and 

the peak vorticity magnitude is decreasing downstream. This IS more clearly 

seen 10 contour plots of the vortiCity magnitude in the cross flow plane at 

the inlet and outlet (Figures 3.8 and 3.9). Plots of total pressure loss at 
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Figure 3.8: Vorticity magnitude contours 10 channelmlet cross-section, stan­
dard Euler scheme 

the mlet and outlet (Figures 3.10 and 3.11) also show the growth of the 

core and the diffUSion of vorticity. These effects are purely numerical, the 
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Figure 3.9: VortIcity magOltude contours In channel outlet cross-section, 
standard Euler scheme 
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Figure 3.10: Total pressure contours 10 channel101et cross-sectIon, standard 
Euler scheme 
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Figure 3.11: Total pressure contours In channel outlet cross-sectlon, stan­
dard Euler scheme 
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Euler equations are not dissipative, so the vortex should not dlffuse as It 

is convected downstream. Also, this model problem is highly idealized, in 

that the vortex structure lS very simple (there is no rolling up of a vortex 

sheet as with the lift generated wakes of the previous chapter) and the grid 

lS umform. Yet even here, It is seen that there lS conslderable numellcal 

diffusion. In most cases of interest, the grid stretching and the evolutlon 

of the vortical regions will further aggravate the situation, and numerIcal 

diffuslon Wlli in all likelihood be even worse. 

To illustrate the effectlveness of the perturbatIon scheme in elirmnatIng 

the numerlcal dlffusion of vortlclty, thlS same case was run USIng the pertur­

batlon scheme In whIch the prescrlbed flow consISted of a streamWlse vortex 

In an unbounded fluld. All the numerlcal parameters (artlficlal viscoslty co­

efficlents, CFL number, and enthalpy damping coefficlent) were unchanged 

FIgures 3 12,3.13,3.14, 3.15 and 3 16 show the vortlclty vectors, vortlclty 

magmtude contours, and total pressure loss contours at the same 10catlOns 

as in the preVIOUS case. It lS seen that the vortex core retaInS lts definI­

tlon throughout the channel. The numellcal dlffusion of vortIclty lS entnely 

elirmnated. It lS important to note that the perturbatlon scheme had no 

effect on the convergence rate of the solver Figures 3.17 and 318 show the 

lteratlon hIstory, with the logarlthm of the root mean square of the changes 

~ U plotted agaInst the iteration number Thls shows that the perturbatlon 

scheme does not adversely Impact the performance of the Euler code Thls 

should be true for any algorlthm used to solve the Euler equatlons, and IS 

not peculiar to the finIte volume scheme used here 

The final case shown m thls sectlon demonstrates what happens when the 

prescribed flow does not statlsfy the steady Euler equations. In thlS case, 

the prescrlbed flow was that of an mfinIte vortex at a slight angle to the 

freestream. The vortlclty vectors are shown In Figure 3 19 Two thIngs can 

be noted about thls solutlon. The first lS that the vortex does not expellence 
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Figure 3 12. VortIcIty vectors 10 channel, perturbatIon scheme 
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Figure 3_13: Vorticity magnitude contours m channel mlet cross-section, 
perturbation scheme 
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Figure 3.14: VortIcIty magnitude contours in channel outlet cross-sectIOn, 
perturbation scheme 
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Figure 3.15: Total pressure contours In channel mlet cross-section, pertur­
bation scheme 
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Figure 3.16: Total pressure contours in channel outlet cross-section, pertur­
bation scheme 
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Figure 3.18: Convergence history, perturbation scheme 
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Figure 3.19: Vorticity vectors in channel, perturbation scheme, tllted vortex 

numerIcal diffusion. The second 19 that the solution makes no physical sense 

whatsoever. The problem here is that the prescribed flow is not a solution 

to the Euler equations, unlike the prevIous case. Furthermore, in the hmlt 

of vanishing grid spacing, the solution obt&lned Wlth this preSCrIbed flow 

Wlll stlll show the same behavIor, Wlth the vortex lYing at an angle to the 

freest ream. Because U 0 does not satl9fy the steady Euler equations, the 

residuals Ro Wlll not vanish as the grid IS refined. 

In looking at the plots of vorticity magnitude (FIgures 320 and 321) 

and total pressure loss (FIgures 322 and 323) at the mlet and outlet, It 

IS seen that the vortex core does not get diffused. More mterestIngly, the 
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Figure 3.20: Vorticity magnitude contours m channel mlet cross-sectlon, 
perturbation scheme, ttlted vortex 

vortex has moved upward slightly from the channel centerline (z = 0) at 

the outlet. The prescribed Bow has the vortex tilted m the y directlon, but 

at a constant z. The reason for this is simply because the vortex, bemg 

tllted slightly to the freestream direction, must experience a hft. In the 

Figures 3.20 to 323, the prImary flow direction 18 out of the plane of the 

page, and the sense of the clrculatlon around the vortex lS counter-clockWlse 

Thus the vortex should experience a force m the posltlve z dlrectlon, whlch 

explallls the dlsplacement of the vortex from ltS preSCrIbed posltlon 
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Figure 3.21: Vorticity magnitude contours In channel outlet cross-section, 
perturbation scheme, tllted vortex 
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Figure 3_22: Total pressure contours in channel mlet cross-sect1on, pertur­
bation scheme, tllted vortex 
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Figure 3.23: Total pressure contours In channel outlet cross-section, pertur­
bation scheme, tilted vortex 
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3.5 Wing/Vortex Interaction 

M a demonstration of the ability of the perturbation approach to ac­

curately handle flows with compact vortical regIons, computations of the 

interaction of a streamwise vortex with a wing have been performed. The 

configuration is shown in Figure 3.4. The wing has a semispan to chord 

ratio of 2:1, and a NACA 0006 airfoil section. It is untwisted and unta­

pered. Three cases have been computed and compared to the experimental 

results of Smith & Lazzeroni [571. In each calculation, the circulation and 

core size of the vortex was fixed. The prescribed flow field U 0 was specified 

as descnbed in the previous section. 

The core size and CIrculation of the vortex 18 requIred in order to compute 

U o. The core size was determlDed from the experImental measurements 

of the down wash in the wake of the vortex generator. By measurlDg the 

distance between the maximum and miDlmum downwash, the core radius 

was found to be about 0.05 chord. This was taken to be the same for all the 

cases. The CIrculation was chosen by matching the experimentally observed 

11ft coeffiCient at the WlDg root for the first case presented here by USlDg a 

liftlDg line analysIs. This gave a vortex CIrculation of 0.05 normahzed by the 

freest ream velocity and wing senuspan. It was then assumed that the vortex 

strength was the same for all the other cases run. Th18 assumption IS based 

on the requirement that the induced downwash of the WlDg on the vortex 

generator is the same for each case run. This assumption IS reasonable, 

since the Induced lift on the wing did not vary much between the four cases 

run. To further check the validity of this assumption two checks were done. 

First, the lDduced down wash at the vortex generator due to the WlDg was 

estimated by treatlDg the Wing as a horseshoe vortex. Because for the cases 

shown here the Wing was only very lightly loaded from the nud senuspan to 

the tiP, the horseshoe vortex was taken to have the same lift as the wIDg 

but only half the span. The lDduced angle of attack at the vortex generator 
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on the symmetry plane was was found to be only 0.025°; this is only !% of 

the geometric angle of attack of 5°. Within the range of the lift coefficients 

for the cases here, the induced velocity at the vortex generator due to the 

wing is negligible, and the assumption of a constant cIrculation IS JustIfied 

The second check on the strength of the vortex was done by using a lifting 

line solution for the isolated vortex generator to determine the peak bound 

circulation, which should equal the circulation of the fully rolled up tip 

vortex. The lifting line gave the same vortex circulation as was determined 

by the above procedure. 

Three cases are shown below. For each case, the vortex core size and 

strength are the same. The WIng is at zero angle of attack for all three 

cases, and the vortex IS convected over the WIng at a distance of 1/2 seIIUS­

pan from the wall. The vertIcal location of the vortex above the Wing IS 1/2, 

1/4, and 0 chord lengths, respectively. Computations were done on a grId 

of 96 x 20 x 20 cells. No second difference dissipation was used, the fourth 

dIfference artIficial vIscosity coeffiCIent was 0.01, and the enthalpy dampmg 

coeffiCIent was 0.025 for each case. All cases were run at a CFL of 2.8. Two 

computatIons were performed for each of the cases, one With the perturba­

tIon scheme and one with the standard Euler algorithm. In the latter set 

of solutiOns, the vortex was introduced into the computatIonal domaIn only 

through the far field boundary conditions. In the first case the vortex IS 

1/2 chord from the wing. This is suffiCIently far from the WIng that the 

vortex path differs little from its undisturbed locatIon, and the prescrIbed 

flow residuals are specIfied throughout the domaIn. Figure 3 24 compares 

the spanWlSe C, distributIon computed with the perturbatIon scheme to the 

experImentally measured values. The vortex locatIon IS speCIfied throughout 

the computatIonal domaIn. Excellent agreement With the experImental data 

IS seen for the perturbatIon solution, whIle the conventional Euler solution 

(Figure 3.25) does not show the rapid gradIents at the mld semlspan of the 
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Figure 3.24: ComparlSOn of computed and experImental spanWlse hft dIstri­
butIOns, z/c = 0.5, perturbation scheme 

Wlng. The "blip" In the lift coefficients distributIons In the tIP regIon IS a 

result of the locallncreaae In lift due to the rolling up of the tIP vortex over 

the wing tip. Note that the solutIon obtaIned Wlth the perturbatIon scheme 

shows a slight POSItIve hft over the outboard sectIon of the Wlng, as In the 

expenment, whtle the standard Euler SolutIon has a negatIve load over the 

entIre wing. 

For the case In whIch the vortex passed 1/4 chord above the Wlng (Flg­

ure 326), the hft distrIbutIon shows osctllatlons around the nud senuspan 

when the prescribed flow reSIduals were speCIfied everywhere ThIS 15 pre-
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Figure 3.25: ComparlSOn of computed and experimental spanWlse bft distri­
butIons, z/c = 0.5, standard Euler scheme 
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Figure 3.26. Comparison of computed and expenmental spanWIse hft dIstrI­
butIons, z/c = 0 25, perturbatIon scheme, vortex prescrIbed everywhere 

sumably because the undisturbed vortex path IS qwte different from the 

actual path, and U a is not a good approximation to the local behavIor after 

the vortex passes over the WIng. When Ro IS set to zero above the WIng 

the spanwise WIggles disappear. ThiS IS the solution shown 10 Figure 327 

Again, prescribing the vortex In the region before the WIng allows the steep 

gradients In the spanWIse lIft distrIbution to be captured, as opposed to the 

non-perturbatIon solutIon of Figure 3.28 10 whIch Ro 1S zero everywhere 

In Figures 3.29 and 3 30, the vortex 1S 1mplOglOg on the wmg leadlOg 

edge. Clearly the undIsturbed vortex flow field IS an extremely poor ap-
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Figure 3.27. ComparIson of computed and experImental spanWlse hft dlstn­
butions, z/c = 0.25, perturbatIon scheme, vortex prescrIbed up to Wlng 
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Figure 3.29' Comparison of computed and experimental spanWlse 11ft distrI­
butIons, z/c = 0, perturbatIon scheme, vortex prescllbed up to wIDg 

proxlmation to the flow after the vortex hIts the Wlng. For thIS reason, 

the prescllbed flow residuals Ro are turned off once the vortex reaches the 

wing. Note that the perturbatIon solutIon shows much steeper spanWlse 

gradients lD the lift compared to the non-perturbatIon solutIon. The rapId 

change in the 11ft as the 10duced velOCIty changes from downwash to up­

wash IS completely lack10g 10 the conventIonal Euler SolutIon (Figure 3 30) 

The perturbatlon SolutIon agrees less well Wlth experlment than the other 

two cases, Wlth a much hIgher computed download at the Wlng root than 

was observed experlmentally The discrepancy between computatlon and 
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Figure 3.30: ComparlSOn of computed and experimental spanWlse hft dlstrl­
butions, z/c = 0, standard Euler scheme 

experlment is moat likely due to the fact that the experImental vortex was 

not axISymmetric, but was a trailing vortex wake of a wing (the vortex 

generator). The experlmental results showed a marked asymmetry 10 the 

10duced loads depending upon whether the vortex was above or below the 

wing. The Wlng was only three semlSpans behind the vortex generator, so 

the wake was not completely rolled up. From the computatlons of the roll 

up of the tr&ling vortex sheet of an elliptlcally loaded Wing performed by 

Baker [41 and Moore [411, It IS estlmated that rolled up tip vortex would be 

expected to cont&n 90% of the bound circulatlon of the vortex generator at 
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that location. 

Figure 3.31 and Figure 3.32 show the velocity vectors and total pressure 
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Figure 3.31: Velocity vectors m crossBow plane through WIng nudchord, 
z/c = 0, perturbation scheme 

contours In a spanwise plane through the nudchord of the WIng. It IS clearly 

seen that the vortex 18 split mto two vortices of the same sense, one passmg 

over the wing and the other passmg under the wing. Note that the two 

vortices movmg slightly m the spanWl8e direction, the upper vortex movmg 

outboard and the lower vortex movmg mboard. Thls IS due to the effect of 

the Image of each vortex In the WIng. 

Another factor affectmg the computed results is the location at which 
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Figure 3.32: Total pressure contours 1n crossBow plane through WlDg rrud­
chord, z/c = 0, perturbation scheme 
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the prescrIbed How resIduals are turned off. For this case the prescrIbed 

How residuals were specified up to a distance of two cells from the leading 

edge. It could be expected that the vortex core wlll increase In SIze as It 

approaches the wing due to the adverse pressure gradient in that region. A 

calculation was also performed in which Ro was set to zero approximately 

1/4 chord upstream of the wing. This calculation 18 shown In Figure 3.33. 

The maximum download at the wing root and the upload outboard of the 
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Figure 3 33: Comparlson of computed and experlmental spanWlse lift distn­
butlons, z/c = 0, vortex "turned off" one quarter chord upstream 

vortex are Vlrtually unchanged. ThIS could be expected on the grounds 

that the lnduced velocItIes at these locatIons depend upon the CIrculatIon, 

136 



which was unchanged. The gradient in the SpanWl8e 11ft is slightly less steep 

than the calculation shown here, indicating an increase in the core Slze. 

However, thIS is may be due as much to numerlcal diffusion of the vortex 

m the region upstream of the wing as to the effect of the adverse pressure 

gradient immediately upstream of the wing. 

Figure 3.34 shows the contours of liftmg pressure coeffiClents, defined 
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Figure 3 34: Llftmg pressure coefficlents, t1p/ !pu~, perturbatlon scheme 

as (PI01ller - Puppcr) / !pu~, on the Wlng as computed by the perturbatlon 

approach. The contour levels are ldentlcal to the experimental results of 

Figure 335. The agreement Wlth the experlmental data is very good. The 

location of the zero bft line is the same as m the experlment The computed 
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Figure 3.35: LIftIng pressure coefficients, ap/ !pu~, experiment 
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contours do not match the experimental contours near the root, winch again 

is due to the computed download being larger than was measured. The 

contours near the leading edge show very similar behavior to that observed in 

the experiment. In contrast, the lifting pressure coefficients computed with 

the standard Euler scheme (Figure 3.36) are not even qualitatively similar 
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Figure 3.36: Lifting pressure coefficients, Ap/ !pu;" standard Euler scheme 

to the experimental results. This case In particular shows the power of the 

prescrlbed vortex approach for the computation of wing/vortex Interactlon 

flows. 
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3.6 Summary 

A perturbation scheme for the computation of a wing/vortex interaction 

haa been developed. The perturbation scheme is shown to allow the vortex 

to be introduced into the computational domain without the problem of 

numerical diffusion of vorticity, and without requiring excessive grid resolu­

tion. Furthermore, by settmg the prescribed flow residuals to zero in regions 

where the prescribed flow does not provide a good approximation to the local 

behavior of the flow, strong interactioD8 between the wing and vortex can be 

computed. Comparisons of the computed wing/vortex interactioD8 with ex­

perunent illustrate the accuracy of the perturbation scheme, and conversely 

the mability of the standard Euler solution algonthm to compute such flow 

reliably. 

In the next chapter, the perturbation scheme developed here is combm.,d 

With a free wake model to compute the flow about a helicopter rotor In hover. 
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Chapter 4 

Hovering Rotor Solutions 

In tlus chapter, a method for solvIng the flow around a hovenng heli­

copter rotor is presented. The approach adopted couples the finite volume 

Euler solver presented in the previous chapters with a free wake model of 

the HIm-1nfinite rotor wake. In the next sect10n, the Euler equat10ns 1n a 

rotatIng coordinate system are presented, along with the necessary modi­

fications to the finite volume scheme to compute the flow around rotating 

blades. Next, the wake model 1S described, and the free wake 1teratlon 

procedure 18 presented. The computation of the prescribed flow for the 

perturbation scheme applied to the rotor is then described, and the com­

bined free wake/Euler lteration procedure 18 developed. HoverIng solutions 

are performed and compared to the experimental data of Ballard, Orloff & 

Luebs [5J and Caradonna & Tung [14J. 

4.1 Euler Equations in Rotating Coordinates 

In hovering flight, the aerodynamic loads on a helicopter rotor are steady 

Thus In a frame of reference a.ttached to the rotor blades, the flow field 

may be assumed steady, and the Euler equat10ns may be solved In a tlme 

asymptotic fashion as descrlbed In chapter 2. Some modificatlons to the 

scheme are requued when transforming the Euler equatlons Into a rotating 

141 



coordinate frame, and these changes are discussed below. 

The equations of motion are re-written in a coordinate frame attached 

to the rotor, shown in Figure 4.1. In this coordinate system, z points In 

I 

z,z. 

Figure 4.1: Rotor blade coordinate system 

the chordwise directIon (from leading to traliing edge). 'J is the spanWlse 

direction, and z lies along the &X15 of rotatIon. The lDertial coordInates Z/, 

y/, and z' are taken to coincide Wlth z, y, and z at an instant lD time t. 

Let i1 be the velocity measured in the inertial reference frame and u be the 

velocity relative to the rotor blade. The velocIties i1 and u are related by 

the equation 

where 0 15 the angular velocity of the rotor and 0 = kn 
With these definitions, a coordInate transformatIon from the lDertlal to 

the rotating coordinates YIelds the folloWlng form of the Euler equatIons: 
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where 

and 

p 
pu 

U = pv 
pw 
pE,. 

F(U) = 

o 

pu 
puu+ pi 
pvu+ pi 
pwu+ pic 

p(E,.+ p)u 

-p (02
2: + 20v) 

S(U) = -p (02y - 20u) 
o 
o 

1 p u· u - 0 2 (%2 + y2) E,.=---+ . 
1-1 P 2 

The control volume V 18 fixed In the rotating reference frame. The equations 

in the rotating frame differ from the equations for the fixed wing cue by 

the addition of the terms S(U) and the replacement of the total energy E 

by the quantity E,.. The source terms in the % and y momentum equations 

represent the centrifugal and Coriolis accelerations. The term E,. In the 

energy equation IS analogous to the total energy In an mertlal frame of 

reference, and the quantity 

p H,.=E,.+-, 
p 

(4.2) 

which is called the total rothalpy is analogous to the total enthalpy m the 

inertial frame. For a flow which is steady in the rotating reference frame, 

the condition of constant H,. replaces the condition of constant H which 

occurs in the fixed wing case. 

Using the definitions for u and ~, the EquatiOns (4.1) may be rewritten 

m terms of the absolute rather than the relative velOCity components. 
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where 
p 

pu' 
U. = p,,' 

pw' 
pE,. 

o 
-pO,,' 

S(U.> = pOu' 
o 
o 

p~ 
pu'tl+pi 
p,,'tl+ pj 
pw'tl + pic 

p(E,.+ p)tl 

and E,. is rewritten in the form 

1 p ~ . ~ - 2~ . n x i 
E,. = -- - + ---~---

1'-1 P 2 

The latter form of the Euler equatlons 18 preferable to Equatlon (4.1) for & 

couple of reasons. One is that the discrete flux integral 18 approXImated by 

averaging the absolute velocity components to the cell faces and evaluating 

the coordinate rotation term n x i at each cell face to get the relative veloclty 

u This should be more accurate in the far field where the grid is stretched, 

since the coordinate rotatlon component 18 evaluated at the cell face rather 

than averaged between the cells. The second advantage IS that the artificlal 

viscosity is applied only to the absolute momentum components In the % 

and u momentum equations. Again, tlus 18 particularly Important in the far 

field where the grid is stretched and the n x i component WIll vary rapldly 

between adjacent cella. 

The non-dimenslonalization of the equatlons 18 the same as descnbed In 

chapter 2. That 18, the denslty and pressure are normalized by thell values 

at infinity, POlO and POlO, the veloclty is normalIZed by aoo/..,ff, lengths by the 

blade chord c, and time by c..,ff/ aoo . Tws cholce of "lOn-dlmenslonallzatlon 

YIelds the follOWing definItion for the angular velOCity 

n = 0 Mttp
, 

R 
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where M", is the tip Mach number and R is the non-dimensional rotor 

radius, or rotor blade aspect ratio. Thus the tip Mach number enters the 

problem through the definition of the angular velocity. 

The basic algorithm for solving Equation (4.3) is the same as that pre­

sented in chapters 2 and 3 for the fixed wing cues, with the necessary 

modifications for the differences in the equations. Only these differences are 

described below. 

4.1.1 Flux Intfi'gral Evaluation 

The discrete approXlmatlon to the flux mtegral 15 essentially the same 

as Equation (2.10) in chapter 2. That is, the flux vector 15 computed at 

two adjacent cella and then averaged to get the cell face value. However, 

to compute the flux vector, both the absolute velocity ;1 and the relative 

velocity u are needed; ;1 is found from the state vector U ell but U 15 not 

stored. The relative velocity is easily obtained from the absolute velocity by 

use of the equation u = ;1- n x i. To form the flux vector from each cell, 

the coordinate rotation term 15 evaluated at the cell face, rather than the 

cell center, and subtracted from the absolute velocity. This allows a more 

accurate evaluation of the fluxes m rellons where the gnd undergoes rapid 

stretching, such as in the far field. 

In addition to the flux integral, the centnfugal and Corlolis terms must 

also be computed. The terms S(U ca) are eas11y evaluated at each cell and 

are multiplied by the cell volume to approximate the volume integral~ These 

source terms are added to the flux integral residual R. 

4.1.2 Artificial Viscosity 

The only change In the artifiCial VISCOSity from the fixed Wing case IS the 

replacement of the total enthalpy H With the total rothalpy HI' In the energy 

equation. The dissipation terms are otherwise evaluated exactly as in the 
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fixed wing cue, including the treatment at the boundaries. The symmetry 

condition at the wing root is replaced with a periodicity condition for the 

rotating blade; this is described below. 

4.1.3 Solid Wall Boundary Conditions 

~ in the fixed wing cue, all that is needed at the rotor blade surface 

is the pressure, which is found by extrapolation from the intenor using the 

normal momentum equation. The normal momentum equation differs from 

the fixed wing cue due to the addition of the centrifugal and Coriolis terms. 

Since the normal component of the relative, rather than the absolute, veloc­

Ity 18 zero at a solid wall, it is more conveDlent to work With the momentum 

equation wntten using the relative velOCity U. 

The momentum equation in nonconservative form is 

au - v - v 0- (0- - 2-) p at + pu . u + p + p x X % + u = O. (45) 

The velOCIty u 18 obtamed from the absolute velOCIty 11 by evalutmg the 

coordinate rotation velOCity n x £ at the solid surface and 3ubtractmg It 

from 11. Dotting this equation into the unit normal at the surface, n, and 

using the fact that U· n = 0 and anI at = 0 Yields 

(p11.Vn).u= :: +pnx (nxi+2u) ·n. (46) 

The term on the left hand SIde is evaluated m the 3ame way as for the fixed 

wing; the centnfugal and Coriolis terms are evaluated usmg the coordmates 

at the surface and the tangential component of the relatIve velocity there. 

4.1.4 Far Field Boundary Conditions 

If the Euler equatIOns are wntten m terms of the relatIve velOCity and a. 

one dimensional analysis like that descnbed for the far field boundary coo­

ditlons In chapter 2 IS performed, the charactemtlc varIables are Identical to 
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thoee found in the fixed wing cue. That is, the transformation to rotating 

coordinates does not alter the eigenvalues and eigenvectors of the one dimen­

sional equations, and the sunilarity tranform is unchanged. Thus the same 

characteristic boundary conditions as thoee presented in chapters 2 and 3 

are used. These require the specification or extrapolation of the Riemann 

invariants, entropy, and tangential velocity components at the boundary. 

To evaluate the characteristic variables, the relative velocity components 

are needed. The far field velocity is 

(4.7a) 

where t1." •• is the mduced veloclty field of the semi-mfinite vortex wake and 

n x i 18 evaluated on the boundary. The evaluation of the t1." •• term Wlli 

be descrlbed in sectlon 3. The extrapolated velocity component is 

- -I n- -. U,a = U,a - X %, (4.7b) 

where ~a 18 the absolute velocity at the first celllDSlde the boundary. These 

two velocity components are ll5ed to evaluate the Riemann invariants and 

the tangentlal veloclty at the boundary With these invariants, the normal 

velocity component and the speed of sound are evaluated as before. At 

an inflow boundary, the specification of the tangential velocity glves the 

absolute velocity as 

(4.8a) 

and at an outflow pomt, 

-I - + ( - A) A n- -U = U ea U" - U ea • n n + x %. (4.8b) 

The entropy 18 elther speclfied at an lnflow or extrapolated at an outflow 

boundary exactly as for the fixed WlDg case. The entropy at the mflow 1S 

not necesaanly UDlform, :nnce it varles through a vortex core. The specUi­

cation of the entropy distrlbutlon ln the core 18 done as for the fixed wing 
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perturbation approach of the previous chapter. This point will be taken up 

in more detail in the section on the coupling of the Euler solver with the 

free wake code. 

4.1.5 Periodic Boundary 

For a fixed wing, the coordinate surface at the wing root wu a symmetry 

boundary. At a rotor blade root, this is not the cue. Instead, there is 

rotational symmetry (Figure 4.2). To handle this, the coordinate surface 

Figure 4.2: Rotational symmetry at the blade root 

at the blade root must be symmetrical about the &XIS of rotation to allow 

periodic boundary conditIons to be applied (Figure 4.3). In this thesis, 

only two bladed rotors are treated, but the extension to more blades 18 

straIghtforward. To generate the penodic boundary at the blade root, the 

alrfou section there LS taken to be an ellipse With its major &XIS lymg along 

the x-<iirectlon (normal to the axlS of rotation) and the mmor axIS lymg 

along the z-<iirectlon (the &XIS ohotatlon). Care LS taken so that the gnd IS 
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, 
Figure 4.3: Periodic boundary condition at the blade root 

symmetnc about the Z-&XlS (Figure 4.4). Periodic boundary conditions are 

then applied in an obvious fashion to both the flux integral and artificial 

vlscosity operators. Although the grld at the blade root does not match 

a real rotor hub geometry, the error is small since little lift is produced 

near the root of the blade, and it does have the advantage of satisfying the 

rotatlonal symmetry condition exactly. 

4.1.6 Temporal Integration 

There is no change to the multistage time stepping scheme presented 

in chapter 2. The same mult18tage coefficients are used and the tune step 

restriction applies. The time step is baaed on the relatIve rather than the 

absolute velocity at each cell. Enthalpy dampmg is still used, but in the 

rotatmg frame of reference It becomes rothalpy dampmgj that is, the total 

enthalpy is replaced by the total rothalpy, and the damping is driven by 

the difference in the local total rothalpy and lta uniform steady state value. 
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It is applied exactly as in the fixed wing cases, as an impliclt update after 

a complete multistage integration. The rothalpy damping is desirable for 

the same reuoaa as in the fixed wing solutioaa, in that one series of cases 

presented below are at a very low tip Mach number. Even for a high tlP 

Mach number, the flow at inboard statloaa of the rotor is highly subsoDlc, 

and the rothalpy dampmg is useful in acceleratmg convergence. 

In the next sectlon of the chapter, the wake model is descrlbed and the 

free wake lteration procedure 15 explamed. The coupling of the wake solutlon 

to the Euler solver wIll be descnbed m sectlon 3. 
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4.2 Wake Model 

The model for the hovering rotor wake was developed by Miller [45J. The 

model is bued on Helmholtz's vortex theorems for an inviscid, incompress­

ible flow, which state that vortex lines must follow streamlines of the flow. 

By representing the selJll-infinite helical wake u discrete vortex filaments, 

the geometry of the wake is found by iteratively solving for the force free 

positions of the filaments. Miller made several simplifying Ulumptions to 

YIeld a very fut solution procedure while still capturing the physics of the 

wake flow. The model and solution procedure are described here. 

The helical vortex wake of a hovering rotor is shown 1D Figure 4.5. The 

----- ...... 

Figure 4.5: Vortex wake of a hovering rotor 

trailing vortex wake from each blade 18 modeled as discrete filaments. Flve 

filaments are used; one to model the tip vortex, and four to represent the 

mboard portIon of the vortex sheet. The chOIce of five vortIces IS baaed 

on earlier studies of the wake model (Roberts & Murman [54J and Miller 

et &1. [461) In whIch It was demonstrated that this provIdes an adequate 
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representation of the helical wake. The manner in which the circulatIon of 

each filament is set is described in the next section. 

Let Up, u., and u. be the radial, azimuthal, and axial velocity compo­

nents in the frame ofreference ofthe rotor (Figure 4.6), and Fa is the filament 

Figure 4.6: Vortex velocity components 

index. The requirement that each filament lies along a streamline yields the 

following equations for the vortex trajectories: 

Up" u." u." (4 9) 
d,." = ,."dt/J = dz,,' 

The essence of the free wake procedure 111 the solutlon of the Equatlons (4 9) 

for the N vortex filaments. Several approxunations are made to simplify the 

solution procedure. First, the contnbution of the rotor blade bound cU'cu­

latlon to the induced velocIty in the wake is neglected, as the contnbutlon 

of each blade cancels when averaged over the azimuth. Next, the velOCIty 

perturbatlons 1D the azImuthal directIon are Ignored, wluch allows u. to be 

written as 

( 4.10) 
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SubatitutinS into Equations (4.9) yields 

~~d ( ) dr~ = n t/J, 4.lla 

dZn = u~~dt/J. (4.llb) 

Neslectins the azimuthal velocity perturbations is equivalent to treatInS the 

Bow m a liven azimuthal plane to be axisymmetric. This allows the helical 

vortex filaments to be replaced by vortex rinp for the purposes of computins 

the induced velocities. A further simplification is made by computins the 

velocities and solvinS for the pOSition of the vortices only in the azimuthal 

plane containing the rotor blade, t/J = O. The vortex rings are constructed by 

takinS 1800 segments of the helical filaments from each blade and replacmg 

them WIth vortex rings at their mean locatiOns, as shown m Figure 4.7 The 

-

~ .... ------- ...... - - --, 
---- -~ 

Figure 4.7' Formulation of vortex ring model 

first series of rmgs replaces the segment of each helical filament from t/J = 900 

to t/J = 2700 from the two blades; the next senes of rmgs 18 made from the 

t/J = 4500 to t/J = 6300 segments, etc. The first quarter spiral of the filaments 
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from each blade, t/J = 0 to t/J = 900 still remain-their contribution to the 

induced velocities below the rotor blade may be computed by replacing the 

two quarter spirala of each filament with a single nng of half the circulation 

of the filament. The location of these rings are fixed in the rotor plane, and 

are not found u part of the free wake iteration procedure. 

Since the wake hu an infinite extent in the axial directIon below the 

blade, the pOSItion of each filament cannot be determined throughout the 

wake. The force free position of each filament is found only for the first 

7200 of its age, or four passes below the rotor blade. After that point, 

the remaining semi-mfimte wake is modeled by two vortex cylinders, one to 

represent the tIP vortex and one to represent the entire inboard portIon of 

the wake. The strength of the tIP vortex cylinder, !, 15 found by diVIding 

the tip vortex circulation r by the axial separation between the lut two 

free tIP vortex sPllala, ~z (Figure 4.8). The radius of the vortex cylinder 15 

r 

FIgure 4.8: Vortex cylinder far wake representatIon 

fixed at the radius of the tIP vortex at its fourth passage below the blade, 
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and it begins a distance tl.z below the tip vortex spiral. To set the strength 

of the cylinder modeling the inboard portion of the trailing vortex sheet, 

the centroid of the four filaments representing the free portion of the sheet 

are lumped at their centroids for the last two passes below the blade. The 

cylinder strength and location is determined as for the tip vortex cylinder, 

based on the circulation and location of the vortex centroids (Figure 4.8). 

With this wake model, the determination of the wake geometry requires 

the solution of Equations (4.11a) and (4.11b). The determination of the 

velocities ai the vortex locations is discussed first, and then the 1terative 

solution procedure is described. 

4.2.1 Velocity Computation 

Since the wake model assumes an incdmpres~llble, mvisc1d, irrotational 

flow with embedded vorticity, the velocities in the wake are found by sum­

ming the induced velocit1es of all the vortex rings and cylmders used to 

model the wake. The induced velocity of each ring is found by using the 

Biot-Savart law. The formulas for the induced velocity of & vortex rmg and 

& vortex cylinder are given by Miller in reference [45]; they are repeated here 

for completeness. 

By applying the Biot-Savart law to a vortex ring of radius r and circula­

tion r, the radial and axial components of the 1nduced velocity at a radius 

" and axial distance z from the plane of the ring (Figure 4.9) are given by 

the following integrals: 

(4.12&) 

211' 
r ! r (r - "cos,p) d,p u = - (4.12b) 

• 4", 0 (,,2 + r2 + z2 - 2r"cos,p)i' 

The mtegrals 1n Equat10ns (4 12a) and (4.12b) may be expressed m terms 
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-================u r 
r ·1 

Figure 4.9: Coordinates for vortex nng induced velocity calculation 

of complete elliptic mtegrals of the first and second kmd, 

(4.13a) 

(413b) 

where 
1c2 _ 4r" 

- (r + ,,)2 + z2 

is the argument of the elliptic integrals K and E. With these definitions, the 

velocity components u,. and u. may be written in the following form: 

r z ~2 { 2 - 1c2 } u,.= -- - E---2K 
4,.. 2" r" 1 - 1c2 ' 

(4.14a) 

(414b) 
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The induced velocity of the far wake vortex cylinders must also be com­

puted at each free vortex filament location. The radial and axial velocity 

components of a vortex cylinder are given by 
00 2.-

1 cIr II zrcoe.pd.pdz (4.15a) 
u,.cv' = 4". dz • 0 ('72 + r2 + z2 - 2z'7cos.p)i' 

00 2.-
1 cIr II r(r - '7 cos.p) d.pdz (4.15b) 

u •• = 4". dz • 0 ('72 + r2 + z2 - 2r'7 cos .p) •. 

Here, z is the axial distance from the end of the cylinder to the point at 

which the velocity is to be evaluated, r is the cylinder radius, and '7 is the 

radius at the point of evaluation. Integrating the above equations over z 

gives 

(4.16a) 

Equation (4.16a) can be rewritten in term of the complete elliptiC integrals 

of the first and second kind, 

u"cv' = 2!k ~ ~ [K (2 - k2
) - 2E], (4.17) 

where k, K, and E are as previously defined. The equation for the axial 

component of induced velocity of the vortex cylinder, Equation (4.16b) IS 

left unchanged for now. 

To evaluate the elliptiC integrals, the Cayley senes solution (reference 

[15J are used. These senes are rapidly convergent, and only a rew terms 

need to be retained. The senee for K and E are: 

K = F + (i) 2 (F - 1) (1 - k2
) + (~ : : r (F - 1 - 3 : 4) (1 _ k2

) 2 

+ (1.3.5)2 (F _ 1- _2 ___ 2_) (1 _ k2)3 + ... I (4.18a) 
2·4·6 3·4 5·6 
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where 
4 

F=ln. v'l- k 2 

In the current implementation, the first f'our terms of' the series are re-

tained; this choice was determined through numerical experimentation. The 

expression f'or the axial component of velocity due to the cylinder, Equa­

tlon (4.16b), cannot be expressed solely in terms of complete elliptlc mtegrals 

of' the first and second kind, but contains elliptiC mtegrals of the third klnd. 

For thla reason, it IS more convement to evaluate the velOCity by numencal 

integration of Equation (4.16b) using the trapezoidal rule. Agam through 

numerical experiments, it was found that eighty mtegration steps In the !/J 
direction gave sufficient accuracy. Care must be taken when '7 = r, since 

the denoaunators of both fractiOns In the integrand vamsh at the endpomts 

of' the Integration, !/J = 0 and !/J = 211'. However, the integrand has a well 

defined limit of' zero as t/I - 0, 211'. The integrand is set equal to zero at the 

endpoints when r = '7, and the expression is numencally evaluated for each 

of the remaining steps. 

It should also be noted that the expressions for the induced velOCity of 

a vortex nng are smgular at the ring locatlon Itself ('7 = r, Z = 0), and thus 

cannot be used to evaluate the self-induced velOCity of' the ring. As given 

by the above formulas, the self-induced velOCity of' a nng IS Infinite, whlch 

is physically unacceptable because it corresponds to Infinite kinetiC energy. 

This behaVior is a result of the auumptlon that the vortex 18 concentrated 

onto a filament of zero thickness. In reality, the vortex filament Wlll have a 

finlte core radius due to the action of VISCOSity, and thls will result in a fimte 

but non zero self-mduced velocity. The self-induced velOCity of a vortex rmg 

With a Ranlune core structure and a rotational core rwus a 18 given by 
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Lamb [361, p. 241, as 

(4.19) 

This formula is used to compute the self-induced velocity of the vortex nng. 

The value of the core radius CJ is chosen, following Miller, to be O.OlR, 

where R is the radius of the rotor. This choice of the core size is based on 

the theory of Landahl [371, and has been extended by Chung [17J. Since the 

self-induced contribution is logarithmically singular, it is not too sensitive 

to the exact value of CJ within the given range. For the cues presented in 

this chapter, the above value gives a core radius of the order of 7% to 15% 

of the rotor blade chord c. The value used was chosen to be 0.15c for all the 

cases presented below. (The reason for choosmg a value of CJ in terms of the 

blade chord rather than the rotor radius 111 due to the fact that the lengths 

were non-dimenslonalized by the chord rather than the radius in the code. 

It is thus more convenient to refer the value of CJ to the chord.) 

Using the above formulas for the induced velocity of each vortex rmg 

and cylinder in the wake, the total induced velocity at each vortex loca­

tion 18 determined. These velOCItIes are used to solve the vortex trajectory 

EquatIOns (4.11a) and (4.11b). The Iteration procedure for detenmning the 

vortex positions is described next. 

4.2.2 Wake Iteration Procedure 

The position of the wake vortIces 18 detenmned only in the azimuthal 

plane'" = O. The equations of the vortex traJectones, EquatIons (4 11a) 

and (4.11b), are solved IteratIvely. Let N be the number of helical vortex 

filaments used to model the wake, and M be the number of passes of the 

wake below the blade; for all the cases m thIS theslll, N = 5 and M = 4 The 

total number of vortex nngs used to model the free wake IS then N x M In 

additIon, there are N vortex nngs In the tIP path plane of the rotor, whose 

positions are fixed, and two far wake vortex cylinders (Figure 4.10). The 
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Figure 4.10: Complete wake model 

POSitiOns of the vortex rmgs in the wake are not known a pnorl, and an 

imtial guesa at their locations is made. For the first run of the free wake 
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code within the combined Euler/free wake iteration procedure, the Initial 

guess haa been taken to be a solution given by the lifting line/free wake 

solver developed by Roberta & Murman for the given rotor. This geometry 

is specified in the input file of the code. The choice of initial guess is not too 

critical, and a uniform axial spacing of the wake vortices would work Just as 

well. For subsequent runs of the free wake solver, the initial guess for the • 
geometry is taken to be the previously converged wake geometry. 

H n is the index of the vortex ring, then the position of the (n + N)'Ia vor­

tex nng is found by mtegratmg the trajectory equations (4.11a) and (4 llb) 

over the Interval ,p = 0 to 1r to get 

'II' Id 

r rICW _ rold + I u~ d,p 
n+N - n 0 

o 
= raid + Irr n U n+N, 

'II' Idd 
old I U: ,p = Zn + 0 

o 
old + Ir 

- Zn u%n+N· 

(420a) 

(4.20b) 

The superscnpt. old and new refer to quantities evaluated before and after 

the vortex wake geometry is updated, respectively. When the wake has con­

verged, the old and new values of the geometry and the vortex velocities are 

the same. The integrals in Equations (4.20a) and (4.20b) are approxunated 

by taking the average velocity between the vortex locations n and n + N 

This yields the equations for the change m the vortex location, 

old + old S 1r U"n U"n+N 
rn+N = 0 2 ' (421a) 

(4.21b) 

The position of the (n + N)'Ia vortex nng gIven by EquatiOns (420a) 

and (" 20b) w1l1 not m general correspond to the orlgmal position. The new 
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position computed from the trajectory equations is used obtain a new wake 

geometry. However, the trajectory equations form an ill-conditioned system, 

and taking the positions given by Equations (4.20a) and (4.20b) does not 

yield a stable iteration procedure. Underrelaxation is reqwred, meaning a 

weighted average of the current vortex position and predicted vortex posItion 

must be used to obtain the new vortex positions. The resulting equations 

for updating the wake geometry are 

(422a) 

(422b) 

where CIJ. is the underrelaxatlon parameter, and 18 generally taken to be 

0.2. It is easily seen that when CIJ. = 1, Equations (4.20a) and (4.20b) are 

recovered. After the posItions of the free vortex rings are found, the locations 

and strengths of the two far wake vortex cylinders are recomputed, and the 

next iteration starts. 

To summarlZe the IteratIon procedure for determinlng the wake geome­

try: 

1. the velocity at each of the N x M free vortex postions IS determined 

by summjng the induced velocities of all the vortex rings and cylinders 

in the wake; 

2. the trajectory equations (4.21a) and (4.21b) are integrated; 

3. the positIon of each free vortex ring 18 updated uSing EquatiOns (4 22a) 

and (4.22b); 

4. the far wake vortex cylinder locatIOns and strengths are recomputeu 

uSing the new wake geometry; 

5. the Iteration is continued untl1 the geometry converges. 
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No convergence criterion haa been developed for the wake geometry iteratlon 

procedure, aa it haa been found more convenient to run a fixed number of 

iterations. For all the cues presented below, 200 iterations of the free wake 

algorithm have been used for each free wake solution. The average change 

in vortex position after 200 iterations is usually on the order of 10-6 of the 

rotor radius. 

Having deac:ribed the Euler equations and free wake model, the manner 

In which the two have been coupled will be presented. 

4.3 Euler/Wake Coupling Procedure 

Although the solution procedure for a hovenng hehcopter rotor 18 bro­

ken into two parts-namely, the Eul~ solution for the rotor blade near field 

and the free wake solution for the semi-infinite wake-it 18 cleat that these 

two parts are not independent. The coupling of the Euler solver WIth the 

free wake iteration procedure is the process by which Information from each 

solver is passed to the other. Basically, the free wake solver requires the 

strength of the vortex filaments modeling the wake to be determmed, and 

this depends upon the spanwiae load distribution of the rotor blade. Thls 

mformation is available from the Euler solver for the blade near field flow 

In order to accurately compute the blade loads, the mduced velOCity field 

of the wake must be used to preac:rlbe the far field boundary conditions for 

the Euler solver. In addition, smce the wake vortlces pass through the Eu­

ler computational domam-ln partlcular, the tiP vortex from the preceding 

blade passes close to the blade-the portion of the wake Wlthm the compu­

tational dom&ln must be mtroduced mto the domam In a manner avoldmg 

the numerical dift"wnon of the wake vortlclty. If thIS last requirement IS not 

met, the d18trlbutlon of the blade load distrlbutlon cannot be accurately 

computed. 

The general outline of the coupled lteratlon procedure IS as follows' 
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1. the Euler solver initially run for 200 iterations, without including the 

wake, in order to get a reasonably converged starting solution; 

2. the bound circulation distribution along the span of the rotor blade is 

determined from the Euler solution of the rotor blade near field; 

3. the bound circulation distribution is used to set the strength of the 

wake vortices, and the free wake algorithm is used to solve for the 

wake geometry; 

4. the new wake geometry and vortex strengths are used to determme 

the induced velocities for the Euler far field boundary conditiOns, and 

the wake 18 introduced lDtO the Euler finite volume gnd using the 

perturbation scheme described in chapter 3; 
, 

5. the Euler solver 18 run another 100 iterations using the new boundary 

conditions and wake geometry; 

6. the procedure from step 2 to step 5 is repeated. 

The det&lls of the implementation are given below. 

The strengths of the tr&lling vortices modeling the wake In the free wake 

solver are determined by the spanwise bound Clrculatlon distribution on the 

rotor blade. This is obtamed from the Euler solution by performing a line 

Integral of the velocity, 

r(y) = f ~ ·ds, (423) 
c 

around a chordwise contour at a fixed spanW1Se statlon of the rotor (Fig-

ure 4.11). Because of the sensitivity of the rotor loads to the wake geometry, 

the bound circulation can change greatly between each free wake solutlon, 

especlally in the lDltlal stages of the coupled calculatlon procedure. For thls 

reason, the computatlon of the bound cllculatlon 18 underrelaxed, 

(424) 
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Figure 4.11: Bound circulation detemunation 

where rold is the previous bound circulation and r is the cllculatlon eval­

uated using Equation (4.23). The underrelaxation parameter w. is usually 

taken to be 0.5. For the initial iteration, rold is set using the combined 

blade element/momentum theory (Gessow '" Myers, [29J). With tlus bound 

circulation d18tribution, the strengths or the trailing vortices are determined 

using the rollowing roll up schedule: 

1. the tip vortex is assumed to roll up from the position of maxunum 

bound circulation r mea. of the blade to the tip, and the strength of the 

tip vortex is set to be equal to r mea., 

2. the distance from the location or r mea. to the blade root is divided into 

rour equally spaced segments, and the change In the bound circulation 

in each segment gives the strength of the trailing vortex euutted from 

each segment (Figure 4.12). 

The location of the vortices in the tiP path plane are fixed by deterII1lnlng 

the centrOid of vorticity Wlthln each segment, 

112 
f rydy 

111 
Yv = ~1I:-2-- (4.25) 

f rdy 
III 
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where fl1 and fl2 are the endpoints of the segment (Figure 4.12). Because 

r 
tip 

root y 

Figure 4.12: Trailing vorticity roll up schedule 

the bound Cll'Culat10n can only be found between the spanWl88 grid nodes on 

the blade, the bound circulation on the blade must be interpolated between 

the grid cells along the blade to evaluate the above mtegral. To do thfs, the 

G lauert transformation 

(4.26) 

is first used to get I at the locations at which r is known. With I known, 

the distribution r(l) is determined using a cubic spline fit along the blade. 

Next, Equation (4.25) is rewritten In terms of 9, 

7r (1- cod) sinld9 
R'l 

flv = 2~-'''''------
Ir sin9dl 
'1 

(4.27) 

The integrals in Equation (4.27) are evaluated using a trapezoidal rule mte­

gration over each segment fl1 to !l2' Thus the location of the vortex filaments 

m the plane of the rotor are found, and With the vor·ex strengths known, 

the wake geometry solution procedure IS started. 

With a new wake geometry, the specification of the far field boundary 

conditions and calculation of the prescnbed flow residuals for the Euler 
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solver can be performed in a fashion similar to that described in chapter 3. 

This is done using the same model of vortex rinSS and cylinders given by 

the converged free wake geometry. The calculation of the far field induced 

velocities, U'.caa, Equation (4.7a), are found by summing the induced veloc­

ities of all the wake vortex rings and cylinders using the formulas given in 

the previous section. In the same way, the induced velocity at each cell in 

the computational domain is determined. Since the portion of the trailing 

vortex wake attached to the rotor blade is to be computed as part of the Eu­

ler solution procedure, the vortex rings fixed in the rotor tip path plane are 

excluded from these velocity calculations. That is, only the wake elements 

lying below the rotor are used to determine the wake induced velOCities in 

the Euler computational domain. 

In computing the induced velOCity at each fimte volume cell, the prob­

lem of avoiding the singularity near the vortex location is encountered, and 

some core structure must be assumed. Unlike the free wake solver, In wluch 

all that was needed was the self-induced velocity of the vortex, the induced 

velocity field through the vortex core is required. To obtain this, It 18 as­

sumed that near the vortex itself, the velOCity field of the vortex looks 11ke 

that of a two dimensional vortex plus a uniform velocity correspondmg to Its 

self-induced velOCity. The two dimensional core structure was taken to be a 

Lamb vortex core, and the self-induced velocity component was found using 

Equation (4.19). (Strictly speaking, the velOCity given by Equation (4.19) 

11 for a Rankine core structure. Bliss [91 has developed a theory for the 

self-induced velOCity of a vortex with an arbitrary core structure, but the 

difference here 18 not significant.) The core radius a was taken to be 0 15c, 

as described in the prevIous section, for all the cases presented here. Smce 

the assumption of a two-dlmenslonal velOCity field IS valid only near the 

core, It 1S necessary to transition from the Lamb velOCity equation, Equa­

tion (3.13b), to the Equations (4.14a), and (4.14b) for a vortex rmg at some 
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point in the field. For distances > 44 from the center of the vortex core, the 

velocity field was taken from the formulas for the induced velocity of a vor­

tex ring; at distance< 24 from the center of the vortex, the two dimensional 

Lamb vortex velocity field plus the self-induced velocity was used. Linear 

interpolation of the vortex ring and the two dimensional formulas was used 

in the range 24 to 44 from the vortex center. 

With the induced velocities known at each cell, the prescribed flow state 

vector Uo is determined using the same procedure as in chapter 3. The 

condition of constant total rothalpy replaces the constant total enthalpy 

conditlon. To compute the entropy distnbution in the vortex cores, the 

assumptlon of an isolated two dimensional Lamb vortex structure 18 used, 

and Crocco's equation 18 integrated as In the fixed wing case. The equa­

tion solved is Equation (3.17b), given in the last chapter, for the entropy 

distnbution through a Lamb vortex. This equation is also used to obt&n 

the entropy at the far field boundary, which is needed for specUing the en­

tropy at an inflow boundary. With the entropy, total rothalpy, and veloclty 

known, the entire state vector Uo can be determmed. The prescribed flow 

reSiduals Ro are then found, and the Euler equatlons are mtegrated In tlme 

in the same manner as in chapter 3. 

It should be noted here that prescribed flow representing the wake 1S 

not an exact solution of the steady Euler equations, since it COnsl8ts of a 

collection of stationary vortex rmgs. Aa shown in the prevIous chapter, the 

finite volume equatIons are no longer consl8tent, smce the prescrlbed flow 

residuals will not vanish as the gnd spacmg vamshes. Tlus problem can 

only be avoided if a wake model whlch exactly satisfies the Euler equatlons 

18 used. 
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4.4 Results 

The flow fields of two roton have been computed. The first is two bladed 

rotor tested by Ballard, Orloff, & Lueba [5] at a low tip Mach number and 

Reynolds number. In the experiment, the bound circulation diatnbution 

along the blade was measured USlDg a laser Doppler velocimeter. Also mea­

sured was the location of the tip vortex at Its first pass below the rotor blade. 

The second series of computations compares to the experimental results of 

Caradonna & Tung [14]. This experiment measured the chordwiae pressure 

distributions at five spanwiae stations on the blade, and the tip vortex ge­

ometry was measured USlDg a hot wire anemometer. Computations for two 

tip Mach numbers have been made. 

4.4.1 Ballard et ale Test Case 

The first rotor geometry computed here was tested by Ballard, Orloff, & 

Luebs [5]. It is a two bladed rotor WIth a rectangular planform, an aspect 

ratio of 13.7, NACA 0012 airfoil sectlon, and a linear twist of 11 degrees from 

root to tip. The collectlve pltch at 75% span is 9.S degrees. The experiment 

was run at a tip Mach number of 0.225 and a chord Reynolds number of 

400,000 at the tip. 

The computations were performed on a finite volume grid consistlDg of 96 

cells around the blade chord, 20 cells from the blade to the outer boundary, 

and 40 cells along the span. The distance from the rotor blade to the outer 

boundary was six blade ~ords. The spanWlSe gndpoint distribution was 

choeen to increase the resolutIon lD the regIon of the blade vortex lnteractlon 

This can be seen In a plot of the surface gnd over the last 40% of the rotor 

blade radius, shown In Figure 4.13. A spanWlSe sectIon of ~he gnd IS shown 

In Figure 4.14. 

For all the calculations oftlus rotor, the eFL number was 2.8, the second 

and fourth dift'erence artIficial viscOSIty coefficients were 0 and 0.01, respec-
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Figure 4.13: Surfa.ce grid, outer 40% of Ballard et a1. rotor 

tively, and the rothalpy damping coefficient was 0.025. The wake geometry 

underrelaxation parameter Ww was set to 0.2, a.nd the bound circulation 

relaxation parameter Wb was set to 0.5. 

The first three computions for this rotor were performed at the geometric 

collective pitch setting of the experiment, 8.75 = 9.B. The three calculations 

were: (a) an Euler solution for the isolated rotor without the wake coupling; 

(b]l a solution in which the free wake and Euler solvers were coupled, but in 

which the wake influence was included in the Euler code only through the far 

field boundary conditions; and (c) a fully coupled Euler/free wake solution 

using the procedure described in the last section. For case (c), the tip vortex 
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Figure 4.14: SpanWlU view of grid through rotor midchord, Ballard et aI. 
rotor 

from the preceding blade lies approximately 1 blade chord below the rotor. 

This is sufficiently far away that the distortion olthe vortex path due to the 

blade is relatively small. Because of this the prescribed flow residuals are 

specified throughout the domain. 

Figure 4.15 shows the bound Circulation computed for the three cases, 

along With the experimentally measured bound circulation. The bound cir­

culation has been non-<ilmensionalized by the tiP speed times the rotor ra­

dius. The drastiC dIfFerences 10 the blade loadmg among the three solutlons 

18 due entirely to the differences m wake modeling. It is seen that the fallure 
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Figure 4.15: Spanwise bound circulation distribution, ~, Ballard et al. 
rotor 

to include the wake in the Euler solver results in a very large overprediction 

of the thrust, due to the fact that the. downwash at the blade is too low, and 

hence the angle of attack along the blade IS too high. Includmg the wake 

through the far field boundary conditions results in some Improvement; the 

maximum bound circulation on the blade is better predicted, and the lift 

IS signlficantly lower along the blade. However, too much thrust 18' bemg 

produced, and the load distnbutlon does not show the same qualitative be­

haVior as In the expenment. Case (c), the coupled Euler/free wake solution 

using the perturbation scheme, IS significantly better. The distnbutlon ofllft 

172 



is qualitatively very suni1ar to the experimental data, although the overall 

thrust is clearly too high. The peak bound circulation is also slightly inboard 

of the experimental position, corresponding to more wake contraction. It is 

interesting to note that the peak r for cases (b) and (c) are nearly the same, 

even though the loadings inboard of the peak are quite different. In case (b), 

more lift is produced inboard due to the fact that the tip vortex, which is 

introduced into the Euler computational domain only through the boundary 

conditions, is too diffuse by the time it reaches the rotor. Its contnbution 

to the downwash over the blade is thus not accurately computed. This can 

be clearly seen in Figures 4.16 and 4.17, in which the velOCity vectors m a 

spanwise section through the midchord of the rotor blade are shown for the 

two cases. Note that the tip vortex is well defined for case (c), whereas m 

case (b) the vortex is no longer apparent. What is seen in Figure 4.16 is a 

more uniform doWIiwash due to the wake, but the rapid variation in the flow 

velOCities and the vortex core structure has vamshed entirely. Interestmgly, 

the Bow field near the tip 11 very simdar in both cases. 

Figures 4.18 and 4.19 show the computed wake geometry for case (b) 

and case (c), respectively, as well as the measured tiP vortex position at 

the first pass below the blade. Both computations shows a more rapid 

ramal contraction of the wake than was observed expenmentally, consistent 

With the more inboard location of the bound circulation peak on the blade. 

Also, it appears that the wake is descending at a more rapid rate than 

m the experiment, although the magnitude of tblS rapid descent IS more 

difficult to estunate since only one measured tip vortex POSition IS avallable 

However, this is consistent With the greater than observed thrust for these 

two cases. interestingly, the wake geometnes predlcted for the two cases 

are qUite sundar despite the differences m the load distributions. ThiS 1S 

due to the fact that the tiP vortex strengths are nearly the same, and thiS 

concentrated vortex plays the dorrunant role m the evolution of the wake. 
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In Figure 4.15, the load diatribution near the tip is quite simllar for 

all three cues, despite the differences in the wake infiuence. Although no 

surface pressure measurements were made in the experiment, the computed 

pressures were compared. In Figures 4.20,4.21,4.22, and 4.23, the pressure 
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Figure 4.20: ComparISOn of chord WIse loading, WIth and WIthout the wake, 
93%R 

coefficients for case (a) and case (c) are shown at four chordWlSe sections 

WIthin a chord lenrth from the tip. Note the smularlty In the pressure 

distributions, which IS remarkable for the fact that one solution has no wake 

mcluded and the other IS the fully coupled Euler/free wake solution ThiS 

observation was also noted In the computations for the other rotor presented 
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in this thesis, the rotor tested by Caradonna & Tung. Those results WIll be 

shown below, and an explanation for the results will be presented then. 

Although the fully coupled Euler/free wake solution of case (c) is in sig­

nificantly better agreement with the experimental data than the other two 

cases, the thrust is still being overpredicted. This can be attnbuted to vis­

cous effects. D~e to the low Reynolds number of the experiment (400,000 

at the tip, based on tip chord), there is a significant difference the lift curve 

slope of the blade compared to the inviacid lift curve slope. The magnitude 

of lift loss due to viscosity was estimated using the two dimensional Euler 

code ISES, developed by Michael Giles and Mark Orela [30,221. This code 

solves the steady, two dimensional, compressible Euler equations for atrfoUs 

and cascades using a direct Newton Iteration procedure. It also 1Ocorpo­

rates an efficient and robust coupling of the InvlScld solver to an Integral 

boundary layer procedure. The boundary layer equations have been devel­

oped to handle Reynolds numbers as low as 250,000, Including tranSitional 

separation bubbles. The ability of the code to handle such flows has been 

demonstrated by Orela 10 hIS thesis [221, as well as 10 a more recent paper 

[231· 

To estimate the VISCOUS effect, ISES was run tWIce First, an 10Vlscld 

calculation was made at a fixed 11ft coefficient of 0.7 and a Mach number of 

0.2. This approximately corresponds to the peak computed lift coefficient 

on the rotor at about 90% radius. The invlSCld angle of attack for these 

conditions was found to be 5.73 degrees. Holding the angle of attack fixed 

at this value, a viscous calculation was run at a Reynolds number of 350,000 

for the same Mach number. The computed lift coeffiCient was ° 63, or 10% 

lower than for the InvlScld case. ThIS suggests that the angle of attack 

should be reduced by 10%, or 0 57°, 10 the InVlSCld case to approXImately 

correct for the influence of the boundary layer on the lift. Thls correction 

was Simply made for the rotor by reduc10g the collective pltch of the blade 
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by 0.6°. 

ID Figure 4.24, the collective pitch haa been reduced by 0.6 degrees. The 
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Figure 4.24: Spanwise bound circulation distrlbutlon, ~, Ballard et al 
rotor, reduced collective 

agreement WIth experiment 18 very good. The pOSition of the peak Cll'CU­

lation 18 still slightly inboard of the experlmentally observed peak, agalD 

indicating that the free wake computation 18 predicting a more rapid con­

traction of the wake than was observed experlmentally. Th18 18 confirmed 

10 Figure 4.25, which shows the wake geometry for tlus case. Note that 

the wake contraction IS nearly Identical Wlth the prevIous case, but that 

the &Xlal location of the first tiP vortex is Identical to ItS measured value. 

183 



0.0 

-02 

-0.8 

·10 

B, 0 " L ROTOR - , TIl = ~.2·, M .. ~ = 225, ~ )( 20 )( 40 snd 
WabpometrJ 

•• 

• COMPUTATION 
• • UPIIII.IMIINT [&1 

• 

• 

-12~----~----~----------------------------------
-02 00 02 04 06 

"IB 
08 10 12 14 

Figure 4.25: Wake geometry, Ballard et aI. rotor, reduced collective 

Again, smce the calculated thrust now matches the measured thrust, this 

is to be expected. The differences in the measured and experimental wake 

contraction may be attnbuted to couple of factors. First, the computed 

wake contraction is primarily dependent on the far wake model. It IS the 

radial component of the induced velOCity due to the entire semi-mfinlte wake 

that determines how rapidly the wake contracts. On the experimental Side, 

statl" thrust test are very sensitive to the test conditiOns. These experiments 

were run In an enclosed chamber, meaIllng that flow recIrculatIon Wlll have 

an effect on the flow field. The magmtude of these effects are chfficult to 

estimate. 
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The solutions of the coupled Euler/free wake code required about 43 

minutes of CPU time on the Cray X-MP / 48 at NASA Ames Research Cen­

ter for these cues. About 25% of the time was spent in the computation of 

the prescribed state vector U o, which was done after each free wake solution. 

This portion of the code ran in scalar mode, while the Euler solver itself is 

well vectorized. The time spent in computing the prescribed flow could be 

reduced by about half if the induced velocities of the vortex cylinders repre­

senting the far wake are not included in the specification of the prescribed 

flow. Since the induced velocities of the far wake are smooth through the 

finite volume grid, it is probably sufficient to include them only through the 

far field boundary conditions. The work involved in the free wake lteratlon 

procedure itself is negliglble, reqU11'lng only 1% of the total solution time. 

4.4.2 Caradonna & Tung Test Case 

The second set of solutlon computed were for a rotor geometry tested 

by Caradonna & Tung [14]. The rotor has two blades of aspect ratio 6, 

is untwisted and untapered, with a NACA 0012 &lrfou section. The rotor 

was tested over a range of collective pitch settings and tlP Mach numbers, 

and the chordwise surface pressures were measured at five spanwise statlons 

along the blade. The tip vortex geometry was measured over the range 

of 0 to 4500 azimuth, using a hot wrre anemometer. Computations were 

performed for two experimental configurations, M,.p = 0.439, (J 75 = 80 and 

M"p = 0.877, (J 75 = 80
• The corresponding Reynolds numbers at the tlP for 

the two cases are 1.56 x 106 and 3.12 x 106, respectively. 

The grid for this rotor was slmllar to that for the preVlOUS rotor, Wlth 

96 chordwise cells, 20 cells from the blade surface to the far field, but only 

32 cells along the span. The reductlon lD the spanWlse resolution was made 

due to the lower aspect ratio of the blade; the resolution 1n the reglon of 

the blade/vortex lDteratlon is simdar to that of the prevIous rotor, as can 
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be seen in the surface grid plot, Figure 4.26. 
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Figure 4.26: Surface grid, Caradonna & Tung rotor 

8.0 

The first case run was for the lower tip Mach number. A CFL number 

of ~~.8, no second difference dissipation, a fourth difference dissipation coef­

ficij!nt of 0.01, and a rothalpy damping coefficient of 0.025 were used. In the 

freE! wake solver, Ww was set to 0.1, and Wb was set to 0.25. 

Figure 4.27 shows the computed lift coefficient distribution compared 

to Elxperimentj the bound circulation was not measured in the experiment, 

which is why the lift coefficients rather than the bound circulation are com­

pared here. The, experimental lift coefficients were computed in reference 

[14] by a chord wise integration of the measured surface pressure coefficients. 
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The predicted thrust is higher than observed. The pecuhar spike in the 

computed C, near the tip is due to inaccuracies in the pressure extrapola­

tion to the surface, which is caused by the grid distortion near the leading 

and trailing edges at the tip. (Recall from chapter 2 that near the coordi­

nate singularity, the difference equations are locally zeroeth order accurate ) 

The wake geometry is shown in Figure 4.28; it is seen that the free wake 
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Figure 4.28: Wake geometry, Caradonna & Tung rotor, Mhp = 0 439 

code predicts a much greater wake contraction than measured In the exper­

Iment, and the axIal descent rate of the tlp vortex IS overpredicted. ThiS 

second effect 18 conslStent WIth the overpredlctlon of the thrust. Flgure 4 29 

compares the computed and experimental surface pressure coeffiCients. The 
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Figure 4.29: Surface pressure distrlbutlon, Caradonna & Tung rotor, 
M t" = 0.439 

agreement IS fair, with the greater than observed. lift once again apparent. 

The second case run was for the tlP Mach number of 0.877. This case 

IS obvlously highly transoruc, and as such 15 not representatlve of a. real 

hovering rotor. It does however provlde a severe test of the scheme. A 

eFL number of 2, second and fourth difference dissipation coefficients of 

0.35 and 0.01, respectlvely, and a rothalpy damping coefficlent of 0.025 were 

used.. The wake and bound circulation relaxation parameters were the same 

as the prevIous case. 

Figure 4.30 compares the computed and experimental lift coefficlents 
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M for the lower tip Mach number case, the predicted thrust is higher than 

obee"ed. The wake geometry is shown in Figure 4.31; the predicted wake 
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Figure 4.31: Wake geometry, Caradonna & Tung rotor, M"p = 0 877 

geometry shows less contractlon and a slower descent rate than the M hp = 

0.439 solution. This is 10 contrast to the experimental results, which showed 

that the wake geometry was not sensltlve to the tlP speed. Figure 4: 32 

compares the computed and experlmental surface pressure coeffiCients. The 

agreement 19 fall over the Inboard sectlons, With larger discrepancles near 

the tiP The shock 18 stronger and further aft than In the expenment. ThIs 

18 conslStent With the neglect of VISCOUS effects 10 the computatlon, at the 

96% span station, the local Mach number reaches approximately 1 5 before 
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the shock. The shock/boundary layer interaction should be strong in this 

case. 

Given the insensitivity of the blade loading near the tiP for the Ballard 

et al. rotor, a similar comparison was made for the Caradonna & Tung rotor, 

to see if the same effect would be found on a blade of different tWIst and 

aspect ratio. Also, comparisons at higher tip Mach numbers could be made 

with this data. Solutions were obtained for the same collective pitch sett10g 

and tip Mach numbers, but the wake was neglected. Compansons of the 

pressure coefficients at each of the experimental span stations were made. 

Figures 4.33, 4.34, 4.35, 4.36, and 4.37 show the computed pressure 

coeffiCients for the Meap = 0.439 case WIth and WIthout the wake. The 

experimental values are also shown for comparlSon. Sigmficantly higher lift 

is obtamed over the inboard SectiOns of the blade when the wake 1S not , 
Included 10 the computation, due to the failure to get the correct downwash 

along the blade. The agreement of the two solutions gets better further 

toward the tip. The last two stations shown, 89% and 96% span, show 

much better agreement, these stations are WIth about 0.8 chords of the tlP 

At the 96% station, the dlfferences are qUite small. 
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Figure 4.35: Chordwise pressure distribution, Caradonna &; Tung rotor, 
Mhp = 0.439, ,./ R = 0.8, WIth and WIthout wake 

196 



-4 

-3 

-2 

o~ -1 

o 

1 

2 
-02 

C '" T ROTOR - , TIl = 80
, M •• ~ = 43g,!Ie)( 20 )( 32 end 

ChordWIM Hctlon 

0.0 0% 04 06 08 

# 

•• expeRIMeNT tal 
COMP. NO WAKIl 
COMP. WAKe 

r/Il=OIIl 

10 12 14 
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Figure 4.37: ChordWlSe pressure distribution, Caradonna & Tung rotor, 
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Figures 4.38, 4.39, 4.40, 4.41, and 4.42 show the computed pressure 
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Figure 4.38: Chordwise pressure distrlbutlon, Caradonna & Tung rotor, 
Mfa, = 0.877, r/ R = 0.5, with and Without wake 

coefficlents Cor the Mfa, = 0.877 case With and Without the wake. SiIIlllar 

behavior to the lower tlP Mach number case 18 observed, With slgmficant 

differences inboard, becoIIllng less near the tlp. Greater discrepancles are 

noted near the tlP than were seen Cor the previous case or for the Ballard 

et ai. solutlon, but the dIfferences are stlll qwte small. Given the hIghly 

transomc Bow near the tiP, the relative InSensltlvIty of the solution In thiS 

region to the inclUSion, or lack of inclUSion, of the wake IS remarkable 

The loading near the tiP (WithIn ~ 0.1 chord of the tip) is seen be 
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dominated by the geometric angle of attack WIth a relatIvely weak 10fluence 

of the wake induced velocities over a wide range of tip Mach numbers for 

these two rotors. ThIS may be explained by th1Ok1Og of the vortex wake 

as a semi-infinite vortex cylinder. The induced velOCIty field of a cylinder 

has a uniform downwash in the center of the cylinder, and is zero outSIde 

the cylinder. The vortex wake behaves in a qualitatIvely slmllar manner, 

as can be seen in Figure 4.17 of the velOCIty field below the Ballard et 

al. rotor at (J 75 = 9.80
• The tip vortex can be thought of as the top of 

the vortex cylinder. Note that the velOCIty field below the rotor shows a 

strong down wash inboard of the tlp vortex, but the 10duced velOCities are 

nearly zero outboard. With thIS behaVior, it IS seen that the tIP load1Og wlll 

be donunated by geometrIC factors and the 10fluence of the portion of the 

trading vortex sheet attached to the blade rather than the wake geometry 

and 10duced velOCitIes. 

Another way of th1Ok1Og of this IS to note that although the 10duced 

velOCity of the tiP vortex is upward outboard of the vortex, the vortex IS 

descending at the same time. The downward motion of the vortex cancels 

the upwash near the tiP, Yielding nearly zero 10duced velOCity 10 that region 

Aga1O, this Implies that geometrIC factors WIll donunate the flow field near 

the tIp. 

The fact that the loading near the tip IS InsenSitive to the wake has a 

couple of implications. First, the comparison of calculated and experimen­

tal loadings near the tiP WIll not prOVide much useful 1Oformatlon on the 

accuracy of a wake model The loading over the 1Oboard sections of the 

rotor WIll be far more senSitive to the wake than near the tip. Second, the 

relative 10sensltlvlty of the blade loading 10 the tiP region suggests that the 

lOltlal stages of the vortex formation and roll up Wlll be donunated by the 

tiP geometry and angle of attack. For experimental or numerical studies 

of the tiP vortex formation process, accurate wake modehng may not be 
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necessary, but accurate geometric modeling 1S required. 

For the two coupled Euler/free wake Solut1ons presented for th1S rotor, 

the overall agreement with exper1ment is not nearly as good as for the pre­

vious rotor. Part of the discrepancy in the computed wake geometries is due 

to problems with the experimental data. In Caradonna & Tung's report, 1t 

was noted that the prescr1bed wake model of Kocurek & TangIer [35J d1d 

not correlate with the experimentally observed t1P vortex geometry, the Ko­

curek & TangIer wake correlations yielding more rapid contract1on as well. 

L1fting surface computat1ons of the rotor loads performed by Caradonna & 

Tung correlated better when the experimental wake geometry rather than 

the Kocurek & TangIer model was used. Oddly enough, the best correlataon 

was ache1ved when the wake model used m the calculat10ns had even less 

contract1on than the exper1ment. The source of the discrepancy between the 

exper1ment and both the present wake model and the Kocurek & TangIer 

model may be m part due to rec1rculat1on m the test chamber 

As for the Ballard et a1. rotor, part of cause of the overpred1ct1on of 

the thrust for the Caradonna & Tung rotor 1S due to the effect of V1scos1ty 

The Reynolds numbers m the Caradonna & Tung exper1ment 1S slgmficantly 

h1gher than for the exper1ment of Ballard et aI., but the actual hft curve 

slope of the NACA 0012 1S lower than the mVlSC1d lift curve slope No 

attempt at est1matIng angle of attack correct1on based on a V1SCOUS analys1s 

was performed for these two cases, as was done for the Ballard et al rotor 

Instead, the angle of attack change requ1red to match the experimental hft 

coeffic1ent at the 50% radius stat10n was est1mated based on the d1fference 

m the computed and actual hft coeffic1ents there. The correctlOn was found 

to be about 10
, so the collect1ve p1tch was reduced by that amount, glVIng 

(J 75 = 70 The hft coeffic1ent d1stributions for the two tIP Mach numbers, 

A1hp = 0439 and Mhp = 0877, are shown m F1gures 443 and 444, the 

agreement for both t1P speeds 1S much better The wake geometries for the 
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Figure 4.43. SpanWlse lift coefficlent dlstrlbutlon, Caradonna & Tung rotor, 
M", = 0.439, reduced collectlve 
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Figure 4.44: SpanWlse hft coefficIent dIstrIbution, Caradonna &: Tung rotor, 
Mta, = 0 877, reduced collectIve 
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two cases are seen in Figures 4.45 and 4.46 The wake for the Mhp = 0.439 

6/R 
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FIgure 445: Wake geometry, Caradonna & Tung rotor, M hp = 0439, re­
duced collective 

solution shows very good agreement Wlth the experlmental descent rate, but 

still has a much more rapId contraction. The wake for the hIgher tIP speed 

IS In much poorer agreement. 

Figure 4.47 shows the computed and measured pressure coeffiCIents for 

the corrected collective pItch and Mhp = 0.439 Very good agreement IS seen 

over the whole rotor now, whIch IS espeCIally good conSIdering the differences 

In the computed and experimental wake geometries. The comparIson of 

surface pressures for the Mhp = 0877 case IS shown In FIgure 448, again, 
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Figure 4.46. Wake geometry, Caradonna & Tung rotor, Mhp = 0877, re­
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Figure 4.47: Surface pressure dlstrlbutlon, Caradonna & Tung rotor, 
Mfa, = 0.439, reduced collective 
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Figure 4.48: Surface pressure dlstllbutlon, Caradonna &: Tung rotor, 
Mtlp = 0.877, reduced collective 

the agreement IS better than before, especially over the mboard sections 

of the blade. The discrepancies over the last three span stations are larger, 

agam as IIllght be expected given the transonic nature of the flow there. Also, 

the wake geometry computed for this case shows much worse agreement with 

experiment, both m contraction and m axial descent rate 

A1J mentioned above, the experiment showed that the wake geometry was 

msensitlve to the tiP speed, the present computations do not show the same 

behaVior. Part of the reason for thLS hes m the algorithm used to set the 

strengths of the wake vortices. The Idea of basmg the roll up schedule on 
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the spanWlSe gradient of bound circulation is derived from lifting line theory 

In effect, there is the implicit assumption that the trailing vortex sheet 

separates only from the sharp trailing edge, and that the sheet is planar, 

at least Initially. Clearly this asaumptlon IS violated near the tip of the 

rotor blade, where the Bow IS highly three dimensional. There IS separation 

around the tiP and a rapid rolling up of the tiP vortex into tight spiral over 

the rotor blade. Secondly, it is also assumed that the only vorticity In the 

wake is related to the spanwise lift distribution, and the local lift IS In tum 

related to the bound circulation by the equation 

1 2 
PocOrr = 2Poc (Or) eCI, (428) 

where CI IS the 11ft coefficient. For a transonic Bow, thiS relation no longer 

holds, there IS additional vorticity that IS generated by the shocks In the 

Bow. If the shocks are weak, the shock vorticity IS neglible. However,-lf the 

shock IS suffiCiently strong, the contnbution of the shock vorticity wake may 

be Significant. 

These pOints are Illustrated by Figure 4.49 which shows the spanWlse 

bound Circulation distribution for the last two cases presented, both Wlth 

9 75 = 7° Over the inboard section of the blade, the bound Circulation IS 

nearly identical for both the subSOniC and transonic cases, but there are 

Significant differences near the tip due to the shock The maximum bound 

Circulation differs considerably for the subSOniC and transonic cases In 

Figure 4.50, the lift coefficients, which were computed from integration of the 

surface pressures, are shown for the two cases. Note that quahtatlvely, the 

CI distnbutlons are more sunliar than the bound Circulation dlstnbutlons 

For the transonic case here, the shock IS qUite strong, and the shock 

vorticity IS Significant ThiS can be seen in Figures 4 51 and 4 52, which 

show contours of constant entropy approXimately 1 chord behind the rotor 

blade tr&hng edge for the two cases at 9 75 = 7° For the subSOniC case, the 

rolled up tip vortex in the near wake, as well as the prescribed tiP vortex 
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Figure 4.49: Comparison of computed bound circulation, Caradonna & Tung 
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Figure 4.52: Entropy contours, ~ Ie behmd traIling edge, Caradonna. & 
Tung rotor, Mflp = 0.877 

from the preceding blade, are clearly Identifiable For the transonic case, 

the two vortices are still easily identified, but In addition there 15 another 

wake structure inboard of the near wake tip vortex traIling from the blade 

and above the prescnbed vortex. The source of th1s entropy IS the shock 

on the rotor blade. Note that the maximum entropy 10 thlS shock wake 

18 compara.ble to the entropy level 10 the tiP vortex (0016 versus 0022) 

From Crocco's theorem, It IS dear that the .mtropy rise due to the shock 1S 

related to the shock generated vorticity Somehow, thl5 vortICIty must get 

rolled up into the wake, and in settmg the strengths of the wake vortIces, 
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the contribut1on of the shock vort1city must be included. 

The relation between the wake vort1city and the spanwise lift distribut10n 

needs to be modified in order to account for the shock. The contr1butlon 

of the shock vorticity to the wake 1S further complicated by the fact that 

there is not only streamwise vorticIty, but cross-stream vort1city due to the 

varIatIons in the shock strength. The relation between the wake vortex 

strengths and the spanwise lift distribution is unclear. Furthermore, the 

strong nonlinearities and highly three dimensional nature of the flow near 

the tip may require a more sophistIcated roll up model than one based on 

the spanWlSe gradient of the lift. 

ModificatIon of the wake roll up algorIthm to treat transonIc tIP speeds 

has not been attempted. The fact that the wake vortex strengths cannot 

be directly determined from the bound circulation for a shocked flow 1S of 

lIttle practical importance 1n hoverlDg flight. Real rotors do not run at 

transonIc tiP speeds lD hover, due to the rapid drag rISe and hence lDcreased 

power requirements at such operatlDg conditIOns. However, in forward flight 

at high advance ratiOS, the tip will reach transODlC speeds and shocks WIll 

form. For wake modeling in forward flight, the shock vortIcIty WIll need to 

be taken into account. It may be pOSSible, with sufficient resolution lD the 

near wake, to develop a wake model based on the computed structure of the 

near wake. 

4.5 Summary 

With the use of the perturbation scheme, the solution procedure for the 

flow around a hovering rotor has been developed. The approach 1S to couple 

a free wake algorithm to compute the geometry and lDfluence of the sem!­

mfinlte vortex wake Wlth an Euler solutIon for the rotor blade near field 

CalculatiOns have been performed for several hoverlDg rotor cases, and the 

need for inclUSion of the wake and for the use of the perturbation scheme 
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has been demonstrated. 

It was found in the course of the investigation that the blade loading 

near the tip was remarkably insensitive to the inclusion or neglect of the 

wake. Tlus suggests that the lIlltlal stages of the wake roll up and tiP vortex 

formation can be computed WIthout the need for an accurate wake model. 

However, the computation of detalls of the wake roll up WllllOevltably allow 

improved wake models to be developed. 

In all the cases, the computed wake contraction was greater than the 

experimentally observed wake contraction. It is not clear exactly what the 

cause of this discrepancy IS. It is due in part to difficulties 10 obtauung 

good experimental data because of effects such as recirculation 10 the test 

chambers. Since the computed wake contraction depends upon the far wake 

model, tlus should be eXamIned and Improved. upon. 

The chscretlzatlon of the vortex wake and the manner In which the wake 

vortex strengths were determIned worked well for most of the cases. DIffi­

culties arose WIth the transonic cases attempted, 10dicating that the Simple 

approach used 18 10adequate for the highly nonhnear flow field when a shock 

18 present. Tlus 18 prImarIly an academiC problem, S10ce practical hoverlOg 

flows are not transonic. However, it does suggest that more sophisticated 

wake roll up models may be needed to treat the case of a rotor 10 forward 

flight. 
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Chapter 5 

Conclusions 

In thIS thesls, three topics have been investIgated, all of them aImed at 

the main goal of the work, namely to predict the Bow around a helicopter 

rotor In hovel: USIng a numerical solution of the Euler equations The first 

tOPIC, addressed In chapter 2, is the questIon of whether numerical solutlons 

of the Euler equatlons Yleld a realistic model of the trading vortex wake of 

a lifting wing. This question is of interest because it was originally hoped 

that the Euler equations nught YIeld a model of the tiP vortex structure 

of a helicopter rotor. The second tOPlC was the computatIon of the steady 

Interaction between a streamWlSe vortex and a wing, whIch was described 

in chapter 3. This problem IS a model of the interaction of a rotary Wlng 

tlP vortex with a rotor blade, and was used to develop an approach by 

whIch the rotor wake Inftuence could be accurately Included In the Euler 

solutIon algonthm. In chapter 4, a method for the computatlon of Bow of a 

hovering helicopter rotor was presented. The unique features of the scheme 

are the coupling of the Euler solver to a free wake algorithm to account for 

the lnfiuence of the wake, and the use of the Bunmg & Steger perturbation 

scheme to Introduce the wake vortlcity Into the Euler computatlonal domaIn 

to elhrunate the numerical dlfFuslon of vortlclty. 

A summary of the results of the investigatIon into each of the above 
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topics is presented below, along WIth future recommendations. 

5.1 Euler Solutions and Wake Structure 

Using the finite volume algorithm of Jameson & Baker, the Bow around 

two lifting wings has been computed and the results compared to experl­

ment. The computed and experimental surface pressures for the ONERA 

M6 wing, which is a transonic test case, were in good agreement. The agree­

ment between the computed and experimental surface pressures for a wing 

tested by Weston at a low Mach number was not as good, primarily due to 

Bow angularity 10 the WInd tunnel which affected the spanWIse distribution 

of the lift. Computations on two grids WIth dUferent gnd POlOt distrlbutlons 

and different representat10ns of the tip geometry were performed for the lat­

ter case. The detalis of the load distrlbut10n at the tlP were qU1te different 

for the two gr1ds, lOdicatlOg that solut10ns are sens1tlve to the geometnc 

detalis 1n this region. However, the differences were local to the t1P region, 

and the differences between the pressure distrlbutlons lOboard of the tiP and 

between the computed wake structures were mtnimal. 

The computed wake structure was compared to expenmental wake sur­

veys for the Weston test case. Although the position of the computed tip 

vortex agreed well WIth experiment, the detailed structure was qUite differ­

ent. The computed wakes had a lower total pressure defiCit 10 comparison 

to experiment, which is attributable to the neglect of viscous effects 10 the 

computation. More puzzlmg 15 the presence of a velOCity defiCit 10 the core 

of the tip vortex 10 the computatiOns, compared to the measured velOCity 

excess. This suggests that the tiP vortex formation process 10 a numencal 

solution of the Euler equations IS very dIfferent than the phYSical process, 

and does not Yleld a rellable model of the detalied wake Bow In addltlon, 

It lS also noted that the effect of the artlficlal VlSCOSlty of the scheme and 

the decreaslOg grId resolutIon 10 the wake regIon results 10 a non phys1cal 
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diffusion of the tip vortex as it is convected downstream. This results In a 

more unrealistic wake structure the further one goes downstream. 

The differences in the computed and experimental wake structures sug­

gests that the Euler equations cannot be used for determining the structure 

of a vortical wake of a lifting wing, at least for low Mach numbers. Detailed 

wake data over a range of Mach numbers is needed to provide a data base 

for improving our understanding the results of Euler computations of the 

wake structure. A better understanding of the process by which the flow 

separates and the wake forms in a numerical solution of the Euler equations 

is also needed. This will require very high grid resolution in the tip region. 

In addition, solutiOns With high resolution in the wake of a lifting Wing may 

be useful In understanding the convection of the wake. Both these objectiVes 

Will probably be best satISfied by some form of grid embedding to provide 

local refinement in the tip and wake regions. 

The fact that the wake diffuses rapidly due to the effects of artlficial 

viscosity and grid stretching also shows that rotary wing flows, in which the 

tip vortex follows a spiral path, cannot be accurately computed by solving 

the Euler equations for the entire flow field. There are two reasons for 

this. First, the diffusion of the tip vortex as it is convected downstream 

Will result in an incorrect computation of the interaction between the vortex 

and a rotor blade. Second, since the self-induced velocity of the tiP vortex 

depends upon its core Size, the descent rate of the vortex will be dependent 

upon the numerics, not the physics. 

5.2 Wing/Vortex Interaction 

The computation of the steady interaction between a streamWlSe vortex 

and a Wing was done USing the BunIng & Steger perturbation scheme to 

Introduce the vortex Into the computational domain In thIs scheme, the 

state vector (i.e., the density, momentum components, and total energy field) 
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of the isolated vortex that is generated upstream must be known throughout 

the Euler computational domain. In specifying this flow field, the vortex is 

not diffused due to numencal dissipation and the coarse grid resolutlon In 

the far field, but remams compact throughout the computatlonal domalO. 

This approach also requires that the specIfied vortical flow satisfy the steady 

Euler equations. Although an exact solution of the Euler equations cannot 

be found except in special cases, a flow field that nearly satisfies the Euler 

equations can be readily constructed for the flows of interest here. 

Comparisons to the experimental wing/vortex lOteraction results of Smith 

& Lazzeroni have been made, both With and without the use of the perturba­

tlon scheme. The computed spanWise lift distributions agree very well With 

experiment when the perturbation scheme 15 used, and very poorly when 

the perturbation scheme 15 not used. In cases of a strong lOteractlon-that 

is, when the vortex passes sufficiently close to the WIDg that Its actual path 

varies significantly from Its prescrlbed path-the basiC Buning & Steger ap­

proach is modified by Simply prescribing the vortex position up to some 

location near the wmg, and then solvlOg the Euler equatlons using the stan­

dard Jameson & Baker algorithm past that pOlOt. Thl5 acheives the deSIred 

effect of avoiding the numerical diffUSion of the vortex before It reaches the 

wing, but allows the correct interactlon of the Wing and the vortex to be 

computed. In partlcular, thlS approach allowed the computation of a vortex 

impinging directly on the leading edge of wmg, which could not be com­

puted accurately with either the standard Euler method or the unmodified 

perturbation approach. 

5.3 Hovering Rotor Calculations 

The primary aim of the work described 10 thiS thesiS IS the development 

of a method for computlOg the Bow around a hoverlOg heilcopter rotor uSlOg 

the Euler equatlons This IS the tOPlC of chapter 4, 10 which the method 1S 
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presented and computed results are compared to experunent. The unique 

feature of the scheme is the splitting of the solution procedure 1Oto two parts: 

the flow in the immediate vic10ity of the blade is found using a finite volume 

Euler solver, and the solution for the wake geometry is treated using the 

fast free wake algorithm of Miller. The t~o parts are solved in a coupled 

fashion. The solution of the Euler equations yields the spanwise bound 

circulation distribution of the rotor blade, which is used. to set the strengths 

of the vortices 10 the free wake solver. The free wake solver in turn Yields 

the geometry and the induced velocity field of the wake, whose influence 

is 10cluded in the Euler solver through the far field boundary conditiOns 

and the Buning & Steger perturbation scheme. ThIS allows the interaction 

between the tiP vortex and the rotor blade to be accurately computed. 

Comp&rlSons of the computed results to the 'experunental data of Bal­

lard, Orloff & Luebs, and the data of Caradonna & Tung, have been made 

The agreement with the spanWlse blade load1Og IS very good for the Ballard, 

et al. test case after a correction to the collective pItch angle to account for 

the VISCOUS effects has been made. The compar1sons to one of the two test 

cases of Caradonna & Tung IS also 10 good agreement. The tip Mach num­

ber for this case is subsonic. A compar1son at a transonic tip speed is not 

as good. This is due in part to the neglect of the viscous effects, which are 

SIgnificant at transomc speeds. 

In all the cases, the wake geometry showed more contraction than was 

observed in the expenment. In part, thlS 18 due to the fact that both exper­

unents were run in enclosed chambers; the effects of flow recirculatIon are 

a source of experimental error that 1S very difficult to quantify. The over­

predict10n of the wake contract10n for the Caradonna & Tung cases 1S also 

cons1stent Wlth a prescrIbed wake method for pred1ct1Og the wake geometry. 

The computed axIal descent rate of the t1P vortex 1S 10 good agreement Wlth 

experIment for the Ballard, et al. data and the subsomc tiP speed results 
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of Caradonna & Tung. The transonic test case shows very poor agreement 

with the wake geometry in both the axial and radial directions. Th18 lS 

largely due to the manner in which the wake vortex strengths are deter­

mined. The vortex strengths are found from the computed blade bound 

circulation. For a highly transonic case with a strong shock, thlS does not 

account for the shock generated vorticity. The tip vortex circulation thus 

determined is lower than the experimental value, and there is subsequently 

a greater error in the wake geometry. This last pOint 18 moot for the case of 

a practical rotor in hover, in which the tip speed does not reach transonic 

values, but does suggest that the bound circulation distribution may not be 

adequate for determlrung the tip vortex strength 10 wake models for forward 

flight. 

One very interesting result to come out of the present 1Ovestigation was 

the fact that the computed loads near the rotor blade tiP are not sensitive 

to the inclusion or fallure to include the wake 10fluence 10 the Euler solver. 

The aerodynamic loads In the VICInity of the tip are prlmarlly 10fluenced by 

the geometric angle of attack, and the induced velOCity field of the wake has 

only a minor effect. M a result, 1t can be expected that the inlt1al stages of 

the wake roll up and tip vortex formation can be eXamined computationally 

WIthout necessarily needing an accurate wake model. Also, this suggests 

that experimental studies of the tip vortex formation WIll not be sens1tive 

to the development of the wake, but that accurate geometric modeling of 

the rotor blade tip 1S clearly necessary. 

5.4 Recommendations 

There are sever&l areas of future research that should be pursued for the 

case of a hoverlOg rotor These are hsted below 

1 The current method should be extended to rotors With more than two 

blades. Th1s 1S a matter of developlOg the grId generation capabthty 
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to handle such cases. For the two bladed rotors considered here, the 

tip vortex lies sufficiently far from the rotor that its locat1on could 

be specified throughout the domain. For rotors Wlth more blades, the 

blade/vortex interact10n will be stronger, since the vortex Wlll pass 

closer to the rotor blade. For such cases, the vortex location can be 

prescribed up to a point near the blade, and then the interaction itself 

may be computed using the standard Euler solution algorithm. This 

will allow the full power of the current scheme to be realized. 

2. Improved wake modeling is needed. In particular, computations of the 

structure of the t1P vortex usmg the Navier-Stokes equat10ns could pro­

v1de a better model of the tiP vortex than the Lamb core structure 

assumed here. Also, the model for the far wake should be exanuned 

more thoroughly, as It 1S this part of the wake model that effects the 

rate at wh1ch the wake contracts. Smce the largest d18crepanc1es be­

tween computation and experiment are In the wake contract1on, thiS 1S 

an Important issue, and 1t 1S necessary to sort out the reasons for the 

differences. For a real hovermg flow, the presence of the fuselage Wlll 

of course have a very strong effect on the wake development, further 

complicating the wake modeling task. 

3. The current algorithm uses a simple procedure for determmmg the 

wake vortex strengths from the computed blade bound circulation. It 

has been shown that thiS approach 1S not accurate for a highly tran­

sonic flow with a strong shock. Although th18 1S of acadenuc mterest 

rather than pract1cal1mportance 10 hover, 1t 1S slgmficant 10 forward 

flight at high advance ratios where tranSOniC tiP speeds are reached 

Thl~ lmplies that If a s1nular approach 18 used to deternune wake vor­

tex strengths 10 forward fl1ght, the procedure used here WIll not be 

adequate. Further exanunatlon of the algor1thm used to deternune 

the wake vortex strengths 10 transomc cases 1S requ1red. 
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4. The wake roll up criterion used here 18 very simple, namely the tIP 

vortex is rolled up from the bound circulation peak to the tIP, and the 

inboard portion of the trailing vortex sheet is dIVIded lnto four equally 

spaced vortices. It is desirable to have a more accurate representatIon 

of the wake roll up, confirmed by comparison with experImental data 

of the near wake. Although the fixed wing calculations show that the 

det&led wake structure is not well predicted, the gross features such 

as the tip vortex location are well predicted. By USlng an adaptIve 

grid embedding approach to provIde more resolution in the wake of 

the rotor, it may be possible to provIde a more complete pIcture of the 

rolled up wake structure and thus elimmate or vahdate the assump­

tIOns inherent In the present roll up crIterIon. This may be partIcularly 

Important for unconventIonal rotor blade shapes WIth large amounts 

of tWIst or taper, for whIch the present roll up crIterIOn may prove 

inadequate 
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Appendix A 

Stability Analysis for 
Multistage Scheme 

The deterrrunation of the maximum allowable time step of the four stage 

time mtegratlon scheme Wlth frozen dissipation IS found from an analysIs 

of the one dimensional linear wave equation Wlth an added fourth order 

viSCOSity, 

(A 1) 

Here, JJ IS the fourth difference vIscosity coefficient, a IS the wave speed, and 

~:c IS the grid spacmg, assumed to be uniform. The function U IS assumed 

to have the form 

u(:c,t) = u(t)elA:z, (A 2) 

where k IS the spatial wave number By approxlmatmg the spatial deriva­

tiVes m Equation (A.1) Wlth second order centered difference formulas, we 

obtam the serru-cilscrete equation 

-:-- tsmk~:c+16-sm -- u. du a ( ~ .. kAX) ~ 
dt~:c a 2 

(A 3) 

ThiS equation IS mtegrated m time usmg the four stage algorithm presented 

m chapter 2, Wlth the dissipation terms frozen at the first stage, 

234 



ti(O) = 
An 
U , 

ti(l) - ti(O) - Ql CFL (iti(O) z, + ti(O) z,.) , (A 4a) 

ti(2) = ti(O) - Q2 CFL (iti(l)z, + u(O)Z,.), (A 4b) 

u(S) = u(O) - QsCFL (iti(2)z, + u(O)Z,.) , (AAc) 

11(·) = 11(0) - Q.CFL (iti(S)z, + u(O)Z,.), (A 4d) 

tin+1 = A (.) u . 

where CFL = al:i..t/ l:i..:z: IS the Courant-Friedrlchs-Lewy number, z, = sm kl:i..:z:, 

and z,. = 16~/asin· l:1z. The multistage coefficients are the standard coef­

ficlents glven m chapter 2, and repeated here for convemence 

111 
Ql = -, Q2 = -, Qs = -, Q. = 1. 
432 

The multlstage mtegration can be wrltten m the form 

un+! = unG(zCFL), z = z,. + 1%, (A 5) 

where G(zCFL) 1S the amphficatlon factor. Stablhty requues that the con­

dltlon 

IGI $1 (A 6) 

be satlsfied. 

Flgure A.1 shows contours of constant IGlm the z plane The contour 

Increment 1S 0.1 and the outermost contour 1S IGI = 1 That 1S, the reglon 

of stabihty lies mSlde the outermost contour. The stablhty lurut for the 

mVlSCid equatlon (~ = 0) 1S glven by the mtersectlOn of the IGI = 1 contour 

with the Imagmary axis, 

z,CFL = 2J2. (A 1) 

It 1S seen that z, has a maxlmum of 1 when k = 7T' /2l:i..:z:. Thus the scneme 

1S stable for 

CFL $ 2J2, (A 8) 
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Ampbftcatlon factor ma,JUtude 
Four-.tace .cheme with froHn dWlpahon 
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Figure A.I. Contours of constant amphficatlon factor magnItude IGI 

as stated In chapter 2. 

When JJ 18 POSItIve, the locus of the amphficatlon factor for the scheme 

hes In the left half z plane The limIt on the coeffiCient JJ IS determIned by 

the 1Otersectlon of the IG I = 1 contour With the real &XIS, whIch glves 

16CFL ~ < 2. 
a-

(A 9) 

Also It should be noted that the contour of amphficatlon factor equal to 

1 mtersects the ImagInary &X18 With a posltlve slope ThiS means that as 

the fourth dIfference smoothIng coeffiCIent IS 10creased from zero, the CFL 

number must be lowered from 2V2 10 order for the scheme to remalO stable, 
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although for moderate values of JJ the reduction is small. For most of the 

cases in this thesis, CFL was taken to be equal to 2.8, very nearly the the 

maximum allowable for the inviscid equat1on. That this caused no stablhty 

problems may be attributed to the fact that the computat1on of the t1me 

step for each cell, which was based on the mean projected areas m the x, y, 

and z coordmate directions, was rather conservat1ve. Also, smce most of the 

calculations presented here were for highly subson1c flows, the nonhnear1tles 

were weak, rendermg the lmear analys1s presented here to be adequate for 

deternuning the stability limit of the full Euler equat1ons. In fact, the one 

case in this thesis that requued a significant reduct10n of the CFL was the 

transon1c hover case, With a very strong (Ml ~ 1.5) shock. 

237 



Appendix B 

Enthalpy Damping 

The basIS for enthalpy dampIng has been derIved by Jameson, et a1. [32] 

and Jespersen [33] USIng a heuristIc argument based on equatIons for an 

unsteady, InVISCId, isentropic, Irrotational ideal gas. The Euler equatIons 

for such a flow may be reduced to a sIngle equation for a scalar potentIal 

To derIve this potentIal equatIon, the Euler equatIons are first wrItten In 

non-conservative form, 

IDp 
= pDt 

Dii 
= Dt 

D8 
= Dt 

8 = 

-V·ii, 

Vp 

P 

0, 

p 
In-

p'" 

(B 1a) 

(B 1b) 

(B.lc) 

(B ld) 

where Dj Dt IS the materIal derIvatIve, It + iI· V If the flow IS IsentropIC, 

then 

E.. = 1 
p'" 

and thIS allows a vanable P to be defined as 

p=ldP=~ 
p "Y- l 
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where (I is the speed of sound and lS defined by 

2 dp 
(I =-. 

dp 

The Euler equations can now be reduced to the follOWIng form' 

DP 
-(l

2V·U = 
Dt 

, 
Du 

-VP. = 
Dt 

(B.4) 

(B.5a) 

(B.5b) 

The assumption that the flow IS irrotatlonal allows the veloclty to be wntten 

as the gradient of a scalar potential, 

and thIS can be used to reduce the momentum equation to 

V (a</J + V</J,V</J + p) = 0 
at 2 ' 

whIch yields 
a</J V</J,V</J P = f(t) 
at + 2 + , 

(B 6) 

(B 7) 

(B 8) 

where f(t) IS an arbltrary functlon of time. If the flow lS steady and Uniform 

at Infinity, then f(t) = Hoo, where Hoo IS the freestream total enthalpy 

By using the momentum equatlon to elimmate P, the contmul ty equatlon 

can be written in the following form: 

a
2

</J + 2V</J' Va</J + V</J. V (V</J'V</J) = (l2V2 </J 
~2 ~ 2 

(B 9) 

This may be rewritten, USIng Equatlon (B.6), as 

(
a2

</J + u. va</J) + u' V (a</J + V</J· V</J) = a2V 2</J 
at2 at at 2 

(B 10) 

Now, USIng the ldea Introduced by Garnck [28], let the symbol ue be used to 

denote that the velOCity 1S to be treated as constant under dlfferentlatlon 

With thls notatlon, Equatlon (B 10) may be wrltten m the follOWIng form. 

:t (~~ + uc.V</J) + uc'V (~~ + uc.V</J) = a2V2</J, (B 11) 
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or 

(B.12) 

This equat10n may be interpreted as a wave equat10n for ¢J followmg the 

part1cle path. By applying the coordinate transformat1on 

Equat10n (B 12) may be written as 

1 a2~ a2¢J a2¢J a2~ 

a2 atZ = a~2 + a'1 2 + a(l' (B 13) 

whIch 1S the same as Equat10n (231) m chapter 2 

The basis of the enthalpy dampmg concept IS to add a term proportlOnal 

to a¢J/ at to the left hand slde of EquatIOn (B 13), Y1elding the telegraph 

equat1on, 

(B 14) 

whIch IS seen to be ident1cal to Equation (232) Now reversmg the entire 

transformat1on to get the contmu1ty equat10n back mto somethmg hke Its 

ongmal form, we get 

1 DP a¢J 2 
- --+0:- = V ¢J 

a2 Dt at ' 
(B 15) 

whIch becomes, after Subst1tutmg for P and V ¢J, 

1 Dp a¢J _ 
---o:-=-Vu 
pDt at 

(B 16) 

Wrltmg the above equation m conservat1ve form, we get 

ap _ a¢J 
- + V·(pu) - o:p- = 0 at at (B 17) 
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The final form of the continu1ty equat10n can be obtamed by gomg back 

to Equation (B.8), and cons1dermg the case in wh1ch the flow at mfinity is 

uniform and steady. In this case, we have 

atP = Hoc _ (VtP.VtP + p). 
at 2 

(B.18) 

But this equation may be rewr1tten by notmg that 

VtP· VtP u·u a2 
---..:...-..;...+p = -+-- = H, 

2 2 1-1 
(B.19) 

where H is the total enthalpy of the flow ThIS allows EquatIon (B 17) to 

be put mto the form 

ap 
at + V·(pU') + QP(H - Hoc) = 0 (B 20) 

To complete the equat10n set, Equat10n (B 20) IS combmed Wlth the non­

conservative form of the momentum equation and Wlth the entropy equat10n 

10 order to get the conservative form of the momentum and energy equat10ns. 

The resultlng equation set IS 

~~ + yr. (pu) + Qp(H - Hoc) = 0, 

a:tu + V.(puu) + Vp+ Qpu(H - Hoc) = 0, 

a;~ + V.(pHu) + QpH (H - Hoc) = 0 

(B 21a) 

(B 21b) 

(B 21c) 

Jespersen [33] has shown that d1fferent forms of the energy equatIOn 

are obtained by comb1nmg the modified contmUlty equatIon (B 20) Wlth 

different non-conservatlve forms of the energy equatIon He uses th1s analysIs 

to derlVe a "rat10nal" enthalpy damp 109 formulatIon that avoIds Jameson's 

ad hoc fix to the energy equatIon, whIch conSIsts of replacmg the last term 

on the left hand SIde WIth QP (H - Hoc) 
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Appendix C 

Program Listings 

Program listmgs of the FORTRAN computer codes are avaJ.lable upon 

request. 
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