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DUAL ADAPTIVE CONTROL: DESIGN PRINCIPLES AND APPLICATIONS

Purusottam Mookerjee, Ph.D.
The University of Connecticut, 1986

The design of an actively adsptive "dual"®
controller based on an approximation of the stochastic
dynamic programming equation for a multiti-step horizon
is presented. A dual controller that can enhance
identification of the system while controlling it at .
the same time is derived for multidimensional
problems. This dual controller uses sensitivity
functions of the expected future cost with respect to
the parameter uncertainties. A passively adaptive
"cautious"” controller and the actively adaptive “dual®
controller are examined. In many instances, the
cautious controller is seen to turn off while the
latter avoids the turn-off of the control and the slow
convergence of the parameter estimates, characteristic
of the cautious controller. The algorithms have been
applied to:

1) a8 multivariable static model which represents a
simplified linear version of the relationship between:
the vibration output and the higher harmonic control
input for a helicopter and

2) a dynamic model that has similarity with an
ore-crushing plant or a heat exchanger model.

Monte Carlo comparisons based on parametric and
nonparametric statistical analysis indicate the
superiority of the dual controller over the baseline
controller.
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Chapter 1

INTRODUCTION

Research on adaptive control started in the.
early fifties [_A2]. The design of autopilots for
aircraft for a wide range of speeds and altitudes
motivated the research on adaptive control. For this
wide range of operating conditions the use of adaptive
control was deemed necessary. However, progress in
this field has been quite slow because of the lack of
understanding of the inherently nonlinear adaptive
systems and the first results began to appear only in
the sixties. During that period..pioneering research
toward understanding the theory of adaptive control
was conducted [B6, F1)] and this laid down the
foundations of adaptive control research of today. At
the present time [A1] this researcﬁ has gained a lot
of momentum because of : (1) the advent of digital

computers, and, in particular, microprocessors, and



(2) 'the successful applications of adaptive control in

the aircraft industry.

Most application areas ofladaptivé control can
be mathematically modeled by multi-variable systems
with some or all parameters unknown. The control of
such systems can not be handled by deterministic
control theory. The unknown parameters are modeled Ey
random variables and the unknown disturbances in the
system are model_ed as stochastic processes and their
control constitutes the framework of stoc‘hasiic
control theory. The use of the
Proportional-Integral-Derivative (PID) regulator for
the control of such inc)ustrial processes is appealing
for its simplicity. For an industrial process,
however, it is a colossal task to tune a large nhmber
of control gains involved. Under these circumstances,
adaptive control is needed. The adaptive control
techniﬁues handle the industrial processes with
uncertain parameters by' combining s;:'stem
identification and control design. In the Bayesian
framework these controllers assume that the parameters

have prior probability density functions and large



uncertainty associated with their initial estimates.
In the process of simultaneous system identification
and control, these controllers reduce the uncertainty
associated with the paraheter estimates, i.e.,
learn and control the system. This is the

basic philosophy of adaptive control.

The design of a controller is a result of an
optimization algorithm on a performance index or cost
function. This index is generally defined as a
function of system’s actual output and its desired
output. For systems with uncertain parameters, the
control solution which optimizes over a multistage
horizon is obtained by solving the stochastic dynamic
programming equation ~[~BS, and eq(10) of t‘his report].
However, it is not possible to achieve an optimal
solution because of the dimensionality involved in the
stochastic dynamic programming . In such situations,

emphasis is put on obtaining a suboptimal solution



that incorporates the intrinsic properties of the
optimal solution. For stochastic systems, the control
has in general a dual effect [Bi,F1]): it affects the
system’s state as well as the future state and/or
parameter uncertainty. This property is shared by all
control policies, whether, or not, it has the property
incorporated in its design. Thus a contfol law, which
explicitly utilizes this property in its design,
called a dual controller, offers significant
improvement potential for the control of uncertain
linear plants. In multistage problems it probes
the system to enhance real-time identification of the
éystem’s par%meters in order to increase the accuracy
of the subsequent control decisions and regulate's the
system at the same time [B3,D1]. Thus the controller
has two different tasks and the dual controller
compromises between good control and good

tdentification of the system.

Simpler controllers which do not asccount for
any dual effect are also investigated here. One of
them estimates the system’s parameters based upon all

available information and uses those estimates as

though they were true. This is called the Heuristic

-

S -
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Certainty Equivalence (HCE) controller [B1]. It is
similar in form to the deterministic controller except
it uses the parameters’ estimates in the derivation of
the control input. The other one, called the cautious
controller, uses the parameter estimates as well as
their associated current covariances. In an.uncertain
situation, the latter can be overly ‘cautious’ because
of the parameter uncertainty. Another problem of this
controller is the turn-off phenomenon, when the
control almost vanishes over significant lengths of
time. Thus the controller cannot estimate the
system’s parameters and losés control over the

system [A1l].

Two classes of dual controllers exist
presently. In the first class [E1, Gi, M1, M5, Wi},
the control minimizes a one-step-ahead criterion
augmented by a second term which penalizes for poor
identification. The approach is simple but does not
fully exploit the dual property and often requires
tuning of some parameters. Padilla and Cruz [P1] give

a dual control solution for a plant by minimizing the



control objective function subject to an upper bound
in the total estimation cost. Their objective
function includes a standard cost function and also a
constraint term which reflects the sensitivity of the
parameters to the state of the system. Thus the
solution adjusts itself terxercise better estimation
for such sensitive parameters within thé upper bound.
The second class [B2, B4, Si, $2, T1] uses the
stochastic dynamic programming equation and expands
the future cost about a8 nominal trajectory. The
approach of this second class is different from that
discussed in [A1]. The method proposed in [A1l]
formulates the Stochastic Dynamic Proéramnﬁng Eqﬁaﬁon
but suggests no expansion of the expected future cost
abopt any nominal trajectory. Thus no minimization is
possible explicitly except at the last step and the
expected cost is minimized for two steps by numerical

integration.

The recently developed linear feedback dual
controller of [B4] is based upon a first order Taylor
series expansion of the expected future cost and is

called the first order dual solution, Dt. This

solution, 01, although simple, does not capture all



the dual effect available from the future expected
cost [M4]. A second order Taylor series expansion
handles it better and yields the second order dual
solution, D2, in [M2]. The D2 solution modifies the
cautious controller with a numerator “"probing"” term
and a8 denominator correction térm. Performance
comparisons are available in [M2] among the cautious,
D1 and D2 solutions for a scalar model. Both
the cautious and the D1 solutions turn off but thé D2
solution avoids turn-off, indicating that D1 is not a
satisfactory dual solution. In this dissertation, the
D2 solution is developed for mtilti-variable
inﬁut-output system in Chapter 2 and both the cautious
and the D2 solutions are applied to 8 multi-variable
input-output system. Monte Carlo simulations are made
which indicate that the D2 solution prevents the
turn-off phenomenon prevalent with a cautious
solution. However, there are few occasions where it
demonstrates excessive probing; this is handled by a
control limiter. A second order Taylor series

expansion of the future expected cost is performed



about a nominal trajectory and a dual controller is
developed and applied to a MIMO dynamic (ARMA of
lag one) model in Chépter 3. Monte Carlo simulations
and parametric.and nonparametric statistical tests of
significance indicate the superiority of the dual over
the cautious and the heuristic certainty equivalence

controllers.



Chapter 2

Dual Control and Prevention of the Turn-Off

Phenomenon in a Class of MIMO Systems

2.1 INTRODUCTION

In this chapter, a dual solution is developed
based on aA second order expansion of the expected
future cost and both the cautious and the D2 solutions
are applied to a multi-variable input-out#ut system.
Monte Carlo simulations are. made which indicate that
the D2 solution prevents the turn-off phenomenon
prevalent with a8 cautious solution. However, there
are few occasions where it demonstrates excessive
probing; this is handled by a control limiter. Monte
" Carlo simulations and'statistical tests of
significance indicate the superiority of the dval over
the cautious and tﬁe heuristic certainty equivalence

controllers.
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Section 2 gives the problem formulation.
Section 3 discusses the turn-off phenomenon observed
in a stocha‘stic environment. The approximate dual
controller for the multi-variable input-output syétenﬁ
is provided in Section 4. Section 5 describes the
simulation of the plant and compares the performances
of the cautious, dual (D2) and the HCE solutions.

Section 6 concludes the chapter.
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2.2 PROBLEM FORMULATION

The multivariable plant considered is
x(k+1) = c + B u(k) (1)

where ¢ is an unknown vector and B is 8 matrix of
unknown parameters. 4This static model with constant
parameters represents a simplified helicopter
vibration control problem under steady flight
conditions [M4, W2] and defines a relationship between
the fz:‘gher harmonic control input vector u and
the ve;tor X o'f vibration output amplitudes. These
controls can cancel some of the unsteady Aair loads on
the blades. The unknown elements of ¢ and B

comprise the parameter vector 6(k) whose estimate

at time k is é(k) with covariance matrix
P(k) . Assuming the parameters are time-invariant,
we have

0(k+1) = 0(k) (2)
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The measurement vector is given by
y(k) =..x(k) + w(k) (3)
where
Elw(k)] = 0; E[w(.k]W'(j)] - Woy, t4)
with  x(k) , y(k) being n dimensional vectors.

The performance criterion to be minimized is the

expected value of the cost from step 0 to N

N
J(0) = E{C(0)) = E{kzix'(k)ox(k] + w(k-1Ru(k-1)11*}y  (5)

where N=2 for the two-step horizon.
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2.3 CAUTIOUS CONTROL AND THE TURN-OFF PHENOMENON

For the sake of illustration let us consider 8

scalar plant with one unknown gain parameter as
x(k+1) = ¢ + b u(k) (6)
and obeying (2). - (5).
The cautious contr_o'ller. designed with a one

step horizon (N=1) , is obtained by minimizing (5)

for the plant (6) with Q=1 and R=0 i.e.,

min E(x3(1)) (7)
u(0) : .

This is given by

uc(0) = - ——200) c (8)
5°00) + P,(0)

where Py(0) is the associated variance of the
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parameter estimate 6(0)
The covariance update equation is

Pp(0IW
Pp(0)ug(0) + W

P(1) = (9)

In the case of constant but unknown parame’tér,
the controller assumea_initiglly t_hat. the parameter
has a privo‘\r probability density function with a large
uncertainty. The parameter uncertainty will evolve as
(9) and, the controller tends to adapt itself to the
system and gradually learn the system with ¥i'me.

-~

From (8) it is clear that if Jb2(0) is very
small compared to P,(0) . the ‘control uc(0)
will also be very small. Moreover, if uc(0) is
small, there is no learning and the covariance stays
practically unchanged. When this situation occurs, it
stays 4so until there is a large mesasurement noise

which alters the parameter estimate and brings the



© -

< N

R

15

system out of turnmn-off. This leads often to a
burst phenomenon. The dusal controller presented
here and in [M2] have sensitivity correction terms
which are usually large in such situations and avoid
fhe turn-off phenomenon. The occurrence of the
turn-off phenomenon is well understood in the
context of a scalar model. This is further discussed

later for a multidimensional system in Section 5.



16

2.4 DUAL CONTROL WITH A TWO-STEP HORIZON

A dusal control solution with ‘a two-step horizon
is obtained by minimizing (5) with respect to the
control u(0) for the multidimensional plant (1)-(4).
This is obtained by solving the genéré} equation of

Stochastic Dynamic Programming [B6, B7]

JUK) = Min E(CCK) + J°(k+1)11%)  KeN-1,...1,0 (10)
u(k) :

where. J'(k) is the cost to go from Kk to

N and ¥ is the cumulated information at time  k

when the control u(k) is to be appﬁed.

For N=1 , Eq. (10) becomes

J°(0) = Min EQe(1)Qx(1) + w(0JRU(0) + J°(1) | 1% ~ (11)
u(0)



>

.gwe ST

17

where J'(1) is the optimal cost at the last step

and is obtained by minimization. of J(N-1) for N=2

The last control is easily obtained by

minimizing J(1) and is given by

u*(1) = -[ R + E{B°(1)QB(1) 11'}17! E{B (1)Qc(1) 1"} (12)

Thus inserting u*(1) into J(1) we obtain

J*(1) = E{c(1)Qc(1) 1)

- E{c'(1)QB(1) 111} [R + E(B (1)QB(1) 11" )17 E(B (1)Qc(1) 111} (13)

where E{-l1') is the conditional expectation

given the available information i

The parameter vector estimate 8(1) and
the associated covariance matrix P(1) are obtained

from a Kalman filter according to



8(1) = 8(0) + K(1)[y(1) - H(1)8(0)) = 8(0) + K(1) v(1)

K(1) = P(0) H'(1) [HU1P(OIH (1) + w]™!

P(1) = P(0) - K(1) H(1) P(0)

where

H(1) = diag [FAC1) , AT

A1) = (1 v(0))

From (13) it is clear that J'(1)

18

18

(14)

(15)

(16)

(17)

(18)

nonlinear function of the estimated parameter vector

8(1) and covariance P(1) . But the estimated

vector 6(1) and the covariance P(1) are.

known until the control u(0) is applied.

not

A control u(0) with a two-step horizon can be

obtained from (11) if a Taylor series expansion of

J*(1) is performed about a suitable nominal
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trajectory. Here a8 second order expansion of
J*(1) is proposed about a nominal parameter

estimate 8(1) and a8 nominal covariance P(1).

Expansion of (13) about 6(1)=8(0)

and P(1) results in,

J*(1) = J1,8(1),P (1)) « [J()(8(1) - 8(0))

[8(1) - 8(0))Jge(1)8(1) - 8(0)]) + tr[Jp(1){P(1) - F(1)}] (19)

+
N

where the sensitivities defined by

J & | 20
o(1) [ae‘m (20)
et & | L2 (21)
68 38,(1)38,(1)

Jo(1) = [%ﬂll] | | (22)
arl(1)
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are evaluated at 8(1)=6(0) and at P(1)

and PY(1) is the ij-th element of the

covariance matrix associated with the parameter
estimates 6,-(1) and 6j(1) . With this

particular choice of (1) and using (14) the

conditional expected value of (19) is

ELJ*(1)119) = J*[1, 8(0), F(1))

+ drl1ge(1IKNUY ECUIV I ICIK (1) ]+ teldp(1)CP(1) - P(1))1(23)

Making use of (15), (16) and the innovation covariance

it is clear that (23) yields,

ELI*(1)11°1 = J°[1, 8(0), F(1)] + dtrldge(1)(P(O) - P(1)]

+ trlJp(1){P(1) - P(1)}] : (24)

The expected future cost (24) is a function of the



=
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covariances multiplied by appropriate sensitivity
funcfions Jeg (1) and Jp (1) . These
sensitivfties introduce the dual effect into (11).
For the first order dual soiution D1 of [B4] the
sensitivity Jgg (1) is not pre-sent and thus
the second order dual solution D2 is’ exhected to
exploit better the dual leffect\in the problem. Again,
it must be noted now that the covariance P(1) s
nonlinear in u(0) and is not yet known. Hence a
second order expansion of P(1) s proposed about a
nominal control a(o) and a nominal covariance
F(1) in order to obtain a (suboptimal) dual
solution up(0) in a closed form ffom (11). Two
choices of a(o0) will be discussed later on when

the implementation of the algorithm is described.
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This expansion is performed as follows

P(1) = B(1) + Zee(PH(1I(0(0) - (0))

+ Ltu(0) - 501 1PLi(IuC0) - B(0)I1) (25)

with superscript here denoting matrix element and

ij - .
iP5y & [ 3%PH) 7 L -
Puu(ll.- 202(0) | i,j = 1,..,n | (27)

evaluated at P(1) and 6(0)

Now a (suboptimal) dual solution uy(0) can
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be obtained from (11) using (24) - (27) and is given

by

up(0) = - [R + E(B(0)QB(0) 1%} + F1 UE{B’(0)Qc(0)11%) + F}(28)

where the elements of the matrix F and those of the

vector f are given by

) y 3%r(1)
Fig = tr[iupm " 29ee(1))535,(673u,(0)

ij = 1,0,m (29)

and

m
| 4 P[4 %Pt _
fi = El"[iul’m - fJee“”(m:% - W)_g_ui_(o_)"jto)]]

j=1,.....,Mm (30)

m being the dimension of the control vector.
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It is clear from (28) that this approximate
dual solution up (0) is a modification of the
cautious solution by the sensitivity terms Je(1)
Jeg (1) . P, (1) P (1) . These

account for the dual effect.

fhe implementation of this second order dual
scA>>lution‘ (D2) ‘(28)-(30) can be performed in three
ways:

(D2a) direct or explicit method,

(D2b) multidimensional grid search method, and

(D2c) adaptive grid search method.

- These are summarized next: .

Algolrithm D2a

1. Choose a8 nominal control G(0)
2. Using this nominal control 6(0) evaluate

P(1) according to (15) - (18).
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3. Using the G(0) ., 6(1)=8(0) :
P(1) , compute the sensitivities required in (29),

(30) and obtain uy(0) from (28).

Algorithms D2b and D2c

1. Choose a nominal control a(0)

2. Using this nominal control 0(0) evaluate

P(1) according to (15) - (18). This is the first

nominal control u(o0) and covariance P(1)

3. Compute the sensitivity functions

Jgg ( 1) ' Jp (1) for (24) with
6(1)-6(0) and the first nominal values
G(0) . P(1)

4. Search on (11) with (24) (with the sensitivity

functions computed above) starting with the first
nominal values 6(0) , P(1) over u(0) to
obtain an improved nominal ul(0) for which
J°(0) is lower than that with the first nominal

a(0) . P(1) is expanded about this wi(0) in
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(25). This‘search is a fine muliidimensional grid
search in 02b. It is quite time consuming in terms
of computation and may not be justified as a practical
implementation. It is improved by the adaptive grid
search in D2c. Instead of a fine multidimensional
grid in D2b, 8 coarse grid is selec:ted for D2c and an
improved nominal control is obtained. Then another
coarse grid is chosen about the latter nominal control
over a narrower interval and a refined ul(0) is
obtained. This reduces the computationsal burdel;a

considerably,: especially for multidimensional systems.

5. Using this W (0) compute Pu(l]v ,
Po (1) ; 'together with the previously computed
Jeg (1) Jp (1) obtain F o, f from (29),

(30) and get a uy(0) from (28).
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2.5 SIMULATION RESULTS

Performance was evaluated from Monte Carlo runs
for the following controllers:

1) Heuristic Certainty Equivalence,

2) One step ahead cautious controller, and

3) Dual solution (D2) based upon sensitivity

correction (with two-step horizon).

This is implemented in three ways:
(02a) direct or explicit method,
(D2b) multidimensional grid search method, and

(D2c) adaptive grid search method.

The plant equations are [M4, W2]

X,(k*i) = 61 + ezui(k) + eguztk) (31)

Xa(k+1) = 04 + 85u,(k) + 6gu,(k) (32)



28

This model represents a simplified helicopterv
vibration control problem where the first state x
is the rotor hub force amplitude and the second state
X, is the rotor blade bending moment amplitude at a
given frequency (i.e., one of the harmonics of the
rotor r.p.m.). The two controls are the hAigher
harmonic controls and they cancel some of the

unsteady air loads on the rotor.

The measurements are

y,(k) = X(k) + wy(k) (33)

yz(k) = %y(k) + wy(k) (34)
where

EQwlkIw ()} = W, = diag (Wy, Wp);

W, = 7.52%, w, = 43? (35)

Only the gain parameters were unknown and their




29

initial estimates were generated as N(8§9,,

ef), i = 2,3,5,6 where the true values are

8, = 23.8 6y = -135.87
6, = -74.84 6 = 53.31 (36)
8; = -51.04 8 = -82.56

A large uncertainty is chosen in the initial parameter
estimates in order to test the learning capabilities
of the various adaptive algorithms. The cost

weighting matrices are

Q = diag(qi. qz]z q = 1.0, q, = 1.0

R = diag (ry, rp): ry = 0. , rp; = 0. (373

For the model chosen (31)-(36) the optimal control

solution is

u} = 1.0, uy = -1.0 (38)
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In terms of the notation of Section 2

c = [2;] (39)
= 6; 6,
s- [ 528 ] (40)

ulk) = [3‘2((3 (41)

The controllers are implemented with a sliding

horizon for a total of 20 time steps. The

evaluation criterion is
Cp = qx§(k) + qx3(k) (42)

>Analysis of the Monte Carlo Average Costs

Comparisons are made between the performances
of the cautious and the various dual algoritﬁms
(D2a8-D2c) on Athe system and a conventional statistical
significance analysis is done using the normal theory

approach (i.e., it is assumed that the central limit
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theorem holds for the samble mean from a8 large number
of -runs]). This is given in Appendix A. Tables 1-6
contain the results of the simulation runs. Table 1
compares the average cost 5,; over 100 Monte
Carlo runs for the first 10 tirﬁe steps for HCE,
Cautious and the dual algorithms, with an active

control limiter |u| s 1.5, 1=1, 2.

Clearly it is seen that the cumulative average
cost is the lowest for the dual controller. The HCE
increases the vibrations in time step 1 by using too
large control magnitudes becsuse of lack of caution.
This however helps to learn the parameters faster and
reduces the vibration earlier than the others. The
~dual controller sometimes demands large control
magnitudes but less often than the HCE. In a
realistic situation large control magnitudes are not
permitted because of the active control limiters
discussed above. Tables 2-4 provide a statistical

significance test for the run with the limiter and
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show that the dual solutions improve.  upon the cautious
solution on the average by 60X with at least 95%
confidence. Table 5 shows the percentile test
comparing the cautious and the dual (D2cj solutions
(Appendix A). It clearly indicates that from time
steps 3 onwards the tail of the dusl is lighter than
that of the cautious solution. This test was carried
out for 500 Monte Carlo runs. Also a8 sample
- distribution function plot was made for the vibration
cost at each time step comparing the tgyo algorithms;
figures 6, 7 are typical examples. From the plots s
threshold value of 5000 was chosen for the cost and
Table VI indicates the percentage of runs the
ﬁbraﬁpn cost exceeds 5000 for the two algorithms.
This also indicates the light tailed nature of the

distribution obtained by the dual algorithm.

Individual Time History Runs

Analysis of the Monte Carlo Average Cost
indicates the improvement offered by the dual

solution: but provides no information about the
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cauvtious controls turning off. Hence a careful
inves_tigabtion of the iﬁdiQidual runs is required to
.-discover these occurre.n‘ceé. Turn-olff phenomenon is
observed in many runs; a‘monvg the 100 Monte Carlo runs
whi)e usiﬁg the cautiéus c‘ontroller; runs 11, 60, 94,
Qé are typical exgrﬁple_s of it. In run 11 control 2
turns off be-_tween the'._tﬁime steps 0 anq 16. In run 60,
the control 2 turﬁs '_of‘f between the time steps 0 and
8. In run 94 also t‘he control 2 turns off between the .
ti:rﬁ'e steps 0 and 6. The f\yorst case of turn-off occurs
in run 98. Both the "c.on:t_r'o.ls are off between the time
.'ste'ps 0 and'12.'uH'ere at' time sfep 13 another
H‘in_ter.‘esting phenomen.o'n galled burst occurs. The
cautious control exceeds_'the lﬁnits and this reflects
in a small hump in thé cosi_:Acurve at time step 13. In
all these cases the d.u'al4does beltter and avoids the
turn-off a.n.d the bttilrst phenomena. As
explainAed in Section 3.-A.the control for a constant
parameter plant revokes ‘f_t;o‘fn the turn—éff situation by

the burst phenomenon. A large measurement noise helps
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the plant to come back to life by causing a
burst. Run 89 (FiguAre 5) is a case where the
cautious controller exercisesl excess of caution and is
slow in convergence. This is avoided by the dual
solution. 4Tﬁ'ese cases are portrayed in Figures 3-7.
For the latter case, the controller goes to the right
direction of control by utilizing the dual effect from
the very outset. Analysis of the simulation runs has
shown that this new dual control solution appvlied to a
multi-variablé input-output model improves the cost on
the average by 60%Z. The key improvement is i'n the
avoiding of situati‘ons like turn-off, burst and slow

convergence, typical of the cautious solution.
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H Qautious D2a o2b b2¢
Time
Scep - LI . K - k _ - k _ - k _
3 [ L cy [~% LI Cy Lc C N C L
4= 1=l 1= L=l FON
1 2193 | 21932 | 11223 11223 13527 | 12327 10869 | 10869 | 11117 11117
2 avoo | 26831 7302 18425 2085 21542 7430 18299 $932 | 17049
3 1776 | 28609 2984 22409 3943 | 25328 1686 | 20183 1949 | 18998
('é 4 651 | 29260 2786 25197 1636 27181 1486 | 21671 2673 | 20671
S 199 29659 2092 27289 1037 | 28218 - r{] A212), ~AA22 1 2}044
] 331 29990 1690 28979 1137 29355 687 | 23070 626 | 22470
? 228 30218 1830 30509 479 | 29834 432 | 23510 435 | 22906
8 203 30418 1027 31536 422 30256 357 | 23867 3712 | 23277
] 16 30634 289 32525 438 30691 37 24241 387 | 2366«
10 167 | 30821 170 33295 185 31076 294 | 24538 304 | 23968 |
Table 1: Average costs for the three algorithms in the

static model with

a limiter (100 Monte Carlo

Runs;.lullfl.s;luzlfl.S)
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k

Time Step Test Statistic Estimated Improvement
| 2 El, %
-1.0 ' ‘ -11.
-1.2 ~-26.
.03 ' ' 1.0
2.4 40.
2.1 50.
1.0 32.
25 69.
21 s
1.9 56.
1.5 50.

10

Table 2

Statistical significance test for
comparisons of cautious and the dual

algorithms (D2a) in the static model with

a limiter (lulst.5, |uyls1.5)

(100 Monte Carlo Runs).
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Time Step Test Statistic - Estimated Improvement
k 2, ‘ El, %
1 1.2 3.
2 -.1? -3.
3 4.6 53.

. 4 2.4 . ‘ 47.
5 3.5 : | ' 66.
6 2.6 59.
7 2.8 - 72.

8 2.8 | 65.
9 2.5 62.
iO 2.3. 62.

Table 3

Statistical significance test for
comparisons of cautious and the dual
algorithms (D2b) in the static model with
a limiter (lu Is1.5, Julst1.5)

(100 Monte Carlo Runs).
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k

Time Step Test Statistic Estimated Improvement
2, El, %
.29 .9
2.2 17.
4.4 | 51.
2.0 40.
1.7 44,
2.7 63.
2.8 71.
2.7 64.
2.4 61.
2.2 ' 60.

10

Table 4

Statistical significance test for
comparisons of cautious and the dual
algorithms (D2c) in the static model with
a limiter (lulst1.5, Juls1.5)

(100 Monte Carlo Runs).
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Time Step x? test statistics at Kgg

[TV

1.6
0.4
30
48
33
25
27
27
23

W W N O 0 A& W N

10 19

Table 5: Percentile test for comparisons of cautious
and the dual algorithms (D2c) in the static
model with a limiter (S00 Monte Carlo Runs
fugl 1.5, 1uls1.5)

O
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Time Percentage of runs the vibration exceeds 5000
k Cautious - Dual
1 94 86
2 41 29
3 23 8
4 16 2.4
S 11 1.2
6 9 "~ 0.8
7 7.4 0.8
8 6 | 0.6
9 6 ‘ 0.6
10 5.2 0.4
Table 6: Comparison of the tails using the cautious

and the dual algorithm (D2c) in the static
model with a limiter (500 Monte Carlo Runs;
l vy 1 1.5, Ju |l <s1.5)
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SAMPLE DISTRIBUTION TIME STEP 4
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COST VALUE x 1000

Fig. 1 Sample distribution of vibration cost using

cautious and dual (D2c) algorithms (500 Monte
Carlo Runs); (Iullil.S; qulil.S)
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SAMPLE DISTRIBUTION TIME STEP 5
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COST VALUE x 1000

Fig. 2 éample distribution of vibrationﬂcost using
cautious and dual (D2c¢) algorithms (500 Monte

Carlo Runs); (Iul[il.S; luzljJ.S)
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PLOT 11
o
O L
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S = Pt —— -- —— D2¢
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. o
I v
[72] ] '
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© 1 . i
o | ; .
o~ . :
e
Y \\J
- Ot _
0 5 10 1s 20
TIME STEP
Fig. 3a

Time history of cost and controls using the
cautious and the dual algorirhms for rum 11
(100 Monte Carlo Runs: lullil.S; qulﬁl.S)
(see pages 44, 45)
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Fig. 3b Control 1 (see pages 43, 45)
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PLOT 11
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6T 1=
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» 44)

Fig. 3c Control 2 (see pages 43
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PLOT 60
S_
Cautious
D2a
— - —— D2b
—— == —— D2¢
o)
S
s
s
»
-~
[72]
o
O
20

TIME STEP

Fig. 4a Time history of cost and controls using the
cautious and the dual algorithms for run 60
(100 Monte Carlo Runs: |u1|§1.5; |u2|f}.5)
(see pages 47, 48)
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Fig. 4b Control 1 (see pages 46, 48)
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4c  Control 2 (see pages 46, 47)
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PLOT 89
: Cautious
S D2a
@ I .
—
o
© o
S
—
»®
a
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© 1
o~ v
0 5 10 15 20

TIME STEP

Fig. 5a Time history of cost and controls using the
cautious and the dual algorithms for run 89
(100 Monte Carlo Runs: |u1|5}.5; qulf}.S)
(see pages 50, 51) _
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Fig. 5b Control 1 (see pages 49, 51)
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Fig. 5c Control 2 (see pages 49, 50)
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PLOT 94
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Fig. 6a Time history of cost and controls using the
"cautious and the dual algorithms for run 94
(100 Monte Carlo Runs: |ul|§1.5; |u2|§}.5)
(see pages 53, 54)
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Fig; 6b Control 1 (see pages 52, 54)
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Fig. 7a Time history of cost and contrels using the

cautious and the dual algorithms for run 98
(100 Monte Carlo Runs: |u1|§;.5; lu, |<1.5)
(see pages 56, 57)
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Fig. 7c Control 2 (see pages 55, 56)



58

2.6 CONCLUSIONS

A new adaptive dual control solution is applied
here to la multi-variable input-output system. This
solution captures the dual effect by performing a
second order Taylof series expansion of the expected
future cost. It modifies the cautious solution by
num.erator and denominator correction terms. It also
avoids problems of turn-off, burst and slow

convergence, typical of the cautious solution.



Chapter 3

An Adaptive Dual Controller for

a Dynamic MIMO System.

3.1 INTRODUCTION

In this chapter 8 second order Taylor seri.es'
expansion of the future expected cost is performed
about a nominal trajectory and a dual controller is
developed for a MIMO dynémic (ARMA of lag one)
model. The cautious [Wi, S1, M3] and the new dual
controller are‘ applied to a MIMO ARMA system. Monte
Carlo simulations, based on pasrametric and
nonparametric statistical"analysis. indicate that the
dual controller prevents the turn-off phenomenon and

slow convergence prevalent with a cautious solution.

Section 2 gives the problem formulation. The
approximate dual controller with 8 two-step horizon

for the MIMO system is derived in Section 3. The

- 59 -
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control solution is obtained by approximating the
solution of the stocha;e.tic dynamic programming
equation. A second order Taylor series expansion of
the expected future cost is performed about a nominal
trajectory and this leads to a dual control solution
in a8 closed form. Following the derivations of the
controller, a summary of the algorithm is givre'n.
Section 4 describes the simulation of the plant énd

éompares the performances of the cautious and the dusal

solutions. Section 5 concludes the chapter.
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3.2 PROBLEM FORMULATION

The MIMO system to be controlled is described by
y(k) = -A y(k-1) + B u(k-1) + e(k) : (43)
where

Ele(k)] = 0 ; Ele(k) e'(j)] = W8y, (44)

The parameter matrices A and B are unknown.
This model describes some industrial processes like an
ore crushing plant, or a heat exchénger [A2]). The
unknown elements of A and B comprise the parameter
vector 6(k) whose estimate at time k is
8(k) with covariance matrix P(k) . The

parameter vector is designated as

8(k) 2 [ay | by | a5 | b5 | ... | an | b'n J°  (45)
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where n is the dimension of the output vector y(k)

and a’y , by are the ith row of the matrices
A and B , respectively. Assuming the parameters are

time-invariant we have
0(k+1) = 6(k) (46)
A measurement matrix H(k) is defined as
H(k) = diag [ -y*(k) | u(k) , -y°(k) | v(k) , ... ] (47)

where H(k) has n rows. For a better understanding

of the form of this matrix please refer to (81)
With these definitions the messurement model is

y(k) = H(k-1) 6(k-1) + e(k) (48)
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The performance criterion to be minimized is the

expected value of the cost from step 0 to N

N-1
J(0) = ECC(OD) = E] 3 (y(ke1) -y, YU ylket) - yr}ll":ltcls)

where Q(k) is diagonal and I is the cumulated

information at time k
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3.3 DUAL CONTROL WITH A TWO-STEP HORIZON

First the controller is derived and then a summary

of the algorithm is provided.

A dual control _solution with a two-sStep ‘.ho‘rizoh is
obtained by'nnnimizing (49) with respect tq'tﬁe
control u(0) for the multidimensional plant
(43)-(46). This is obtained by solving the general
equation of Stochastic Dynamic P«roéramming (B2, B6,

B71

J*(k) = min E{C(k) + J°(k+1)|I*) k=N-1,...,1,0 (50)
u(k) - .
where J°(k) is the cost to go from k to

N and I is the cumulated information at time k

when the control u(k) 'is to be applied.



65
Thus for a two-step horizon we have

s : s .k
k2 = :1("(')‘ ECC(k) + Jypppeal 17}

- m(ikrji E[{y(k+1) - y )" Qk) {y(k+1) =y} + 3% 4, o115 (51)
u

where I e1ke2 is the optimal cost at the

last step and is obteained by minimization of

Jgetxe2

The cautious control with a8 one step sliding

horizon at k+1 is given by
‘ulk+1) = [E{BQ(k+1)BII**1)]TIE[B'Q(k+1) (Ay(k+1) + y 3115711 (52)

This helps us in obtaining the optimal cost to go

at the penultimate stage.
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The cost from stép k+i to k+2 s,

Jstpez = tr Qlk+1)W + E[{Ay(k+1) = yr}‘Q(k*i){Ay(kﬂ) 'y}

+ u(k+1)B°Q(k+1)Bulk+1) - 2{Ay(k+1) + y }'Q(k+1)Bulk+1)|1*"!] (53)

and inserting (52) into (53) the optimal cost at the

last step is,

Pheshez = 10 Qk+1IW + E[{Ay(k+1) + y 1'Qk+1){Ay(k+1) = yr)n"*’]
- E[{A y(k+1) + y }'Q(ke1)B 1" I(E(BQ(K+1IB 1))

E[B'Q(k+1){A y(k+1) + yr}ll"”] (54)

where E{-11") is the conditional

expectation given the available information’ {**}

The parameter vectar estimate 8(k+1) and the
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associated covariance matrix P(k+1) are obtained

from a Kalman filter according to

K(k+1) = P(k) H'(k) [H(k) P(k) H'(k) + W]} (55)

8(k+1) = 8(k) + K(k+1) [y(k+1)) - H(k) 8(k)]

= 8(k) + K(k+1) v(k+1) (56)

P(k+1) = P(k) - P(k) H'(k). [H(k) P(k) H'(k) + W]~ H(k) P(k)(57)

From (54) it is clear that J .., is
a8 nonlinear function of the estimated parameter
vector 8(k+1) and covariance P(k+1) . But the

estimated vector - §(k+1) and the covariance
P(k+1) are not known until the control ul(k) is

applied.



68

A control wuw(k) with a two-step horizon can be
obtained from (51) if a second order Taylor series
expansion of 3 ketx+2 15 performed about a
suitable nominal trajectory. Here the nominal

trajectory is defined by

1) a nominal parameter éstimate B(k+1)=8(k)

2) a nominal coﬁtrol. o(k)

3) a nominal covariance P(k+1) obtaiﬁed by
using a(k)

4) a nominal measurement y(k+1) obtained by

i

using (k) and 8(k)
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Expansion of (54) about this nominal trajectory

results in

P eethez = g+ Jylk+1)[y(k+1) - §(k+1))
o 1 Iy(ke1) - Flke1) 10, ket Iy (ke1) = Flke1)]
+ J'elk+1) [8(k+1) - B(K)) + tr [J(k+1) (P(k+1) - P(k+1)}]

+ 3 (B0k+1) - BLKI1'Jgelk+1)IBCK+1)-BCK)] (58)

where J, is the zeroth order term and the cost

sensitivities are

| A aJ‘kﬂk*Z
Jy(k+1) - [W] (59)

1 (ke1) é azJ‘kﬂ.k-o-Z ‘ (60)
yy ayi(k*l)ayj(kd)



70

3%y etk
Jolke1) & | chetke2 (61)

3ad, (k+1)

2 ‘
Jeplk+1) & MLACTEEYES (62)
36,(k+1)38;(k+1) | A
a [ 3 kenns2 :]

J.(k+1) = —_— (63)

pCk* [: 3P (k+1)

The above sensitivities are evaluated at
8 (k) , P (k+1) and y(k+1) ; and

P (Kk+1) is the ij-th element of the covariance

matrix associated with the parameter estimates

éi(k'rl) .and §j(k+1)
Under Gaussian assumption for the noise,

y(ke1) = §(k+1) ~ A [y, V] (64)
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where the mean is

p o= E(H(K)B(K) + e(k+1) - A(KIB(K)|I*)

= [H(k) - ACk)18(K) (65)

and the covariance is

V = E[{y(k+1) - §(k+1) - p){y(k+1) - §(k+1) - p} 1%}

= H(k) P(k) H'(k) + W (66)

With the choice of the nominal path as defined

earlier and using (55), (65) and (66)_ the conditional
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expected value of (54) is

E{J'kﬂ.lu-z“k} = Jg + Jy(k+1)[H(K) - FA(k)1B(k) +
L pa, ket + 4 trldy (ke1) V1 + $trldge(k+1)(P(K) - P(ke1)}]

+ tr [J (k+1)(P(k+1) - P(k+1))] S (67)

The above expected future cost (67) ié a function
of the nominal parameters multiplied by appropriate
se'nsitivity;fun‘ctions Jy(k+1}) Jyy (k+1)
Jo (k+1)  and L Ck+1) These
sensitivities introduce the dual effect into (51)
which is then used to yield wu(k) . It must al's.o be
noted that the covariance P(k+1) is nonlinear in
u(k) and is nt-)tAy‘et known. Hence a second order
expénsion of P(k+1) is proposed about a nominal

control (k) sand a nominal covariance §(Ik+1)
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in order to obtain a (suboptimal) dual solution

up (k) in a closed form from (51).

This expansion is performed as follows

P(k+1) = P(kel) + _Zjeie',{P';f(km[u(k) - (k)]
1,

2 [ulk) - G(K)I'PY (k+1)[ulk) - G(KIDD

with superscript here denoting matrix element,

the i-th cvartesian basis vector and

‘s ij .
PUCe1) & SELest) s plitkes) & ———2((‘:(—*)11 i o= 1,

evaluated at P(k+1) and G(Kk) and ]

number of unknown parameters.

(68)

1 (69)

the
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Now a (s]uboptimal)‘dual solution up(k) can be
obtained from (51) using (67)-(69) and is given in

closed form by
up(k) = [E(B'Q(KIBII®Y + F)7! [E(BQIKI(Ay(K) + y )II*} + F1(70)

where the elements of the matrix F and those of the

vector f are given by

| 2
i g e[ ten - § swten g2 |

g BH(K). H(K
3 "r[Jyy“‘*”au (k) P“‘)[ uJ(kJi] ]

L1 Lo f BHUK) & HK) aeer ) ,
4 tr[Jw(k N e G(k))[auj(k] e(k)] ] (71)

iJ=1,...,m
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and

10 BHOD Aoy Y T (ke
f, = - 5 §ETTET o(k) ) Jy(k 1)

aP k+1
m

1 1 3%P(k+1) _
+ 35 jgitr[ (Jp(k+1) - 5 Jgg(k+1)) W]UJ(H

m ’ I
1 S aH(k) aH(k) a =
5 tr j-itrl Jyylk+ U(au 3u.(K) (k) )[——(_Tauj K ek)] 0;(k) (72)

i=i,....m
and m is the dimension of the control vector.

It is clear from (70) that this approximate dual
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solution uy(k) is a modification of the cautious
soiution by the c-ost sensitivity terms. The cautious
solution is (70) with F=0 and f = 0. These account
for the dual effect.. The implementation of this
second order dual solu_tioh is performed by the method

deséribed below.

Algorithm Summary

1) Compute the sensitivity functions

Jee (k1) I Cket) B (k+1)
Jyy(k*l) f or (6 7 ) w it h
(k+1)=8(k) and the nominal values

G(k) ., P(k+1) , ¥J(k+1) defining the

nominal path.

2) Search on (51) with (67) [with the sensitivity
functions computed above, starting with first
nominal values c(k) , P(k+1) ] over

uik) to obtain an improved nominal fof which
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I ka2 is lower. This search is done by
selecting a first ‘coarse grid. A grid search is
necessary to avoid locking in on a local minimum.
Then another-grid is chosen about the latter
control over a narrower interval and from a second
search u'(k) is obtained. This is the control
about which the covariances are expanded. It is

not the control law applied.

3) Using ol (k) compute the covariance
sensitivities P, (k+1) P (k+1];
together with the previously computed cost
sensitivit.ies Jgg ( k + 1) . Jp(k¢1) ,
Jyy (k+1) , Jy Ck+1) obtain Foo, f
defined in (71), (72). Finally the control to be
applied, uplk) , is calculated from its
expressiAon (70) in terms of the wvarious
expectations and sensitivities.

The iteration described in step 2 above is carried
out to obtain better covariance sensitivities. The

)

control up (k) could have been obtained directly
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from (76) by skipping step 2 above; however, as
indicated in [M2, M3] this results in unsatisfactory
performance. With this iterétion of step 2, the
"improved"” sensitivities yield good performance as

shown in the next section.
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3.4 SIMULATION RESULTS

Perfor;mance is evaluated from 500 Monte Carlo runs
for the following controllers:
1) Heuristic Certainty Equivalence [B2] (with a
one step horizon),
2) One-step-ahead cautious controller, and
3) Dual controller bas:ed upon sensitivity
functions (with a two-step horizon) derived

in Sec. 3.

The plant equations for a 2-input 2-output system

are
y,(k+1) = = a4y (K) = 85y (k) + byu,(k) + byus(k) + ey(k+1)(73)
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where

E{elk)e’(§)} = W&y = diag(Wy , Wj):

W, = 7.52% ; w, = 432 - (78)

The true values of the parameters are

8yq = .8 by = -74.84
ap = .1 by, = -51.04 (76)
ay = .2 b, = 53.31
a,; = .75 by, = -82.56

Only the gain parameters (B matrix) are corisidered
unknown for testing the dual effect and their initial

estimates where generated as W[bij,

bizj). i, J=1, 2. This choice of system was

motivated by the helicopter vibr‘ation study [M2].
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A large initial uncertainty is chosen in the
parameter estimates in order to test the learning
capabilities of the various adaptive algorithms. The

cost weighting matirices are
Q(k) = diag (q,‘. qz) 1 q = 1.0 , q, = 1.0 (7%)

The desired response is
y. = (-18 80}’ (78)

For the model chosen (73)-(78) the optimal control

solution is
uf = 1.0, u3 = -1.0 (79)

In terms of the notation of (45) and (47)

~

6 (k) ® [ay ap Bylk) Bu(k) ay a8z Bylk) Byy(k)l” (80)
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- and

=y, (k) -~y (k) ug(k) uz(k) 0 0 0 0o -
k= 0 0 0 0 gk -y,k) w0 s | BV

The controllers are implemented with a slc¢ding

horizon for a total of 40 time steps. The

evaluation criterion is
Cp = (y(k+t) - yr)' Q(k) (y(k+1) - yr) (82)

Analysis of the Monte Carlo Average Costs -

Comparisons are madé between the performances of
the cautious and the dual algorithm oﬁ the s‘ystem 'ana
a statistical significance analysis is do'ne using the
normal theory approach (i.e., it is as_suAmed that the

central limit theorem holds for the sample mean from

-
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- a largé. number of runs) [M3]. Tables -7-10 contains
' ihe reéultAsn of the sirn‘ulati’oh "runé.- Table 7 cc.JmparesA
the average cost -(—Zk_: qv.é'fr 500 .Moﬁte Carlo runs
for the first 40 .time steps for HCE, ‘ca_L;tio-us anq the
" dual algorithms, with a control limiter i}ﬁ,'q 52,

l=1,2. |

Clearly. it is se.e{‘n'. tl:ia_t.t.he 'cumul_ativ'eg av’erage’.
cost xs the l_ov)est f.o‘r t'h,"ei ,du»a'l controller. Thé 'HCE
i.n(‘:urs an- e‘xcessiv.e he-na‘l't‘.yf'iri _t'ivrne 'step} 1 ,because_:of
‘lack_ of caution.A The_';au-tious*control.le'r_' is overly
-cautious and exhibits:s.l‘o\s‘rlvc'onvergence... ;Hov.revér. th‘e"
d'ua‘l controllevr“ incurs»'-,l_:egls penalty: m Asfte:p -i_tﬁa‘n the
HCE and makes a'_jud;ic'io'us ch»o‘i‘ce of c'au>tion a‘n-d"
pvrollaing to l:ear'n .theg:pa.rameters fast. Fi.'g‘ure48‘"
compare's“'the perfof‘mahce.é 6f .the three algorithms Aforf

S00 Monte Csrlo runs.

,Taple 8 providesia statistical si-gnififca’nc‘e test
and shows the 'imp'ro&)'ed_;.i-erforrhan"ceé_'of the dual

o .
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solution from time step 4 onwards with at least 987

confidence.

-Table 9 indicates the percentage of runs the cost
exceeds 2000 for the two algorithms. This threshold
of 2000 is éelected from a sample distribution s:tudy
of the cost at each time step. Table 10 Shﬁws the
percentile test [M3; Ni] comparing the cautious and
the .dual solution. They clearly indicate from. timé
step 4 onwards the light tailed nature of the
.distribution of the cost yielded by the new dual

control algorithm. ‘ ‘ ¥

Individual Time History Runs

Analysis of fhe Monte Carlo Average Cost indicates
the improvement offered by the dual solution; it
provides no -information about the cautious control’s
turning off phenomenon [Si1, W1]. Hence a careful
invesiigatfon of the individual ru,hs is required to

examine these occurrences.
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The turn-off phenomenon is observed in many runs
among the 500 Monte Carlo simulation while using  the
cautious controller; run 90 is 8 typical example of
it. Both components are almost off betwen time steps
0 and 20 during which the dual controller already
identified the parameters and reached the desired

trajectory. Figures 9-12 portray this result.
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HCE Cautious . Dual
Time )
Step k
_ k _ _ k _ - k _
Cy z C; Cy Z Gy Cy 2 C;
i=i i1 i=1
1 14851 14851 3623 3623 6944 6944
2 6241 21092 3961 7584 6722 13666
3 3578 24670 3246 10830 4230 17896
4 1616 26286 2836 13666 1866 19762
5 1354 27640 2505 16171 4492 21254
6 807 28447 2154 18325 953 22207
7 593 29040 1921 20246 700 22907
8 462 29502 1670 21916 582 23489
9 397 29899 1623 23539 535 24024
10 347 30246 1327 24866 385 24409
40 77 34444 281 43810 89 29178
Table 7. Average Costs for the three algorithmé in

the dynamic model with a limiter (500 Monte

Carlo

Runs;

luls<2.0,

fu,1<€2.0)



Time Step Test Statistic Estimated Improvement
k 2, EIY%
1 -8.1 -91
2 -5.3 -69
3 -2.2 -30
4 3.5 34
) 3.3 o 40
6 6.0 _ 56
7 6.3 64
8 6.5 65
9 6.5 67
10 5.7 71
11 6.3 76
12 5.6 : 70
13 5.9 82
14 5.2 62
15 5.5 79
i6 4.9 70
17 4.5 78
18 4.4 74
19 4.4 76
20 4.3 76

Table 8. Statistical significance test for

comparison of cautious and the dual
algorithm in the dynamic model with a
limiter (500 Monte Carlo Runs;

lul 2.0, v, 1 £2.0)
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Time Percentage of runs which exceed 2000
k | " Cautious Dual
1 86 76
2 60 52
3 43 40
4 33 25
5 31 17
6 22 10
7 22 8
8 19 7
9 16 3
10 12 2
11 12 1.27
12 ‘ 10 1.4
13 1 1.4
14 7 1
15 8 0.4}
16 6 0.4
17 6 0.2
18 6 0.4
19 5 0.4
20 5 0.2
Table 9: Comparison of the tails using the cautious

and the dual algorithm in the dynamic
model with a limiter (500 Monte Carlo. Runs;
lu, 1 £2.0, 1u, |l £2.0)
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Time Step x? test statistics at Kgq
1 -
2 .
3 -
4 10
5 19
6 23
7 32
8 35
9 57
i0 37
11 40
12 40
13 40
14 16
15 32
16 11
17 16
18 16
1S 18
20 25

Table 10. Percentile test for comparison of

cautious and the dual

dynamic model

. Carlo

Runs;

algorithm in the

with a limiter (500 Monte

lul<2.0,

IUZISZ.O)
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CAUTIOUS, DUAL AND HCE
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~{; === DUAL
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~ o0 1 ,
% {.1
5 o] |
|22 BN o] '
o "
() s \l‘
<1~
L1
0 5 10 15 20 25 30 35 .40
TIME STEP
Fig. 8 Time history of the average cost using the

heuristic certainty equivalence, cautious
and the dual controllers. (500 Monte Carlo
runs; |ul|§2.0, Iu2|§2.0)
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_70
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Fig. 9 Time history of output 1 using the cautious

and the dual algorithms for run 90 (500 Monte
Carlo runs; lulT§2.0; lu, |<2.0)
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CAUTIOUS AND DUAL
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Fig. 10 Time history of output 2 using the cautious
and the dual algorithms for run 90 (500 Monte

Carlo rums; ]u1|§2.0; |u2l§2.0)
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CAUTIOUS AND DUAL
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Time history of control 1 using the cautious

and the dual algorithms for run 90 (500 Monte
Carlo runs; |ul|§2.0; |u2|§2.0)
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CAUTIOUS AND DUAL

CALTIOUS
DUAL

sz - sL*

¢ I0YINOD

20 25
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12 Time history of control 2 using the cautious

Fig.

and the dual algorithms for run 90 (500 Monte

Carlo runs; [ullgz.o; qu

|<2.0)
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3.5 CONCLUSIONS

A new adaptive dual control solution has been
developed for an ARMA MIMO system. This solution
utilizes the dual effect by performing a second order
Taylor series expansion of the expected future cost.
It modifies the cautious solution by numerator and
denominator correction terms. Analysis of the

simulation runs has shown that this new dusl control
solution applied to a rhulti-input multi-output model
improves over the cautious controller. The key
improvement is in the avoiding of situations like
turn-off and slow convergences, typical of the

cautious solution.



APPENDIX A

{

Statistical Significance in the

Comparison of Controller.‘.Perform'a.nce:

" Two control algorithms are éofﬁparé‘;:lf:b‘y perfbArn'iingv
a Mo.nte Carlo simulation. S inde‘pendent r.un,;;.»w"ith
the two algorithvms, under th.e sa.me.'hom‘ogeheous
conditions, yield a set of i.i.a.‘.'.' samples
¢, @, i-1,2,...,8 from two
distributions with trvue but unknown means
J‘,? 8 nd J(E]', respectively .,.-_-‘f"'b'r
each time stép k.

The sample means

—-— 1 S ‘ \
C(z) _ _é_ 3 ij.f §=1,2 , - (A1)

i=1
'é'r"e{'pdi-nt‘ estimates of the respective true means.
A statement that
Cy < Cy , o (A.2)

indicating that algorithm { is better than 2 for time

96
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step k has to be accompanied by a level of
significance a of type I error.

Thus we test the hypothes‘is
Ho & = J@ - g <0 (algorithm 1 not better)  (A.3)
against the one sided alternative
He o = J@ - g 5 9 (algorithm 1 better) (A.4)
for a particular o level at each time step k.

This probability of error « is defined as

a = P{accept HylH, true} (A.5)

Since‘ we get a set of data of the perf.ormances of

the two algorithms on the plant under similar

condiftions we regard it as a set -of naturally paired
observations.

We consider the samplé_ differences

(2) (1)
8 = C% - Cix (A.6)
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and this set of differences A4, represents a
sample with mean

A, = 3@ - 3O (A.7)

Thus we have reduced the two-sample problem to a

one-sample problem. The hypothesis is tested by

examining Qhether A, can be ac;épted_as being

positive with high confidence. The test statistic is

z, & —— , (A.8)
k ozk _
where
- 1 &
B, = 5 2 By (A.9)
i=1
02 = =ra % (a, - B,)2 (A.10)
8, S(sS-1) =1 ik k )
The test statistic z, has a t - distrib:ution

with (S~-1) degrees of freedom. For S larg.e (>50) 2,

has a normal distribution. Then we have

0325_.1_
k S° i

Mwn

(8 - B - (A1)

|



99

and the hypothesis Hy is accepted if
z, > (A.12)
where 0% is taken from the normal distribution
tables. For a one-sided test with a=0.05, one has
¥y=1.645.
The estimated improvement for each time step k

is defined as

Ely, & ——@y—— x 100% (A.13)

For our problem the costs have a probability
densit'y function which is not symmetric and also not
normal. For this class of pr'ob'lems nonparametric
tests for two samples arel.a.pplicable [Nij. A
percentile test is recommended here to further
substantiate that the vibrations obtained by using the
dual and the cautious salgorithms come from two
different distributions and the tail of the

distribution obtained from the dual is lighter than
the tail of that obtained by the cautious algorithm.

This test is described next. The two samples are
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pooled together and a 90 percentile point denoted as
Kgg is chosen. Then a 2x2 contingency table is

computed as follows

< Kgg > Kgg . Totals
Dual a b a+ b
Cautious c d c + d

Totals a@ + ¢ b+ d n=a+b+c+d
where a, b, ¢, d are th'e observed frequencies
for the four cells.

The x% (chi-square) value is obtained by

2 _ n(aa'—bt:)2 :
X" = Ta+bj(d+bjlc+di(a+c) at 1 degree of freedom

(A.14)

This should be greater than 3.8 at a = 0.05 to
prove that the tail of dual is lighter than that of

the cautious.



REFERENCES

[AL] K, J. Astrom and B. Wittenmark, “"Problems of
Identification and Control,” Journal of Math.
Anals. & Appl., vol. 34, 13971, pp. 90.

[A2] K. J. Astrom, "Self-Tuning Regulators - Design
Principles and Applications,” in Applications

of Adaptive Control, K. Narendra and R.
Monopoli, (Eds.), Academic Press, 1980.

[BL1] Y. Bar-Shalom and E. Tse, “"Dual Effect,
Certainty Equivalence and Separation in
Stochastic Control,” JEEE Trans. on

Automatic Control, vol. AC-19, pp.
494 -500, Oct., 1974.

[B2] Y. Bar-Shalom and E. Tse, "Concepts and Methods
in Stochastic Control,"” in Control and
Oynamic Systems: Advances in Theory and
Applications, C. T. Leondes, (Ed.), New
York: Academic, 1975.

[B3] Y. Bar-Shalom, "Stochastic Dynamic Programming:
Caution and Probing," lEEE Trans. on
Automatic Control, vol. AC-26, No. 5, PpP.
1184-1194, Oct. 1981,

{B4] Y. Bar-Shalom, P. Mookerjee and J. A. Molusis,
"A Linear Feedback Dual Controller for a Class
of Stochastic Systems,™ in Qutils et Modeles
Mathematiques pour L'Automatique, L’Analyse

de Systemes et le Traitement du Signal,

vol. 3, 1. D. Landau (Coordinator), Centre
National de la Recherche Scientifique, Paris,
1983.

(B5] R. Bellman, Adaptive Control Processes: A

Guided TJour, Princeton, N.J.: Princeton
Univ. Press, 1961.

10t



102
(B6] R. Bellman, Dynamic Programming, Princeton
Univ. Press, Princeton, NJ, 1957.

{871 BD. P. Bertsekas, Bynamic Programming and
Stochastic Control, Academic Press_. NY,
1976.

[D1] P. L. Dersin, M. Athans and D. A. Kendrick,
“Some Properties of the Dual Adaptive Stochastic
Control Algorithm,” IEEE Trans. on Automatic
Control, vol. AC-26, No. 5, pp. 1001-1008,
October 1981, ‘

[E1] C. Elevitch, An Approximate Analytic Control
Law for an Active Suboptimal Dual Controller,
CODEN:LUTFD2/(TFRT-7264)/1-029/(1983), '
Department of Automatic Control, Lund Institute
of Technology, Sweden.

[Fi] A. A. Feldbaum, Optimal Control Systems,
New York: Academic Press, 1965.

(Gi1] G. Goodwin and R. Payne, Dynamic System
Identification: Experiment Design and Data
Analysis, Academic Press, NY, 1977.

{Mt] R. Milito, C. S. Padilla, R. A. Padilla and D.
Cadorin, “Dual Control Through Innovations,"”
Proc. 19th IEEE Conf. on Decision and
Control, Albuquerque, NM, Dec. 1980.

[M2] J. A. Mo.lusis. P. Mookerjee, and Y. Bar-Shalom,
"Dual Adaptive Control Based Upon Sensitivity
Functions,” Proc. 23rd JEEE Conference in

Decision _and Control, Las Vegas, NV, Dec.
1984. .

[M3] P. Mookerjee, Y. Bar-Shalom and J. A. Molusis,
“Dual Control and Prevention of the Turn-0ff
Phenomenon in a8 Class of MIMO Systems," Proc.
24th IEEE Conference in Decision_ and
Control, Ft. Lauderdale, FL, Dec. 1985.




[M4]

(M5]

[N1]

[P1]

{s1]

[s2]

[(T1]

[W1]

103

P. Mooker jee, J. A. Molusis, and Y. Bar-Shalom,
"An Investigation of Adaptive Controllers for
Helicopter Vibration and the Development of a
New Dual Controller,” NASA CR-177377,

January 1986.

E. Mosca, S. Rocchi and G. Rappa, "A New Dual
Control Algorithm," Proc. of the 1978 IEEE

Conf. on Decision and Control, San Diego,
Jan. 1979.
G. Noether, Introduction to Statistics, A

Fresh Approach, Houghton Mifflin, 1971,

C. S. Padillia and J. B. Cruz, "Sensitivity
Adaptive Feedback with Estimation
Redistribution,” l1EEE Trans. on Automatic
Control, vol. AC-23, no. 3, June 1978.

J. Sternby, Topics in Dual Control, CODEN:
LUTFD2/(TFRT-1012)/1-135/(1977), Department of

Automatic Control, Lund Institute of Technology,
Sweden.

J. Sternby, "A Regulator for Time Varying
Stochastic Systems,”™ Proc. of the 7th 1FAC
World Congress, Helsinki, Finland, June
1978. ‘

E. Tse, Y. Bar-Shalom and L. Meier, "Wide-Sense

Adaptive Duel Control for Nonlinear Stochastic
Systems ,” IEEE Trans. Auto. Control,
AC-18, pp. 98-108, April 1973.

B. Wittenmark, "An Active Suboptimel Dual
Controller for Systems  with stochastic
Parameters,” Auto. Control Theory and
Applications (Canada), vol. 3, pp. 13-19,
1975.




104
[W2] R. Weisbrich, R. Perley and H. Howes, "Design of
' 8 Feedback Control System for Multicyclic Flap

System Rotor (MFS)," _NASA CR-154060,
1977.

Jan.

4



NASA Report Documentation Page

Scace Aomeestaon

1. Report No. . 2. Government Accession No. 3. Recipient’s Catalog No.

CR - 177485

4. Title and Subtitle 5. Repont Date

Dual Adaptive Control: August, 1988

. .. . . 6. Performing izati
Design Principles and Applications € Organization Code

7. Authorls) 8. Performing Organization Report No.

Dr. Purusottam Mookerjee CR-177485

10. Work Unit No.

9. Performing Organization Name and Address RTOP 505-61-51

The University of Connecticut 11. Contract or Grant No.

Storrs, CT 06268 ' NAG2-213, NAG2-318

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

) . , - . ‘ontractor Report - Fir
National Aeronautics and Space Administration Con r Report - Final

Washington, D.C. 20546-0001, and, 14. Sponsoring Agency Code
Ames Research Center, Moffett Field, CA 94035 S

15. Supplementary Notes . . .
Dr. Purusottam Mookerjee is currently with the Electrical Engineering Department of

Villanova University, Villanova, PA 19085 215-645-4974. Contract Technical Monitor: Dr.
William Warmbrodt (Dr. Stephen Jacklin, alternate) Ames Research Center, Moffett
Field, CA 94035 415-694-5642

16. Abstract i
The design of an actively adaptive “dual” controller based on an approximation of the

stochastic dynamic programming equation for a multi-step horizon is presented. A dual
controller that can enhance identification of the system while controlling it at the same time
is derived for multi-dimensional problems. This dual controller uses sensitivity functions of
the expected future cost with respect to the parameter uncertainties. A passively adaptive
“cautious” controller and the actively adaptive “dual” controller are examined. In many
instances, the cautious controller is seen to turn ofl while the latter avoids the turn-off
of the control and the slow convergence of the parameter estimates. characteristic of the
cautious controller. The algorithms have been applied to a multi-variable static model
which represents a simplified linear version of the relationship between the vibration output
andthe higher harmonic control input for a helicopter. Monte Carlo comparisons based
on parametric and nonparametric statistical analysis indicate the superiority of the dual
controller over the bascline controller.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Adaptive, Control, Dual Controller .
l ’ ’ - Unclassified-Unlimited

STAR Category 02

Helicopter Vibration Control

19. Security Classif. (of this report) 20. Security Classif. {(of this page) 21. No. of pages 22. Price
None None
_ ' 104 A0G

NASA FORM 1626 OCT 86





