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N, :  Avogadro number, 6.022169 x 102° (kmol" )
: Absiract N? :  electron number density, (m3)
A new parabolized Navier-Stokes (PNS) code has been . number of reactants (including catalytic -
developed to compute the hypersonic, viscous, chemically _ third bodies)
reacting flow fields around three-dimensional bodies. The' P :  static pressure of the mixiure
flow medium is assumed to be a multicomponent mixtureof & : - heat flux vector ’
thermally perfect but calorically imperfect gases. The new g« :  universal gas constant, 8314.34 J/(kmal-K)
PNS code solves the gas dynamic and species conservation R :  Reynolds number based on L°
" equations in a coupled manner using a noniterative, im- ¢ : Stanton number
plicit, approximately-factored, finite-difference algorithm. :  time
The space-marching method is made well-posed by special 7 : static temperature of the mixture )
treatment of the streamwise pressure gradient term. The  yw : Cartesian components of the mass-averaged
- code has been used 10 compute hypersonic laminar fiow of - velocity
chemically reacting air over cones at angles of attack. The v :  magnitude of the mass-averaged velocity
results of the computations are compared with the resultaof ), :  rmass production rate of species s
reacting boundary-layer computations and show excellent  x, :  mole fraction of species s
agreement. z,¥.3 Cartesian coordinates (physical space)
2y, third body efficiency (relative to argon)
| Nomenclature of the rth catalytic body
A° : reference area, (m?) @  : angleofattack
ay :  frozen speed of sound - Y :  mole-mass ratio of species s
Cy :  total drag coefficient 0 :  cone half angle
Cy - i skin-friction coeflicient < :  thermal conductivity
Cp :  pressure coefficient B :  molecular viscosity
C,, frozen specific heat of the mixture €.0.¢ generalized coordinates
c :  mass fraction of species & » ¢ mass density
D ¢ kinematic hinary diffusion coefficient 0 safety factor
h :  static enthalpy r :  shear stress
H : total enthalpy of the mixture
K ..:  cnthalpy of formation of xpecies & M‘ L .
Ko, :  backward reaction rate constant for i,k : ﬁ"'_‘"d'ﬂe"n,ce mdxcfs
the mth reaction r.8 ¢  indices denoting species
Ky, :  forward reaction rate constant for w : wall' L
‘ ‘the mth reaction z,y,¢ @ partial derivative w.rt. z,y,2 -
L i reference length, (m) &g partial derivative w.r.t, £.n.¢
Le :  binary Lewis number % ¢ [reestream
i diffusion mass flux vector Superscripts
m number of reactions * : dimensional quantity
M, frozen Mach number ¢ : chemical quantity
M molecular mass 1 ¢ inviscid quantity
n number -of speciex T :  transpose
G e v ¢ viscous quantity
"Research Assistant, Department of Aerospace Z,y.2 Cartesian components
Engineering. Member AIAA. &n.¢ transformed components

Introduction

Accurate numerical simulations of the acrothermody-
namic environments around the recently proposed hyper-
sonic vehicles'* must account for the various complex re-
laxation phenomena such as vibrational excitation, chem-
ical reactions, ionization, etc., which occur in the shock




layers. The numerical simulation of complete thermochem-
ical nonequilibrium has been successfully accomplished by
Park®* for one-dimensional flows. The extension of this
analysis to higher dimensiona) flows is quite complicated
and requires further research. However, as a first step, the
problem can be simplified by assuming the flow fleld to
be in thermal equilibrium but not in chemical equilibrium.
The numerical simulation of viscous, chemically reacting,
external flows around three-dimensional configurations is
" the focus of attention of several investigations today.

. The numerical methods currently employed fall into two
main categories, (i) time-marching methods and (ji) space-
marching methods. In the time-marching methods,*~® time-

“asymptotic solutions to the Navier-Stokes equations are
icomputed. These methods are accurate but require a sub-
: ‘stmna.l amount of computer time. Space-marching meth-

“ods, on the other hand, require much less computer time

“and provide accurate solutions in cases where they are ap-
plicable. - In the latter category, the viscous shock-layer
(VSL) equations ®1° have been widely used to compute
three-dimensional, viscous, chemically reacting flows. These
equations are uniformly valid in the shock layer but fail
in the presence of crossfiow separation. This deficiency is

~ overcome through the use of the parabolized Navier-Stokes

_ (PNS) equations. Bhutta and Lewis'' were one of the first
to use the PNS equations to compute chemical nonequilib-
rium flow fields. - They solved the chemistry and gas dynam-
ics separately and used an iterative approach to couple the
two. In contrast to their approach, Prabhu et al.'? devel-
oped a chemical nonequilibrium PNS code in which the gas
dynamics and chemistry were solved simultaneously in &
noniterative manner. This two-dimensional/axisymmetric
code was successfully applied to reacting flows over wedges
and cones and was found to be very competitive in terms
of both efficiency as well as computing time. Having es-
tablished the feasibility of computing reacting flows with a
coupled approach, a new PNS code for three-dimensional
bodies has been developed in the present study.
The present paper describes in detail the development
of this new P'NS code which can compute chemically react-
"ing flow fields around three-dimensional bodies. As in the
previous study 4, the gas dynamic and specics conservation
equations are solved in a coupled manner. A noniterative,
implicit. approximately-factored. finite-difference method
is used 10 solve the PNS equations. The flow medium con-
sidered in the present computations is air consisting of six
species and electrons. The electrons are eliminated from
the species set using the principle of conservation of charge.
The source terms are treated in a partially implicit man-
ner in the present formulation. The code has been used to

cornpute a number of chemically reacting flow fields around .

cones at angles of attack. The results of the compute-
tions are compared with those of a reacting boundary-layer
<code.'f'

Governing Equations

The equations governing the steady, three-dimensional
laminar flow of a multicomponent gas have been obtained

from the equations in Ref. 14 by (i) neglecting the time-

" derivative terms, (ii} assuming the flow to be in thermal
equilibrium, (iii) neglecting radiation, and by (iv) assum-

ing mass diffusion to be binary and due to concentration

gradients only. These equations can be written in nondi-
mensional, strong conservation-law form in Cartesian coor-
dinates for an n-component system as:

Ei+F, +Gi= %(n:qwcz) +WE (1)

The (n + 4)-component vector of conservation variables
Q is chosen as

Q= {».pu,pv.pw.pil.pc:.pcz.---.pcn-x}f (2

E’, F*, and G* are the (n + 4)-component inviscid flux
vectors. E¥, F,and GV are (n < 4)-component viscous flux
vectors. W° is the vector of chemical source terms. All °
these vectors are functions of the elements of the vector Q
and their spatial derivatives. Explicit expressions for ele-
ments of the flux and source vectors are given in Appendix
A. Note that the vector of dependent variables contains - -
both the fluid dynamic and chemistry variables and that
only (n — 1) of the n species continuity equations are re-
quired because the mass fractions sum to unity. Thus, the
nth species continuity equation is replaced by the following
algebraic equation

n-1 )
=1~ ch (3)
&=

In addition to the above equations, the following equa-
tions are also used

et W
H=h+ %(u’+v’+w’) (5)

n -1 '
M=y 6
(ZM) ®

\vhere Eq. 4 is the equation of state for perfect gases, Eq.
& is the definition of the mixture total enthalpy and Egq. 6
is the definition of the mixture molecular mass.

The following nondimensionalization has been employed
in the present formulation

T =2 . _ WL
LphE= — o P PV W, Ve

u,vwt h* u

U, W = —— h= =T g=—

. VQ c:t)3 “a; (7)

I M K"

= — M= — K= ——

Poo M:” ‘:ﬂ)

T = 1— C C;IT°.° = .8.._

é Ps ‘.";’z Dc;o

The other nondimensional quantities appearing in the
equations are

Rc = M“.’_L. 32 - __‘;”Té
Koo Ho Ve (8)
Moovoo Moo
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In order to close the system of governing equations, the
thermodynanic and transport properties of the constituent
gases and the mixiure are required. This is dircussed in the
next subsection.

Gas Model, Thermodynamic and Transport Froperties

- (a) Gas Model

" The chemical modcl used in the present calculations is
air consisting of molecular oxygen (0.), atomic oxygen (0),
molecular nitrogen (N3), nitric oxide (N O), nitric oxide ion
{NO™). atomic nitrogen (N), and electrons (¢”). These
species are indexed & :. 1 - 6 in the order shown with the

electrons being treated as a special case. The following
reactions are considered between the constituent species

(1) 02 +M, =20 + M,
(2) N2 + My=2N + M,
(3 N2 + N =32N +N
4 NO+Myg=N +0 + M,
{(5) NO+0O =0; +N

(6) N2 +O0 =NO +N

(77 N +0 = NO* +e¢"
where M,, M;, and M3 are catalytic third bodies. The
above model has six species (n = 6), seven reactions (m =

7) and ten reactants (n; = 10) including electrons. The
reaction rates have been obtained from Blottner.'?

{b) Specific Hest and Enthalpy

The enthalpies (J/kg) and specific heats (J/kg-K) of
-the species are obtained {rom the following relations

Chy =T0Cy (T) + Ay
) ] _ l.:( ) ta, (9)

C.o = Cl(T)

Tables of C),, and C3,, as functionsof T (K) are obtained

from Ref. 13. Cubic spline interpolation is used in these

tables. The enthalpy and frozen specific heat of the mixture

are given by the following expressions

b
h* =Y ., ~ (10)
=) ’
.o dnl _-"~ dh, N\~ o
Ot d, . T ?:-"C"-' e

where the subscripts on the diflerentiation indicate that the
composition of the mixture is frozen locally.

(c) Viscosity and Thermal Conductivity

The viscosity (N-5/m?) of species s is calculated from
curve fits developed in Ref. 13. These curve fits are of the
form

u,  Otexpi(Adog, T« B)log, T+ ()] (12)

where A,, B,, and C, are constants. The thermal conduc-

tivity (W /m-K) of species s is computed using Eucken’s

seniiempirical formula :
5

SR e My S
"o - M; (Cy.ll k' + 4)

The viscosity and thermal conductivity of the mixture
are calculated using Wilke's semiempirical mixing rule'®

(13)

. - X, .- - M
- =l ¢ ' - =1 Z )
where S
: = (15)
n “ 1/4 ‘/_
¢.='2;‘X,[1+\/: ] [ 1+—
(16)

Wilke's mixing rule is considered adequate for weakly ion-
ising flows.

(d) Diffusion Coefficient

The binary Lewis numbers for all the species are as-
sumed to be the same constant Le. The kinematic binary
diffusion coefficient D° (m?’s) is then computed from the

k" Le
pCy,
The dimensional thermodynamic and transport properties

are nondimensionalised using Eq. 7 prior to their use in
the code.

Coordinate Transformation
Consider a generalized transformation of the spat:al co-
ordinates as shown below

§= E(znVo z).

where £ is the “streamwise™ coordinate. n is the “normal”
coordinate and ¢ is the “circumferential” coordinate. Using

. definition

D =

(17)

n=n(z,y.z2), ¢= c(i,v.z) (18)

. this transformation. the governing equations can be recasi

into the strong conservation form given by

B+ Py Glo o (BY-F -Gl - W' (19)
where B' B*, G, EV, F¥, G, and W*, are the transformed
inviscid and viscous fluxes and chemical source terms, re-
spectively. Their forms are given in Appendix A.

The equation set, Eq. 19, is simplified by making the
thin-layer approximation, i.e., the viscous and diffusion ef-
fects in the streamwise and meridional directions are as-
sumed to be negligibly small compared to those in the nor-
mal direction. Therefore, the set of equations is simplified
to

2+F;~G:=-’;;§:+W‘ (20)
where f'“ contains derivatives with respect to the n coor-
dinate only.

Streamwise Pressure Gradient

In its present form, Eq. 20, is hyperbolic-elliptic in the
streamwise or marching direction ¢ and consequently the
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space-marching method of solution is ill-posed. The tech-

nique used to overcome this problem was originally pro-

posed by Vigneron et al.'® for ideal gases and later extended

to chemically reacting flows by Prabhu et al.)? Using this
. technique it was found that the governing equations are
. hyperbolic-parabolic if and only if (i) there is no axial fow

- separation in the solution domain, (ii) the local frozen Mach
number is greater than unity in the inviscid part of the flow
field. and (iii) only a fraction w of the streamwise pressure
gradient dp;9¢ is retained in the subsonic part of the flow
field. The magnitude of w depends on the local frosen Mach
number and is determined from the expression

w -]
w = min{l,oMf’ [l + x(M;. - l)] } (21)
“where o (0.8 < o < 0.9) is a factor of safety and
' ﬂl
x = M(v (22)

P’y

M= (s e §lifo%8] e

. \ -

(I . /\)("‘JT (2‘)

" Introducing w into Eq. 20. the streamwise inviscid Rux
can be split as follows

E' - 'E"' + E"' (28)

at

where

& & &p00....,0)7

J‘J'J" (”)

B = (1 - w)p{0,
Using Eq. 26, Eq. 20.can be rewritten as

E + i+ Gi= i;éf': sWe-B] @)

Further, the last term of Eq. 27 is normally neglected

_in the subsonic region. Henre the final set of equmom that
is solved is

EL+P 4G = i‘-;i,”, +We (28)

Nurmnerical Solution of PNS Equations

Finite-difference Algorithm

The numerica) algorithm used to solve the system of
equations, Eq. 28, is an adaptation of the one developed
by Tannehill et al.’” The factored algorithm is implemented
as the following sequence of steps

(a) Normal Sweep: k = 2,3,... . NK

) . 3 .. .
{A.‘,k., - AfA A, Aigc(ci.w)}AQ-.u =
F:) oAl 1 .

3¢ - lka }“F:’.ka)*'

Hon) s om

~Af—— AC[

(b) Circumferential Sweep: j = 1,2,...,NJ

. . 0 ,a
{A."QJ‘ - AfAlc'kJ + AEE';(B!'JJ—

Re
(¢) Update:

vyl Ml k.))}AQ| kg (An kg ~ At‘:.kJ)AQ"‘kd (30)

Qixj+8Qiny (31)

Qisi ;=

where the Jacobian matrices are

9E" . oF . aG*

A='5-Q—. B=56’ C=—a-—Q— @)
. _oF .. awe
M=36, A——a—q—

The subscripts i, k, j are indices associated with the di-
rections £,7n,¢, respectively. NJ and NK are the total
number of grid points in the ¢ and n directions, respec-
tively. A€ is the marching stepsize. The derivatives 3/dn
and 8/3¢ are replaced by conventional three-point central-
difference operators. The algorithm is first-order accurate
in the § direction and second-order accurate in the n and ¢
directions. Freestream fluxes are subtracted from the invis-
¢id fluxes in order to preserve freestream. Fourth-difference
explicit and second-difference implicit smoothing operators
are also added to the factored operators. These have not -
been shown above but their forms can be found in Ref. 12.

The Jacobian matrices A, B, C, M, and A¢ represent
the linearisation of the fluxes and source terms and the
elements of these matrices are given in Appendices B, C,
and D. In the linearization of the viscous flux, the transport
properties are assumed to be locally constant. The caret
above the symbols for the fluxes. Jacobians, and source
terms signifies that the geometry is not linearized along
with the flow variables.

The left hand sides of Eqs. 29 and 30 correspond to
8 block-tridiagonal system of equations. The blocks are
square matrices of order (n + 4). For the six-species air
model considered in the present calculations, the blocks are
square matrices of order 10. The block-tridiagonal solver
for the 10 x 10 blocks is developed along the same lines as
the one by Steger!® for 5 x 5 blocks.

Boundary Conditions

In the present work, only flows without yaw are consid- .
ered. Therefore, at every streamwise station the computa-
tional domain is bounded by (i) the outer boundary which
is taken to be the freesiream, (ii) the inner boundary which
is taken o be the wall. and (iii) the pitch plane of symme-
try. Any discontinuities in: the fowfeld are captured as
a part of the solution. .

At the pitch plane of symmetry reflection boundary con-
ditions are imposed and thus, flow symmetry is maintained.

The following nondimensional boundary conditions are
imposed implicitly at the wall

ORIGINAL paGEg 15
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(a) u =0, v=0, w=0, fu(p)'-'-o
(b} T = T, (isothermal wall) or & (7)) = 0 {adiabatic wall)
(¢) ¢» = ¢, (catalytic wall) or & (c,) = O (noncatalytic

‘wall),s=1,2,...,n-1
The nondimensional boundary conditions at the outer
boundary are

(8) u = cosa, v=0, w=sina
)T =1, p=1 e,=¢_,8=12,...,n~1

Initial Conditions

, The PNS equations require initial conditions in addition
to the boundary conditions. The usual procedure is to use
an initial data surface generated by a full Navier-Stokes
code. For conical or pointed bodies, however, the code
generates it own starting solution. This starting solution is
generated iteratively using a “stepback” procedure.}31?

Decoding

The primitive variables p,u,v.w,H,c;,¢3,...,6a-1 at
station ¢ + 1 are easily obtained from the elements of Q.
. The mass fraction of the nth species is computed using
" Eq. 3 and the static enthalpy of the mixture is computed

.using Eq. 5. For a given species distribution ¢;, ¢z, ...,
" ¢n and-mixture enthalpy A, the temperature is iteratively
_ determined using the following algorithm'?

c..h (T Ky - b

Ci.(T%)

T.k4| = T-k o L ’ (33)

--c: lc'
where k is the index of iteration. The iterations are contin-
ued until

’T- k+1 _

T < (34)

- -where ¢ is a small positive quantity. Once the temperature
[is determined, the thermodynamic and transport proper-
ties are easily computed using the expressions given in the
previous sections.

_ Grid Generation

An algebraic grid generation procedure iz used in the
present calculations. In this procedure. the point on the
body surface and the point on the outer boundary are con-
nected by a straight line and the grid points are distributed
on this line using the following stretching function

Y XN N - Ve

s(n) =1 ﬂ{(ﬂ-fl)'—"“f(ﬁ"l)‘-"} (88)
k-1
(;sm-)n) k=12....NK  (3)

where # (§ > 1) is the stretching parameter and NK is the
total number of points on the grid line. Note that s(0) = 0
and s(1) = 1 and the points are clustered close to the wall
for values of 8 close to 1. Such clustering is necessary for
good resolution of the subsonic viscous layer,

; The coordinates of the grid points are then obtained
tom

z =z, + n18(n)6(£)
v = yu + n28(n)é(¢) (37)

z= 2z, + n3s(n)b(£)
where n;, ns, and n3 are the direction cosines of the unit
vector along the grid line and 4 is the linear distance of the

outer boundary from the body surface.
The metrics are then computed using first-order accu-
rate one-sided differences in the £ direction and second-
order accurate central-differences in the n and ¢ directions.

Resuits

In order to validate the present nonequilibrium PNS
code, two test cases were computed. The coordinate system
employed in the present calculations is shown in Fig. 1.

Test Case ]

The first test case computed was that of hypersonic lam-
inar flow of dissociating air over a 10 degree cone at 0 degree
angle of attack. The altitude chosen was 60.96 km where
the ambient pressure and temperature are 20.35 X'/m? and
252.6 K, respectively. The remaining flow conditions are

Ve = 8100 m/s

T, = 1200 K and noncatalytic wall
¢y, = 0.2629 and ¢3,, = 0.7371
Le=14

The computation was started at = = 1.5 x 10~3 using
the initial solution generated by the “stepback™ procedure.
The solution was then marched to z = 3.5. The march-
ing step size was chosen to be A = f§, where f > 1 and
&, is the maximum thickness of the subsonic layer (in the
present calculations, a value of 2 was assigned to f). The
grid used in the calculations consisted of 67 points in the
normal direction and 21 points in the meridional direction.
The distance of the first point away from the body sur-
face was varied linearly from 3 x 10~ 10 2.3 x 10~ which
determined the appropriate stretching parameter 3. The
grid lines were placed normal to the body and the height
of the outer boundary was kept fixed at 0.5. The edge of
the boundary layer was located approximately using total
enthalpy as the criterion. The edge values of pressure, tem-
perature and velocity at the last station were then used as
the uniform edge conditions for the reacting boundary-layer
(RBL) code of Ref. 13. '

Fig. 1 Coordinate system.
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y . o

The surface pressure coefficient is defined as

0.20

Py = P
C, = 22 (38
v % Pt“v&’ ) - PNS

o RBL (REP. 13)

0.16
-

In Fig. ‘2, the axial variation of the surface pressure coeffi-

_ cient is compared against the edge pressure of the boundary-
layer code. The pressure predicted by the PNS code is ini-
tially higher than the edge pressure of the RBI. code but
eventually asymptotes to the latter value. The higher pres-

‘sure is believed due to the leading edge effect. 1t must
be recalled here that the PNS equations contain a normal
momentum equation. This permits the interaction of the
outer inviscid region with the inner viscous region. At the
altitude considered, this interaction is fairly sirong because
the Reynolds number is low. Consequently, the pressure
is higher. As the solution proceeds downstream, the in-
teraction is reduced and one oblains near boundary-layer
behavior. The increase in pressure leads to some differ- '

';Zc::s:’::;edﬂl‘a::: PNS and boundary-layer results as will 0.0 a' 2 OT 0' s (;.8 10

= . The PNS equations are uniformly valid in the shock velwty’ Ug
layer and as mentioned earlier the solution domain includes

“both the viscous and inviseid regions. In Figs. 3-8 only 20
percent of the solution domain is shown in order to empha-
size the details of the viscous boundary layer. Pitch plane
profiles of tangential velocity and temperature at £ = 3.3
are compared in Figs. 3 and 4. respectively. The agreement
between the two codes is excellent. Mass fraction profiles
of O und NO at z = 3.5 are compared in Figs. 5 and 6,
respectively. The mass fractions have been normalized us-
ing the I¢:on'esponding wall values. The agreement between
the two codes is again excellent. The wall values of the
mass fractions were also found to be in very good agree-
ment. The electron density (number of electrons per m?) |
is obtained from the mass fraction of the NO* ion. This
follows from charge conservation and is defined as

0.12
b

0.08
IS

Distance from the body

0.00 0.04
I

Fig. 8 Tangential velocity profiles at z = 3.5.

0.20

— PNS
o RBL (REP. 13)

0.10

0.12

008

NO*

Distance from the body

000 0.0¢

0.12

——— PNS8 e Y - -
o RBL (REF.13) 0.0 80 100 15.0 20.0 25.0 30.0 35.0
Temperature, T

Fig. 4 Temperature profiles at z = 3.5.

In Figs. 7 and 8, profiles of the mass fraction of NO~
and electron density obtained are compared. Again, the
mass fractions and densities have been normalized using
the corresponding wall values. The curve corresponding to
the PNS calculations passes below the symbols representing
the boundary-layer calculations. This is due to the fact that
the PNS code predicis a higher amount of NO* near the
wall. The onset of chemical reactions occurs earlier in the

p—— T r y Y v PNS code than in the RBL code because of the initial high
00 08 10 185 20 285 3.0 38 ¢.0 pressures. This effect persists downstream and hence the
Distance along body axis, x disparity. The electron densities have been obtained from

N ] the mass fractions of NO* and consequently these densities
Fig. 2 Wall pressure coefficient comparison. will exhibit an identical behavior.

1

0.03

Pressure Coet’f‘icient, C
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0.20

- PN8
© RBL (REPF. 13)

0.16

0.12
4

Distance from the body
- 0.08

0.00 0.04

\J

00 02 04 06 08 10 18
Mass fraction, c/c,

Fig. 5 O mass fraction profiles at z = 3.5.

020

— PN8
o RBL (REP. 13)

1

olle

0.12

1

Distance from the body

0.00 0.04

00 02 04 0.6
Mass fraction, c/c,

e

086 10 18

Fig. 6 NO mass fraction profiles at z = 3.5.

The skin-friction coeflicient and the Stanton number are
defined as:

A

Cp v
J _;P. ‘r“.,‘.

(40)

- q"
St = — e —
PV (Hoe - Hy)
where the wall shear stress (N/m?) is computed from

(41)

. 8‘.-. !
T

v =y an’ i, (42)

0.20

— PNS
o RBL (REP. 13)

0.16

o.‘z

Distance from the body
0.08

0.00 0.0¢4

00 02 04 06 08 10 12
Mass fraction, c/c,
Fig. 7 NO™* mass fraction profiles at z = 3.5.

— PN8S
o RBL (REPF. 13)

0.16
)

008 0.12
A4

Distance from the body

g

° .

8

° L - 1] v

00 02 04 06 08 10 12
Blectron density, Ne/Ne, -

Fig. 8 Electron density profiles at z = 3.5.

and the total heat ransfer (W, m?) is computed from

. . 0T
9 = "C..,;,',',‘.%
w

- o p-i:h-_a.‘_"f
’ '.”o=l '3“’ Eu‘

The first term in Eq. 43 is the conductive heating rate and
the second the diffusive heating rate. The partial deriva-
tive, d/9n", is taken in the direction normal to the surface
of the body. In Figs. 9 and 10, the skin-friction coefficient
and Stanton number are plotted as functions of the distance
along the cone axis. The coefficients predicted by the two
codes are in very good agreement.

)
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Fig. 9 Skin-friction coefficient comparison.
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Fig. 10 Heat transfer coefficient comparison.

The tota} drag coefficient is defined as

Ca= o (49)
VA
where D° (N) is the total drag, i.e., the sum of the pres-
sure drag and the skin-friction drag. The base pressure
* drag has been neglected. In the present study, trapesoidal
integration was used to compute the total drag. The cross-
sectional area at x = 3.5 was chosen as the reference area.
The value of the drag coefficient predicted by the PNS code
was 0.1037 which is in very good agreement (less than 1 per-
cent) with the value of 0.1043 predicted by the RBL code.

The ideal gas and equilibrium air models represent two
physical extremes. In the former case, there are no reac-
tions (infinitely slow reactions) and in the latter case, the
reactions proceed at an infinite rate. In the gas model con-
sidered in the present calculations, the reactions proceed at
finite-rate and hence is between these two extremes. In or-
der to demonstrate this, the PNS code of Ref. 20 was mod-
ified and specialized to two-dimensional and axisymmetric
bodies, New curve fits?! for the therinodynamic proper-
ties of equilibrium air were used in the code. For the ideal
gas calculations the ratio of specific heats was set to 1.4.
The code was then used to compute the flow around the
10 deg. cone for the same freestream conditions. In Fig.
11, the temperature profiles at z = 3.5 obtained for the
three gas models are compared. It is evident from the fig-
ure that the peak temperature for the finite-rate chemistry
case lies between the peaks for the ideal gas and equilib-
rium air models. In the ideal gas case there are no internal
degrees of freedom for the energy to be stored. For the
finite-rate reaction case, some of the energy goes;into excit-
ing the internal degrees of freedom and some into chemical
reactions. This effectively lowers the peak temperature.
For the equilibrium air gas, thermochemical equilibrium is
acheived instantaneously at every point of the flow field and
hence a much lower peak temperature. In Fig. 12, the effect
of the three gas models on the Stanton number is shown.
The Stanton number has been plotted as a function of the
axial distance. The equilibrium Sianton number is slightly
greater than the finite-rate chemistry model which in turn
is greater than the idea) gas Stanton number.

Test Case I[

In order to validate the angle of attack capability of
the code, & simple test case was chosen. In this test case,
hypersonic laminar flow of reacting air over a 10 degree cone

0.20

— NONEQUILIBRIUM AIR -
o IDEAL GAS (1-14)
e EQUILIBRIUM AIR

0.0 8.0 100 18.0 20.0 25.0 30.0 35.0
Temperature, T

Fig. 11 Effect of gas models on temperaturé.
’ Temperature profiles at z = 3.5.
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Fig. 12 Effect of gas models on Stanton number.
Axial variation of Stanton number.

~a12.5,5,7.5 and 10 degrees angle of attack was computed.
The ﬂow conditions for these calculations were the same as
the flow conditions for Test Case 1. The starting solution for
the PNS code for each angle of attack was obtained using
the stepback procedure with the guessed initial solution
" being the freestream. The mesh spacing on the windside
had to be progressively refined for each angle of attack in
order Lo properly resolve the boundary layer. The factor
J that multiplies the maximum subsonic layer thickness
was decreased from 1.8 (2.5 deg case) to 1.25 (10 deg case)
to maintain reasonable marching stepsizes. In each case
the grid lines were placed orthogonal to the body. The
starting solution was marched up to an axial location of z
. = 2.5. Since there is a paucity of experimental data in such

* severe hypersonic regimes, the results of these calculations

are simply compared against the results of the zero degree
calculations.
_ The computed results for this test case are too numer-
ous Lo show in their entirety. Instead. only a representative
sampling of the results is presented. In order to provide
greater details of the flow field. only 50 percent of the solu-
tion domain is shown in the figures that follow. The effect
of angle of attack on the temperature is depicted in Figs.
13a-13d. The iemperature profiles in the pitch plane of
syminetry are shown in these figures. The following obser-
vations can be made from these figures: (i) the boundary
layer thickens considerably on the leeside while thinning on
the windside. (ii} the edge temperatures increase rapidly
on the windside while decreasing gradually on the leeside,
and (iii) the peak temperatures decrease on the leeside but
stay very nearly the same on the windside. The shock on
.the lceside weakens and begins to smear. At the highest
angle of the attack the shoek cannot be discerned from the
figure. This is due 10 8 combination of central- -differencing
and coarseness of the grid.

In Figs. 14a-14d, the effect of angle of attack on the
mass fraction atomic oxygen in the pitch piane is shown.
The amount of atomic oxygen at the wail decreases with
increasing angle of attack. However, due to diffusional ef-
fects atomic oxygen is present over a larger distance from
the body. On the windside, the amount of atomic oxygen
increases at the wall but is present over a smaller distance.

For different angles of attack, the axial variation of the
surface pressure and Stanton number on the windward and
leeward meridians is shown in Figs. 15a-15d and Figs. 16a-
164, respectively. The increase in surface pressure and heat
transfer on the windside and the decrease on the leeside
with increasing angle of attack is evident from these figures.

The computations were performed on either the CRAY-
XMP/48 or the CRAY-2 (NAS) computers at NASA Ames
Research Center. Each test case involved 10 x 10 block ma-
trices and required 4.3 milliseconds per grid point per step
on the CRAY-XMP computer. The first test case required
2000 steps and the second test case required 1800 steps for
the lowest angle of attack calculation to 600 steps for the -
highest angle of attack calculation.

Concluding Remarks

A new PNS code was developed to compute hypersonic
laminar flow of chemically reacting air consisting of six
species and electrons. The species were treated as calori-
cally imperfect but thermally perfect gases. A noniterative,
implicit, approximately-factored, space-marching method
was used to solve the coupled set of gas dvnamic and species
conservation equations. In order to validate the code, two
test cases were computed. The first test case was that of
hypersonic flow over a 10 deg. cone at 0 deg. angle of at-
tack. The results of this calculation were compared against
those of a reacting boundary-layer code. The agreement
was found to be very good. These results were further
shown to lie between two extremes (ideal gas and equilib-
rium air). The second test computed was that of hypersonic
laminar flow of reacting air over a 10 deg. cone at several
angles of attack. Due to the unavailability of experimental
data for this case, the numerical resuits were simply com-
pared against the resulis of the O deg. calculation. These
calculations were performed not only to demonstrate the
three-dimensional capabilities of the code but also to pro-
vide “benchmark” calculations for future code developers.
Work is currently being done in the area of shock fitting.
A simple turbulence model (Cebeci-Smith) has also been
incorporated into the present code and this option remains
to be validated. The present study indicates that there is
s need for a comprehensive experimental database for val-
idation of nonequilibrium codes. R
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Appendix A: Fluxes and Source Terms
!a! Fluxes
The (n + 4)-component inviscid flux vectors E', F¢, and G' are
V ] T
E' = {pu,pu? + p, puv, puw, pull, pucy, puecy, .. ., puca1 }
' = (v, puv,pv® + p, pyw, pH, puey, pves, ., puca- 1} (A1)

; T
G' = {pu,puw, pvw, pw? + p,pwH, pwe, , pwecy, . .., pwen-, }
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and the (n + 4)-component viscous flux vectors E¥, F®, and G are

E'= {0,1”.7",1",:47" + vr®? + wr* — ¢, mi,mj,....m}_, }T
FV = (0,77, 1V ¢¥% urV® + orW 4 wr¥ ~ g¥, m{, mi,..., m:_,}r (A2)
GY = {0,771, 1%, ur®® + o + wr™ — ", mi,m3,....m5_,}”

The expressions for the components of the shear stress tensor, the heat flux vector and the diffusion mass flux
vector are given below

¢ = ~BxT, - Y_|A, - ham}

2
r2t = Su(Zu, — vy - w,)

= g#('u; + 20y - w-) ¢' = -PaTy - ;lho = hqa|m}

= ;‘l(_u: - vy + 2‘”.) q‘ = —ﬂ’“Tg - Zlha - hllm: : (As)
f:: = #("y + "t) ‘ m) = BspD(ca)e
r = #(ua + ws) mY = B3pD(cs)y
™ = u(v, +w,) mg = BypD(c,)s

The chemical source vector W€ is
WE = {0,0,0,0,0, 6,83, Gpree s tnos } (44)

- where w, is the mass production or depletion rate of species s.
{b) Chemical Source Terms

. Consider a multicomponent system of n species undergoing m simultaneous elementary reactions. Let n;
~ be the total number of reactants. These reactions can be represented symbolically as

n e
2"‘.’4"-22”",]4! k=12,....m
iI=) i}

where v ;,1{, are the stoichiometric coefficients and A, is the chemical symbol of the ith species. Using the
law of mass action, the nondimensional mass production rate of species s is

i = W30, - ) {Kra@ [T = Koatr) [} (a8)
k=]’ rm}l rm}

The nondimensional mole-mass ratios of the reactants are defined as
A er/ M, r=1,2,...,n
Y = v (Ae)
Toai Zr-n)¥e r=n+1n+3,.. . .0

The reaction rates are functions of temperature and are expressed in the modified Arrhenius form, where
the nondimensional forward and backward rates are written as

cl
K1a(T) = exp(log,Cis + —2* + Canlog.T) (A7)
D;
Kia(T) = exp(log,Dj s + =p* + Daalog.T) (48)
where ooy
Cu=yz(fR)  wmrSicn. -3 (49)
oo oo oo
’ L ( o Pt -3 o Dsa ’ Dax
Dy, = p‘:‘('M':‘) 10338 07 Dy, 2k = -T— (A10)
18
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oy = iy"" By = iv"" . (A1)

ros} (£ 2]

and Cyx, Ca.k, Caxy Dipy Daa, and Dy, are constants for & particular reaction k.
(¢) Transformed Fluxes

" Under the coordinate transformation, Eq. 18, the transformed fluxes and source vectors are given by

= (s (r (e 2= G+ (Bes e
P=(IE s (TP e (et B =GR+ (P04 ()G

(A12)
¢ =(EE s+ (@p e €= (s (e (Ge
c . 1 ° a(€0'l!‘)
| we= (5w 7= Sens)
where J is the Jacobian of the coordinate transformation.
The (n + 4)component transformed viscous flux vector, f'. for the thin-layer approximation is
0
( Guy + Levg + Gywy \
Leuy + Lvg + Lowy
\ luz w + lovy -o;l;w ; w?)
v € - G)(u?)y + 3(ls - &)(v3)g + $(&s — &) (w?)y+
P =y (...,)%.,(ﬁul c.(Jm): +"¢.(3w)’. + c’,H.. * (- ;1)):'."'. 'h.‘l(c.). (413)
A
(ACYS
\ talen-1)a J
‘where the coeflicients £1,4s,... .t are '
R R Tt IR (LT
b=a[Zr i8] - —[(4)( )]
s o (A14)
b= a[ BB S| o= [
4= g[('l;)(—})] to = 8200 (20" + (310 + (%]
* " (d) Geometrical Parameters
The Jacobian and the metrics of the cootdilm.e transformation are
J = '[’t(ﬂn‘; ~ Yo2a) + Zo(yes; — vese) + 2c(yesn - ﬂn'()]-‘ (A18)
‘J' (Va2 - ye2n) 'J! (zg3n = Zo%¢) %5 = (Zq¥g ~ Zc¥n)
= were-ver) W (zen -z T = (s - wei) (416)
% - (Ye2n — Un2¢) 5 = (za8¢ — Z¢2n) %‘- = (2¢yn — Zave)

Appendix B: Inviscid Jacobians

The inviscid Jacobian is an (n + 4) x (n + 4) matrix. The expressions for the elements of this matrix are
given below. .

Define the following quantities

MC, T(1/ M, ~ 1/ Ma) = (hy = hy) ifs<n; )
& = { (Bl)

MC;, T(1/Ma) = Ay if o= n.
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(a) Global Continuity

(b) §&-Momentum

{c) n-Momentum

(d) ¢-Momentum

ge[ Energy

. Az,. =8,u- wx$.w

. 8 8, S,
sz=.—}’ sv"'f. §,=7'

U =5u+8v+ 8w

Al.: sss
Am = S,
Al.‘ = 9- :

. v:
Ay = ~ul + ngg(‘z"' + ‘l) iz.g = wxs.l¢1

Ass=(1-wx)§u+0 Aszy =wxsets
Azs = S,u - wxS,v

" Aspse = wxSstn-
A:.a=wxs'g In+d s - 1

]
Asy = -0+ “’st(zz" + #a) -‘a.e = ngl‘l

A,,z =8, - uxS',,u A;,y = wxs',é:
Aa,a =(1~ ux)S',,u +0 :
A’s.‘ = g.v - st'w

. . A;, = st Pa-
_A," - wxs' n4d -1

. - y?

A= -0+ 0xSi(F +00) R0 =uwxbeds
A.,; = §:W - uxs’.u ‘4.7 = WXS'-‘z
A4,; = S,w - uxg,v
AM =(1 - wx)8w+ U

. . Adnsa = wxSebn-
Aos = wx$, 4,n+4 XOsPn-1

15', = -0H
Am = S'.h'
Ag,g = S,H
Al,‘ = gs” -
Aos=0

(f) Species Continuity (s = 1,2,...,n — 1)

Aléo.l = ~Oe,
;\uo.a = 8scs
AH»..! = gﬂ"
Au-.o = Suco
AB-M,H.J = 0
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Notes
(1) The elements not listed above are identically sero.
(2) The elements of the inviscid Jacobian I /3Q are obtained by setting

s: = 63‘ s' = E' and s. = f..
(3) The elements of the inviscid Jacobian 3F¢/3Q are obtained by setting

S; =0, Sy=ny, Sy =0, andw=1. '
(4) The elements of the inviscid Jacobian dG*,/3Q are obtained by setting

Se=6a Sy = Se=G,andw = 1.

Appendix C: Viscous Jacobian

The viscous Jacobian is also an (n + 4) x (n + 4) matrix. The expressions for the elements of this matrix

are given below. The following notation is used .
: v, =Jl, 8=1.2,...,8 (c1)

where {,(3,...,(s are defined in Eq. A14.

!a! é-Momentum

My, = - l\(’l(g)u + *4(3)-: + W(%)o]

)

Mz = ¥y(- )y
N (c2)
My = v‘(‘p)n
. My, - %(5)»
(_Ig)_ﬂ:._\l_lg_mentum
M, = - ['lu(g)q + "2(;)» + %(%’)n]
M;; = 4'4(;’).
. 1 (C3)
M3 = V’:(;)n
My = #’c(%)q
~ (¢) s-Momentum
My, = - l%(;)- +¢o(5)n + %(';")lo]
Mz = 6ol 3)s
. 1 (Cq)
Mgs = !l'o(;)»
May = va(3)s
(d) Energy
M, = - [(wy - 1/’1)(1:;)., + (v - ¢1)('v;’)n +(¥s - 4’1)(1::)0 + “‘4(:’;)»“'
208("5)a ~ 20621y + Yr(2)n + (Y0 = $1)(hs = Ba)(L e
(Va - ¥r)lhy - hn)(s;z)n + .ot (Vs - Or){(An-y - "u)(c.;l)w]
Moz = (s = ¥a)(2)n + el )n + s[5 )a |
Ay = ool o v
Mgz = \bd(p)n + (¥2 !ln)(p)u + vl p )o (cs)

Mg = 'I’s(:‘-;)n + ¢G(£)n + (w3~ V’v)(!”')n
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ﬂu=w¢»

Mus = (Y0 - $r)(b1 = ha)()n

ﬁh.nu = (s - %)(5-4 - h-)(%)q

(¢) Species Continuity (s =1,2,...,n~1)

ﬁ‘*.'] = —w‘(“i)' 8= ‘,2.....n- 1

. 1 (ce)
Meropes = %(;)n 4=12,...,n-1 .
Notes |
(1) The elements not listed above are identically sero.
@O =20).

Appendix D: Source Term Jacobian

The chemical source vector, W¢, is a function of the mixture temperature, density, and mass concentrations.
This is mathematically expressed as

we = '}W‘(T.nuna.---vﬂ-') (o)

The Jacobian of the source term is

aW: _18W¢

5q ~J75q

Using Eq. D1 and the chain rule, the partial derivative in Eq. D2 can be written as
oW aWea8T 9wear

%G = s 5Q " o 5q (03)

A* = (D2)

where I' is the vector containing the mass concentrations of the reactants. The derivative 9W¢/9T is easily
evaluated since the reaction rate constants are the only quantities that depend explicitly on the temperature.
* The derivative 8T/8Q is a } x (n + 4) row vecior whose elements are

aT 1 (v?
56 = -p—c—;{ '2“ - hpy v, - w"v-(hl = hﬁ)"(hz = ’..)"“'-(h""l - h.)} (04)

Evaluation of the second term of Eq. D3 is little more involved. The derivative 3W¢/8T is obtained by
- differentiating Eq. AS with respect to the elements of " and the derivative 8T'/8Q is easily evaluated using
- Eq. AS.
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