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Introduction 

A primary requirement of aircraft structures is that they withstand all the static and dynamic 
loads the structure is expected to encounter during its life. Such loads include landing and taxi 
loads, maneuver loads, and gust loads. There are several methods used by airframe manufacturers 
to compute gust loads to satisfy certification requirements and include both stochastic methods and 
deterministic methods. The U.S. Federal Aviation Administration (FAA) recently asked the 
National Aeronautics and Space Administration (NASA) for assistance in evaluating the Statistical 
Discrete Gust (SDG) Method (ref. 1) as a candidate gust-loads analysis method for complying with 
FAA certification requirements. The SDG Method is a time-domain approach and yields time- 
correlated gust loads by employing a computationally expensive search procedure. 

During the course of the NASA evaluation of the SDG Method, the authors recognized that 
Matched Filter Theory (MFT) (ref. 2) could be applied to the gust problem to compute time- 
correlated gust loads. Computing time-correlated gust loads in this manner has the twin advantages 
of being computationally fast and of solving for the answers directly. Historically, Matched Filter 
Theory was first utilized in the optimal detection of returning radar signals. Papoulis (ref. 3) 
showed that Matched Filter Theory can be used to obtain maximized responses in fields other than 
signal detection. The first purpose of this paper is to demonstrate that Matched Filter Theory is 
also applicable to the general fields of structural dynamics and aeroelasticity and is specifically 
applicable to the computation of time-correlated gust loads. 

During the course of the MFT investigation the authors also recognized that time-correlated 
gust loads, theoretically identical to those computed by MFT, could also be obtained using 
Random Process Theory (RPT) (ref. 4) with the same twin advantages. To the knowledge of the 
authors, Random Process Theory has, until now, not been applied in the computation of time- 
correlated gust loads. The second purpose of this paper is to demonstrate this applicability. 

Both the MFT and the RPT ways of computing time-correlated gust loads involve novel 
applications of the theories and unconventional interpretations of the intermediate and final results. 
This paper outlines the mathematical developments, recognizes a duality between MFT and RPT, 
and presents example calculations using both MFT and RPT for computing time-correlated gust 
loads. 

This paper was originally presented orally at the TTCP HAG-6 Workshop on Active 
Controls and Structural Integrity at the Royal Aerospace Establishment, Farnborough, England, 
September 28 - 29, 1988. 



Time-Correlated Loads 

This paper deals specifically with time-correlated gust loads, and this figure illustrates two 
types of such loads. Time-correlated loads are time histories of two or more different load 
responses to the same disturbance quantity. As illustrated in the figure, the disturbance quantity is 
the vertical component of one-dimensional atmospheric turbulence and the time-correlated loads 
(the output quantities) are the resulting bending moments and torsion moments at several locations 
on the i~irplane wing. 

The first type of time-correlated load is illustrated on the right wing: loads (two bending 
moments in this illustration) at two different locations on the airplane. The second type is 
illustrated on the left wing: two different loads (bending moment and torsion moment in this 
illustration) at the same location on the airplane. 

As indicated in the time histories in the figure, time correlation provides knowledge of the 
value (magnitude and sign) of one load when another is maximum (positive or negative), and vice 
versa. Such information may be used directly during analyses and testing of aircraft structures 
(ref. 5). 
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Some Features of the Statistical Discrete Gust Method 

Some background information on the features of the Statistical Discrete Gust Method 
(ref. 1) is offered so that the contributions of the present paper may be put in context. 

The SDG Method determines the response time histories of "worst case" gust loads (such 
as shcar forces, bending moments, and torsion moments) and the corresponding "critical gust 
profiles" which produce them. These loads are time correlated and this feature is a major 
advantage of the SDG Method over some other gust loads analysis methods. 

Another advantage of the SDG Method is its applicability to nonlinear, as well as to linear, 
systems. This feature allows one to obtain time-correlated gust loads for a nonlinear system. As 
indicated at the bottom of the figure, the SDG Method employs a search procedure to obtain its 
answers. For a linear system, by taking advantage of superposition, the search procedure may be 
simplified and reduced to a one-dimensional search. For a nonlinear system, however, this is not 
the case and the resulting search procedure remains multi-dimensional and can become exhaustive 
(ref. 6). 
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Scope - Problem Definition - Proposed Solution 

With the information from figure 2 in mind, this figure states the conditions under which 
and the means by which this paper makes a technical contribution to the area of time-correlated 
gust-load calculations. 

Whereas the SDG Method is capable of performing both linear and nonlinear analyses, the 
present methods are restricted to linear systems only. 

Whereas the SDG Method obtained time-correlated gust loads and the corresponding 
critical gust profiles using a search procedure, the goal in the present paper is to obtain the same 
quantities directly and to achieve a significant reduction in computation time. 

Novel applications of Matched Filter Theory and Random Process Theory and 
unconventional interpretations of the intermediate and final results from these theories will be used 
to achieve the goal. 
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Original and New Applications of Matched Filter Theory 

The objective of Matched Filter Theory, as originally developed, is the design of an 
electronic filter such that its response to a known input signal is maximum (ref. 7). It found early 
application to radar considering the "filter" to be a correlation detector that, in response to a known 
input signal, produces an output signal for further processing (ref. 2). In this case the correlation 
detector design is the optimum design for maximizing the output signal-to-noise ratio. 

In the present application the "filter" is considered to be a system whose dynamics are 
known. Specifically, the system is characterized by the combination, in series, of the dynamics of 
atmospheric turbulence and the dynamics of aircraft load response. The simple result of Matched 
Filter Theory allows direct determination of the input signal, or excitation, that produces a 
maximum response of the system. The result, as will be shown later, is the maximum load 
response and the critical gust profile that produces the response. 
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"Matched" Excitation Waveform 

The theoretical result of Matched Filter Theory is that the excitation that produces the 
maximum response is proportional to the system's unit impulse response, lagged and reversed in 
time (refs. 3 and 7). The excitation is said to be "matched" to the particular output in question. 
This figure outlines the analytical steps necessary to obtain the matched excitation waveform. 

The constant of proportionality, K, and the lag time, b, (shown in the figure) are arbitrary 
in principle and may be selected for convenience or by other requirements of the problem at hand. 
In practice, a unit impulse is applied to the system (as shown in the figure) and the lag time is 
chosen at a point at which the impulse response has attenuated to a small fraction of the maximum 
response. This is so that when that waveform is reversed its amplitude builds up smoothly from 
zero (or near zero). 

Taking the Fourier transform of the impulse response gives the frequency response 
function, HF, of the system in terms of the Fourier transform, X, of the excitation waveform, x(t), 
the constant of proportionality, K, and the lag time, to. The root-mean-square (r.m.s.), oh, of the 
impulse response is evaluated by integrating HF*HF (where * denotes the complex conjugate) 
with respect to frequency from minus to plus infinity. If the constant of proportionality is chosen 
as the r.m.s. of the impulse response, then the excitation, x(t), has an r.m.s. of unity. Alternate 
normalizations have been suggested that bring statistical properties of atmospheric turbulence into 
the problem solution (ref. 8). In the present application the normalization is a convenient device 
for comparing the effects of different excitations. Thus, the end result is that the excitation 
waveform appears as a mirror image of the impulse response normalized by oh. 
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Response to "Matched" Excitation Waveform 

If the excitation x(t), described in figure 5, is now applied to the system just as the unit 
impulse was, a response y(t) results. The Fourier transform, Y, of the response may be written 
directly as the product of the system frequency response function, HF, and the transform, X, of 
the excitation. As derived in figure 5, HF may be written in terms of X. 

Taking the inverse transform it is noted that the product X*X is a positive, even function of 
frequency allowing the exponential to be written as a cosine function without changing the result of 
the integration. Thus, the total integral is maximum when t = to. So it can be seen that the 
maximum value of the response y(t) occurs at t = to and is equal to oh times the r.m.s. of the 
excitation waveform, which has been normalized to be unity (figure 5). Thus the maximum 
response of the system produced by the matched excitation waveform is equal to the r.m.s. of the 
impulse response. Of course, if the normalized excitation waveform were multiplied by a scalar, 
then the response would be multiplied by the same scalar. 
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Response to Arbitrary Waveform 

If any other arbitrary waveform, x'(t), subject to the same normalizing constraint (that its 
r.m.s. be unity) were applied to the system, some response, y'(t), results. This response can be 
found, as in figure 6, by writing the transform of the response as the product of the frequency 
response function, HF, and the transform of the excitation, x'(t), and taking the inverse transform. 
Applying Schwarz's Inequality, it is seen that y'(t) can never exceed the maximum value of y(t), 
which is the response resulting from applying the matched waveform. Thus, the response of an 
output to any waveform (appropriately normalized) will never exceed the maximum response of 
that output to its own matched waveform. 
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Matched Filter Theory Applied to 
Time-Correlated Gust Loads 

This figure contains a signal flow diagram of the steps necessary to generate a maximum 
dynamic response at some point in the aircraft structure. It expands on the information presented 
in figures 5 and 6. The signal flow diagram is presented as two paths; the top path illustrates the 
generation of the system impulse response; the bottom path illustrates the generation of the 
maximum response of the system. 

In the top path the gust spectrum is excited by an impulse of unit strength to generate an 
intermediate gust impulse response which, in turn, is  the excitation to the aircraft. 
Computationally, the time history of the response is carried out until the magnitude of the response 
dies out to a small fraction of the largest amplitude of the response. For the example shown in the 
figure, this occurs at about 10 seconds and corresponds to the lag time to, referred to in figures 5, 
6, and 7. The response is normalized as described in connection with figure 5. 

The bottom path illustrates how the maximum response of the system and the critical gust 
profile are obtained. For this part of the analysis, it is usually necessary to carry out the time 
history of the response to time 2to. The response builds to a maximum at time to at which point 
the excitation ends. The response then decays to near zero. The maximum response, Ymax, is 
equal to the r.m.s. of the impulse response, as was shown in figure 6. It should be mentioned 
that both the critical gust profile and maximum response of the system are unique to only one load 
output and for other maximum load responses a separate but similar analysis needs to be 
performed. 

An important detail illustrated in this figure is the introduction of a pre-filter. The effect of 
the pre-filter is to provide dynamics of the input disturbance which itself contributes to the shape 
and magnitude of "matched" excitation waveform. In this example the pre-filter is an s-plane 
approximation of the von K m a n  spectrum, but in other applications it could be landing or taxiing 
disturbance dynamics for obtaining landing or taxi loads or possibly "pilot" dynamics for 
obtaining maneuver loads. 
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Configuration Used For MFT and RPT Applications 

In the application of MFT and RPT existing structural and aerodynamic models of the 
NASA DAST ARW-2 were used. This configuration, a Firebee I1 target drone fitted with an 
Aeroelastic Research Wing (ARW), was especially suited for the study since it has structural 
flexibility, a stable and dominant short period, and several load outputs. The load outputs are 
comprised of shear forces, torsion moments, and bending moments at several points along the 
span of the wing (ref. 9). 

The figure presents relevant information about the vehicle itself and about the analytical 
representation. The structural part of the model was derived from a finite element code and the 
unsteady aerodynamics (at a Mach number of 0.7) from a doublet lattice code. Two rigid-body 
modes and eight symmetric flexible modes were retained for this study. The final dynamics 
equations (the quadruple equations), constructed with a mamx analysis code, consisted of 97 first 
order equations, 9 output equations and 1 input. These final equations contained the dynamics of 
the structure, unsteady aerodynamics, loads, and the von Karman spectrum. 
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Time-Correlated Gust Loads Using Matched Filter Theory 

The two adjacent figures present time-correlated loads at the wing root of the DAST ARW-2 
vehicle. Both figures contain time histories of bending moment and torsion moment at the same 
point in the structure. The top figure contains the bending moment and the corresponding torsion 
moment responses resulting from the excitation matched to root bending moment. The bottom 
figure contains the torsion moment and the corresponding bending moment responses resulting 
from the excitation matched to root torsion moment. In each figure the solid arrow indicates the 
response of the output to which the excitation is matched while the shaded arrow indicates the 
other response to the same excitation. 

The critical gust profdes for both torsion moment and bending moment are generally of the 
same shape and magnitude but are of opposite sign. A careful examination of the plots reveals that 
the maximum bending moment in figure 10a is greater in magnitude than in figure lob. Similarly, 
the maximum torsion moment in figure lob is greater that in figure 10a. These results are in 
accord with theory which states that the excitation that is matched to a particular output is 
guaranteed to produce the maximum response of that output. 
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Overlap of Matched Filter Theory and 
Random Process Theory 

It has been observed in the results obtained thus far with Matched Filter Theory that the 
time responses to matched and nonmatched excitation waveforms resemble the auto- and cross- 
correlation functions encountered in Random Process Theory (ref. 10). It can be shown that this is 
indeed the case by writing again the response, y(t), resulting from the matched excitation, x(t). As 
indicated in the figure, if the transform, X, of the excitation is written in terms of HF and 
substituted, the product HFHF* appears in the integral. This product is the power spectral density 
(PSD) function of the impulse response for the output y. The inverse transform is R(t - to), the 
auto-correlation function (with time argument t - to) for y, and the time response, y(t) is equal to 
R(t - to) divided by the r.m.s. of the impulse response. 

This figure presents only the derivation showing that the response of y to the excitation 
matched to y is the auto-correlation function for y. For example, the time response of bending 
moment to the excitation waveform matched to bending moment would be the auto-correlation 
function for bending moment divided by the r.m.s. of the bending moment impulse response. 

If the response of y to an excitation matched to some other output, say z, were being 
considered, then it would be the cross-correlation function between y and z divided by the r.m.s. 
of the z impulse response. Thus, the response of bending moment to the excitation matched to 
torsion moment would be the cross-correlation function between bending and torsion moments 
divided by the r.m.s. of the torsion moment impulse response. The mathematical derivation for 
this result is not included here but proceeds in a fashion similar to that presented here. 
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Random Process Theory Applied to 
Time-Correlated Gust Loads 

This figure contains a signal flow diagram with two paths and is analogous to the diagram 
in figure 8. This figure illustrates the steps necessary to generate time-correlated gust loads using 
Random Process Theory. Whereas the signals in figure 8 were all in the time domain, all but one 
of the signals in this figure are in the frequency domain. 

From the top path, the "Known Dynamics" box is the same as that in figure 8. The input 
to this box is Gaussian white noise, and the output is an auto-power spectral density function of 
some aircraft response with an intermediate output being the von Karman power spectral density 
function of atmospheric turbulence. Not shown in the figure, but also generated at the same time, 
are cross-power spectral density functions of other aircraft responses. 

Time-correlated gust loads are obtained in the bottom path of the figure by taking the 
inverse Fourier transforms of the auto- and cross-power spectral density functions obtained in the 
top path. It should be mentioned that to obtain precise representations of the time correlated loads 
it  was necessary to deal numerically with two-sided spectra (that is, with both the positive and 
negative frequency components present). In this figure the time axis, z, of the auto-correlation 
function is equivalent to the time argument, t - to, in figure 11. 



Random Process Theory 
Applied to 

Time-Correlated Gust Loads 

Gaussian White Noise 

von Karman 
Gust Spectrum 

I Gust Response W 
Power Spectral Density w 

Function I Inverse I 
Fourier + 

Transform 

Gust Response 
Power Spectral Density 

b 

Auto-Correlation A Function 

Figure 12 



Comparison of Time-Correlated Gust Loads 
Using Matched Filter and Random Process Theories 

This figure shows a comparison of wing-root bending-moment time responses and wing- 
root torsion-moment time responses calculated with the Matched Filter Theory and Random 
Process Theory approaches. The Matched Filter Theory results are the same as those shown in 
figure 10a. For purposes of comparison, the s-plane approximation of the von Karman power 
spectral density function is used for both the matched filter and random process calculations. 
Except for some slight differences in the peaks and troughs, depicted in the insets, results from the 
two approaches are practically indistinguishable. This is in accord with the theory presented in 
figure 1 1. 
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Contributions 

The technical contributions made by this paper are listed in this figure. 

This paper has presented a new use of Matched Filter Theory and a novel interpretation of 
intermediate and final results. Compared to the original application of the theory (to radar), the 
"knowns" and "unknowns" have been reversed. In addition, the " known dynamics" have been 
expanded to include not only the dynamics of aircraft loads but also, through the introduction of a 
pre-filter, the dynamics of atmospheric turbulence. An intermediate result from the application of 
Matched Filter Theory to time-correlated gust loads is the critical gust profile. 

The new use of Random Process Theory is another contribution of this paper. It has been 
shown that the time-conelated gust loads predicted by Matched Filter Theory are theoretically 
identical to the auto- and cross-correlation functions predicted by Random Process Theory and that 
there is thus a duality between the two approaches. That is, these correlation functions are now 
interpreted as time histories. Time-correlated gust loads may be obtained by taking the inverse 
Fourier transform of the auto- and cross-power spectral density functions obtained in a 
conventional power spectral density analysis. 
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Concluding Remarks 

This paper has described and illustrated two approaches for computing time-correlated gust 
loads. The first is based on Matched Filter Theory and is a time-domain approach; the second is 
based on Random Process Theory and is a frequency-domain approach. These approaches involve 
new applications of the theories and novel interpretations of the intermediate and final results. 

The two approaches yield theoretically identical results and the choice of which to use 
depends on the intended application. Both approaches are computationally fast and are general 
enough to be applied a variety of dynamic-response problems, such as taxi and landing loads, 
maneuver loads, and gust loads. 

As indicated by the bottom bullet, applying Matched Filter Theory to the calculation of 
time-correlated gust loads has the advantage of yielding, as an intermediate result, the critical gust 
profile. An additional advantage of Matched Filter Theory over Random Process Theory is that it 
may be applied to problems in which no input power spectral density functions are available. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665-5225 
August 19,1988 
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