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Introduction

In any tribo-system, where touching surfaces are in relative s l i d i n g , rotat-

ing, rolling or oscillating motion, the primary interactions leading to dete-

rioration and consequently to failure occur at the contacts. What happens

when two contacting surfaces are in relative motion depends on the surface

tribo-contacts, the lubricant and the environment. The tribological require-

ments for improved performance, life and r e l i a b i l i t y have increased dramati-

cally in l i n e with the higher demands placed on the high-performance precision

space mechanisms, gas turbines, rockets and advanced concept engines of the

aerospace and aeropropulsion fields. The critical space applications have to

operate under severe environmental conditions such as: variable temperature,

radiation exposure, and a variety of atmospheres from the ultra-high vacuum

of space to highly oxidizing or corrosive environments at high temperatures.

Since conventional l i q u i d lubricants (oils and greases) in many of these
applications decompose and evaporate, the use of dry or solid lubricants would

be a logical choice. Unfortunately, there is no universal solid lubricant

available which can perform under all of these adverse conditions.

It is critical to select the most suitable lubricant and utilize the most pro-

mising deposition modification techniques, since tribological behavior is

greatly affected by coating adherence, coherence and morphology. To simplify

tribo-material selection, it is convenient to d i v i d e the solid lubricants into

two broad categories based on their operational environment: (1) Lubricants

for spacecraft mechanisms used exclusively in ultra high vacuum with tempera-

ture variations from +150 to -120 °C; and, (2) Lubricants for space power sys-

tems and aircraft propulsion systems where high speed mechanical components

(e.g., bearings) operate under high temperature, corrosive conditions. In

addition to selecting the appropriate solid lubricant, it is equally important

to select the most promising deposition technique-. For tribological performance,
the ion assisted deposition/modification techniques offer the greatest potential

to custom tailor adherent, lubricating coatings with optimized chemical-structural

surface properties independent of the bulk properties. The advantages of the
ion assisted deposition processes lie in their high f l e x i b i l i t y to tailor
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surface and f i l m properties in ways not available with other deposition tech-

niques. The purpose of this paper is to critically review the present prac-

tices and new approaches initiated to deposit/modify tribological surfaces by

the various ion assisted deposition processes, in terms of structure-property-

performance interrelationships. These interrelationships which are determined

by structural and chemical characterization and frictional and wear behavior,

dictate the performance or failure of a tribosystem.

Ion Assisted Surface Methodologies
The ion assisted surface treatments for tribological control can be classified

in three categories:

1. Ion Assisted Deposition

Physical Vapor Deposition (PVD): sputtering and ion plating

Chemical Vapor Deposition (CVD): plasma enhanced deposition

2. Ion Beam Techniques

Ion implantation
Ion beam mixing

Ion beam enhanced deposition

3. Plasma Thermochemical Processes
Ion nitriding

Ion carburizing

Ion boriding

Ion oxidation

Depending on deposition energies and surface interactions, the above process

can be classified as processes that produce distinct overlay coatings (ion

assisted deposition) and processes forming no discrete coating but which modify

the surface of the bulk (ion implantation, plasma thermochemical processes).

In this paper, the structure-property-performance interrelationships affect-

ing tribological performance of surfaces deposited by the ion assisted deposi-

tion techniques or modified by the ion beam techniques w i l l be addressed.

Surface modifications by the plasma thermochemical processes w i l l not be dis-
cussed in this paper.

Principles of Solid F i l m Lubrication
Nhen two touching surfaces are in relative motion, or tribo-contact, what hap-

pens depends on the characteristics of the surfaces, the environmental condi-

tions, and the lubricant. Friction originates in the deformation and shearing



or surface asperities [1,2]. Adhesive wear occurs when both the surface and

subsurface interact. According to the adhesion theory of friction the fric-

tional force, F, is determined by the shear strength, s, and the real area of

contact, A, according to F = As, as shown in Figure 1. For friction to be

low, either A and s or both must be small. This means that the most suit-

able materials must have high hardness and low shear strength. However, this

generally is not achievable with monolithic materials.

HARD METAL
F = AS

SOFT METAL

S IS SMALL
BUT

A IS LARGE

(3)

HARD METAL
F = AS

HARD METAL

A IS SMALL
BUT

S IS LARGE

(b)

HARD METAL
F = As BOTH A AND S

ARE SMALL

(C)

THIN SOFT
FILM

FIGURE 1. - SURFACE BEHAVIOR OF TRIBO-
CONTACTS TO METAL HARDNESS.

For instance, when a hard metal slides tangentially on a soft metal, the fric-

tion force is a function of the real area which is large due to deformation

as shown in Figure l(a). Where two hard surfaces are in contact (e.g., SiC

against SiC) as shown in Figure Kb). The friction force is large because the

shear strength is large due to the high elastic moduli of the two materials.

However, by using thin layers of soft, low shear strength solid materials on

hard, very smooth surfaces, friction and usually wear as w e l l , can be reduced

as shown in Figure l(c).

This last combination of a soft layer on a hard surface has been widely

explored and used not only in metal-metal tribocontacts but increasingly in

studies of ceramic tribocontacts, primarily in h i g h l y oxidative environments
These new lubrication approaches are discussed in this paper.



The frictional properties of ceramic-ceramic, metal-metal and metal-ceramic

tribocontacts in a vacuum environment are tabulated in Figure 2 [31. The data

presented indicate the marked difference in friction for the basic combina-

tions of solids. It can be seen that the coefficient of friction due to

adhesive bonding is the highest for metal-metal contacts and lowest for the

ceramic-ceramic contacts. The conclusion can be drawn that the use of ceramic

materials in the form of bulk and coatings in space or vacuum environments are
beneficial from a tribological point of view.
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Soild Lubricants for Spacecraft Mechanisms

Many of the spacecraft-satellite moving mechancial assemblies and components

require solid or dry f i l m lubrication. The typical reasons for preferring dry

lubrication is that viscosity of most l i q u i d lubricants has a strong depend-

ence on temperature, therefore affecting the tribo-contact behavior. Further,

the use of solid lubrication can eliminate the need for fluid lubrication sys-

tems and thus reduce maintenance requirements. Solid lubricating films are

used for spacecraft mechanisms such as solar array drives, antenna pointing

and control systems, despin mechanisms, rack and pinion gears. The criteria



for selecting a solid film lubricant are the following: (1) long term stabil-

ity (3 to 10 years) in space without contamination by degassing or evapora-

tion; (2) frictional properties are not to be influenced by temperature changes

or by shear rate changes; (3) low torque noise and vibration levels over the
mi ssion 1i fe.

The triboelement surfaces in space mechanical components (bearings, gears

gimbals, s p l i n e s , etc.), because of their optimized design and precision tol-

erances, require very thin adherent films, typically 0.2 to 0.4 jam in thick-

ness. Ion assisted deposition techniques, such as sputtering and ion plating,

offer the best tribological performance. Since the tribological properties of

these coatings are very sensitive to the deposition process parameters, the

objective is to develop optimized lubricating films. Therefore, it is essen-

tial to investigate the structure-property-performance interrelationships with
a fundamental understanding of coating/substrate interfaces and microstructures/

microchemistries, in terms of the resultant tribological properties.

The major candidate lubricants used for space mechanisms can be classified as
follows:

1. Layer Lattice Compounds: Mo$2, WS2, NbSe£ (sputtered) Au-Mo2,

Ni-MoS2 (sputtered)
2. Soft Metals: Au, Ag, Pb (ion plated)

3. Double Layer Coating of MoS2: MoS£/Cr3Si2, $12, MoS2/B4C (sput-
tered)

Layer Lattice Compounds

Of the layer lattice compounds or dichalgogenides, sputtered Mo$2 films have

been most widely used and investigated [4-10]. MoS2 has been deposited by

various sputtering modes (dc/rf diode, dc triode, dc/rf magnetron, ion beam,

and ion beam mixing). However, the rf diode and rf magnetron sputtered films

have found extensive uses as lubricants for high precision space mechanism
components. For space applications Mo$2 also satisfies the thermal stability
requirements since it has a high dissociation stability in vacuum, up to

930 °C as shown in Figure 3.

The unique characteristic of Mo$2 is its h i g h l y anisotropic hexagonal crystal
layer structure as shown in Figure 4. The easy shear along the van der Waals
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bonded gap between the interlayers contributes to the low coefficient of fric

tion. For mechanical s l i d i n g applications, the Mo$2 film has to satisfy two

requirements: (1) strong adherence to the surface;, and, (2) low shear

strength to ensure low friction. The friction properties of sputtered films

are also affected by the crystallographic transformation to an amorphous

structure during sputtering and by anisotropic adsorption/oxidation during

storage or exposure to atmospheric environment. For instance, sputtering



on substrates at cryogenic or low temperatures should be avoided, since the

sputtered species are quench condensed and an amorphous structure forms [4].

The amorphous structure has a short-range atomic order without the crystalline

atomic periodicity. Thus the basis for easy interlayer shear is destroyed and

the films display abrasive characteristics. A typical structural-friction

diagram in Figure 5 illustrates how the particle size affects the coefficient

of friction for MoS2 films sputtered on substrates from -195 to 320 °C.
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FIGURE 5. - SUBSTRATE TEMPERATURE EFFECTS ON NoS2 FILM MORPHOLOGY AND FRICTION
COEFFICIENT.

It is also important to recognize that sputtered MoS2 films show their best
performance in vacuum, inert gas or dry air, and should not be used under

atmospheric conditions since humidity increases the coefficient of friction

and thus reduces the endurance life. Sputtered MoS2 films have the capacity

to display ultra low coefficients of friction, 0.01 or less in vacuum, when

the sputtering process parameters are optimized. Presently there is signifi-

cant research activity under way to optimize sputtering process parameters

which affect the frictional properties. Of particular interest is the crys-

tallite reorientation during s l i d i n g or ro l l i n g , since best results are

obtained when basal planes within the film reorient parallel to the substrate

surface.

It is also important to identify the morphological growth patterns of the

sputtered f i l m , since the preferred or effective film thickness depends on the

morphology. For instance, the effective film thickness for rf diode sput-

tered Mo$2 films was established in terms of the identified morphological
growth zones during single pass sliding (pin-on-disk) as shown in Figure 6.
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The results were that the film fracture - disintegration occurred in the col-

umnar structure, indicating that the adhesive forces between the substrate

and the MoS£ f i l m were stronger than the cohesive forces between the columnar

fibers. Consequently, the lubrication was performed by the remaining surface
f i l m which was about 2000 A thick.

Soft Metals

Ion plating u t i l i z i n g a diode configuration is the preferred technique for

deposition of thin (0.2 ̂m), soft met a l l i c films (Au, Ag, Pb) either for

spacecraft mechanical components or for terrestrial applications [11-16]. Ion

plating technique has matured in the last decade primarily because of the

demands of the aerospace industry.

Two important features of the process are: (1) the flux of high energy ions

and neutrals which cause exceptionally strong adherence between the film and

the substrate, and; (2) the high throwing power which provides the three-

dimensional coverage to coat complex shapes.

The excellent adherence is caused mainly by atomistic m i x i n g which generates

a graded interface, i.e., one in which there is a gradual transition between

the properties of the substrate and the coating. This can be shown by using

X-Ray Photoelectron Spectroscopy (XPS) depth profiling, as in Figure 7 [17].

The interface formation can also be identified by making micro-Vickers mea-

surements. The microhardness of an ion plated gold film, graded gold-nickel

interface and nickel substrate as a function of distance from the surface is
shown in Figure 8(a). The gold was gradually removed by argon ion sputtering
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prior to the microhardness determinations. I n i t i a l l y , the hardness was rela-

tively low, in the gold film but gradually increased in the interface region

and finally decreased again as the nickel substrate was reached. The higher

hardness in the interface was due to alloying. The vapor deposited gold film

on nickel shown in Figure 8(b) exhibited constant hardness, which is

i n d i c a t i v e of a sharp interface.

The ion plated m e t a l l i c films, unlike the conventional vapor deposited ones,

e x h i b i t a distinct nucleation behavior as shown in Figure 9. The nuclei

formed during ion plating exhibit these distinct characteristics: the nuclei

are considerably smaller (150 A), have a high density, and a uniform distribu-

tion. As deposition continues the nulei remain rounded with less than a
20 percent increase in size. Consequently, continuous films are formed in the
250 A thickness range with uniform grain structure, high packing density, and

m i n i m u m lattice misfit. It is therefore clear why ion plated metallic films

display favorable morphological properties.

In thin film lubrication, the film thickness has a very pronounced effect on

the coefficient of friction as shown in Figure 10 for ion plated Au and Pb
films. The effective or minimum f i l m thickness for Au and Pb films was about

2000-2500 A with a minimum coefficient of friction of 0.1 and 0.085 respec-

tively [81. It has been suggested for Pb f i l m lubrication that once the film
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has been p l a s t i c a l l y deformed down to a certain thickness, it w i l l then start

to behave e l a s t i c a l l y and deform with the substrate. This concept has been

explained in terms of a very small shear stress in such a film.

Typical friction curves for ion plated and vapor deposited Au films 2000 A thic

as determined in a pin and disk tribotester under vacuum conditions are shown

in Figure 11. The ion plated Au films had three d i s t i n c t improvements over

the vapor deposited ones: (1) increased endurance life, (2) lower coefficient

of friction, and (3) avoidance of catastrophic failure. The increased endur-

ance life is attributed to the superior adherence, the lower coefficient of

friction to the these, cohesive small crystallite since and the optimum film

thickness, and the gradual increase in the coefficient of friction after the

film was worn off to the formation of the graded interface.

.6
r ON BASE

o

o l>00

.2

UJ

VAPOR ION PLATED

2000 6000 80004000
CYCLES

FIGURE 11. - COMPARISON OF COEFFICIENT OF FRICTION OF ION PLATED
AND VAPOR DEPOSITED GOLD FILM ON 140C STEEL (LOAD, 2.45N; SPEED
0.26ms"1; PRESSURE 2x10"3 tOIT, ROUGHNESS, 0.02 um).

Double Layer Coatings of Mo$2
These coatings are layer structures consisting of hard underlayer of BN, TIN,

Cr3Si2, 640 on a hard 440C steel substrate sputtered with MoS2 film as i l l u s -
trated in Figure 12. The double layer coating approach originates from the

concept that both friction and wear can be reduced by decreasing the extent of

plastic deformation at or near the s l i d i n g counterfaces, which is a basic con-

cept behind hard coatings used to resist plastic deformation.

Significant improvements were obtained with angular-contact, 440C stainless

steel ball bearings sputtered with a 1000 A thick underlayer of Cr3$i2 and

2000A sputtered MoS2 ^^m H91. These bearings, when evaluated in vacuum with

a thrust load of 138 N at 1750 rpm, showed a remarkable endurance, over 1000 hr
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FIGURE 12. - DOUBLE LAYER COATINGS OF MoS2>

as compared to about 200 hr for the same bearings sputtered only with a Mo$2

film. It should be acknowledged that this remarkable increase in endurance

life is only applicable to r o l l i n g elements contact, but no s l i d i n g contacts.

Lubricants for Space Power and Aeropropulsion Systems
Aerospace machinery and energy efficient engines (adiabatic diesel, gas turbine

and Stirling) currently under development impose severe demands on the thermal/

oxidative stability of lubricants, bearings and seal materials. The wide
lubricating temperature range from ambient to 1000 °C in oxidative and corro-

sive environments with high loads and velocities create a severe tribological

problem. For temperatures of 1000 °C and higher, metal bearings are being
replaced by ceramics. These ceramics must either be self-lubricating or coated

with a solid lubricant. Lubricants for high-temperature oxidative applica-

tions can be classified as follows:
(1) Ductile inorganic compounds: PbO, 0203, 8263, CaF2, BaF2

(2) Self-lubricating composite coatings: Ag-BaF2/CaF2 on metals

(3) Lubricious metal ion modified ceramics.

If one examines the maximum temperature c a p a b i l i t i e s , of presently known solid

lubricants in Figure 13, it is clear that all of these lubricants have limita-

tions in providing lubrication from ambient to high temperatures near 1100 °C.

The organic polymers, layer lattice compounds and soft metals are effective

lubricant below approximately 500 °C. The ductile inorganic compounds (oxides,

fluorides) do not lubricate below 400 °C, but provide effective lubrication at

the higher temperatures. To f i l l the e x i s t i n g need for a lubricant which can
lubricate from a cold start condition up to the maximum operating temperature,

a research program was conducted at NASA Lewis to develop self-lubricating

composite coatings.
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Self-Lubricating Composite Coatings
Development of the self-lubricating composite coating was based on the m i x i n g

of two or more solid lubricants to cover the whole temperature range [20-231.

For instance, the combination of stable fluorides and s i l v e r offered unex-

plored potentials. How temperature affects the microhardness and friction

coefficients of these coating materials is shown in Figure 14. S i l v e r is very

soft at room temperature and is a good thin-film lubricant from ambient tem-

peratures up to 500 °C. CaF2 and BaF2 does not lubricate below 400 °C but

provide lubrication at the higher temperatures. During use Ag and the fluo-

rides act synergistically and provide a low friction coefficient (0.2) over a

wide temperature range, but have inadequate wear resistance for some long-

duration applications. The wear resistance is dramatically improved by using

a metal-bonded chromium carbide matrix dispersed with Ag and CaF£/BaF2 eutec-

tic, which is designed PS200. The exact composition and the microstructure

are shown in Figure 15. During plasma spraying of the composite coating the

Ag and BaF2/CaF£ eutectic are dispersed throughout the metal bonded chromium

carbide matrix. Ag alone is lu b r i c a t i v e to about 500 °C, w h i l e the fluorides

are lubricative from 400 to 900 °C. As a result, this composite coating

lubricates from room temperature to 900 °C.

14
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The basic materials properties needed in developing new self-lubricating com-

posite coatings for a wide temperature range were established by the follow-

ing characteristics: plasticity, low y i e l d strength in shear, low hardness

and thermochemical stability at the temperatures and in the environment of

interest. Being a composite it can be tailored to a wide variety of required

operational conditions by changing the formulation. The PS200 coating is

presently applied by plasma spraying, but the ion assisted deposition tech-

niques offer great promise for depositing and m i x i n g the complex materials

combinations with greater accuracy and control.

Lubricious Metal Ion Modified Ceramics

Ceramic coatings and ceramic tribo-components are finding use in an ever

increasing number of aeropropulsion applications where the temperature has

exceeded the high temperature c a p a b i l i t i e s of metals. In many of these appli-

cations the tribo-contacts are in an unlubricated state, due to the breakdown

of conventional lubricants. Structural ceramics such as carbides (SiC, TiC)

nitrides ($13^) and oxides (A1203, ZrC^) are being increasingly used for

machine elements in advanced low heat rejection engines. The successful use

of these ceramics is often limi t e d by tribological problems. W h i l e monolithic

ceramic coatings mitigate wear, they generally have high friction coeffici-

ents. When low friction is required in addition to low wear some type of sur-

face lubrication is necessary. For instance, the coefficient of friction can

range from 0.2 for TiC against TiC in air, to over 0.8 for Zr02 against Zr02

in inert gas and the measured wear rates have been unacceptably high.

It is w e l l established that the surface chemistry of the contacting ceramic

tribo-components determines the tribological behavior of ceramics [24-25].

Tests conducted in high temperature oxidizing environments show the formation

on wear surfaces of a t h i n oxide layer which subsequently can serve as a

lubricant to reduce both the coefficient of friction and the wear rate. Form-

ing soft oxide layers with low shear strength on ceramic surfaces may mitigate

another problem, that of tensile stresses at the contact which can otherwise

initiate cracks in the surface region. Thus, the critical load required to

i n i t i a t e surface-subsurface fracture of ceramics under s l i d i n g or rubbing

conditions may be increased.
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It has been shown that the high temperature tribological properties of ceramic

surfaces can be favorably modified by ion team techniques such as ion implan-

tation and ion beam mixing [26-28]. The structural ceramics ($13^, SiC,

Zr02> were ion implanted and ion beam mixed with Cr, Co, Ni or a double layer

of Ti and Ni, and subsequently tribotested in a pin and disk configuration

under oxidative conditions at a temperature of 800 °C. For certain of these

material combinations the lubricious oxide films showed remarkable results.

The ion beam techniques offer the ability to modify the surface with essen-
tially any metal ions and impose accurate controls on implantation/mixing

depth and surface structure. The surface concentration profiles from implan-

tation versus mixing depth for ion implantation and ion beam m i x i n g are shown

in Figure 16. At present the ion beam mixing technique may be more suitable
for tribological surface modification, since the modified layer l i e s on top

of the substrate, rather than below the surface.

Ar+

<£
C£.

I
Oo O

O

DEPTH

(3) ION IM-
PLANTATION.

DEPTH

(b) ION BEAM
MIXING.

FIGURE 16. - SURFACE MODIFICATION BY ION BEAMS.

Of all the coated components, only Ti-Ni applied to Si3N4 and Zr02 disks by

ion beam mixing showed a dramatic improvement in frictional properties when

in sliding contact with a TiC rider. The friction results of the most promis-

ing combinations are shown in Table 1 [29]. The unmodified s l i d i n g couples

displayed a high coefficient of friction, whereas the modified surfaces dis-

played coefficients of friction as low as 0.06 due to lubricious oxide forma-

tion in the 800 °C oxidizing environment. It should also be emphasized that

the coefficient of friction is very sensitive to the precise nature of the

selected sliding couples, and the test conditions.
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TABLE 1. - COEFFICIENT OF FRICTION,

F> FOR ION IMPLANTED CERAMIC-CERAMIC

PAIRS
[800 °C Oxidizing Environment,

Ackn. Lankford, Wei, Kossowsky
(Ref. 29).]

Rider

TiC
TiC cermet
TiC
TiC cermet
TiC
TiC cermet
TiC

TiC
TiC cermet

Disk,
implant

Si3N4 (Ti-Ni )
Si 3N4 (Ti-Ni )
PSZ (Ti-Ni)
PSZ (Ti-Ni)
PSZ (Co)
PSZ (Co)
Si3N4

Unmodified Si3N4
Unmodified PSZ

p
F

0.09
.22
.25

. .06
>.25
a.06
.14

-.6
-.4

aModified layer worn away.

Concluding Remarks

To meet the technological challenges of aerospace technology such as propul-

sion, power and sensitive spacecraft mechanisms it is imperative to create

new, more durable and reliable tribo-materials which can withstand high tem-

peratures, high vacuum and greater stresses and loads. To prevent tribologi-

cal breakdown and consequent mechanical failures, the selection and mode of

application of the proper lubricant or wear resistant coating is of paramount

importance. The selection of an appropriate lubricant can be based on the

operational conditions. On this basis, two categories of solid lubricants are

distinguished. Lubricants essentially for vacuum and space environments and

lubricants for high temperature oxidizing-corrosive environments.

In the application of lubricants to the components, most of the readily achiev-

able advances have been made from the newly emerging ion assisted deposition/

modification techniques. These techniques offer great flexibi1ity and are

capable of tailoring tribologically favorable surfaces with exceptionally good
performance. With the ever increasing demand on tribo-systems to function

under high temperature oxidative conditions, new approaches have been deve-
loped such as m i x i n g , forming or synthesizing self lubricating composite or
self forming l u b r i c i u s oxide surfaces.
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It is also important to emphasize that the monolithic ceramic surfaces in

tribo-contacts need lubrication. In ceramic tribo-contacts to minimize ten-

sile stresses, which eventually lead to microcracking, future tribomaterials

or coatings may be fiber reinforced.
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