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Abstract

In this report, an integrated system approach to dynamic resource allocation is proposed.
Some of the problems in dynamic resource allocation and the relationship of these problems to
system structures are examined. A general dynamic resource allocation scheme is presented. A
hierarchical system architecture which dynamically maps between processor structure and
programs at multiple levels of instantiations is described. Simulation experiments have been
conducted to study dynamic resource allocation on the proposed system. Preliminary evaluation
based on simple dynamic resource allocation algorithms indicates that with the proposed system
approach, the complexity of dynamic resource management could be significantly reduced while
achieving reasonably effective dynamic resource allocation.
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1. Introduction

One of the central problems in multiprocessor system design is how computing resources are

allocated to a computation to achieve minimum execution time. This resource allocation

problem has proven difficult both in theory and in practice. Conceptually, resource allocation

realizes a mapping between program structures and the processor structure. Such a mapping can

be established either before program execution (static resource allocation) or during run-time

(dynamic resource allocation). It is well-known that static multiprocessor scheduling is NP-hard.

Static resource allocation must rely on good heuristics and good estimation of dynamic

characteristics of program behavior to achieve satisfactory mapping. But for computations

whose dynamic behavior are highly data-dependent, good estimation of program behavior is very

difficult, if not impossible. In this case, even with the best available heuristics, static resource

allocation is unlikely to be satisfactory.

Dynamic resource allocation has the advantage of directly extracting run-time characteristics

and is expected to achieve better resource allocation than static resource allocation. Dynamic

resource allocation is also the only prospective solution for dynamic computations. However,

progress in dynamic resource allocation is largely hampered by complexity of the problem.

System behavior is more difficult to understand and to analyze in the presence of dynamic

resource management. Dynamic resource management itself may be complex and inefficient,

and affects overall system performance. In order to alleviate these difficulties, both hardware

and software system supports are necessary.

Some examples of system support of dynamic resource allocation have been described in the

literature.

• Dataflow machines [DennSO, GuKW85] support dynamic resource allocation

explicitly. In the dataflow model of computation, tasks (or operations) which have

all their operands available are scheduled for immediate execution on any available

appropriate resource in a pool of resources.

• In the DDM-1 dataflow machine [Davi78], the process tree was mapped



dynamically onto the processor tree. A process, which was created in a processor, is

either assigned to a subordinate processor or to the processor which created the

process. But the rigid tree structure did not allow dynamic load balancing.

• The ZAPP system [BuSlSl] employed the indirect r-n-cube network of processors to

dynamically create a virtual tree of processors to match the process tree. This

system proposed an approach to load balancing where an available processor might

steal a pending process from its neighbors.

• The ALICE machine [DaReSl] supported an abstract architecture in which a

common pool of processes was accessed by a collection of independent processing

agents.

• The AMPS project [KeLP79] proposed a control tree structure for task distribution

and load balancing. Tasks were invoked at the leaves and were distributed to other

leaves via the control tree. Every node in the control tree also moved tasks between

its subtrees to maintain load balancing.

• The Cedar project [GKLS83] developed a macro-dataflow architecture in which the

global control unit scheduled and assigned compound functions (chunks of program)

to processor clusters in dataflow fashion.

• The Rediflow project [KeLT84, LiKe86] developed a demand-driven load balancing

scheme. A gradient plane was established by the demands of idle processors, and

excessive tasks were transfered to the nearest idle processor via the gradient plane.

• In [BrOP86], an architecture which supported a two-level dynamic scheduling

scheme was proposed for medium-grain computations. The first level assigned

tasks to processing units on a completely random basis, and the second level

corrected load imbalances.

Each of the above approaches supports only a single dynamic resource allocation either in one

way or in the other. When a specific program execution model (e.g., the dataflow model) is

adopted, the processor structure does not support decentralized resource management or dynamic

load balancing; when a specific decentralized control structure is provided, resource allocation is

restricted to some fixed granularity of computation; when a dynamic load balancing scheme is

proposed, the program execution model only assigns new tasks to their creation sites regardless



of current load situation. Due to the complexity of the dynamic resource allocation problem,

most subproblems tend to be interrelated. When one difficulty is alleviated, another difficulty

may be aggravated. Without balanced, thorough system supports, overall improvement in

system performance by dynamic resource allocation will still be limited.

In this research, a new integrated system approach to dynamic resource allocation has been

investigated. An extensible, hierarchical system architecture which provides both hardware and

software supports to dynamic resource allocation has been defined. A preliminary study has

been conducted to evaluate the proposed system architecture with respect to different dynamic

resource management strategies. While a particular hierarchical multiprocessor system has been

hypothesized, this study has been focused on the dynamic allocation of resources during

execution and on how the various resource management components affect the overall system

performance. The results of this preliminary study have shown that the proposed system

architecture would accomplish effective dynamic resource allocation.

The following sections present a detailed account of this research. Section 2 examines general

problems in dynamic resource allocation and their relationships to system structures. A general

dynamic resource allocation scheme is introduced here. The discussion provides the rationale

behind the proposed integrated system architecture. Section 3 describes the proposed

hierarchical system architecture and the program execution model. The rest of the report gives

details of the preliminary study. Section 4 describes the system and program models being used

in the preliminary study. Section 5 gives the dynamic resource algorithms under study. Section

6 describes the simulation experiments and their results. Section 7 concludes the study and

suggests possible future work.



2. Dynamic Resource Allocation and System Structures

The two important research questions in dynamic resource allocation are how to exploit

maximum parallelism in both the processor structure and program and how to minimize run-time

resource management overhead. The first problem is fundamental to resource allocation since it

would allow significant improvement in program execution time. The second problem is also

fundamental since run-time resource management may become complex and inefficient in an

attempt to exploit maximum parallelism during run-time. The tradeoff between solutions to

these two problems is a critical issue in dynamic resource allocation design. Minimization of the

overhead in resource managment may result in considerable unexploited parallelism.

2.1. Exploitation of Parallelism

The basic principle of parallelism exploitation is to match hardware parallelism and

instantaneous program parallelism. Hardware parallelism is the maximum number of

concurrent computations supported by the processor structure. Instantaneous program

parallelism is the number of concurrently executable units of computation at an instant

(depending on the granularity of computation of interest). Effective resource management can

be considered to be an instantaneous mapping problem - detect instantaneous program

parallelism available and map it onto the available hardware parallelism. The key issues are:

• How are hardware parallelism and instantaneous program parallelism detected

efficiently?

• What is the best resource allocation (mapping)?

• Can more parallelism be exploited if the hardware parallelism and instantaneous

program parallelism are not matched?

Run-time information must be gathered to determine the current hardware parallelism and

program parallelism. For large multiprocessor systems, this essential information gathering

process may become inefficient and even ineffective flike collecting out-dated information). The

resolution of the related complexity and inefficiency problems will be discussed later in this



section. In order to support fast information gathering, the processor structure must provide the

necessary interconnections and high communication bandwidth, and the program execution

model should allow dynamic detection of instantaneous program parallelism. The dataflow

model of computation [DennSO] supports such a program execution model.

When parallelism of both types are detected, the determination of the mapping between the

needs of the program and the availability of resources must be made. This resource allocation is

particularly difficult since the order of task assignments can affect the program behavior

significantly. Task assigment based only on run-time information cannot guarantee best resource

allocation [GPKK82]. Some kind of estimation on program behavior to guide the task

assignment is useful.1 Due to the nature of dynamic computation, unsatisfactory resource

allocation is always a possibility. Resource reallocation could be considered to remedy such a

situation. The processor structure and program structure should allow use of effective resource

reallocation techniques.

The following dynamic resource allocation scheme has been proposed to address the problems

discussed above. The basic ideas of this scheme are to use a priori information about program

behavior to assist run-time scheduling and to allows remedial actions in case of poor allocations.

General Dynamic Resource Allocation Scheme

• At compilation time, do static program analysis to generate estimate measures

(e.g., resource demands and number of dependent tasks) for every task.

• At program execution time, maintain simple system load measure(s).

Dynamic resource allocation is done in three stages:

1. dynamic scheduling based on estimate measures of tasks,

2. dynamic task assignment based on the above scheduling and processor

availability,

problem here bears a resemblance to static resource allocation. The major difference is that static
information must be utilized with run-time information to decide the actual resource allocation.



3. dynamic resource reallocation based on system load measure(s).

When the hardware parallelism and the instantaneous program parallelism are not matched,

action can still be taken to exploit additional parallelism. The action which is expected to be the

most effective is a dynamic grain size control mechanism. If the program structure allows

dynamic control of grain size, the scheduling and communication overhead should be able to be

reduced. For example, if more hardware parallelism is available than the instantaneous program

parallelism can utilize, the instantaneous program parallelism could be increased by breaking up

executable units of computation into smaller grains. Similarly, if the hardware parallelism

available is not as much as the instantaneous program parallelism needs, the executable units of

computation could be grouped into large grain tasks.

2.2. Minimizing Overhead : Complexity and Efficiency Issues

Clearly, the overhead involved in resource management must be minimized in order that the

computational resources be utilized for solving problems, rather than managing resources. Most

resource management overhead comes from the dynamic collection and analysis of run-time

information, and from the migration of tasks. The complexity and inefficiency of these

management functions grow quickly with the size of processor and program structures. In order

to minimize the overhead, the complexity of these management functions must be reduced and

parallelism in resource management must be exploited.

An approximation may be used to reduce the complexity of the resource management

problem. Resources are grouped into clusters, and program size is reduced by grouping units of

computation into large grains. The resource management problem is then divided into simpler

subproblems. Each subproblem handles a smaller number of resources (or clusters) and a smaller

program. This "divide and conquer" approach also allows resource management to be operated

in parallel to achieve better overall efficiency. In order to support this approach, the processor

structure should directly support the concept of resource clustering and distributed resource

management, and the program structure should provide the necessary representations for



different grain sizes.

3. The Hierarchical System Architecture

In this section, a hierarchical system architecture which integrates considerations of processor

structure and program structure to best support dynamic resource allocation is described. Both

the processor structure and the program structure have a similar hierarchical structure. Mapping

between the structures is done on level-to-level basis. This reduces the complexity of dynamic

resource management. Hardware control units are coupled with data memories and are

distributed over the hierarchical processor structure. This allows distributed and efficient

resource management. Details of the system architecture and the program execution model are

presented in the following paragraphs.

3.1. Processor Structure
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Figure 3-1: A three-level hierarchical multiprocessor system

Figure 3-1 shows the processor structure of the proposed hierarchical system. There are two

kinds of local ensembles : processors (P) and control subsystems (CS). Processors may have

private memories or caches. Control subsystems contain processing control units (PCU) and

data memories (DM). The processing control units are responsible for dynamic resource

management, network communication and input/output. These control subsystems are



distributed over the structure in hierarchical levels. Each control subsystem (except those at the

lowest level) is directly connected to a specified number of control subsystems at the next lower

level. Every control subsystem at the lowest level is connected to a number of processors. In

order to support efficient resource sharing, control subsystems at each hierarchical level are

interconnected by a separate interconnection network.
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Figure 3-2: Functional blocks of a control subsystem

Figure 3-2 shows the functional blocks of a control subsystem. The data memory stores all

local data structures. The remaining blocks constitute the processing control unit. The scheduler

performs most of the dynamic resource management (dynamic scheduling and dynamic task

assignment). The cooperator performs network communication, remote data access and

dynamic resource reallocation. The input/ouput unit is responsible for all external input and

ouput functions (e.g., disk accesses). The input/output unit is also capable of performing

elementary data stream functions (e.g., filtering and merging). The dynamic store provides the

memory working area to hold the executing programs, and the allocation buffer serves as the

spool area for executable task packets. A program cache is provided for fast code retrieval.



3.2. Machine Program Structure

Figure 3-3 illustrates the general structure of the machine programs. Machine programs are

represented as hierarchies of labeled dataflow graphs. A labeled dataflow graph is a directed

graph in which every node is labeled by a function name and every edge is labeled by a data

object instance. (Control signals are treated uniformly as data object instances.) A function

node is said to be executable when corresponding data object instances are available on all its

input edges ~ the dataflow firing rule [DaKe82]. The number of hierarchical levels of the

machine program is made the same as that of the processor structure at compilation time. At

each level except the lowest (ground level), a function node represents either a labeled dataflow

graph at the next lower level or a primitive control function. Data objects are aggregates of data

objects defined at the next lower level. The ground level dataflow graphs contain only

elementary functions and primitive data object instances directly supported by the processors.

3.3. Program Execution Model \

In the following program execution model, data-driven evaluation is assumed.2 The general

dynamic resource allocation scheme described in Section 2 is explicitly incorporated in the

execution model. Figure 3-4 shows the typical flow of program execution inside a control

subsystem. Figure 3-5 shows example activities in a four-processor control subsystem during a

program execution. System activities are heavily overlapped in general.

Program execution proceeds as follows.

• As program execution begins, the scheduler of the control subsystem at the top level

signals the input/output unit to load the top-level machine program into the dynamic

store.

• As soon as the dataflow graph is loaded into the dynamic store, the scheduler uses

the dataflow firing rule to determine any executable function nodes. Dynamic

scheduling on these executable functions is then performed. Task packets which

2The proposed architecture and dynamic resource management is not restricted to data-driven evaluation. The
described program execution model can slightly be modified to support demand-driven evaluation. Such detail is
not pursued here.
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Program:

Level 3

function A:

Level 2

function B:

Level 1

Figure 3-3: A machine program of three hierarchical levels
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1 .get task packet from parent CS
(not required in the top-level CS)

2. initiate progam loading
3. retrieve code from external I/O, or

a. from program cache
4. retrieve data (if necessary) from DM, or

a. from remote DM
5. program loading
6. initial dataflow-firing
7. dynamic scheduling
8. load sharing - get a task to execute
9. assign to a child CS for execution

Task Execution

10. return of result data and subsequent
dataflow-firing

11. local execution by a child CS
12. load sharing - migrate to a sibling CS for

remote execution

Task Completion

13. return of the last result data
14. return result data to parent CS
15. store data in DM (if necessary)
16. load sharing - return result to original CS

AB
C
CS

Allocation Buffer
Cooperator
Control Subsystem

DM
DS
IOU

Data Memory
Dynamic Store
Input/Output Unit

PC
PCU
S

Program Cache
Processing Control Unit
Scheduler

Figure 3-4: Typical flow of program execution

carry the function names together with the associated arguments and priorities are

created. These task packets are put into the allocation buffer and are ready for

assignment to a control subsystem at the next lower level.

• Schedulers in the control subsystems at the next lower level initiate the task

assignment. When the control subsystem is able to take more tasks (i.e. current load

is low), the scheduler accesses the allocation buffer in its parent control subsystem

and grasps a task packet (if there is any).

• Once a task packet is assigned to a control subsystem, the scheduler passes the

packet to the input/output unit and initiates program loading. The corresponding

next lower-level function program is retrieved and is dynamically spliced with the



12

ncrmlinn

One

EHJ
SCHEDULER

COQPERATOR
PROCESSOR 1
PROCESSOR!
PROCESSOR}
PROCESSOR 4

• 0.2 0.4 0.6 OX 1.0 tine 6.0 6.2 6.4 • 6.6 6.8 7.<

B&n SCHEDULER
OOOPERATOR
PROCESSOR 1
PROCESSOR!
PROCESSORS
PROCESSOR 4

i i l l i i i i i

en uuumtmij.! an wutiiauuiuwuj.

pLravraSKStftt^^

[•«^^

time 19.) 19.5 19.7 19.9 20.1 20.) toe 14.7 24.9 25.1 25.) 25.5 25.7

IOU
SCHEDULER

OOOPERATOR
PROCESSOR 1
PROCESSOR 2
PROCESSOR)
PROCESSOR 4

l l l i i i l i l

^W B^ KAI u%]kl HF^
nTTTrnm

KXJ
SCHEDULER

OOOPERATOR
PROCESSOR 1
PROCESSOR 2
PROCESSOR)
PROCESSOR 4

n n n n ra n re
1 1 1 1 i in i i

dmttflow firing

i i tnteroaanection oetwtxk access
ESS223 cnrrmn taring flocil tttk)

Figure 3-5: Example activities in a 4-processor control subsystem

input data instances to create a static dataflow graph [DeMi74].3 The dataflow

graph is then loaded into the dynamic store for execution.

• This process continues through all levels of the system. At the ground level,

functions are directly executed by the attached processors.
• Upon completion of a function execution in a control subsystem, the resulting data

is passed back to the parent control subsystem and subsequent firing (in the parent

control subsystem) is initiated. In the case when the resulting data is defined at the

current program level, the data is stored in the local data memory and a global

reference is returned.
• When the current load in a control subsystem is low and there are no task packets in

the allocation buffer of the parent control subsystem, the scheduler signals the

cooperator to initiate resource reallocation. Task packets are migrated between

3Input data instances which are designated by the function arguments in the task packet can be either accessed in
the local data memory, or remotely accessed via the cooperator.
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allocation buffers of control subsystems at the same level to achieve load balancing.

4. System and Program Models

A preliminary study has been conducted to evaluate the proposed hierarchical system

architecture with respect to different dynamic resource management strategies. A software

simulator which models the proposed hierarchical system has been implemented and serves as

the basic vehicle of the study. Hierarchical systems with different system parameters were

simulated. Synthetic programs generated from different program behavior models were

executed on the simulator and performance statistics were collected. Evaluation is based on the

amount of overhead introduced by dynamic resource management. The study has focused on

dynamic resource allocation during program execution and on how various components of

resource management affect the overall system performance.

This section describes the system and program models being used in the preliminary study.

Details of the simulator and generation of synthetic programs .are also described here. The

dynamic resource allocation algorithms under study, details of the simulation experiments and

results of the study will be given in the following sections.

4.1. System Model

A simple inductive system model can be used to evaluate the proposed hierarchical system

architecture. The basic systems are the one-level and two-level systems. Any hierarchical

system of more than two levels can be approximated as a two-level hierarchical system (see

Figure 4-1): Hierarchical systems rooted at the third top level are treated as 'processors' and any

additional interconnections between these 'processors' are ignored. When system parameters

and task characteristics are appropriately adjusted for these aggregated 'processors', results

obtained in two-level systems can then be used to project overall performance of the system.

Since the aggregated 'processors' are themselves hierarchical systems of fewer levels, a similar

approximation can be applied to determine the corresponding system parameters. Thus the
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performance of the proposed hierarchical system can be estimated inductively.

uEl?;';1

Level 2

Level 1
interconnection
network

Figure 4-1: A three-level hierarchical system approximated as a two-level system

Table 4-1: System parameters

number of levels

system multiplicity

number of processors

data memory size

interconnection network

2
2, 4, 6, 8

4, 16, 36, 64

no limit

single bus

Based on the above observation, the preliminary study has concentrated on two-level

hierarchical systems. To further simplify the system model under study, each control subsystem

has the same number of control subsystems or processors at the next lower level attached to it.

Hereafter this number is referred to as the system multiplicity. The interconnection network is

modelled as a single shared resource (like a single bus). Table 4-1 gives system parameters of

the system models under study.
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The hierarchical system simulator was written in an extended version4 of CSIM [Schw86].

The dynamic resource management algorithms were built directly in the simulator. Extensive

functions for statistics collection were provided. Figure 4-2 shows the simulation model of a

two-level hierarchical system. Functional components in a control subsystem and the

interconnection network are modelled as service centers in a queueing network. Using the

program execution model described in Section 3, a task proceeds through the following stages of

execution.

1. Program loading (PL) - initiated by the scheduler (S). After awaiting storage

allocation in the dynamic store (DS), the input-output unit (IOU) loads in the task

program.

2. Dataflow firing (DF) - initiated either by new program loading or by completion of

a subtask execution. The scheduler is signaled. After the scheduler completes

dataflow firing, a number of subtasks are allocated to the allocation buffer (AB).

When the task completes execution, the result is returned to the parent control

subsystem.

3. Subtask execution

a. Local execution - initiated by an attached subsystem or processor.

b. Remote execution - controlled by the resource reallocation function (RR).

The scheduler performs load scheduling and initiates resource reallocation.

Subtasks are removed from the allocation buffer, passed to the cooperator

(C), transferred via the interconnection network (IN), and then allocated to

the allocation buffer of another control subsystem. After remote execution,

the result is returned to the original control subsystem. The resource

reallocation function also handles the load sharing protocol between control

subsystems of the same level.

Details of the scheduling and resource reallocation functions will be described in the next

section. Table 4-2 gives the probability distribution functions of service times of the service

"^Extensions, like dequeueing a process from a facility and accessing internal states of specific processes, are
developed by the author to facilitate implementation of dynamic resource allocation algorithms.
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AB Allocation Buffer
C Cooperator
CS Control Subsystem
DF Dataflow-Firing

DS Dynamic Stoic PL Program Loading
IN Interconnection Network RR Resource Reallocation
IOU Input/Output Unit S Scheduler
P Processor

Figure 4-2: Simulation model of a two-level hierarchical system
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Table 4-2: Probability distribution functions of service times

Service Center

Input / Output Unit (IOU)

Scheduler (S)

Scheduler (S)

Interconnection Network (IN)

Service

program loading (PL)

dataflow-firing (DF)

scheduling overhead

network transfer

Probability Distribution

exponential

exponential

delta*

delta *

Service time is a constant

centers. The mean values of these service times will be specified in Section 6.

4.2. Program Models

As discussed in Section 2, the performance of dynamic resource allocation depends largely on

the behavior of the executing program. In the preliminary study, evaluation of the proposed

architecture was based on different kinds of program behavior rather than on specific programs.

This approach to evaluation not only gives more general results but also allows better

understanding of the impact of program behavior. In order to obtain a large number of test

programs with similar characteristics, different kinds of program behavior were modelled and

synthetic programs were generated from these models.

As far as resource allocation is concerned, the most important characteristics of a program are

the resource demands of elementary tasks (such as the amount of computation work and memory

requirement), the dependency relationship among the tasks, and the number of times a task

within a loop is executed. Other details of a program, for example what function is computed,

are irrelevant in the program behavior model. For a preliminary study like this one, construction

of a large number of machine programs and/or characterization of their dynamic behavior is not

worthwhile. A simple stochastic model was used instead. The number of executable tasks

during program execution is modelled as a stochastic process. This model avoids the details of

task dependencies and loop executions, but offers appropriate execution profiles of some classes

of parallel programs. Resource demands of an elementary task and size of a task are modelled as
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random variables. To further simplify the model, tasks at different program levels have similar

stochastic structures. The program behavior model is described below:

Program behavior model

Parameters : Probability distribution functions of

• Nsize - size of a task (any program level)

• N0- number of executable subtasks per task per dataflow-firing

• Tet - execution time of an elementary task

Program behavior :

• When an elementary task is executed, it takes Tet time units.

• When a task begins execution , it has N^ subtasks to be executed. It also

occupies N^ space units in the dynamic store.

At each dataflow-firing, N^ subtasks becomes executable. When the number

of subtasks to be fired is less than N^, all of these subtasks become

executable.

When all subtasks of a task are executed, the task completes execution.

Synthetic programs can easily be generated according to the above program behavior model.

Since the program model does not require program structures to be predefined, it is more

efficient to generate synthetic programs during simulation, m this study, the program generation

procedure is directly integrated into the simulator.

Table 4-3 gives four program models that were used in the study. For convenient reference in

later discussions, the models are named by two letters followed by a number. The first letter

denotes the probability distribution function of execution time of an elementary task; the second

letter denotes the probability distribution function of the number of executable subtasks per

dataflow-firing and task size; and the number denotes the mean size of a task. For example, in

the program model XP11, execution time of elementary tasks is exponentially distributed, while
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Table 4-3: Program Models

Parameters

^size

%

Tet

Mean

Probability

Distribution

Mean

Probability

Distribution

Mean (time unit)

Probability

Distribution

Program Model

XP11

11

exponential

10

Poisson

1

exponential

XU11

11
uniform

over [1, 21]

10
uniform

over [0, 20]

1

exponential

XU20

11
uniform

over [15, 25]

10
uniform

over [0, 20]

1

exponential

UU20

11
uniform

over [15, 25]

10
uniform

over [0, 20]

1
uniform

over [0.8, 1.2]

the number of executable subtasks per dataflow-firing and task size are Poisson distributed. (The

other letter U denotes uniform distribution.) Every task has a mean size of 11 subtasks.

These program models were chosen to cover a variety of program behaviors. Elementary

tasks may have different variances in execution time : exponentially distributed in XP11, XU11

and XU20, or uniformly distributed within a small range in UU20. The number of subtasks to be

fired each time also varies: Poisson distributed in XP11, or uniformly distributed in other

models. Two different task sizes were tested : 11 and 20. Task size is either Poisson distributed

or uniformly distributed. It should note that in UU20 and XU20, task size varies little, i.e.,

uniformly between 15 and 25. The total program size are 121 elementary tasks in XP11 and

XU11, and 400 elementary tasks in UU20 and XU20. These variations of program behavior

contribute directly to the amount of inherent parallelism in the program. The more uniform the

tasks, the more parallelism the program has. As more subtasks become executable per dataflow-

firing, more parallelism can be exploited. Thus UU20 has the largest amount of parallelism, and

XU11 and XP11 have the least. XU20 falls in between.
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5. Dynamic Resource Allocation Algorithms

The dynamic resource allocation algorithms used in this preliminary study are simple and

instructive. Instead of devising sophisticated algorithms, an understanding of how various

components of resource management may affect system performance has been emphasized. No

a priori information or estimation of the program behavior is assumed. Executable tasks are

scheduled under a first-come(ready)-first-served(scheduled) discipline. In the following

description of the task assignment and resource reallocation algorithms, load level of a control

subsystem is defined to be the number of task packets in the allocation buffer. A scheduler

always gives task assignment and resource reallocation a lower priority than dataflow-firing.

5.1. Task Assignment Algorithms

Task assignment in a control subsystem is initiated by schedulers in the children control

subsystems. When load level of a control subsystem is below a threshold, thioad, the scheduler

attempts to get a task packet from the allocation buffer of its parent control subsystem. The

number of concurrently executing tasks assigned to a control subsystem is limited by another

parameter, max_task.

In this study, thload was chosen as two. Depending on whether multitasking is allowed, two

different values of max_task were used. For non-multitasking task assignment, maxjask is one.

The corresponding algorithm is referred as Algorithm TA1. For multitasking task assignment,

maxjask was chosen as four and the algorithm used is referred as Algorithm TA4.

5.2. Resource Reallocation Algorithm

A simple load sharing algorithm, referred as Algorithm RR, was used. Control subsystems

under the same parent control subsystem are assumed to be named in a cyclic order. That is,

every control subsystem has a unique predecessor and a unique successor within the same level.

The basic idea of the resource reallocation algorithm is to share load evenly between every pair

of consecutive control subsystems. Load sharing is receiver-initiated [EaLZ85] (i.e., by control

subsystems with resources available). The control protocol for load sharing is described below.
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1. When the load level of a control subsystem is below thload and no further tasks can

be assigned to the control subsystem, a request packet is sent to the successor. The

request packet carries current load information of the control subsystem.

2. When the successor control subsystem receives a request packet, its current load

level is checked against that contained in the request packet If its current load

level is higher than its predecessor, task packets in the allocation buffer that

account for half of the extra load migrate to the predecessor for remote execution.1

Otherwise, the load request is pending.

3. In case of pending load request, the successor continuously monitors changes in its

load level. Whenever the current load level allows load sharing (i.e. higher than

that requested), an acknowledgement packet is sent to the predecessor. When the

predecessor receives the acknowledgement packet, it checks its current load. If the

current load is below thfoad, a new request packet is sent to the successor to re-

initiate load sharing.

4. When a control subsystem sends a request packet to its successor and is waiting for

any response (either task packets or acknowledgement packet), no new load request

is made unless current load level is lower than that requested.

Besides the above protocol, the following migration and execution disciplines are used: The

last scheduled task always migrates first; and the first scheduled (local or migrated) task always

be executed first. For migrated tasks, their original scheduling orders are recorded in the task

packets and are used as if local scheduling orders.

6. Experiments and Results

The preliminary study is divided into two parts. In the first part of the study, five sets of

simulations were run to study how individual resource management component affects system

performance. In the second part, the hierarchical system was evaluated with respect to a typical

set of system parameters.

lln case the extra load is an odd number, only its smaller half is shared.
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The performance measure used throughout this study is average execution time w.r.t. ideal

execution. Ideal execution here refers to program execution on an ideal multiprocessor system

that has the same number of processors but does not incur any overhead due to resource

management An executable task is assigned to any available processor under a first-ready-first-

scheduled discipline.2 The average execution time w.r.t ideal execution is defined as the ratio of

average execution time to average ideal execution time. This performance measure indicates

how well the dynamic resource allocation approximates the ideal execution. The closer to unity

the ratio, the less the run-time resource management overhead impacts performance (so the more

effective the dynamic resource allocation is).

For each simulation configuration (i.e., system configuration, set of system parameters,

resource allocation algorithms and program model used), the average execution time is

determined from simulation runs of 100 synthetic programs. Since this study has focused on

resource management during program execution, program execution time reported here does not

include initialization time (i.e., from the time the top level control subsystem initiates the first

program loading to the time a ground-level processor starts the first computation).3 For all

simulation experiments reported here, results on average execution time have a 95% confidence

interval within ±5% range. (Average ideal execution time is determined from simulation runs of

1000 synthetic programs and has a 95% confidence interval within ± 2% range.)

2Under the assumption that no prior/exact information about program tasks is available, the above scheduling
gives the best possible scheduling. When compared with optimal (deterministic) scheduling (which is strongly
///'-complete), the scheduling is one of the best approximations known [LaLR82]: Program execution time resulted
from such scheduling is less than two times that resulted from optimal scheduling.

3Average initialization time is independent of the program model used. For two-level hierarchical systems, it is
equal to two times the sum of average program loading time and average dataflow-firing time.
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6.1. Effect of individual resource management component

Five sets of simulations were conducted to study the effect of individual resource management

components on system performance. In order to gain an insight into any performance limits due

to individual management components, relatively fine-grain computations and slow

communications were assumed (e.g., mean execution time of elementary tasks is in the order of

20 p.s and 10-byte packets are transferred over a 10 MB/s bus). Table 6-1 shows the simulation

configurations of the five sets of simulations. (Note that the mean execution time of elementary

tasks is taken as one simulation time unit.) Table 6-2 shows how the simulation results of these

experiments were compared in the study. Figures 6-1 to 6-5 gives the simulation results.

Table 6-1: Simulation configurations for study of individual
resource management component

Configuration

Program Model

Service Time

(time units)

Program Loading (PL)

Dataflow-firing (DF)

Scheduling Overhead

Network Transfer

Resource Allocation Algorithm

Simulation Set

A
XP11

0
0

0.05
0.05

B
XP11

1

0
0.05
0.05

C
XP11

0
0.1, 0.2

0.05
0.05

D

XU11
0
0

0.05
0.05, 0.1

E

UU20

0
0

0.05
0.02, 0.05

TA1 (only), TA4 (only), TA1 + RR, TA4 + RR

Table 6-2: The study and the simulation sets

Study

Resource Allocation Algorithms

Impact of System Multiplicity

Effect of Program Loading Time

Effect of Dataflow-Firing Time

Effect of Network Transfer Time

Simulation Sets

all
all

AandB

AandC

D (for Program Model XU1 1)

E (for Program Model UU20)
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(average parallelism = 20.7)

resource allocation
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-o- TA4 + RR
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--- TA1 + RR
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(2)
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Figure 6-1: Simulation results (Set A)

Program Model XP11
(average parallelism = 20.7)
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algorithm
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Figure 6-2: Simulation results (Set B)
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(b) Mean dataflow-firing time = 0.2 time unit

Figure 6-3: Simulation results (Set C)
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Figure 6-5: Simulation results (Set E)
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Observations

• On resource allocation algorithms

In general, algorithms with multitasking task assignment (TA4) are better than those

with non-multitasking task assignment (TA1); algorithms with resource reallocation

(RR) are better than those without. Resource allocation with both multitasking and

load sharing (TA4 and RR) has the best performance.

• On the general variation in performance with system multiplicity

In general, the average execution time w.r.t ideal execution exhibits a bell shape

variation with system multiplicity (i.e., the number of immediate processors attached

to a control subsystem). When the system is overloaded (i.e., the number of

processors is too small w.r.t. the average program parallelism*) or underloaded

(i.e., the number of processor is too large), the resource management overhead tends

to be small. Maximum overhead (w.r.t ideal execution) occurs when the number of

processors and the average program parallelism become comparable in magnitude.

This observation agrees with the intuition that resource allocation is most critical

when the instantaneous program parallelism fluctuates around the available

hardware parallelism. This observation also shows that the resource allocation

algorithms (especially the load sharing protocol described in Section 5.2) adapt well

to global load situations.

• On the effect of program loading

Long program loading time can affect system performance significantly. Figure 6-2

shows the performance when the average program loading time is as large as the

grain-size of computation. When compared with the case that the program loading

time is negligible (Figure 6-1), performance can be degraded by as much as 22%.

Two important observations are:

1. Resource allocation with multitasking and load sharing (TA4 and RR) is the

least affected by program loading time. For system multiplicity up to six

(i.e., with 36 processors), performance degradation is less than 8% and the

total overhead is well within 15%.

2. As system multiplicity increases beyond six, resource allocation with load

4Average program parallelism is determined by the time-average number of concurrently executable elementary
tasks when executed on an ideal machine with infinite number of processors.
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sharing (RR) has worse performance than that without. This phenomenon

can be explained as follows: In the program model XP11, an average task at

level 1 has a total computation work of 11 time units. When the system

multiplicity is eight or above, subtasks can be executed concurrently by eight

or more local processors. The average execution time of a task becomes

comparable to the program loading time of 1 time unit. Since effective load

sharing reduces task execution time, the bottleneck of execution shifts from

subtask execution to program loading and becomes aggravated.

• On the effect of dataflow-firing

There exists a critical value of average dataflow-firing time beyond which system

performance degrades notably. When the average dataflow-firing time is 0.1 time

unit, system performance at small system multiplicity is similar to that with

negligible dataflow-firing time (compare Figure 6-3a with Figure 6-1). At larger

system multiplicities, system performance degrades by less than 6%. When the

average dataflow-firing time increases to 0.2 time unit, system performance

degrades by as much as 20% (see Figure 6-3b). When system multiplicity is larger

than four, resource allocation with load sharing gives poorer performance than that

without. A similar "bottleneck aggravation" phenomenon as in the program loading

case accounts for such behavior: Consider the case of system multiplicity of six.

Since six processors are attached to a control subsystem at level 1, the maximum

throughput is one completed subtask per 0.17 time unit. Dataflow-firing with a

mean time of 0.2 time unit obviously becomes the bottleneck. Because load sharing

improves average turnaround time of a subtask, the bottleneck is aggravated.

• On the effect of network transfer time

Depending on characteristics of the program, network transfer time can affect

system performance significantly.

• Program model XU11 (Figure 6-4):

When the average transfer time increases from 0.05 time unit to 0.1 time unit,

the system performance of resource allocation with multitasking task

assignment (TA4) varies less than 4%; but system performance of resource

allocation with non-multitasking task assignment (TA1) degrades by as much

as 14%. This observation shows that non-multitasking task assignment is

more sensitive to long network transfer time.
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• Program model UU20 (Figure 6-5):

This program model has more uniform elementary tasks and more parallelism

than XU11. When average network transfer time increases from 0.02 time

unit to 0.05 time unit, the system performance of multitasking resource

allocation degrades by as much as 14%, and the performance of non-

multitasking resource allocation degrades by 18%.

The resource management overhead due to network transfer time is large for highly

parallel programs. Consider the best resource allocation algorithm among the four

algorithms studied (i.e., TA4 + RR) and the average network transfer time of 0.05

time unit The resource management overhead is within 10% for program model

XU11, but becomes as large as 28% for program model UU20. This large overhead

is due to the large amount of resource reallocation made to exploit instantaneous

program parallelism.

• On the effectiveness of resource reallocation

The simple resource reallocation algorithm (RR) can effectively balance system load

to give better resource allocation. Consider the case with program model UU20

(Figure 6-5). At system multiplicity of eight, the multitasking task assignment

causes more imbalance in system load than non-multitasking one, resulting a

performance 7% poorer (compare algorithm TA4 with algorithm TA1). However,

the load imbalance caused by multitasking task assignment provides a better

opportunity to expolit parallelism. With resource reallocation (RR) at the average

network transfer time of 0.02 time unit, the performance of multitasking resource

allocation improves by 30% while that of non-multitasking resource allocation

improves only by 13%. As a net result, multitasking resource allocation has a

performance 10% better than non-multitasking resource allocation.

6.2. Evaluation of the hierarchical system architecture

In this part of the study, evaluation of the hierarchical system architecture was based on a

typical set of system parameters. Table 6-3 shows the simulation configuration. Typical

hardware appropriate for a high performance multi-microprocessor system (e.g., 16MHz

microprocessors, memories with 100ns access time and 20MB/S busses) is assumed. The mean

execution time of elementary tasks is in the order of 50 p.s and all task packets and control



30

packets are 10 bytes long. Resource allocation uses both algorithms TA4 and RR. Four

different program models (XP11, XU11, XU20 and UU20) were used to evaluate the system

architecture. Figure 6-6 gives the average execution time w.r.L ideal execution. Figure 6-7

shows the actual average execution time (in simulation time units). In addition to execution

time, network utilization and details of the overall network traffic are also recorded and are

shown in Figures 6-8 and 6-9 respectively.

Table 6-3: Simulation configuration for evaluation of the
hierarchical system architecture

Program Model

Service Time

(time units)

Program Loading (PL)

Dataflow-firing (DF)

Scheduling Overhead

Network Transfer

Resource Allocation Algorithm

XP1 1, XU1 1, XU20, UU20

0.2

0.05

0.02

0.01

TA4 + RR

§ H
•§8

«.

I'
s

number of processors
(system multiplicity)

program model

Figure 6-6: Average execution time w.r.t. ideal execution
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10 20 30 40 50 60
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Program Model XU20 and UU20

-e- ideal execution
TA4 + RR
ideal execution
TA4 + RR

XU20

UU20

linear speedup

number of processors

Figure 6-7: Actual execution time

Observations

• For the four program models tested, dynamic resource allocation incurs reasonably

low overhead (see Figure 6-6). When the number of processors is 16 or less (i.e.,

system multiplicity is four or less), run-time resource management overhead

accounts for less than 4% of the corresponding ideal execution. For larger systems

(up to 64 processors), the resource management overhead is less than 20% (less than

8% in most test configurations).

Run-time resource management overhead is most affected by task dependency
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patterns and uniformity of elementary tasks. In Figure 6-6, program models XU11

and UU20 show noticeably more overhead than XP11 and XU20. In the case of

program model XU11, the task dependency pattern is more irregular than that of

XP11 (random data-flow firing vs Poisson data-flow firing), thus leading to more

unbalanced system load and more difficult resource allocation. In the case of

program model UU20, elementary tasks are more uniform than those of XU20

(small variation of execution time vs exponentially distributed execution time).

Since program model UU20 gains part of its parallelism from such uniformity of

elementary tasks, remote executions of elementary tasks that disrupt the uniformity

reduce the program parallelism and apparently result in more overhead. (But the

gain from load sharing still outweighs the loss - as noted in the following

observation.)

• Figure 6-7 shows that dynamic resource allocation is effective in exploiting

parallelism. As the number of processors increases, the average program execution

time decreases noticeably along with the corresponding ideal execution time. Even

in the case that large resource management overhead is incurred (see curves for

program model UU20), the exploitation of parallelism is remarkable: While the

ideal execution time decreases by 392.5 time units from a uniprocessor system to a

64-processor system, the average execution time decreases by 391 time units (i.e.,

99.6% gain).

• The utilization of the interconnection network is moderate, under 50% (see Figure

6-8). There are on the average 1-2 task packets per control packet (request or

acknowledgement packet) and a slightly more than one task packets per result

packet (see Figure 6-9). That is, each load request results an average of 1-2 task

migrations and most remotely executed task migrates only once. These results show

that the load sharing protocol used is effective and stable.

Conclusions

The preliminary study shows clearly that the proposed hierarchical system architecture supports

low-overhead and effective dynamic resource allocation. By using resource allocation

algorithms as simple as those used in this preliminary study, nearly ideal dynamic resource

allocation can be achieved for systems with small system multiplicity (e.g. four) or for programs

that have non-uniform elementary tasks and less random task dependency pattern (such as XP11
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and XU20). For systems with larger system multiplicity and programs that have either uniform

elementary tasks or totally random task dependency patterns, the gain in exploiting parallelism

outweighs considerably the resource management overhead incurred. The load sharing protocol

used is shown to be effective and stable.

7. Summary and Future Research

Dynamic resource allocation is an important but very difficult problem in multiprocessor

system design. The major difficulties lie in the exploitation of run-time parallelism and in the

minimization of dynamic resource management overhead. A hierarchical system architecture

which integrates considerations of processor structure and program structure was proposed to

alleviate these difficulties. Preliminary evaluation indicates that with the proposed system

approach, the complexity of dynamic resource management could be significantly reduced while

achieving reasonably effective dynamic resource allocation. Many open issues remain to be

addressed before the proposed system architecture can be fully evaluated. Some of these issues

are:

• For a given ratio of network service time to computation time, what is the optimal
dynamic resource allocation algorithm and system multiplicity? Stated in other

words, for a given system multiplicity and network service time, what dynamic
resource allocation algorithm and (the smallest) granularity of computation should

be used?

• What hierarchical characteristics do parallel programs naturally exhibit?5 What kind
of program restructuring is desirable for efficient execution on the proposed

architecture?

• What additional performance improvement can be achieved by dynamic scheduling

(with static estimates)?

• How data referencing patterns of a program affect the performance of the
hierarchical system? What is the best data placement strategy?

Characteristics of interest are number of levels, function and data referencing patterns.
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• What system performance can be achieved with other interconnection network

topologies?

• How can the proposed system architecture be extended to support the use of

specialized processors and to provide fault tolerance? Does the system architecture

support the development of efficient and reliable parallel programs?

Studies on these issues will further explore the system architecture described here and expand

the existing techniques to exploit parallelism.
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