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Abstract

Problem partitioning of regular computation over two-dimensional meshes on mul-
tiprocessor systems is examined. The regular computation model considered involves
repetitive evaluation of values at each mesh point with local communication. The
computational workload and the communication pattern are the same at each mesh
point. The regular computation model arises in numerical solutions of partial differen-
tial equations and simulations of cellular automata. Given a communication pattern,
a systematic way to generate a family of partitions is presented. The influence of var-
ious partitioning schemes on performance is compared on the basis of computation to
communication ratio.
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1 Introduction

Applying parallel processing in solving computational intensive problems has been of
much interest in recent years. There are many scientific and engineering problems in
which the major computation structure is regular. This kind of regularity is a great
advantage contributing to the good performance of many parallel implementation.

The regular computation model considered involves repetitive evaluation of values
at each mesh point with local communication. The computational workload and the
communication pattern are the same at each mesh point. This class of computations
naturally arises in numerical solutions of partial differential equations and simulations
of cellular automata.

The numerical solution of partial differential equations (PDE), by methods such
as point Jacob! iteration, involves evaluation of the value at each mesh point at each
iteration as the weighted sum of the previous values of its neighbors. The pattern of
communicating neighbors is called the stencil. For example, if only the values of the
north, south, east and west neighbors of a point is needed, the stencil used is called a
5-point stencil. Interestingly but maybe not suprisingly, a new non-PDE approach for
solving physical problems also shares the characteristic of regular computation. Recent
research in physics has shown that lattice gas cellular automata.[1] have the great
potential of simulating fluid flow phenomena. A cellular automaton consists of cells
possessing discrete values. At each cycle, the value of a cell is evaluated as a function
of the values of itself and its neighbors.

When this kind of regular computation is implemented on a multiprocessor system,
it is generally preferable to divide the data space (mesh points) into partitions, and
assign each partition to a different processor such that only the values of the boundary
points of a partition have to be accessed by other processors [4,2]. Since performance
is affected by both the computation and communication costs, the shape of partitions
can have important effect on performance.

Historically, rectangular or square partitions have most commonly been assigned
to processors, primarily because the resulting data structures can be easily indexed as
two-dimensional arrays. Vrsalovic, et al. [4] considered the solution of Poisson's equa-
tion over a square region using a 5-point discretization stencil. They tested triangular,
square, and hexagonal partitions. Reed, Adams and Patrick [3] conducted an analyt-
ical study on selecting optimal stencil/partition pairs. They considered rectangular,
triangular, square and hexagonal partitions. If computation to communication ratio
is used as the criterion for comparison, they found that square partitions are best for
9-point star stencils, hexagonal1 partitions are best for 5-point stencils, 9-point cross
stencils and 13-point stencils, and square and hexagonal partitions are equally good for

explained in Section 2, this kind of hexagons will be referred as R-hex.



2 GENERATION OF PARTITIONS

5-point stencil 7-point stencil 9-point star stencil

9-point cross stencil 13-point stencil

Figure 1: Five commonly used stencils

7-point stencils.
In this report, we will study problem partitioning of regular computation over two-

dimensional meshes. We will show that .for the various stencils (communication pat-
terns) considered, there are other shapes of partitions which achieve higher computation
to communication ratios than those previously discussed in the literature. In section 2,
a systematic way to generate families of partitions using the concept of stencil neigh-
borhood is presented. Section 3 discusses the properties of the partitions. Finally, in
section 4 the computation to communication ratio is used as a metric to compare the
performance of different partitioning schemes under various choice of stencils.

2 Generation of Partitions

In solving problems belonging to the class of regular computation, there is usually a
choice of stencils. Figure 1 shows several commonly used stencils for two-dimensional
meshes. The stencils to be considered in this report are the 5-point stencil, the 7-point
stencil, the 9-point star stencil, the 9-point cross stencil and the 13-point stencil.

Let us define a partition to be a set of points in the two dimensional space Z2, where
Z is the set of integers. The neighborhood, N(p), of a point, p, is a set which contains
the point itself and some points positioned relative to the point, where TV is called
the neighborhood function. With this notation, we may denote the corresponding
neighorhood function of the stencils considered above as JV5, JV7, 7V9s, 7V9c, and JV13

respectively. For example, we can express N5 and N7 as follows:



Similary, the neighborhood functions for other stencils can be written down easily.
The extension of a partition P under the neighborhood function N is defined to be

E(P;N) = { q : q € N ( p ) , p € P } (1)

In other \vords, the extension of a partition is a new partition which contains exactly
all the neighboring points of the points in the original partition.

Given any seed (initial) partition 5, and neighborhood function JV, we can recur-
sively define a family of partitions as follows:

Pk = E(Pk_ l;N) i t k > l

If we denote E(E(P; N); N) as E*(P;N), E(E(E(P; N); AT); N) as E3(P;N) and
so on, we can rewrite the above partition generation scheme as follows:

Pfc = Ek!~l(S; N) (3)

where E°(S; N) = S.
Since it is actually the geometric properties of a partition which are important here,

we consider two partitions. PI and P^ equivalent if PI is a translation of PI, that is, if
there exists a translation vector u = (ur, uy) such that

where T is the translation function. It is easy to see that the relation defined above
is reflexive, symmetric and transitive, hence it is indeed an equivalence relation. This
equivalence allows us to freely talk about the shape of the partitions without taking
much care about the origin of the coordinate system. For our purposes, rotation equiv-
alence and reflection equivalence are not considered here.

One type of seed we will use very often is a rectangle of size m x n, denoted as
$m,n, where Smin = {(x,y) : l < z < m , 1 < y < n}. An important special case is the
single-point seed, Si,i. Suppose the seed is a single point, what kind of partitions will be
generated if N is one of the corresponding neighborhood functions of the stencils shown
in figure 1? Figure 2 shows the cases for JV5, N7 and N9a. We shall call these kinds of
partitions diamonds, hexagons and squares respectively. It should be noted that this
hexagon is different from the one as discussed in Reed's paper [3]. Reed's hexagon,
denoted as R-hex here, is actually some kind of diamond partition with variable seed
size, according to our classification. Suppose we choose N5 as the neighboring function.
If we set S to 52,2 for generating PI , 5 to 53)2 for generating P2, S to S4j2 for generating
P3, and so on, we will get R-hex (see figure 2).



3 PROPERTIES OF PARTITIONS

diamond

• • hexagon

square

R-hex

k = l k = 2 k = 3

Figure 2: Four kinds of partitions

3 . Properties of Partitions
•

A partition P is said to tessellate Z2 if and only if for any finite region R C Z2, there
exists a finite number n of translation vectors u,-'s such that

1- R C U?=i T(P; «,-) and

.

In other words, a partition tessellates if some copies of it cover any given region
without overlapping each other. In a given problem, if we use only one kind of partition
which tessellates the 2-D plane Z2, we may reduce the programming effort, because
every processor will then see the same data structure and communication patterns
(except possibly at boundaries).

In general, only some of the partitions of the form Ek(S; N) tessellate the 2-D plane.
The diamond, the hexagon, the square, and the R-hex are some examples. However,
the family of partitions derived from the 9-point cross stencil, Ek(Siti;N9c), does not
tessellate, whereas those derived from the 13-point stencil also have the diamond shape.
We will only consider those partitions which tessellate. .



The gird of a partition under a neighborhood function N is defined to be

-P _ (4)

The gird points are exactly those external points which have to be accessed by a pro-
cessor to which the partition is assigned. Figure 3 shows the girds of various partitions
under different neighborhood functions (stencil structures).

It is very important to note that the neighborhood function N in equations 3 and 4
can be different. For example, if we start with a single-point seed, and choose TV to
be N9s in equation 3, and N to be JV5 in equation 4, then the number of gird points
is equal to |G(^fc~1(5iii; N9s); N5)\. However, interesting results do occur when the
neighborhood function N in equations 3 and 4 are the same.

Since the neighborhood of a point includes itself by definition, it is obvious that
P C E(P; N). Combining this fact with equation 4, we have

E(P; N) = P U G(P; JV) (5)

Since P D G(P; N) = 0 by definition of G (see equation 4), we also have

\E(P;N)\ = \P \+\G(P- ,N) \ (6)

Suppose the family of partitions Pk is parametrized by S and N, then by applying
equation 6 to the definition of P/, (equation 2), we have

• \Pi\ = \S\ m
\Pk\ = \Pk-i\ + \G(Pk-i; N)\ i f f c > l (<)

Solving the recurrence equations, we get the formula for finding the size of a partition:

W = \S\ + E\Gi\ (8)
i=l

where G, = G(P,-; N) .
Equation 8 expresses the size of a partition in terms of its successive layers of girds.

However, the size of a gird has to be found on a case by case basis. Tables 1 and 2
give the formula for \Gk\ and |Pfc| when the seed is a single point (Si,i), and a rectangle
(•5m,n) respectively. They can be readily derived by using mathematical induction.

It is interesting to note that Ek~l(Siti\ Nga) only generates square with sides of odd
length, with \Pk\ = l + 4fc(fc-l) = (2/s-l)2 , and Ek-l(S^ Nga) only generates square
with sides of even length, with |Pfc| = 4'+ (k - l)(4fc + 4) = (2k)2 .

As a special case of diamond partitions with variable seed sizes, R-hex is generated
as P*, where P* = Ek~l(Sk+i,2', N5). Substituting m = k + 1 and n = 2 into the formula
for N5 in table 2, we get |Gfc| = 6k + 2, and |Pfc| =
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Figure 3: Girds of partitions with different stencils. The black circles are partition
points, and the white circles are gird points.



Table 1: Size of partitions and girds with single-point seed (Si,;)

name of partition
diamond
hexagon
square

N
N5

N7

N9a

\Gk\
4Jfc
6k
8k

\Pk\
1 + 2k(k - 1)
1 + 3k(k - 1)
1 + 4fc(jfc _ i)

Table 2: Size of partitions and girds with rectangular seed (Sm,n)

N

N7

\Gk\
4fc + 2m +
6k + 2m +
8k + 2m +

2n
2n
2n

-4
-4

l-Pfcl
mn -
mn j

mn -

\ - (k-
\ - (k-
h ( f c -

l ) (2fcH
l)(3fc H

h 2 m H
h 2 m H
h 2 m H

\-2n
\-2n
h2n

-4)
-4)
-4)

4 Comparison of Partitions

For a given partition P with Nc as the stencil used in the communication, we assume
that the amount of computation workload is equal to the size of the partition, |P|,
and the amount of communication is equal to the size of the gird, \G(P;NC}\. This
assumption was also used in [3]. The computation to communication ratio is thus
defined to be

CCR=\P\/ \G(P;N e) \ (9)

For example, if we use the 7-point stencil communication structure, but choose to divide
the domain into diamond partitions Pjt, then the amount of computation is equal to
1 + 2k(k — 1), and the amount of communication is equal to \G(Pk; N7)\ = 6k (see
figure 3). Table 3 shows the amount of communication for the different combination of
stencils and partitions.

Since the partitions have different shapes, it is not always possible to divide a given
domain into idential subdomains such that each subdomain matches the right shape and
size of a partition one would like to use. We may have to use a bigger partition of the
same shape, but this may increase the amount of computation and change the pattern
of communication. However, we can still compare the computation to communication
ratio (CCR) of the various partitioning schemes in the asymptotic sense (see table 4).
It is easy to see that for a given seed, the asymptotic CCR is independent of the seed
itself. In table 4, A denotes the number of points contained in a partition. Note that
different partitions may have different sets of possible A values.



4 COMPARISON OF PARTITIONS

Table 3: Amount of communication — \G(Pk', Nc)\

stencil,JVc

N7

diamond

6k
8k

hexagon
6k -2

6k
8k

12Jk-4
12Jb

square

8k -2
8k

16fc-4

diamond[5m>n]
4k + 2m + 2n — 4
6 A; + 2m + 2n - 4
8k + 2m + 2n - 4
8k + 4m + 4n - 4
8k + 4m + 4n — 4

R-hex

10Jb + 2

To calculate the (asymptotic) OCR, we let the area of a partition PI, be a constant
A, and solve for k. For example, if we use the diamond partition Pj. and the 7-point
stencil, then we have

|Pfc| = 1 + 2k(k -1) = A

Solving for k,

Hence,

k = (\/1A - 1 + l)/2

OCR = \Pk\/\G(Pk;N7)\
= A/6k

= A/(3(V2A -1 + 1))

x JA/18

Similarly, we can derive the values in table 4 from tables 1, 2 and 3 according to
equation 9.

From tables 4 we have the following observation:

1. In all the cases considered, OCR is proportional to \/~A. This is not surprising,
because the size of a partition is a quadratic function of fc, while the size of the
corresponding gird is a linear function of k.

2. For each partition, CCR decreases or stays the same as \NC\ increases. It is
because for the same area A, the number of gird points increases or stays the
same as there are more points contained in the communication stencil.

3. Diamond partitions yield, the highest CCR (^A/8) for -/V5, hexagons are best

(y A/12) for JV7, squares are best (•JA/16) for JV9s, and diamond partitions are

also best (•i/A/32) for both A^9c and JV13 stencils. This pattern suggests that



Table 4: Asymptotic computation to communication ratio (OCR)

stencil,JVc diamond hexagon square R-hex

N9c

Table 5: Normalized asymptotic CCR

stencil,JVc

N5

N7

N9a

N9c

N13

diamond
1.41
0.94
0.71
1.41
1.41

hexagon
1.15
1.15
0.87
1.15
1.15

square
1
1
1
1
1

R-hex
1.33

1
0.8
1.33
1.33
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Table 6: Number of neighboring partitions (for P* when k > 3)

stencil,7Vc

^5

N7

N9a

N9c

N13

diamond
•4
6
8
8
8

hexagon
6
6
6
6
6

square
4
6
8
4
8

R-hex
6
6
6
6
6

there is a formal relationship between the optimal partition and the chosen sten-
cil: The partition derived from a stencil Nc is the optimal partition in terms of

4

computation to communication ratio when Nc is also the communication stencil,
for NC = N5,N7,N93.

4. The results on selecting the optimal stencil/partition pairs reported in [3] (see
section 1) correspond to the last two columns of table 4.

5. R-hex is the second best whenever diamond is the best (when Nc = 7V5, JV9c, JV13).
It is the second worst whenever diamond is the worst (when Nc = NT, Ng3). It is
never the optimal partition in any of the cases considered.

Since square partitions probably result in most regular data structures, we are espe-
cially interested in knowing how well square partitions compare with other partitions.
Hence, the normalized asymptotic OCR with respect to square partitions are calculated
and displayed in table 5. It shows that square parition is never more than 41% worse
than any other partitions under all the cases considered.

For our purpose of finding the optimal partitions under different cases, rectangular
stripes, rectangular partitions and triangular partitions are not considered. They have
been previously shown to be inferior to squares or R-hex's [3].

Good peformance involves many factors. Communication cost not only depends
on the total amount of communication, but also depends on the actual patterns of
communication, such as the number of communicating neighbors (see table 6) and the
underlying machine architectures. This report intends to give the asymptotic bound on
one of the issue — optimal partitioning with respect to the computaion to communica-
tion ratio. Maximizing the computation to communication ratio does not necessarily
guarantee minimum execution time of a parallel program, but it is still an important
indicator of the potential performance of the program. It is interesting to see how much
this ratio varies under different combination of stencils and partitions.
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5 Conclusion

This report has presented an analysis for selecting optimal partitions for regular com-
putation over two-dimensional meshes given the communication stencil. The criterion
used is the computation to communication ratio, which is defined to be the ratio of the
size of a partition to that of its gird. It is shown that diamond partitions are best for
5-point stencils, 9-point cross stencils and 13-point stencils, hexagonal partitions are
best for 7-point stencils, and square partitions axe best for 9-point star stencils.
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