
COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY' STANFORD, CA 94305-2192

Queueing Network Models for
Parallel Processing of Task Systems:
An Operational Approach

Victor W. K. Mak

Technical Report: CSL-TR-86-306

September 1986

The work described herein was supported by NASA Ames Research Center
under contract NAG 2-248 and using facilities provided by NAGW 419.

~ASA-CE-1E3174) QUELllNG ~11~CF~ ~OD~L5 N8 -2£677
E ~ P~E I EI f CCESSI~G CF lAf~ SYSlhdS: AN
CfEhA1IC)IL lIEICllb fStantcrd [niv.) 28 p

CSCI C9B Oncla~
GJ/o2 01566tJ

r-

•

Queueing Network Models for
Parallel Processing of Task Systems:

An Operational Approach

by

Victor W. K. Mak

Technical Report: CSL-TR-86-306

September 1986

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305

Abstract

Computer performance modeling of possibly complex computations running on
highly concurrent systems is considered. Earlier works in this area either dealt with
a very simple program structure or resulted in methods with exponential complex­
ity. An efficient procedure is developed to compute the performance measures for
series-parallel-reducible task systems using queueing network models. The procedure
is based on the concept of hierarchical decomposition and a new operational approach.
Numerical results for three test cases are presented and compared to those of simula­
tions.

Key Words and Phrases: Decomposition, Modeling, Operational Approach, P ar­
allel Processing, Performance Evaluation, Performance Prediction, Queueing Network,
S eries-Parallel-Red ucible, Task System.

l

Copyright © 1986

by

Victor W. K. Mak

. I

•

-- -- ~ ----- - - --- --- ---------

11

Contents

1 Introduction

2 Task System and Computer System Models

3 An Operational Approach
3.1 Estimation of Contention
3.2 Estimation of Task Mean Execution Time . . .
3.3 Estimation of System Mean Completion Time.

4 Test Cases and Validation
4.1 6-Task System
4.2 Master-Slave System . . .
4.3 Divide-And-Conquer System

5 Summary

A Derivation of Equation 7

B Derivation of Equations 15 and 16

--.-~---

CONTENTS

1

2

4

5
7
7

9
10
10
12

16

18

19

LIST OF FIGURES iii

List of Figures

1 A Series-Parallel-Reducible Task System 3
2 A Concurrent Computer System 3

!
3 6-Task System 10 -.. .
4 Uniprocessor System 10
5 Master-Slave System 12
6 Shared Memory Multiprocessor System 13
7 Divide-And-Conquer System 15

I
--~

I ~

, .

IV LIST OF TABLES

List of Tables

1
2
3
4
5
6

Service Demands of 6-Task System on Uniprocessor
Results of 6-Task System
Service Demands of Master-Slave System on Multiprocessor
Results of Master-Slave System
Service Demands of Divide-And-Conquer System on Multiprocessor
Results of Divide-And-Conquer System

11
11
13
14
16
17

1

1 Introduction

As interest in highly concurrent system research expands, a means for predicting the
probable performance of application computation on such systems would be an im­
portant tool for evaluating the effectiveness of how these systems are being utilized.
Unfortunately, most existing analytical approaches either are not suitable to study
parallel systems, or are computationally intractable. Simulation approaches are also
unrealistic if the systems being studied are much more capable than the systems sup­
porting the simulation.

This report describes a computationally efficient procedure for predicting the prob­
able performance of a possibly complex computation on a highly concurrent system
using queueing network models. The computation is specified by a series-parallel­
reducible task system which consists of a set of tasks related by a deterministic prece­
dence graph. Each task is characterized by its expected total loadings (or service
demand) on the resources of the computer system. The procedure presented here can
be used to determine key performance measures such as mean execution time for each
task, mean completion time for the task system, and utilizations for the resources in
the computer system.

Heidelberger and Trivedi [HT82,HT83] have used analytic queueing models to pre­
dict performance for programs with internal concurrency. In [HT82], they considered
systems in which a parent task subdivides into two or more tasks which require no
synchronization with the parent task. In [HT83], a task can spawn two or more con­
current tasks but has to wait for their completions before it can proceed. Both papers
considered only very simple task systems. The task systems considered in this report
are much more complicated and include all concurrent task systems programmed using
block-oriented constructs like co begin, coend, DOALL, fork, join, etc ..

Thomasian and Bay [TB83] considered a more general task system with determin­
istic precedence constraints expressed as a directed acyclic graph. Their method is
based on the concept of hierarchical decomposition [Cou77]. At the higher level , a
Markov chain corresponding to the transitions among system states is generated. At
the lower level, the transition rates among the states are computed using a queueing
network solver. Their method is a significant improvement over the exact method
using Markov chain alone. However, the number of states in their method is still too
high for large systems. For a system with N tasks, in the worst case, there may be as
many as 2N states in their higher level Markov chain.

Mohan in his thesis [Moh84] considered similar task structures as [TB83]. He also
made use of queueing network models to find throughput of system states in the lower
level. In the higher level, he used simulation to determine the mean completion time
for the system by tracing different execution paths. For a system with N tasks, there

2 2 TASK SYSTEM AND COMPUTER SYSTEM MODELS

may also be as many as 2N execution paths. Hence, it reqUIres at least the same
complexity as the method in [TB83].

The task system model as used in the method described later is a subset of that
considered in [TB83]: it has to be series-parallel-reducible. This method is also based
on the concept of hierarchical decomposition, but instead of forming a Markov chain
and computing state probabilities, an operational approach is used to determine per­
formance measures directly from measurable quantities. This approach reduces the
complexity of the method to be polynomial.

In section 2 of this report, the task system and computer system models used in
this procedure are described. The operational approach is presented in section 3. The
three key steps in the procedure: estimation of contention, estimation of task execution
t ime, and estimation of system completion time, are discussed in sections 3.1, 3.2, and
3.3, respectively. This procedure has been validated through simulation. Three test
cases are presented and the numerical results are compared to those of simulations in
section 4.

2 Task System and Computer System Models

The task system model used in this report follows closely with the one defined in [TB83]
except with one additional constraint: the precedence graph is series-parallel-reducible
(see Fig. 1). A task system is specified by a 3-tuple (T, H]' [Dnk]) as follows:

1. T = (TI' T2 , ••• , TN) is a set of tasks to be executed on the computer system.
Except for queueing effect, the tasks execute independent of each other.

2. [-<J 'is a partial order defined on T specifying deterministic precedence constraints.
Ti -< Tj means that Ti must be completed before Tj can begin. Only series­
parallel-reducible directed acyclic graphs are considered.

3. [Dnk] is an N x K matrix, such that Dnk is the service demand (expected total
loadings) of task n on resource k.

The computer system is modeled as a central server queueing network (see Fig. 2).
Each resource in the system is modeled as a service center. During the course of
execution of a task system, the computer system processes different combinations of
tasks according to the precedence constraints until all tasks are completed. Each
task combination in progress at the computer system can be represented as a closed
queueing network with multiple job types. Tasks are assumed to execute as soon as
their precedence constraints are satisfied. Other task scheduling disciplines are also
possible but are not considered in this report. To simplify discussion, the queueing
network model is assumed to be separable and has a product-form solution [LZGS84].

'- !

•

r- - - - - - - - - - - - --~-- - - - 1

3

Figure 1: A Series-Parallel-Reducible Task System

CPU1

Figure 2: A Concurrent Computer System

i
I u

4 3 AN OPERATIONAL APPROACH

3 An Operational Approach

One of the most difficult problems in predicting performance of a concurrent task
system is that service demands system resources are probabilistic. This results in
probabilistic task execution times and hence different possible execution paths for the
same task system. Each execution path has its own path probability and a corre­
sponding system completion time. To determine exactly the mean system completion
time, all these possible execution paths must be taken into account. Earlier efforts
have tried to use either mathematical analysis [TB83] or simulation [Moh84] to find
all possible execution paths and their path probabilities. Although accurate, those
methods are infeasible for large task systems due to their exponential complexity.

The main difference of the operational approach described here compared with
earlier efforts is in estimating task mean execution times and system mean comple­
tion time directly without tracing all possible execution paths. In [DB78], Denning
and Buzen have used an operational approach for the analysis of queueing network.
Instead of using stochastic models to compute performance measures, algebraic rela­
tionships among measurable quantities (such as throughput and response time) are
derived. Using these relationships, performance measures of queueing network models
can be computed directly without ' resorting back to stochastic models. Likewise, in
this procedure, some algebraic relationships are derived among measurable quantities,
such as task mean initiation times, task mean execution times, system mean comple­
tion time, and task service demands. Using this set of relationships, the performance
of the system can be estimated directly without tracing all execution paths.

This approach is based on the concept of hierarchical decomposition [Cou77J, i.e.,
the system is assumed to reach equilibrium between task initiation and completion
instants. As mentioned in the last section, each task combination in progress at the
computer system is represented as a cloesed queueing network with multiple job types,
resource utilizations and mean queue lengths can be assumed to reach their steady state
values during this interval because of the decomposition approximation.

The execution time of a task consists of two components: its actual service time by
the resources in the computer system, and the waiting time spent at the queues. The
former is the service demand and is given in [D nk]. The later depends on the amount
of contention experienced in the system, which in turn depends on the loadings of the
system during the task's execution interval. By comparing with mean initiation times
and mean completion times of other tasks in the system, the amount of contention
experienced by a task during its execution interval can be estimated. With the amount
of contention, the mean execution time of a task can be estimated. Knowing all task
mean execution times, the mean initiation time for each task and the mean completion
time for the task system can be estimated by reducing the series-parallel precedence

3.1 Estimation of Contention 5

graph. With the new set of mean initiation times and mean execution times, a better
estimate of the amount of contention can be obtained. The iterative process continues
until the estimate of the mean completion time converges.

Following is the outline of the iterative procedure:

1. Initiate the system as contention free, i.e., task execution t imes equal to service
demands.

2. Estimate amount of contention experienced by each task during its execution
interval.

3. Estimate mean execution times for all tasks using the contention found in the
previous step.

4. Estimate mean initiation times for all tasks and mean completion time for the
task system by reducing the series-parallel precedence graph.

5. Repeat steps 2, 3, and 4 until successive estimates of mean completion time
converge to within some tolerance (say 0.1%).

Steps 2, 3, and 4 are the key components of this iterative procedure. They will be
discussed in more detail in the next three sections. The complexity of each iteration
is O(N3K) where N is the number of tasks and K is the number of resources in the
system.

3.1 Estimation of Contention

The amount of contention experienced by a task during its execut ion interval depends
on the number of tasks competing with it for system resources. If t here is no other task
executing concurrently with it, it can obtain service immediately at every resource,
and its execution time is just equal to its service demand. On the other hand, if there
are a lot of concurrent tasks, each task spends more time waiting at the queues for
service. The amount of contention can be estimated in terms of the arrival instant
queue length, Aib which is the mean queue length (including the one in service) as
seen by task i when it first arrives at resource k. If Q n.\: is the steady state queue
length of task n at resource k, and Win is the fraction of task i 's execution interval
such that tasks i and n overlap with each other, then Ai.\: can be computed as follows:

--- "--"

N

Ai.\: = L Qn.\: Win
n=l,n~i

(1)

6 3 AN OPERATIONAL APPROACH

Qnk is equal to the fraction of E nk , the time task n spent in resource k, during En, n's
execution interval,

(2)

Let pin be the probability that tasks i and n overlap, and din be the mean duration
of the overlapping interval if tasks i and n overlap, then

(3)

Substituting equations 2 and 3 into equation 1, we get

(4)

Consider task i with mean initiation time, Ii, and mean completion time Ci, and
task n with mean initiation time, In, and mean completion time en. Tasks i and n
will overlap with each other unless i initiates after n has completed, or vice versa.
Therefore,

(5)

If A and B are two independent non-negative continuous random variables, then

Pr(A < B) = /00 Pr(B > x)fA(x)dx
o

= /00[1 _ FB(x)]fA(x)dx
o

(6)

where fA(X) is the probability density function of A and FB(X) is the probability
distribution function of B .

Equation 6 involves both the distribution and density functions of A and B, and
is very expensive to compute. It is computationally more economical to consider only
the means and variances of the initiation and completion times. Assume that A and B
are both Erlang distributed with parameters (,l'A, r A) and P'B, rB), respectively. Sub­
stituting these parameters into equation 6, and after simplification (see Appendix A) ,

Pr(A < B) = "A I: "B r A + - . (
\)rArB-1(\)k(k 1)'

AA + AB k=O AA + AB (r A - I)! k!
(7)

Notice that the mean initiation and completion times of tasks i and n in equation 5
are not independent of each other. Although tasks execute independently of each
other, they may still have a common ancestor chain in the precedence graph. If t is

. .

;

--~

J

.I

3.2 Estimation of Task Mean Execution Time 7

the duration of their common ancestor chain, then it has to be subtracted from their
mean initiation and completion times before equation 7 can be used to compute the
probabilities.

Task execution times are assumed to be exponentially distributed. This is asymp­
totically true if the task cycles back through the queueing network with probability p
and exits with probability (1- p), and if p is close to 1 [LS79]. Assume that Ai (= iJ
and An (= iJ be parameters of tasks i and n's execution time distributions respec­
tively. When tasks i and n overlap, the overlapping region will end when either task
terminates. Since i and n are two independent tasks with exponentially distributed ex­
ecution times, using the memoryless property of the exponential distribution function,
the duration of the overlapping region is also exponentially distributed with parameter
equals to Ai + An. Therefore, the mean duration of the overlapping region is,

1
din = Ao + A

, n
(8)

In summary, using equations 4, 5, and 8, we can determine the arrival instant
queue length for each task at each resource in the system, and hence the amount of
contention experienced by each task.

3.2 Estimation of Task Mean Execution Time

The mean execution time of task i at resource k can be estimated using the following
equation [RL80],

(9)

Dile is the service demand of task i on resource k and is given as an input paramet er
of the task system. Aik' the arrival instant queue length, is computed as described in
the last section. The mean execution time for task i is then,

K

Ei = L Dik(l + A ik) (10)
1e= 1

3.3 Estimation of System Mean Completion Time

After finding the mean execution time for each task, the next step is to make use
of the series-parallel-reducible precedence graph to determine mean initiation times
and mean completion time for the system. Because of the special structure of the
precedence graph, these values can be estimated by reducing the series-parallel graph,
i.e. , finding the equivalent execution time for tasks in series and in parallel [Kle8S].
The whole task system can be reduced to a single equivalent execution time, which is

8 3 AN OPERATIONAL APPROACH

the mean completion time for the system. Mean initiation time for a task is actually
the mean completion time for the task subsystem consisting of all of its ancestors.

Execution time for a task is not a fixed number, but a random variable with some
distribution. As explained in section 3.1, task execution time is assumed to have an
exponential distribution. Task execution times are also assumed to be independent of
each other except for queueing effect.

Assume that tasks i and n have probability distribution functions Fi and F n , and
density functions Ii and In, respectively. If i and J' are in series, then the equivalent
probability density function of their series combination will be the convolution of the
two density functions,

leq = Ii * !; (11)

If i and i are in parallel, then the equivalent probability distribution function of
their parallel combination will be the product of the two distribution functions,

(12)

However this approach is very expensive computationally, since convolution and
integration have to be performed numerically. A more economical way to find the series
and parallel equivalences is to consider only the means and variances of distributions.

Let Ei and Vi be the mean and variance of the execution time of task subsystem
i, respectively. If task subsystems i and i are in series, then using the Central Limit
Theorem, the equivalent mean and variance of the series combination are:

(13)

and

(14)

For task subsystems in parallel, the determination of the equivalent mean and
variance is a little bit more complicated than the serial case. As in section 3.1, assume
that the execution time of task subsystem i is Erlang distributed with parameters (Ai,
Ti), and for j', (Ail Tj). These parameters are substituted into equation 12 to solve
for Feq , which can then be used to solve for the equivalent mean and variance (see
Appendix B). After simplification, the equivalent mean and variance can be shown to
be:

(15)

\., i

I~ ----- ---~----------. -- .. --
I

!
'\.10. ... __

9

A;i rj-l (Aj)k (ri + k + I)!
(Ai + Aj)ri +2 f,; Ai + Aj (ri - I)! k! (16)

A? ri-
1

(Ai)k (rj + k + I)!
(Ai + Aj)r j +2 E Ai + Aj (rj - I) ! k!

Equations 13 to 16 are used to reduce the precedence graph to obtain mean initia­
tion times and mean completion time for the task system. This set of newly computed
values can then be used to estimate the contention in the system.

The mean completion time, C, can also be used to determine the utilizations and
mean queue lengths of the resources in the system. For a system with N tasks , the
utilization of resource k is

(17)

The mean queue length of resource k is

(18)

4 Test Cases and Validation

In this section, three test cases are used to evaluate the accuracy of the above procedure
by comparing the numerical results to those of simulations. In the above method, since
the queueing network is separable and has a product-form solution, the specification
of the task system model requires only the expected total loading (the product of the
mean number of visits to the resource and the mean service time of the resource) of
each task on each resource. However, for simulation purpose, both the expected t otal
loading and the mean service time of the resource have to be specified. The simulator
was written using C8IM, a C-based process oriented simulation language developed
by Herb 8chwetman at MCC [8ch86J.

The first test case is a 6-task system running on a uniprocessor system. This
is the same example used in [TB83] and is chosen for comparison purpose. Both
the second and the third test cases use a shared memory mult iprocessor model in
which there are 4 processors and 4 memory units connected by some interconnection
network. The second test case has a master-slave task structure that corresponds to
computations written in concurrent programming languages with constructs like fork

and join. The third test case has a partitioning task structure which is common for

~--- ------------

10 4 TEST CASES AND VALIDATION

Figure 3: 6-Task System

Figure 4: Uniprocessor System

divide-and-conquer algorithms. All simulations for these three test cases were run for
5000 replications.

4.1 6-Task System

The first test case is a 6-task system (Fig. 3) as used in [TB83]. The uniprocessor
model (Fig. 4) used consists of one CPU (service time 0.020) and two identical disks
(service time 0.040). The service demands of the 6-task system on the uniprocessor
is shown in Table 1. The operational method takes only 3 iterations to converge to
the final estimation. The results are shown in Table 2.

4.2 Master-Slave System

The second test case has a master-slave task structure (Fig. 5) that is common for
computations written in concurrent languages with constructs like fork and join. The
master task spawns off a number of slave tasks and wait for their completions before
proceeding. Two cycles of this synchronization pattern are shown in this test case. The

-- I

4.2 Master-Slave System 11

! -

Table 1: Service Demands of 6-Task System on Uniprocessor

Task CPU DISK1 DISK2

1 0.420 0.400 0.400
2 0.420 0.400 0.400
3 0.620 0.600 0.600
4 0.620 0.600 0.600
5 0.420 0.400 0.400
6 0.420 0.400 0.400

Table 2: Results of 6-Task System

Operational Simulation Error

C 6.235 6.140 1.55%
El 1.825 1.795 1.67%
E2 1.825 1.876 -2.72%
E3 2.233 2.222 0.50%
E4 2.470 2.469 0.04%
Es 1.716 1.705 0.65%
E6 1.716 1.720 -0.23%

III 12, 14 0.000 0.000 0.00%
13 2.738 2.643 3.59%

Is, 16 2.470 2.469 0.04%

I

\
\~~----

,- -

12 4 TEST CASES AND VALIDATION

Figure 5: Master-Slave System

computer system model used is a shared memory multiprocessor system (Fig 6). It has
4 processors (service time 0.020) and 4 memory units (service time 0.020) connected
by 2 interconnection networks (modeled as delay centers with delay time 0.001) . The
service demands are shown in Table 3. Three iterations are required by the operational
method to converge to the final estimates. The results are shown in Table 4.

4.3 Divide-And-Conquer System

The third test case has a partitioning task structure (Fig. 7) that is common for
computations using divide-and-conquer algorithms. The computer system model used
is the same as the last test case as shown in Fig. 6. The service demands of this divide­
and-conquer system on the multiprocessor is shown in Table 5. Only four iterations
are required to converge to the final estimates. The results are shown in Table 6.

- I

/

1-

4.3 Divide-And-Conquer System 13

P1 M1

Figure 6: Shared Memory Multiprocessor System

Table 3: Service Demands of Master-Slave System on Multiprocessor

Task PI P2 P3 P4 INI IN2 Ml M2 M3 M4

Masterl 0.520 0.025 0.025 0.125 0.125 0.125 0.125

Sla 0.620 0.030 0.030 0.150 0.150 0.150 0.150

SIb 0.520 0.025 0.025 0.125 0.125 0.125 0.125

SIc 0.620 0.030 0.030 0.150 0.150 0.150 0.150

SId 0.520 0.025 0.025 0.125 0.125 0.125 0.125

Sle 0.620 0.030 0.030 0.150 0.150 0.150 0.150

S1£ 0.520 0.025 0.025 0.125 0.125 0.125 0.125

81g 0.620 0.030 0.030 0.150 0.150 0.150 0.150

81h 0.520 0.025 0.025 0.125 0.125 0.125 0.125

Master2 0.520 0.025 0.025 0.125 0.125 0.125 0.125

S2a 0.620 0.030 0.030 0.150 0.150 0.150 0.150

S2b 0.620 0.030 0.030 0.150 0.150 0.150 0.150

S2c 0.620 0.030 0.030 0.150 0.150 0.150 0.150

S2d 0.620 0.030 0.030 0.150 0.150 0.150 0.150

S2e 0.520 0.025 0.025 0.125 0.125 0.125 0.125

S2f 0.520 0.025 0.025 0.125 0.125 0.125 0.125

S2g 0.520 0.025 0.025 0.125 0.125 0.125 0.125

S2h 0.520 0.025 0.025 0.125 0.125 0.125 0.125

Master3 0.520 0.025 0.025 0.125 0.125 0.125 0.125
•

14 4 TEST CASES AND VALIDATION

Table 4: Results of Master-Slave System

Operational Simulation Error

C 10.452 10.732 -2.61%

EMasterl 1.070 1.059 1.04%
ESla 1.667 1.642 1.52%
ES 1b 1.430 1.390 2.88%
E s 1c 1.667 1.646 1.28%
E S1d 1.430 1.401 2.07%
ES 1e 1.667 1.643 1.46%
ESlf 1.430 1.427 0.21%
ES 1g 1.667 1.638 1.77%
ESlh 1.430 1.425 0.35%

EMa.ter2 1.070 1.068 0.19%
ES2a 1.677 1.659 1.08%
E S2b 1.677 1.642 2.13%
Es2c 1.677 1.632 2.76%
ES2d 1.677 1.666 0.66%
ES 2e 1.421 1.432 -0.77%
ES2f 1.421 1.398 1.65%
E S2g 1.421 1.387 2.45%
ES2h 1.421 1.430 -0.63%

EMa.t er3 1.070 1.075 -0.47%
IMa.terl 0.000 0.000 0.00%

151 1.070 1.059 1.04%
IMa.ter2 4.712 4.814 -2.12%

152 5.782 5.882 -1.70%
IMa.ter3 9.382 9.657 -2.85%

..

4.3 Divide-And-Conquer System 15

i -

Figure 7: Divide-And-Conquer System

•

16 5 SUMMARY

Table 5: Service Demands of Divide-And-Conquer System on Multiprocessor

Task PI P2 P3 P4 INI IN2 Ml M2 M3 M4

Start 0.520 0.025 0.025 0.125 0.125 0.125 0.125
D1a 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D1b 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D2a 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D2b 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D2c 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D2d 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D3a 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D3b 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D3c 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D3d 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D3e 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D3f 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D3g 0.620 0.030 0.030 0.150 0.150 0.150 0.150
D3h 0.620 0.030 0.030 0.150 0.150 0.150 0.150
C2a 0.420 0.020 0.020 0.100 0.100 0.100 0.100
C2b 0.420 0.020 0.020 0.100 0.100 0.100 0.100
C2c 0.420 0.020 0.020 0.100 0.100 0.100 0.100
C2d 0.420 0.020 0.020 0.100 0.100 0.100 0.100
CIa 0.420 0.020 0.020 0.100 0.100 0.100 0.100
C1b 0.420 0.020 0.020 0.100 0.100 0.100 0.100
End 0.520 0.025 0.025 0.125 0.125 0.125 0.125

5 Summary

This report has presented an efficient procedure for predicting performance of series­
parallel-reducible task system. The complexity of each iteration of the method is
O(N3 K), where N is the number of tasks and K is the number of resources in t he
system. This complexity is a very significant reduction over earlier efforts which either
dealt with very simple task structures, or had methods with exponential complexity.
By using an operational approach, the performance measures of the system can be
estimated directly from measurable quantities without tracing all possible execution
paths. The procedure is very accurate as demonstrated by the three test cases pre­
sented. In fact, the maximum observed error in the estimates from the procedure
are within 4% of simulation results in all three cases. The procedure also has a high
convergent rate: for the test cases presented, convergence can be achieved in less than
5 iterations.

•

Table 6: Results of Divide-And-Conquer System

Operational Simulation Error

C 12.002 11.994 0.07%

EStart 1.070 1.083 -1.20%
E Ola 1.407 1.401 0.43%

EOlb 1.407 1.363 3.23%

E02a 1.504 1.503 0.07%

E02 b 1.504 1.494 0.67%

E02e 1.504 1.479 1.69%

E02d 1.504 1.482 1.48%

E03a 1.653 1.665 -0.72%

E03b 1.653 1.640 0.79%

E03c 1.653 1.625 1.72%

E03d 1.653 1.640 0.79%

E03e 1.653 1.659 -0.36%
E03f 1.653 1.653 0.00%

E03g 1.653 1.642 0.67%

E03h 1.653 1.660 -0.42%

EC2a 0.972 0.940 3.40%

EC2b 0.972 0.955 1.78%
E C2e 0.972 0.944 2.97%
E C2d 0.972 0.936 3.85%

ECla 0.909 0.891 2.02%

EClb 0.909 0.900 1.00%
EEnd 1.070 1.069 0.09%

lStart 0.000 0.000 0.00%

lOla, 101b 1.070 1.083 -1.20%
102a, 102b 2.477 2.484 -0.28%

102e,102d 2.477 2.446 1.27%
103a, 103b 3.980 3.988 -0.20%
I03e. 103d 3.980 3.978 0.05%
I 03e• 103f 3.980 3.925 1.40%

103g. 1 03h 3.980 3.928 1.32%

lC2a 6.460 6.373 1.37%

lC2b 6.460 6.330 2.05%
lC2e 6.460 6.312 2.34%
lC2d 6.460 6.300 2.54%
lCla 8.566 8.550 0.19%
lClb 8.566 8.522 0.52%
lEnd 10.932 10.925 0.06%

I ,

17

-~--- l
I

18 A DERIVATION OF EQUATION 7

Appendices

A Derivation of Equation 7

From equation 6,

Pr{A < B) = foo[1 - FB{x)]!A{X)dx
o

Assume that A and B are two independent Erlang distributed random variables with
parameters (AA' r A) and (AB' rB) respectively, then,

and
"B-1 (A x)k

FB(x) = 1 - 2: B , e-AB x

k=O k.

Substituting the above two equations into equation 6,

Pr{A < B)

----- ------------

, I

"

19 .

B Derivation of Equations 15 and 16

From equation 12, the equivalent probability distribution function of the parallel com­
bination is,

Feq = F. Fj

Therefore, the equivalent probability density function is,

Assume that i and j are two independent Erlang distributed random variables with
parameters (Ai, Ti) and (Ajl Tj) respectively. Substituting these paramet ers into the
above equation,

T he equivalent mean of t he parallel combinat ion is,

\

100

XUi + Ij - 51 - 5 2)dx
o

20 B . DERIVATION OF EQUATIONS 15 AND 16

Consider the third term of the above equation,

Similarly,

S d - 1 AI r 1 + . 100 ,x~j r .. -l('.)Jc (. k)'
o X 2 X - (,xi + ,xjtj +1 ~ ,xi +,xj (rj - I)! k!

Therefore, the equivalent mean of the parallel combination is

The equivalent variance of the parallel combination is

•

21

Consider the second last term in the above equation,

f oo rj-l .A~' .A~ Xr,+k-l
2 '"' '1 -(A"+A ·)Zd XL..., e '1 x

o k=O (ri - I)! k!

Similarly,

00 28 d Aj Ai r j + + 1 . 1 ,rj r,-l (,) k (k)'
X 2 X =

o (.Ai + .AjYj+2 E .Ai +.Aj (rj - I)! k!

Therefore, the equivalent variance of the parallel combination is

22 REFERENCES

References

[Cou77] P.J. Courtois. Decomposability: Queueing and Computer System Appl£ca­
tions. Academic Press, 1977.

[DB78] Peter J. Denning and Jeffrey P. Buzen. "The Operational Analysis of
Queueing Network Models". Computing Surveys, 10(3) :225-261, September
1978.

[HT82] Philip Heidelberger and Kishor S. Trivedi. "Queueing Network Models
for Parallel Processing with Asynchronous Tasks". IEEE Transactions on
Computers, C-31(1l):1099-1109, November 1982.

[HT83] Philip Heidelberger and Kishor S. Trivedi. "Analytic Queueing Models for
Programs with Internal Concurrency". IEEE Transactions on Computers,
C-32(1):73-82, January 1983.

[Kle85] Wolfgang Kleinoder. "Evaluation of Task Structures for a Hierarchical Mul­
tiprocessor System". In D. Potier, editor, Modeling Techniques and Tools
for Performance Analysis, pages 403-419, Elsevier Science Publishers B.V.
(North Holland), 1985.

[LS79] Edward D. Lazowska and Kenneth C. Sevcik. "Exploiting Decomposability
to Approximate Quantiles of Response Times in Queueing Networks". In D.
Lanciaux, editor, Operating Systems: Theory and Practice, pages 149-166,
North-Holland Publishing Company, 1979.

[LZGS84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik. Quantitative System Performance. Prentice Hall, Englewood Cliffs,
New Jersey, 1984.

[Moh84] Joseph Mohan. Performance of Parallel Programs: Model and Analyses.
PhD thesis, Carnegie-Melon University, July 1984.

[RL80] M. Reiser and S.S. Lavenberg. "Mean Value Analysis of Closed Multichain
Queueing Networks". Journal of the ACM, 27(2) :313-322, April 1980.

[Sch86] Herb Schwetman. "CSIM: A C-Based, Process-Oriented Simulation Lan­
guage" . In Proceedings for Winter Simulation Conference '86, Washington
DC, December 1986.

[TB83] Alexander Thomasian and Paul Bay. "Queueing Network Models for Par­
allel Processing of Task Systems". In Proceedings of the 1983 International
Conference on Parallel Processing, pages 421-428 , IEEE, 1983.

------ ~-------'-

•

